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Abstract

Time series data is ubiquitous in various domains, such as users’ behavioral change
over time on e-commercial platforms and content popularity evolution on social
media. Analyzing sequential data and characterizing temporal dynamics make it
possible to uncover causal factors leading to future series data. Besides, the ability
to detect potential temporal patterns contributes to predicting future changes and
developing timely strategies, providing a wide range of applications (e.g., improving
user retention and content recommendation). In this dissertation, I will show our
path along with characterization, understanding, and prediction of the temporal
dynamics of web content.

First, we start with two case studies about characterizing temporal patterns on
two different domains. In the first study, we investigate users’ funding behavior
patterns on crowdfunding platforms (e.g., Indiegogo and Kickstarter). Employing
time series clustering methods, we discover four distinct temporal funding patterns
on both platforms. In the second study, we examine news articles’ long-term
popularity patterns. Although the majority of news articles are only prevalent for
a very short time, there are a small fraction of news articles displaying much longer
popularity, thus named as evergreen news articles. Motivated by the fact that
evergreen news articles maintain a timeless quality and are of consistent interest
to the public, we analyze evergreen articles and shed light on their long-term
popularity. Second, to help readers better understand event evolution, journalists
usually summarize a compact but complete storyline from thousands of news articles
for each event, which is both time-consuming and labor-intensive. In order to deliver
more accurate news timelines to the audience, we develop a fast and effective news
timeline summarization algorithm to achieve state-of-the-art performances in both
quality and speed. Third, we go beyond characterization and understanding the
temporal evolution of web contents for prediction. More specifically, we introduce
a temporal translation based framework to learn dynamic graph embeddings. Our
framework allows us to train all graph snapshots simultaneously while still preserving
the temporal constraint in learning, making it scalable to industrial-level graphs.
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Finally, we close this dissertation by discussing the limitation of our works and
signaling potential directions.
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Chapter 1 |
Introduction

During the Information Age, the Web is growing rapidly with large quantities
of contents being generated and changing. Since an increasing number of people
interact with each other and share content on the Internet, the Web is highly
dynamic and constantly evolving over time. Consequently, temporal dynamics on
the web include users’ behavioral dynamics and content dynamics. Users’ behavioral
dynamics include users’ purchasing histories on e-commercial sites and users’ posts
on social networks, while content dynamics involve contents’ popularity over the
Internet and event evolution.

Characterizing, understanding, and even predicting temporal dynamics con-
tribute to developing timely strategies and have a wide range of applications. For
example, users’ temporal behaviors could reflect users’ dynamic relationships with
platforms, which is quite valuable information for platforms to improve user re-
tention. Knowing users’ behavioral changes enables platforms to provide better
personalized services, like, adjusting recommendation strategies at times [2]. As
an example of content dynamics, content popularity has long been considered as
a major research area. Understanding how content propagates over social media
and even predicting content popularity brings benefits in various domains, such as
news recommendation [3], rumor identification [4], and event tracking [5].

Thus, this dissertation is focused on mining temporal dynamics of web content,
understanding temporal evolution on the web, and predicting how temporal data
changes over time.
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1.1 Motivation
Plenty of existing efforts have been devoted to mining web data. For instance,
researchers found interesting patterns in users’ browsing behaviors [6], query histo-
ries [7], and activity logs [8]. Similar studies were conducted to characterize content
dynamics, such as structural changes of web pages [9] and content propagation
over social media [10]. Besides characterizing and understanding web dynamics,
in order to leverage web dynamic patterns and bring prophetic guidance to the
society, research focuses has gradually moved to predict web dynamics, for example,
predicting users purchasing intention [8] and content popularity [11].

Nevertheless, there is still much work to be done in uncovering the reasons
behind web dynamics. Only by examining the changes of web data over time
can we figure out more and deeper factors impacting the changes. For example,
previous studies in crowdfunding platforms have shown different funding strategies
or behaviors between occasional and frequent backers, e.g., frequent backers are
found to be more likely to invest fast-growing projects [12]. However, none of the
previous crowdfunding studies has investigated the temporal dynamics of users’
funding behaviors, indicating users’ behavioral changes over time. To fill up the
gap, we investigate users behavioral dynamic patterns on crowdfunding platforms
in Chapter 2. As another illustration, although news popularity prediction gains
lots of attention in both industry and academia [3, 13, 14], few of them investigate
the long-term popularity evolution of news articles. Thus, we take the first step to
explore news articles’ long-term popularity in Chapter 3.

Along with the rapid development of the world, an increasing number of news
articles are published daily, describing various changing events. To prevent readers
from getting lost in information floods, automatic news timelines are emerging to
both release journalists’ burden and help the audience to understand event evolution.
However, existing works only focus on the quality of generated timelines and ignore
the generation speed. Thus, we propose to develop a fast and effective news timeline
summarization approach and build a real-time news timeline summarization system
on an industrial-level news corpus in Chapter 4. In addition, a similar scalability
issue is observed in predicting graph evolution, where modeling sequential modeling
of individual node embedding changes is very expensive due to the temporal
constraint in training. Thus, in Chapter 5, we develop a temporal space translation
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based graph embedding model that is scalable to industrial-level graph data.

1.2 Characterization of Temporal Patterns
Temporal patterns encode the evolution logic of time series data. Identifying
temporal patterns is the first step to learn how web content evolves over time while
characterizing temporal patterns contributes to uncovering possible factors that
impact the temporal changes. For example, user behaviors may vary with time,
making it difficult for web platforms to provide accurate services with unchanged
strategies. As users’ satisfaction with platforms is more likely to be gradually
changing, knowing users’ temporal behavioral changes enables platforms to develop
timely user retention strategies. Thus, we propose to analyze a large amount of
backer data from two of the largest crowdfunding platforms and discover four
distinct temporal backing patterns on both platforms. Besides user behavioral
data, web content popularity is another important temporal data. Figuring out
how web content popularity evolving with time signals the interest change of the
audience and can help the information providers produce more relevant content and
better deliver their messages. Therefore, we investigate news popularity patterns.
In particular, with an observation that there are a small fraction of news articles
that are read across years though the majority of news articles are only viewed
for days or weeks, we propose to examine news articles’ long-term popularity and
unearth several distinctive characteristics of these evergreen articles.

1.3 Understanding Event Evolution
As discussed, identifying temporal patterns help web platforms or information
providers better understand users and deliver improved services in a timely manner.
Accordingly, characterizing temporal patterns and uncovering their correlation with
user behavior and content popularity mainly benefit users in an indirect way. To
directly support users in understanding content evolution, we focus on the task of
news timeline summarization, which summarizes important news over major events
across the timeline, and produces both concise and complete daily summaries in
chronological order. News timelines make it easy for the audience to gain key
insights and understand the evolution of news events. News events, however, can
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span multiple years and involve thousands of news articles, introducing difficulties
for journalists to manually generate news timelines. Although many automatic
news timeline summarization algorithms are emerging in recent years, generating
timelines from a large number of news articles not only has quality issues but also
encounters the challenge of generation speed, which all existing works ignored.
To fill up the gap, we propose a fast and effective news timeline summarization
approach, allowing us to deliver more high-quality news timelines to the audience.

1.4 Prediction of Graph Evolution
Going beyond characterizing and understanding temporal evolution, we target at
predicting temporal data change. More specifically, we focus on the temporal graph
embedding. Because of the evolving nature of graphs, graphs are generated by a
series of temporal interactions between nodes, where users’ interest may vary with
time while items’ semantic meaning could also drift over time. Therefore, it is
necessary to encode graph evolution patterns in node embedding. Due to the time
constraint that requires to process edges in chronological order, modeling sequential
interactions between nodes can be expensive, making it difficult to learn embeddings
on large graphs. Thus, in this work, we propose a novel temporal graph embedding
framework to efficiently learn node embeddings for large graphs. Specifically, we
adopt a temporal translation-based model to simultaneously embed different graph
snapshots and encode the topological structure evolution of graphs by aligning
temporal translation spaces over time. For one thing, simultaneously embedding
different graph snapshots makes our approach scalable in learning embeddings for
large temporal graphs. For another, by learning the changes in the temporal space,
our approach allows to predict future embeddings rather than directly using the
embedding of the final state, leading to better performances in prediction.

1.5 Overview of this Dissertation
Figure 1.1 gives the thesis structure and the remaining of this thesis is organized as
follows: we introduce two case studies on characterizing users’ behavioral dynamics
and content dynamics in Chapter 2 and Chapter 3 respectively. Towards a better
understanding of web dynamics, we propose a novel fast and effective news timeline
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Characterizing dynamics Understanding evolution Predicting changes

Chapter 2 (User Behavioral Pattern)

Chapter 3 (Content Popularity Pattern)

Chapter 4 (Understand event evolution)

Chapter 5 (Predicting graph evolution)

Figure 1.1: Thesis structure

summarization model in Chapter 4. In Chapter 5, we go beyond learning temporal
patterns for prediction and present our work in developing a scalable dynamic
graph embedding model. We conclude our work in Chapter 6.
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Chapter 2 |
Characterizing User Behavioral
Pattern

This section is corresponding to our work "Understanding Temporal Backing
Patterns in Online Crowdfunding Communities" [15].

2.1 Introduction
Online crowdfunding platforms such as Kickstarter and Indiegogo have opened up
a new avenue for entrepreneurs to raise funding, overcoming the barriers of small
start-up companies [16]. In such platforms, users, known as backers, are given
the opportunity to pledge funds to join entrepreneurs, known as creators, to bring
their favorite projects into life. Taking Oculus Rift for example, the virtual-reality

(a) From Apr. 2012 to May 2014 (b) From Aug. 2014 to Sep. 2016

Figure 2.1: Kickstarter user example

6



gaming headset had reportedly raised $2.4 million dollars via crowdfunding, which
clearly displays the power of crowdfunding [17]. According to Kickstarter’s report1,
around March 2017, 12 million backers have pledged approximately $2.9 billion
dollars for more than 120k projects. Among these 12 million backers, however, only
less than 4 million of backers have backed two or more projects. Similarly, less than
30% of user retention rate has been reported on other two crowdfunding platforms,
DonorsChoose.org [18] and Indiegogo (Section 3).

As a motivating example, see Figure 2.1, where actual backing numbers of two
backers on the Kickstarter platform are plotted. Note that two users show radically
different backing behavior for the same duration of 24 months over different years.
The user in (a) shows active backings in the early stage but gradually backs less,
while the user in (b) more or less remains active throughout. Clearly, identifying
such users as (a) early and encourage them to remain active is beneficial to
crowdfunding platforms. To increase such backer retention rate, therefore, we argue
that monitoring and understanding backers’ behaviors is indispensable.

Previous studies have pointed it out that there are distinguished differences
between: (1) occasional backers, who back only a small number of projects and
mostly join to support their friends’ projects, and (2) frequent backers, who invest
on many projects and show clear backing interests [12, 19]. In addition, users’ first
backing behaviors are shown to be closely correlated with user retention and even
can be used to predict which backers will return [18]. Nevertheless, none of the
previous crowdfunding studies has investigated on the “temporal dynamics" of
users’ backing behaviors over multiple years. Users’ temporal backing behaviors
could reflect users’ dynamic relationships with platforms, which is quite valuable
information for platforms to improve backer retention. For example, if a platform
observes a backer gradually becomes less active, platforms may take timely actions,
such as special promotion, to restore their interests. Furthermore, knowing backers’
temporal behaviors enables platforms to be able to provide better personalized
services, for instance, adjusting recommendation strategies at times.

Therefore, in this work, we propose to analyze users’ temporal backing behaviors
on online crowdfunding platforms. In particular, we intend to investigate the
following three research questions:

• RQ1: Do users have any temporal backing patterns?
1https://www.kickstarter.com/help/stats
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• RQ2: If so, what are the characteristics of those backing patterns and possible
factors impacting those patterns?

• RQ3: Can we identify users’ backing patterns at early stages?

In answering these research questions, we make the following main contributions:

• To our best knowledge, we are the first to analyze users’ temporal backing
behaviors on crowdfunding platforms.

• We discover four distinct temporal backing patterns on two most popular
crowdfunding platforms with hundreds of thousands frequent backers.

• We analyze the characteristics of each pattern from various aspects, including
success rate and pledged money, and explore possible factors impacting users’
backing patterns.

• We validate our analysis by showing the possibilities to build early prediction
models in inferring all four temporal backing patterns.

• Based on the analysis, we achieve encouraging results in identifying those
who will progressively become inactive at very early stages.

The rest of the work is organized as follows. In Section 2.2, we review related
works on crowdfunding platforms. Section 2.3 introduces our data collection strategy
and the experimental dataset. The approach to uncover users’ temporal backing
behaviors and its results are given in Section 2.4. In Section 2.5, we analyze
characteristics of backing patterns and explore possible factors impacting users’
behaviors. Early prediction models are discussed in Section 2.6 and we conclude
the work with a discussion on limitations and future work in Section 2.7.

2.2 Related Works
In this section, we review crowdfunding research work in three categories: (i) analysis
of crowdfunding platforms, (ii) project success prediction and recommendation,
and (iii) crowdfunding backer behaviors.

There are a rich set of studies on analyzing crowdfunding platforms [20–25].
For example, studies have examined the dynamics of crowdfunding projects [26],
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revealed motivations of both creators and backers [23], and made comparisons of
different crowdfunding platforms [27]. With the rise of social media, researchers
noticed the close relationship between crowdfunding platforms and social networks,
and started leveraging social media activities to study crowdfunding [12, 19, 28].
For example, social media have been found to be quite helpful in project promotion
and strongly correlated with project outcomes [28]. In addition, other factors, such
as geography, project updates and rewards, have also been proved to be closely
connected with crowdfunding projects [29–31].

Aimed at helping creators get funded and backers find favorable projects,
research has focused on using machine learning algorithms to do project success
prediction [32–35] and project recommendation [12, 19, 36]. Besides static and
dynamic features on crowdfunding platforms, both [33] and [19] leveraged social
network features to achieve state-of-the-art performance in project success rate
prediction and project recommendation respectively.

Although various studies have been conducted on crowdfunding platforms,
few works have investigated on backers’ behaviors. Previous studies have shown
different backing strategies or behaviors between occasional and frequent backers.
For example, frequent backers are found to be more likely to invest fast-growing
projects [12]. [16] classified backers into three categories, immediate backers, delayed
backers and serial backers. In addition, only based on one’s first backing, researchers
showed the possibility to predict whether that user will come back or not [18].

In our work, instead of uncovering different backing behaviors between occasional
and frequent backers, we intend to focus on frequent backers, who carry out more
activities and are more valuable for platforms, and dig into their temporal backing
behaviors, which has rarely been explored before.

2.3 Dataset Description
Aimed at understanding user behaviors in online crowdfunding communities, we
collect a large amount of user data from two of the most popular crowdfunding
platforms, Kickstarter and Indiegogo. To make our analysis more reliable, we have
collected all projects that are available and thereby, to our best knowledge, obtain
the largest datasets on both platforms (comparison of raw datasets is given in Table
2.1). In this section, we introduce data collection strategy, data cleaning process
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and overview of our dataset.

2.3.1 Dataset Collection

Due to the disparate strategies of Indiegogo and Kickstarter for displaying user
backing histories, we adopt two different collection methods for these two platforms.

2.3.1.1 Kickstarter Dataset

Kickstarter prevents users from obtaining backer list of certain project by only
displaying limited backers’ avatars without profile URLs. Fortunately, however, we
can find backers’ profile URLs in project comments page, and with one’s profile
URL, we are able to collect the complete project backing history of that user. At
the end, we have gathered 233,534 ended projects, spanning from April 2009 to
December 2016, and corresponding comments. Then we collected users’ full backing
histories through user profile URLs from comments, which resulted in more than
500,000 backers.

2.3.1.2 Indiegogo Dataset

Different from Kickstarter, Indiegogo displays projects’ backer lists with some
anonymous backers but only shows recent backings of each user on their profile
URLs. Hence, we directly collected Indiegogo’s project backer lists after gathering
all available ended 124,292 projects, which spans from January 2008 to January
2017. Identifying users by profile URLs, there are around 2,300,000 unique backers.
Although we cannot guarantee to obtain full backing history of each backer and
each user’s backing history in our dataset ought to be viewed as a sample of the true
history, the influence of sampling should be negligible as we have a large number of
projects.

2.3.2 Frequent Backers

Despite a large number of unique backers identified on both platforms, the majority
of them only back very limited projects. Taking Indiegogo backers for example,
only 536,727 backers (23%) back more than twice, which is consistent with the
previous study (26%) on another crowdfunding platform [18]. In order to reduce the
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Data source Platform # of unique users # of projects
Ours Kickstarter 508,850 233,534
Ours Indiegogo 2,314,199 124,292
[33] Kickstarter 146,721 168,851
[26] Kickstarter N/A 59,115
[17] Kickstarter 239,000 N/A
[25] Indiegogo N/A 47,139

Table 2.1: Raw Dataset Comparison

Platform # of users # of projects # of backings per user
Kickstarter 150,122 174,938 38.0
Indiegogo 12,528 41,450 15.4

Table 2.2: Our frequent Backer Dataset

impact of occasional backers and better understand users’ backing behaviors, we
filter out those infrequent backers and only keep those frequent backers who have
backed more than 10 times. As a result, we have 150,122 Kickstarter and 12,528
Indiegogo frequent backers. Table 2.2 shows overall statistics of our frequent backer
dataset and Figure 2.2(a) illustrates the complementary cumulative distribution
function (CCDF) of Kickstarter users’ backing numbers. For each backing number
N , CCDF of users’ backing numbers shows the proportion of backers who invest
more than N projects, for example, there are more than 20% of Kickstarter backers

(a) CCDF of users’ backing numbers (b) Backing Length Distribution

Figure 2.2: Kickstarter Frequent Backer Distribution
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Figure 2.3: Example of backing behavior

supporting at least 40 projects.
In our work, we analyze users’ backing behaviors during their lifetime, which is

defined as the observed backing history in our dataset. As shown in Figure 2.2(b),
the majority of backers have lifetimes lying between 2 and 5 years, which means
users’ baking histories in our dataset are reasonably long enough for temporal
backing behavior analysis.

2.4 Temporal Backing Patterns
In this section, we intend to answer RQ1: do users have any temporal backing
patterns? We start by introducing our definition of users’ temporal backing
behaviors, then describe our approach to cluster those temporal behaviors and
finally discuss about the clustering results.

2.4.1 Temporal Backing behavior

With the purpose of uncovering users’ possible backing strategies, we monitor users’
backing numbers over time and define a user’s temporal backing behavior as a
backing number function of time, N(t). Although the exact timestamp when one
user back a certain project is not available in our dataset, we propose to use the
middle time between each project’s start and end time as its backers’ joining time.
Since projects’ average duration is around 1 month and most of our backers have
more than 2 years lifetimes, it should be reasonable to ignore the several days’
shifting. Knowing the timestamps of all backings, each user’s backing behavior
can be viewed as a time series, N(t) = {n1, n2, ...}, which models users’ backing
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numbers through time. For example, Figure 2.3 shows one possible temporal
backing behavior, where the user tends to back an increasing number of projects
over time.

