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METHODOLOGY

Automated, image‑based disease 
measurement for phenotyping resistance 
to soybean frogeye leaf spot
Samuel C. McDonald1, James Buck2 and Zenglu Li1*    

Abstract 

Background:  Frogeye leaf spot is a disease of soybean, and there are limited sources of crop genetic resistance. 
Accurate quantification of resistance is necessary for the discovery of novel resistance sources, which can be acceler-
ated by using a low-cost and easy-to-use image analysis system to phenotype the disease. The objective herein was 
to develop an automated image analysis phenotyping pipeline to measure and count frogeye leaf spot lesions on 
soybean leaves with high precision and resolution while ensuring data integrity.

Results:  The image analysis program developed measures two traits: the percent of diseased leaf area and the 
number of lesions on a leaf. Percent of diseased leaf area is calculated by dividing the number of diseased pixels by 
the total number of leaf pixels, which are segmented through a series of color space transformations and pixel value 
thresholding. Lesion number is determined by counting the number of objects remaining in the image when the 
lesions are segmented. Automated measurement of the percent of diseased leaf area deviates from the manually 
measured value by less than 0.05% on average. Automatic lesion counting deviates by an average of 1.6 lesions from 
the manually counted value. The proposed method is highly correlated with a conventional method using a 1–5 
ordinal scale based on a standard area diagram. Input image compression was optimal at a resolution of 1500 × 1000 
pixels. At this resolution, the image analysis method proposed can process an image in less than 10 s and is highly 
concordant with uncompressed images.

Conclusion:  Image analysis provides improved resolution over conventional methods of frogeye leaf spot disease 
phenotyping. This method can improve the precision and resolution of phenotyping frogeye leaf spot, which can 
be used in genetic mapping to identify QTLs for crop genetic resistance and in breeding efforts for resistance to the 
disease.
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Background
Frogeye leaf spot (FLS) is a foliar disease of soybean [Gly-
cine max (L.) Merr] caused by the anamorphic fungus 
Cercospora sojina K. Hara that can hamper yield produc-
tion in warm, humid climates by over 30% [1]. Since an 

outbreak of FLS in 1947 [2], it has remained an important 
soybean pathogen in the Southeast United States, and 
occasionally in parts of the Midwest. Though the disease 
can be controlled with fungicides or mitigated through 
good agronomic practices, such as crop rotation, crop 
genetic resistance has been the most successful method 
to prevent FLS infections [3].

Although FLS can appear on pods, stems, and seeds, 
it is primarily a foliar disease. Symptoms begin as water-
soaked spots that progress to gray or brown lesions 
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with reddish-brown margins [4]. Lesions are 1 to 5 mm 
in diameter but can merge to form large spots in severe 
infections [5]. In high moisture, leaf symptoms can 
appear within 48 h but typically are not observed for 8 to 
12 days [4]. From 2012 to 2014, FLS was among the five 
most destructive soybean diseases in the southern United 
States [3], and in 2020 it was estimated to cause over 163 
thousand tonnes of yield losses in the United States and 
435 tonnes of loss in Ontario, Canada [6].

The importance of developing crop cultivars resistant 
to yield- and quality-reducing diseases has led to consid-
erable interest in identifying quantitative trait loci (QTL) 
for resistance. The generation of high-quality pheno-
typic data is crucial to identifying QTL. Phenotype data 
that lacks accuracy or precision may lead to low preci-
sion QTL that span across large lengths of chromosomes 
with inflated QTL effects [7, 8]. Until recently, improv-
ing genetic studies has focused on increasing genotypic 
data and refining computational models. However, in 
recent years phenotypes have been the major constraint 
in identifying causative loci for important plant traits 
through QTL mapping and genome-wide association 
studies (GWAS) [9]. Most genetic studies for FLS resist-
ance have relied on disease assays conducted in a green-
house, which enables more uniform inoculation and the 
ability to conduct assays year-round, as opposed to the 
field. Several methods have been devised to measure 
the level of resistance of soybean genotypes to C. sojina. 
Mapping genetic resistance in ‘Davis,’ ‘Peking,’ PI 594774, 
PI 5944891, and other plant introductions (PI) have all 
relied on classifying plants or families as susceptible or 
resistant based on the presence or absence of lesions, 
respectively [10–13]. Quantitative methods of phenotyp-
ing have been developed as well, including ordinal scales 
and sets of standard area diagrams [14, 15], but have 
been used less frequently for genetic mapping research. 
Standard area diagrams offer increased precision over 
qualitative assessments, but accuracy may still be 
impacted by rater experience, the number of diagrams, 
and the quality of diagrams [16]. In the past, phenotyp-
ing severity of many plant leaf diseases have used 5-point 
ordinal scales, such as northern corn leaf blight [Exsero-
hilum turcicum (Pass.) Leonard and Suggs] of maize (Zea 
mays L.) [17] and Sclerotinia sclerotiorum (Lib.) de Bary 
on common bean (Phaseolus vulgaris L.) [18]. Quantita-
tive visual assessment of plant disease severity has been 
criticized for its reliability of accuracy and precision [19]. 
For example, allele effects for maize northern leaf blight 
resistance QTL were found to be dependent on raters, 
and QTL mapped with stepwise general linear models 
were inconsistent between raters [7]. Similarly, a compar-
ison of visual assessment and image analysis for common 
bacterial blight (Xanthomonas spp.) of common bean 

