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Abstract

We study entropy-regularized constrained
Markov decision processes (CMDPs) under
the soft-max parameterization, in which
an agent aims to maximize the entropy-
regularized value function while satisfying
constraints on the expected total utility. By
leveraging the entropy regularization, our the-
oretical analysis shows that its Lagrangian
dual function is smooth and the Lagrangian
duality gap can be decomposed into the pri-
mal optimality gap and the constraint viola-
tion. Furthermore, we propose an accelerated
dual-descent method for entropy-regularized
CMDPs. We prove that our method achieves
the global convergence rate Õ(1/T ) for both
the optimality gap and the constraint viola-
tion for entropy-regularized CMDPs. A dis-
cussion about a linear convergence rate for
CMDPs with a single constraint is also pro-
vided.

1 INTRODUCTION

In many sequential decision-making problems for safety-
critical systems, e.g. autonomous driving (Fisac et al.,
2018) and cyber-physical systems (Zhang et al., 2019),
the optimality of an objective function by itself is not
sufficient and a variety of constraints must be satisfied.
This has naturally led to a generalization of the model
of Markov Decision Processes (MDPs) to Constrained
MDPs (CMDPs) (Altman, 1999), in which an agent
aims to maximize the value function while satisfying
given constraints on the expected total utility.

Direct policy search methods, including the policy gra-
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dient and the natural policy gradient (NPG) methods,
have had substantial empirical successes in solving
CMDPs (Achiam et al., 2017; Chow et al., 2017; Bhat-
nagar and Lakshmanan, 2012; Borkar, 2005; Uchibe
and Doya, 2007; Achiam et al., 2017). Recently, a
major progress in understanding the theoretical non-
asymptotic global convergence behavior of policy-based
methods for CMDPs has also been achieved (Ding et al.,
2020, 2021; Xu et al., 2021; Efroni et al., 2020; Chen
et al., 2021).

For policy-based methods, entropy regularization is a
popular technique for encouraging the exploration of an
unknown environment and preventing a premature con-
vergence (Williams and Peng, 1991; Mnih et al., 2016;
Haarnoja et al., 2018; Zang et al., 2020). From a theo-
retical optimization perspective, it is shown in Mei et al.
(2020) and Cen et al. (2021) that the entropy regulariza-
tion can make the policy optimization landscape benign
and achieve faster convergence rates even in the exact
value evaluation setting. Nevertheless, most existing
theoretical guarantees for the entropy-regularized pol-
icy optimization are restricted to unconstrained MDPs.
The scope of the power of entropy regularization for
CMDPs remains unknown even for the tabular setting
with the exact value evaluation.

Inspired by the recent theoretical advances towards un-
derstanding entropy-regularized policy gradient meth-
ods (Mei et al., 2020; Cen et al., 2021) together with the
global convergence of Lagrangian-based methods for
CMDPs (Ding et al., 2020, 2021; Paternain et al., 2019;
Xu et al., 2021), we investigate the optimization proper-
ties induced by the entropy regularization for CMDPs
under the soft-max policy parameterization. We focus
on the study of tabular CMDPs with the exact gradient
evaluation. This is the setting commonly investigated
in the literature since its understanding assists in de-
mystifying the effectiveness of entropy-regularization
in CMDPs with more complex settings.
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1.1 Contributions

This work is the first one that certifies the effectiveness
of entropy regularization in CMDPs from an optimiza-
tion perspective. We summarize our contributions
below:

• We first show that although the underlying prob-
lem is nonconcave, the Lagrangian dual function of
CMDPs with the entropy regularization is smooth
under the Slater condition and the exploratory
initial distribution assumption. Under the same
conditions, an O(ε) error bound for the dual opti-
mality gap leads to an O(

√
ε) error bound for the

primal optimality gap and the constraint violation.

• To leverage the smoothness of the Lagrangian
dual function, we propose a new accelerated dual-
descent method for entropy-regularized CMDPs,
which updates the dual variable via projected ac-
celerated gradient descent and uses the natural
policy gradient method in the inner loop.

• We prove that the proposed method achieves a
global convergence with the rate Õ(1/T ) for both
the optimality gap and the constraint violation for
entropy-regularized CMDPs.

• In the special case where CMDPs only have a
single constraint, we show that a bisection-based
dual approach can achieve a linear convergence
rate.

1.2 Related Work

CMDPs Our work is related to policy-based CMDP
algorithms (Altman, 1999; Borkar, 2005; Bhatnagar
and Lakshmanan, 2012; Chow et al., 2017; Ding et al.,
2020, 2021; Xu et al., 2021; Chen et al., 2021; Efroni
et al., 2020). The papers Ding et al. (2020) and Xu
et al. (2021) are closely related to our work. In Ding
et al. (2020), the authors propose a natural policy gra-
dient primal-dual method for CMDPs and prove that
it achieves global convergence with the rate O(1/

√
T )

for both the optimality gap and the constraint viola-
tion under the soft-max policy parameterization. The
work Xu et al. (2021) achieves a similar global conver-
gence rate as Ding et al. (2020) using a primal-based
approach. However, the entropy regularization, which
is an effective technique for unconstrained MDPs, is
not used in these algorithms.

Entropy-regularized RL Maximum entropy rein-
forcement learning optimizes policies to jointly max-
imize the expected return and the expected entropy
of the policy. This framework has been used in many
contexts. It has been shown that the maximum entropy

formulation provides a substantial improvement in ex-
ploration and robustness (Ziebart, 2010). It is robust
in the face of model and estimation errors (Haarnoja
et al., 2017) in both on-policy and off-policy settings
(Haarnoja et al., 2018). More recently, the theoreti-
cal results in Mei et al. (2020) and Cen et al. (2021)
have shown that the entropy regularization can help
policy-based methods improve the convergence rate
and the sample complexity compared with standard
MDPs without the entropy regularization. However,
despite the tremendous successes of the entropy regu-
larization in unconstrained MDPs, the impact of the
entropy regularization for CMDPs remains unknown.

1.3 Notations

Let ∆(S) denote the probability simplex over the set
S, and let ∣S∣ denote its cardinality. For a set T ⊂ Rp,
let cl(T ) denote the closure of T . When the variable
s follows the distribution ρ, we write it as s ∼ ρ. Let
E[⋅] and E[⋅ ∣ ⋅], respectively, denote the expectation
and conditional expectation of a random variable. Let
R denote the set of real numbers. For a number a ∈ R,
let sign(a) denote the sign of a, i.e. sign(a) = +1 if
a ≥ 0 and sign(a) = −1 if a < 0. Let [n] denote the set
{1,2, . . . , n}. For a vector x, we use xT to denote the
transpose of x, and use xi or (x)i to denote the i-th
entry of x. When applying a scalar function to x, e.g.
logx, the operation is understood as entry-wise. For
vectors x and y, we use x ≥ y to denote an entry-wise
inequality. We use the convention that ∥x∥1 = ∑i ∣xi∣,
∥x∥2 =

√
∑i x

2
i , and ∥x∥∞ = maxi ∣xi∣. For a matrix

A, we use Aij to denote its (i, j)-th entry, and let
∥A∥F =

√

∑i,j A
2
ij . Let In denote the n × n identity

matrix. For square matrices A and B, we use A ⪰ B
to denote that A −B is positive semi-definite. For a
function f(x), let ∇xf(x) (resp. ∇2

xxf(x)) denote its
gradient (resp. Hessian) with respect to x, and we
may omit x in the subscript when it is clear from the
context. Let arg min f(x) (resp. arg max f(x)) denote
any arbitrary global minimum (resp. global maximum)
of f(x). We use boldface symbols for constraint-related
vectors, e.g. λ.

2 PROBLEM FORMULATION

Markov Decision Processes An infinite-horizon
Markov Decision Process MDP(S,A, P, r, γ) with a
finite state-action space is specified by: a finite state
space S; a finite action space A; a transition dynamics
P ∶ S ×A → ∆(S), where P (s′∣s, a) is the probability of
transition from state s to state s′ when action a is taken;
a reward function r ∶ S × A → [0,1], where r(s, a) is
the instantaneous reward when taking action a in state
s; a discount factor γ ∈ [0,1). A policy π ∶ S → ∆(A)



Donghao Ying, Yuhao Ding, Javad Lavaei

represents that the decision rule the agent uses, i.e. the
agent takes action a with probability π(a∣s) in state
s. We can also interpret a policy π as a vector in
∆(A)∣S∣ ⊂ R∣S∣∣A∣.

Given a policy π, the value function V π ∶ S → R is de-
fined to characterize the discounted sum of the rewards
earned under π, i.e.

V π(s) ∶= E [
∞

∑
t=0

γtr (st, at) ∣π, s0 = s] , ∀s ∈ S (1)

where the expectation is taken over all possible trajecto-
ries, in which at ∼ π(⋅∣st) and st+1 ∼ P (⋅∣st, at). When
the initial state is sampled from some distribution ρ,
we slightly abuse the notation and define the value
function as

V π(ρ) ∶= Es∼ρ [V
π
(s)] (2)

One classical property of the value function is that it is
sufficiently smooth with respect to the policy if we view
V π(ρ) as a function from the policy space ∆(A)∣S∣ to R.
Especially, V π(ρ) has the following Lipschitz property.

Lemma 2.1 For arbitrary policies π1 and π2, it holds

∣V π1(ρ) − V π2(ρ)∣ ≤ `c ∥π1 − π2∥2 , (3)

where `c =
√

∣A∣

(1−γ)2
.

Lemma 2.1 follows from the bounded gradient of V π(ρ)
with respect to π. We refer the reader to the supplement
in Appendix A for more details.

The action-value function (or Q-function) Qπ ∶ S ×A →
R under policy π is defined as

Qπ(s, a) = E [
∞

∑
t=0

γtr (st, at) ∣π, s0 = s, a0 = a] (4)

which can be interpreted as the expected total reward
with an initial state s0 = s and an initial action a0 = a.
Since r(s, a) ∈ [0, 1] by assumption, we have that both
Qπ(s, a) and V π(ρ) are bounded between [0,1/(1 − γ)]
for any (s, a) ∈ S ×A and initial distribution ρ.

For theoretical analysis, it is useful to define the so-
called discounted state visitation distribution dπs0 of a
policy π:

dπs0(s) ∶= (1 − γ)
∞

∑
t=0

γtP (st = s ∣ π, s0) , ∀s ∈ S (5)

and we write dπρ(s) ∶= Es0∼ρ [d
π
s0(s)] as the visitation

distribution when the initial state follows ρ.

Soft-max Parameterization Parameterization is
commonly deployed to model unknown policies to help

with the optimization process. One natural choice is
the soft-max parameterization:

πθ(a∣s) ∶=
exp(θ(s, a))

∑a′∈A exp (θ (s, a′))
, ∀(s, a) ∈ S ×A (6)

where θ ∈ R∣S∣∣A∣ is an unconstrained vector. We denote
the class of all soft-max parameterized policies by Π.
This policy class is complete in the sense that its closure
cl(Π) contains all stationary policies. In what follows,
we will discard the subscript θ and just write π ∈ Π,
whenever it is clear from the context.