2.4.2 Dynamic Time Warping Clustering

Having converted users’ temporal backing behaviors into time series, we investigate
whether there exist any backing patterns. Because different backing behaviors
correspond to different shapes in time series, we propose to use time series clustering
to find distinct patterns. Since only the shape of time series matters, we do Z-
normalization on all time series at first to make comparisons between two time
series meaningful [37]. Then, in order to allow slight shifting in time and warping
in shape, we take advantage of Dynamic Time Warping (DTW) [38] clustering to
find discriminative patterns.

More specifically, we adopt Dynamic Time Warping with Dtw Barycenter
Averaging (DBA) [39], a state of the art time series averaging method, to do
the clustering. As for parameter settings, we try various time window sizes and
cluster numbers, and run DBA-based DTW 100 times with different kmeans++
initialization [40] for each set of parameters and keep the clusters with minimum
inertia. Finally, we find the most discriminative patterns when DTW window size
is 1

3 of time series length and the cluster number is 4.

2.4.2.1 Effect of backing length

Due to the fact that backing history length varies with users, it is difficult to
compare two time series that differ too much in length (e.g. one user with 2-year
backing history while another with 5-year backing history). Thus, we intend to
study the effect of users’ backing length by running clustering on different backing
length groups and the results are shown in Figure 2.4. Apparently, similar backing
patterns are discovered in all groups, and there is no distinct pattern that is
exclusively found in some groups. As a result, it should be reasonable to normalize
each user’s backing history into the same length (Binning): 1) we regard each user’s
first and last project backing time as one’s lifetime start and end time respectively;
2) evenly split one’s lifetime into 30 intervals and count the number of backings in
each interval; 3) apply Z-normalization on the time series.
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Figure 2.4: Patterns in various backing length groups. X-axis stands for months.
Y-axis stands for Z-normalized backing number.
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(a) Kickstarter (b) Indiegogo

Figure 2.5: Clustering results (with # of backers in parentheses)

2.4.3 Clustering Results

After binning and clustering, we do pairwise averaging on the 30-interval time series
per group to obtain smoothed clusters. As shown in Figure 2.5, similar backing
patterns have emerged on both crowdfunding platforms, which are also consistent
with clustering results on different backing length groups in Figure 2.4. We name
the 4 distinct backing patterns as follows:

1. Early backer (EB): those backers back a lot at the very beginning of their
lifetime but gradually lose interest and seldom back later.

2. Cautious backer (CB): although the majority of their backings still happen
at the beginning, they are more cautious than early backers, as they try a
few projects before conducting massive investments.

3. Late backer (LB): contrary to early backers, they back limited projects at
first, but gradually back more.

4. Uniform backer (UB): they actively back all the time with their backings
almost evenly distributed through their lifetime.

Two matters should be noted here: 1) Kickstarter clusters look much more smooth
than Indiegogo clusters; 2) there is a slight difference between LB on both platforms,
i.e., LB on Kickstarter shows a more sharp increase at later months than LB on
Indiegogo does. The first issue results from the fact that Indiegogo dataset is
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smaller (with respect to # of backers) and sparser (with respect to # of backings
per user) than Kickstarter dataset. As for the second issue, it may be because our
Indiegogo dataset does not guarantee containing users’ full backing histories and
lacks some projects. However, we can still see an obvious increase in the backing
pattern of LB on Indiegogo, which is matched with Kickstarter’s.

2.5 Understanding Backing Patterns
Figure 2.5 indicates an interesting phenomenon that both EB and CB invest a
lot at the beginning, but gradually lose interest and become less active, while UB
is active in backing all the time and LB even supports an increasing number of
projects over time. As EB and CB account for a large proportion (more than
40%) of frequent backers, figuring out why they have become inactive will not
only help those backers out of the possible problems they are trapped in, but also
contribute to the development of crowdfunding platforms. Therefore, we intend
to do a quantitative analysis on the characteristics of these 4 groups of backers
and propose some empirical answers to RQ2: what are the characteristics of those
backing patterns and possible factors impacting those patterns? Note that here, we
only show results on Kickstarter dataset but similar results are found on Indiegogo
dataset as well, except for the success rate2.

This section starts with analyzing characteristics of backing patterns, and based
on these characteristics, we propose some possible factors explaining users’ behaviors
or backing patterns.

2.5.1 Characteristics of Patterns

When analyzing characteristics of backing patterns, cumulative distribution func-
tions (CDF) are frequently adopted for displaying the distribution differences among
those four groups in various aspects. For a certain value X, CDFs show the fraction
of backers who have values less than or equal to X. To quantitatively measure
the differences between distributions of two backing patterns’ samples, we conduct

2Besides All-or-Nothing, Indiegogo gives one more choice, Take-it-All, to creators, which means
backers are still able to get their rewards even if the goal amount is not reached. With more than
90% of Indiegogo projects starting with flexible funding, we cannot determine whether projects
are successful or not on Indiegogo dataset.

16



(a) CDF of backing history length (b) CDF of total backing number

(c) Average backings per month

Figure 2.6: Backing length and backing number of each pattern (with average
value in parentheses)

Kolmogorov-Smirnov test [41], a wildly used significance test for checking whether
two samples are drawn from the same distribution. Accordingly, for any pair of
backing patterns in any situation, KS tests reject their samples being drawn from
the same distribution with p-value less than 0.01.

2.5.1.1 Backing length and backing number

Figure 2.6(a) presents the CDF of backers’ lifetime backing length. As expected,
EB has obvious shorter lifetime backing length than other three groups, both in
general and on average, in that it gradually loses interest in backing from the
beginning. Despite the fact that CB has similar backing length distribution as UB,
its backing number is apparently larger than UB’s as indicated in Figure 2.6(b),
which suggests that CB is as valuable as UB. CB could even contribute more to the
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(a) CDF of total cost (b) CDF of average offering

(c) Average offering for each backer’s i-th project

Figure 2.7: Backing cost (with average value in parentheses). Cost refers to the
money spent on successful projects, while offering just indicates the prices that
users are willing to offer for the projects, which may or may not be successful.

platforms if it remained active during the second half backing history. In addition,
we examine the change of each group’s backing number over time and find some
inflection points. As shown in Figure 2.6(c)3, on average, EB is actively backing
during the first 12 months, while the passion of CB lasts 24 months, two times
longer than EB’s, after cautiously investing 3 months at the beginning.

2.5.1.2 Project Cost

Besides participation duration and backing numbers, the amount of pledged funds is
another important measurement for the contribution of users to the platforms. We

3Note that it is the overall trend that matters not the absolute values, which are relatively
small due to the data sparsity (not all users invest projects in every month).
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(a) CDF of success rate (b) Average success rate for each backer’s i-th
project

Figure 2.8: Success rate (with average value in parentheses)

compare different groups’ spending behaviors and make several observations. First,
as shown in Figure 2.7(a), on average, EB spends the least, whereas LB contributes
the most. Considering the proportion of each group on the platform, UB, even if
ranked 3rd on average spending, invests 151 million dollars in total, which is almost
1.5 times more than the second CB does. Because of the small number of LB, it only
pledges 62 million dollars, which is slightly more than EB does. The fact that EB
and CB pledge around 30% of funds among frequent backers implies that they are
indispensable for the platforms. Second, Figure 2.7(b) demonstrates that EB and
CB prefer offering smaller pledging fund per project, while LB and UB are willing
to spend a little bit more on each project. Interestingly, both Figures 2.7(b) and
2.7(c) suggest EB and CB have similar average offering per project. Last but not
least, Figure 2.7(c) shows that EB offers less money for each project when starting
investments but gradually increases its offerings. We can see a similar pattern in
CB’s average offerings over projects as well. Taking together with their temporal
backing patterns, this phenomenon may occur due to their limited budget. At the
beginning, in order to support multiple projects, EB and CB have to lower down
their offering per project, but with their backing numbers gradually decreasing,
they are able to afford more offering per project.
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2.5.1.3 Success Rate

Next, we investigate on the success rate of each backing group. Surprisingly, 22.4%
of the 150K frequent backers (with at least 10 backings) in Kickstarter dataset
have never failed in backing, even though their average backing number is 18. As
for each backing group, 25.1% of UB, 24.4% of LB, 21.2% of EB and 17.6% of CB
achieve the perfect backing histories. Although we analyze frequent backers, who
have up to 90.5% success rate on average, there are still some differences among
these four groups. Figure 2.8(a) shows that LB and UB are better at backing
and have higher success rate than other two groups, which is consistent with the
ratios of perfect backers in each group to some extent. Moreover, looking at each
group’s average success rate at i-th project from Figure 2.8(b), we can see a clear
gap between success rates of EB and CB and those of LB and UB. In addition, we
note the slopes of CB and EB’s curves are relatively smaller, indicating a faster
drop in their success rates. Considering temporal backing patterns of EB, the
low success rate may result from the fact that EB invests very frequently at the
beginning without caring much about its backings’ outcomes, while other three
groups, especially LB, gain more experience before conducting massive investments
and certainly reach much higher success rate in backings.

2.5.1.4 Categories and Creators

Previous studies have shown that topical preference and connections with creator
play an important role in users’ backing behaviors [19, 23]. Category entropy is
applied to measure users’ topical preference and defined as follows:

CatEntropy(u) = −
C∑
i=1

ni
N
log2

ni
N

(2.1)

In the equation, C is the number of categories, N is the total number of projects
backed by user u and ni is the number of backed projects under category i. Com-
pared with uniformly backing all 15 project categories on Kickstarter, where
category entropy is around 4, Figure 2.9(a) indicates that all four groups have
strong preferences in backing categories, which is consistent with previous studies.
We also notice that EB and CB have larger entropies than other two groups in
general, which means they have broader interests in backing projects. As expected,

20



(a) Average entropy of each backer’s first i
projects

(b) Probability of each backer’s i-th project
being created by his/her past supported creator

Figure 2.9: Categories and creators

Figure 2.9(b) shows that there are big chances that frequent backers will support
creators whom they have supported before. In addition, the probability of LB and
UB funding a past supported creator is at least 40% higher than that of EB and
CB during the first 20 backings. Although EB and CB’s lower probability at the
first a few backings may result from their more frequent backings in a short time
at the beginning, they are still less likely to fund a past supported creator than LB
and UB after a longer time, say after 20 backings.

2.5.2 Causes of Patterns

Having observed various characteristics of users’ temporal backing patterns, we
seek potential factors impacting users’ behaviors. Since users’ backing behaviors
can rely on diverse factors, including personal backing strategies, we just provide
some general empirical analysis here and leave user studies for future investigation.
Specifically, we focus on the impact of project outcomes and creators in this section.

2.5.2.1 Project Success

In Section 2.5.1.3, we have identified the huge differences among each group’s
backing success rate that success rates of EB and CB are not only much lower than
those of LB and UB, but also drop faster than other two groups at the early stage.
Considering EB and CB gradually lose interests in backing from the beginning, the
relatively low success rate should play an important role in their later inactivity.
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Thus we argue that EB and CB may be discouraged by experiencing relatively low
backing success rates and failing several projects initially, and thereby progressively
become less active in backing. Based on this finding, in order to encourage users to
be active, platforms may recommend some easily successful projects to those who
have a bad start initially in backing.

2.5.2.2 Connections with Creators

Another interesting observation comes from Section 2.5.1.4. Note that both LB
and UB are more likely to fund their past supported creators, indicating stronger
connections between them and their creators. During the first 20 backings, after
which EB and CB gradually become inactive, LB and UB show at least 40%
higher probability to support a recognized creator. Because of LB and UB’s
willingness to return to fund past supported creators, there could be some long-
term connections being established between them and their creators. Accordingly,
favorable relationship between users and creators may increase the probabilities
of users being a returned backer, and encourage users to continue backing on
the platforms. Hence, both platforms and creators should pay more attention to
building up mutual trust between backers and creators.

2.6 Early prediction
In addition to the differences in the dynamics of backing numbers, we have shown
clear distinctions among these 4 groups in various aspects, including project cost
and success rate, in the previous section. To validate the insights from the previous
section, we build up models on users’ early backing features to see whether we
are able to predict users’ later backing patterns. Apparently, the earlier we can
detect the loss of users’ interests, the better we may help them stay active by
taking actions such as promotion. Therefore, we turn to RQ3: can we identify
users’ backing patterns at early stages? and investigate on building early prediction
models in this section.
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at i-th finished project 1 2 3 4 5 6
Kickstarter 18 104 166 220 271 320
Indiegogo 26 162 252 327 396 465

Table 2.3: Duration in days at i-th finished project

2.6.1 Set-up

To validate our analysis, we build 4-class classifiers to predict users’ backing patterns
at first. Then, based on the observation in section 2.5.1.2 that EB and CB pledge
around 30% of funds among frequent backers and had the potential to contribute
even more if they stayed active, we propose to build binary classifiers to distinguish
EB and CB from UB and LB as well.

2.6.1.1 Prediction Time

Section 2.5.2.1 points out the influence of project outcomes on users’ future behaviors.
As such, it should be reasonable to make inferences after observing a few project
outcomes. Table 2.3 displays Kickstarter and Indiegogo users’ duration in days4

when their i-th project is finished. As shown in Figure 2.6(c), since 9th month, EB
has already been less active than all other three groups, which might be too late
for user retention. Consequently, we propose to predict users’ backing patterns at
the end of their 1st to 4th project on Kickstarter and correspondingly, at the end
of 1st to 3rd project on Indiegogo.

2.6.1.2 Features

After setting up the prediction time, we extract the following features from users’
behavior data during the time period to build classifiers. Note that, when clustering
users’ backing patterns, we only used Z-normalized time series of users’ backing
numbers in their entire lifetimes. However, here we only utilize users’ first a few
months data to extract features.

1. Temporal (4 features): As indicated in Figure 2.6(c), even when just
joining the platforms, different groups of users behave differently in backing.

4By the end of i-th project, how long have that user been on the platform?

23



Therefore, dynamics of users’ backing numbers should be valuable features.
In addition, we include the number of backed projects5, duration in days,
mean and standard deviation of the time difference between two adjacent
backings.

2. Backer (3 features): In sections 2.5.1.2 and 2.5.1.3, we observe that averag-
ing offering per project and success rate vary with different groups in the first
a few backings. Therefore, we formulate backer features, including backing
success rate, mean and standard deviation of backed money per project.

3. Creator (4 features): Sections 2.5.1.4 and 2.5.2.2 discuss about the poten-
tial encouragement of favorable connections between backers and creators.
Thus, based on the assumption that experienced creators may be good at
establishing favorable relationship with backers, we also extract features from
creators, involving their past backing numbers, backing success rate, creating
numbers, and creating success rate.

2.6.1.3 Criteria

Because of the imbalance of our data, we evaluate the multi-class classification
results using two popular measures–i.e., macro-F1 score and G-means, to be defined
as follows:

Macro-F1 = 1
Nc

∗
Nc∑
i=1

F1i (2.2)

G-means = Nc

√√√√Nc∏
i=1

recalli (2.3)

with
F1i = 2 ∗ precisioni ∗ recalli

precisioni + recalli

precisioni =
∑
TPi∑

TPi + ∑
FPi

recalli =
∑
TPi∑

TPi + ∑
FNi

5At the end of i-th project, users may back more than i projects, though their outcomes are
not available then.

24



at i-th finished project 1 2 3 4
Random Baseline 0.50 0.50 0.50 0.50

Kickstarter 0.71 0.78 0.81 0.82
Indiegogo 0.63 0.70 0.73 0.75

Table 2.4: Binary classification results (ROC AUC)

In the equations, Nc stands for the number of classes, TP for True Positive, FP
for False Positive, and FN for False Negative. For 4-class classification, random
baselines will score 0.25 on both metrics.

As for binary classification, Area Under the ROC Curve (AUC) is employed
to measure the possibility that the classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one. Thus, a random baseline
will have 0.50 of AUC score.

To handle our imbalanced data, via preliminary testing, we chose the AdaBoost
algorithm [42] with a decision tree classifier and under-sampling [43], which has
given the best performance on 10-fold cross validation.

2.6.2 Results

2.6.2.1 Predicting backing patterns

The results are given in Figure 2.10. Generally, based on our proposed features, we
can achieve promising performance on inferring users’ future backing patterns when
they just complete first 3 to 4 projects. As expected, backer and creator features
contribute to the prediction, especially at the end of their first or second project,
which validates our analysis in the previous section. With more user backings being
observed, although overall performance is improved significantly, temporal features
play a more essential role in the prediction and other two features only lead to
smaller increments. Consistent with the fact that success rate is indeterminable on
Indiegogo dataset as mentioned in section 2.5, backer and creator features show
very limited improvement in the prediction.
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Figure 2.10: Predictive performance for inferring users’ future behavior patterns at
the end of first few projects. (a) and (b) show results on Kickstarter dataset, while
(c) and (d) display Indiegogo’s.

2.6.2.2 Identifying early backers and cautious backers

Having validated our analysis and corresponding features, we build a binary classifier
to identify EB and CB from all frequent backers for user retention. As shown in
Table 2.4, at the end of each user’s 1st project, we are able to tell whether that
user will be EB and CB with 0.71 AUC on Kickstarter and 0.63 AUC on Indiegogo.
When one’s finished project number reaches 4, AUC increases to 0.82 and 0.75
respectively. Additionally, when joining the platforms for just 5 months, which
corresponds to the time of 3rd project finished on Kickstarter and second project
finished on Indiegogo, EB and CB can be identified very well by the built classifier,
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with 0.81 AUC and 0.70 AUC, correspondingly.

2.6.2.3 Discussion

Although 4-class classification models do not achieve superior performance in
backing pattern inference, we show the possibility of building predictive models,
which confirms the relationship between users’ early activities and their future
behaviors. Based on the assumption that platforms may do some user retention to
help potential EB and CB stay active, we formulate the identification of EB and
CB as a binary classification problem and obtain very promising results. At the
end of users’ 3rd project, we are able to identify EB and CB with 0.81 AUC on
Kickstarter and 0.73 AUC on Indiegogo. Certainly, there is still much room for
improvement in EB and CB identification. For example, we can incorporate more
user behavioral features, such as users’ view and clicking histories. We leave this
for future study. Throughout these preliminary studies, we emphasize that there
are four distinct backing patterns, which are proved to be strongly related with
users’ very early behaviors, and show encouraging results in identifying those who
tend to progressively become inactive at early stages.

2.7 Limitations
Despite encouraging results, our work is not without limitations. First, as usual for
data-driven study using social media data, our study is based on a small fraction of
real-life datasets sampled from two crowdfunding platforms. Due to the limitation
of programming APIs, we had to adopt two different data collection strategies
that may have introduced two types of sampling bias: (1) For Kickstarter dataset,
as we obtained users’ profile URLs from projects’ comments, backing histories of
those backers who seldom leave comments are missing. However, we hypothesized
that frequent backers care more about their backings than occasional backers and
therefore should be more active in leaving comments. (2) On Indiegogo, in each
project’s backer list, there are lots of anonymous users that we could not identify.
Therefore, our dataset might be from those users who are less concerned about
their privacy. In addition, we could not obtain users’ full backing histories, which
may affect some users’ temporal backing patterns and make them act as noises in
our dataset. As to these potential issues in our datasets, we attempted to mitigate
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the effect by obtaining relatively large-scale datasets and verified that there were
consistent results on both platforms. Nevertheless, to be able to generalize our
findings further, we plan to collect less-biased datasets and repeat our study on
other types of crowdfunding platforms (e.g., Change.org) as well.

