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Abstract

Clustering is one of the most common data mining tasks, used frequently for data

organization and analysis in various application domains. Traditional machine

learning approaches to clustering are fully automated and unsupervised where

class labels are unknown a priori. In real application domains, however, some

“weak” form of side information about the domain or data sets can be often avail-

able or derivable. In particular, information in the form of instance-level pairwise

constraints is general and is relatively easy to derive. The problem with tradi-

tional clustering techniques is that they cannot benefit from side information even

when available. I study the problem of semi-supervised clustering, which aims to

partition a set of unlabeled data items into coherent groups given a collection of

constraints. Because semi-supervised clustering promises higher quality with little

extra human effort, it is of great interest both in theory and in practice.

Semi-supervised clustering shares a difficulty with a large number of other

learning methods in data mining literature. That is, they lose their algorithmic ef-

fectiveness for high dimensional data. I focus on data with high-dimensional sparse

features and present a series of novel semi-supervised clustering approaches that are
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both effective and efficient in learning from high-dimensional data. The proposed

approaches are based on the dimensionality reduction idea. High-dimensional in-

put data are embedded into an optimal low-dimensional subspace determined with

the help of side information. The clustering structure of data is more evident in

the subspace than in the original input space, and thus enable higher quality clus-

tering solutions. The proposed clustering approaches explore both a small set of

constraints and the large amount of unlabeled data, thus perform robustly even

with limited side information. Besides, I also study how to automatically generate

constraints based on domain knowledge. Since automatically generated constraints

are inevitably noisy, I propose a semi-supervised approach that is able to use noisy

side information to improve clustering accuracy. Moreover, the non-linear sepa-

rability problem is studied in the semi-supervised clustering setting. I propose a

solution that is computationally as easy as a linear-transformation based method,

but is still able to separate non-linear data effectively.
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Chapter 1
Introduction

Clustering, as a fundamental machine learning technique, is essential for explora-

tory data analysis in statistics, pattern recognition, information retrieval, data

mining, and other fields. The study of clustering has a long history and a large

number of approaches have been developed. However, significant challenges still

remain. For example, like other learning techniques, a clustering approach often

loses algorithmic effectiveness when handling high-dimensional data with sparse

features. Moreover, given a data set to analyze, how to pick a proper clustering

criteria is a difficult decision. In this thesis, I propose novel semi-supervised clus-

tering approaches that are able to analyze high-dimensional data efficiently and

effectively.
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1.1 What is Clustering?

Clustering is a typical unsupervised machine learning task. The field of machine

learning has traditionally been divided into three subfields

• Supervised Learning: The learning system is presented with data items

xi and explicit feedback of output values yi in the form of input pairs

{(xi,yi)}|ni=1. If X denotes the space of input values, and Y denotes the

space of output values, the goal of supervised learning is to to learn a pre-

diction function h : X 7→ Y so that the system makes good predictions

{h(x′)}|mj=1 to new observed items {x′j}|mj=1. If output values yi take discrete

values, it is a classification problem, otherwise, a regression problem.

• Unsupervised Learning: The learning system is presented with data items

{xi}|ni=1 only without feedback. Identifying the intrinsic structure and orga-

nization of a data set is the main goal of learning. For this reason, clustering

is the supporting technique for data visualization, outlier detection, image

segmentation, topic extraction from text corpus, and many more applica-

tions.

• Reinforcement Learning: The learning system has a set of environment states

S and can take a set of actions A. The learner receives a late feedback in the

form of scalar reward for taking an action in state st ∈ S at time step t. The

goal of learning is for the system to develop a scheme h : S 7→ A that takes
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actions to yield the most reward.

1.2 What is Semi-Supervised Learning?

Semi-supervised learning is a new machine learning technique that has been at-

tracting more and more research interest in recent years [Vap98], [NG00], [ZGL03],

[ZG09]. In general, semi-supervised learning is the learning task where the learner

observes data items {xi}|ni=1 and partial feedback. Semi-supervised learning prob-

lems fall into two major categories

• Semi-supervised classification/regression: As in supervised learning, the

learning system observes a set of pairs {(xi,yi)}|ni=1 of data items with feed-

back in the form of predefined output values. However, the number of such

item-and-feedback pairs is small. Besides, the system also observes a large

number of data items without feedback {xj}|mj=1, m � n. Usually, a su-

pervised learning system is unable to learn an accurate relationship between

the space of input values X and the space of output values Y with a small

amount of training data. Semi-supervised classification/regression, however,

is able to learn from only a small amount of training data by also exploring

the structure of unlabeled data {xj}mj=1.

• Semi-supervised clustering: Besides a set of unlabeled data items {xi}|mi=1,

the learning system also observes side information S taking various forms.
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For example, the side information can say that items xi and xj are similar,

items xp and xq are different, or a cluster can contain no more than m data

items, etc. The side information serves as “weak supervision” to the learning

system. So the learning task is different from unsupervised clustering, where

the learning system cannot benefit from side information even available.