Entropy Regularization To encourage exploration
and accelerate convergence to the optimal policy, en-
tropy regularization is widely used in solving MDPs.
In the regularized setting, the agent seeks to optimize
the entropy-regularized value function

V πτ (ρ) ∶= V π(ρ) + τ ⋅ H(ρ, π), (7)

where τ ≥ 0 specifies the weight of regularization and
H(ρ, π) is the discounted entropy defined by

H(ρ, π) ∶= E [
∞

∑
t=0

−γt logπ (at∣st) ∣π, s0 ∼ ρ] . (8)

We can also define the Q-function under regularization,
which is referred to as the soft Q-function

Qπτ (s, a) = r(s, a) + γEs′∼P (⋅∣s,a) [V
π
τ (s′)] . (9)

Constrained MDP With Entropy Regulariza-
tion In a Constrained Markov Decision Process
CMDP(S,A, P, r,g,b, γ), besides the reward function
r, we have a utility function g = (g1, . . . , gn) ∶ S ×A →
[0,1]n and a threshold b ∈ [0,1/(1 − γ)]

n. Under en-
tropy regularization, the agent seeks to maximize the
regularized value function V πτ (ρ) without violating the
utility constraint Uπg (ρ) ≥ b, where the discounted
utility Uπg (ρ) ∶= (Uπg1(ρ), . . . , U

π
gn(ρ)) ∈ Rn is defined

by

Uπgi(ρ) ∶= E [
∞

∑
t=0

γtgi(st, at)∣π, s0 ∼ ρ] . (10)

Equivalently, the agent solves the optimization problem

max
π∈Π

V πτ (ρ) s.t. Uπg (ρ) ≥ b, (11)

where V πτ (ρ) ∶= V π(ρ) + τH(ρ, π). Consider the associ-
ated Lagrangian function L(π,λ) and the dual function
D(λ) defined as:

L(π,λ) ∶= V πτ (ρ) +λT (Uπg (ρ) − b) , (12a)

D(λ) ∶= max
π∈Π

L(π,λ), (12b)

where λ ∈ Rn is the dual variable. For brevity, we omit
the dependency of L and D on ρ and τ in the notations.
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It can be seen from (12a) that L(π,λ) can be viewed as
an entropy-regularized value function with the reward
rλ(s, a) ∶= r(s, a) +λTg(s, a) subtracted by the scalar
λTb. Let V πλ (ρ) (resp. Qπλ(s, a)) denote the value
function (resp. Q-function) with the reward function
rλ, i.e. V πλ (ρ) ∶= V πτ (ρ) +λTUπg (ρ).

It is worth mentioning that (11) is non-convex due
to its non-concave objective function and non-convex
constraints, thus making the problem challenging to
solve. Henceforth, we slightly abuse the notation and
still denote π⋆τ as an arbitrary optimal policy to the
constrained problem (11). Let λ⋆ denote an optimal
multiplier, i.e.

λ⋆ ∶= arg min
λ≥0

D(λ), (13)

and πλ be the Lagrangian maximizer associated with
the multiplier λ, i.e.

πλ ∶= arg max
π∈Π

L(π,λ). (14)

We use the shorthand notations V ⋆

τ ∶= V
π⋆τ
τ (ρ) and

D⋆

τ ∶= minλ≥0D(λ). As before, we hide the dependency
of λ⋆, πλ on ρ and τ , as well as the dependency of π⋆τ ,
V ⋆

τ , D
⋆

τ on ρ.

3 PROPERTIES OF CMDP WITH
ENTROPY REGULARIZATION

Despite its non-convex nature, entropy-regularized
CMDPs enjoy desirable properties, which we will dis-
cuss below. We refer the reader to the supplement in
Appendix A for all the proofs in this section.

Assume that the Slater condition holds, i.e. there exists
a strictly feasible policy.

Assumption 3.1 (Slater Condition) There exist a
policy π ∈ Π and ξ > 0 such that Uπg (ρ) − b ≥ ξ.

The Slater condition is standard in constrained opti-
mization. It holds when the feasible region contains
an interior point. In practical, such a point is often
easy to find given prior knowledge of the problem. One
direct consequence of the Slater condition is the strong
duality (Altman, 1999; Paternain et al., 2019).

Lemma 3.2 (Strong Duality) Under Assumption
3.1, there exist a primal-dual pair (π⋆τ ,λ

⋆
) such that

V ⋆

τ =D⋆

τ = L (π⋆τ ,λ
⋆
).

In the remainder of the paper, we always assume that
(π⋆τ ,λ

⋆
) is a primal-dual pair. From the strong duality,

we can derive an upper bound on λ⋆.

Lemma 3.3 Under Assumption 3.1, it holds that

0 ≤ λ⋆i ≤
V ⋆

τ − V πτ (ρ)

ξi
, ∀i ∈ [n]. (15)

Define

Λ ∶= {λ ∣ 0 ≤ λi ≤
V ⋆

τ − V πτ (ρ)

ξi
, for all i ∈ [n]} . (16)

Since the dual functionD(λ) is always convex, Lemmas
3.2 and 3.3 together imply that, instead of directly
solving the non-convex primal problem (11), one can
seek to solve the convex dual problem

min
λ

D(λ) s.t. λ ∈ Λ. (17)

However, there are two open problems that need to be
addressed. The first one is that although algorithms
in convex optimization can be used to solve the dual
problem, it is not clear how fast they will converge
without discovering key properties of the dual function.
The second problem is that optimizing the dual function
gives a dual optimality bound, while our goal is find a
primal solution and analyze the primal optimality gap
together with the constraint violation. In the following
sections, we will show that the entropy-regularized
CMDP has special structures that can be leveraged to
address the above issues.

3.1 Dual Smoothness

In optimization, smoothness plays an important role
in establishing the convergence rate of an algorithm.
Recall that a function f ∶X → R is said to be `-smooth
if

∥∇f(x1) − ∇f (x2)∥2 ≤ ` ∥x1 − x2∥2 , (18)

for all x1, x2 ∈ X. In constrained optimization, how-
ever, smoothness is not always guaranteed, even when
the primal problem is convex (Necoara et al., 2019).
In addition, while the subgradient of the dual function
exists in general, the dual function is not always dif-
ferentiable due to the non-uniqueness of Lagrangian
multipliers.

By leveraging the entropy regularization, we will show
that the dual function D(λ) in CMDPs is both differen-
tiable and `-smooth for some constant ` > 0, under the
following assumption on the discounted state visitation
distribution.

Assumption 3.4 The discounted state visitation dis-
tribution dπρ is uniformly bounded away from 0 for all
π ∈ Π, i.e. there exists d > 0, such that dπρ(s) ≥ d,
∀s ∈ S, π ∈ Π.

Assumption 3.4 ensures that the MDP sufficiently ex-
plores the state space. Since dπρ(s) ≥ (1 − γ)ρ(s), it
is satisfied when the initial distribution ρ lies in the
interior of the probability simplex ∆(S). Similar as-
sumptions are used in the prior literature (Agarwal
et al., 2021; Mei et al., 2020, 2021).
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The following proposition is crucial for the development
of our main result.

Proposition 3.5 For all policy π and λ ≥ 0, it holds
that

L(πλ,λ) −L(π,λ) ≥
τd

2(1 − γ) ln 2
∥π − πλ∥

2
2 . (19)

Under Assumption 3.4, Proposition 3.5 implies that the
Lagrangian function L(π,λ) has a negative curvature
at πλ in all directions. The proof relies on the soft
sub-optimality lemma (cf. Lemma D.4) and a lower
bound on the KL divergence (Cover, 1999).

With the quadratic lower bound given by Proposition
3.5, we derive the following result.

Proposition 3.6 Under Assumptions 3.1 and 3.4, the
dual function D(λ) satisfies the following properties:

1. D(λ) is differentiable and

∇D(λ) =Uπλ
g (λ) − b

=(Uπλ
g1 (λ) − b1, . . . , U

πλ
gn (λ) − bn) . (20)

2. D(λ) is `-smooth on Λ, where

` =
2 × ln 2 × (n∣A∣ + (1 − γ)2

√
n∣A∣)

τ(1 − γ)3d
. (21)

Proposition 3.6 asserts that the dual function D(λ) is
not only differentiable but also smooth on Λ. This is
desirable since, along with the convexity, it establishes
an improved convergence rate compared with the slow
convergence rate of sub-gradient methods. We provide
a short proof sketch for Proposition 3.6 below:

1. As subgradients of the dual function always ex-
ist for continuous problems, the differentiability
follows from the uniqueness of the Lagrangian
maximizer πλ for every λ ∈ Λ (Floudas, 1995)1.

2. The smoothness of D(λ) is the joint result of the
Lipschitz continuity of Uπg (ρ) with respect to π
(cf. Lemma 2.1) and the Lipschitz continuity of πλ
with respect to λ, i.e. ∥πλ1 − πλ2∥2 ≤ `Λ∥λ1 −λ2∥2

for some `Λ > 0. To prove the latter, the main
idea is to use the quadratic lower bound given by
Proposition 3.5 to conclude that πλ is a second-
order strict local maximum. After that, we apply
a standard result from perturbation analysis which
states that πλ is Lipschitz stable at λ (Bonnans
and Shapiro, 2013).

1Although more than enough, Proposition 3.5 under
Assumption 3.4 provides an intuitive way to think about
the uniqueness of πλ.

3.2 Optimality Gap And Constraint
Violation

Given a candidate solution π to the CMDP problem in
(11), our primary measures of the quality of the solu-
tion π are the primal optimality gap ∣V πτ (ρ) − V ⋆

τ ∣, and
the constraint violation maxi∈[n] [bi −U

π
gi(ρ)]+, where

[x]+ ∶= max{x,0}. However, dual-descent based meth-
ods could only guarantee a convergence bound in terms
of the dual optimality gap D(λ) − D⋆

τ . In general,
there is no guarantee that an ε-optimal dual solution λ,
namely D(λ) −D⋆

τ ≤ ε, would imply an O(εk) bound
either on the primal optimality gap or on the constraint
violation for the associated primal solution πλ defined
in (14), for some k ∈ (0,1].

However, in light of the entropy regularization, it is pos-
sible to show that an ε error bound for dual functions
would yield an O (

√
ε) error bound for the primal opti-

mality gap and the constraint violation. We summarize
the results in the following proposition.

Proposition 3.7 Suppose that Assumptions 3.1 and
3.4 hold. If λ ≥ 0 is an ε-optimal multiplier, i.e. D(λ)−

D⋆

τ ≤ ε, then there exist constants C1 and C2 such that
the associated Lagrangian maximizer πλ satisfies

∥πλ − π
⋆

τ ∥2 ≤ C1

√
ε, (22a)

∣V πλ
τ (ρ) − V ⋆

τ ∣ ≤ 2ε + `cC1C2

√
ε, (22b)

max
i∈[n]

[bi −U
πλ
gi (ρ)]

+
≤ `cC1

√
ε, (22c)

where `c is the Lipschitz constant defined in (3).

