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Abstract
The Internet provides great convenience for users to access, create, and share diverse
information and promotes the spread of misinformation. The cheap to produce,
easily accessible fake content online can easily shape public perception and cause
detrimental societal effects. Thus, how to effectively detect online misinformation and
attenuate its effect has gained much attention in recent years. Recent achievements
of misinformation detection methods have shown promising results. However, there
still exhibits enormous challenges due to the multi-modality, interpretability, and
costs of human annotation in this problem.

In order to address the above-mentioned issues, we can leverage various types of
information from different perspectives. For example, user engagements over news
articles, including posts and comments, contain justification about the news article.
Since these auxiliary data can provide rich contextual information for more accurate
and interpretable detection, it is essential to understand and detect misinformation
by integrating multiple sources.

This task is challenging because the proposed methods should be able to exploit
auxiliary supervision for learning with limited data and effectively detect misinforma-
tion. In this regard, three different scenarios related to detecting and understanding
online misinformation are discussed in this dissertation. First, the rich information
available in user comments on social media suggests that we could investigate whether
the latent sentiments hidden in user comments can help distinguish fake news from re-
liable content. A sentiment-aware fake news detection method is proposed to account
for users’ latent sentiments. Second, users’ lack of sufficient prior knowledge suggests
the misinformation detection method to reflect the interpretability of the results than
prediction labels. A knowledge-guided model is proposed to solve the challenging
limitation on social contexts in domains like healthcare. Third, human labeling is
time-consuming and costly. This problem is further exacerbated in misinformation
detection scenarios, when the datasets are imbalanced. A novel active learning
framework is proposed to improve the model performance at a lower cost in detecting
fraudsters in online websites. Finally, this work is closed by future directions on inter-
vening the dissemination of misinformation at an early stage. When the labeled data
is limited in a new genre or language, transferring the knowledge from high-resource
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domains to the new, low-resource domain is a promising solution. The findings of this
dissertation significantly expand the boundaries of online misinformation detection
and inspire improvements on general machine learning methods.
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Chapter 1 |
Introduction

In recent years, due to the explosive growth of online contents, misinformation for
different political agendas and commercial gains has been coming out in a great
amount and widespread online. During the US presidential election in 2016, for
instance, misinformation has caused a significant social impact on the election results.
For example, “Pizzagate”, a scandal that never was true, quickly went viral on multiple
social media platforms. A report on the 2016 election indicates that fake news websites
rely on online social media for 48% of traffic, which is a much higher share than that
of other sources [1]. Therefore, to mitigate the problems of misinformation, how to
detect it effectively has become an important research problem, which will be the
main task of this paper.

1.1 Background and Scope
In this section, some related areas are introduced as background and compared with
this proposal to clarify the scope here.

How to effectively detect misinformation and prevent its diffusion online has
gained much attention in recent years. To provide accurate misinformation detection,
it is often useful to take an auxiliary source (e.g., social context and knowledge
base) into consideration. There are two aspects of complementary information in
misinformation detection.

First, social contexts such as users’ engagements are complementary information
that can improve detection performance and derive explanations. We can use the rich
information available in user comments to distinguish misinformation from reliable con-
tent. For example, user’s comments such as “I agree..she is a rock star” or “No.
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It’s a fake news story specifically targeting ‘conservative readers’.”,
may potentially add/remove different degrees of credibility to the news.

Second, a knowledge graph can provide additional information to misinformation
detection, as social context information is not always available and may not be useful.
For example, due to the lack of sufficient professional knowledge, users seldom respond
to healthcare information and cannot give accurate comments.

In addition to leveraging multi-source data, we can also exploit the labeled data
and pre-trained models to improve the current model performance at a lower cost.
For example, as it is often time-consuming, labor-intensive, and expensive to acquire
sufficient labeled data for misinformation detection, we can use active learning to
select the most relevant example for human labelers.

1.2 Subproblems in Different Scenarios
Based on the general idea of misinformation detection, in this proposal, I propose to
consider different aspects as subproblems in different scenarios.

1.2.1 Sentiment Aware Misinformation Detection

In this scenario, I propose to study the problem of fake news detection employing the
sentiment analysis idea in user comments. This problem is technically difficult for
two reasons. On one hand, the learned features of user’s representation are usually
high dimensional and sparse, which cannot be processed by traditional methods.
On the other hand, as each modality has an intrinsically different distribution, it is
challenging to fuse user’s representation with others. I have a primary study done to
solve this problem [2].

1.2.2 Knowledge Graph based Misinformation Detection

This scenario is a natural extension from Sec.1.2.1. Due to the lack of sufficient
professional knowledge, users seldom respond to information in specific domains such
as healthcare, which makes existing social context-based methods less applicable. In
the meanwhile, a knowledge graph, which is constructed from verified sources can
be used as an effective auxiliary for misinformation detection. Hence, we study a
novel problem of explainable healthcare misinformation detection by leveraging the
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medical knowledge graph. This is a non-trivial task due to two reasons: On the one
hand, healthcare information/texts and medical knowledge graph cannot be directly
integrated, as they have different data structures. On the other hand, social network
analysis techniques are not applied to the medical knowledge graph. This is one
future direction.

1.2.3 Active Learning based Fraud Detection

This scenario is an extension from Sec. 1.2.1 and Sec.1.2.2. Human labeling is time-
consuming and costly. This problem is further exacerbated in extremely imbalanced
class label scenarios, such as detecting fraudsters in online websites (e.g., Amazon,
Walmart). However, existing methods for active learning for graph data often assumes
that both data and label distributions are balanced. The challenge of this problem
lies in how to select the most relevant example for human labelers to improve the
model performance at a lower cost.

1.3 Overview of this Proposal
The next chapter introduces some related works to the general problem proposed. And
then each chapter contains research results or plans for each of first two subproblems
in Sec.1.2, followed by a chapter describing future research plan as the latter two
subproblems in Sec.1.2. Finally, a conclusion is followed.
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Chapter 2 |
Sentiment Aware Misinformation
Detection

2.1 Introduction
Fake news is a kind of misinformation that is spread deliberately to manipulate
public opinion, through traditional mass media and recent online social media. As
verified information about newly emerged and time-critical events can be hardly
obtained in a timely manner, it is critical to involve social contexts regarding fake
news detection. In this chapter, I will investigate whether the latent sentiment hidden
in user comments can potentially help distinguish fake news from reliable content.

Existing methods for detecting fake news can be generally categorized into two
categories based on the heterogeneity of the data, i.e., single-modal based and
multi-modal based. In single-modal based methods, a single type of, often textual,
information such as contents, profiles and descriptions are used. For instance, [3]
exploits the linguistic features of misinformation by comparing real news with fake
news. Similarly, [4] conducts fake news detection by evaluating the consistency
between the body and its claim given a news article. Note that as the content type of
news is not limited to only text, other data types such as images or videos could also
be utilized. In particular, in social media, fake news often comes with multi-modality
data including manipulated images, fake videos, or user comments, all of which
provide rich information for detecting fake news. As such, multi-modality based fake
news detection has gained increased attention. For example, [5] proposes a Recurrent
Neural Network (RNN) with an attention mechanism to fuse multi-modal data from
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tweets for rumor detection. In addition, [6] proposes the Event Adversarial Neural
Networks (EANN), which integrates multi-modal features of images and texts and
removes event-specific features via discriminator.

In addition to the issue of modality, another important idea is to exploit the
latent sentiment in user comments. Although user’s viewpoint has been proved to be
useful in fake news detection [7], there are few studies on the impact of user’s sen-
timent. User’s comments such as “I agree..she is a rock star” or “No. It’s
a fake news story specifically targeting ‘conservative readers’.”, may
potentially add/remove different degrees of credibility to the news in question. There-
fore, toward the detection of fake news, we propose to explore to employ both the
sentiment analysis in user comments as well as multi-modal fake news data.

In an attempt to solve this problem, these are several challenges. As for incorpo-
rating user’s sentiment into a detection procedure with multi-modal data, the first
step is to represent a user. Each user may comment on or “like” a particular type of
news. Such a representation can be measured by the correspondence between user’s
historical interest and type of news. However, this problem is technically difficult for
two reasons. On one hand, the learned features of user’s representation are usually
high dimensional and sparse, which cannot be processed by traditional methods.
On the other hand, as each modality has an intrinsically different distribution, it
is challenging to fuse user’s representation with others. For example, a user’s senti-
ment representation is sparse while the image feature is naturally dense, causing a
mismatch.

Overcoming these challenges, in this paper, we present a novel method, named as
Sentiment-Aware Multi-modal Embedding (SAME), with the emphasis on both sentiment
and multi-modality. We propose to use an end-to-end deep architecture to mitigate
the heterogeneity introduced by multi-modal data and capture the representation
of user’s sentiment better. To be specific, first, we use different networks to deal
with the triplet relationship among news publishers, users, and news. Second, an
adversarial mechanism is introduced to preserve the semantic similarity and enforces
the representation consistency between different modalities. To our best knowledge,
this is the first attempt to utilize adversarial learning to find semantic correlations
between different modalities in news content. Third, we model a user’s sentiment and
incorporate it into the proposed framework.

Our main contributions are as follows:
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• We propose an end-to-end deep framework to integrate different features of news
content for fake news detection. An adversarial mechanism is added to preserve
semantic relevance and representation consistency across different modalities.

• We validate the effectiveness of user sentiment through statistical analysis and
use users’ sentimental polarities to facilitate fake news detection.

• We empirically demonstrate that our proposed method, SAME, significantly
outperforms five state-of-the-art baselines in detecting fake news on social media
using two real-world benchmark datasets.

2.2 Related Work
In this section, we briefly review two related topics, i.e., fake news detection and
sentiment analysis.

2.2.1 Fake News Detection

In recent years, researchers have proposed a number of methods for fake news detection.
Interested readers are referred to [8, 9] for further information. From the perspective
of information used, fake news detection methods can be roughly divided into two
categories: single-modal and multi-modal based methods.

2.2.1.1 Single-modal based Methods

For single-modal based methods, existing works [3, 4, 10, 11] mainly analyze the
textual contents of news, including the headline and news content, and extract the
characteristics of fake news. Some researchers use methods in linguistics to distinguish
the fake news from the real ones. Others check the consistency between the news title
and content. For example, Rashkin et al. [3] specifically focus on political coverage
verification and fake news detection. They propose to exploit the linguistic features
of misinformation by comparing real news with fake news such as satire, hoaxes, and
propaganda. Jin et al. [10] assume the images plays a very important role in the news
propagation on the microblog. The distribution patterns between images of real and
fake news are quite different. Thus, they extract the image features from two aspects,
including visual content and statistics. In literature [4], Bhatt et al. conduct fake
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news detection by evaluating the consistency between the body and its claim given a
news article. Statistical and external features are used to build a unified classifier for
fake news detection. As the content type of news is not limited to text, the above
methods do not fully exploit the multi-modal data such as image, video, and network.
Thus, they do not yield satisfying results compared with multi-modal based methods.

2.2.1.2 Multi-modal based Methods

In social media, besides the textual features, news often includes various types of
data, which provides more comprehensive features for detecting fake news. Thus,
investigating multi-modal data for fake news detection is attracting increasing atten-
tion [5–7,12–15]. A survey on different content types of news and their impacts on
readers can be found in [16].

In general, multi-modal based fake news detection focus on extracting features
from news content, including news publisher, textual contents and image/video. By
using the three types of features mentioned, different kinds of news representations can
be built, which capture discriminative aspects of news. In multimedia based methods,
researchers usually use deep networks to capture both visual and textual information
of news and apply classification models to distinguish fake news from the real ones. In
the literature [5], the authors propose an attention based Recurrent Neural Network to
fuse the multi-modal data from tweets for rumor detection. An attention mechanism
is added to find the correlations between images and texts. The architecture of
Event Adversarial Neural Networks (EANN) is proposed in literature [6]. Both
text and image in an article are taken into consideration. The authors train an
event discriminator in order to eliminate the effects of the event-specific features and
maintain the common features among all these studied events.

Despite the success of multi-modal based fake news detection approaches, few of
them explicitly model user sentiments towards news for fake news detection; while
sentiments are very strong signal which have great potential for improving fake news
detection performance. Therefore, in this paper, we investigate a novel problem of
exploring user sentiments for fake news detection with multi-modal data.
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2.2.2 Sentiment Analysis

Users’ opinions or sentiments towards posts or products in social media have been
demonstrated to be very effective for many social media mining tasks such as user
rating prediction [17,18], recommender system [19] and stock movement prediction [20].
Detecting user sentiments or stances has become a popular task. In literature [21]
authors conduct user’s belief classification and in literature [22] authors conduct
stance detection. Zhang et al. [11] focus on news stance detection. The proposed
model takes the headline and body of an article, and generates the probabilities
of four news stances including “agree”, “disagree”, “discuss” and “unrelated”. The
authors use ranking-based to address the problem brought by classification-based
algorithms that a clear distinction exists between any two stances. In literature [23],
the authors predict the stance of a set of texts representing facts with respect to a
given claim by using end-to-end memory networks.

