On Efficient Low Distortion Ultrametric Embedding

Vincent Cohen-Addad, Karthik C. S., Guillaume Lagarde
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:2078-2088, 2020.

Abstract

A classic problem in unsupervised learning and data analysis is to find simpler and easy-to-visualize representations of the data that preserve its essential properties. A widely-used method to preserve the underlying hierarchical structure of the data while reducing its complexity is to find an embedding of the data into a tree or an ultrametric, but computing such an embedding on a data set of $n$ points in $\Omega(\log n)$ dimensions incurs a quite prohibitive running time of $\Theta(n^2)$. In this paper, we provide a new algorithm which takes as input a set of points $P$ in $\R^d$, and for every $c\ge 1$, runs in time $n^{1+\frac{\rho}{c^2}}$ (for some universal constant $\rho>1$) to output an ultrametric $\Delta$ such that for any two points $u,v$ in $P$, we have $\Delta(u,v)$ is within a multiplicative factor of $5c$ to the distance between $u$ and $v$ in the best ultrametric representation of $P$. Here, the best ultrametric is the ultrametric $\tilde\Delta$ that minimizes the maximum distance distortion with respect to the $\ell_2$ distance, namely that minimizes $\underset{u,v \in P}{\max} \nicefrac{\tilde\Delta(u,v)}{\|u-v\|_2}$. We complement the above result by showing that under popular complexity theoretic assumptions, for every constant $\varepsilon>0$, no algorithm with running time $n^{2-\varepsilon}$ can distinguish between inputs in $\ell_\infty$-metric that admit isometric embedding and those that incur a distortion of $\nicefrac{3}{2}$. Finally, we present empirical evaluation on classic machine learning datasets and show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-cohen-addad20a, title = {On Efficient Low Distortion Ultrametric Embedding}, author = {Cohen-Addad, Vincent and S., Karthik C. and Lagarde, Guillaume}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {2078--2088}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/cohen-addad20a/cohen-addad20a.pdf}, url = {https://proceedings.mlr.press/v119/cohen-addad20a.html}, abstract = {A classic problem in unsupervised learning and data analysis is to find simpler and easy-to-visualize representations of the data that preserve its essential properties. A widely-used method to preserve the underlying hierarchical structure of the data while reducing its complexity is to find an embedding of the data into a tree or an ultrametric, but computing such an embedding on a data set of $n$ points in $\Omega(\log n)$ dimensions incurs a quite prohibitive running time of $\Theta(n^2)$. In this paper, we provide a new algorithm which takes as input a set of points $P$ in $\R^d$, and for every $c\ge 1$, runs in time $n^{1+\frac{\rho}{c^2}}$ (for some universal constant $\rho>1$) to output an ultrametric $\Delta$ such that for any two points $u,v$ in $P$, we have $\Delta(u,v)$ is within a multiplicative factor of $5c$ to the distance between $u$ and $v$ in the best ultrametric representation of $P$. Here, the best ultrametric is the ultrametric $\tilde\Delta$ that minimizes the maximum distance distortion with respect to the $\ell_2$ distance, namely that minimizes $\underset{u,v \in P}{\max} \nicefrac{\tilde\Delta(u,v)}{\|u-v\|_2}$. We complement the above result by showing that under popular complexity theoretic assumptions, for every constant $\varepsilon>0$, no algorithm with running time $n^{2-\varepsilon}$ can distinguish between inputs in $\ell_\infty$-metric that admit isometric embedding and those that incur a distortion of $\nicefrac{3}{2}$. Finally, we present empirical evaluation on classic machine learning datasets and show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.} }
Endnote
%0 Conference Paper %T On Efficient Low Distortion Ultrametric Embedding %A Vincent Cohen-Addad %A Karthik C. S. %A Guillaume Lagarde %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-cohen-addad20a %I PMLR %P 2078--2088 %U https://proceedings.mlr.press/v119/cohen-addad20a.html %V 119 %X A classic problem in unsupervised learning and data analysis is to find simpler and easy-to-visualize representations of the data that preserve its essential properties. A widely-used method to preserve the underlying hierarchical structure of the data while reducing its complexity is to find an embedding of the data into a tree or an ultrametric, but computing such an embedding on a data set of $n$ points in $\Omega(\log n)$ dimensions incurs a quite prohibitive running time of $\Theta(n^2)$. In this paper, we provide a new algorithm which takes as input a set of points $P$ in $\R^d$, and for every $c\ge 1$, runs in time $n^{1+\frac{\rho}{c^2}}$ (for some universal constant $\rho>1$) to output an ultrametric $\Delta$ such that for any two points $u,v$ in $P$, we have $\Delta(u,v)$ is within a multiplicative factor of $5c$ to the distance between $u$ and $v$ in the best ultrametric representation of $P$. Here, the best ultrametric is the ultrametric $\tilde\Delta$ that minimizes the maximum distance distortion with respect to the $\ell_2$ distance, namely that minimizes $\underset{u,v \in P}{\max} \nicefrac{\tilde\Delta(u,v)}{\|u-v\|_2}$. We complement the above result by showing that under popular complexity theoretic assumptions, for every constant $\varepsilon>0$, no algorithm with running time $n^{2-\varepsilon}$ can distinguish between inputs in $\ell_\infty$-metric that admit isometric embedding and those that incur a distortion of $\nicefrac{3}{2}$. Finally, we present empirical evaluation on classic machine learning datasets and show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.
APA
Cohen-Addad, V., S., K.C. & Lagarde, G.. (2020). On Efficient Low Distortion Ultrametric Embedding. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:2078-2088 Available from https://proceedings.mlr.press/v119/cohen-addad20a.html.

Related Material