Second, in this work, we mainly focused on the relationship between users’
temporal backing behaviors and project features. However, it is worth noting that
user features, including users’ demographics and logging histories, could be equally
informative. Therefore, we intend to explore connections between users’ temporal
backing behaviors and user features.

Third, although our investigation was based on quantitative analysis, some
unforeseen factors affecting users’ backing behaviors may not be reflected by the
collected data. For example, users’ backing behaviors might be influenced by their
friends’. Accordingly, conducting user studies can be a good complement to fully
understand users’ temporal behaviors. Such a study will not only validate our
findings in this work but also provide potential causes of backers’ actions.

2.8 Summary
Having a better understanding of the backers’ dynamic and temporal behaviors
allows crowdfunding platforms to provide better services and improve customer
retention. In spite of such an importance, however, prior studies lack the exploration
of the temporal dynamics of backer behaviors. As such, this work aimed to take a
step to investigate on backers’ temporal behaviors.

To analyze backers’ temporal behaviors, we have collected large-scale datasets
from two of the most popular crowdfunding platforms, Kickstarter and Indiegogo.
Employing time series clustering methods, we discovered four distinct temporal
backing patterns on both platforms (RQ1), including Early Backer (EB), Cautious
Backer (CB), Uniform Backer (UB), and Late Backer (LB). Among these patterns,
both EB and CB show decreasing interests in backing, whereas UB constantly
invests on projects and LB even progressively supports an increasing number of
projects. Driven by the research question why backers have such temporal backing
patterns (RQ2), we conducted a quantitative analysis, explored the characteristics
of these patterns in various aspects, and proposed possible factors affecting users’
backing behaviors.
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In our findings, we noted that the outcomes of backers’ first a few projects are
closely correlated with their future backing behaviors. For instance, initial low
success rate may discourage users from investing further. In addition, we found that
the connections with project creators could be an another factor impacting users’
backing behaviors–that is, favorable relationship between backers and creators
seems to encourage backers to keep supporting the same creators and/or invest
on more projects. In order to validate our analysis, we extracted related features
from users’ first few backings, and showed promising results in early predicting
all four temporal backing patterns (RQ3). Moreover, aimed at helping platforms
with respect to user retention, we proposed to build binary classification models
to identify two types of backers–EB and CB–at a very early stage and achieved
encouraging performance.
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Chapter 3 |
Characterizing News Articles’
Long-term Popularity Pattern

This section is based on our collaboration with the Washington Post and the work
is corresponding to our work "Characterization and Early Detection of Evergreen
News Articles" [44].

3.1 Introduction
Articles that consistently gain traffic over time, named as evergreen articles, are
important to newsrooms because they signal a topic of significant importance to
readers. News sites want to continue to serve these articles to new readers over
time, whether that is through re-promoting on their main social media channels,
linking frequently in news articles, or optimizing them for search engines so they
continue to surface for readers’ search queries. Evergreen articles can also provide
authoritative, reliable information during repeating major events. For example, an
article about the history of solar eclipses can be used for all such events, or an article
about how to treat a common cold is good for months out of every year. From a
traffic perspective, evergreen articles provide an important baseline that news sites
can rely on for low traffic days and serve as a good source for recirculation traffic.

Journalists at one of top 10 US daily newspapers, the Washington Post (denoted
as WaPo), whom we interviewed, currently rely on their memory for keeping track
of evergreen news articles. Some newsroom editors in WaPo manually maintain
a short list of evergreen articles and use them for right occasions. Many good
evergreen articles never have a chance to be served because they are not remembered
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by journalists and editors. Journalists also try to identify evergreen articles by
checking articles’ traffic history by selecting potential candidates and manually
reviewing them. While the traffic performance pattern of evergreen articles needs
to be thoroughly understood based on a time series analysis, at present, journalists
do not have a good or agreed-upon definition of evergreen articles in terms of time
series of traffic performance patterns. They do not have easy-to-use query tools to
explore time series data. Furthermore, even after identifying potential candidate
evergreen articles, they face a daunting challenge of manually reviewing a large
number of candidate articles.

Even though we only interviewed journalists at WaPo for this study, we believe
that the utility of evergreen articles and challenges associated with identifying
evergreen articles are universal across different news organizations. We believe
that the characterization of evergreen articles and automatic detection of evergreen
articles, especially at early stages, are important tasks with research challenges and
practical benefits.

Prior work includes popularity analysis conducted in various domains, such as
news articles [3, 14, 45], videos [46, 47], shared images [48, 49] and online series [50].
Because the lifespan of news articles is found to be short [3, 45], existing studies
mainly focused on the short-term popularity (trending) prediction. However,
there are some observations that certain topics of news articles have a longer life
cycle [51],and inferring popularity of long-term popular contents (evergreen) is very
difficult [11]. To our best knowledge, none of the prior works have systematically
examined the characteristics of evergreen articles and their automatic identification.

To fill up the gap, this work starts with the first research question: how can
we reliably identify evergreen news articles at a large scale (RQ1)? Consistent
with journalists, we leverage news articles’ temporal traffic histories and propose a
flexible parameterized definition to capture evergreen news articles with different
temporal dynamics. Having obtained a dataset of evergreen news articles using the
parameterized definition, then, we investigate on RQ2: what are the characteristics
of evergreen news articles? Based on the insights learned in our analysis, finally,
we move to tackle RQ3: can we identify evergreen news articles at early stages?

In answering these research questions, we make the following main contributions:

1. To our best knowledge, this work is the first work to study news articles’
long-term popularity.
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2. We proposed a parameterized definition to capture evergreen news articles on
the basis of their historical page view data, which is validated by journalists.

3. Detailed analysis has been conducted to characterize evergreen news articles
in various aspects.

4. Based on our analysis, we build machine learning models for the early detec-
tion of evergreen news articles and achieve promising results with extensive
experiments, especially in production evaluation from journalists.

3.2 Related works
Since predicting news articles’ popularity has long been considered as an important
research area, there are a lot of existing efforts to this problem. However, unlike
other online contents, such as videos and photos, the life spans of news articles tend
to be shorter and their view counts often decrease faster [3, 11]. As a consequence,
the majority of previous studies lies in the scope of short-term news articles’
popularity analysis. In this section, we review related works and contrast them
to our work under two categories: (1) news articles’ popularity prediction; (2)
long-term popularity prediction for other online contents.

3.2.1 Predicting Popularity of News

As one of the first investigations on popularity prediction of online contents, [11]
discovers that news stories exhibit a much shorter lifespan than videos and usually
become outdated after hours. Besides inferring future popularity by historical time
series, recent works take an advantage of news articles’ content information in
prediction [3, 52]. To better understand user participation in news’ propagation,
researchers are also interested in predicting the number of users’ comments [13, 14,
45,53], number of votes [11,14,54] and number of tweets [55]. As noted earlier, due
to the short lifespan nature of news, almost all of these existing works focus on
predicting news articles’ popularity within a short time. The most related work to
ours is [56], where they define long shelf life news articles–i.e., those taking at least
80 hours to reach 60 percentage of their total page views in the lifetime, and short
shelf life news articles–i.e., those taking less than 8 hours. Despite targeting at
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analyzing long shelf life news articles, however, [56] fails to consider the temporal
dynamics of news articles’ long-term popularity. As a result, [56] cannot capture
long-term popular “evergreen” news articles, which consistently attract high traffics
over their lifetime across many years. In this work, taking temporal dynamics into
consideration, we propose a reliable measurement to capture long-term popular
news articles and perform a systematic analysis on them.

3.2.2 Predicting Long-Term Popularity

Although few works in news domain study long-term popularity prediction, there
are some works focusing on long-term popularity prediction of other online contents,
such as videos [47, 57] and paper publications [58]. To model popularity evolution,
viewing content propagation as a stochastic process is one of the most common
methods. For example, [58] adopts the reinforced Poisson process in paper citation
network and [59] models the cascading in social network as a Hawkes process. For
complex systems such as video platforms, where content propagation is difficult to
model, researchers turn to time series approach and feature driven approach. In
time series approach, often, early popularity series are used for future predictions.
For instance, [47] assigns varying weights to videos’ historical popularity series
via a multiple-linear regression model to predict future popularity . Due to the
dependency on the historical popularity, time series approach usually requires an
extended period of observations and suffers from the so-called cold-start problem.
A feature driven approach is proposed to address such issues. Diverse types of
potential features that may impact popularity are incorporated into the prediction,
such as text features [60], author features [61] and meta features [46]. Similar to
videos, news articles have various traffic sources, including search engine and social
media, which makes the propagation also hard to model. Hence, this work adopts
the feature driven approach with historical popularity series to predict news articles’
long-term popularity.

Compared with other online contents, news stories generally are more time
sensitive. Only a very small fraction of published news articles exhibit high
popularity patterns over many years, which makes the problem more challenging.
Understanding why these small number of articles are consistently of interest to
the public will benefit both journalists and news sites. To our best knowledge,
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Figure 3.1: Median page views of news articles published from January 2012 to
December 2015

our work is the first to systematically define evergreen articles, to examine their
characteristics, and to predict them at early stages.

3.3 RQ1: Defining Evergreens
This section first introduces the dataset used in the later analysis and experiments.
Then, we answer RQ1: how can we reliably identify evergreen news articles at a
large scale? by proposing a parameterized definition of evergreen news articles.

3.3.1 WaPo News Article Dataset

Our dataset contains more than 500,000 news articles published by WaPo from
January 2012 to November 2017. For each article, we dumped its monthly page
view data from its publication date to November 2017. The median page view of
each article’s i-th month after initial publication is shown in Figure 3.1. Because
the distribution of news articles’ page views in i-th month is highly skewed, where
most page views are zero, we present median page views, instead of average page
views here. Note that articles’ monthly page views in Figure 3.1 drop faster than
log-linear and down to around 20 at 3rd month already, which is consistent with
previous observation [11] and confirms the short lifespan of news articles.
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(c) two news articles’ monthly page views (Y-axis on a log scale)

Figure 3.2: Articles with similar initial traffic data show different long-term popu-
larity pattern. For example, article (a) consistently receives high traffics in long
term, while (b)’s monthly page views drop dramatically over time.
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Figure 3.3: Median filtered page views of two example articles from Figure 3.2(c).
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3.3.2 Definition of Evergreen Articles

Consulting journalists at WaPo, we set the observation time of each article up to 2
years after their initial publication, which is significantly longer than the period
studied in prior studies. As shown in Figure 3.1, the popularity of news articles
drops dramatically and down to tens at 3rd month. Since most news articles
become outdated after 3rd month, the first 3-month traffic data is viewed as a news
article’s initial traffic to define trending articles. More specifically,

Definition 3.1 (Trending Article) During the observation period, we sort news
articles by their initial first 3-month traffics and consider the first k ranked articles
as top-k trending articles.

As a motivating example to capture evergreens, in Figure 3.2, we present two
news articles published in January 2015 and their monthly page views till October
2017. Note that, despite receiving similar page views in the first a few months,
these two articles exhibit radically different long-term traffic patterns. Article (a)
maintains high traffic long after its publication and receives more than 5,000 page
views a year later, while the traffic of article (b) drops dramatically to around 100
after a year. Clearly, article (a) is consistently of more interest to readers, thus
fitting the definition ofan evergreen.

Although most news articles have a short lifespan similar to article (b) in
Figure 3.2 and exhibit a fast decaying traffic pattern after the initial publication,
we still observe occasional peaks long after their publication. Interviewed with a
domain expert at WaPo, we found out these peaks were mainly resulted from 1)
journalists at WaPo promoted these articles; and 2) these articles were associated
with occurring events. These sudden traffic peaks are usually caused by stochastic
events1 and very difficult to predict. Accordingly, to better capture long-term
popular news articles, we propose to use median filters to remove those sudden
peaks. Examples of smoothed traffic pattern are shown in Figure 3.3. In addition,
because of news articles’ trending nature, initial traffics of news articles generally
are significantly higher than the rest, up to several orders of magnitude. Therefore,
we ignore initial traffic information when identifying evergreen news articles. Traffic

1Even though some events occur more regularly than others, such as seasonal festivals and
holidays, and thus might be predictable, the impact of events on news articles’ long-term popularity
is beyond the scope of this work. We leave it for future study.
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patterns of evergreen articles should not decrease too fast. To get smooth traffic
series, we adopt accumulated traffic series and use the following normalized metric
to measure a traffic pattern,

Definition 3.2 (Accumulated Traffic Ratio (ATR)) ATRi =
∑i

j=1 p̂vj∑n

k=1 p̂vk
, where

i is the ith month after an article is published.

When an article has constant traffic, its ATR starts low but will increase linearly,
as described by blue line in Figure 3.4 (a). At the same time, since trending articles’
traffics mostly fall in a few months, their ATR starts high but increases slowly. If
we look at the area under ATR for an evergreen 2 article vs. a trending article,
evergreen article will have smaller area.

With these observations, we propose the following parameterized operational
definition of an evergreen news article.

Definition 3.3 ((α,β,γ)-Evergreen Article) Ignoring the initial first p-month
traffics3, we denote the monthly page view time series of an article x during
the remaining observation period as PV = (pv1, pv2, ..., pvn). Then, first, we
use: (1) the median filter with a window size γ to smooth the time series PV
as P̂ V = ( ˆpv1, ˆpv2, ..., ˆpvn). If the smoothed time series P̂ V satisfies (2) average
monthly page view at least α such that: 1

n

∑n
i=1 p̂vi ≥ α, and (3) normalized area

under ATR at most β such that: 1
n

∑n
i=1 ATRi ≤ β, then, the article x is referred

to as an (α, β, γ)-evergreen article.

Note that α guarantees the minimum monthly page views, β controls the
decaying rate of an article’s page views, and γ is used to remove sudden page
view peaks caused by unpredictable events. In our experiments, empirically, we set
γ = 5, and explore different α and β values in the next part.

3.3.3 Tuning α and β

To guarantee each article to have at least 2-year traffic history, we only consider
articles published from January 2012 to December 2015. After removing articles
with traffic tracking errors, we have 242,429 news articles in total.

2Because the median filtering is employed to smooth page view series, occasional traffic peaks
are removed and will not affect the area.

3After consulting with journalists in WaPo, we set p as 3 months in our subsequent experiments.
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Figure 3.4: The impact of β on the decreasing rate of articles’ page views

α 250-500 500-1000 >1000
Positive Rate% 3.33% 10.00% 25.00%

(a)

β 0.0-0.6 0.6-0.7 0.7-1.0
Positive Rate% 18.33% 11.67% 6.67%

(b)

Table 3.1: Journalist validation with different α and β

Figure 3.4 shows ATR of news articles with α=500 and β varying from 0.6
to 1.0. As indicated, controlling only the average monthly page view during the
observation period is not enough to identify evergreens, because news articles still
tend to gain more page views in the beginning months. Decreasing β helps filter
out articles exhibiting faster declining patterns. To further validate the effect
of α and β in capturing evergreens, we consulted domain experts at WaPo to
manually label a few samples from each criterion4. More specifically, we sample
60 articles from each α with β=1.0 and each β with α ≥ 250, then mix them up
for labeling. As expected, Table 3.1 shows the agreement of journalists on our
definition that an article with larger α and lower β is more likely to be evergreen.
Considering the rarity of evergreen articles, our definition is confirmed to filter
out most non-evergreen articles and produce highly qualified evergreen datasets.
Weighing both the quality and size of the dataset, we adopt (α=500, β=0.6, γ=5)

4Labeling details are similar to Newsroom Editor’s Evaluation in the experiment section.
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Figure 3.5: Median page view comparison between evergreen and trending news
articles

as the criterion to finally obtain 1,293 evergreens out of 242,429 new articles in
WaPo, a mere 0.5 % of all news articles, and use them as the base evergreen articles
for further analysis and experiments.

3.3.3.1 Comparison with trending articles

To make a fair comparison, from January 2012 to December 2015, we select the
same number of 1,293 trending articles, of which less than 10% are overlapped with
evergreen articles. Then, the median page view comparison between evergreen and
trending articles is shown in Figure 3.5. As expected, trending articles initially
attract significantly higher traffics than evergreen articles, but quickly fade away
from users’ attention. On the contrary, evergreen articles are consistently of interest
to the public, and generally obtain almost one order of magnitude higher monthly
page views than trending articles after one year of publication.

3.4 RQ2: Characterizing Evergreens
Having identified evergreen news articles from traffic data, we turn to RQ2: what
are the characteristics of evergreen news articles? In this section, we focus on
characterizing evergreen news articles, and examine on possible factors correlating
their long-term popularity.
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Figure 3.6: Monthly median page views of selected categories with evergreen ratios.

Rank Category Evergreen Ratio
#1 book reviews 6.54%
#2 Internet culture 5.59%
#3 wellness 4.75%
#4 perspective 4.25%
#5 investigations 3.54%
#6 health & science 2.78%
#7 parenting 2.73%
#8 life 2.60%
#9 real estate 2.58%
#10 finance 2.49%

Table 3.2: Top 10 categories with the highest evergreen ratios (category names are
edited per similar contexts)

3.4.0.1 Category

In WaPo, each news article has been manually assigned a category by journalists,
e.g., politics, opinions, and business. Previous studies show categories play an
important role in identifying trending articles, where some categories tend to
generate more viral articles than others [3]. Therefore, we investigate here if there
exists a similar relationship between categories and evergreens. Excluding categories
with less than 100 articles, we sort the remaining 127 categories by their evergreen
ratio (i.e., a fraction of evergreen articles over all articles in a category) and present
the top 10 categories in Table 3.2. As demonstrated, housing and health related
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Rank Top 10 words in each topic Evergreen Topic Ratio
#1 health, diet, study, sugar, food, fat, disease, weight, calorie, body 9.13
#2 doctor, patient, hospital, health, treatment, physician, care, medicine, surgery, illness 6.05
#3 paint, wood, material, water, wall, tile, piece, brick, surface, floor 5.65
#4 brain, memory, welch, trauma, mind, body, love, emotion, activity, people 5.61
#5 scientist, human, bone, dinosaur, animal, specie, researcher, fossil, creature, study 5.06
#6 study, researcher, research, university, author, behavior, journal, finding, professor, effect 4.61
#7 kid, parent, child, school, teen, adult, parenting, mom, son, family 4.29
#8 illness, flu, symptom, strain, allergy, nose, people, fever, disease, health 4.11
#9 hour, night, sleep, time, day, bed, minute, holmes, morning, schedule 4.00
#10 study, percent, datum, research, rate, poverty, researcher, income, factor, effect 3.96

Table 3.3: Top 10 evergreen topics

topics are consistently of interest to the people and show a higher percentage of
evergreen articles. In addition, other top ranked categories include social issues,
environment and science, indicating people also pay continuous attention to society
and living environment. In Figure 3.6, we show monthly median page views of
top ranked categories and some most popular categories, like politics and sports.
Note that categories with higher evergreen ratios tend to attract more traffics in
long term, which validates the impact of articles’ categories on their long-term
popularity.