As sentiment features have shown promising results in improving the performance
of news stance detection, we introduce sentiment features into the fake news detection
task.

2.3 Preliminary Data Analysis
Users can express their emotions or opinions, through comments such as sensational
or skeptical reactions [24]. These features are useful when detecting fake news. In this
section, we conduct preliminary data analysis to demonstrate that users’ sentiments
towards real news and fake news are statistically different, which lays a foundation for
integrating sentiments for fake news detection. Next, we first introduce the datasets
followed by preliminary data analysis.

2.3.1 Datasets

For preliminary data analysis, we adopt two widely used multi-modal fake news
detection datasets, i.e., PolitiFact and GossipCop, which are publicly available from
a fake news dataset repository FakeNewsNet1 [24]. For both datasets, each news
entity contains news content, corresponding images, users’ retweets/replies and news

1https://github.com/KaiDMML/FakeNewsNet
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Table 2.1: The statistics of the two real-world datasets.

Dataset Politifact GossipCop
# Real News 624 16,817
# Fake News 432 5,323

# User 558,937 1,390,131
# User Replies 552,698 379,996

profiles (source, publisher and keywords). Each news has 0 to 1,000 user comments.
Some users didn’t leave a comment when they retweet, so we excluded such kind of
user engagement data.

• PolitiFact is a fact-checking website that targets on political news. It rates
the authenticity of claims by elected officials and others. The two datasets
are crawled from Twitter in order to get users’ comments. It contains 432/624
(fake/real) news.

• GossipCop is a fact-checking website for celebrity reporting. It investigates the
credibility of entertainment stories in magazines, newspapers and social media,
to ascertain whether they are real or not. It contains of 5,323/16,817 (fake/real)
news.

The statistics of the datasets are summarized in Table 2.1.

2.3.2 User Sentiment Analysis Toward Fake and Real News

Intuitively, the comments under fake news can be roughly divided into three classes:
(1) Agree (from users who believe in the news); (2) Discuss (from users who doubt
the authenticity of the news); and (3) Disagree that the original news is false news
(from users who do not believe in the news).

Usually, the first and third types of comments contain polarized emotions (“Nega-
tive” and “Positive”), which can be seen from User1 and User4 in Figure 2.1. The
second type of comment does not contain such strong emotions. The sentiment is
more neutral in skeptical comments or discussions.

Here we perform the sentiment analysis on the users’ comments with VADER2 [25],
which is a lexicon and rule-based tool to predict the sentiment expressed on social

2https://github.com/cjhutto/vaderSentiment
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Figure 2.1: Sentiment polarity distribution of different stances (“Agree”, “Discuss”
and “Disagree”) in users’ comments.

Table 2.2: The sentiment polarity distribution under news.

Negative Neutral Positive

PolitiFact Fake News 12.6 73.2 14.2
Real News 9.6 77.9 12.5

GossipCop Fake News 9.8 69.2 21.0
Real News 8.9 74.4 16.7

media. For each news piece, we obtain all the replies for this news and apply VADER
to predict the sentiment as negative, neutral or positive. As can be seen from Table
2.2, users’ comments under fake news often contain more sentiment polarities and are
less neutral.

To statistically verify our observation, we conduct hypothesis testing. Positive,
neutral and negative sentiment polarities are defined by VADER. For each dataset,
two equal-sized collections of tweets are chosen. Each of them contains 50 tweets and
each tweet has at least 50 comments. One collection contains the comments randomly
selected from fake news, while the other contains comments randomly selected from
real news. We use two vectors sf and sr to denote the sentiment polarities of two
groups respectively, where the sentiment polarity is the sum of positive and negative
sentiment polarity. A two-sample one-tail t-test is conducted to validate whether
there is sufficient statistical correlation to support the hypothesis that the sentiment
polarity of the first collection is greater than that of the second.

Let µf be the mean of sentiment polarities of the comment in the fake news
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collection and µr the mean of real news. The null hypothesis is H0, and the alternative
hypothesis is H1. Here the hypothesis of interest can be expressed as:

H0 : µf − µr ≤ 0

H1 : µf − µr > 0
(2.1)

The results show that there is statistical evidence on Politifact dataset, with
t = −1.6927, df = 98, p− value = 0.04684 to reject the H0 hypothesis, which is the
evidence that the sentiment polarity of comments under fake news is greater than
under real news. And we also find statistical evidence on GossipCop dataset, with
t = −2.1012, df = 98, p− value = 0.01909.

2.4 Proposed Method
As we have validated the impact of user’s sentiment, in this section, we introduce the
proposed multi-modal embedding model by incorporating such information for fake
news detection. In multi-modal fake news, we have four objects: news image, content,
profile and user comments. The news is multi-modal data which consists of three
modalities. Assume that we have N training pairs D = {Ti, ri}N

i=1 in which Ti denotes
news i and ri ∈ {0, 1} denotes its ground truth label. Further, let Ti = (xi, yi, zi),
where xi denotes the feature vectors of the image modality, yi denotes the feature
vectors of the text modality and zi can be the one-hot code of news profile related
to news i. In addition, we are also given a similarity matrix S, where Sij evaluates
the similarity of news i and news j. The similarity is defined by the shared user’s
sentiment. For example, we can say that news i and news j are similar if they share
multiple sentiment words.

We first introduce how to learn the latent news presentation from the multi-modal
news data by learning a joint embedding function f(Ti) map the news to space RM ,
where different modalities are distributed consistently. To preserve the similarity
matrix S, the distance between embedding vectors hi = f(Ti) and hj = f(Tj) should
be small if Sij is relatively large. Thus, a hybrid similarity loss is proposed to embed
the user’s sentiment into the model. The objective is to maximize the similarity
between similar news triplets and minimize it between all dissimilar news triplets.
Finally, once each data source is mapped to RM , we use the embedding vector hi to
predict the news label ri.
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Figure 2.2: Multi-modal Embedding (SAME) accepts input in a triplet of news
publisher, user and news, and processes them through a deep network: (1) three
different networks to deal with the triplet including news publishers, users, and
news; (2) adversarial mechanism to enforce the same distribution between different
modalities; and (3) a novel hybrid similarity loss to model the user’s representation
and incorporate it into the proposed framework.

2.4.1 Multi-Modal Feature Extractor

The hybrid deep architecture for learning multi-modal correlation embedding is shown
in Fig. 2.2, which accepts input in a triplet of news image, content and profile, and
processes them through a deep network: (1) three different networks to deal with
the triplet including news image, content and profile; (2) adversarial mechanism to
enforce the same distribution between different modalities; and (3) a novel hybrid
similarity loss to model the user’s sentiment and incorporate it into the proposed
framework.

We built the image network based on VGGNet [26], which is pre-trained on
the ImageNet database [27]. To fit CNN into our SAME model, we reserve the
first seven layers and replace the eighth layer by a layer with R nodes, fchi. As
for the text network, we use GloVe [28] to process text y, in order to capture the
complex characteristics of word use (e.g., syntax and semantics). The obtained text
representation is used as the input of the text network. We then adopt the Multi-
Layer Perceptron (MLP) comprising two fully connected layers. The second layer
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fcht has R hidden units, which transforms the network activation to R-dimensional
representation. As for profile information, the features are discrete values such as
the topic. So we use the one-hot encoding to represent the profile z, and feed it to a
two-layer fully-connected MLP, and get the representation fchp. As for the adversarial
networks, we built the discriminator networks by using a three-layer feed-forward
neural network.

To integrate the three networks mentioned above, a fully connected layer with M

hidden units, which takes the representations of three networks as input, is added on
top of the architecture. We denote the multi-modal feature extractor for news i as
f (v)(T(v)

i ; θa) ∈ RM , which corresponds to the output of the hybrid deep network for
multi-modal correlation embedding. Here, θa is the network parameter to be learned.

2.4.2 Adversarial Learning

With the above network, however, different modalities are usually distributed incon-
sistently, which is not beneficial if we use the concatenation for fake news detection.
In order to bridge this modality gap, we introduce an adversarial learning mecha-
nism. We use two discriminators for image and profile modalities to investigate their
distributions. For the image (profile) discriminator, the inputs are image (profile)
features and text features obtained from the feature extractor, and the output is
a binary label, either “0” or “1”. Specifically, we denote the modality label for the
textual feature that has been generated from the text network as “1” and define the
modality label for image (profile) semantic modality features generated from image
network (profile network) as “0”. We feed the outputs of image and text network
into one discriminator and feed the outputs of profile and text networks into the
other discriminator. The loss functions of the two discriminators can be defined as
Li

a and Lp
a. The two discriminators act as the two adversaries while we are training

the SAME.
The loss function Li

a can be written as follows:

min
θc

Li
a =

2×N∑
j=1
||Di,t(fch∗

j)− d∗
j ||22, (2.2)

where fch∗
j is semantic features obtained from image network or text network, the

modality label is d∗
j . Specifically we have di

j = 0 denoting the modality label for
image and dt

j = 1 denoting the label for text. The result of Eqn. (2.2) is that the

13



discriminator acts as a binary classifier Di,t(fch∗
j ; θc), classifying the input features

into class “1” and class “0”. Similarly, we have Lp
a.

The above idea motivates a MinMax game between the feature extractor and the
event discriminator. On one hand, the feature extractor tries to fool the modality
that the discriminator tries to maximize the discrimination loss. On the other hand,
the modality discriminator tries to discover the modality-specific information included
in the feature representations to recognize the modality label. In the experiments
(section 2.5.4), we demonstrate the effectiveness of adversarial learning in detecting
fake news.

2.4.3 Modeling Sentiment Correlation

In order to make the learned joint embeddings maximally preserve the similarity
information, we propose a novel hybrid similarity loss by considering such two issues:
(1) entity triplets with lower similarity should be separated and have discriminative
embeddings; (2) entity triplets should have similar embeddings only if they are similar
in the original feature spaces.

To address the first issue, we propose the Graph Affinity Metric between news i

and news j. The Graph Affinity Metric is defined as follows

Definition 1 Let Gij denotes the similarity of sentiment polarity distribution between
the comments of news i and j. We can define the Graph Affinity Metric between two
news as Gij.

Then, we define the Local Similarity Metric to ensure the local similarity in each
news to ensure the second issue above.

Definition 2 The Local Similarity Metric Lij,m(m = 1, 2, 3) of each modality involves
the local similarity information. On modality x, we have

L
(v)
ij,1 =

1, if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0. otherwise

where Nk(·) denotes the set of k-nearest neighbors. Similarly, we have Lij,2 and Lij,3

defined on modalities y and z respectively.
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According to our empirical study, we set the number of nearest neighbors to 5
throughout this paper.

To maintain the similarity between entities and preserve the local structural
information in the common embedding space, we propose a hybrid similarity loss loss
which ensures the learned embedding space meaningful:

min
θa

Lc = 1
2

N∑
i,j=1

Sij∥hi − hj∥2
2 (2.3)

where Sij = Gij + Lij,1 + Lij,2 + Lij,3.

2.4.4 Fake News Detector

In this section, we introduce how to detect fake news by using the M -dimensional
embedding. We use a fully connected layer with softmax, which is shown in Fig. 2.2.
Each network takes embedding vectors hiof news i as input.

We have a training set {ri}N
i=1, where ri ∈ {0, 1} denotes the ground truth label of

news i. The goal is to find a set of prediction function g, such that the label for any
news i can be predicted. We denote the fake news detector as g(v)(f (v)(T(v)

i ; θa); θb) ∈
R, where θb is the network parameter of the network for fake news detector.

Assume the ranking score is modeled as r̂i = [r̂i,0, r̂i,1], with r̂i,0 and r̂i,1 indicate
the predicted probability of label being 0 (real news) and 1 (fake news) respectively.
ri denotes the ground truth label of news. Thus, for each news, the goal is to minimize
the cross-entropy loss function as follows:

min
θa,θb

Lq = −ri log(r̂i,1)− (1− ri) log(1− r̂i,0) (2.4)

2.4.5 The Proposed Method: SAME

During the training, the feature extractor and the fake news detector work together to
minimize the detection loss Lq. Simultaneously, the feature extractor tries to fool the
discriminator to get a distribution agreement for different modalities by maximizing
the adversarial loss Li

a and Lp
a. The

The final objective function of the proposed SAME is:
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Jg = Lc + γLq

Ja = Li
a + Lp

a

(2.5)

where γ is a penalty parameter for trading off the relative importance of multi-modal
correlation and news label. We set γ = 1 based on empirical study.

If we put them together, we can obtain:

(θa, θb) = arg min
θa,θb

Jg(θa, θb)− Ja(θ̂c)

θc = arg max
θc

Jg(θ̂a, θ̂b)− Ja(θc)
(2.6)

All the parameters in the network are learned through RMSprop, which has been
widely used among existing methods. It is an adaptive learning rate method which
divides the learning rate by an exponentially decaying average of squared gradients.