suggested that the intervals in a 1 to 5 visual scale were 
unequal, which led to QTL effects being overestimated 
[20]. High-throughput and sensor-based phenotyping 
offer an opportunity for better estimates of QTL effects, 
more accurate assessments of heritability, and insights 
into certain genotype by environment (G × E) interac-
tions, all of which have direct implications for genetic 
gain in a breeding program [21].

Obtaining phenotypic data has become the bottleneck 
in many plant breeding programs and genetic mapping 
studies. Thus, there have been extensive developments 
in phenotyping platforms that can increase accuracy, 
precision, resolution, or data collection speed. Accuracy 
and precision are two of the most important quality met-
rics by which phenotypic data are collected. Accuracy 
is typically defined as the closeness of a measurement 
to the true value, and precision is a measure of vari-
ability between measurements on the same sample [22]. 
On the other hand, resolution refers to the number of 
classes that a dataset has, with binary variables having 
the lowest resolution and continuous variables having a 
resolution that is only limited by the estimation or meas-
urement method. Building high-resolution data collec-
tion techniques that retain accuracy and precision offer a 
deeper and more meaningful look into plant phenotypes. 
Especially in terms of plant diseases, the advent of sen-
sor-based technology has allowed for the actual measure-
ment of disease severity, in contrast to visual assessments 
that can only provide estimates [19, 20, 23, 24].

An additional advantage of image-based phenotyping 
is the immortalization of data, which can be referenced 
or reanalyzed as needed. This is especially important for 
phenotyping plant traits, as images can be reanalyzed if 
improved methods are developed after the experiment 
is terminated. Archiving images also allows the original 
data to be referenced.

Mapping crop genetic resistance QTL with sensing-
based phenotyping systems allows for the collection of 
hundreds of samples with a digital camera, scanner, or 
other spectral sensor and subsequent automated analysis 
downstream [23]. Approaches from simple to complex 
have been devised to capture phenotypic data on disease 
severity. The simplest have utilized inexpensive digital 
cameras, color space transformations, and pixel value 
segmenting to identify, separate, and measure healthy 
tissues and diseased tissues. This technique of feature 
extraction has been used successfully to measure chloro-
tic and necrotic tissues on common bean infected with 
common bacterial blight [20] and to evaluate leaf rust 
diseases of cereals [24]. Building upon the basis of RGB 
image segmentation, hyperspectral imaging has been 
utilized to capture information outside of the range of 
visible lights, such as the use of normalized difference 
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vegetation index (NDVI) for measurement of leaf rust in 
wheat (Triticum aestivum L.) [25]. Furthermore, com-
puter vision made possible by deep learning has helped 
to derive meaningful information from images, such as 
a convolutional neural network that could detect 26 dis-
eases of 14 crops with 99% accuracy [26]. Even though 
these more complex methods have been growing in 
popularity, systems using RGB images remain a prac-
tical choice because of their simplicity, low cost, and 
affordability.

The increased interest in image-based phenotyping has 
led to an increase in image analysis platforms. ImageJ [27] 
is a freely available and open-source java-based image 
processing software that is highly extensible. Plugins and 
macros can be built for the creation of custom tools and 
automatic processing of repetitive tasks. Other distribu-
tions of ImageJ, such as Fiji [28], bundle commonly used 
plugins with compatibility between ImageJ versions. The 
software is available for Windows, macOS, and Linux 
operating systems.