3.4.0.2 Topic

Besides considering manually assigned categories, in addition, we leverage on
topic modeling techniques to extract more fine-gained topics based on the co-
occurrence of words. To be more specific, we train a 1,000-topic noun only topic
model using the LightLDA [62, 63], and compare topic distributions between
evergreen and non-evergreen articles. Sorted by the evergreen topic ratio (i.e.,

topic proportion in evergreens
topic proportion in non-evergreens) of each topic’s proportion in evergreen articles to its
in non-evergreen articles, the top ranked evergreen topics are shown in Table 3.3.
Consistent with manually assigned categories, categories such as housing, health,
education and research studies are the most sustainable and lasting topics. Since
news articles with more words co-occurred in evergreen topics are more likely to be
evergreens, news articles’ content information can be a good feature in evergreen
detection.
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Figure 3.7: (a) fraction of articles published in each hour of the day; (b) fraction of
articles published on each day of the week.

3.4.0.3 Publication Time

Next, we explore the relationship between news articles’ long-term popularity and
their publication time. Figure 3.7 shows the fraction of articles published in each
hour of the day and on each day of the week. Interestingly, trending articles
are more evenly distributed across the hours and days, even well represented at
odd times such as those from midnight to 8am or over weekends. Although most
news articles are published in the afternoon, evergreen news articles are mostly
published in the middle of a day. More interestingly, few evergreen news articles are
published on weekends, while Monday conveys the most evergreen articles. Since
the distribution of evergreen news articles’ publication times does show distinctly
different patterns from regular articles, we include publication times of articles as
an important feature in learning.

3.4.0.4 Journalist

“Who writes an article” is another important meta data to consider. In this part, we
examine the role of journalists on articles’ long-term popularity in two aspects–(1)
how many articles a journalist has written, and (2) how many evergreen articles a
journalist has written. That is, we ask if a journalist has written more (evergreen)
articles in past, is her new article more likely to be evergreen?

There are around 12,000 journalists in total in our dataset. In order to mitigate
the sampling bias, we first remove the journalists who has written less than 100
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Figure 3.8: (a) Distribution of journalists’ publication number and fraction of
evergreen articles in each group. The red dot presents the number of journalists
in each group, while the boxplot describes distribution of fraction of evergreen
articles per journalist; (b) Distribution of fraction of evergreen news articles in each
journalist’s publication.

articles. As a result, we have 473 journalists who have written a total of 215,948
articles. Consistent with the ratio of the entire dataset, it turns out that 854 articles
among 215,948 articles (i.e., 0.4%) are (α, β, γ)-evergreen articles.

Figure 3.8 (a) presents the distribution of journalists’ article numbers and
the fraction of evergreens in each group. The result shows that the fractions of
evergreen articles for most journalists are very small, varying from 0.1% to 1%.
Spearman’s rank correlation coefficient between journalists’ publication count and
their evergreen fractions is 0.032, indicating that there is no obvious monotonic
relationship between these two variables. Thus, journalists’ possibility to publish
evergreen articles has no simple relationship with their total publication counts.
That is, an experienced journalist does not necessarily produce an evergreen article.

Around 50% journalists published at least one evergreen news article. In Figure
3.8 (b), we present the distribution of fraction of evergreen news articles for those
journalists who have at least one evergreen news article. This figure illustrates that,
although most journalists have written a small proportion of evergreen news articles,
there are indeed a few journalists good at publishing long-term popular news articles.
Therefore, although experience in writing does not help produce evergreen articles,
expertise in evergreen writing does. As such, journalist information can give some
hints on early detection of evergreens.
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3.4.0.5 Sentiment

We utilize Vader sentiment analyzer [64] to examine articles’ sentiment and present
cumulative distribution function (CDF) of the compound sentiment scores of
both full content and title in Figure 3.9. For each compound sentiment score X,
CDF shows the proportion of news articles with sentiment scores less than X,
ranging from -1 to +1, indicating the most extreme negative to the most extreme
positive. These figures reveal that most news articles from WaPo carry neutral
titles and positive contents, while evergreen news articles show more clear polarity
in contents. Interestingly, trending articles present much more distinctive patterns
than evergreen articles in sentiment, where they convey slightly more negative titles
and contain higher percentage of negative articles. One possible explanation is that
breaking and thus viral news may include reports about accidents, disasters, or
surprising events, that often have negative tones in their coverage. Although our
finding is contrary to the previous study [65], that discovers that positive articles
are more likely to be viral than negative ones, sentiment features still matter a lot
in identifying trending articles. However, in the case of identifying evergreens, the
importance of sentiment-based features extracted from article contents seems less
significant.

3.5 RQ3: Predicting Evergreens Early
Previous section has shown that evergreen articles exhibit different characteristics
from non-evergreen articles in various aspects, especially in genre and journalist
information. Therefore, using these insights, we intend to answer RQ3: can we
predict evergreen articles at an early stage? and attempt to build an accurate
machine learning model to unearth early a small fraction of evergreen articles
among many non-evergreen articles. To better validate our learned model, we
conduct the following experiments:

E1. We first show the results of 10-fold cross validation on the historical dataset
(Jan. 2012–Dec. 2015).

E2. Using the best setting from 10-fold cross validation, then, we train a model
on the whole historical dataset (Jan. 2012–Dec. 2015) and test the model on
the new articles published later (Jan. 2016–Apr. 2016).
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Figure 3.9: Both (a) and (b) show cumulative distribution function (CDF) of
evergreen articles’ compound sentiment scores on title and full content individually;
Both (c) and (d) present CDF of trending articles’ title and full content compound
sentiment scores correspondingly. Average compound sentiment scores are included
in the parenthesis. The cliffs in (a) and (c) indicate most titles are neutral.

E3. In addition to the cross validation and time-split classification, we present
temporal page view patterns of predicted evergreen news articles published
in subsequent months (Jan. 2016–Dec. 2016).

E4. For the most recently published articles, newsroom editors in WaPo manually
check and validate the quality of predicted evergreen articles.
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3.5.1 Set-Up

For a given news article, after observing its initial traffic in the first three months,
we predict whether it will be an evergreen or ephemeral story. Based on the analysis
in the last section, we propose to exploit three feature sets in our model as follows:

1. Traffic features: As indicated in prior works, the degree of popularity at
early stages are strongly related with that of future popularity. Thus, we
extract the traffic features from first 3-month traffic data, including the
number of monthly page views, difference of page views of two consecutive
months, and decreasing rate between two consecutive months. Note that,
when defining evergreen news articles, we ignored their first 3-month page
views and labeled articles only by their later popularity patterns.

2. Content features: Topic analysis demonstrates that content features, includ-
ing keywords and topics, may be also important clues in detecting evergreens.
Therefore, we exploit word embedding and bag-of-words trick to extract con-
tent features from news articles. More specifically, we train an unsupervised
FastText [66] model on all news articles with 200-dimension feature vectors.

3. Meta features: Based on the observations in the last section, we selectively
include meta features such as news articles’ category, publication time, and
journalist information. Due to the noises in manually assigned categories
and a large number of journalists, one-hot encoding (i.e., encoding each
category or journalist as an isolate feature dimension) may cause overfitting.
Therefore, to obtain more compact features for each news article, we propose
to use the average FastText embedding of all prior published articles under
its category as its category feature. As a result, similar categories share
similar feature vectors in our category feature space. For example, opinion is
close to perspective, while lifestyle is close to food & drink and entertainment.
Likewise, each article’s journalist feature is extracted in a similar way. Finally,
we include publication hour of the day and day of the week as categorical
features.

Table 3.4 shows the precision at top 30, Receiver Operating Characteristic
Curve (ROC) Area-Under-Curve (AUC) and Precision-Recall (PR) AUC scores
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Classifiers Logistic Regression Random Forest GBDT
Prec@30 16.33% 22.67% 32.33%
ROC AUC 93.52% 94.18% 96.09%
P-R AUC 11.10% 11.58% 17.31%

Table 3.4: Comparison with different classification models

Metric initial traffic content feature traffic + content content + meta data traffic + content + meta data
Precision@10 10.00% 15.00% 36.00% 26.00% 43.00%
Precision@20 11.50% 14.50% 34.00% 24.00% 34.00%
Precision@30 13.67% 14.00% 30.33% 21.00% 32.33%

ROC AUC (50.00%) 92.77% 88.18% 95.98% 89.21% 96.09%
P-R AUC (∼0.50%) 7.03% 5.50% 16.54% 7.62% 17.31%

Table 3.5: 10-fold cross validation

of three learning models–i.e., Logistic Regression, Random Forest, and Gradient
Boost Decision Tree (GBDT)–using all features via 10-fold cross validation. As the
model learned using LightGBM package [67] consistently performed the best, in
the following experiments, we only report the prediction results using the GBDT
as the main learning model.

3.5.1.1 Evaluation Metrics

As described in previous section, we use (α=500, β=0.6, γ=5) as criterion that
yield 1,293 articles out of the total 242,429 news articles as evergreen news articles.
Note that this is a binary classification problem with significantly skewed class
distribution ratio of 0.5 : 99.5. Because of the highly imbalanced dataset, we choose
to compare models with both Area Under Receiver Operating Characteristic Curve
(ROC AUC) and Area Under Precision Recall Curve (P-R AUC), where random
baselines are 50% and 0.5% respectively.

Moreover, in real settings, newsroom editors expect top-K potential evergreen
candidates and want to manually review them to determine true positives. Therefore
Precision@K is also provided to show the performance of top-K predictions. Per
each fold in the 10-fold cross validation, since there exist around 130 evergreen
articles out of ∼24,000, Precision@K is expected to be 100% when K ranges from
10 to 30. The results of different feature combinations are conducted on the exactly
same 10 folds and given in Table 3.5.
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3.5.2 E1. Cross Validation

The 10-fold cross validation results show that first, using only first 3-month page
view series, it is difficult to identify evergreen news articles. However, adding content
and meta features gives a significant improvement on all metrics. When utilizing all
features, we achieve the best performance, where the P-R AUC improves from 7.03%
to 17.31% and Precision@30 increases from 13.67% to 32.33%. More interestingly,
pre-publication prediction, which only considers content and meta features, achieves
very promising results of having 21% accuracy in top-30 prediction. Moreover, when
adding traffic features, we observe the boosted improvements in P-R AUC and
Precision@K, implying that news article’s initial traffics and contents contribute to
its long-term popularity in different aspects and both of them are indispensable in
the early prediction of evergreens. A possible explanation is that news articles with
high initial traffics enjoy high visibility, thus evergreen articles in this group are
more likely to be shared or archived by users. For evergreen articles with limited
initial traffics, though lacking enough visibility to users in the beginning, because
of their timeless quality and interesting topics, they still gain high traffics in long
term via other channels like search engine or re-promotion.

3.5.3 E2. Time-Split Classification

In real applications, early detection models aim to predict evergreen articles from
newly published news articles. Therefore, this time-split experiment is designed to
examine how general a learned model is across time. Using the best setting from
10-fold cross validation, we train a model on the articles published between January
2012 and December 2015. To make sure each news article have at least 2-year traffic
data, then, we choose the articles published from January 2016 to April 2016 as a
test set. In the test set, 254 articles (∼ 0.7%) out of 34,509 are identified as (500,
0.6, 5)-evergreen. The result is presented in Table 3.6. Comparable with 10-fold
cross-validation, our model with all of traffic, content, and meta features achieves
30% top-10 accuracy and 13.88% P-R AUC. Note that, since data distribution
often varies over time, a time-split experiment is a more challenging setting than
cross-validation. Even for evergreen news articles, popularity still varies over time.
Thus, the performance gap between cross validation and time-split experiment is
due to the changes in data distributions.
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Prec@10 Prec@20 Prec@30 ROC AUC P-R AUC
30.00% 25.00% 26.67% 94.46% 13.88%

Table 3.6: Time-Split experiment
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Figure 3.10: Page view patterns of top predicted evergreen articles under different
feature groups

3.5.4 E3. Time-Split Traffic Evaluation

Because classification measurements are too strict to distinguish news articles with
slightly different temporal patterns, we propose to examine temporal page view
trajectories of predicted evergreen news articles, which gives more intuition on
articles’ long-term popularity and serves as more valuable indicators in production.
In this part, using the best setting from 10-fold cross validation, we train a model on
the whole historical dataset from January 2012 to December 2015, predict evergreen
news articles in each month from January 2016 to December 2016 and monitor
their page view trajectories from the publication month till March 2018.

Aimed at comparing different feature groups, we present the traffic patterns of
top predicted evergreen articles with different feature groups in Figure 3.10. More
specifically, for each model, news articles are ranked by the predicted probabilities
among their publication month, and we choose the top 100 ranked articles in
each month as potential evergreen articles. Consequently, 1,200 articles out of
∼100,000 in total are selected in each group. Overall, news articles selected from
all feature groups exhibit a long-term popularity pattern, while combining all
features obtains the highest monthly page views in the long run. For each month
starting from 4th month, we conduct t-test and find that articles predicted with
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Figure 3.11: Page view pattern comparison between top predicted evergreen articles
with top trending articles

all features significantly attract higher page views than other article groups at a
p-value < 0.0001. Additionally, although articles predicted with traffic feature show
dramatically higher initial traffics, they display similar page view trajectories to
articles predicted with pre-publication features long after publication.

As shown in Figure 3.5, trending news articles, which enjoy significantly higher
visibility when just published, display much higher popularity than most news
articles, and thereby should be a strong baseline in long-term popularity prediction.
Therefore, in Figure 3.11, we present page view pattern comparison between top
predicted evergreen news articles and top trending news articles. Top trending
articles consist of top 100 articles with the highest initial traffics in each month. As
expected, top trending articles attract much more traffics in the first a few months,
while top predicted evergreen articles demonstrate a more stable traffic pattern and
consistently gain more page views one year later. For each month starting from 9th
month, articles predicted with all features attract significantly higher page views
than trending articles at a p-value < 0.0001 under t-test.

3.5.5 E4. Newsroom Editor’s Evaluation

In order to help newsroom editors at WaPo, we plan to deploy the early detection
model and recommend recently published potential evergreen news articles to them.
Although we have presented promising performances in 10-fold cross validation
and indeed observed long-term popularity patterns of predicted evergreens in the
time-split experiments, quality check by journalists themselves is indispensable
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before actual deployment. Therefore, we include newsroom editors’ evaluation in
this section, presenting both pre-deployment evaluation and production evaluation.

Identifying evergreen news articles at early stages is challenging to both machine
as well as journalists. Predicting whether a news article will be long-term popular
requires domain expertise in several areas, including news editing, social media
promotion, and search engine optimization (SEO). As only a few domain experts
are qualified for this task, we consult an audience development team in WaPo, who
is responsible for optimizing news articles and conducting social promotions, to
manually check the quality of evergreen predictions in recent months.

There are three major use cases for evergreen news articles in the newsroom:

1. Regularly re-promote evergreens on social media.

2. Update content with latest information. For example, people keep search-
ing for mass shooting related articles, and journalists should update those
evergreen articles with the newest events.

3. Embedded as linking URLs to related context and references when editing
new articles.

Based on these three use cases, for each news article in the evaluation, if its value
is confirmed in any use case, it will be labeled as a true evergreen.

3.5.5.1 Pre-deployment Evaluation.

In the evaluation, for each month from January 2017 to June 2017, we recommended
top 10 potential evergreen news articles predicted by our model to the team at
WaPo. Through manually reviewing these 60 news articles, 65% of predictions,
39 in total, were labeled as true evergreens. Considering that only tens of news
articles out of thousands published in each month could be evergreen articles, 65%
top-10 accuracy in monthly prediction is encouraging and indicates that our model
is practical enough to be deployed in production.

3.5.5.2 Production Evaluation.

Based on the promising result from pre-deployment evaluation, we deployed the
evergreen prediction system with the architecture presented in Figure 3.12(a) at
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Figure 3.12: (a) Architecture of evergreen prediction; (b) An example of weekly
recommendation (identifying information is masked due to double-blind review.)

WaPo. The system regularly updates evergreen prediction model and sends out
weekly recommendations to the newsroom. On every Monday, editors receive top 5
potential evergreen articles and provide feedback in Slack. An example of weekly
recommendation is shown in Figure 3.12 (b), where 3 out of 5 articles are verified
as true evergreens. The system was deployed at WaPo in July 2018 and achieved
∼ 43% accuracy in the first 5 weeks.

More importantly, Both 65% of top-10 accuracy in monthly prediction and 43%
of top-5 accuracy in weekly prediction are achieved without any human labels,
validating that our parametized definition of evergreen is reasonable and can produce
highly qualified evergreen datasets.

3.6 Discussion
Despite encouraging results, there are several areas to be improved. First, there is a
room for improvement in the early prediction of evergreen articles. For example, this
work focused on building prediction models mainly using article features. In future,
in addition to article features, we will incorporate users’ feedback such as users’ dwell
time and sentiment left in comments. Second, although our proposed definition
can produce highly qualified evergreen datasets, a small number of false positives
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may still exist. Moreover, there are chances that some true evergreen articles may
not get enough attentions by both journalists and readers, which will lead to a
few false negatives in the evergreen datasets. To overcome this issue, instead of
formulating evergreen article identification as a rare class classification problem,
learning classifiers from only positive and unlabeled data [68] or noisy labels [69]
may help. However, besides taking time to monitor articles’ long-term traffic
trajectories, how to evaluate predictions from these techniques both automatically
and efficiently still requires further exploration. Finally, as shown in the case of
time-split classification, long-term popularity prediction faces a challenge that data
distribution varies with time. To tackle this challenge, we plan to explore time
evolving models in future work.

3.7 Summary
This work presents a study on characterizing and early detecting evergreen news
articles. Firstly, taking temporal dynamics into consideration, we proposed a
parameterized definition to capture evergreen news articles, which is validated
by journalists (RQ1). Next, driven by the research question why evergreen news
articles show such different traffic patterns, we conducted a quantitative analysis to
shed light on evergreen news articles’ long-term popularity (RQ2). Finally, based
on the insights from our analysis, we extracted related features from news articles
to build early prediction models on evergreen identification (RQ3). Throughout
extensive experiments, we have validated that our models gain promising results in
early detection of evergreen news articles, and shown that the predicted evergreen
news articles indeed exhibit a long-term high traffic pattern. More importantly,
verified by journalists, our proposed model achieves encouraging performance in
production.
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Chapter 4 |
Understanding News Evolution

This section is based on our collaboration with the Washington Post.

4.1 Introduction
Along with the rapid development of web services, an increasing number of news
articles are published daily, describing both major and minor events worldwide. Due
to the tremendous amount of news articles being produced every day, readers easily
get lost in this information flood. Fortunately, news timeline, which summarizes each
event with primary messages in chronological order, makes it easy for readers to gain
key insights and understand the evolution of news events. As such, many major news
media has adopted the idea and have frequently produced news timelines of major
news events. For example, Figure 4.1 (b) describes a news timeline summarizing
how the United States and China went through the economic conflict in 2018. Note
that as the example illustrates, creating a news timeline requires the resolution
of two sub-problems: (1) choosing an ideal number of days among hundreds or
thousands of candidate days, and (2) generating succinct text summaries per days.