2.5 Experimental Validation
In this section, we conduct experiments to demonstrate the effectiveness of the
proposed method SAME. We first describe experimental settings. We then compare
SAME against several state-of-the-art baselines for fake news detection followed by
an ablation study to understand the contribution of each component of SAME. The
experiments are conducted on two real-world datasets, PolitiFact and GossipCop,
introduced in Section 2.3.1.

2.5.1 Compared Methods

We compare SAME with several representative and state-of-the-art fake news detection
methods including KNN, SVM, TCNN-URG3 [13], EANN4 [6] and CSI5 [13]. Our
implementation of SAME is available here6.

• KNN: This determines the authenticity of the news based on the labels of its
neighbors, defined in Definition 2.

3We implemented the code by ourselves.
4https://github.com/yaqingwang/EANN-KDD18
5https://github.com/sungyongs/CSI-Code
6https://github.com/cuilimeng/SAME
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• SVM: We concatenate the features including the outputs of VGGNet, GloVe
and one-hot encoding, and sentiment polarity distribution vector as the input
of Linear SVM. We choose Linear SVM as it is suitable for high-dimensional
data.

• TCNN-URG: this method exploits the user’s historical responses to related
articles as soft semantic labels. TCNN generates the representation for each
article, which is used for further news classification. URG is trained to learn
the user’s responses to news articles, which can help the classification procedure
of TCNN when user’s response is not available in early detection.

• EANN: In this method, both text and image information are taken into
consideration. This method uses an event discriminator in order to eliminate
the effects of the event-specific features and maintain the common features
among all these studied events. We remove the event discriminator of this
method as our datasets do not have event labels.

• CSI: This method explores all of the news content, users’ responses to the news,
and the sources that users promote in detecting fake news. However, as our
datasets do not have time interval information in users’ comments, we modify
the codes accordingly.

For KNN, we set k = 5 based on empirical study. We use C = 1 in Linear SVM.
As for other baseline methods, we use the parameter settings in the paper or in
the released source code. For our method, we implemented it using Keras. The
news image is re-sized to 128 × 128 pixels. The image network is pre-trained on
the ImageNet classification task [27]. We fine-tune CONV1-FC7 initialized from the
pre-trained model, and train layer FCH via back-propagation. Each news content is
processed through GloVe. For the text network, we use a two-layer neural network,
in which the first layer has 4,096 ReLU units with a dropout rate of 0.5. The news
profile is represented by one-hot encoding, which is fed into a two-layer neural network
as well. We fix the mini-batch size as 128, and set the learning rate as 0.001.

2.5.2 Evaluation Metrics

As the data is imbalanced, following the common way, we use Macro F1 and Micro F1
as evaluation metrics. Macro Precision is the average precision of all classes, similarly,
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Macro Recall is the average recall of all classes. Macro F1 is the harmonic mean of
Macro Precision and Macro Recall. Macro F1 calculates metrics for each label, and
uses their unweighted mean. It does not take label imbalance into account. However,
Micro F1 does not calculate on each class, it calculates metrics by counting the total
true positives, false negatives and false positives globally.

2.5.3 Performance Comparison

We predict the score of the authenticity of news on two datasets respectively. We
randomly select x% of data for training and the remaining (100-x)% for testing.
To fully understand how SAME performs under different data size, we vary x as
{20, 40, 60, 80}. The process is performed for 5 times and the average performance
is reported in Table 2.3. From the experimental results, we make the following
observations:

• For the SVM method, it concatenates all the features together. However, the
results are far from satisfactory. We assume that the features used are highly
nonlinear, simple concatenation may cause dense features to dominate the
feature space and override the effects of the sparse ones.

• For other baseline methods, the information used is not comprehensive (including
visual, textual, profile and sentimental features), so the effects are not as good
as SAME.

• Compared against the best baseline, SAME achieves an absolute increase of
2.8%/3.0% on average in terms of Macro F1 and 4.0%/4.1% on average in terms
of Micro F1 on two datasets. This clearly demonstrates that SAME is able to
leverage heterogeneous data signals while integrating sentiments for effective
fake news detection.

2.5.4 Ablation Study

In this section, we conduct an ablation study to fully understand the contribution of
each component in SAME. We remove several critical modules in SAME that process
images, news profile, and social sentiment (and their corresponding discriminator and
loss function) as follows:
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• SAME without image data (SAME w/o I): this method removes the images
network.

• SAME without discriminators (SAME w/o D): this methods removes the two
discriminators.

• SAME without users’ sentiment information (SAME w/o S): social sentiment is
removed from the proposed model.

• SAME: this method is the proposed method, which incorporates not only the
three multi-modal networks, but also the sentiment information from users’
comments.

We report the Macro F1 and Micro F1 on both datasets in Table 2.4. We can
observe that all the components: visual and textual features, social context features
and adversarial mechanisms are indispensable for achieving the best performance of
SAME. Different components can provide complementary information, which also
verifies the effectiveness of our proposed framework.

2.6 Conclusion and Future Work
In this paper, we investigate a novel problem of exploring sentiment for fake news
detection with multi-modal data. We first use statistical analysis to test the hypothesis
in order to validate the effectiveness of user’s sentiment. Then, we propose a new
deep multi-modal embedding architecture for fake news detection, which unifies
multi-modal data with adversarial learning and incorporates user’s sentiment. The
experimental results demonstrate the effectiveness of our method as well as the
roles of user’s sentiment in fake news detection. In addition, we also examine the
necessity of each module in the proposed method and thus test the fusion network
proposed. The outcome of this work not only has a significant contribution to building
a machine-based solution for detecting fake news, but also has a far-reaching impact
on society by helping improve the quality of information.

There are several interesting directions that need further investigation. First,
to mitigate the problem of fake news better, extending SAME to be able to do the
early detection is important yet challenging (due to the lack of important signals).
Second, most of the current fake news detection methods solely focus on the detection.
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However, in addition to detecting fake news, being able to “explain" why one is fake
news is equally important.
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Chapter 3 |
Knowledge Graph based Misin-
formation Detection

3.1 Introduction
The popularity of online social networks has promoted the growth of various ap-
plications and information, which also enables users to browse and publish such
information more freely. In the healthcare domain, patients often browse the Internet
looking for information about illnesses and symptoms. For example, nearly 65% of
Internet users use the Internet to search for related topics in healthcare [29]. However,
the quality of online healthcare information is questionable. Many studies [30,31] have
confirmed the existence and the spread of healthcare misinformation. For example, a
study of three health social networking websites found that 54% of posts contained
medical claims that are inaccurate or incomplete [32].

Healthcare misinformation has detrimental societal effects. First, the community’s
trust and support for public health agencies are undermined by misinformation, which
could hinder public health control. For example, the rapid spread of misinformation
is undermining trust in vaccines crucial to public health1. Second, health rumors that
circulate on social media could directly threaten public health. During the 2014 Ebola
outbreak, the World Health Organization (WHO) noted that some misinformation
on social media about certain products that could prevent or cure the Ebola virus
disease has led to deaths2. Thus, detecting healthcare misinformation is critically
important.

1https://www.nature.com/articles/d41586-018-07034-4
2https://www.who.int/mediacentre/news/ebola/15-august-2014/en/
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Lower body mass index (BMI) is consistently 
associated with reduced type II diabetes risk, 
among people with varied family history, genetic 
risk factors and weight, according to a new study.

(BMI, Diagnoses, Diabetes)

Besides chemicals, cancer loves sugar. A study at 
the University of Melbourne, Australia discovered 
a strong correlation between sugary soft drinks 
and 11 different kinds of cancer, including 
pancreatic, liver, kidney, and colorectal.

(Sugar, CreatesRiskFor, Nonalcoholic Fatty 
Liver Disease) 
(Liver Diseases, CreatesRiskFor, Liver Cancer)

Herbal supplement found to be more effective at 
managing diabetes than metformin drug.

(Herbal Supplement, DoesNotHeal, Diabetes)

Triples from KG

(Family History, Causes, Diabetes)

(Metformin, Heals, Diabetes)

(Weight Gain, CreatesRiskFor, Diabetes)

Fact

Misinformation

Misinformation

Figure 3.1: Healthcare article examples and related triples from a medical knowledge
graph(KG). The triples can either enhance or weaken the augments in the articles.

Though misinformation detection in other domains such as politics and gossips have
been extensively studied [1, 3, 16], healthcare misinformation detection has its unique
properties and challenges. First, as non-health professionals can easily rely on given
health information, it is difficult for them to discern information correctly, especially
when the misinformation was intentionally made to target such people. Existing
misinformation detection for domains such as politics and gossips usually adopt
social contexts such as user comments to provide auxiliary information for detection
[7,14,33,34]. However, in the healthcare domain, social context information is not
always available and may not be useful because users without professional knowledge
seldom respond to healthcare information and cannot give accurate comments. Second,
despite the good performance of existing misinformation detection methods [6],
the majority of them cannot explain why a piece of information is classified as
misinformation. Without proper explanation, users who have no health expertise
might not be able to accept the result of the detection. To convince them, it
is necessary to offer an understandable explanation of why certain information is
unreliable. Therefore, we need some auxiliary information that can (1) help detect
healthcare misinformation; and (2) provide easy to understand professional knowledge
for an explanation.

The medical knowledge graph, which is constructed from research papers and
reports can be used as an effective auxiliary for healthcare misinformation detection, to

24



find the inherent relations between entities in texts to improve detection performance
and provide explanations. In particular, we take the article-entity bipartite graph
and medical knowledge graph as complementary information, into consideration to
facilitate a detection model (See Figure 3.1). First, article contents contain linguistic
features that could be used to verify the truthfulness of an article. Misinformation
(including hoaxes, rumors and fake news) is intentionally written to mislead readers
by using exaggeration and sensationalization verbally. For example, we can infer
from a medical knowledge graph that Sugar is not directly linked to Liver Cancer,
however, the misinformation indicates that there is a “strong correlation” between
the two entities. Second, the relation triples from a medical knowledge graph can
add/remove the credibility of certain information, and provide explanations to the
detection results. For example, in Figure 3.1, we can see that the triple (BMI,
Diagnoses, Diabetes) and two more triples can directly verify that the article is real,
while the triple (Herbal Supplement, DoesNotHeal, Diabetes) can prove that the
saying in an article is wrong. Above all, it is beneficial to explore the medical graph
for healthcare misinformation detection. And to our best knowledge, there is no prior
attempt to detect healthcare misinformation by exploiting the knowledge graph.

Therefore in this paper, we study a novel problem of explainable healthcare
misinformation detection by leveraging the medical knowledge graph. Modeling the
medical knowledge graph with healthcare articles is a non-trivial task. On the one
hand, healthcare information/texts and medical knowledge graph cannot be directly
integrated, as they have different data structures. On the other hand, social network
analysis techniques are not applied to the medical knowledge graph. For example,
recommendation systems would recommend movies to users who watched a similar
set of movies. However, in the healthcare domain, two medications are not necessarily
related even if they can heal the same disease. To address the above two issues, we
propose a knowledge guided graph attention network that can better capture the
crucial entities in news articles and guide the article embedding. We incorporate
the Article-Entity Bipartite Graph and a Medical Knowledge Graph into a unified
relational graph and compute node embeddings along with the graph. We use the
Node-level Attention and BPR loss [35] to tackle the positive and negative relations
in the graph. The main contributions of the paper include:

• We study a novel problem of explainable healthcare misinformation detection by
leveraging medical knowledge graph to better capture the high-order relations
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between entities;

• We propose a novel method DETERRENT (knowleDgE guided graph aTtention
nEtwoRks foR hEalthcare misiNformation deTection), which characterizes
multiple positive and negative relations in the medical knowledge graph under
a relational graph attention network; and

• We manually build two healthcare misinformation datasets on diabetes and can-
cer. Extensive experiments have demonstrated the effectiveness of DETERRENT.
The reported results show that DETERRENT achieves a relative improvement
of 1.05%, 4.78% on the Diabetes dataset and 6.30%, 12.79% on the Cancer
dataset comparing with the best results in terms of Accuracy and F1 Score.
The case study shows the interpretability of DETERRENT.

3.2 Related Work
In this section, we briefly review two related topics: misinformation detection and
graph neural networks.
Misinformation Detection. Misinformation detection methods generally focus on
using article contents and external sources. Article contents contain linguistic clues
and visual factors that can differentiate the fake and real information. Linguistic
features based methods check the consistency between the headlines and contents [4],
or capture specific writing styles and sensational headlines that commonly occur in
fake content [36]. Visual-based features can work with linguistic features to identify
fake images [6], and help to detect misinformation collectively [2, 33].