The values of the problem-dependent constants C1 and
C2 can be found in Appendix A.

In a nutshell, Proposition 3.7 enables the conversion of
the dual optimality bound to primal metrics of interests,
at the cost of enlarging the sub-optimality by a square
root. This is a non-trivial result and it does not hold
in a general setting without the entropy regularization.
The proof of (22a) relies on the quadratic lower bound
given in Proposition 3.5. Then, using the Lipschitz
continuity of Uπg (ρ) with respect to π (cf. Lemma
2.1), we can derive the bound (22c) on the constraint
violation. Finally, (22b) can be obtained with some
primal-dual properties.

4 FIRST-ORDER DUAL-DESCENT
ALGORITHM

As shown in Section 3, the dual function D(λ) for
entropy-regularized CMDPs enjoys desirable properties,
including the differentiability, the smoothness and the
decomposition of the dual optimality gap. These favor-
able properties of entropy-regularized CMDPs motivate
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us to use a dual-descent approach to solve the dual
problem (17). In particular, we choose first-order meth-
ods, e.g. gradient projection method or Frank-Wolfe
algorithm, while using the Natural Policy Gradient
(NPG) algorithm as a subroutine for evaluating D(λ)

as well as ∇D(λ). To streamline the presentation, we
mainly focus on the gradient projection method with
the Nesterov acceleration as an example in the remain-
der of the paper. We begin with a brief introduction
about the NPG algorithm.

4.1 Preliminary Tools

NPG Algorithm With Entropy Regularization
To optimize an unconstrained value function with re-
spect to the policy, one commonly used first-order
method is the Natural Policy Gradient algorithm
(Kakade, 2001), which deploys a pre-conditioned gra-
dient update and regularizes the descent direction by
the Fisher-information matrix Fθρ (cf. Appendix B.1):

θ ← θ + η (Fθρ)
†
∇θV

πθ(ρ), (23)

where η is the step-size and (A)† denotes the
Moore–Penrose inverse of a matrix A.

In the entropy regularized setting, the update scheme is
obtained by replacing ∇θV πθ(ρ) in (23) with ∇θV πθτ (ρ).
Under the soft-max parameterization, the associated
policy update has a fairly direct form, which is surpris-
ingly independent from the initial distribution ρ:

π(t+1)
(a∣s) ∝ (π(t)

(a∣s))
1− ητ

1−γ exp
⎛

⎝

ηQπ
(t)
τ (s, a)

1 − γ

⎞

⎠
,

(24)
where we use the shorthand π(t) for the soft-max pa-
rameterized policy with respect to θ(t), and Qπτ is the
soft Q-function defined in (9). The right-hand side of
(24) can be normalized by multiplying a factor Z(t)(s),
defined as

Z(t)
(s) ∶= ∑

a∈A

(π(t)
(a∣s))

1− ητ
1−γ exp

⎛

⎝

ηQπ
(t)
τ (s, a)

1 − γ

⎞

⎠
,

(25)
to make π(t+1) be a valid distribution.

Cen et al. (2021) proved the global linear conver-
gence of the entropy-regularized NPG method with
a constant step-size. In particular, the error bound
∥logπ⋆τ − logπ(t)∥

∞
≤ ε can be achieved in

1

1 − γ
log

⎛
⎜
⎝

2 ∥Q⋆

τ −Q
π(0)
τ ∥

∞

ετ

⎞
⎟
⎠
, (26)

iterations with the step-size η = (1 − γ)/τ , where π⋆τ is
the optimal policy and Q⋆

τ(s, a) ∶= Q
π⋆τ
τ (s, a) is the as-

sociated optimal Q-function. Furthermore, they proved

that the convergence rate becomes quadratic around
the optimum. We refer the reader to Appendix B.1 for
more details.

Accelerated Gradient Projection Method with
Inexact Gradient The Nesterov acceleration is a
momentum-based approach that can be used to modify
a gradient descent-type method to improve its conver-
gence (Nesterov, 1983, 2013). Consider the optimiza-
tion problem

min
x

f(x) s.t. x ∈X (27)

where f(x) is convex and differentiable, and X is a
convex set. The accelerated gradient projection method
takes the update rule

⎧⎪⎪
⎨
⎪⎪⎩

x(k+1)
= PX (y(k) − αk∇f(y(k)))

y(k) = x(k) + βk (x
(k)

− x(k−1))
, k = 0,1 . . . (28)

where PX denotes the projection onto the set X, de-
fined as PX(y) ∶= arg minx∈X ∥x− y∥2, and {βk} is cho-
sen in a particular way to accelerate the convergence.
The iteration (28) first computes an extrapolation point
y(k) and then performs the gradient projection update
on y(k) to find the next point x(k+1). It coincides
with the standard gradient projection method when
βk = 0. For a convex and smooth function f , the
accelerated gradient projection method (28) achieves
an error bound of O(1/T 2) in T iterations (Nesterov,
2013).

When the gradient evaluation is inexact with a bounded
error δ, i.e. we have access to some function h ∶X → Rn

such that ∥∇f(x) − h(x)∥2 ≤ δ for all x ∈ X, Schmidt
et al. (2011) proved that the accelerated gradient pro-
jection method still works with the slightly different
error boundO(1/T 2 + T 2δ2 + δ). Despite theO(1/T 2)

shrinking term, there is an accumulated error incurred
by the inexact gradient. We refer the reader to Propo-
sition B.3 in Appendix B for a formal statement.

4.2 Accelerated Gradient Projection Method
With NPG Subroutine

Before presenting our method, we first note that the
feasible region Λ, as defined in (16), makes the dual
problem (17) amenable to many constrained optimiza-
tion methods. Especially, the projection operator PΛ(⋅)

maps a point λ coordinate-wisely onto Λ such that

(PΛ(λ))i = Median{0,
V ⋆

τ − V πτ (ρ)

ξi
, λi} (29)

where Median{⋅, ⋅, ⋅} returns the median of the input
numbers.
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Algorithm 1 Accelerated Gradient Projection Method
with NPG Subroutine
1: Input: Initialization λ(−1),λ(0), π̃µ(−1) ; step-size

{αk}k≥0, η; extrapolation weight {βk}k≥0; maxi-
mum number of iterations N1, N2, N3.

2: for t = 0,1,2, . . . ,N1 − 1 do
3: Compute the extrapolation point: µ(t) = λ(t)

+

βk (λ
(t)

−λ(t−1)
).

4: Estimate the optimal policy πµ(t) for problem
(14) through the natural policy gradient subrou-
tine: π̃µ(t) ← NPGSub (µ(t), π̃µ(t−1) , η,N2).

5: Compute the approximate gradient at µ(t):
∇̃D (µ(t)) ∶= U

π̃
µ(t)

g (ρ) − b.
6: Take a gradient projection step at µ(t): λ(t+1)

←

PΛ (µ(t) − αk∇̃D (µ(t))), as defined by (29).
7: end for
8: Recover the policy from the dual variable: π̃λ(N1) ←

NPGSub (λ(N1), π̃µ(N1−1) , η,N3).

The proposed method works in two loops. In the outer
loop, we perform the accelerated gradient projection
method on the dual function D(λ), whereas we use
the natural policy gradient method in the inner loop to
evaluate D(λ) by maximizing the Lagrangian L(π,λ)

with respect to π. We summarize the details of our
method in Algorithm 1.

Specifically, in line 3, we compute the extrapolation
point µ(t). Then, in line 4, we estimate the corre-
sponding Lagrangian maximizer πµ(t) , defined in 14,
using the natural policy gradient subroutine, which
is displayed in Algorithm 2. With the estimated
policy π̃µ(t) , we evaluate the gradient ∇D (µ(t)) by
substituting the policy into the utility function in
line 5. In line 6, we perform the gradient projection
update at µ(t) using the estimated gradient ∇̃D (µ(t)).
We remark that, as V ⋆

τ is generally unknown, the
projection PΛ may not be precisely done in practical.
Alternatively, one can perform the projection onto Λ̃ ∶=

{λ ∣ 0 ≤ λi ≤ (2 + 2τ logA)/((1 − γ)ξi), for all i ∈ [n]}.
Since the difference V ⋆

τ − V π̄τ (ρ) is upper bounded by
(2 + 2τ logA)/(1 − γ), it holds that λ⋆ ∈ Λ ⊆ Λ̃. This
reduction would not influence the order of convergence.
Finally, upon the termination of the outer loop, we
recover the primal variable (policy) from the dual
variable by running the NPG subroutine for N3

iterations in line 8.

5 CONVERGENCE ANALYSIS

In this section, we analyze the convergence of Algorithm
1. The complete proofs of results in this section are
postponed to Appendix B.3.

Algorithm 2 Natural Policy Gradient Subroutine
(NPGSub)

1: Input: Multiplier λ; initial policy π(0); step-size
η; maximum number of iterations N .

2: for t = 0,1,2, . . . ,N − 1 do
3: Compute the soft Q-function associated with the

Lagrangian: Qπ
(t)

λ of policy π(t).
4: Update the policy with Qπ

(t)
λ through (24).

5: end for

A simple insight is that the NPG subroutine in Algo-
rithm 1 computes the optimal policy at a linear rate in
the inner loop and the accelerated gradient projection
algorithm converges in O(1/

√
ε) rate in the outer loop,

leading to the overall convergence rate of Õ (1/
√
ε).

Then, we obtain the desired Õ(1/ε) rate in terms of
the primal optimality gap and constraint violation by
applying Proposition 3.7.

The above high-level technique requires subtle tech-
nicalities to be addressed here. We begin with the
following proposition, which evaluates the accuracy of
the gradient estimator defined in line 5 of Algorithm 1.

Proposition 5.1 Suppose that π is an approximate
solution to (14) such that ∥ logπ − logπλ∥∞ ≤ ε. The
gradient estimator defined as ∇̃D (λ) ∶= Uπg (ρ) − b =

(Uπg1(ρ) − b1, . . . , U
π
gn(ρ) − bn) satisfies the inequality

∥∇̃D (λ) − ∇D (λ)∥
2
≤
√
n∣A∣ε/(1 − γ)2.

This result can be deduced from the inequality ∥π −
πλ∥∞ ≤ ∥ logπ − logπλ∥∞ ≤ ε and the performance
difference lemma of an unregularized value function
(Lemma D.3). Recall that L(π,λ) = V πλ (ρ) − λTb,
where V πλ (ρ) = V πτ (ρ) +λTUπg (ρ) is the value function
with the reward rλ(s, a) ∶= r(s, a) +λTg(s, a) (cf. Sec-
tion 2)). Therefore, Proposition 5.1 together with (26),
implies that running Algorithm 2 with the step-size
η = (1 − γ)/τ for

1

1 − γ
log

⎛
⎜
⎝

2
√
n ∣A∣ ∥Qπλ

λ −Qπ
(0)

λ ∥
∞

δ(1 − γ)2τ

⎞
⎟
⎠

(30)

iterations can guarantee a δ-accurate gradient estima-
tion ∇̃D (λ), i.e. ∥∇̃D (λ) − ∇D (λ)∥

2
≤ δ.