4.1.1 Industrial Use Case

Combined with visual or interactive interfaces, news timelines can provide a con-
venient way to compress overloaded news to the audience. Figure 4.1 illustrates
two real timeline examples from two major US newspapers. Figure 4.1 (a) is an

1https://www.washingtonpost.com/graphics/2018/national/
trump-kim-jong-un-timeline/
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Feb. 25, 2018
North Korea is “willing to have talks” with the United States, South Korea
says, as the PyeongChang Winter Olympics close in a burst of fireworks and
diplomacy.
Mar. 8, 2018
Trump agrees to meet Kim for talks, an extraordinary development after months
of heightened tension. Kim commits to stopping nuclear and missile testing.
...
Jun. 1, 2018
Trump says the summit will take place June 12 as planned. During a visit to the
White House, a North Korean hands Trump a large letter from Kim.

Table 4.1: An example timeline by The Washington Post about the summit between
United States and North Korea.1

(a) Trump-Russia investigation (The Washing-
ton Post)

(b) China-US Trade War (The New York Times)

Figure 4.1: News timeline summarization examples on major news media

interactive timeline summarization about Trump-Russia investigation from The
Washington Post, while Figure 4.1 (b) is a text-based timeline summarization
about China-US Trade War from The New York Times. To help readers better
understand the evolution of each news event, journalists take time to collect and
organize related news articles, figure out major events and story-lines, and “manu-
ally" summarize them in chronological order. As events such as natural disasters
and political issues can span from several months to multiple years and involve
thousands of news articles, such a manual process cannot scale well. As this process
is both time-consuming and labor-intensive, currently, despite the popularity of
the concept, not all newspapers are able to quickly produce such news timelines.

To address this challenge, several automatic news timeline summarization
methods have emerged in recent years [1,70–75]. By and large, there are mainly two
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Figure 4.2: Running times over varying corpus sizes using Timeline17 and Crisis.
Note that, as both ASMDS and TLSCONSTRAINTS are not sufficiently scalable
to the large corpus, we followed [1] to use a reduced corpus here.

categories of news timeline generation methods. One is aimed at separating different
stories from a whole news corpus, such as using variants of topic modeling [76,77]
and neural networks [78]. Another category focuses on generating a series of
chronological summaries for one specific event from only relevant news articles
[1, 74, 79], where the first categories can serve as pre-processing to find relevant
news articles for each event. In this paper, our focus is on the latter category in an
unsupervised manner.

However, the majority of existing methods focus only on the quality of generated
timelines and neglect the generation speed. For example, the state-of-the-art
unsupervised approach adopts the submodular framework [1] and requires the
pairwise similarities for all tokenized sentences, which could be over 100,000 per
timeline. This yields an extremely slow running times, as clearly demonstrated in
the comparison of running times in Figure 4.2.

As the compression rates of timeline summarization vary with events and
journalists may not know the exact value beforehand, iterative trials with different
values are necessary, which makes faster timeline generation even more important.
Therefore, in this work, we are greatly motivated by real industrial use cases to
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speed up the timeline generation by dividing the whole summarization tasks into
multiple small summarization tasks by date separation.

News timelines are composed of both salient dates and daily summaries, but
previous studies mainly focus on modeling relationships among article contexts
while paying less attention to date selection. For example, some models [75, 80,81]
just treat date information the same as text information and include it as one
of the features, while others [71, 82] simply use date frequency to resolve events.
Although simply modeling text correlation shows good performance on both timeline
summarization and date selection [1], it is not clear how date selection will contribute
to news timeline summarization. In addition, existing state-of-the-art unsupervised
approaches mostly include global optimization, which helps daily summaries to
be relevant to the topic. However, using global optimization also makes daily
summaries less specific per each day and very time-intensive to generate timelines.
Therefore, considering both the quality and speed of news timeline summarization,
this paper makes the following main contributions:

1. We re-examine the role of date selection in timeline summarization and show
that, even without considering contextual correlation across different dates,
accurate date selection is sufficient to generate high-quality news timelines.
More importantly, although ignoring contextual correlation across dates
leads to a lower oracle upper bound than other models, all of the previous
approaches still fail to reach this lower upper bound, not even close.

2. Leveraging on the explicit date selection, we propose a simple but fast
and effective unsupervised news timeline summarization method, named
as WILSON. Experimented on two widely used timeline summarization
datasets, WILSON outperforms state-of-the-art approaches in both ROUGE
scores and speed, significantly improving ROUGE-2 F1 score by 9.5%∼17.7%
and reducing generation time by two orders of magnitude.

3. To our best knowledge, WILSON is the first work to include an evaluation
by professional journalists in news timeline summarization. Through man-
ually reviewing the machine-generated news timelines with corresponding
human-generated ones, journalists confirm that our approach produces better
timelines than competing methods.
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4. Based on the proposed WILSON, we build a real-time news timeline sum-
marization system on an industrial-level news corpus.

4.2 Related Works
Existing works in summarizing timelines for a specific topic from relevant news
articles include both supervised and unsupervised approaches. As representatives
of supervised approaches, [73] leverages learning to rank techniques based on
sentence features, while [75] proposes a matrix factorization framework to predict
importance scores of sentences. Unsupervised approaches usually optimize task-
specific heuristic object functions, which measure relevance, coverage and diversity
of daily summaries. For example, [79] solves the optimization problem by iteratively
substituting sentences in summaries, while the state-of-the-art framework TILSE
adapts the sub-modularity framework from multi-document summarization domains
to optimize timeline summarization [1].

In addition to extractive methods, some recent works also utilize abstractive
summarization methods to generate more compact sentences as daily summaries
[82]. Although the generated sentences are empirically proved to be readable,
the reliability of generated summaries is not guaranteed, probably leading to
false information. Extractive summarization methods, however, directly borrow
sentences from original news articles and do not encounter the reliability issue.
Thus, in this paper, we utilize extractive summarization for both readability and
reliability of generated timelines.

Besides ROUGE scores, [82] is the only existing work to include humans in the
evaluation, but they just assess the readability of daily summaries as they utilize
the abstractive summarization. Since none of the previous studies utilize user study
to measure the generation quality of the whole news timelines, we are the first work
to include user study in timeline evaluation and consult journalists to assess the
generation quality of the entire news timelines.

4.3 The Proposed Method: WILSON

In this section, we introduce our proposed method, named as WILSON (neWs
tImeLine SummarizatiON), also illustrated in Figure 4.3. Besides pre-processing
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… … … … … …

postprocessingdate selection summarization

Figure 4.3: Workflow of our proposed method–WILSON.

such as temporal tagging and search engine indexing, WILSON mainly consists of
two components – explicit date selection and text summarization for each selected
date.

4.3.1 Problem Formulation

A news timeline can be viewed as a series of chronologically ordered daily summaries
over main events, denoted by (di, Si), where di and Si stand for ith date and ith
summary. For both readability and reliability of generated timelines, we utilize
extractive summarization, which selects sentences from the corpus as summaries:

Definition 4.1 (News Timeline Summarization) Given a corpus of articles
Cq, which is associated with a topic query q and a time window [t1, t2], the corpus
is first tokenized to dated sentences {(datei, sentencei)|datei ∈ [t1, t2], sentencei ∈
Cq} by a date expression in the sentence or by the publication date, then the timeline
generation is to produce a series of daily summaries (d1, S1), ..., (dT , ST ), where
t1 ≤ di ≤ t2 and Si = (sentencei1, ..., sentenceiN).

The number of selected dates T and sentences N are hyper-parameters and
chosen by users to control the compression rate of the generated timelines. Date
selection is evaluated by f1 scores and summaries are evaluated by ROUGE [83].

4.3.2 Date Selection

We use HeidelTime [84] to tag temporal expressions in sentences during pre-
processing stage and start with an unsupervised date selection algorithm [85] to
select the most salient dates: (1) we build a date reference graph with dates as nodes
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and reference relationships as edges; (2) then, we run the PageRank algorithm [86]
on the graph and select the top T ranked nodes as the most salient dates. Date
references refer to the sentences sij that are published on datei while mentioning
datej. We experiment with four types of edge weights as follows:

• W1: the number of reference sentences |sij|, assuming that more frequently
reported events are more important.

• W2: temporal distance |datej − datei| in days, supposing that only influential
events are referred to over long-term period and assigning more weights to
longer-term references.

• W3: W1 ∗ W2, which considers both frequency and temporal distance.

• W4: we adopt BM25 [87] to estimate the relevance of sentences to the query,
and use maxBM25(sij, q) as edge weight for each date reference.

For example, considering datei=2018-06-01, datej=2018-06-12, and sij composed
of only two sentences, i.e. Trump says summit with North Korea will take place
on June 12 and The summit will take place on June 12. Then, W1 is the number
of sentences and equals 2, while W2 is the difference between 2018-06-01 and
2018-06-12 in days and equals 11. Accordingly, W3 equals W1 ∗ W2 and is 22.
For W4, we treat each sentence as a document, use topic query q to score each
document with BM25, and take the maximum BM25 score as W4.

As Table 4.2 shows that all four edge weights yield comparable results, date
reference relationship alone can extract as accurate date selections as topical
information. Since constructing topical relationships across dates takes extra time,
we finally adopt W3 as the edge weight to select the most salient dates in the rest
of this paper.

Although the occurrence of an event signals its importance within the news
timeline [71] and is well leveraged in existing timeline summarization algorithms,
we note that the occurrence of events is also correlated with the recency of events,
where past events occur earlier and are more heavily reported than recent events.
Consequently, existing approaches may suffer from this issue. For example, ap-
proaches that optimize the summaries to recover the whole corpus, such as ETS [72]
and TILSE [1], will generate more summaries on past events.
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Edge Weight Date F1 Rouge-1 F1 Rouge-2 F1
timeline17

W1 0.5512 0.3905 0.0969
W2 0.5528 0.4029 0.1002
W3 0.5628 0.4009 0.0995
W4 0.5068 0.3934 0.0934

crisis
W1 0.3022 0.3476 0.0715
W2 0.2838 0.3604 0.0715
W3 0.2710 0.3575 0.0738
W4 0.2925 0.3509 0.0726

Table 4.2: Performance of different edge weights

Date Selection Date Coverage (±3) Date F1 ROUGE-1 ROUGE-2 ROUGE-S*
Timeline17

Uniform 0.8398 0.4475 0.3896 0.0917 0.1598
W3 0.7828 0.5668 0.4000 0.0995 0.1676

W3 + Recency 0.8111 0.5542 0.4036 0.1005 0.1702
Crisis

Uniform 0.5932 0.1325 0.3387 0.0570 0.1138
W3 0.5459 0.2726 0.3573 0.0738 0.1246

W3 + Recency 0.5885 0.2748 0.3597 0.0760 0.1270

Table 4.3: Performance on date coverage

In addition, as most references in articles refer to past events, the current date
selection algorithm tends to give too much weight on old dates and will also result in
timelines that lack recent dates. For a better illustration, we present the Cumulative
Distribution Function (CDF) of the date duration between selected dates and the
start date in Figure 4.4. As expected, both TILSE and date selection via PageRank
tends to select more old dates, while the date distribution of ground-truth timelines
is generally more uniform. Thus, we use the standard deviation of differences
between consecutive dates to measure the uniformity of date distribution:

Definition 4.2 (Uniformity of Date Selection) Given a series of selected dates
{d1, d2, ..., dT} in chronological order, we regard the differences between two con-
secutive dates as {diffi = di+1 − di}, then we define its standard deviation
σ =

√
1
T

∑T
i=1(diff i − ¯diff)2, as the uniformity of date selection.
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Figure 4.4: Distribution of selected dates among different approaches.

4.3.2.1 Recency Adjustment

To add more weights on recent dates, we leverage the Personalized PageRank
algorithm [88], where the restart distribution is not uniform. More specifically, we
weight each date node datei by Wi = α−di , where di = |datei− datestart|. α ∈ (0, 1)
and is used to control the restart distribution. In practice, we use a grid search to
find the α that gives the best uniformity score in the date selection, then use the
chosen dates for news timeline generation.

4.3.2.2 Date Coverage

To better check the coverage of generated timelines, besides f1 score on date
selection, we also measure the date coverage, e.g., if any day of ground-truth date
gi ± 3 days lies in the generated timeline, gi will be considered to be covered and
we will measure what percentage of ground-truth dates are covered per timeline.
For comparison, we also generate news timelines on truly uniformly distributed
dates and present the results in Table 4.3. As we can see, although truly uniformly
distributed dates cover the most ground-truth dates, due to the low accuracy in the
date selection, the generated daily summaries are poor. However, adding recency
adjustment with uniformity contributes to date selection in coverage, thus yields
better timeline summarization.
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4.3.3 Daily Summarization

Having selected the most salient dates, next, we divide timeline summarization into
sub-summarization tasks. Although daily summarization tasks can be accomplished
by any supervised or unsupervised document summarization algorithms, we utilize
TextRank [89] to generate daily summaries for its efficiency. Similar to the task of
date selection, TextRank constructs a sentence graph with sentences as nodes and
similarity scores as edge weights. In particular, we use BM25 [87] to compute edge
weights [90] and run PageRank on the directed graph to select the most important
sentences as daily summaries.

4.3.3.1 Post-processing

Dividing large text summarization tasks into smaller ones greatly speeds up timeline
generation, and these sub-tasks can naturally be further accelerated through parallel
processing. Conducting text summarization on a daily basis rather than on the
whole corpus, however, ignores temporal correlation and thus introduces redundancy
in summarization. To remove redundancy across dates, therefore, we incorporate
post-processing to re-rank daily summaries based on the whole summarization.
Similar to MMR [91], instead of directly using daily summaries, we add sentences
into timeline summarization by their daily ranks and only accept sentences whose
maximum similarity with selected one (e.g., < 0.5).

4.3.4 Time Complexity Analysis

In this section, we briefly provide a time complexity analysis of our approach with
a comparison to the submodular framework. Let T as the total number of dates,
N as the average number of sentences per date, t as the desired number of dates,
and n as the desired number of sentences per date in the summarized timeline.
According to PageRank on the dense graph, date selection takes O(T 2) while t
daily summarization tasks take O(t ∗N2). Thus the time complexity of WILSON
is O(T 2 + t ∗N2).

For submodular framework [1], which conducts global summarization, it takes
O((TN)2) to obtain pair-wise similarities for all sentences and takes O(t∗n∗T ∗N)
to iterate t∗n times to select each individual sentence in a greedy manner. Therefore,
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Dataset # of topics # of timelines average per timeline
# of doc # of sents duration days

Timeline17 9 19 739 36,915 242
Crisis 4 22 5,130 173,761 388

Table 4.4: Dataset overview

the total time complexity is O((TN)2 + t ∗ n ∗N ∗ T ). In Figure 4.2, the corpus
size is defined as the total number of sentences (i.e. T ∗ N). As expected, the
submodular frameworks show quadratic growth with O((TN)2) time complexity,
while our approach is almost linear to the corpus size with O(T 2 + t ∗ N2) time
complexity.

Given the approximation that T andN are in the same order of magnitude (based
on Table 4.4), WILSON runs faster than the submodular framework in O(T 2

t
).

Given around 10% date compression rate ( t
T
) and T in hundreds, theoretically, our

approach could gain over three orders of magnitude improvement in generation
speed. Note that, due to the scalability issue of the submodular framework, [1]
filtered sentences with predefined keywords to reduce N by over one order of
magnitude, reducing the time complexity in practice. Given ∼10% filtering rate,
our approach could still gain about two orders of magnitude in generation speed,
which is consistent with experiments in Table 4.7.

4.4 Empirical Validation

4.4.1 Set-Up

4.4.1.1 Datasets

We run experiments on timeline17 [73,80] and crisis [74]. Both datasets2 consist
of journalist generated timelines from major news media such as CNN, BBC and
Reuters, and a corresponding corpus of articles per topic (e.g. H1N1 flu and Egypt
war). More specifically, timeline17 contains 19 timelines from 9 topics, while crisis
involves 22 timelines from 4 topics. An overview of the two datasets is shown at
Table 4.4.

2http://l3s.de/~gtran/timeline/
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4.4.1.2 Competing methods

• Random: The system generates daily summaries by randomly selecting
sentences from the corpus.

• MEAD [92]: a classic centroid-based multi-document summarization system.

• Chieu et al. [71]: a multi-document summarization system that uses date
related TFIDF scores to measure sentence importance among corpus.

• ETS [72]: an unsupervised timeline summarization algorithm via simulta-
neously optimizing multiple heuristic metrics, including relevance, coverage,
coherence, and diversity.

• Tran et al. [73]: a supervised timeline summarization algorithm, which
extracts various features from sentences and leverages learning to rank tech-
niques.

• Regression [81]: a supervised approach that formulates sentence selection
as a linear regression problem.

• Wang et al. [75]: a supervised approach that formulates sentence selection
as a matrix factorization problem.

• Liang et al. [93]: a dynamic evolutionary framework leveraging distributed
representation for timeline summarization.

• ASMDS (TILSE) [1]: TILSE is a state-of-the-art unsupervised timeline
summarization approach, which incorporates submodularity-based multi-
document summarization framework with temporal criteria.

• TLSCONSTRAINTS (TILSE) [1]: as a variant of TILSE, this method
uses the same objective function with ASMDS but adopts different temporal
constraints.

4.4.1.3 Measurement

Among all the baselines, TILSE is the only one with source code available. Conse-
quently, for all the other baselines, we follow the existing works [73,75,93], which
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Methods ROUGE-1 ROUGE-2 ROUGE-S*
Random 0.128 0.021 0.026
Chieu et al. 0.202 0.037 0.041
MEAD 0.208 0.049 0.039
ETS 0.207 0.047 0.042
Tran et al. 0.230 0.053 0.050
Regression 0.303 0.078 0.081
Wang et al. (Text) 0.312 0.089 0.112
Wang et al. (Text + Vision) 0.331 0.091 0.115
Liang et al. 0.334 0.105 0.103
WILSON (Ours) 0.370 0.083 0.141

Table 4.5: Results on Timeline17

conduct experiments on timeline17 with settings mentioned at the beginning of
Section 5.2 in [73] and directly report the baseline results from previous papers.
More specifically, in the generated timeline, the number of selected dates T is set to
the number of dates in each ground-truth timeline, while the number of sentences
per day N is forced to be the rounded value of the average number of sentences
per date from the ground-truth timeline.

To fairly compare with TILSE, we re-run the their code, follow all their pre-
processing, including text cleaning and keywords filtering, and conduct experiments
on exactly the same sentence corpus per timeline generation3. Wall time is measured
on a 24-core 128GB machine.

4.4.1.4 Evaluation Metrics

The commonly used summarization metrics, ROUGE scores [83], including ROUGE-
1, ROUGE-2 and ROUGE-S* F1 scores, are adopted to evaluate the agreement
between machine-generated and journalist generated timelines. Moreover, to be
consistent with TILSE comparison, we also include time-sensitive ROUGE scores
as additional measurements [94].