For external sources based approaches, the features are mainly context-based.
Context-based features represent the information of users’ engagements from online
social media. Users’ responses in terms of credibility [12], viewpoints [34] and
emotional signals [2] are beneficial to detect misinformation. The diffusion network
constructed from users’ posts can evaluate the differences in the spread of truth
and falsity [37]. However, users’ engagements are not always available when a news
article is just released, or users lack professional knowledge of relevant fields such as
medicine. Knowledge graph (KG) can address the disadvantages of current methods
relying on social context and derive explanations to the detection results. Some
researchers use knowledge graph based methods to decide and explain whether a
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(Subject, Predicate, Object) triple is fake or not [38–40]. These methods use the
score function to measure the relevance of the vector embedding of the subject and
vector embedding of the object with the embedding representation of predicate. For
example, KG-Miner exploits frequent predicate paths between a pair of entities [41].
Other researchers use news streams to update the knowledge graph [42].

Hence in this paper, we study the novel problem of knowledge guided misinforma-
tion detection, aiming to improve misinformation detection performance in healthcare,
and provide a possible interpretation of the result of detection simultaneously.
Graph Neural Networks. Graph Neural Networks (GNNs) refer to the neural
network models that are applied to graph-structured data and aim to learn node
embeddings by aggregating local neighborhood information. Several variants of GNN
have been proposed to improve its representation capability and efficiency. GCN [43]
tries to learn node embeddings in a semi-supervised fashion using per-neighbor
normalization, instead of simply averaging all the neighborhood information. GAT [44]
extends GNN by incorporating the attention mechanism; thus, each neighboring node
can have a different level of contribution to the central node. R-GCN [45] is also
an extension of GCN which is suitable for large-scale relational data. It is an entity
encoder model that uses a new propagation model in the forward-pass update of
entities to be able to handle relational data. RGAT [46] takes advantage of both
the attention mechanism and R-GCN to build an efficient graph classification model
suitable for relational input data. Signed Networks [47–50] are variants of GCNs
applicable to the signed graph domain, in which each edge has a positive or negative
sign. These methods benefit from the balance theory in social psychology to be
able to correctly captures negative and positive links in the aggregating process and
propagate information across layers.

However, existing methods are not suitable for modeling the positive and negative
relations in the medical knowledge graph, as mentioned in the introduction. In this
work, we model the medical knowledge graph under a relational graph attention
network, and use BPR loss to capture positive and negative relations.

3.3 Problem Formulation
In this section, we describe the notations and formulate medical knowledge graph
guided misinformation detection problem. The medical knowledge graph describes
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the entities collected from the medical literature, as well as positive/negative rela-
tions (e.g., Heals/DoesNotHeal) among entities. For example, (Calcium Chloride,
Heals, Hypocalcemia) contains a positive relationship, but (Actonel, DoesNotHeal,
Hypocalcemia) has a negative relationship.

Definition 3 Medical Knowledge Graph: Let Gm = {E ,R, R−, T , T −} be a
knowledge graph, where E , R, R−, T and T − are the entity set, positive relation set,
negative relation set, positive subject-relation-object triple set and negative triple set,
respectively. The positive triples are presented as {(ei, r, ej)|ei, ej ∈ E , r ∈ R}, which
describes a relationship r from the head node ei to the tail node ej. Similarly, negative
triples are represented as {(ei, r, ej)|ei, ej ∈ E , r ∈ R−}.

We denote D as the health-related article set. Each article S ∈ D contains |S|
words, S = {w1, w2, . . . , w|S|}. We perform entity linking to build the word-entity
alignment set {(w, e)|w ∈ V , e ∈ E}, where (w, e) means that word w in the vocabulary
V can be linked with an entity e in the entity set. To capture the co-relationships
of articles and entities in a medical knowledge graph, we define the article-entity
bipartite graphs as follow.

Definition 4 Article-Entity Bipartite Graph: The article-entity bipartite graph
is denoted as Gae = (D ∪ E ,L), where L is the set of links. The link is denoted as
{(S, Has, e)|S ∈ D, e ∈ E}. If an article S contains a word that can be linked to
entity e, there will be a link “Has” between them, otherwise none.

Exploiting the knowledge path between entities is of great importance. Here we
formally define the knowledge path.

Definition 5 Knowledge Path: A knowledge path between entity e1 and ek is
denoted as e1, r1, e2, r2 . . . , rk−1, ek, where ek ∈ E, rk ∈ R and (ek−1, rk−1, ek) ∈ T .

Consider such a knowledge path: e1, r1, e2, r2, e3, of which the two relations are
(Diabetes, CreatesRiskFor, Kidney Disease) and (Kidney Disease, Causes, Edema).
The two relations build a path between “diabetes” and “edema”, which implies a
potential link between the two disorders. Such a knowledge path can add credi-
bility to the article mentioning these two disorders. Conversely, if two words are
not reachable in a knowledge graph, such two words are largely irrelevant, which
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reduces the credibility of related articles. For example, although “bipolar disorder”
and “fenofibrate” may be the causes of “diabetes”, there is no strong connection
between the two entities themselves from a medical perspective. However, existing
text classification methods regard ‘bipolar disorder” and “fenofibrate” as related as
they both co-occur with “diabetes” a lot. Hence, we argue that considering knowledge
paths between words through a knowledge graph can provide medical evidence in
healthcare misinformation detection, which yields higher detection accuracy.

With the above notations and definitions, we formulate the knowledge guided
misinformation detection task as follows:

Problem 1 (Medical Knowledge Graph Guided Misinformation Detection)
Given a set of healthcare articles D, their corresponding label set Y, and the medical
knowledge graph G, the goal is to learn a prediction function f for distinguishing
whether an article is fake.

3.4 Methodology
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Figure 3.2: Illustration of the proposed DETERRENT model. The left subfigure
shows the Knowledge Guided Embedding Layers of DETERRENT, and the right
subfigure presents the Information Propagation Net of DETERRENT. The Information
Propagation Net is performed on the unified graph of Article-Entity Bipartite Graph
and Medical Knowledge Graph, which has positive (in black) and negative (in red)
relations.

Our proposed framework consists of three components, which is shown in Figure
3.2: 1) an information propagation net, which propagates the knowledge between
articles and nodes by preserving the structure of KG; 2) knowledge aware attention,
which learns the weights of a node’s neighbors in KG and aggregates the information
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from the neighbors and an article’s contextual information to update its representation;
3) a prediction layer, which takes an article’s representation as input and outputs a
predicted label. Next, we introduce the details of each component.

3.4.1 Information Propagation Net

The medical knowledge graph can provide medical evidence in healthcare misin-
formation detection. To fully utilize the medical knowledge graph for healthcare
misinformation detection, motivated by previous work [42, 45], we leverage the inher-
ent directional structure of the medical database to learn the entity embedding. To
propagate the information from the knowledge graph to the article, we incorporate the
Article-Entity Bipartite Graph and Medical Knowledge Graph into a unified relational
graph, and add a set of self-loops (edge type 0) denoted as A = {(ei, 0, ei)|ei ∈ E},
which allows the state of a node to be kept. Hence, the new graph is defined
as G = {E ′,R′,R−, T ′, T −}, where E ′ = E ∪ D, R′ = R ∪ R− ∪ {Has, 0} and
T ′ = T ∪ T − ∪ L ∪ A.
Information Propagation: As there are multiple relations in a graph, we use
R-GCN [45] to model the relational data, which is very effective in modeling multi-
relational graph data. In R-GCN, each node is assigned to an initial representation
h(0)

i . The layer-wise propagation rule updates the node representation using the
representations of its neighbors in the graph in the (l + 1)-th layer, yielding the
representation h(l+1)

i as follows:

h(l+1)
i = σ

 ∑
r∈R′

∑
(j,r,i)∈T ′

1
ci,r

Wrh(l)
j

 , (3.1)

where ci,r is a normalization factor which is usually set to the number of neighbors
of node i ∈ E ′ under relation r ∈ R′, Wr is a learnable edge-type-dependent weight
parameter and σ(·) denotes an activation function (we use LeakyReLU in this paper).
Node-level Attention: Each entity has relations with multiple entities. Not all
relations are equally important for the healthcare misinformation detection problem.
However, each neighbor has different importance to the node representation. Thus,
we introduce the attention mechanism into the Information Propagation in Eq. (3.1)
to assign more weights to important neighboring nodes, and the node representation
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is computed as the weighted sum of neighbors’:

h(l+1)
i = σ

 ∑
r∈R′

∑
(j,r,i)∈T ′

αr
ijWrh(l)

j

 (3.2)

where αr
ij measures the importance of node i for a neighbor j, which is calculated as

follows:
ur

ij = Wr(h(l)
i ∥ h(l)

j ),

αr
ij =

exp(arur
ij)∑

(k,r,i)∈T ′ exp(arur
ik)

(3.3)

where ar is the learnable parameter that weighs different feature dimensions of the
node representation.

An issue of Eq. 3.2 is that, with the increasing number of relation types, the
model will be quickly over-parameterized. To alleviate this problem, we apply Basis
Decomposition [45] for regularization. This approach decomposes the weight matrix
into a linear combination of several basic matrices, which largely decreases the number
of model parameters.
Modeling Negative Relations: Since negative relations have different effects on
the target node compared with positive relations, they should be treated separately.
For example, the following three positive triples between four entities in a medical
knowledge graph: 1) Calcitriol can heal Calcium Deficiency; 2) Actonel can heal
Calcium Deficiency; and 3) Calcitriol can alleviate Hypocalcemia. Intuitively,
we can infer that Actonel is a potential treatment for Hypocalcemia. However, a
negative triple in a medical knowledge graph indicates that Actonel does not heal
Hypocalcemia. Although the fact overrides our guess, it is explainable medically:
Both Calcitriol and Actonel can treat Calcium Deficiency. However, the active
ingredients in them are Vitamin D and Risedronate, respectively. Furthermore,
Vitamin D in Calcitriol can alleviate Hypocalcemia while Risedronate cannot. Thus,
when we are modeling the graph, we hope the discrepancy between two entities in
a negative triple is larger than in a positive triple. To achieve this goal, we choose
BPR loss [35]. It is commonly used in recommendation systems, to maximize the
difference between the scores of the positive and negative samples. Hence, we first
conduct inner product of entity representations as the matching score:

mij = (Wrhj)T tanh (Wrhi) (3.4)
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where hi and hj are the representations for entity ei and ej under relation r in each
layer. Then we use BPR loss to penalize the scores of two entities in a negative triple:

Lk =
∑

(ej ,r,ei)∈T ′

(ek,r,ei)∈T −

− ln σ (mij −mik)
(3.5)

where σ(·) is the Sigmoid function.
It is worth noting that the signed GCNs [49,50] use balance theory [51] in social

psychology to deal with the negative relations in GCN. The balance theory suggests
a positive relationship between two nodes, if there exists a knowledge path between
the nodes that have an even number of negative relations (e.g., “The enemy of
my enemy is my friend”). However, these methods cannot be used in modeling
the medical knowledge graph due to the complexity of entities (medications and
diagnoses). Distinct from the existing methods, our model uses a soft assumption on
the negative relations, which does not require the graph to be balanced.

3.4.2 Knowledge Guided Embedding Layers

After going through the Information Propagation Net, we can get the neighboring
attention weights of nodes (including articles). In this section, we propose Knowledge
Guided Embedding Layers to use the relevance scores of entities to an article to guide
the embedding of the article.
Text Encoder: To fully capture the contextual information of an article, we use
BiGRU [52] to encode word sequences from both directions of words. To be specific,
given the word embeddings {v1, v2, . . . , v|S|} of an article S, the article embedding is
computed as below:

−→s t = GRU(−→s t−1, vt)
←−s t = GRU(←−s t−1, vt)

(3.6)

We concatenate the forward hidden state −→s t and the backward hidden state ←−s t

as st = [−→s t,
←−s t], which captures the contextual information of the article centered

around word vt.
Since not all words equally contribute to the semantic representation of the article,

we leverage the attention mechanism to learn the weights to measure the importance
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of each word, and compute the article representation vector as follows:

c =
|S|∑
t=1

βtst (3.7)

where βt measures the importance of the t-th word for the article, which is calculated
as follows:

ut = tanh (Wcst + bc)

βt = exp(uT
t g)∑|S|

k=1 exp(uT
k g)

(3.8)

where ut is a hidden representation of vt obtained by feeding the hidden state vt to
a fully embedding layer, and g is a trainable parameter to guide the extraction of the
context.
Knowledge Guided Attention: To incorporate the knowledge guidance into the
textual information, we update the g in Eq. 3.8 by g′ to get the final attention
function:

g′ = γg + (1− γ)Wkhs (3.9)

where hs is the node embedding of the article S obtained from the Information
Propagation Net, Wk is a learnable transformation matrix and γ ∈ [0, 1] is a trade-off
parameter that controls the relative importance of the two terms. If we set γ = 1,
then g′ degenerates to g and our framework degenerates to a text classifier without
the information from the medical knowledge graph. It makes it easy to pre-train
the model to get good word embeddings for misinformation detection. The updated
context vector g′ takes both linguistic features from BiGRU and knowledge guidance
into consideration. The Information Propagation Net propagates more information
among similar entities and articles through the knowledge paths. We further use the
attention score βt to compute the articles representation vector c by Eq. 3.7.