The objectives of this study were to develop an image 
processing pipeline that (1) produces reliable and repeat-
able measurements of soybean leaf area that is infected 
with frogeye leaf spot; (2) counts the number of frogeye 
leaf spot lesions present on a leaf; (3) can be automated 
to process hundreds of images, and (4) allows for data 
tracking from image acquisition to data output.

Results
The image processing algorithm (Fig.  1) developed as 
an ImageJ macro can accurately count the number of 
frogeye leaf spot lesions on a soybean leaf and report 
the percent area of the leaf that is infected with lesions. 
The algorithm was developed using a set of 2096 images 
of soybean leaves with varying levels of frogeye leaf 
spot disease symptoms, ranging from no disease to 
highly infected. Before processing each image, the 
script reads a QR code that can be included in the 
image to track the data through the process and to the 
output. Without a QR code, it uses the name of the 
input image file to track and record data. The algorithm 
first isolates and measures the leaf area in pixels, then 
isolates, counts, and measures the area of lesions. 
When starting the program, the user has the option to 
run it in batch mode or single image mode. In batch 
mode, all image files in a directory will be processed 
according to set parameters. In single image mode, 
images are processed individually, and the user can 
adjust the segmentation and measurement parameters 
of the algorithm. The script saves a result image, in 
which the leaf and each individual lesion are outlined, 
and the decoded text from the QR code is printed on 
the image for data tracking. This image can be used to 

visually validate the results of the image processing sys-
tem. The script saves a combined data file that contains 
the sample name, leaf area, lesion area, 
totallesionarea
totalleafarea

× 100 , and lesion number for each sample. 
A summary file giving information on the images pro-
cessed and the average time to process each image is 
also saved upon completion.

In a test of different compression levels on 51 images, 
a resolution of 1500 × 1000 pixels was determined to 
be optimal, as there was a negligible effect on the preci-
sion of either trait. Pearson correlations for percent of 
diseased leaf area and lesion number were equal to 1.0 
between uncompressed images (5184 × 3456 pixels) and 
images with a resolution of 1500 × 1000 pixels. Process-
ing time was reduced from an average of 43.9  s for full 
resolution images to an average of 8.0 s for images com-
pressed to 1500 × 1000 pixels (Fig. 2a). Similarly, average 
file size was reduced from 1661 to 117  kB when com-
pressed (Fig. 2b). Lowering the image resolution further 
resulted in reduced correlation in measurements between 
compressed and uncompressed images (Table 1).

An analysis of 75 images representing the range of dis-
ease infection demonstrated that the automated image 
analysis method is highly concordant with manual 
measurements. Pearson correlations between automatic 
measurement and manual measurement were 0.998 and 
0.997 for percent of diseased leaf area and lesion num-
ber, respectively (Fig. 3). When comparing the automated 
image analysis method and manual measurement, the 
percent of diseased leaf area deviated from the true value 
by 0.54% at most, with the average deviation being less 
than 0.05% from the true value. For lesion number, the 
maximum deviation was 8 lesions, and the mean devia-
tion was 1.6 lesions from the true value. For both lesion 
area and lesion number, false positives were more prev-
alent than false negatives, meaning non-diseased tis-
sues were occasionally classified as diseased. However, 
the average errors in lesion measurement and counting 
were small enough to be negligible. Six images showing 
a range of values for percent of diseased leaf area and 
lesion number estimated by automated image analysis 
and the manually corrected values, are included in Addi-
tional file 1.

To validate the image processing method for phenotyp-
ing FLS disease severity, the two traits generated from 
image analysis were compared to a visual assessment of 
disease severity on a 1–5 scale from 2096 plants pheno-
typed by a single rater. Spearman’s rank correlation coef-
ficient was 0.85 between visual rating and percent of leaf 
area diseased and 0.83 between visual rating and lesion 
number. Percent of leaf area diseased and lesion number 
were highly correlated and had a Spearman’s rank corre-
lation coefficient of 0.98.
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Open Image