Below, we present our main convergence result of Al-
gorithm 1.

Theorem 5.2 Suppose that Assumptions 3.1 and 3.4
hold. For every ε1 > 0, there exist some constants
C1 and C2 > 0 such that Algorithm 1 with a random
initialization and the parameters η = (1 − γ)/τ , αk =

1/`, βk = (k − 1)/(k + 2), N1 = T , N2 = O (logT ) and
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N3 = O (log 1/ε1) returns a solution pair (π,λ) such
that

D(λ) −D⋆

τ ≤ ε0, (31a)
∥π − π⋆τ ∥2 ≤ C1

√
ε0 + ε1, (31b)

∣V πτ (ρ) − V ⋆

τ ∣ ≤ 2ε0 + `cC1C2
√
ε0 + (`cC2 +

3γ

2τ
√
n
) ε1,

(31c)

max
i∈[n]

[bi −U
π
gi(ρ)]+ ≤ `c (C1

√
ε0 + ε1) , (31d)

where

ε0 =
2`

(T + 1)2
(∥λ(0)

−λ⋆∥
2
+ 1)

2
, (32)

and where ` is the smoothness factor defined in (21)
and `c is the Lipschitz constant defined in (3). The
total iteration complexity is N1 ×N2 +N3 = Õ(T ) with
primal error bounds O(1/T ) given by (31b)-(31d), and
a dual error bound O(1/T 2) given by (31a).

The values of the parameters N2, N3, and problem-
dependent constants C1, C2 can be found in Theorem
B.5, Appendix B.3, where we restate the theorem.

Theorem 5.2 shows that Algorithm 1 achieves a global
convergence with the rate Õ (1/ε). Specifically, it shows
that with Õ(T ) number of iterations in total, Algo-
rithm 1 generates a solution with O(1/T ) error bounds
in terms of the policy (primal variable), primal optimal-
ity gap, and constraint violation, as well as O(1/T 2)

error in terms of the dual optimality gap.

We briefly describe the intuition behind the proof of
Theorem 5.2 below.

1. Firstly, the linear convergence of the natural pol-
icy gradient method (cf. Proposition B.1) and
Proposition 5.1 imply that running the NPG sub-
routine for N2 = O(logT ) iterations in the inner
loop guarantees a sufficiently accurate estimation
of ∇D(λ).

2. Then, we apply the convergence result by Schmidt
et al. (2011) (refer to Section 4.1 and Appendix
B.2), which implies the dual optimality gap
O(1/T 2 + T 2δ2 + δ), where δ is the gradient es-
timation error. Since the NPG subroutine con-
verges linearly, we can suppress the constant in
N2 = O(logT ), and make δ sufficiently small such
that the dual optimality gap equals O(1/T 2).

3. Let λ denote the dual variable returned by the for
loop. Running the NPG subroutine in line 8 for ad-
ditional N3 = O (log(1/ε1)) iterations guarantees
an ε1-approximate solution π for the Lagrangian
maximizer πλ. Again, we can make ε1 sufficiently
small by suppressing the constant in N3.

4. Finally, by applying Proposition 3.7 and the tri-
angular inequality, we prove (31b), stating that
π is O(1/T )-optimal. We bound the constraint
violation (31d) by using the Lipschitz continuity
of Uπg (ρ) with respect to π, and bound the primal
optimality gap (31c) by using some primal-dual
properties2.

Remark 5.3 (Quadratic Convergence of NPG)
Our analysis of Algorithm 1 in this section is inspired by
the global linear convergence of the entropy-regularized
NPG method. However, as Cen et al. (2021) proved,
the NPG method achieves a quadratic convergence
around the optimum (cf. Proposition B.2). Therefore,
it may be possible to improve the hidden constants
in N2 = O(logT ) and N3 = O (log(1/ε1)) under extra
assumptions.

So far, we have only studied the entropy-regularized
CMDP. However, adding entropy induces bias to the
optimal solution of the standard unregularized CMDP.
A standard way to deal with this mismatch issue is to
choose the regularization parameter τ to be sufficiently
small. The following corollary shows that we can com-
pute a near-optimal policy with the rate Õ (1/

√
T ) for

both the optimality gap and the constraint violation
for the standard CMDP.

Corollary 5.4 Suppose that Assumptions 3.1 and 3.4
hold. Then, Algorithm 1 with the choice τ = O(ε)
computes a solution π for the standard CMDP such
that

∣V π
⋆
(ρ) − V π(ρ)∣ = O(ε), (33a)

max
i∈[n]

[bi −U
π
gi(ρ)]+ = O(ε), (33b)

in Õ (1/ε2) iterations, where π⋆ is an optimal policy
to the standard CMDP.

The proof of Corollary 5.4 relies on the following sand-
wich bound

V π
⋆
τ (ρ) ≤ V π⋆(ρ) ≤ V π

⋆
τ (ρ) +

τ

1 − γ
log ∣A∣. (34)

6 CMDPS WITH A SINGLE
CONSTRAINT

Since we can convert the dual optimality bound to
primal metrics of interests with little extra effort (cf.
Proposition 3.7), the overall complexity relies on how
fast we can solve the dual problem (17). For the special
case where n = 1, the dual problem amounts to opti-
mizing a convex function on an closed interval, which

2The techniques are similar to those in the proof of
Proposition 3.7.
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can be efficiently solved by the bisection method. Due
to space restrictions, we refer the reader to Appendix
C for more details about the algorithm (cf. Algorithm
3). We state the result in the following theorem.

Theorem 6.1 Suppose that Assumptions 3.1 and 3.4
hold. When n = 1, for every ε0, ε1 > 0, Algorithm 3
returns a solution pair (π,λ) satisfying (31a)-(31d) in
at most O(log2

(1/ε0) + log(1/ε1)) iterations.

By leveraging the linear convergence, we can derive
a result analogous to Corollary 5.4 for the standard
CMDP, but with a linear rate.

Corollary 6.2 Suppose that Assumptions 3.1 and 3.4
hold. Then, Algorithm 3 with the choice τ = O(ε)
computes a solution π for the standard CMDP satisfying
(33a)-(33b), in O(log2

(1/ε)) iterations.

We refer the reader to Appendix C for the formal
statements of Theorem 6.1 and Corollary 6.2 as well
as their proofs.

7 CONCLUSION

In this paper, we showed that entropy regularization
induces desirable properties to CMDPs from an opti-
mization perspective. In particular, the Lagrangian
dual function of CMDPs is smooth and an O(ε) error
bound for the dual optimality gap yields an O(

√
ε)

error bound for the primal optimality gap and the
constraint violation. In addition, we proposed a novel
accelerated dual-descent algorithm and proved that it
achieves a global convergence with the rate Õ(1/ε) for
both the optimality gap and the constraint violation. It
remains as an open question whether similar improved
convergence results for the entropy-regularized CMDPs
can be obtained with a sample-based policy gradient.
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Supplementary Material:
A Dual Approach to Constrained Markov Decision Processes with

Entropy Regularization

A Proofs of Results in Sections 2 and 3

Lemma A.1 (Restatement of Lemma 2.1) For an unregularized value function V π(ρ) with the reward func-
tion r(s, a) ∈ [0,1], it holds that

∣V π1(ρ) − V π2(ρ)∣ ≤ `c ∥π1 − π2∥2 , (35)

for arbitrary policies π1 and π2, where `c =
√

∣A∣/(1 − γ)2.

Proof. It follows from the policy gradient for the direct parameterization (Lemma D.1) that

∂V π(ρ)

∂π(a∣s)
=

1

1 − γ
dπρ(s)Q

π
(s, a). (36)

Thus, we can bound ∇πV
π(ρ) as

∥∇πV
π
(ρ)∥2 =

1

1 − γ

√

∑
s∈S,a∈A

(dπρ(s)Q
π(s, a))

2

≤
maxs∈S,a∈AQ

π(s, a)

1 − γ

√

∑
s∈S,a∈A

(dπρ(s))
2

(i)
≤

√
∣A∣

(1 − γ)2
∥dπρ(⋅)∥2

(ii)
≤

√
∣A∣

(1 − γ)2
=∶ `c,

(37)

where (i) uses Qπ(s, a) ≤ 1/1 − γ and (ii) is because of ∥dπρ(⋅)∥2
≤ ∥dπρ(⋅)∥1

= 1. Then, (35) follows from

∣V π1(ρ) − V π2(ρ)∣ ≤ sup
π

{∥∇πV
π
(ρ)∥2} ∥π1 − π2∥2 ≤ `c ∥π1 − π2∥2 . (38)

This completes the proof. ◻

Lemma A.2 (Restatement of Lemma 3.2) Under Assumption 3.1, there exist a primal-dual pair (π⋆τ ,λ
⋆
)

such that V ⋆

τ =D⋆

τ = L (π⋆τ ,λ
⋆
).

Proof. We refer the reader to (Paternain et al., 2019) for a proof of the strong duality. ◻

Lemma A.3 (Restatement of Lemma 3.3) Under Assumption 3.1, it holds that

0 ≤ λ⋆i ≤
V ⋆

τ − V πτ (ρ)

ξi
, ∀i ∈ [n]. (39)

Proof. Let C ∈ R. For every λ ≥ 0 such that D(λ) ≤ C, one can write

C ≥D(λ)
(i)
≥ V πτ (ρ) +

n

∑
i=1

λi (U
π
gi(ρ) − bi)

(ii)
≥ V πτ (ρ) +

n

∑
i=1

λiξi,

(40)
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where (i) follows from the definition of D(λ) and (ii) is due to Assumption 3.1. Since ξ > 0 and λ ≥ 0, (40) gives
rise to the bound 0 ≤ λi ≤ (C − V πτ (ρ)) /ξi, for i = 1,2, . . . , n. Now, by letting C = V ⋆

τ , it results from the strong
duality that {λ ≥ 0 ∣D(λ) ≤ C} becomes the set of optimal dual variables. This completes the proof. ◻

Proposition A.4 (Restatement of Proposition 3.5) For all policy π and λ ≥ 0, it holds that

L(πλ,λ) −L(π,λ) ≥
τd

2(1 − γ) ln 2
∥π − πλ∥

2
2 . (41)

Proof. Recall that L(π,λ) = V πλ (ρ)−λTb, where V πλ (ρ) = V πτ (ρ)+λTUπg (ρ) is the value function with the reward
rλ(s, a) ∶= r(s, a) +λTg(s, a) (cf. Section 2). The soft sub-optimality gap (Lemma D.4) then gives

L(πλ,λ) −L(π,λ) = V πλ

λ (ρ) − V πλ (ρ) =
τ

1 − γ
∑
s∈S

dπρ(s)DKL [π(⋅∣s) ∣ πλ(⋅∣s)] , (42)

where DKL [P (⋅) ∣ Q(⋅)] ∶= ∑x P (x) (logP (x) − logQ(x)) is the KL divergence between probability distributions
P (⋅) and Q(⋅). Now, we use a well-known bound relating the KL divergence to the vector 1-norm (Cover, 1999):

DKL [P (⋅) ∣ Q(⋅)] ≥
1

2 ln 2
∥P (⋅) −Q(⋅)∥

2
1. (43)

Combine (42) and (43) yields

L(πλ,λ) −L(π,λ) ≥
τ

2(1 − γ) ln 2
∑
s∈S

dπρ(s)∥π(⋅∣s) − πλ(⋅∣s)∥
2
1

(i)
≥

τd

2(1 − γ) ln 2
∥π − πλ∥

2
2 , (44)

where (i) is due to ∥ ⋅ ∥1 ≥ ∥ ⋅ ∥2 and Assumption 3.4. This completes the proof. ◻

Proposition A.5 (Restatement of Proposition 3.6) Under Assumptions 3.1 and 3.4, the dual function
D(λ) satisfies the following properties:

1. D(λ) is differentiable and

∇D(λ) = Uπλ
g (λ) − b = (Uπλ

g1 (λ) − b1, . . . , U
πλ
gn (λ) − bn) . (45)

2. D(λ) is `-smooth on Λ, where

` =
2 × ln 2 × (n∣A∣ + (1 − γ)2

√
n∣A∣)

τ(1 − γ)3d
. (46)

The proof of Proposition A.5 relies on the following result by Bonnans and Shapiro (2013).