3Different from previous papers, for Timeline17 dataset, [1] mixed articles of the same topic
from different news agencies together, which yields a bit higher ROUGE scores in timeline
generation. In addition, it suffers from the scalability issue and thereby uses filtered sentence
corpus for both datasets. Thus, we followed their settings for a fair comparison with TILSE in
Table 4.7.
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Methods ROUGE-1 ROUGE-2 ROUGE-S*
Regression 0.207 0.045 0.039
Wang et al. (Text) 0.211 0.046 0.040
Wang et al. (Text + Vision) 0.232 0.052 0.044
Liang et al. 0.268 0.057 0.054
WILSON (Ours) 0.352 0.074 0.123

Table 4.6: Results on Crisis

4.4.2 Performance Comparison

Table 4.5 and 4.6 shows that our unsupervised approach WILSON outperforms
all baselines in ROUGE-1 and ROUGE-S* f1 scores by a significant margin, and
is only second to [75], a supervised approach, and [93] in ROUGE-2 f1 score on
Timeline17 dataset.

In addition, Table 4.7 illustrates that WILSON outperforms the state-of-the-art
unsupervised framework TILSE in all ROUGE metrics. Averagely, our method
outperforms the submodular approaches by 12.9% in concatenate ROUGE-2 scores,
by 58.3% in agreement ROUGE-2 scores, and by 40.1% in alignment ROUGE-
2 scores. More importantly, our method also gains two orders of magnitude
improvement in generation speed, making it possible to generate news timelines in
a real-time manner.

In Table 4.7, We also include multiple variants of WILSON for ablation analysis.
WILSON-uniform simply adopts uniform date selection, while WILSON-Tran
directly uses W3 as edge weight without recency adjustment. As expected, selecting
uniformly distributed dates results in the worst summarization, while including
recency adjustment improves time-sensitive ROUGE-2 scores by 9.0%∼21.6%.

Overall, comparing with all competing approaches, the performance improve-
ment of our method is higher in Crisis dataset. One explanation is that Crisis
dataset contains more articles and spans a longer period, making it difficult for
those competing approaches to correctly identify the long-term event dependencies,
while our method mainly focuses on local dependencies.
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Figure 4.5: Concatenate Rouge 2 f1 scores when adding more sentences on each
date on Crisis.

4.4.2.1 Effectiveness of Post-processing

In Table 4.7, we observed that considering correlation across different dates and
reducing redundant daily summaries are seemingly minor, especially on Crisis
datasets. Different from Timeline17 datasets, Crisis datasets consist of more
compact daily summaries, where more than 90% dates contain only 1 sentence.
Although reducing redundancy across dates is not necessary for timelines with
compact daily summaries, we intend to verify the effectiveness of post-processing
for timelines with abundant daily summaries. Instead of using the exact number of
sentences per date in the ground-truth timelines, we generate timelines with more
sentences per date, which is more practical as the true numbers are unknown. As
demonstrated in Figure 4.5, simply adding daily summaries together suffers from
the redundancy issue and using post-processing indeed helps. Note that we use the
ROUGE f1 score, so the overall scores going down with more sentences is because
more generated texts lead to lower ROUGE accuracy.

4.4.2.2 Empirical Bounds

Empirical bounds of our two-stage method are given in Table 4.8, where we use
ground-truth dates as date selections for daily summarization. Note that, besides
using ground-truth dates, oracle bounds [1] also employ ground-truth summaries
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Method ROUGE-1 ROUGE-2
timeline17

Oracle [1] 0.50 0.18
Ground-truth date + Daily summary 0.41 0.11

Crisis
Oracle [1] 0.49 0.16

Ground-truth date + Daily summary 0.42 0.10

Table 4.8: Empirical bound of our two-stage method

and are calculated by directly optimizing ROUGE f1 scores in a supervised way, but
we only use ground-truth dates and never touch ground-truth summaries, making
us aware of how date selection will contribute to news timeline summarization. As
demonstrated, even without considering contextual correlation across different dates
in text summarization, it is still possible to generate reasonable news timelines with
accurate date selection. Although the upper bound of our two-stage framework is
much lower than that of the submodular framework, it is worth mentioning that
all existing approaches fail to reach this upper bound, not even close on the Crisis
dataset.

4.4.2.3 Automatic Date Compression

As defined in Section 4.3.1, existing news timeline summarization works only use a
preset number of dates and length of daily summaries to generate news timelines.
Unlike the length of daily summaries, which only implies the compression rate
for a single day and is usually set to 2 or 3 sentences, determining the number
of dates requires understanding for the whole corpus, making it difficult to select.
To solve this issue, we intend to automatically detect the number of dates for
news timelines. Motivated by the fact that news timelines consist of major events
within the duration, we propose to consider major event coverage to determine the
number of dates. Specifically, we use the daily summarization to generate major
events for each date and encode daily summaries with BERT [95]. Then, we use
Affinity Propagation [96] to cluster daily summaries into event clusters, and use
the detected cluster number as date selection number.

We compared our methods with fixed compression rates for date selection and
presented the results in 4.6. As shown, our automatic date compression method
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Figure 4.6: Mean Absolute Percentage Error (MAPE) of predicted number of date
selection

generally performs well on both datasets.

4.4.3 Evaluation by Journalists

In addition to ROUGE scores, we also consult two professional journalists at one of
the leading daily American newspapers, the Washington Post, to manually evaluate
the quality of machine-generated news timelines. Among 41 timelines from the two
datasets, we sample 10 timelines (20%) from 6 topics, including H1N1 flu, BP oil
spill, Egypt crisis, Libra war, Yemen war, and Syria war. For each sampled timeline,
we present the human-generated ground-truth timeline and three machine-generated
timelines from ASMDS, TLSCONSTRAINTS, and WILSON (Ours) to journalists.
The ground-truth timeline is labeled as a reference, while the other three are given
in random order and the order is independent for each evaluation.

For each evaluation, the two journalists are asked to review ∼ 81 daily summaries
from ∼ 51 distinct dates, which adds up to ∼ 810 daily summaries from ∼ 510
distinct dates in total, and work together to rank the three machine-generated
timelines. To measure the ranking performance of each method, we adopt two
common rank-aware measurements, Mean Reciprocal Rank (MRR) and Discounted
Cumulative Gain (DCG), and present the results in Table 4.9. As shown, when
evaluated by professional journalists, our method outperforms the state-of-the-art
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rank
Method 1st 2nd 3rd MRR DCG

ASMDS 4 3 3 0.72 7.39
TLSCONSTRAINTS 1 6 3 0.56 6.29
WILSON (Ours) 5 1 4 0.76 7.63

Table 4.9: Results of journalist evaluation on the quality of machine-generated
timelines

unsupervised framework TILSE again. Interestingly, although TLSCONSTRAINS
generally achieves higher ROUGE scores than ASMDS in table 4.7, TLSCON-
STRAINS receives unexpectedly lower rank scores than ASMDS in this evaluation
by journalists. This may imply a warning that automated measures may not be
enough for news timeline summarization and human evaluation could be beneficial
at times.

4.4.4 A Case Study

In this section, we perform a qualitative analysis of the generated timelines of
our approach. Since TILSE [1] is the only baseline with source code available, we
also include its output in comparison. Table 4.11 presents a subset of timelines
about the lawsuit of Micheal Jackson’s death in the Timeline17 dataset, where
the manually generated timeline was collected from BBC4. As different approaches
generate timelines with different date selections, we only consider the dates that
appear in all 4 timelines and show the first a few dates and their summaries in
chronological order. We highlight the overlaps between manually generated and
automatic generated timelines in colors and observe that the output of our approach
is aligned better with the handcrafted one.

Interestingly, more summaries of our outputs are closer to the main events on
each date than those of TILSE’s, though they are all relevant to this topic. We
think it may be because more important daily events are reported more heavily on
each date, while existing models try but fail to effectively capture the evolution
clues across dates, thus simple daily summarization can work well. Apparently, how
to balance local and global summarization and effectively capture event evolution

4https://www.bbc.com/news/entertainment-arts-15060651
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2018-03-08 2018-04-01
Jason Aldag The Post reports : North
Korea ’s belligerent leader , Kim Jong
Un , has asked President Trump for
talks and Trump has agreed to meet
him " by May , ...

CIA Director Mike Pompeo , left , and
North Korean leader Kim Jong Un
shake hands during a meeting in in
Pyongyang , North Korea on Easter
Weekend .

2018-04-16 2018-04-20
The only way the United States can per-
suade North Korea to peacefully give
up its pursuit of these weapons is if
Kim believes Trump ’s threat of mili-
tary force is credible .

7:30 a.m. Friday North Korea ’s state
media reports that leader Kim Jong
Un has left Pyongyang for the North
- South summit meeting with South
Korean President Moon Jae - in .

2018-04-27 2018-05-09
... North Korean leader Kim Jong Un
on Friday morning ... walking into
South Korea for a historic summit with
President Moon Jae - in that will lay
the groundwork for a meeting between
Kim and President Trump .

Their release came as Secretary of State
Mike Pompeo visited North Korea on
Wednesday to finalize plans for a his-
toric summit meeting between Trump
and the North ’s leader , Kim Jong Un
.

2018-05-16 2018-05-24
North Korea has taken repeated ... and
threatening to scrap next month ’s
planned summit between Kim and U.S.
President Donald Trump , saying it wo
n’t be unilaterally pressured into relin-
quishing its nuclear weapons .

After weeks of receiving and even ap-
pearing to encourage chants of “ Nobel
” ahead of a planned historic meeting
with North Korea dictator Kim Jong
Un , President Trump on Thursday
abruptly canceled the June 12 summit
.

2018-06-05 2018-06-12
... Donald Trump cast his Tuesday
summit with North Korea ’s Kim Jong
Un as a “ one - time shot ” for the
autocratic leader to ditch his nuclear
weapons and enter the community of
nations ...

President Trump said the U.S. will end
its " war games " with South Korea after
the historic summit with North Korean
leader Kim Jong Un on June 12 .

Table 4.10: WILSON generated output of the timeline about how the U.S. and
North Korea finally had the summit. Main coverage with journalist generated
timeline is colored blue, and some trivial contexts are omitted by ellipsis for space.
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could be one potential direction for news timeline summarization.

4.5 System Framework

Tokenizing and temporal tagging

...

Date selection

...

Daily summarization

the summit will take place June 12.
publication date: 2018-06-01

referred date: {2018-06-12}

Search Engine Indexing

Event

𝑛𝑒𝑤𝑠 𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 →

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 𝑝𝑢𝑏_𝑑𝑎𝑡𝑒𝑖 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑑𝑎𝑡𝑒} → 𝑑𝑎𝑖𝑙𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

e.g.

→ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑒𝑠

Figure 4.7: Framework for Real-Time News Timeline Summarization

To obtain a real-time news timeline summarization system, we build a search
engine for tokenized news articles. Our system framework is demonstrated in
Figure 4.7. In particular, we apply WILSON to 4-year news corpus of over 1
million articles5 from the Washington Post, use ElasticSearch [97] as the backend
search engine and build a real-time news timeline summarization system, which
can generate timelines by event keywords in seconds. For example, we generate
a timeline about how the United States and North Korea reached the summit by
setting query keywords to "trump, north korea, kim, summit, united states" and
time duration between 2018-01-02 to 2018-06-12. We set the timeline length to 10
and present the output in Table 4.10. Taking journalist generated timeline from
the URL in Table 4.1 as a reference, note that our output is aligned well with
journalist-generated version, demonstrating the effectiveness of WILSON.

5We excluded all news articles containing the keyword "timeline".
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Groundtruth (From BBC) TILSE (TLSCONSTRAINTS) TILSE (ASMDS) WILSON (Ours)
2009-06-25 2009-06-25 2009-06-25 2009-06-25
Dr Murray finds Jackson unconscious in
the bedroom of his Los Angeles mansion
.
Paramedics are called to the house while
Dr Murray is performing CPR , accord-
ing to a recording of the 911 emergency
call .
He travels with the singer in an ambu-
lance to UCLA medical center where
Jackson later dies .

Jackson died at his Los Angeles home on
25 June aged 50 .
Jackson died at his home on 25 June last
year at the age of 50 .

Michael Jackson died on 25 June 2009
from an overdose of the powerful anes-
thetic propofol .

Same drug class as morphine Given by
tablets or injection Used post-surgery or
for childbirth High doses can stop breath-
ing or lead to delirium and seizures Jack-
son , who had a history of health prob-
lems , collapsed at his Los Angeles home
around midday on Thursday .
Mr Martinez , who interviewed Dr Mur-
ray two days after Jackson ’s death on
25 June 2009 , said the doctor told him
the singer had stopped breathing shortly
after 1100 .

2009-06-28 2009-06-28 2009-06-28 2009-06-28
Los Angeles police interview Dr Murray
for three hours .
His spokeswoman insists he is " not a
suspect ” .

Jackson ’s body was released to the family
on Friday night .
Jackson ’s body was released to the family
on Friday night .

Jackson family left ’ speechless and dev-
astated ’ by star ’s death Relatives of
Michael Jackson will seek a second au-
topsy on the star because they still have
unanswered questions about his death ,
family friends say .

Michael Jackson ’s family are said to be
seeking a second autopsy because they
still have questions about his death .
Earlier , veteran politician Rev Jesse Jack-
son , who has been counselling the family
, said they had a flurry of questions of
their own for Dr Murray .

2009-07-28 2009-07-28 2009-07-28 2009-07-28
Dr Murray ’s home is also raided .
The search warrant allows " authorised
investigators to look for medical records
relating to Michael Jackson and all of his
reported aliases ” .
A computer hard drive and mobile phones
are seized , and a pharmacy in Las Vegas
is later raided in connection with the case
.

Dr Conrad Murray , who police say is
not a suspect , was at Jackson ’s mansion
and tried to revive him before he died .
Police raid Jackson doctor ’s home Drug
police are searching the Las Vegas home
of Michael Jackson ’s doctor as part of a
manslaughter investigation into the singer
’s death .

On Tuesday , police searched the Las Ve-
gas home and offices of Jackson ’s doctor ,
Conrad Murray , as part of a manslaugh-
ter investigation into the singer ’s death
.

Police raid Jackson doctor ’s home Drug
police are searching the Las Vegas home
of Michael Jackson ’s doctor as part of a
manslaughter investigation into the singer
’s death .
On Tuesday , police searched the Las Ve-
gas home and offices of Jackson ’s doctor ,
Conrad Murray , as part of a manslaugh-
ter investigation into the singer ’s death
.

2010-06-25 2010-06-25 2010-06-25 2010-06-25
Michael Jackson ’s father , Joseph , files a
wrongful death lawsuit against the physi-
cian .

Randy Jackson recently succeeded in
stopping an unapproved tribute show to
his brother Michael in Rome , which had
been scheduled for 25 June , the anniver-
sary of his death .
The suit was filed as fans around the
world marked the first anniversary of
Jackson ’s death at the age of 50 .

Jackson died of a cardiac arrest at his
home on 25 June last year .

25 June 2010 Michael Jackson ’s father
, Joseph , files a wrongful death lawsuit
against the physician .
Fans sing outside the Jackson family
home .

2011-07-25 2011-07-25 2011-07-25 2011-07-25
Rehearsal footage from Michael Jackson
’s This Is It tour can not be used as evi-
dence , the judge rules .

Judge Michael Pastor concluded on Mon-
day that it would not help the defense
and that " it was a waste of my time . "
25 July 2011 Rehearsal footage from
Michael Jackson ’s

But Judge Michael Pastor ruled on Mon-
day that the film would not help the de-
fense team and was a waste of his time
.

Judge Michael Pastor concluded on Mon-
day that it would not help the defense
and that " it was a waste of my time .
25 July 2011 Rehearsal footage from
Michael Jackson ’s

2011-08-30 2011-08-30 2011-08-30 2011-08-30
Michael Jackson ’s dermatologist is
barred from giving evidence at the trial .
Dr Murray ’s lawyers had planned to ar-
gue that Arnold Klein had administered
the singer with painkillers for " no valid
reason ” but prosecutors said they were
attempting to transfer responsibility for
his death away from Dr Murray .
Testimony from five other doctors who
treated Jackson is also disallowed .

Janet Jackson to miss concert Janet Jack-
son said she would find it " difficult "
to attend the tribute concert in Cardiff
Janet Jackson will not be attending her
brother Michael Jackson ’s tribute con-
cert in Cardiff .
Because of the trial , the timing of this
tribute to our brother would be too dif-
ficult for me , " Ms Jackson said in a
statement .

Janet Jackson to miss concert Janet Jack-
son said she would find it " difficult "
to attend the tribute concert in Cardiff
Janet Jackson will not be attending her
brother Michael Jackson ’s tribute con-
cert in Cardiff .

But Superior Court Judge Michael Pas-
tor ruled that Arnold Klein would not be
called to testify after prosecution lawyers
said the defense wanted to transfer re-
sponsibility for Jackson ’s death to the
dermatologist .
Because of the trial , the timing of this
tribute to our brother would be too dif-
ficult for me , " Ms Jackson said in a
statement .

2011-09-29 2011-09-29 2011-09-29 2011-09-29
Jackson ’s bodyguard , Alberto Alvarez ,
testifies that on the night Jackson died ,
Dr Murray ordered him to pick up vials
of medicine before phoning for an ambu-
lance .
“ In my personal experience , I believed
Dr Murray had the best intentions for Mr
Jackson , ” Mr Alvarez said .

29 September 2011 Last updated at 15:44
GMT Help Live coverage of the trial of
Michael Jackson ’s personal physician ,
Dr Conrad Murray , who is charged with
involuntary manslaughter of the singer .
29 September 2011 Last updated at 04:16
GMT Help A key aide and a security
guard have told the manslaughter trial
of Michael Jackson ’s doctor of events on
the day the superstar died .

However , Jermaine and Randy Jackson
said it should not go ahead because it
would clash with the trial of Conrad Mur-
ray , the singer ’s former doctor accused
of his involuntary manslaughter .

Jackson ’s bodyguard Alberto Alvarez
claims Dr Murray " grabbed a handful
of vials " and told him to put them in a
bag Michael Jackson ’s doctor told the
performer ’s bodyguard to pick up vials
of medicine before phoning for help on
the day he died , his trial has heard .
29 September 2011 Last updated at 04:16
GMT Help A key aide and a security
guard have told the manslaughter trial
of Michael Jackson ’s doctor of events on
the day the superstar died .