Read sample ID from QR code

Scale image to width of 1500 pixels

Convert to HSB stack and 
isolate satura�on channel

Apply threshold and 
convert to mask

Apply median filter

Remove pe�ole with 
morphological opening

Select and measure remaining 
leaf area

Isolate leaf area

Convert to L*a*b* stack 
and isolate a* channel

Increase  contrast

Apply threshold

Filter lesions by size and shape

Count and measure lesions

Save result image

Calculate percent of 
diseased leaf area

Save measurements 
to data file

a

b
c

d

Fig. 1  A method for measuring and counting frogeye leaf spot lesions on soybean leaves. The four main steps are a image preprocessing, b leaf 
segmentation, c lesion segmentation, and d calculation and data reporting
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Discussion
A major challenge in improving frogeye leaf spot resist-
ance in soybean is the generation of reliable phenotype 
data with sufficient resolution to quantify the variation 

of disease severity across genotypes. Analysis of RGB 
images for disease assessment has become a popular 
method for phenotyping plant leaf diseases. Although 
more advanced methods that use hyperspectral imag-
ing or machine learning could also be highly accurate for 
phenotyping frogeye leaf spot disease severity, simpler 
methods using RGB cameras and image segmentation 
remain popular due to low startup costs for equipment 
and no need for expertise in hyperspectral sensing or 
machine learning. Image analysis offers accurate, pre-
cise, and repeatable measurements compared to visual 
methods that rely on standard area diagrams. Imaging 
the leaves of plants in a disease assay also allows for rea-
nalysis if problems with the experiment are discovered 
downstream, or if improved methods of image analysis 
are developed in the future.

The fully automated image analysis tool enables pre-
cise measurements of leaf infection with detailed infor-
mation on lesion number and size. On average, a set of 
100 images can be analyzed in less than 15 min, minimiz-
ing the time between image acquisition and downstream 
data analysis. Additionally, the incorporation of a QR 
code reader enables data integrity in the result images 
and the output data files. In the proposed method, a 
result image is saved, which shows the leaf area that was 
measured and the area of each lesion that was counted 
and measured. The result image also prints a stamp of the 
decoded QR code if present and a timestamp at the end 
of the algorithm. This information allows for quick and 
easy confirmation of accuracy and ensures increased data 
integrity since values and measurements can be traced 
between the experiment and the input and output files.

Color space transformations have proven to be use-
ful for feature segmentation in digital image analysis. 
By isolating one channel of a specific color space, each 
pixel of an image is reduced to a single dimension that 
represents the value at that pixel of that channel in the 
color space. In the leaf segmentation step, the satura-
tion (S) channel of the HSB color space is used to seg-
ment the leaf area because the white background has a 
saturation near zero and the green leaf has a saturation 
typically higher than 100, so it is isolated in the 85 to 
255-pixel value threshold. Similarly, transforming the 
RGB image into L*a*b* color space and isolating the 
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Fig. 2  Boxplots and Tukey HSD showing the effect of image 
compression (image dimensions along X-axis) on a processing time 
and b result image size (n = 51)

Table 1  Pearson correlations for percent diseased leaf area (upper) and lesion number (lower) traits between uncompressed images 
(5184 × 3456 pixels) and varying levels of compression (n = 51)

Image analysis trait Compressed image pixel dimensions

4000 × 2667 3000 × 2000 2000 × 1333 1500 × 1000 1000 × 667 800 × 533 600 × 400 400 × 267

Percent diseased leaf area 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98

Lesion number 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
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a*-chrominance channel enables segmentation of the 
lesions away from the leaf. The ascending a*-chromatic 
value represents a shift from green to red, so reddish-
brown lesions can be easily isolated from healthy, green 
leaf tissue in the image. Using fixed threshold values 
presents a risk due to variations between images that 
can be caused by lighting, leaf tissue color, or camera 
exposure. Even though these changes may be apparent 
in RGB color space, the L*a*b* color space is impervi-
ous to these variations, and the a*-chrominance chan-
nel values remain relatively constant across slight RGB 
value changes. The limitation with this method is that 
other reddish or brownish spots on the leaves, such as 

the damage caused by some insects or other diseases, 
cannot be distinguished from frogeye leaf spot lesions. 
Additionally, nutrient deficiencies may alter the color 
of the leaf, which may impact the ability to separate the 
tissue area diseased with FLS and healthy tissue. Many 
of the false positives observed in the tested image set 
could be attributed to non-FLS spots on the leaves that 
were counted as lesions. To mitigate this, a size selec-
tion step for lesions (i.e. lesions must be 16 more pix-
els in area) was implemented to prevent small flecks or 
other leaf spots from being measured. However, some 
false negatives were produced when the image process-
ing did not detect very small FLS lesions. Thus, high-
quality data still requires high-quality plant culture and 
greenhouse practices to minimize other causes of leaf 
discoloration.