3.4.3 Model Prediction

We have introduced how we can encode article contents through knowledge guidance.
We further feed the embeddings to a softmax layer for misinformation classification
as follows:

ŷ = Softmax(Wfc + bf ) (3.10)
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where ŷ is the predicted value which indicates the probability of the article being
fake. For each article, our goal is to minimize the cross-entropy loss:

Ld = −y log ŷ − (1− y) log(1− ŷ) (3.11)

where y ∈ {0, 1} is the ground truth label being 0 (fact) and 1 (misinformation),
respectively.

3.4.4 Training and Inference with DETERRENT

Finally, we combine the detection goal with BPR loss to form the final objective
function as follows:

Lfinal = Lk + Ld + η ∥Θ∥2
2 (3.12)

where Θ is the model parameters, and η is a regularization factor.
During the training, we optimize Lk and Ld alternatively. We use Adam [53] to

optimize the embedding loss and the prediction loss. Adam is a widely used optimizer,
which can compute individual adaptive learning rates for different parameters w.r.t.
the absolute value of gradient.

3.5 Experiments
In this section, we present the experiments to evaluate the effectiveness of DETER-
RENT. Specifically, we aim to answer the following evaluation questions:

• RQ1: Is DETERRENT able to improve misinformation classification performance
by incorporating the medical knowledge graph?

• RQ2: How effective are knowledge graph and knowledge aware attention, respec-
tively, in improving the misinformation detection performance of DETERRENT?

• RQ3: Can DETERRENT provide reasonable explanations about misinformation
detection results?

Next, we first introduce the datasets and baselines, followed by experiments to answer
these questions.
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Table 3.1: Statistics of datasets

Disease Diabetes Cancer
# Misinformation 608 1,476
# Fact 1,661 4,623
# Entities 1,932 2,873
# Relations 22,685 28,391

3.5.1 Datasets

As the medical knowledge graph, we use a public medical knowledge graph KnowL-
ife3 [54] with 25,334 entity names and 591,171 triples. We extract six positive
relations including Causes, Heals, CreatesRiskFor, ReducesRiskFor, Alleviates,
Aggravates and four negative relations including DoesNotCause, DoesNotHeal,
DoesNotCreateRiskFor, DoesNotReduceRiskFor.

To evaluate the performance of DETERRENT, we need a reasonably sized collection
of health-related articles of several diseases with labels. Unfortunately, there is no
available dataset of adequate size. For this reason, we have collected a health-related
article dataset whose years range from 2014 to 2019.

To gather real articles, we crawled from 7 reliable media outlets that have been
cross-checked as reliable, e.g., Healthline, ScienceDaily, NIH (National Institutes
of Health), MNT (Medical News Today), Mayo Clinic, Cleveland Clinic, WebMD.
For misinformation, we crawled verified health misinformation from Snopes.com and
Hoaxy API, which are a popular hoax-debunking site and a web tool respectively.
The detailed statistics of the datasets are shown in Table 3.1.

3.5.2 Baselines

We compare DETERRENTwith representative and state-of-the-art misinformation
detection algorithms, which are listed as follows:

• KG-Miner [41]: KG-Miner is a fast discriminative path mining algorithm that
can predict the truthfulness of a statement. We first use OpenIE [55] to extract
the relation triple of each sentence in the article. Then we compute the score of

3http://knowlife.mpi-inf.mpg.de/
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each triple when the subject, predicate, object are all in the KG, and average
all the score as output label.

• TransE [56]: TranE is a knowledge graph embedding method, which embeds
entities and relations into latent vectors and completes KGs based on these
vectors. We use TransE on the unified relational graph. The article embeddings
are used for misinformation detection.

• text-CNN [57]: text-CNN is a text classification model that utilizes convolutional
neural networks to model article contents, which can capture different granularity
of text features with multiple convolution filters.

• CSI\c [12]: CSI is a hybrid deep learning-based misinformation detection model
that utilizes information from article content and user response. The article
representation is modeled via an LSTM model with the article embedding via
Doc2Vec [58] and user response. For a fair comparison, the user features are
ignored. This abbreviated model is termed as CSI\c.

• dEFEND\c [59]: dEFEND utilizes a hierarchical attention neural network
framework on article content and co-attention mechanism between article content
and user comment for misinformation detection. For a fair comparison, the user
comments are ignored. This abbreviated model is termed as dEFEND\c.

• HGAT [60]: HGAT is a flexible heterogeneous information network framework
for classifying short texts, which can integrate any type of additional information.
We add Semantic Group to the entities as side information, such as Procedures
and Disorders.

• GUpdater [42]: GUpdater can update KGs by using the news. It is built upon
GNNs with a text-based attention mechanism to guide the updating message
passing through KG structures. Similar to TransE, we use article embeddings
for misinformation detection.

Note that for a fair comparison, we choose above contrasting methods that use
features from the following aspects: (1) only knowledge graph, such as TransE,
KG-Miner; (2) only article contents, such as text-CNN, CSI\c, dEFEND\c and
(3) both knowledge graph and article contents, such as HGAT and GUpdater. For
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knowledge graph methods, we feed output article embeddings into several traditional
machine learning methods and choose the one that achieves the best performance.
The methods include Logistic Regression, Multilayer Perceptron and Random Forest.
We run these methods by using scikit-learn [61] with default parameter settings.

3.5.3 Experimental Setup

3.5.3.1 Metrics

To evaluate the performance of misinformation detection algorithms, we use the
following metrics, which are commonly used to evaluate classifiers in related areas:
Accuracy, Precision, Recall, and F1 score.

3.5.3.2 Implementation Details

We implement all models with Keras. We randomly use the labels of 75% news
pieces for training and predict the remaining 25%. We set the hidden dimension of
our model and other neural models to 128. The word embeddings are initialized by
GloVe [28] and the dimension of pre-trained word embeddings is 100. For DETERRENT,
the entity embeddings and relation embeddings are pre-trained using Information
Propagation Net. We tested the depth of DETERRENT L = {1, 2, 3, 4} and learning
rate lr = {10−2, 10−3, 10−4}. We tried γ = {0.01, 0.05, 0.1, 0.5} and γ = 0.05 works
best. We set η = 0.05. For other methods, we follow the network architectures as
shown in the papers. For all models, we use Adam with a minibatch of 50 articles on
the Diabetes dataset and 100 on the Cancer dataset, and the training epoch is set as
10. For a fair comparison, we use cross-entropy loss.

3.5.4 Misinformation Detection (RQ1)

To answer RQ1, we first compare DETERRENT with the representative misinformation
detection algorithms introduced in Section 3.5.2, and then investigate the performance
of DETERRENT when dealing with different types of articles.

3.5.4.1 Overall Comparison

Table 3.2 summarized the detection performance of all competing methods (reporting
the average of 5 runs). From the table, we make the following observations:
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• For knowledge graph-based methods, TransE and KG-Miner, the performance
is less satisfactory. Although they are designed for KG triple checking and they
do not incorporate linguistic features in news information. TransE can capture
article-entity relations to differentiate fake and real news. When detecting fake
articles, KG-Miner is dependent on OpenIE to extract the relation triple from
the contents, and the performance of OpenIE tends to decrease as the sentence
gets longer.

• In addition, article content-based methods, text-CNN, CSI\c and dEFEND\c
perform better than those methods purely based on a knowledge graph. This
indicates that the methods can utilize the semantic and syntactic clues in
texts. dEFEND\c can better capture important words and sentences that can
contribute to the prediction through a hierarchical attention structure.

• Moreover, methods using both article contents and knowledge graph, DETER-
RENT, GUpdater, and HGAT, perform comparable or better than those methods
using either one of them, and those only based on the knowledge graph. This
indicates that a knowledge graph can provide complementary information to
the linguistic features, and thus improving the detection results thereby.

• Generally, for methods based on both article contents and knowledge graph, we
can see that DETERRENT consistently outperforms other methods in terms of
Accuracy and F1 Score on both two datasets. DETERRENT achieves a relative
improvement of 1.05%, 4.78% on the Diabetes dataset and 6.30%, 12.79% on
the Cancer dataset, comparing against the best results in terms of Accuracy
and F1 Score.

• It is worthwhile to point out that dEFEND\c and CSI\c have a relatively high
Precision and low Recall, which indicates that the methods predict positive
samples (misinformation) wrongly as negative (fact). Hence we can see the
necessity of modeling the relations between entities, as only linguistic information
is not enough to distinguish fake and real information.

3.5.4.2 Performance Comparison w.r.t. Article Types

Besides fake articles, misinformation also includes shorter formats such as clickbait
and fake posts which can easily be posted and quickly go viral on social media. The
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important motivation of misinformation detection is to build a general framework to
detect various types of misinformation.

Hence we investigate the performance of DETERRENT when dealing with different
types of articles, including title and abstract. We evaluate DETERRENT by using
articles’ titles and abstracts respectively. The results in terms of the F1 score on both
datasets are shown in Figure 3.3. The bars show the word lengths of different news
types in log base 10. From the results, we observe that:

• DETERRENT consistently outperforms the other models. It demonstrates the
effectiveness of DETERRENT on different types of misinformation regardless of
the length. It again verifies the significance of knowledge graph and knowledge
guided text embedding.

• The performance of article contents based methods like CSI\c and dEFEND\c do
not perform very well when the length of the information is short. This suggests
that those methods rely on the linguistic features of contents and cannot avoid
the disadvantages brought by limited data. Although DETERRENT leverages
article contents, it also exploits the additional information of entities to address
the above issue. The performance of DETERRENT only slightly decreases when
dealing with titles (the shortest text).

• The performance of knowledge graph-based methods, KG-Miner and TransE, is
relatively stable with all types of information on the two datasets.

3.5.5 Ablation Analysis (RQ2)

In order to answer RQ2, we explore each component of DETERRENT. We first inves-
tigate the layer number of the model, then we examine the components of knowledge
graph embedding and the attention mechanisms by deriving several variants.

3.5.5.1 Effects of Network Depth

We vary the depth L of DETERRENT to investigate the efficiency of the usage of
multiple embedding propagation layers of a knowledge graph. The larger L allows
further information to propagate through the information propagation layer. In
particular, we search the layer number in the set of {1, 2, 3, 4}. For L > 3, we did not
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Figure 3.3: Performance comparison over the length of article types on two datasets.
The background histograms indicate the length of each article; meanwhile, the lines
demonstrate the performance w.r.t. F1 score.

get satisfying results on both datasets, which suggests that forth- and higher-order
knowledge paths contribute little information. The results are summarized in Table
3.3. From this, we make the following observations:

• Increasing the depth of DETERRENT can improve the performance of DETER-
RENT, which demonstrates the effectiveness of modeling high-order knowledge
paths.

• By analyzing Table 3.2 and Table 3.3, we can see that DETERRENT is slightly
better than the article contents based methods, which indicates the effectiveness
of leveraging the relations between entities.

• Besides first-order knowledge paths, high-order knowledge paths can discover
inherent relations that are overlooked by traditional methods.

3.5.5.2 Effects of Attention Mechanisms and Negative Relations

In addition to article contents, we also apply knowledge graph information and
integrate it with article contents with knowledge guided attention. We further
investigate the effects of these components by defining three variants of DETERRENT:

• w/o Rel: w/o Rel is a variant of DETERRENT, which does not consider the
relations in the medical knowledge graph. The Information Propagation Net is
replaced by a GNN model.
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Table 3.3: Effects of the network depth

Datasets Metric 1 2 3

Diabetes

Accuracy 0.8853 0.9171 0.9206
Precision 0.7500 0.9217 0.8445
Recall 0.8543 0.7361 0.8503
F1 Score 0.7987 0.8185 0.8474

Cancer

Accuracy 0.9580 0.9599 0.9652
Precision 0.9108 0.9507 0.9469
Recall 0.9157 0.8817 0.9153
F1 Score 0.9132 0.9149 0.9309

Table 3.4: Ablation study of DETERRENT demonstrated the advantage of the
attention mechanisms and modeling both positive and negative relations.

Datasets Metric w/o Rel w/o K-Att w/o Neg

Diabetes

Accuracy 0.8412 0.9012 0.9118
Precision 0.7164 0.8870 0.9565
Recall 0.7988 0.7236 0.7096
F1 Score 0.7554 0.7971 0.8148

Cancer

Accuracy 0.9022 0.9291 0.9586
Precision 0.9291 0.9385 0.9462
Recall 0.6569 0.7651 0.8756
F1 Score 0.7697 0.8430 0.9096

• w/o K-Att: w/o K-Att is a variant of DETERRENT, which excludes the
knowledge-guided attention module. Each article is represented by the concate-
nation of the text embedding from the text encoder and node embedding from
the Information Propagation Net, and fed into the prediction module.

• w/o Neg: w/o Neg is a variant of DETERRENT, which does not specifically
model the negative relations in the medical knowledge graph. The BPR loss is
excluded from this variant.