Table 4.11: Summary examples on the Death of Micheal Jackson. To save space,
we only select the first a few dates in chronological order, which appear in all
4 timelines. Main coverage with groundtruth is colored: red texts highlight the
overlaps between groundtruth and TILSE/ours while blue texts highlight the
distinct overlaps between groundtruth and ours. Note that all summarization
approaches use exactly the same sentence candidates pool.
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4.6 Summary
This paper shows that, with accurate date selection, we can generate high-quality
news timelines without considering the temporal correlation of text summarization.
Leveraging the explicit date selection, we propose a fast and effective unsuper-
vised timeline summarization method named WILSON. Specifically, WILSON
outperforms state-of-the-art approaches in both ROUGE scores and speed, signifi-
cantly improving concatenate ROUGE-2 F1 scores by 9.5%∼17.7%, time-sensitive
ROUGE-2 F1 scores by 17.1%∼123.1% and reducing generation time by two orders
of magnitude. More importantly, a user study with professional journalists also
confirms that the outputs of WILSON are closer to human-generated ones than
outputs of other methods. Last but not least, this work also suggests two potential
directions for future works, i.e. considering both occurrence and recency of events
for better salient date selection and reducing contextual correlation across dates by
balancing local and global summarization to improve daily summarization.
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Chapter 5 |
Predicting Graph Evolution

5.1 Introduction
Graph structured data are ubiquitous in a wide range of domains, such as social
networks [98], biology [99], and recommender systems [100]. Graph embedding,
which aims to learn low dimensional vector representations of nodes that capture
the network topological structures, has shown to be very effective for various
downstream graph mining tasks such as link prediction [101, 102], community
detection [103, 104], node classification [105, 106], and visualization [107, 108].
Due to its superior performance and wide applications, graph embedding has
attracted increasing attention and many efforts have been taken [101,105,109–111].
For example, DeepWalk [105] introduces the idea of Skip-gram to learn node
representations from random-walk sequences. Node2vec [101] extends DeepWalk
with biased random walk in sampling sequences.

Many existing works on graph embedding mainly focus on static graphs. In real
applications, however, graphs are naturally evolving as they are often generated
by a series of temporal interactions between nodes. Therefore, ignoring such
temporal information, including the regularities and abnormalities across the time
dimension, is likely to yield imperfect models that may suffer severely from the
generalization errors in prediction. For example, in a user-item graph, if a model
does not incorporate users’ changing interests and behaviors over time [100], it
can introduce inaccurate recommendations. Similarly, if a model ignores the fact
that items’ semantic meaning could drift over time [112], it can result in false
inferences. Therefore, to mitigate these issues, several dynamic graph embedding
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algorithms have been proposed to preserve temporal evolution of each individual
node [100,113,113–117]. These works can be mainly grouped into two categories:
(i) for each timestamp t, for each node, learn an embedding and add a smoothness
constraint between two consecutive embeddings of the same node [113,114,117–119];
and (ii) for each node, maintain one embedding, but update the embedding when
new links are added using complex updating rules [100,115,116].

Despite the initial success of these dynamic graph embedding algorithms, they
often suffer from the scalability issue in dealing with large-scale dynamic graphs.
This is because existing embedding algorithms either require many parameters (i.e.,
one set of embedding for each graph snapshot) or have complex updating rules (i.e.,
update the embedding of each node when new links are added), which leads to
large space and time complexity. However, large-scale temporal graphs are common
and pervasive in real applications. For instance, the Facebook graph consists of
over two billion user nodes and one trillion edges [120], while the Alibaba graph
contains over one billion users and two billion items [121]. More importantly, these
graphs are growing dramatically. For example, Facebook has over 2 billion monthly
active users, with an average user clicking 13 adverts and making 6 comments
per month [122]. Therefore, we need scalable embedding methods for dynamic
graphs with small space and time complexities.

In many real-world dynamic graphs such as social networks, user preferences/rep-
resentations can be divided into two parts, i.e., static preferences and temporal
preferences. Static preferences come from a user’s culture or identity which will
not change. For example, food preference and dining habits are discovered to be
formed at home and resistant to change once established [123]. Though temporal
preferences change over time, however, user’s temporal preference shift usually
follow similar patterns. For example, when it is winter to spring, people usually
go from skiing to a picnic. On Facebook, a seasonal event such as Thanksgiving
and the Super Bowl can also trigger user behaviors in sharing and commenting
relevant articles at a specific period. This observation suggests that we can learn one
vector representation for each user as the static preference and capture the global
temporal shift of the graph at each timestamp with another vector representation.
An individual’s temporal representation can then be projected to temporal space
using the global temporal embedding. Exploring the temporal evolution of graphs
can significantly reduce space and time complexity while simultaneously capturing
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Figure 5.1: Upper: shared base embedding; Lower: time embeddings are introduced
to translate node embeddings into corresponding temporal space. Network dynamics
are captured by learning the temporal space change.

the temporal dynamics. However, to our best knowledge, no existing work uses this
approach.

Therefore, in this chapter, we study a new problem of scalable temporal graph
embedding by exploring static preferences and global evolution of graphs. In essence,
we are faced with two challenges: (i) how to effectively capture static preferences
of each individual and the global temporal dynamics of the graph; and (ii) how to
make the algorithm scalable. In an attempt to solve these challenges, we propose a
temporal translation-based model named MAGI to learn temporal graph embedding.
An illustration of MAGI is shown in Figure 5.1. Instead of learning embedding for
graphs at each timestamp or introducing complex updating rules for new links,
to scalably encode time information and reduce parameters, we use shared base
embedding for all the graph snapshots. For each graph snapshot, we introduce
a time embedding (one vector) to translate node embeddings into corresponding
temporal space. Meanwhile, we model the dependency of time embedding to
capture the temporal dynamics. In addition, we capture the graph dynamics by
incorporating a sequential model to learn the time embedding change and utilize
the inferred time embedding for future prediction. The main contributions of the
paper are:

• We study a new problem of scalable temporal graph embedding by exploring
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the global temporal evolution of graphs;

• We propose a novel translation-based temporal graph embedding framework
MAGI, which can effectively capture graph evolution and handle scalability
simultaneously; and

• We conduct extensive experiments on real-world datasets to evaluate the
effectiveness of MAGI in learning representations that capture temporal infor-
mation and its scalability.

5.2 Related Works
In this section, we review related works, i.e., (i) static graph embedding, (ii) dynamic
graph embedding, and (iii) translation-based model in the knowledge graph.

Static Graph Embedding. Early works of unsupervised graph representation
learning exploits graph factorization [124,125]. Inspired by the success of skip-gram
model [126] in learning word embedding in Natural Language Processing (NLP),
various approaches [101,105,107] have been proposed to treat graphs as “documents”,
use the random walk to sample node sequences as “sentences”, and learn node
embeddings with the skip-gram model. In addition, Graph Attention Network
(GAT) [111] also introduces Attention [127] mechanism in graph embedding. Since
Convolution Neural Networks (CNN) [128] are good at capturing local information
and achieve huge success in Computer Vision, several convolutional neural network
architectures for learning over graphs have been proposed [109,129–132]. Graph
Convolutional Network (GCN) [109] and GraphSAGE [110] take advantage of node
attribute features and leverage attribute features of node neighbors to handle both
transductive and inductive prediction. Besides accuracy, scalability is another
challenge for graph embedding, thus PyTorch BigGraph [133] is presented as an
industrial-level graph embedding system.

Dynamic Graph Embedding. Since many real-world graphs are dynamically
changing, dynamic graph embedding approaches are proposed to capture the
temporal information. The first a few works employ temporal regularization to
smooth graph embeddings across different time snapshots [118,119]. For example,
The dynamic triad algorithm [119] considered triadic closure (i.e. the addition of
a third edge among three nodes in the graph) as a reference to capture network
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temporal dynamics, though it does not work on bipartite networks as it requires the
presence of triads. Similar to static graph embedding, neural network techniques
have been applied in dynamic graph embedding. DynGEM [114] uses autoencoder to
connect two consecutive graph snapshots and learns incremental node embeddings
through initialization from the previous time steps, but it may fail to capture
long-term graph dependency. Then DyAERNN [113] is proposed to include a
look back parameter to control the length of previous time steps in learning
but increases training speed heavily. To model sequential change, JODIE [100]
uses RNNs to model user and item embeddings, but it scales poorly and is only
applied on bipartite networks. Both DySAT [117] and TGAT [134] leverages Graph
Attention Network (GAT) and replace positional embedding with time embedding
to encode time information. Besides structural attention, DySAT also applied
attention to the temporal dimension, but it uses embeddings in the final snapshot
for prediction and fails to predict future embeddings. The problem studied by
GCN and GAT like approaches is orthogonal with ours, as those approaches mainly
utilize node features while we only target at learning embeddings solely from graph
structures. HTNE [115] models the neighborhood formation sequence of each node
via multivariate Hawkes Process [135], while CTDNE [116] is the state-of-the-art
random walk based graph embedding algorithm and uses temporally constrained
random walks to generate one final node embeddings for prediction. Despite their
STOA performance, many of them cannot deal with large-scale dynamic graphs.
Thus, we investigate scalable temporal graph embedding.

Translation-Based Model for Knowledge Graph. To model multi-relational
data, Translation-based models [136–139] in knowledge graphs embed triplets with
different relationships into different affine spaces. For example, TransE [138] model
uses addition translation to make the head entity and tail entity close in corre-
sponding relation space. As time is intrinsically correlated across different graph
snapshots, we introduce a translation-based dynamic graph embedding framework
to translate different graph snapshots into different embedding space. But different
from relations in knowledge graphs, where time is continuous, we propose to model
the change of time embedding space and predict the next time embedding space
for future tasks.
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5.3 Problem Definition
We define the dynamic graph and dynamic graph embedding problem as follows:

Dynamic Graph: A dynamic graph is defined as a series of observed static
graph snapshots, i.e. G = (V,ET ), where ET = (E1, ...ET ) and T is the total number
of time snapshots. V is a set of vertices, and each temporal edge (u, v, t) ∈ Et is
connection between vertice u and vertice v at timestamp t. With a focus on graph
structural information without node features, we only examine the representation
for nodes that have been observed in training and assume the node set V stay the
same.

Dynamic Graph Embedding: Given a temporal network G = (V,ET<=t),
the goal is to learn a function f : V → RD that maps vertices in G to D-dimensional
feature representations, which can capture temporal evolution of networks and are
suitable for temporal link prediction at G = (V,ET>t).

Our goal is to develop a scalable dynamic graph embedding framework that can
handle large-scale temporal networks.

5.4 Proposed Method - MAGI
An illustration of the proposed framework MAGI is shown in Figure 5.2. It is
composed of three parts: (i) the basic shared embedding of all graph snapshots
to capture the intrinsic stationary properties of nodes in the graph; (ii) time
embedding which captures the global temporal graph evolution to translate each
graph snapshot into its corresponding time space; and (iii) sequential modeling to
capture model the dependencies of time embedding. Next, we give the details of
each component.

5.4.1 Basic Graph Embedding

Though the graph is dynamically changing, so as the nodes latent properties,
however, there are some intrinsic properties of the nodes that will not change over
time. For example, compared with users’ interest in movies, their demographics
such as gender and nationality are more stable. Thus, we assume that all the
graph snapshots share the basic stationary graph embedding, which captures the
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Figure 5.2: Framework

static preference of nodes over time. Since our goal is to develop scalable temporal
graph embedding, we adopt PBG [133] as our basic graph representation learning
approach as it is demonstrated to be very effective and scalable to large-scale static
graphs. Specifically, for each edge e = (u, v) in the graph, it samples a set of
negative edges e′ obtained by corrupting edges with either a sampled source or
destination node, i.e., Se = {(u, v′) 6∈ E|v′ ∈ V } ∪ {(u′, v) 6∈ E|u′ ∈ V }. It then
enforces a node more similar to its positive samples than negative samples with
margin-based ranking loss as

∑
e∈G

∑
e′∈Se

max(λ− f(e) + f(e′), 0) (5.1)

where f(e) = f(embu, embv) with f being the similarity measurement such as cosine
similarity and embu and embv as the node embeddings of node u and v. G is the
original graph, V is the node set and λ > 0 is the margin hyperparameter.

5.4.2 Time Embedding

The basic graph embedding captures the static preference of nodes. However, in
dynamic graphs, node preferences are also changing. Instead of learning updating
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rules/representations for each individual, which is very inefficient in space and
time complexity to encode large-scale temporal graph, for each snapshot Gt, we
introduce a time embedding vector embt to project the node embedding to the
time space. The time embedding embt can be treated as capturing the global
preference shift of nodes in Gt. For example, suppose the season shift from Autumn
to Winter, user preferences shift globally to winter related activities such as skiing
or Christmas movies. Thus, the time embedding is a reasonable assumption.

Specifically, for Gt, instead of directly using node embeddings, embu and embv,
to measure the similarity between nodes, embt is included to encode embu and embv,
such that u and v are more close to each other in the temporal embedding space
t rather than in any other spaces. Node embeddings are shared across temporal
embedding spaces and serve as alignments, while time embedding captures the node
characteristic change over time, allowing us to obtain the most recent node features
in the most recent temporal space. Besides, through translating node embeddings
from each graph snapshot into corresponding temporal space, we can process all
graph snapshots simultaneously while still preserving the temporal constraint in
learning graph evolution, which largely reduces training time in encoding temporal
information.

The interaction between node embedding and time embedding can be denoted as
g(embu, embt). As the additive model is proven to be effective in other embedding
problems, such as TransE knowledge graph [138] and Positional Embedding in
attention models [127], we also start with an additive formula – MAGI-add:

g(embu, embt) = embu + embt (5.2)

Motivated by the fact that embeddings are usually normalized for the training
stability and only direction matters in this situation, we propose a novel direction
based time encoding formula to ignore the effect of the magnitude of embeddings
and only tweak the direction of node embedding in each temporal space – MAGI-dir:

g(embu, embt) = embu
‖embu‖2

+ α · embt
‖embt‖2

) (5.3)

α is expected to be larger than 1, allowing an arbitrary change in the direction for
different temporal spaces. In this work, we set α to 2.0 as a hyperparameter. We
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Figure 5.3: Sequential modeling of temporal embedding space

also experiment with various α values for parameter sensitivity analysis in Section
5.5.1.7.

For directed graphs, we adopt asymmetric temporal translation for each edge
by only incorporating time embedding in one side. For example, to measure
the similarity between two nodes in each edge, either f(g(embu, embt), embv)) or
f(embu, g(embv, embt)) is used. This setting is generalized to undirected graphs by
viewing each undirected edge as two directed edges. With time embedding, the
loss function in Eq.(5.1) is rewritten as:

lossgraph =
∑

(u,v,t)∈G

∑
v′∈Su

max(λ− f(u, v, t) + f(u, v′, t), 0) (5.4)

where f(u, v, t) = cos(g(embu, embt), embv)) and Su is the set of sampled negative
nodes.

5.4.3 Sequential Modeling of Time Embedding

In a temporal graph, due to the temporal dependencies between interactions
across different nodes, it is necessary to maintain temporal order of edges during
training, such that all edges are processed in chronological order, making sequential
modeling of individual node embedding change very expensive, even if optimizing
training batches with topological sorting [100]. To preserve this temporal constraint
but also tackle scalability issues in training, we propose to model the global
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temporal evolution of graphs as a whole rather than modeling each individual node
embedding change separately. In this way, we are able to train all node embeddings
simultaneously by embedding each graph snapshot into corresponding temporal
space, and then align all temporal spaces together via learning the evolution pattern
of the time embeddings.

Since time embedding captures the temporal information, we use a Long Short-
Term Memory (LSTM) [140] autoencoder with a temporal attention mechanism
to model the evolution of the temporal embedding spaces. An illustration of the
sequential modeling framework is shown in Figure 5.3. Specifically, at time step i,
we use embi as input to predict the next time embedding êmbi+1 as:

êmbi+1 = We · [ci||hi],

ci =
T∑
j=2

attij · hj ,

hi = LSTM(embi, hi−1),

attij = exp(hTi Wahj)∑
k exp(hTi Wahk)

(5.5)

where || denotes concatenation operation and attij are the attention weights. The
context vector ci is a weighted sum of the hidden states. Instead of directly using
context vector ci, we concatenate the context vector with the corresponding hidden
state hi to do prediction at each snapshot. Since each hidden state hi has already
encoded neighboring information before each snapshot by LSTM, we expect this
concatenation to encode information beyond neighboring snapshots, and the findings
are in Section 5.5.3.2. The loss function is given as

losstime = − 1
T − 1

T∑
i=2

cos(êmbi, embi) (5.6)

5.4.4 Objective Function of MAGI

With the basic graph representation capturing the static node properties, time
embedding projecting the static node embedding to temporal space and LSTM for
capturing the temporal smoothness, the final objective function of MAGI is given as

arg min
θ

lossgraph + β losstime (5.7)
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Algorithm 5.1: Training Algorithm for MAGI
Input : the temporal network G = (V,ET<=t)
Output : θ = {embt∈{1..T}, embv∈V ,Wa,We, θLSTM}

1 Initialize parameters θ ;
2 Randomly shuffle edges (u, v, t) and prepare batches ;
3 repeat
4 for each batch do
5 Sample a set of negative nodes Su for each edge ;
6 Use Eq. 5.4 and Eq. 5.6 for forward propagation ;
7 Optimize Eq. 5.7 in backpropagation to get updated parameters θ ;
8 end for
9 Use Eq. 5.5 with embt∈{1..T} to obtain the predicted time embedding

êmbT+1 ;
10 Based on êmbT+1 and embv∈V , apply Eq. 5.2 or Eq. 5.3 to get

translated node embedding ẽmbv∈V ;
11 Evaluate ẽmbv∈V on validation set.
12 until iteration limit or early stop criterion is reached;
13 return θ

where β is the hyperparameter that balances the graph reconstruction and temporal
space modeling, and θ is the parameter set {embt∈{1..T}, embv∈V ,Wa,We, θLSTM}.

Existing dynamic graph embedding algorithms, such as CTDNE [116] and
DySAT [117], usually use node embeddings of the final snapshot for prediction.
However, with the help of temporal space modeling, we are able to predict the
time space for the next graph snapshot, and demonstrate that the predicted time
space is better at representing the graph in the newest state, signaling the success
in capturing the temporal evolution patterns of graphs.

5.4.5 Training Algorithm

A training algorithm is summarized in Algorithm 5.1. First, we initialize param-
eters. Specifically, node embeddings embv∈V are initialized by tensors filled with
random numbers from standard normal distribution N (0, 1), and time embeddings
embt∈{1..T} are initialized by tensors filled with 0 in MAGI-add and 0.1 in MAGI-dir
respectively. Then, we randomly shuffle edges and process edges in batches. For
each batch, we optimize the overall objective function as in Eq. 5.7 to update
parameters. After each iteration, we predict the time embedding in future graph
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snapshot with Eq. 5.5 and use it to obtain translated node embedding for validation
and test.

5.4.6 Space and Time Complexity Analysis

In this subsection, we analyze space and time complexity of MAGI.

Space Complexity. Let the embedding dimension be D, the number of graph
snapshots be T and the total number of nodes be N , our MAGI model introduces
an extra space of O(T ·D) time embeddings, O(4(D ·D +D ·D +D)) LSTM and
O(D ·D+2D ·D) attention module, which is O((T +11D) ·D) in total. Considering
that there are at least O(N ·D) node embeddings and N >> T , the extra space is
negligible.

Time Complexity. The extra time complexity comes from both temporal space
translation and sequential modeling. The time complexity of LSTM per weight and
time step is O(1) [140] and the attention computation takes O(T ·D ·D+2D ·D) per
time step. Therefore, the total time complexity of introducing the sequential model
is O(T · (4(D ·D +D ·D +D) + T ·D ·D + 2D ·D)) = O((T ·D)2), which is only
relevant to the number of graph snapshots and invariant to the graph size. Since
space translation only involves in edge computation and each edge computation
f(u, v, t) takes at least O(D) time, space translation only introduces constant extra
complexity in edge computation with O(D) time in each edge computation. Thus,
theoretically, our MAGI model remains the same time complexity with the static
graph embedding model, and we also empirically validate this in Section 5.5.2.