Proposition A.6 (Lipschitz stability of parametric local maximizersz) Given a set T ⊂ Rp, consider a
parametric optimization problem P (t) with t ∈ T , stated as

max
x∈F

f(x, t) s.t. F = {x ∈ Rn ∣ hj(x) ≤ 0, j = 1,2, . . . ,m}, (47)

where f , hj are twice continuously differentiable and F ≠ ∅. For every t ∈ T , if x = x (t) is a strict local
maximizer of P (t) of order 2, i.e. ∇2

xxf(x, t) ⪰ w1In for some w1 > 0, then there exist ε, δ, L > 0 such that for
all t ∈ Bε(t) ∶= {t ∣ ∥t − t∥2 < ε}, there exists at least one local maximizer x(t) ∈ Bδ(x) of P (t) and for each such
local maximizer we have

∥x(t) − x∥2 ≤ L∥t − t∥2. (48)

Especially, taking L = w2/w1 fulfills the requirement, with

w2 = max
z∈cl(Bδ(x))

[∥∇
2
xtf(z, t)∥F + 1] . (49)
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Proof of Proposition A.5. We first prove the differentiability of D(λ). For a fixed λ, solving for πλ =

arg maxπ∈ΠL(π,λ) is equivalent to solving an unconstrained MDP with entropy regularization (cf. Section
2):

max
π∈Π

V πλ (ρ). (50)

As shown in (Nachum et al., 2017), πλ can be uniquely characterized as

πλ(a∣s) ∝ exp(
Qπλ

λ (s, a) − V πλ

λ (s)

τ
) , ∀(s, a) ∈ S ×A. (51)

Therefore, a standard result in the duality theory (Floudas, 1995) implies that D(λ) is differentiable with the
gradient

∇D(λ) = Uπλ
g (λ) − b = (Uπλ

g1 (λ) − b1, . . . , U
πλ
gn (λ) − bn) . (52)

Next, we show that ∇D(λ) is Lipschitz continuous on Λ, which implies smoothness. Consider the statements:

1. (Uπgi(ρ) − bi) is `c-Lipschitz continuous with respect to π, which is already proved in Lemmma 2.1.

2. πλ is `Λ-Lipschitz continuous with respect to λ for some `Λ > 0.

If these statements hold true, it follows that

∣(U
πλ1
gi (ρ) − bi) − (U

πλ2
gi (ρ) − bi)∣ ≤ `c∥πλ1 − πλ2∥2 ≤ `c`Λ∥λ1 −λ2∥2, (53)

which leads to
∥∇D(λ1) − ∇D(λ2)∥2 ≤

√
n`c`Λ∥λ1 −λ2∥2, (54)

i.e. D(λ) is
√
n`c`Λ-strongly smooth on Λ.

To prove Statement 2, consider the Lagrangian L(π,λ), which is twice continuously differentiable on (0, 1)∣S∣×∣A∣×Λ.
The hidden constraint for the maximization problem (12b) is linear and has the form

∑
a∈A

π(a∣s) = 1, ∀s ∈ S. (55)

By Proposition 3.5, it holds that

∇ππL (πλ,λ) ⪰
τd

2(1 − γ) ln 2
I∣S∣∣A∣, (56)

which implies that πλ is a strict global maximizer of order 2 under Assumption 3.4.

Consider ∇2
πλL(π,λ), which is a matrix of dimension ∣S∣∣A∣ × n. Specifically, it holds

∂2L(π,λ)

∂π(a∣s)∂λi

(i)
=

∂

∂π(a∣s)
(Uπgi(ρ) − bi)

(ii)
=

1

1 − γ
dπρ(s)Q

π
gi(s, a), (57)

where (i) follows from definition (12a) and and (ii) is due to the policy gradient (cf. Lemma D.1).

Following the same argument as in the proof of Proposition A.1, we have

∥∇
2
πλL(π,λ)∥

F
≤

√
n∣A∣

(1 − γ)2
. (58)

Therefore, applying Proposition A.6 with

w1 =
τd

2(1 − γ) ln 2
, w2 =

√
n∣A∣

(1 − γ)2
+ 1, (59)

we conclude that πλ is locally `Λ-Lipschitz continuous with respect to λ for all λ ∈ Λ, where `Λ = w2/w1. Since `Λ
is universal and does not depend on λ, the local Lipschitz property is ready to be extended to Λ. The proof is
completed by setting ` =

√
n`c`Λ. ◻
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Proposition A.7 (Restatement of Proposition 3.7) Suppose that Assumptions 3.1 and 3.4 hold. If λ ≥ 0
is an ε-optimal multiplier, i.e. D(λ) −D⋆

τ ≤ ε, then the associated Lagrangian maximizer πλ satisfies

∥πλ − π
⋆

τ ∥2 ≤ C1

√
ε, (60a)

∣V πλ
τ (ρ) − V ⋆

τ ∣ ≤ 2ε + `cC1C2

√
ε, (60b)

max
i∈[n]

[bi −U
πλ
gi (ρ)]

+
≤ `cC1

√
ε, (60c)

where

`c =

√
∣A∣

(1 − γ)2
, C1 =

√
2(1 − γ) ln 2

τd
, C2 = (V ⋆

τ − V πτ (ρ))(
n

∑
i=1

1

ξi
) . (61)

Proof. We can write D(λ) = L (πλ,λ) and D⋆

τ = L (π⋆τ ,λ
⋆
), where (π⋆τ ,λ

⋆
) is any primal-dual pair. Then, by the

strong duality (Lemma 3.2), we have

L (π⋆τ ,λ
⋆
) = min

µ≥0
L (π⋆τ ,µ) ≤ L (π⋆τ ,λ) . (62)

Therefore,
ε ≥ L (πλ,λ) −L (π⋆τ ,λ

⋆
) = L (πλ,λ) −min

µ≥0
L (π⋆τ ,µ)

≥ L (πλ,λ) −L (π⋆τ ,λ)

(i)
≥

τd

2(1 − γ) ln 2
∥πλ − π

⋆

τ ∥
2
2 ,

(63)

where (i) results from the quadratic lower bound given by Proposition 3.5. Then, (60a) is obtained after
rearranging the terms in (63).

Next, we can use the Lipschitz continuity of the utility function (cf. Lemma 2.1) to bound the constraint violation.
For every i = 1,2, . . . , n, it holds that

∣Uπλ
gi (ρ) −U

π⋆τ
gi (ρ)∣ ≤ `c ∥πλ − π

⋆

τ ∥2 ≤ `cC1

√
ε. (64)

As the optimal policy π⋆τ must be feasible to (11), i.e. Uπ
⋆
τ

g (ρ) ≥ b, we can bound the constraint violation as

max
i∈[n]

[bi −U
πλ
gi (ρ)]

+
≤ max
i∈[n]

{[bi −U
π⋆τ
gi (ρ)]

+

+ ∣Uπλ
gi (ρ) −U

π⋆τ
gi (ρ)∣} ≤ `cC1

√
ε. (65)

Finally, to bound the primal optimality gap, we note that

0
(i)
≤ L (π⋆τ ,λ) −L (π⋆τ ,λ

⋆
)

(ii)
≤ L (πλ,λ) −L (π⋆τ ,λ

⋆
) =D (λ) −D (λ⋆) ≤ ε, (66)

where (i) follows from the strong duality and (ii) is due to the definition of πλ (cf. (14)). Thus, by expanding
the Lagrangian as

L (π⋆τ ,λ) −L (π⋆τ ,λ
⋆
) = V

π⋆τ
τ (ρ) +λT (U

π⋆τ
g (ρ) − b) − V

π⋆τ
τ (ρ) − (λ⋆)

T
(U

π⋆τ
g (ρ) − b)

= (λ −λ⋆)
T
(U

π⋆τ
g (ρ) − b) ,

(67)

and applying the complementary slackness (λ⋆)
T
(U

π⋆τ
g (ρ) − b) = 0, we obtain the bound

0 ≤ (λ)
T
(U

π⋆τ
g (ρ) − b) ≤ ε. (68)

Therefore,

∣(λ)
T
(Uπλ

g (ρ) − b)∣
(i)
≤ ∣(λ)

T
(U

π⋆τ
g (ρ) − b)∣ + ∣(λ)

T
(Uπλ

g (ρ) −U
π⋆τ
g (ρ))∣

(ii)
≤ ε + `cC1 (V ⋆

τ − V πτ (ρ))(
n

∑
i=1

1

ξi
)
√
ε,

(69)
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where (i) is due to the triangular inequality and (ii) uses the bound (64) and the boundedness of Λ (cf. Lemma
3.3), i.e. 0 ≤ λi ≤ (V ⋆

τ − V πτ (ρ)) /ξi for all i ∈ [n] and λ ∈ Λ. Thus, we can bound the primal optimality gap as

∣V πλ
τ (ρ) − V ⋆

τ ∣ = ∣V πλ
τ (ρ) − V

π⋆τ
τ (ρ)∣

(i)
= ∣[V πλ

τ (ρ) + (λ)
T
(Uπλ

g (ρ) − b)] − (λ)
T
(Uπλ

g (ρ) − b)

− [V
π⋆τ
τ (ρ) + (λ⋆)

T
(U

π⋆τ
g (ρ) − b)]∣

(ii)
≤ ∣L (πλ,λ) −L (π⋆τ ,λ

⋆
)∣ + ∣(λ)

T
(Uπλ

g (ρ) − b)∣

(iii)
≤ ε + (ε + `cC1 (V ⋆

τ − V πτ (ρ))(
n

∑
i=1

1

ξi
)
√
ε)

= 2ε + `cC1 (V ⋆

τ − V πτ (ρ))(
n

∑
i=1

1

ξi
)
√
ε

= 2ε + `cC1C2

√
ε,

(70)

where (i) uses the complementary slackness (λ⋆)
T
(U

π⋆τ
g (ρ) − b) = 0 and (ii) uses the triangular inequality and

the definition of Lagrangian (12a). In (iii), we use the assumption

D(λ) −D (λ⋆) = L (πλ,λ) −L (π⋆τ ,λ
⋆
) ≤ ε, (71)

and the inequality (69). This completes the proof. ◻

B Supplementary Materials for Sections 4 and 5

B.1 Entropy-regularized NPG

For entropy-regularized MDPs, the natural policy gradient update rule can be written as

θ ← θ + η (Fθρ)
†
∇θV

πθ
τ (ρ), (72)

where Fθρ is the Fisher information matrix, defined as

F
θ
ρ ∶= E

s∼d
πθ
ρ ,a∼πθ(⋅∣s)

[(∇θ logπθ(a∣s)) (∇θ logπθ(a∣s))
⊺
] . (73)

Under the soft-max parameterization, the associated policy update has a fairly direct form (cf. (24) and (25)).
We refer the reader to (Cen et al., 2021) for a detailed derivation.