When one removes a medical knowledge graph, leaving only a BiGRU text
encoder, the results are far from satisfactory, and thus are omitted. We summarize
the experimental results in Table 3.4 and have the following findings:

• When we solely use a medical knowledge graph without considering relations,
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the performance of DETERRENT largely degrades, which suggests the necessity
of modeling relations.

• Removing knowledge guided embedding attention degrades the model’s perfor-
mance, as the attention mechanism will assign importance weights for words,
based on the semantic clues in differentiating misinformation from fact without
considering knowledge paths.

• When we do not specifically model negative relations, some entities may be
embedded close in a relation wrongly through information propagation. Thus,
some misinformation (label 1) may be predicted as fact (label 0), which leads
to relatively high Precision and low Recall.

Through the ablation study of DETERRENT, we conclude that (1) knowledge-
guided article embedding can contribute to the misinformation detection performance;
(2) both positive and negative relations are necessary for effective misinformation
detection.

3.5.6 Case Study (RQ3)

In order to illustrate the importance of knowledge graph for explaining healthcare
misinformation detection results, we use an example to show the triples captured by
DETERRENT in Figure 3.4 and the corresponding attention weight in Figure 3.5.

Chaste tree berry may have a potential in 
improved pancreatic islet regeneration and 
hepatic insulin sensitivity for cure of Type I 
and II diabetes, some scientists suggested. 
Diabetes are condition caused by insufficient 
insulin entering the bloodstream in 
regulation of glucose.

Misinformation

(Pancreatic Islet, ReducesRiskFor, Diabetes)

Triples from KG

(Insulin, DoesNotHeal, Diabetes)

(Glucose, Causes, Diabetes Mellitus)

(Glucose, ReducesRiskFor, Insulin Resistance)

Figure 3.4: The explainable triples captured by DETERRENT.

In Figure5, Diabetes has higher attention weights to the texts. The related
triples (PancreaticIslet, ReducesRiskFor, Diabetes) and (Insulin, DoesNotHeal,
Diabetes) can provide explanations about why the information is false, as the texts
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Figure 3.5: The visualization with attention wights.
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Figure 3.6: The attention weight analysis indicates that positive relations contribute
more to fact, and negative relations contribute more to misinformation.

exaggerated the effects of PancreaticIslet and Insulin. In contrast, Glucose has a
smaller attention weight than the above two entities. We can see that DETERRENT
can not only detect the given information as fake but also yields the explanations of
the detection results.

We calculate the average attention weights of positive and negative relations to
both misinformation and fact on two datasets. The results are shown in Figure 3.6.
Note that positive relations have higher attention weights to fact than misinformation.
On the contrary, negative relations have higher attention weights to misinformation
than fact. Hence, the attention weight analysis indicates that positive relations
contribute more to the fact, and negative relations contribute more to misinformation.
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3.6 Conclusion
In this paper, we proposed DETERRENT, a knowledge guided graph attention net-
work for misinformation detection in healthcare. DETERRENT leverages additional
information from a medical knowledge graph, to guide the article embedding with
a graph attention network. The network can capture both positive and negative
relations, and automatically assign more weights to important relations in differ-
entiating misinformation from fact. The node embedding is used for guiding text
encoder. Experiments on two real-world datasets demonstrate the strong performance
of DETERRENT.

DETERRENT has two limitations: DETERRENT mainly targets on checking the
truthfulness of an article be leveraging a knowledge graph, instead of other comple-
mentary information. In addition, DETERRENT does not consider the publishing
time of an article. In the future, first, we can incorporate the data from medical
forums to automatically find questionable user comments. Second, other data sources,
such as doctors’ remarks/comments can be considered for complementary information.
Third, time intervals between posts can be considered for modeling the diffusion of
healthcare information.
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Chapter 4 |
Fraud Detection with Limited
Data

4.1 Introduction
Human labeling is time-consuming and costly. This problem is further exacerbated
in extremely imbalanced class label scenarios, such as detecting fraudsters in online
websites. Active Learning (AL) selects the most relevant example for human labelers
to improve the model performance at a lower cost. However, existing methods for
active learning for graph data often assumes that both data and label distributions
are balanced. These assumptions fail in extreme rare-class classification scenarios,
such as classifying abusive reviews in an e-commerce website.

Graph structured data are ubiquitous and are widely used in social network
analysis [62], financial fraud detection [63], molecular design [64], search engines [65]
and recommender systems [66,67]. Recently, Graph Neural Networks (GNNs) have
emerged as state-of-the-art models on these types of datasets, due to their ability to
learn and aggregate complex interactions between (K-hop) neighborhoods, as opposed
to traditional pointwise or pairwise models [68]. Despite their appealing advantages,
GNNs, like other deep learning models, require a large amount of labeled data for
training in supervised settings. It is often time-consuming, labor-intensive, and
expensive to acquire sufficient labeled data for training in many domains, hindering
the application of GNNs.

Active Learning is a promising solution to obtain labels faster, cheaper, and
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train models efficiently. AL dynamically queries candidate samples1 for labeling
to maximize the performance of the machine learned model with limited budget.
The recent developments in AL on graphs [64,69–76] have proven to be effective on
several benchmark datasets, such as citation graphs and gene networks. However,
AL methods for large-scale imbalanced scenarios (e.g., finding a small fraction of
fraudulent reviews on an e-commerce website) is less explored. This motivates us to
study how to query the most “informative” samples so as to ameliorate the effect of
imbalance and to reduce the training cost of GNNs.

Training GNNs with AL algorithm on imbalanced graphs is non-trivial. The low
prevalence rate of positive samples2 prevents traditional AL methods from learning
the whole data distribution, because under-represented positive samples are less likely
to be selected by traditional AL methods. For example, finding abusive reviews on a
shopping website can be formulated as a binary classification problem, where positive
samples (i.e., abusive reviews) are a very small portion of the labeled data. Training
an AL model to sample reviews for labeling will mostly yield non-abusive reviews,
resulting in limited model performance improvement. Most of the AL sampling
methods proposed in natural language processing and computer vision [77–79] to
balance class distribution assume independent and identically distributed (i.i.d.) data.
These approaches are not directly applicable to graph structured data due to the
heterogeneous relational structure and dense connections. Moreover, existing AL
methods tend to reinforce or even worsen the prediction bias on minority classes
when querying unlabeled data [79].

It is challenging to build an AL approach for large-scale graph data. For
example, popular social network platforms (e.g., Facebook, Snapchat) have hundreds of
millions of monthly active users; online e-commerce websites (e.g., Amazon, Walmart)
host millions of products and conduct billions of transactions. Searching over all the
unlabeled samples in the graph at this scale is impractical, as the computational
complexity of AL methods grows exponentially with the size of the unlabeled set.
Therefore, it is critical to reduce the search space for AL algorithms on large-scale
graphs.

To tackle the aforementioned two challenges, we propose an Active Learning based
method for Large-scale ImbalancEd graphs (ALLIE), which combines the idea of AL

1Samples in the case of node classification in a GNN will be nodes.
2We assume positive samples are the rare class in the imbalanced setting
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on graphs with reinforcement learning for accurate and efficient node classification.
ALLIE can effectively select informative unlabeled samples for labeling, using multiple
uncertainty measures as its criteria. Moreover, our approach gives labeling priority
to less confident and “under-represented” samples. To scale our approach to large
graphs, we further introduce a graph coarsening strategy for ALLIE that categorizes
similar nodes into clusters. With a better representation of nodes in each cluster, the
search space for the AL algorithm is reduced. To the best of our knowledge, this
work is the first to jointly model the imbalance issue on large-scale graphs and active
learning. Our contributions are as follows:

• Imbalance-aware reinforcement learning based graph policy network.
We apply a reinforcement learning strategy by maximizing the performance of
the classifier to find a representative subset of the unlabeled dataset. The queried
nodes will be more representative for the minority class (Section. 4.3.2.1).

• Graph coarsening strategy to handle large-scale graph data. Existing
methods seldom pay attention to scalability, making them less efficient when
applied to real-world applications. To reduce running time, we apply a graph
coarsening strategy to reduce the action space in the policy network (Section.
4.3.2.2).

• Robust learning for more accurate node classification. Unlike conven-
tional methods that do not distinguish the majority and minority classes when
optimizing the objective function, we construct a node classifier with focal loss
that down-weights the well-classified examples (Section. 4.3.2.3).

We evaluated ALLIE on both balanced and imbalanced datasets. Our balanced
datasets use public citation graphs (Section. 4.4.2) and the imbalanced dataset is
from a proprietary e-commerce website (Section. 4.4.3). We report the performance
on node classification on both datasets. The reported results show that on balanced
graph datasets, ALLIE improved an average of 2.39% in Macro F1 and 2.71% in Micro
F1 over the best baseline. On the e-commerce website dataset, ALLIE achieved an
average increase of 4.75% in Precision, 1.96% in Recall and 3.45% in F1 (with 10.54%,
3.7% and 7.71% relative improvement respectively) on the positive classes (i.e., the
abusive users and reviews) over the best baseline. We also conduct a comprehensive
ablation study to demonstrate the necessity of each component of ALLIE. Additional
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experiments show ALLIE performs well over baselines with various initial training set
sizes and query budgets.

4.2 Related Work

4.2.1 Active Learning on Graphs

Active learning [80,81] has been widely studied in different domains such as computer
vision [82,83] and natural language processing [84,85]. More recently, some pioneering
works explore AL for graph structured data [64,75,76]. For example, AGE [69] selects
the clustering center of node features. It combines several measurements together,
including information entropy [86], density and centrality to find the best candidate(s)
from all unlabeled nodes. FeatProp [70] extends AGE and also uses cluster centers as
selected candidates. The authors proved an upper bound on the classification loss, and
discussed why they chose K-Medoids instead of K-Center as the clustering method.
ANRMAB [71] uses Multi-Armed Bandit to select one metric from the measurements
in AGE. Chen et al. [72] propose ActiveHNE to further extend ANRMAB to cover
heterogeneous graphs. GPA [73] uses a policy network to perform AL on graphs.
The goal is to select a sequence of nodes by using reinforcement learning which
maximizes the performance of the GNN. Different from the heuristics-based AL
methods, MetAL [74] uses meta-gradients to evaluate the importance of labeling
each unlabeled instance. Despite these achievements, existing work mainly focus on
balanced datasets, and perform poorly when the datasets are imbalanced. In addition,
the measurements that are commonly used to estimate the representativeness of the
samples are centrality and density. Though these criteria can help characterize data
distribution, they do not favor the most “underrepresented” samples at the borders
between classes. We explicitly focus on functions that can be adapted to imbalanced
datasets.

4.2.2 Graph Coarsening

Learning on graphs is too time-consuming for large-scale graph data that model the
dense connections among millions of nodes. The computational cost grows exponen-
tially with the number of nodes [87]. In addition to using state-of-the-art models,
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we can compress graphs to reduce the running time of AL on them. Sparsification
and reduction are two common ways of simplifying graphs. Sparsification reduces the
number of edges, such as spanners, edge cut, and spectral sparsifiers [88,89]. Such
methods have been previously used for recommendation systems [90]. Reduction is
conducted on the number of vertices as well as the number of edges. Related methods
include graph coarsening [91,92] and Kron reduction [93].

Graph coarsening is the merging of vertices in a graph to obtain a coarser version
of the original graph with similar spectral properties [94]. We can use the same
algorithm to process the coarser graph as with the original. Graph coarsening can be
repeated several times until we get a sufficiently coarse graph [95,96]. DiffPool [91]
uses an assignment matrix to transform the original graph to a coarser one. It pools
nodes given an assignment matrix at each layer. SAGPool [92] generalizes convolution
operations to graphs. Researchers have incorporated graph coarsening into GNNs as
a way to implement efficient pooling [97, 98]. For example, GraphSAGE [99] with
DiffPool is 12 times faster than the original model.

4.2.3 Imbalanced Learning

Many real-world applications in computer vision [100], medical diagnosis [101] and
fraud detection [102] suffer from class imbalance. Learning from an imbalanced
dataset may result in a prediction model that favors the majority class over the
minority class [103]. A comprehensive review of class imbalance problems in deep
learning can be found in [104].

Methods for dealing with imbalance can be roughly divided into two categories:
data-level and algorithmic-level methods. Oversampling [105, 106] and undersam-
pling [107] are two data-level methods that are commonly used in deep learning.
Oversampling replicates selected samples from minority classes, while undersam-
pling removes samples from majority classes. Algorithm-level methods keep the
data unchanged while adjusting the training or inference process. Focal loss is a
scaled cross-entropy loss, where the scaling factor goes to zero for well-classified
samples [108]. Cost-sensitive learning assigns different costs to the misclassified
samples from different classes [109].
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Figure 4.1: The overview of ALLIE with two main parts: policy network and fraud
detector.