5.5 Experiments
In this section, we conduct experiments to validate both the performance and
scalability of our proposed model. Specifically, we intend to answer the following
evaluation questions:

• EQ1: Is MAGI able to capture the graph evolution by introducing temporal
translation and modeling the evolution of temporal spaces?

• EQ2: How efficient is MAGI in learning node representations for large temporal
graphs?
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Dataset #users #item #edges duration
lastfm 961 79,733 2,424,043 2005-02 to 2009-02
movielens 16,835 5,090 2,951,543 2004-02 to 2014-02
yelp 95,038 53,137 2,226,369 2010-01 to 2018-01

Table 5.1: Bipartite network datasets

• EQ3: What information can we gain from the temporal space translation
through the learned time embedding?

5.5.1 Link Prediction

To validate the effectiveness of temporal translation (EQ1), we experiment with
3 large bipartite temporal graphs, which contain up to 140K nodes and over 2
million edges per network, and set the duration of each graph snapshot to a month.
Targeting at industrial-level graphs, instead of using a downstream link prediction
setting, we directly use the similarity scores between node embeddings as metrics
for link prediction, which can be easily tackled by Approximate Nearest Neighbor
approaches in practice.

5.5.1.1 Dataset

We select the following large temporal graph datasets in link prediction experiments:

1. lastfm-1k [141]: this dataset contains 4-year of who-listens-to-which song
information from 961 users, yielding a temporal graph with ∼ 80, 000 nodes
and about 2.5 million edges.

2. movielens-20m [142]: we only keep positive ratings (≥ 4), and use the data
from active users and popular movies in a 10-year duration, leading to a
temporal graph with ∼ 22, 000 nodes and ∼ 3 million edges.

3. yelp [143]: we extract an 8-year dataset from Yelp Challenge Round 13, and
construct a temporal graph with ∼ 150, 000 nodes and around 2.2 million
edges.

We use 10-core setting for lastfm and yelp, and 100-core for movielens. Using
monthly graph snapshots, our datasets contain 49 to 121 time steps per graph. The
detailed statistics are provided in Table 5.1.
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5.5.1.2 Competing Methods

We include state-of-the-art graph embedding methods that solely relies on graph
structural information in both static and dynamic settings as baselines in our
experiments:

Static embedding methods:

• DeepWalk [105]: This method is the first to apply random walks in generating
node sequences from the network and then uses them as input to a skip-gram
model to learn node representations.

• Node2Vec [101]: This work extends DeepWalk by balancing local and global
properties in the random walk to sample node sequences.

• LINE [107]: LINE optimizes node representations by preserving both first-
order and second-order proximities for a network.

• PBG [133]: PyTorch-BigGraph utilizes the efficient negative sampling strate-
gies and distributed processing techniques to learn graph embedding on a
large scale.

Dynamic embedding methods:

• HTNE [115]: this method uses multivariate Hawkes processes [135] to model
the neighborhood formation sequence of each node, where each edge is
weighted by a time decay factor. We use suggested parameters in the original
paper and adopt the implementation from the authors1.

• DynAERNN [113]: this model is based on a fully connected auto-encoders
to incrementally generate the embedding of the current graph with the
initialization from the previous graph and feeds the hidden states into LSTMs
to learn network dynamics. We use suggested parameters in the original
paper and adopt the implementation from the authors2.

Other recent dynamic embedding methods include CTDNE [116], tNodeEmbed
[144] and DySAT [117]. However, the existing implementation from the authors of

1http://zuoyuan.github.io/files/htne.zip
2https://github.com/palash1992/DynamicGEM
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tNodeEmbed3 is not reproducible, while DySAT4 scales poorly and requires more
than 256GB memory on our datasets, so we exclude them. And we also remove
CTDNE5, as it is not scalable in time and takes more than 1 day in sampling
temporal walks on large graphs.

5.5.1.3 Set-Up

We use the temporal link prediction task to evaluate the performance of our
proposed method. We reserve the latest 12 months of each dataset for test on a
monthly basis and thereby have 12 tests for each dataset. Particularly, for each
test, we use ith month as test set, i− 1th month as validation set, and all data
before the i− 1th month as training set. For validation and test, we only consider
link prediction on the observed nodes and remove edges that contain unseen nodes
in the training set.

Evaluation Metrics. We measure the performance of the methods in terms of
the Mean Reciprocal Rank (MRR) and Recall@K (K=1, 10, 50). For each method,
we evaluate the MRR on the validation set after each epoch and save the best model
in validation for test performance. In addition, we report raw ranking metrics,
which use all candidate nodes for ranking, and do not filter out existing edges in
the training, as dynamic graph embedding models are expected to distinguish the
time of edges by themselves. For PBG and MAGI, we use cosine similarity between
node embeddings as ranking scores. As for other methods, we experiment with
both cosine similarity and negative euclidean distance in ranking and report the
best scores.

5.5.1.4 Implementation Details

For fair comparisons, we set the node embedding dimension to 128 for all approaches.
And we use suggested parameters in original papers for both HTNE [115] and
DynAERNN [113]. Observing that HTNE takes 5 to 15 minutes per epoch in
training, we set the maximum epoch number to 20. However, since DynAERNN
takes about 3 hours per epoch in training large datasets like lastfm and we have 12
tests for each dataset, we only train DynAERNN for 1 epoch. In addition, we ignore

3https://github.com/urielsinger/tNodeEmbed
4https://github.com/aravindsankar28/DySAT
5https://github.com/urielsinger/CTDNE
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the performance of DynAERNN on yelp, as it requires more than 256GB memory in
training yelp dataset. For the sake of speed, we adopt GraphVite [145], a high-speed
graph embedding engine, to generate embeddings for DeepWalk, Node2Vec, and
LINE. Node2Vec is trained under p = 0.8 and q = 1. As for PBG and MAGI, we
set margin hyperparameter λ = 0.2, use single side negative sampling (on item
side), and set in-batch negative sample and uniform negative sample number to 50
and 1000 respectively.

5.5.1.5 Results

Results are shown in Table 5.2, demonstrating the state-of-the-art performances of
our approach on all three datasets. As shown, all static embedding methods gain
comparable performance in temporal link prediction. Using temporal information,
HTNE outperforms static embedding methods on lastfm. As DynAERNN processes
graph snapshots in order and only looks at a very small number of graph snapshots
at each time, it could suffer from catastrophic forgetting issue on capturing node
preference and thus perform poorly on large temporal graphs such as movielens,
which contains over 100 graph snapshots. Due to the time cost, DynAERNN and
HTNE are trained by limited epochs, which might explain their worse performance
than static embedding methods on movielens and yelp. This also suggests the
importance of developing scalable and efficient dynamic graph embedding meth-
ods for large temporal graphs. Besides MAGI full model (MAGI-dir + sequential
modeling), we also include MAGI-dir and MAGI-add for ablation analysis, which
learn time embedding in temporal translation without sequential modeling. By
introducing the time embedding to capture graph evolution and handle scalability
simultaneously, all translation-based methods achieve much higher MRR scores
than baseline methods across all graphs. Notably, direction based translation model
MAGI-dir outperforms additive translation model MAGI-add on lastfm and yelp,
and gains comparable results with it on movielens. More importantly, using the
sequential model to encode the evolution of temporal spaces significantly improves
MAGI-dir by 5% on average, indicating the success in predicting graph evolution.
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Figure 5.4: Experiments with time embeddings from different graph snapshots on
yelp dataset. The predicted time embedding achieves the best performance.

5.5.1.6 Time Embedding

Time embedding translates node embeddings in each graph snapshot into corre-
sponding temporal space. Besides using the predicted time embedding to project
the translation space in the future graph snapshot for link prediction, we also
experiment with using the existing temporal spaces, where we directly employ
the time embeddings of the most recent a few graph snapshots to translate node
embeddings to predict future graph snapshot. The results of yelp dataset is shown
in Figure 5.4. As expected, prediction performance is higher when the time of the
translation space is closer to the prediction time, and the predicted time embedding
achieves the best performance, indicating that our model successfully captures the
evolution of the translation spaces. Note that, using the most recent embedding
space is commonly used in existing works such as CTDNE [116] and dySAT [117],
however, they fail to go one step further to predict the future embeddings, which
are proven to be more effective in our work.

5.5.1.7 Parameter Sensitivity

As shown in section 4, α controls the effect of time embedding in direction based
translation, while β balances the graph reconstruction and temporal space mod-
eling. To test the impact of α and β, we vary α as {0.5, 1.0, 2.0, 4.0} and β as
{0.01, 0.1, 1.0, 10.0} respectively, and report MRR and Recall@50 in link prediction
on yelp dataset. In Figure 5.5, we note that: 1) with the increase of alpha, the
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performance increases first and then decreases, and α = 2 gives the best perfor-
mance. This is because time embedding is not able to tweak the direction of node
embedding when α is small, while large α makes all translated embeddings in each
translation space become similar and loses node discrepancies; 2) the performance
remains stable with various β, signaling the robustness to various choices of β.

5.5.2 Running Time Analysis

To answer the EQ2, we first compare the running time of MAGI with other dynamic
graph embedding baseline algorithms. Based on the implementation, HTNE runs
on one NVIDIA Tesla P100 GPU, while other approaches use CPU on a 24 Intel
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Xeon cores machine. As shown in Figure 5.6, HTNE and DynAERNN scale poorly
on large graphs, and DynAERNN even fails to train yelp dataset due to the RAM
issue. Since introducing time embedding and modeling the time embedding change
do not add much computation, MAGI shares a similar training time with static
embedding method PBG, indicating that using time embedding can improve the
performance in future link prediction without sacrificing training speed.

5.5.3 Discussion

In addition, to further validate the scalability of our MAGI full model, we use the
largest network dataset with timestamps from the Koblenz Network Collection
(KONECT) [146] – Delicious user–URL, which contains 35 million nodes and 301
million edges and spans 5 years. Still using monthly graph snapshots, we randomly
sample a few sub-networks to measure MAGI’s running time over different graph
sizes. The running time is measured by an average of 10 epochs and presented in
Figure 5.7. As expected, because MAGI samples a fixed number of negatives edges
for each positive edge and trains all graph snapshots simultaneously, the running
time grows linearly over graph size, suggesting the scalability of MAGI in training
large temporal graphs.

In this section, we conduct a visualization analysis on time embedding to answer
EQ3: what can we learn from the temporal space translation?

5.5.3.1 Time Embedding

First, we analyze the characteristics of time embeddings in translation spaces.
In Figure 5.8, We demonstrate two heatmaps of cosine similarities between time
embeddings on yelp and movielens datasets. As shown, the closer the graph
snapshots, the similar their time embeddings, which implies similar translation
spaces. Unlike relationships in knowledge graphs, time is intrinsically correlated
across different graph snapshots, where node features such as users’ behaviors and
items’ semantic meanings are gradually changing over time, thus translation spaces
are expected to shift gradually as well, leading to positively correlating with time
differences.

In addition, as time embedding spaces encode the temporal dynamics of node
features, we are not only able to predict user interest drifting, but also can discover
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Figure 5.8: Time embedding similarity
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some temporal patterns of items. Taking Movielens dataset for example, we select
two classic seasonal movies, Jaws and Nightmare Before Christmas. Jaws is the first
summer blockbuster and tells a story on the ocean, making it popular for summer
watching, while Nightmare Before Christmas is a beloved musical animation about
Christmas. We calculate the cosine similarity between the movies’ embedding
with each time embedding, and plot their temporal similarity trajectories in figure
5.9. To make it more clear, we smooth the trajectories by a Savitzky-Golay
filter [147]. Interestingly, most similarity peaks of Jaws occur in the summertime,
while Nightmare Before Christmas reaches most similarity peaks in December. This
is because people interact with certain items at some specific time, and proves that
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we can encode temporal patterns in temporal translation spaces and our model
succeeds in capturing these temporal patterns.

5.5.3.2 Attention Scores

Then, we start a qualitative analysis of the distribution of temporal attention
weights learned by MAGI. For each dataset, as we conduct a monthly graph snapshot
prediction of one consecutive year, we examine the temporal attention coefficients
learned at each prediction month, which indicates the relative importance of each
historical graph snapshot in link prediction. Since we model the dynamics of the
temporal translation spaces, the attention scores signal the correlation between
different translation spaces. Figure 5.10 visualizes heatmaps of the learned temporal
attention weights of the 12 prediction months with all historical months formovielens
dataset. Note that, we concatenate the context vector with the corresponding
hidden state to do prediction at each snapshot, thus the attention scores should
reveal the importance of historical graph snapshots besides neighboring graph
snapshots. Interestingly, the predicted translation spaces are not only correlated
with recent graph snapshots but also strongly connected with very old graph
snapshots, signaling all historical graph snapshots are equally important. It is
worthwhile to mention that, the connection between two translation space does not
necessarily correspond to similar translation spaces, where time embeddings are
alike, but only indicate the ability to predict the translation space. For example,
their time embeddings can be negatively correlated.

5.5.3.3 Visualization of Embedding Change

Last but not least, we demonstrate the temporal change of user embedding learned
by our MAGI model. We apply t-SNE [148] to project user embeddings at each
graph snapshot to a 2-dimensional space. Figure 5.11 (a) shows the embedding
change of 10 randomly sampled users, where we observe a clear pattern of user
embedding change over graph snapshots, corresponding to our temporal space
translation. In Figure 5.11 (b), we show one sampled user embedding change and
her interacted items at each graph snapshot. As shown, user embedding at each
graph snapshot is close to the embeddings of the items she interacted with in
neighboring graph snapshots, indicating that our model successfully encodes user
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Figure 5.11: (a) The embedding dynamics of 10 randomly sampled users. Each
user is signaled by one color while the numbers indicate the order of embedding
change over graph snapshots. (b) The user embedding change of one sampled user
and her interacted items at each graph snapshot. Note that orange triangles denote
items from the training set while green stars denote items in the test set.
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interests in each graph snapshot. More importantly, user interacted items in the
future appear to be close to the most recent embeddings, proving that our model
can capture the user interest change by modeling the temporal space change.

5.6 Summary
In this chapter, we introduce a scalable framework to model node embedding
change on temporal graphs. Specifically, we propose a novel translation-based
framework named as MAGI to project node embedding in each graph snapshot into
corresponding temporal space. Then we design a sequential model to better align
temporal spaces and capture the global evolution of graphs. Modeling the temporal
space change not only helps us capture the graph evolution effectively, but also
improves the performance in link prediction with the predicted translation space.
MAGI allows us to train all graph snapshots simultaneously while still preserving
the temporal constraint in learning, making it scalable to large temporal graphs.
In the future, we would like to include node features and extend this paradigm to
graph convolutional networks.
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Chapter 6 |
Conclusions and Future Work

6.1 Conclusions
In this dissertation, we introduce our path along with characterization, understand-
ing, and prediction of the temporal dynamics of web content. First, we demonstrate
two examples on how to discover and characterize temporal patterns of web content.
Second, to directly help users better understand how events evolve over time,
we propose a fast and effective news timeline summarization to deliver real-time
timelines. Third, we focus on predicting content evolution, such as users’ interest
change and items’ semantic drifting, by learning dynamic graph embedding and
propose a scalable approach to encode large temporal graphs.

In the problem of characterizing temporal patterns, we study two types of web
content, user behavioral change, and content popularity pattern. In the first study,
we collect large-scale datasets from two of the most popular crowdfunding platforms
and uncover four distinct temporal backing patterns on both platforms. With
quantitative analysis, we reveal possible factors affecting users’ backing behaviors.
For example, both the outcomes of backers’ first a few projects and their connections
with project creators are important in maintaining a favorable relationship between
backers and the platforms. The second study characterizes a small fraction of news
articles that consistently gain traffic over time. We conduct a quantitative analysis
on more than 400K news articles in a 5-year duration and shed light on news
articles’ long-term popularity. Based on the insights from our analysis, we build
early prediction models on evergreen article identification, work with journalists to
manually validate our recommendations, and succeed in deploying our model at
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the Washington Post with encouraging performance in production.
To prevent users from getting lost in information floods and better understand

news event evolution, we move to investigate news timeline summarization. Ob-
serving that all existing works only focus on the generation quality but ignore the
generation speed, we propose to speed up news timeline generation by dividing
the whole summarization tasks into multiple sub summarization tasks. In our
framework, we divide the giant timeline summarization task into multiple small
daily summarization tasks by explicitly selecting salient dates at first. As expected,
ignoring the temporal correlation of daily summaries greatly speeds up the genera-
tion but suffers from the redundancy issue, especially for timelines with abundant
daily summaries. Thus, we mitigate this issue with an efficient post-processing
process. Surprisingly, although the empirical upper bound of our method by
ignoring the temporal correlation of daily summaries is much lower than other
fancy frameworks like submodular formulation, all other frameworks fail to reach
this lower upper bound, not even close, and our approach reaches state-of-the-art
performance in both generation quality and speed. It is also worth noting that,
using our approach, we succeed in building a real-time news timeline summarization
system an industrial-level news corpus and achieve promising results.

Furthermore, we take a step to predict content evolution by learning dynamic
graph embedding. As graphs are generated by a series of temporal interactions
between nodes, node attributes are evolving with time and encoded in the graph
topological structure changes. To maintain the temporal evolution, processing edges
in chronological order is necessary. Due to temporal topological graph structure,
however, modeling sequential changes of individual nodes can be expensive, making
it difficult to extend to large graphs. Thus, we propose a temporal translation-based
model to embed different graph snapshots simultaneously, and encode the graph
topological structure evolution by aligning the temporal translation spaces with a
sequential model. We experimented on two types of temporal graphs, including
user-user communication graphs and user-item bipartite graphs, and show superior
performance on all datasets. Notably, on three large bipartite graphs, which consist
of over 20 thousand nodes and 2 million edges, our approach outperforms the
baseline method by a significant margin without sacrificing training speed. More
interestingly, using temporal space translation, our model is able to encode and
discover temporal popularity patterns of nodes.
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6.2 Future Work
Many directions are promising for future research. For temporal pattern discovery,
using machine learning and statistical modelings are only the first step, while
domain knowledge is required to further validate and utilize the findings. Although
it is necessary to include domain experts in the loop, it is not an easy task to
collaborate with the human. How to efficiently collect feedback from domain
experts needs further investigation, which can involve Human-Computer Inter-
action and Reinforcement Learning. In addition, evaluating temporal patterns
in practice can also be non-trivial, as some long-term temporal pattern requires
an extended observation period for verification. One possible direction could be
developing a short-term proximity to approximate the long-term reward. Adding
time information not only introduces opportunities to enhance interpretability and
predictivity of machine learning models but also includes extra difficulties to process
data. For example, computational complexity can be significantly increased with
time information, making it difficult to be applied to industrial big data. Thus,
examining the balance between the expressive power and computational complexity
of the temporal models is critical, and we plan to continue working on deployable
and scalable algorithms for temporal data.
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