To assess the accuracy of the image analysis algorithm, 
75 images were processed and inspected for errors, 
which were corrected manually. For both lesion area 
and lesion number, there were more false positives than 
false negatives, on average. This means that the algorithm 
occasionally classified leaf areas that were not infected as 
being infected with FLS. As previously discussed, other 
causes of leaf discoloration, such as insect feeding or 
other leaf diseases, may lead to an overestimation of FLS 
disease severity. However, the average number of false-
positive pixels was 10.90, which is below the lesion size 
threshold (16 pixels). This means that even though some 
extra leaf area may be classified as diseased, the average 
increase is less than the smallest allowable lesion size. 
Spearman’s rank correlations were also high between 
image analysis traits and the visual assessment trait, indi-
cating that the image-based phenotyping performs simi-
larly to conventional methods. It is important to note that 
a disease severity score given by a human rater may not 
be the true value. Thus, lower correlations between auto-
matic measurement and visual disease scales may be due 
to deficiencies, biases, or lack of resolution in the visual 
assessment method and should not be the sole criteria 
for judging the accuracy of novel phenotyping platforms.

Automatic image segmentation and feature measure-
ment offers a hands-off approach to processing images. 
Semi-automatic methods, in which the user can manu-
ally adjust parameters for each image offer more robust 
results but sacrifice time and ease. Users’ ability to fine-
tune segmentation in semi-automatic image analysis 
methods may also introduce some bias, as many times, 
there is no clear-cut distinction between “diseased” and 
“healthy” pixels. Automatic segmentation also increases 
efficiency, as scripts can be built for hands-off analysis. 
Given these benefits and constraints, automatic image 
segmentation is preferable for phenotyping a large 
number of samples in FLS disease assays.
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Image-based phenotyping platforms offer solutions to 
many of the challenges faced in plant phenotyping; they 
often are repeatable, fast, accurate, and have higher reso-
lution than can be detected by a human rater. The meth-
ods presented here may be adapted and optimized in the 
future for other phenotyping applications. Developing 
accurate phenotyping methods with sufficient through-
puts is a challenge in every crop system. If the symptoms 
of diseases, environmental stresses, or insect damage can 
all be easily detected in RGB images, phenotyping may 
be improved through a similar method of automatic seg-
mentation and measurement.

Conclusions
Identifying new sources of crop genetic resistance to FLS 
in soybean and incorporating genetic resistance into elite 
cultivars requires an improved method that produces 
accurate and detailed phenotype information. The pro-
posed method of image-based FLS phenotyping is based 
on color space transformations and pixel value thresh-
olding to segment key features from the image—namely 
the leaf and, if present, FLS lesions. Estimates of disease 
severity are acquired by measuring the percentage of leaf 
area that is diseased and counting the number of lesions 
on a leaf. The program can analyze an image in under 
10  s with minimal computational requirements, allow-
ing for the analysis of hundreds of images from a disease 
assay in an hour. Accuracy is comparable to visual meth-
ods of plant disease phenotyping and resolution is greatly 
increased. The reduction of false positives will be the first 
major goal in future research. However, the error in the 
tested dataset is small enough to have few practical impli-
cations. Using image processing to collect data on FLS 
disease severity is a convenient and accurate strategy that 
eliminates human-induced errors associated with con-
ventional methods.

Methods
Plant materials, culture, and disease inoculation
Images used to develop and validate the phenotyping 
pipeline were taken from two different experiments. In 
the first experiment, plant materials consisted of 329 
diverse soybean accessions selected from the USDA Soy-
bean Germplasm Collection, of which four replicates 
were grown. The second experiment consisted of 180 
recombinant inbred lines (RILs) that were derived from 
a ‘Forrest’ × ‘Davis’ cross, which were grown in six rep-
licates. ‘Forrest’ is a susceptible soybean cultivar, while 
‘Davis’ is a resistant cultivar that carries the major resist-
ance gene Rcs3 [29].