4.3 The Proposed Method: ALLIE

4.3.1 Task Description

Let G = (V, E) denote a graph, where V is a set of nodes and E is a set of edges. We
consider a classification setting where each node v ∈ V has a label y ∈ Y = {1, . . . , C}
(C is the number of classes). The node set is divided into three subsets including Vtrain,
Vvalid and Vtest, with corresponding label sets Ytrain, Yvalid and Ytest. In traditional
supervised learning, the goal is to learn a classifier f(G, Vtrain; θd) parameterized by
θd with the graph G and labels Vtrain to predict the labels of the nodes in Vtest.

In AL setting, a query budget B is given, which allows us to query the labels of B

samples from Vtrain (B ≪ |Vtrain|) in total. Suppose the initial label set is denoted as
V 0

query. At each step t, we select an unlabeled node vt using an AL policy π from the
remaining candidate nodes Vtrain\V t−1

query that have not been queried, and query the
label of the node vt. Then we update V t

query by V t−1
query ∪ {vt} and train the classifier

f(G, V t
query; θd) for one epoch. After the query budget is used up, we continue training

f(G, V B
query; θd) with Vquery until convergence.

The learning process of policy π can be naturally formulated as a Markov Decision
Process (MDP), in which the AL network is sequentially querying unlabeled nodes
into a sequence over time. Formally, the MDP is defined as follows.

• State space S: A state matrix St ∈ S is defined as the state of graph G at
time t where each row st is the state representation of a node. More specifically,
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a state st consists of a node’s degree, entropy, average KL divergence and reverse
KL divergence between its predicted label distribution and its neighbor’s.

• Action space A: At time t, the action at ∈ A is to determine which node should
be queried next. The AL network will append the node to the node sequence.
The number of actions taken should satisfy the given budget constraint.

• Reward R: After the network has selected a sequence of nodes, we evaluate
the performance of the classifier on the validation set Vvalid as the final reward.
Since the size of the initial training set |Vtrain| is limited in AL, calculating the
immediate reward after each action will change the policy estimation a lot.
Hence, in order to measure the policy’s quality more accurately, we choose to
calculate only the final reward, which provides a more stable estimation.

• Transition probability P: Transition probability p(St+1|St, at) defines the
state transition from St to St+1 after taking action at at time t.

We parameterize the policy network using a deep neural network, which is defined
as follows:

Definition 6 (Policy Network) A policy network π(·; θp) parameterized by θp is
used to select a node sequence from the candidate training nodes to query, which
yields a probability score for each node in the unlabeled set. We learn the optimal
parameter θ∗

p by maximizing the performance of the classifier f on the validation
set: M(f(G, Vvalid), Yvalid), where M is an evaluation metric, f is trained on V B

query

chosen by θ∗
p and Yvalid is the labels of the validation set.

Hence we can formally define the MDP based AL problem on graphs as follows:

Problem 2 (MDP based Active Learning Problem) Given a graph G = (V, E),
with a query budget B, our goal is to learn a policy π to select the best node sequence
to query, in order to optimize the prediction performance throughout the query process.

4.3.2 Framework

Figure 4.1 illustrates the proposed framework. First, we alternately use a policy
network to query the label of a candidate node and train the GNN classifier to update
the current state of the graph, until the query budget is reached. In what follows, we
evaluate the GNN classifier on the validation set to update the policy.
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4.3.2.1 Reinforcement Learning Architecture

The AL algorithm takes an action by selecting the next node to query. In addition to
the heuristic metrics, we can choose the nodes that can maximize the performance of
the GNN classifier on the validation set. As this problem can be naturally formalized
as a reinforcement learning architecture, we followed the GPA framework [70] in our
paper.

We denote the state of graph G at step t as a matrix St, where each row st
v is

the state representation of node v. In order to represent the state representation, we
adopt degree as representativeness measure and entropy and KL divergence as the
uncertainty measures in the policy network:

• Degree: We use the degree of a node to represent its representativeness. The
higher the degree of the nodes, the more important the nodes are. Thus their
labels are more likely to be informative. The degree is denoted by

st
v,1 = min(degree(v)/δ, 1), (4.1)

where δ is a scaling hyperparameter.

• Entropy: The entropy of the label distribution is to predict the uncertainty of
each node. In other words, if the classifier has low confidence about a node’s
predicted label, then the node’s label is more likely to be useful. We divide the
entropy by log(C) to normalize it into range [0, 1]:

st
v,2 = − 1

log(C)

C∑
i=1

ŷi(vt) log(ŷi(vt)), (4.2)

where ŷi(vt) is the class probability of node v belonging to the i-th class predicted
by the classifier at step t.

• Divergence: The divergence is calculated based on a node’s label prediction
distribution and its neighbor’s. It measures how different the node and its
neighbors are, which can better identify the decision boundaries in the graph:

st
v,3 = 1

|Nv|
∑

u∈Nv

KL(ŷ(vt)∥ŷ(ut)), st
v,4 = 1

|Nv|
∑

u∈Nv

KL(ŷ(ut)∥ŷ(vt)). (4.3)
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We use an indicator to represent whether the node has been labeled or not, and
concatenate it with the above metrics to form the feature vector st

v for each node
v. The graph state matrix St will be passed into the policy network to generate the
action probabilities.

Imbalance-aware Reward Function Design: In order to fix the imbalanced data
distribution issue and boost the model’s performance on the minority classes, we
introduce a balancing strategy on the reward in AL to make the method query more
nodes that can represent the minority class better. Specifically, for the reward signal,
we use a performance metric that treats each class equally instead of each sample
and thus assigns more weights to the minority samples.

Below we detail how we calculate the reward signal and what metrics we choose.
The policy network is rewarded by the performance gain of the GNN classifier f

trained with the updated set of labeled nodes. The reward of the selected node
sequence is calculated based on the performance of f on the validation set:

R(V B
query) =M(f(G, Vvalid), Yvalid), (4.4)

where M is the evaluation metric, f trained on graph G and labels of V B
query, Vvalid

and Yvalid are the nodes and labels of the validation set.
We implement M using the following metrics:

• Weighted reward: When the sample belongs to the minority class, the reward
is +1 if the prediction ŷ is correct; −1 if not. When the sample belongs to the
majority class, the reward is multiplied by the imbalanced ratio ρ, which is the
number of samples in the minority class divided by the number of samples in
the majority class [110].

• Micro-1 calculates metrics by counting the total true positives, false negatives
and false positives globally, which favors the majority classes, e.g., the benign
buyer.

• Macro-F1 averages the F1 score per class, which can get a sense of effectiveness
on the small classes (e.g., the abusive buyer).

We empirically compare the three reward functions in Section 4.4.4.1 and find
ALLIE with Macro-F1 achieves the best results.
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Reinforcement Learning Algorithm: The training framework is shown in Figure
4.1. At every step, we first update the graph state matrix St

G. The policy network
selects a node vt from Vtrain\V t−1

query based on the probability of each action π(·|St),
gets its label, and puts it into the label set V t

query. Then the GNN classifier f is
trained for one epoch on graph state matrix St

G and the label set V t
query. After that,

we can get the new label prediction of each node and update the heuristic metrics
such as st

v,2, st
v,3 and st

v,4. The heuristic metrics are used to generate the graph state
matrix St+1 for the next step. When the query budget B is used up, we train the
GNN classifier f until convergence without querying more nodes.

4.3.2.2 Policy Network Design

The policy network takes graph state as an input and produces the probability
distribution of each action (where an action is querying a node’s label). GNNs can
better characterize the graph’s topology and help find the most informative nodes
in the graph. Hence we set up the policy network architecture as a GNN. We use
GCN [68] to implement the policy network. In GCN, the nodes are assigned to an
initial feature matrix H(0) ∈ RN×F , where N is the number of nodes and F is the
feature dimension size. Here we use the initial state of graph H(0) = St as the initial
input feature. The layer-wise propagation rule updates the node representations using
the representations of its neighbors in the graph in the (l + 1)-th layer, yielding the
feature matrix:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W ), (4.5)

where Ã ∈ RN×N is the adjacency matrix with self-connections (A + I), D̃ is the
degree matrix of Ã, W ∈ RN×F is the weight matrix and σ(·) denotes an activation
function (we use ReLU in this paper). We apply a linear layer to map the final output
to a probability score indicating whether this node should be queried:

π(·|St) = Softmax(WH(l) + b). (4.6)

Graph Coarsening: The computational cost will grow exponentially as the number
of GCN layers increases. In addition, as the search space covers all the candidate nodes
for annotation, the large number of discrete actions makes reinforcement learning
methods difficult to apply for large graphs. Thus, we introduce the graph coarsening
strategy SAGPool [92] into the GCN policy network in Eq. (4.5) to distinguish
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between the nodes that should be dropped and the nodes that should be retained,
which will reduce the running time and shrink the action space at the same time.

The self-attention score matrix Z ∈ RN×1 is calculated as follows:

Z(l) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)Θ), (4.7)

where Θ ∈ RN×1 is the parameter matrix to be learned. With the attention score
matrix Z, we can select the top k percent nodes to keep in each layer, yielding a list
of top ⌈kN⌉ nodes’ indices:

idx = top(Z, ⌈kN⌉). (4.8)

The output feature matrix and the corresponding adjacency matrix of each layer
are calculated as:

H(l+1) = H
(l)
idx,: ⊙ Z

(l)
idx, A = Aidx,idx, (4.9)

where idx,: represents the row-wise (i.e. node-wise) index notation, ⊙ is the broadcasted
elementwise product, and idx,idx represents the row-wise and col-wise index notation.

4.3.2.3 Robust Classification

The GCN fraud detector can classify both labeled and unlabeled nodes. On the top
of the policy network, we apply a linear layer, taking the final output embedding H(L)

as input. The output of the fraud detector is the probability of a node being positive.
The goal of the fraud detector is to determine whether a node is positive (abusive

buyer) or not (benign buyer). On the shopping website, the positive class makes up
only a very small portion (<5%). This data imbalanced issue causes two learning
problems: (1) the easy negative samples do not contain much information to facilitate
the training; (2) the easy negative samples may degenerate the model. To efficiently
train on all samples, we employ focal loss [108]. Denote positive nodes as v+ ∼ pR+(v),
and negative nodes v− ∼ pR−(v), where R+ and R− represent the positive samples’
and negative samples’ spaces respectively. The loss function is denoted as follows:

Jc(θc) =− Ev+∼pR+ [α(1− f(v; θc))γ log f(v; θc)]

− Ev−∼pR− [(1− α)f(v; θc)γ log(1− f(v; θc))]
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where γ is a focusing parameter, which focuses more on hard and easily misclassified
examples, and α is the weight assigned to the rare class. γ = 2 and α = 0.25 work
best based on the rule of thumb [108].

As for the multi-class scenario in general, we exclude α as it is not applicable for
multiple classes. We still set γ as 2 based on rule of thumb. The multi-class focal
loss is calculated as follows:

Jc(θc) = −(1− f(v; θc))γ log f(v; θc) (4.10)

4.3.2.4 Training and Inference

For training the classifier, we minimize the focal loss Jc in Eq. (4.10). The objective
function of the policy network is:

Jp(θp) = Eπ(V B
query;θp)[R(V B

query)], (4.11)

where B is the query budget, and R is the reward on graph G. We use a classic policy
gradient method REINFORCE [111] to train the policy network π.

In order to train the policy network π(·; θp) parametered by θp, we alternately
update θc by optimizing the focal loss Jc on the training data queried by policy
π(·; θ̂p), and update θp by maximizing the sum of expected rewards obtained from
the classifier f(·; θ̂c) on the validation set:

θ∗
p = argmax

θp

Jp(θp), θ∗
c = argmin

θc

Jc(θc). (4.12)

The training process is divided into two stages. In the first stage, we train the
classifier f(·; θc) to minimize the loss function Jc(θc), while actively querying the
unlabeled nodes. When the query budget is used up, we train the classifier f until
convergence. In the second stage, we evaluate the trained classifier f on the validation
set to get the reward signal and use that to update θp) together with the policy
gradient. The detailed training steps are summarized in Algorithm 1.
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Algorithm 1: ALLIE for AL on Graphs.
Input: Graph G, validation set Vvalid and corresponding label set Yvalid,

initial query set V 0
query, query budget B and training epochs N

Output: Well-trained node classifier f and AL policy π
1 for e = 1, . . . , N do
2 for t = 1, . . . , B do
3 Update the graph state St

G;
4 Use policy π to sample a node based on St

G for annotation, and add it
to the query set V t

query;
5 Minimize the detection loss Jc(θc) in Eq. (4.10) with the updated

V t
query for one epoch;

6 end
7 while not converged do
8 Minimize the detection loss Jc(θc) in Eq. (4.10) with V B

query;
9 end

10 Evaluate classifier f on the validation set Vvalid and Yvalid to get the
reward signal R(V B

query) in Eq. (4.4);
11 Use the sum of expected rewards to learn the optimal policy π∗ in

Eq. (4.11);
12 end

4.4 Experiments
In this section, we compare the performance of ALLIE with state-of-the-art AL methods
on graphs. We aim to answer the following evaluation questions (EQ):

• EQ1: Is ALLIE able to improve the node classification performance on both
benchmark dataset and real-world e-commerce dataset?