Cen et al. (2021) proved that the entropy-regularized NPG method enjoys a global linear convergence and a local
quadratic convergence. We summarize the two results in Propositions B.1 and B.2, where we abuse the notations
and denote the optimal unconstrained value function with entropy regularization, the corresponding Q-function,
and the associated optimal policy with V ⋆

τ , Q
⋆

τ , and π
⋆

τ respectively. Let µ⋆τ denote the stationary distribution
over S of the MDP under policy π⋆τ

3.

Proposition B.1 (Global linear convergence) If the step-size η = (1 − γ)/τ is used, the entropy-regularized
NPG algorithm (24) satisfies the error bounds:

∥V ⋆

τ − V π
(t+1)

τ ∥
∞

≤ 3 ∥Q⋆

τ −Q
π(0)
τ ∥

∞

γt+1, (74a)

∥logπ⋆τ − logπ(t+1)∥
∞
≤ 2 ∥Q⋆

τ −Q
π(0)
τ ∥

∞

τ−1γt, (74b)

3It is straightforward to verify that dπ
⋆
τ

µττ
= µ⋆τ .
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for all t > 0, where

∥V ⋆

τ − V π
(t+1)

τ ∥
∞

∶= max
s∈S

∣V ⋆

τ (s) − V π
(t+1)

τ (s)∣ , (75a)

∥Q⋆

τ −Q
π(0)
τ ∥

∞

∶= max
s∈S,a∈A

∣Q⋆

τ(s, a) −Q
π(0)
τ (s, a)∣ , (75b)

∥logπ⋆τ − logπ(t+1)∥
∞
∶= max
s∈S,a∈A

∣logπ⋆τ (a∣s) − logπ(t+1)
(a∣s)∣ . (75c)

We note that Cen et al. (2021) proved a more general result for all step-sizess η ∈ [0, (1 − γ)/τ], whereas the
fastest convergence is achieved with the maximum step-size η = (1 − γ)/τ .

Proposition B.2 (Local quadratic convergence) Suppose that the entropy-regularized NPG algorithm (24)
with the step-size η = (1 − γ)/τ satisfies

∥logπ(t)
− logπ⋆τ ∥∞ ≤ 1, (76)

for all t ≥ 0. There exist problem-dependent constants K1 and K2 such that

V ⋆

τ (ρ) − V (t)
τ (ρ) ≤K1 (K2 (V ⋆

τ (µ⋆τ) − V
π(0)
τ (µ⋆τ)))

2t

. (77)

In our work, V πλ (ρ) is the entropy-regularized value function associated with the Lagrangian L(π,λ), which
has the reward function rλ(s, a) = r(s, a) + λTg(s, a). Therefore, Proposition B.1 implies that, with step-size
η = (1 − γ)/τ , the error bound ∥logπλ − logπ(t)∥

∞
≤ ε can be achieved in

1

1 − γ
log

⎛
⎜
⎝

2 ∥Qπλ

λ −Qπ
(0)

λ ∥
∞

ετ

⎞
⎟
⎠
, (78)

iterations (cf. (26)). Furthermore, since λ ∈ Λ = {λ ∣ 0 ≤ λi ≤ (V ⋆

τ − V πτ (ρ)) /ξi, for all i ∈ [n]}, we have
that rλ(s, a) ∈ [0,1 + C2], where C2 = (V ⋆

τ − V πτ (ρ)) (∑
n
i=1 1/ξi). Together with the elementary entropy bound

H(ρ, π) ∈ [0, log ∣A∣/(1 − γ)], it holds that

Qπλ(s, a) ∈ [0,
1 +C2 + τ log ∣A∣

1 − γ
] , (79)

for all λ ∈ Λ. Thus, we can drop the dependency of Q-function in (78) to obtain the following bound on the
number of iterations:

1

1 − γ
log(

2 (1 +C2 + τ log ∣A∣)

ετ(1 − γ)
) . (80)

B.2 Accelerated Gradient Projection Method with Inexact Gradient

Gradient projection method is a feasible direction method for solving constrained optimization problems of the
form:

min
x

f(x)

s.t. x ∈X
(81)

where f(x) is convex and differentiable and X is convex. The general update scheme is

x(k+1)
= PX (x(k) − αk∇f (x(k))) . (82)

When the gradient is inexact, Schmidt et al. (2011) proved the following bound for the general update (82) and
the accelerated update (28).

Proposition B.3 (Convergence of inexact gradient projection method) Assume that f(x) is convex
and L-smooth on X, and that we have access to a gradient oracle h(x) such that ∥∇f(x) − h(x)∥2 ≤ δ for
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all x ∈X. Let x⋆ = arg minx∈X f(x). By selecting αk = 1/L and βk = (k − 1)/(k + 2), then the iterates of algorithm
(82) satisfy

f (
1

k

k

∑
i=1

x(i)) − f (x⋆) ⩽
L

2k
(∥x(0) − x⋆∥

2
+

2kδ

L
)

2

= O (
1

k
) +O (k2δ2) +O (kδ) . (83)

Moreover, for the accelerated version (28), it holds that

f (x(k)) − f (x⋆) ⩽
2L

(k + 1)2
(∥x(0) − x⋆∥

2
+

(k + 1)kδ

L
)

2

= O (
1

k2
) +O (k2δ2) +O (δ) . (84)

B.3 Proofs of Results in Section 5

Proposition B.4 (Restatement of Proposition 5.1) Suppose that π is an approximate solution to (14) such
that ∥ logπ − logπλ∥∞ ≤ ε. The gradient estimator defined by

∇̃D (λ) ∶= Uπg (ρ) − b = (Uπg1(ρ) − b1, . . . , U
π
gn(ρ) − bn) , (85)

satisfies

∥∇̃D (λ) − ∇D (λ)∥
2
≤

√
n∣A∣

(1 − γ)2
ε. (86)

Proof. Since (logx)
′

= 1/x ≥ 1 for all x ∈ (0,1], it holds that ∥π − πλ∥∞ ≤ ∥ logπ − logπλ∥∞ ≤ ε. To bound
the quantity ∥∇̃D (λ) − ∇D (λ)∥

2
= ∥Uπg (ρ) −Uπλ

g (ρ)∥
2
, we can either use the Lipschitz continuity of Uπg (ρ) (cf.

Lemma 2.1) or use the performance difference lemma (cf. Lemma D.3).

With the Lipschitz continuity, we have

∣Uπgi(ρ) −U
πλ
gi (ρ)∣ ≤ `c∥π − πλ∥2 ≤ `c

√
n∥π − πλ∥∞ =

√
n∣A∣

(1 − γ)2
ε, (87)

where we have used the inequality ∥ ⋅ ∥2 ≤
√
n∥ ⋅ ∥∞. Therefore,

∥∇̃D (λ) − ∇D (λ)∥
2
≤
√
n ∥∇̃D (λ) − ∇D (λ)∥

∞
=
√
n ∥Uπg (ρ) −Uπλ

g (ρ)∥
∞
≤
n
√

∣A∣

(1 − γ)2
ε. (88)

On the other hand, we can use the performance difference lemma to obtain

∣Uπgi(ρ) −U
πλ
gi (ρ)∣ = ∣

1

1 − γ
∑
s∈S

dπλ
ρ (s) ∑

a∈A

(π(a∣s) − πλ(a∣s))Q
π
gi(s, a)∣

≤
1

1 − γ
∑
s∈S

dπλ
ρ (s) ∑

a∈A

∣π(a∣s) − πλ(a∣s)∣Q
π
gi(s, a)

(i)
≤

ε

1 − γ
∑
s∈S

dπλ
ρ (s) ∑

a∈A

Qπgi(s, a)

(ii)
≤

∣A∣

(1 − γ)2
ε,

(89)

where (i) is based on the bound ∥π − πλ∥∞ ≤ ε and (ii) is due to Qπgi(s, a) ≤ 1/(1 − γ) and the fact that dπλ
ρ (⋅) is

a probability distribution. Repeating (88) with the bound (89) yields that

∥∇̃D (λ) − ∇D (λ)∥
2
≤
√
n ∥∇̃D (λ) − ∇D (λ)∥

∞
=
√
n ∥Uπg (ρ) −Uπλ

g (ρ)∥
∞
≤

√
n∣A∣

(1 − γ)2
ε. (90)

Equations (88) and (90) give two upper bounds on the quantity ∥∇̃D (λ) − ∇D (λ)∥
2
. In this work, we use the

bound (90), as it has a weaker dependence on the number of constraints n. This completes the proof. ◻

Proposition 5.1 implies that running Algorithm 2 with the step-size η = (1 − γ)/τ for

1

1 − γ
log(

2
√
n ∣A∣ (1 +C2 + τ log ∣A∣)

δ(1 − γ)3τ
) . (91)
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iterations, where C2 = (V ⋆

τ − V πτ (ρ)) (∑
n
i=1 1/ξi), guarantees a δ-accurate gradient estimation ∇̃D (λ), i.e.

∥∇̃D (λ) − ∇D (λ)∥
2
≤ δ (cf. (30)).

Theorem B.5 (Restatement of Theorem 5.2) Suppose that Assumptions 3.1 and 3.4 hold. For every ε1 > 0,
Algorithm 1 with a random initialization and the parameters η = (1 − γ)/τ , αk = 1/`, βk = (k − 1)/(k + 2), and

N1 = T, N2 =
1

1 − γ
log(

2
√
n ∣A∣T (T + 1) (1 +C2 + τ log ∣A∣)

(1 − γ)3τ`
) , N3 =

1

1 − γ
log(

2
√
n (1 +C2 + τ log ∣A∣)

ε1τ(1 − γ)
) , (92)

returns a solution pair (π,λ) such that

D(λ) −D⋆

τ ≤ ε0, (93a)
∥π − π⋆τ ∥2 ≤ C1

√
ε0 + ε1, (93b)

∣V πτ (ρ) − V ⋆

τ ∣ ≤ 2ε0 + `cC1C2
√
ε0 + (`cC2 +

3γ

2τ
√
n
) ε1, (93c)

max
i∈[n]

[bi −U
π
gi(ρ)]+ ≤ `c (C1

√
ε + ε1) , (93d)

where

ε0 =
2`

(T + 1)2
(∥λ(0)

−λ⋆∥
2
+ 1)

2
, ` =

2 ln 2 (n∣A∣ + (1 − γ)2
√
n∣A∣)

τ(1 − γ)3d
, (94)

and

`c =

√
∣A∣

(1 − γ)2
, C1 =

√
2(1 − γ) ln 2

τd
, C2 = (V ⋆

τ − V πτ (ρ))(
n

∑
i=1

1

ξi
) . (95)

The total iteration complexity is N1 ×N2 +N3 = Õ(T ) with primal error bounds O(1/T ) given by (93b)-(93d) and
a dual error bound O(1/T 2) given by (93a).