All disease assays were conducted in the Plant Pathol-
ogy greenhouse at the University of Georgia Griffin 
campus in Griffin, GA. Experiments were laid out in a 

randomized complete block design, with two replicates 
being planted at a time. Four seeds were planted in a 
10 cm square plastic pot and 12 pots were arranged in a 
15-cell tray, leaving the middle three positions empty to 
maximize light distribution. After emergence, pots were 
thinned to two plants each. The greenhouse was main-
tained at approximately 27  °C during the day and 21  °C 
at night with 13 h of supplemental light during the winter 
and spring and 3 h during the summer from metal halide 
lamps. Plants were grown to the V2–V3 growth stage and 
inoculated with isolate S23 (race 8) of C. sojina from the 
University of Georgia C. sojina culture collection [4]. To 
produce inoculum, colonies of C. sojina growing on V8 
agar media were flooded with 0.04% Tween-20 and lightly 
scraped with a scalpel to dislodge conidia. The conidia-
Tween solution was passed through two layers of cheese-
cloth to remove large pieces of mycelium. The conidia 
concentration was measured on a hemocytometer and 
adjusted to 9 × 104 spores × mL−1. At the time of inocu-
lation, plants were moved to plastic-covered inoculation 
chambers to maintain humidity near 100% that were 
placed under 95% shade cloth to regulate temperature. In 
each chamber, 150 mL of prepared inoculum was evenly 
sprayed onto the trifoliolates of the plants. Inoculation 
was repeated 24 h following the same procedure. Plants 
remained in the inoculation chamber for additional 24 h 
after the second inoculation and then moved back to the 
greenhouse bench. Disease symptoms appeared on sus-
ceptible plants 14–21 days after inoculation.

Image acquisition
Fourteen to 21 days after inoculation, RGB images were 
acquired with a Canon EOS Rebel T4i/EOS 650D digi-
tal single-lens reflex (DSLR) camera with a 17.9 meg-
apixel resolution. The camera was mounted overhead 
0.75 m above the subject. Images were taken on a plain 
white background with two LED lights set at 45° angles 
on either side. White balance of the camera was adjusted 
according to the manufacturer’s instructions before 
images were captured for the experiments. The camera 
was set to auto mode with flash disabled to automati-
cally adjust shutter speed, aperture, and ISO speed. For 
each plant, the most diseased leaf was removed from the 
plant and placed on the white background. To keep the 
leaf flat, one piece of 20 cm × 20 cm nonreflective glass 
was placed on top of the leaf during imaging (ArtToFin-
ish New York, USA). Each image also included a QR code 
for each sample indicating the experiment, pot number, 
and genotype, as well as a ruler for scale. Images were 
saved in JPEG format for analysis. To compare the results 
of the image analysis, the disease severity of each leaf 
was also estimated visually by a single rater using a 1–5 
scale, where 1 = disease free, 2 = small lesions without a 
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differentiated light center, 3 = < 10% of leaf area covered 
with lesions, 4 = ≥ 10% to < 20% of leaf area covered with 
lesions, and 5 =  ≥ 20% of leaf area covered with lesions. 
The same 1–5 scale has been used to phenotype soybean 
breeding lines at the University of Georgia due to sim-
plicity compared to a 0–100% continuous scale, and simi-
lar scales are used to phenotype other crop leaf diseases 
[17, 18]. Visual estimates were based on a set of standard 
area diagrams [14].

Image analysis
The image analysis method (Fig. 4, Additional file 2) was 
developed in FIJI software [26], a free, open-source, and 
highly customizable distribution of ImageJ [27] for scien-
tific image processing. To preprocess an image, it is first 
renamed and compressed. If a QR code was included in 
the image, it is decoded with the Barcode_Codec plugin 
[30], and the image file is renamed with the text decoded 
in the barcode. If no QR code is present, the image file 
name is used. Next, the image is rescaled so that the 
width is 1500 pixels. At this resolution, details of the 
leaves and lesions can be detected, but the storage space 
and computational power required are reduced.

After preprocessing, the RGB image is converted to a 
three-slice HSB (hue, saturation, brightness) color space 
stack to partition the leaf from the white background. In 
the saturation (S) slice of the HSB stack, segmentation 
with a threshold of 85 to 255 is applied, and the image 
is converted to a binary mask. A median filter with a 
radius of 4 is used to remove any remaining black pixels 
within the leaf area and white pixels in the background. 
To remove the petiole, morphological opening is used 
with an element of 9 to erode and subsequently dilate the 
binary image. By doing this, any structures in the image 
that are 18 pixels or narrower, such as the petiole, are 
removed and the leaf area remains almost unchanged. 
After the leaf has been isolated and the petiole has been 
removed, the remaining white pixels in the image are 
counted with the “Measure” function; this value is stored 
as the leaf area.