In this thesis, I focus on semi-supervised clustering problems. The side information

I study takes the form of pairwise constraints. In particular, there are two types

of pairwise constraints

• Must-links: two data items xi and xj are similar and thus should be clus-

tered together.

• Cannot-links: two data items xi and xj are different and thus should be

placed into different clusters.

Side information in the form of pairwise constraints is general. For example, la-

beled training data can be expressed by pairwise constraints but not for inverse.

Moreover, pairwise constraints naturally originate from many real application do-

mains.

1.3 Why is Semi-Supervised Clustering Useful?

The side information that can be explored by semi-supervised clustering techniques

originates naturally in many real application domains. Traditional unsupervised
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clustering techniques are unable to benefit from the side information even available.

For example, consider the problem of clustering human faces that appear in a video.

A person’s position does not change drastically during a video shot. For special

videos, such as news or interviews, a person’s position does not change much even

during several video shots [CMM03] . It is reasonable to consider two faces that

appear in adjacent frames in roughly the same position being the same person. For

another example, clustering techniques have been used to solve name disambigua-

tion problems [ETY+07] [HZG05]. Two name entities with similar spelling can be

candidates for pairwise constraints. If two name entities share a large number of

similar topics, or two author name entities share most of their coauthors, the two

entities can be considered as referring to one person, even the spellings of the two

entities have tiny difference which may due to spelling mistakes and other reasons.

On the other hand, if they share no common topics, two entities with the same

spelling can be considered as referring to two different people. Moreover, in the

task of Web document clustering, documents which share a large number of simi-

lar hyperlinks, or a group of documents with strong co-citation (i.e., co-reference)

patterns can be viewed as similar. Such domain-originated side information can

provide supervision to the clustering process.

Even when domain knowledge is not available to generate side information,

constraints can be derived manually with the help of human users. For example,

consider the problem of clustering images of objects or human faces. It may be
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(a) data items (b) clustering by shape 1 (c) clustering by color

Figure 1.1: One set of items has multiple reasonable clustering solutions.

difficult or costly for users to hand-label a large amount of images into pre-set

class labels. However, when users are presented with a simple binary question

of “are objects/faces in image x1 and image x2 the same object/person or not?”,

answering Yes/No to the question is a lot easier.

Moreover, the clustering solutions to a given set of items are often not unique.

Consider the example shown in Figure 1.1. The data items can be reasonably

clustered into two groups by color or by shape. The side information provided by

a user reflects his/her expectation of the clustering results. Thus, semi-supervised

clustering can explore the clustering criteria implicitly suggested by the side infor-

mation, and can cluster items in a way that better satisfies a user’s need.

1.4 Difficulties in Handling High-Dimensional

Data

High-dimensional data are prevalent in applications such as database, text min-

ing, image processing, sensor data analysis, and bioinformatics. For example, for
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database with high-dimensional data, many indexing techniques construct a sum-

mary of the data set using a linear transformation scheme to reduce dimensions,

and use the low dimensional synopsis for fast, approximate search.

Learning from high-dimensional data involves high computation cost. Besides,

a learning system has the curse of dimensionality problem [Bel61] [Don00]. In

particular, as the number of features keeps increasing, the learning performance can

decrease after a certain point. This high-dimensionality difficulty has frequently

been observed in practice [Ver03]. In supervised learning of high-dimensional data,

the number of training data items is much less than the number of parameters to

be learned. The learned model has high variance and does not generalize well.

For unsupervised learning, as the feature dimensionality increases, data points

become increasingly “sparse” [SEK03]. Thus, data items in the high dimensional

space are equally far apart from each other no matter whether they are from the

same cluster or not. Since all the clustering approaches critically rely on pairwise

distances between data items, many clustering techniques lose their algorithmic

effectiveness when dealing with high-dimensional data.

It is often necessary to reduce the dimensionality when dealing with high-

dimensional data. Feature selection and feature reduction are two ways to reduce

dimensionality.

• Feature selection reduces dimensionality by selecting a subset of existing

features. Thus, the physical interpretation of each feature is preserved in the
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reduced space. One may apply judicious feature selection to greatly reduce

the number of features prior to learning from the data. The effects of front-

end selection in supervised text classification were considered in [MN98]. The

results demonstrated that in removing many features, information about the

underlying data groups may be lost. Besides, a criterion function for feature

selection is typically defined as a function of the classification error. Thus,

feature selection is mainly used in supervised learning. For clustering tasks,

since labels are not available, selecting an appropriate subset of features is

difficult.

• Feature reduction reduces dimensionality by combining features with lin-

ear or non-linear transformations. Feature reduction is applicable to both

supervised learning and unsupervised learning, depending on the availabil-

ity of training data. A feature reduction approach can greatly reduce the

feature space dimensionality while still preserve discriminative information.