Proof. Under Assumptions 3.1 and 3.4, it follows from Proposition 3.6 that D(λ) is convex, differentiable, and
`-smooth on Λ. Now, we fix the gradient accuracy as

δ =
`

T (T + 1)
. (96)

Then, it follows from Proposition 5.1 and (91) that running the NPG subroutine in line 4 of Algorithm 1 for

N2 =
1

1 − γ
log(

2
√
n ∣A∣T (T + 1) (1 +C2 + τ log ∣A∣)

(1 − γ)3τ`
) , (97)

iterations guarantees obtaining an estimation ∇̃D (λ) such that

∥∇̃D (λ) − ∇D (λ)∥
2
≤

`

T (T + 1)
, (98)

where we have use the bound ∥Qπλ

λ −Q
(0)
λ ∥

∞

≤ (1 +C2 + log ∣A∣) /(1 − γ) for all λ ∈ Λ (cf. (79)). Therefore, by

Proposition B.3, running the outer loop in Algorithm 1 for N1 = T iterations generates a solution λ(T ) such that

D (λ(T )
) −D⋆

τ ≤
2`

(T + 1)2
(∥λ(0)

−λ⋆∥
2
+

(T + 1)Tδ

`
)

2

=
2`

(T + 1)2
(∥λ(0)

−λ⋆∥
2
+ 1)

2
, (99)

which satisfies (93a).

Below, we adopt the proof of Proposition 3.7 (cf. Appendix A). We first apply Proposition 3.7 with

ε0 =
2`

(T + 1)2
(∥λ(0)

−λ⋆∥
2
+ 1)

2
(100)
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to obtain ∥πλ(T ) − π
⋆

τ ∥2 ≤ C1
√
ε0, where π⋆τ is an optimal policy. By Propositions B.1, we can compute an

approximate Lagrangian maximizer π̃λ(T ) to (14) such that ∥log π̃λ(T ) − logπλ(T )∥∞ ≤ ε1/
√
n, by running Algorithm

2 for

N3 =
1

1 − γ
log(

2
√
n (1 +C2 + τ log ∣A∣)

ε1τ(1 − γ)
) , (101)

iterations (cf. (78)). Now, we show that π̃λ(T ) is a solution to (11) satisfying (93b)-(93c). Firstly, we have

∥log π̃λ(T ) − logπλ(T )∥2 ≤
√
n ∥log π̃λ(T ) − logπλ(T )∥∞ ≤ ε1. (102)

By applying the triangular inequality and using the strong concavity of the logarithm function on (0, 1], it holds
that

∥π̃λ(T ) − π
⋆

τ ∥2 ≤ ∥π̃λ(T ) − πλ(T )∥2 + ∥πλ(T ) − πλ(T )∥2 ≤ C1
√
ε0 + ε1. (103)

Then, we bound the constraint violation. It follows from the Lipschitz continuity of the utility function (cf. (3))
that

∣U
π̃
λ(T )

gi (ρ) −U
π⋆τ
gi (ρ)∣ ≤ `c ∥π̃λ(T ) − π

⋆

τ ∥2 ≤ `c (C1
√
ε0 + ε1) , ∀i = 1,2, . . . , n. (104)

As the optimal policy π⋆τ must be a feasible solution to (11), i.e. Uπ
⋆
τ

g (ρ) ≥ b, the constraint violation is bounded
as

max
i∈[n]

[bi −U
π̃
λ(T )

gi (ρ)]
+

≤ max
i∈[n]

{[bi −U
π⋆τ
gi (ρ)]

+

+ ∣U
π̃
λ(T )

gi (ρ) −U
π⋆τ
gi (ρ)∣} ≤ `c (C1

√
ε0 + ε1) . (105)

Finally, to bound the primal optimality gap, we note that

0
(i)
≤ L (π⋆τ ,λ

(T )
) −L (π⋆τ ,λ

⋆
)

(ii)
≤ L (πλ(T ) ,λ

(T )
) −L (π⋆τ ,λ

⋆
) =D (λ(T )

) −D⋆

τ ≤ ε0, (106)

where (i) follows from the strong duality and (ii) is due to the definition of πλ(T ) . Thus, by expanding the
Lagrangian as

L (π⋆τ ,λ
(T )

) −L (π⋆τ ,λ
⋆
) = V

π⋆τ
τ (ρ) + (λ(T )

)
T
(U

π⋆τ
g (ρ) − b) − V

π⋆τ
τ (ρ) − (λ⋆)

T
(U

π⋆τ
g (ρ) − b)

= (λ(T )
−λ⋆)

T
(U

π⋆τ
g (ρ) − b) ,

(107)

and applying the complementary slackness (λ⋆)
T
(U

π⋆τ
g (ρ) − b) = 0, we obtain the bound

0 ≤ (λ(T )
)
T
(U

π⋆τ
g (ρ) − b) ≤ ε0. (108)

Therefore,

∣(λ(T )
)
T
(U

π
λ(T )

g (ρ) − b)∣
(i)
≤ ∣(λ(T )

)
T
(U

π⋆τ
g (ρ) − b)∣ + ∣(λ(T )

)
T
(U

π
λ(T )

g (ρ) −U
π⋆τ
g (ρ))∣

(ii)
≤ ε0 + `c (V

⋆

τ − V πτ (ρ))(
n

∑
i=1

1

ξi
)(C1

√
ε0 + ε1)

= ε0 + `cC2 (C1
√
ε0 + ε1) ,

(109)

where (i) is based on the triangular inequality, and (ii) uses the bound (104) and the boundedness of Λ, i.e.
0 ≤ λi ≤ (V ⋆

τ − V πτ (ρ)) /ξi for all i ∈ [n] and λ ∈ Λ (cf. Lemma 3.3). Thus, we can bound the primal optimality
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gap as
∣V

π̃
λ(T )

τ (ρ) − V ⋆

τ ∣ = ∣V
π̃
λ(T )

τ (ρ) − V
π⋆τ
τ (ρ)∣

(i)
= ∣[V

π̃
λ(T )

τ (ρ) + (λ(T )
)
T
(U

π̃
λ(T )

g (ρ) − b)] − (λ(T )
)
T
(U

π̃
λ(T )

g (ρ) − b)

− [V
π⋆τ
τ (ρ) + (λ⋆)

T
(U

π⋆τ
g (ρ) − b)]∣

(ii)
≤ ∣L (π̃λ(T ) ,λ

(T )
) −L (π⋆τ ,λ

⋆
)∣ + ∣(λ(T )

)
T
(U

π̃
λ(T )

g (ρ) − b)∣

(iii)
≤ ∣L (π̃λ(T ) ,λ

(T )
) −L (πλ(T ) ,λ

(T )
)∣ + ∣L (πλ(T ) ,λ

(T )
) −L (π⋆τ ,λ

⋆
)∣

+ ∣(λ(T )
)
T
(U

π̃
λ(T )

g (ρ) − b)∣

(iv)
≤ (

3γ

2τ
√
n
ε1) + (ε0) + (ε0 + `cC2 (C1

√
ε0 + ε1))

= 2ε0 + `cC1C2
√
ε0 + (`cC2 +

3γ

2τ
√
n
) ε1,

(110)

where (i) uses the complementary slackness (λ⋆)
T
(U

π⋆τ
g (ρ) − b) = 0, (ii) uses the triangular inequality and the

definition of Lagrangian (12a), and (iii) uses the triangular inequality again. The inequality (iv) contains three
parts where the first part uses Proposition B.1 as

∣L (π̃λ(T ) ,λ
(T )

) −L (πλ(T ) ,λ
(T )

)∣ = ∣V
π̃
λ(T )

λ(T )
(ρ) − V

π
λ(T )

λ(T )
(ρ)∣ ≤

3γ

2τ
∥log π̃λ(T ) − logπλ(T )∥∞ =

3γ

2τ
√
n
ε1, (111)

the second part uses the assumption

D(λ(T )
) −D⋆

τ = L (πλ(T ) ,λ
(T )

) −L (π⋆τ ,λ
⋆
) ≤ ε0, (112)

and the third part uses the inequality (109). This completes the proof. ◻

Corollary B.6 (Restatement of Corollary 5.4) Suppose that Assumptions 3.1 and 3.4 hold. Let

τ =
(1 − γ)ε

4 log ∣A∣
. (113)

Then, Algorithm 1 computes a solution π for the standard CMDP such that

∣V π
⋆
(ρ) − V π(ρ)∣ = O(ε), (114a)

max
i∈[n]

[bi −U
π
gi(ρ)]+ = O(ε), (114b)

in Õ (1/ε2) iterations, where π⋆ is an optimal policy to the standard CMDP.

Proof. Since the total iteration complexity of Algorithm 1 is dominated by N1 × N2 and the error bounds
(31b)-(31d) are dominated by

√
ε0 (cf. (94)), we ignore the effect of ε0, ε1 and only focus on

√
ε0 terms in

(31b)-(31d) through the analysis below.

Firstly, by invoking the optimality of π⋆τ with respect to the entropy-regularized CMDP and the elementary
entropy bound 0 ≤ H(ρ, π) ≤ log ∣A∣/(1 − γ), we obtain

V π
⋆
τ (ρ) +

τ

1 − γ
log ∣A∣ ≥ V π

⋆
τ (ρ) + τH(ρ, π⋆τ ) = V

⋆

τ (ρ) ≥ V π⋆τ (ρ) ≥ V π⋆(ρ), (115)

which implies the sandwich bound (34). Now, we choose T in such a way that `cC1C2
√
ε0 = ε/2, where `c, C1,

and C2 are specified in Theorem B.5. Then, Theorem B.5 implies that running Algorithm 1 with

N1 = T, N2 =
1

1 − γ
log(

2
√
n ∣A∣T (T + 1) (1 +C2 + τ log ∣A∣)

(1 − γ)3τ`
) (116)
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returns a solution π such that ∣V ⋆

τ − V πτ (ρ)∣ = O(ε/2) (cf. (93c)). It then follows that

∣V π
⋆
(ρ) − V π(ρ)∣

(i)
≤ ∣V ⋆

(ρ) − V ⋆

τ (ρ)∣ + ∣V ⋆

τ (ρ) − V πτ (ρ)∣ + ∣V πτ (ρ) − V π(ρ)∣
(ii)
≤

2τ log ∣A∣

1 − γ
+O(

ε

2
) = O(ε), (117)

where (i) is due to the triangular inequality and (ii) uses the bound (115) (cf. (34)). The O(ε)-constraint
violation follows directly from Theorem 5.2, since it enjoys the same order of convergence as the primal optimality
gap.