To isolate, measure, and count the lesions on each leaf, 
the compressed RGB is converted to a L*a*b* (lightness, 
a*-chrominance, b*-chrominance) color space stack, and 
the a*-chrominance channel is isolated. The background 
is first removed using the selection created in the leaf 
segmentation step, and the brightness and contrast of the 
leaf area are optimized to allow 0.35% of the pixels to 
become fully saturated. Next, a threshold of − 8 to 100 is 
applied to the a* channel to select the lesions. Then the 
“Analyze Particles” function is used to count the number 
of lesions with an area of 16 pixels or greater and a circu-
larity of 0.3 or higher, where circularity = 4π

area

perimeter2
 

and a value of 1 represents a perfect circle. The minimum 

area and circularity constraints minimize small debris or 
other irregularities less than 16 pixels or with a circular-
ity value less than 0.3 from being classified as lesions. The 
“Measure” function is then applied to the selections to 
measure the pixel area of each lesion.

After processing each image, the percent of leaf area 
that is infected with lesions is calculated as 
totallesionarea
totalleafarea

× 100 . Total leaf area, total lesion area, per-
cent of diseased leaf area, and lesion number are saved in 
a combined file along with the sample name as deter-
mined by the QR code or input file name. For each image 
processed, a file containing the individual measurements 
of each lesion is also saved, as well as a result image that 
shows the leaf outline, the outline of each lesion, and the 
number of each lesion. This information can be used 
downstream to visually verify the accuracy of the image 
processing results.

Optimization of image compression
To optimize the time to process each image and the 
amount of storage space required to store the result 
images, 51 images were tested using nine different reso-
lutions in the image processing workflow. Compression 
levels ranged from 5184 × 3456 pixels (uncompressed 
original image) to 400 × 267 pixels, and steps in the image 
processing that rely on pixel dimensions were scaled 
accordingly. To determine the optimal compression, the 
lowest resolution that maintained an accurate count of 
lesions and measurement of lesion area was selected. 
Pearson’s correlations were used to compare the results 
from compressed images to the results of the uncom-
pressed images for the percent of diseased leaf area and 
lesion number traits. One-way ANOVA and Tukey’s HSD 
were used to determine significant changes in image pro-
cessing time and file size of the result image.

Image‑based phenotyping and comparison to visual 
phenotyping
To assess the agreement between image-based disease 
severity estimates and the actual disease severity, the 
75 result images were visually inspected for healthy 
leaf areas detected as lesions or lesions that were not 
detected. To obtain an estimated true value for lesion 
area and lesion number in each image, lesions that 
were not detected and healthy areas that were marked 
as lesions were manually corrected and measured in 
ImageJ. Pearson correlations between the automatic 
measurements and true values were calculated for per-
cent of diseased leaf area and lesion number in using 
the base R cor function. False positives were defined as 
any non-diseased area of the image that was marked 
as a lesion by the image processing software, and false 
negatives were defined as any lesion present in the 
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Leaf isolated from 
original image

a*-channel isolated 
from L*a*b* stack

Lesions isolated, 
counted, and measured

Image 
compressed Leaf isolated Pe�ole 

removed

Result image and data 
saved

Fig. 4  Image processing first isolates the leaf, removes the petiole, and measures the leaf. From the leaf, it then isolates, measures, and counts the 
lesions



Page 10 of 11McDonald et al. Plant Methods          (2022) 18:103 

image that was not marked by the software. False posi-
tives and false negatives were reported for lesion area 
and lesion number.

Spearman’s rank correlation coefficient was used to 
compare the image analysis traits with the 1–5 visual 
scale. Spearman’s rank correlation can be used to assess 
the relationship between continuous and ordinal vari-
ables and is based on the ranked value for each variable 
[31]. For 2096 samples that had data from the image 
processing and visual assessment traits, Spearman’s 
rank correlation coefficients were calculated for pairs of 
traits using the base R cor function.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13007-​022-​00934-7.

Additional file 1. Six result images with a range of disease severity. Auto-
matically measured and manually corrected values for lesion number and 
lesion area are provided along with each image.

Additional file 2. The ImageJ plugin script designed to phenotype frog-
eye leaf spot of soybean by measuring the percentage of diseased leaf 
area and counting lesions.
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