• EQ2: How effective are graph coarsening, focal loss, and reward function
adaptation method in ALLIE?

• EQ3: How robust is ALLIE with respect to its hyperparameter values?

To this end, we introduce the datasets used and baselines, followed by experiments
to answer these questions.
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Table 4.1: Statistics of citation graph datasets.

Cora Citeseer Pubmed
# nodes 2,485 2,110 19,717
# edges 5,068 3,668 44,338
# classes 7 6 3

Table 4.2: Summary of the e-commerce dataset. The dataset is heavily subsampled,
and is used to show the efficacy of ALLIE on a real world use case.

Data property Value
Node types {buyer, seller, review, product}
# nodes (post sampling) ∼50K
% abusive buyers 5.2
# edges (post sampling) ∼61K
% abusive reviews 1.7

4.4.1 Experimental Setting

4.4.1.1 Datasets

We use several benchmark citation graph datasets (Cora, Citeseer, Pubmed [112]).
The statistics of the citation graph datasets are presented in Table 4.1. We also use
datasets created from sampled, anonymized logs from an e-commerce website. We
construct a graph consisting of sellers, buyers, reviews and products. Table 4.2 shows
the approximate numbers of the nodes and edges that we sampled. This dataset is
heavily sampled, and is not reflective of production traffic. We merely use it here to
highlight the utility of ALLIE. We randomly initialized the attributes of each node
when training the graph neural network. Sampling is done by randomly picking 10K
buyers, performing Breadth First Search (BFS), and add the additional nodes to our
dataset. A similar sampling method is used previously in [113].

4.4.1.2 Implementation details

We implement ALLIE with PyTorch. We vary the learning rate in {10−1, 10−2, 10−3, 10−4}
and found learning rate 10−2 worked best. For baselines, we follow the exact network
architecture detailed in the corresponding works. We outline the baselines used in
Section 4.4.1.3. For all models, we use Adam [114] with 100 epochs. On citation
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graph datasets, we use 5 samples from each class to construct the initial training set,
and set the query budget as 20 for each class. On the e-commerce dataset, we use
200 samples from each class to construct the initial training set, and set query budget
as 250 for each class. We repeat all experiments five times and report the averages
and the standard deviations of the metrics measured.

4.4.1.3 Baselines

We compare ALLIE with the following representative and state-of-the-art AL on graph
algorithms:

• Random: Random selects several candidate nodes uniformly at random to
annotate in each epoch, and uses GNN to re-train the classifier using these
nodes.

• AGE3 [69]: AGE uses the weighted sum of entropy, density and centrality to
find the best candidate(s) from all unlabeled nodes.

• FeatProp4 [70]: FeatProp uses cluster centers as selected candidates through
k-medoids clustering.

• GPA5 [73]: GPA formalizes AL on graphs as an MDP (Markov Decision Process)
and learns the optimal query strategy with reinforcement learning.

• MetAL6 [74]: MetAL uses an AL algorithm that selects a set of unlabeled
instances based on an informative metric, gets their labels, and updates the
labeled dataset.

We choose the above methods that based on the following aspects: (1) only
heuristic metrics, such as AGE and FeatProp; (2) heuristic metrics and reinforcement
learning, such as GPA; and (3) heuristic metrics and meta-learning, such as MetAL.
This allows us to compare ALLIE to multiple kinds of methods.

3https://github.com/vwz/AGE
4https://github.com/CrickWu/active_graph
5https://github.com/ShengdingHu/GraphPolicyNetworkActiveLearning
6https://github.com/Kaushalya/metal
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4.4.1.4 Evaluation measures

We use Micro F1 and Macro F1 to evaluate the performance of all methods on the
citation datasets. We report per-class precision, recall and F1 score on the e-commerce
dataset. The latter dataset lends itself to a highly imbalanced classification problem.

4.4.2 EQ1: Performance on Public Datasets

To answer EQ1, we first compare ALLIE with the state-of-the-art AL algorithms
introduced in Section 4.4.1.3 on benchmark graph datasets. We conduct experiments
in both balanced and imbalanced settings.

4.4.2.1 Balanced Setting

We use the original datasets as-is to conduct the experiments in this setting. The
problem is that of multi-class node classification. Table 4.3 summarizes the node
classification performance of all competing methods (reporting the average of 5 runs).
From the table, we can make the following observations:

• For the metric-based methods AGE and FeatProp, the performance is unsatisfac-
tory. Though they use several heuristic metrics to capture the representativeness
of nodes, they do not leverage node interactions to better measure node infor-
mativeness.

• The meta-learning based method MetAL performs better than metric-based
methods, demonstrating the effectiveness of using the classifier’s performance
as feedback. MetAL is inferior to ALLIE. We hypothesize that MetAL needs a
moderate- to large-sized initial training set to learn accurate model weights.

• ALLIE outperforms other methods in terms of Macro F1 and Micro F1 on three
datasets. This shows that ALLIE effectively leverages both graph information
as well as feedback.

4.4.2.2 Imbalanced Setting

In this setting, we manually adapt the datasets into binary classes to make the data
distribution imbalanced. Following [115], we treat the smallest class in Cora, Citeseer
and PubMed as the positive class and the rest as the negative class. The positive class
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ratios are 7%, 8% and 21% respectively. Results are shown in Table 4.4 (reporting
the average of 5 runs). From the table, we can see that:

• All the model performances on Macro-F1 and Micro-F1 degrade. This reinforces
our hypothesis that when the data distribution becomes imbalanced, the classifier
tends to predict most samples as belonging to the majority class.

• ALLIE outperforms the other models. It demonstrates the effectiveness of
the balancing strategies, including the imbalance-aware reinforcement learning
framework and focal loss.

4.4.3 EQ1: Performance on e-commerce dataset

In order to test EQ1 in a real-world setting with large-scale imbalanced graphs,
we define two node classification tasks on the e-commerce dataset. The tasks are
detecting abusive users behavior and abusive reviews. Both these tasks are important
in e-commerce to ensure high customer trust. Because the dataset is proprietary, we
report relative changes in each metric with respect to a baseline.

4.4.3.1 Classification on Buyers

Here we investigate the performance of ALLIE when distinguishing abusive buyers
from benign buyers, and make the following observations.

• ALLIE outperforms the other models. It again shows the importance of applying
reinforcement learning to query nodes from the unlabeled data, which directly
optimizes the performance of the GNN classifier.

• It is worthwhile to point out that ALLIE has a higher performance improvement
with the abusive buyer class compared with the benign buyer class. This
indicates the effectiveness of adapting the reward function to better capture
the minority class (abusive buyer) and using focal loss to down-weight the
well-classified samples (benign buyers far from the classification boundary).

4.4.3.2 Classification on Reviews

We summarize the observations of ALLIE in classifying abusive reviews and benign
reviews.
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• ALLIE still outperforms baselines, especially in the abusive review class, which
indicates that ALLIE is suitable for imbalanced graphs.

• The scores of metric-based methods, AGE and FeatProp, on review classification
task is generally much lower than their results on the buyer classification task.
This indicates that their performance worsens when the data is more imbalanced.

4.4.4 EQ2: Ablation Study

In order to answer EQ2, we explore each component of ALLIE separately. We
first study the influence of different reward function designs. Then we examine the
influence of graph coarsening and balancing strategies.

4.4.4.1 Effect of reward functions

To explore the impact of various reward function designs in Section 4.3.2.1, we
consider several variants of ALLIE that use different reward functions: weighted
reward, Micro-F1 and Macro-F1. We term these methods ALLIEweighted reward,
ALLIEMicro-F1 and ALLIEMacro-F1 respectively.

Table 4.7 summarizes the results on the imbalanced setting of the public datasets
in Section 4.4.2.2. We find that ALLIEMacro-F1 is superior than ALLIEweighted reward

and ALLIEMicro-F1. This verifies that incorporating sample balancing into the reward
function design can address the class imbalance issue.

4.4.4.2 Effect of graph coarsening and balancing strategies

We define several variants of ALLIE to study the effects of graph coarsening, focal
loss and reward function adaptation:

• \coarsen: This is a variant of ALLIE which does not integrate the graph
coarsening module.

• \loss: This is a variant which does not specifically down-weight the well-
classified samples. The focal loss function is replaced by the standard cross
entropy loss function.

• \reward: This is a variant which uses Micro-F1 as its reward metric.

68



(a) Benign Buyer (b) Abusive Buyer

Figure 4.2: Performance gain comparison over variants on the buyer classification
task. The background histograms indicate the F1 gain over AGE of each variant.
The lines indicate the running time (in seconds).

(a) (b)

Figure 4.3: Performance gain over Random with different training set sizes and query
budgets.

We also record the running time (in seconds) of each variant and summarize the
experimental results in Figure 4.2. We have the following findings:

• Removing the graph coarsening module slightly degrades the model’s perfor-
mance, as SAGPool has an attention mechanism that can improve the perfor-
mance of GNN. Furthermore, this variant takes the longest time compared to
all methods in the AL part.

• Changing the reward function to Macro-F1 is more effective for improving the
F1 of abusive buyers, as Micro-F1 favors large classes (benign buyer) while

69



Macro-F1 averages F1 per class.

• When we do not use focal loss, the false positive rate increases, which results in
lower Precision and F1. This variant performs the worst, which indicates that
the focal loss function contributes the most in ALLIE.

4.4.5 EQ3: Hyperparameter Sensitivity Analysis

We vary the initial training set sizes and query budget to test how ALLIE varies along
these dimensions. The buyer classification task on the e-commerce dataset is used as
the example task here.

4.4.5.1 Performance under different initial training set sizes

We start ALLIE with {50, 150, 250, 350, 450} initial training samples. We run each
method five times and report the averaged F1 score in Figure 4.3a. From the results,
we see that ALLIE outperforms all the baselines regardless of the initial training set size.
Importantly, when the training set sizes are small, ALLIE significantly outperforms
the baseline methods.

4.4.5.2 Performance under different query budgets

We train ALLIE with {50, 100, 150, 200, 250} budgets, and then evaluate the learned
model. All the methods are tested using the same initial training set. We run each
method five times and report the averaged F1 score in Figure 4.3b. Again, we see
that ALLIE outperforms baselines significantly when the budgets are small.

The above experiments show that ALLIE is indeed well suited to the problem of
active learning on graphs when the labeled data is highly imbalanced.

4.5 Conclusion
In this paper, we propose ALLIE, a novel active learning framework designed for
large-scale imbalanced graphs. ALLIE leverages a graph policy network to query
the candidate nodes to label by optimizing the long-term performance of the GNN
classifier. With two balancing strategies, ALLIE can better deal with an imbalanced
data distribution compared with several state-of-the-art methods. Moreover, ALLIE
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has a graph coarsening module which makes it scalable on large-scale applications.
Experiments on three benchmark datasets and a real-world shopping website dataset
demonstrate the strong performance of ALLIE.
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Chapter 5 |
Future Work

In this chapter, the motivation, background and main challenge of two directions of
future works are introduced.

5.1 Transfer Learning for Misinformation Detection
In recent years, the Data Mining and Machine Learning community has studied and
proposed an array of successful methods to accurately detect misinformation using
various features. Despite their effectiveness, however, these methods largely depend
on the availability of training samples (of fake and real news) with reasonable sizes
and qualities. However, the effectiveness of such successful methods deteriorates when
applied to new domain, genre, or language (i.e., an English fake news detector may
not work well to detect fake news written in Tagalog).

To mitigate these problems, reusing data from a set of relevant tasks becomes a
feasible solution. Specifically, we can exploit labeled fake news from other relevant
high-resource domains as the teacher and design the learning framework to transfer
the knowledge to a low-resource domain as the student. For instance, thousands
of crowdsourcing-labeled misinformation tweets in English could be considered as
a high-resource domain while hundreds of hand-labeled misinformation tweets in
Tagalog could be viewed as a low-resource domain.
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5.2 Thread Recommendation in Online Health Forums
It is necessary to intervene in the misinformation at an early stage, which calls for
conveying the evidence-based information to swing users. For example, if a user asks
whether herbal tea can treat diabetes on a medical forum, instead of providing a
binary prediction label (real/false), I want to provide him/her with related verified
threads or answers in the forum, or scientific papers or reports, which is a better way
for the user to accept the high-quality information.

One challenge of this problem is to identify the evidence-based information among
all the answers. For example, a user asked whether his/her CPAP machine is related
to his/her frequently reoccurring stomach issues on a medical forum, and the top-rated
answer is “What’s a CPAP machine?”. The difference in meaning may ask for a new
method to select the most credible as well as informative answers.

The other challenge of this problem is to align the existing verified information to
a newly proposed question. For example, as users may ask a question that is similar
to an existing one, we can recommend the existing threads/answers and scientific
papers to the users, to prevent users from falling into the myths at an early stage.
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