We note that `cC1C2
√
ε0 can be written as C/(τ(T + 1)), where

C = `c(C1 ⋅
√
τ)C2 (

√
2` ⋅ τ) (∥λ(0)

−λ⋆∥2 + 1) (118)

is a constant that does not depend on T and ε. Thus, the choice τ = [(1 − γ)ε] / (4 log ∣A∣) implies that

C

T + 1
=

(1 − γ)ε

4 log ∣A∣
×
ε

2
, (119)

i.e. T = O(1/ε2). Since the total iteration complexity is N1 ×N2 = T ×O(logT ), we obtain the Õ (1/
√
T) error

bound for the primal optimality gap and the constraint violation. This completes the proof. ◻

C Supplementary Materals for Section 6

In this subsection, we consider the special situation where there is a single constraint (n = 1). In particular, we
use the non-bold notations to emphasize that the associated notations denote numbers instead of vectors used in
the previous sections, e.g. multiplier λ, constraint Uπg (ρ) ≥ b, Slater condition V

π
τ (ρ) − b ≥ ξ.

Since the feasible region Λ = [0,C2], where C2 = (V ⋆

τ − V πτ (ρ)) /ξ, is bounded and D(λ) is convex, an approximate
stationary point is also an approximate optimal solution. Specifically, if ∣∇D(λ)∣ < ε, then

D(λ) −D⋆

τ ≤ ∣∇D(λ)∣ × ∣λ − λ⋆∣ < C2ε. (120)

Additionally, if sign (∇D(0)) = sign (∇D(C2)) = 1, then D(λ) attains the optimum at λ = 0 due to the convexity.
Similarly, D(λ) attains the optimum at λ = C2 if sign (∇D(0)) = sign (∇D(C2)) = −1. Therefore, it only remains
to consider the case where D(0) < 0 and D(C2) > 0.

The proposed method aims to find an approximate stationary point with the bisection scheme. For a given search
interval, it computes the gradient at the middle point. If the gradient is greater than ε, it shrinks the search
interval to the left-half interval; if the gradient is smaller than −ε, it shrinks the search interval to the right-half
interval. The iterates terminate when it finds a point λ such that ∣∇̃D(λ)∣ < ε, where ∇̃D(λ) is the approximate
gradient. We summarize the proposed method in Algorithm 3, where we separately define the gradient estimator
(cf. lines 4 and 5 in Algorithm 1) as a new subroutine GradSub (cf. Algorithm 4) for the ease of presentation. We
also assume that the initialization is non-trivial in the sense that ∇D(0) < 0 and ∇D(C2) > 0, since otherwise we
can return the optimal solution λ⋆ as 0 or C2.

Below, we give a formal statement for the convergence result of Algorithm 3 (cf. Theorem 6.1).

Theorem C.1 (Restatement of Theorem 6.1) Suppose that Assumptions 3.1 and 3.4 hold. When n = 1, for
every ε, ε1 > 0, Algorithm 3 with the parameters

η =
(1 − γ)

τ
, N1 =

1

1 − γ
log(

4∣A∣ (1 +C2 + τ log ∣A∣)

(1 − γ)3τε
) ,N2 =

1

1 − γ
log(

2 (1 +C2 + τ log ∣A∣)

ε1τ(1 − γ)
) , (121)

returns a solution (π,λ) in at most log2 (`C2/ε) outer loops, such that

D(λ) −D⋆

τ ≤ ε0, (122a)
∥π − π⋆τ ∥2 ≤ C1

√
ε0 + ε1, (122b)

∣V πτ (ρ) − V ⋆

τ ∣ ≤ 2ε0 + `cC1C2
√
ε0 + (`cC2 +

3γ

2τ
) ε1, (122c)

[b −Uπg (ρ)]+ ≤ `c (C1

√
ε + ε1) , (122d)
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Algorithm 3 Bisection Method with NPG Subroutine
1: Input: Initialization π, p0 = 0, q0 = C2; step-size η; maximum number of iterations N1, N2; threshold ε.
2: for t = 0,1,2, . . . do
3: Let λ = (pt + qt)/2.
4: if ∣GradSub (λ,π, η,N1)∣ < ε then
5: break
6: else
7: if GradSub (λ,π, η,N1) ≥ ε then
8: Let pt+1 ← pt and qt+1 ← λ.
9: else
10: Let pt+1 ← λ and qt+1 ← qt.
11: end if
12: end if
13: end for
14: Recover the policy from the dual variable: π̃λ ← NPGSub (λ,π, η,N2).

Algorithm 4 Gradient Estimator (GradSub)
1: Input: Target point λ, initialization π, step-size η, maximum number of iterations N .
2: Estimate the optimal policy πλ for problem (14) through the natural policy gradient subroutine: π̃λ ←

NPGSub (λ,π, η,N).
3: Compute and output the approximate gradient at λ: ∇̃D (λ) ∶= U π̃λg (ρ) − b.

where

ε0 =
3C2

2
ε, ` =

2 ln 2 (∣A∣ + (1 − γ)2
√

∣A∣)

τ(1 − γ)3d
, `c =

√
∣A∣

(1 − γ)2
, C1 =

√
2(1 − γ) ln 2

τd
, C2 =

V ⋆

τ − V πτ (ρ)

ξ
. (123)

The total iteration complexity is log2 (`C2/ε) × N2 + N3 = O (log2
(1/ε) + log(1/ε1)) with primal error bounds

O(
√
ε + ε1) given by (122b) - (122d) and a dual error bound O(ε) given by (122a).

We remark that the constants `, `c, C1, and C2 used in Theorem C.1 coincide with those used in previous sections,
except that they correspond to the 1-dimensional situation. The maximum number of iterations N1 and N2 in
Theorem C.1, respectively, correspond to the N2 and N3 in Theorem B.5.

Proof. Under the assumption that ∇D(0) < 0 and ∇D(ξ) > 0, the optimal dual variable λ⋆ must belong to the
interval (0,C2) and ∇D(λ⋆) = 0. Denote ∇̃D(λ) = GradSub (λ,π, η,N1), i.e. the output of the gradient estimator.
For a given threshold ε, when

N1 =
1

1 − γ
log(

4∣A∣ (1 +C2 + τ log ∣A∣)

(1 − γ)3τε
) , (124)

it follows from the proof of Theorem 5.2 (cf. (98)) that

∣∇̃D(λ) − ∇D(λ)∣ ≤
ε

2
. (125)

Thus, if ∇̃D(λ) ≥ ε, we have that ∇D(λ) ≥ ε/2. Similarly, if ∇̃D(λ) ≤ −ε, we have that ∇D(λ) ≤ −ε/2. Therefore,
the lines 7-11 in Algorithm 3 shrink by a factor of 2 the search region that contains the optimal solution λ⋆.

By leveraging the triangular inequality, we have that

∣∇̃D(λ)∣ ≤ ∣∇̃D(λ) − ∇D(λ)∣ + ∣∇D(λ) − ∇D(λ⋆)∣ ≤
ε

2
+ ` ∣λ − λ⋆∣ . (126)

where we apply the smoothness of the dual function (cf. Proposition 3.6). Thus, Algorithm 3 terminates in at
most t = log2 (`C2/ε) iterations with an ε-optimal stationary point due to

∣∇̃D(λ)∣ ≤
ε

2
+ ` ∣λ − λ⋆∣ ≤

ε

2
+ `(

1

2
)

t

C2 ≤ ε, (127)
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where λ denotes the midpoint (pt + qt)/2 generated in the t-th iteration in line 3.

Now, suppose that λ is the output solution with ∣∇̃D(λ)∣ ≤ ε. It holds that

D(λ) −D⋆

τ ≤ ∣∇D(λ)∣ × ∣λ − λ⋆∣ ≤ (∣∇̃D(λ)∣ +
ε

2
)C2 =

3C2

2
ε, (128)

where we have used (120) and (127). By substituting (128) into the proof of Theorem 5.2 and letting ε0 = 3C2ε/2,
the desired bounds follow. The convergence is linear and the total iteration complexity is upper-bounded by
log2 (`C2/ε) ×N2 +N3 = O(log2

(1/ε) + log(1/ε1)). ◻

Corollary C.2 (Restatement of Corollary 6.2) Suppose that Assumptions 3.1 and 3.4 hold. Let

τ =
(1 − γ)ε

4 log ∣A∣
. (129)

Then, Algorithm 3 computes a solution π for the standard CMDP such that

∣V π
⋆
(ρ) − V π(ρ)∣ = O(ε), (130a)

[b −Uπg (ρ)]+ = O(ε), (130b)

in O(log2
(1/ε)) iterations, where π⋆ is an optimal policy to the standard CMDP.

Proof. The proof can be fully adopted from that of Corollary B.6 The main difference lies in the outer-loop
complexity. To have `cC1C2

√
ε0 = ε/2, compared to the previous Õ (1/ε2) total iterations, it only requires

O(log2
(1/ε)) total iterations for Algorithm 3 when there is a single constraint. ◻

D Supporting Lemmas

The followings are standard results about unregularized and entropy-regularized MDPs. We refer the reader to
(Agarwal et al., 2021; Mei et al., 2020) for the proofs.

Lemma D.1 (Policy gradient for direct parameterization) Suppose that V π(ρ) is an unregularized value
function. For the direct policy parameterization where θ(s, a) = πθ(a∣s), the gradient is

∂V π(ρ)

∂π(a∣s)
=

1

1 − γ
dπρ(s)Q

π
(s, a). (131)

Lemma D.2 (Policy gradient for soft-max parameterization) Suppose that V π(ρ) is an unregularized
value function. For the soft-max policy parameterization (cf. (6)), the gradient is

∂V πθ(ρ)

∂θ(s, a)
=

1

1 − γ
dπθρ (s)πθ(a∣s)A

πθ(s, a). (132)

Lemma D.3 (Performance difference) Suppose that V π(ρ) is an unregularized value function. For all policies
π and π′, it holds that

V π
′
(ρ) − V π(ρ) =

1

1 − γ
∑
s∈S

dπρ(s) ∑
a∈A

(π′(a∣s) − π(a∣s)) ⋅Qπ
′
(s, a). (133)

Lemma D.4 (Soft sub-optimality) Suppose that V πτ (ρ) is an entropy-regularized value function and π⋆τ is the
optimal policy. For every policy π, it holds that

V π
⋆

τ (ρ) − V πτ (ρ) =
τ

1 − γ
∑
s∈S

dπρ(s)DKL [π(⋅∣s) ∣ π⋆τ (⋅∣s)] , (134)

where DKL [P (⋅) ∣ Q(⋅)] ∶= ∑x P (x) (logP (x) − logQ(x)) is the KL divergence between probability distributions
P (⋅) and Q(⋅).