However, unlike in feature selection where the selected features retain their

original physical interpretation, the new features generated by a feature re-

duction approach usually do not have a clear physical meaning.

In general, the choice between feature reduction and feature selection depends

on the application domain. Since this thesis is about clustering, I focus on feature

reduction algorithms because they are also applicable to unsupervised learning.

The feature reduction techniques can be linear or non-linear. Linear approaches
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are fast and suitable for practical application. However, when data lie in a compli-

cated manifold, non-linear feature reduction algorithms are able to represent data

better in the reduced space. In this thesis, I focus on linear approaches due to their

practicability. I will also show a new feature reduction approach that is linear but

still has the advantages of non-linear methods.

At last, it is also important to note that high-dimensional spaces also have their

advantages. Interesting readers refer to [Don00] for details.

1.5 Problem Definition

Let X be the input space containing n data points in f dimensions, {xi}ni=1 ∈

X . We are given two types of pairwise constraints organized in two sets. Let

ΩM = {(xi,x′i)}mi=1 be the set of m pairs of must-link constraints, and ΩC =

{(xi,x′i)}ci=1 be the set of c pairs of cannot-link constraints. Let r be a desired

subspace dimensionality. The goal is to embed the f -dimensional data in an r-

dimensional subspace, s.t. r � f , by learning a linear data transformation Z ∈

Rf×r, such that y = ZTx where y is the low-dimensional embedding of x. The main

research tasks focus on learning the data transformation Z by exploring pairwise

constraints ΩM and ΩC , as well as exploring the structure of input data {xi}ni=1.

After the transformation Z is learned, the Euclidean distance between two points

y1 and y2 in the reduced space can be expressed as

d(y1,y2) =
√

(x1 − x2)TZZT (x1 − x2) (1.1)
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which only depends on the original data points and the learned transformation

matrix.

1.6 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, I briefly provide the background

of clustering and feature reduction techniques, and summarize representative clus-

tering and feature reduction approaches that are closely related to my thesis work.

In Chapter 3, I review existing work on semi-supervised learning in general, semi-

supervised clustering in particular, and put a focus on feature-reduction-based

approaches. In Chapter 4, I focus on clustering efficiency, and introduce a simple

semi-supervised dimension reduction approach that significantly improves cluster-

ing efficiencies and accuracies. In Chapter 5, I focus on automatically identifying

side information from domain knowledge, and introduce a semi-supervised cluster-

ing approach that is able to explore noisy side information. In Chapter 6, I explore

the problem of separating non-linear-separable data with linear transformations.

At last, in Chapter 7, I conclude my thesis work and discuss interesting future

work directions.

1.7 Notations

Through out the thesis, I use the following notation conventions.
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• An important concept is emphasized with Italic font in the first mention.

• A matrix Y is denoted by a boldfaced capital letter.

• A vector y is denoted by a boldfaced lowercase letter.

• A scalar y is denoted by an ordinary lowercase letter.

• A set Y is denoted by this special font.

• A function or operation is denoted by an ordinary capital or lowercase letter

followed by parentheses, e.g., Y (·) or y(·).

I tried to use consistent mathematical expressions throughout the thesis. For

example, I use R for the set of real numbers, X for a data matrix, and x for the

vector expression of a data item. However, because many mathematical expressions

are used in the thesis, one character, e.g., P may refer to different matrices in

different chapters (same for vectors, sets, etc.).



Chapter 2
Background

This chapter first gives a brief introduction to clustering algorithms upon which the

proposed semi-supervised clustering technique will be applied. It then introduces

the dimension reduction technique which is often closely related to clustering. At

last, it introduces clustering evaluation metrics that will be used throughout the

thesis.

2.1 Overview of Clustering

Clustering techniques can be roughly categorized into two groups:

• Hierarchical methods

– Agglomerative

– Divisive

• Partitional methods
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– Density-based

– Spectral

– Mixture-model-based

2.1.1 Hierarchical Clustering

Hierarchical clustering outputs a hierarchical structure of data items through a

series of data fusions or partitions. These algorithms can be either agglomerative

(“bottom-up”) or divisive (“top-down”) [JMF99]. Agglomerative algorithms treat

each data item as a singleton cluster and merge them successively into larger

clusters. Divisive algorithms treat the whole set of data items as a single cluster

and continue to split it into successively smaller clusters until individual items are

reached.

The hierarchical structure generated, which is also known as the cluster den-

drogram, is informative for users to understand the data collection. Hierarchical

clustering does not require the pre-knowledge of the number of clusters, which is

often required by other types of clustering algorithms. Despite these advantages,

hierarchical clustering is known for low efficiency. The most common hierarchical

clustering algorithms have a complexity that is at least quadratic in the number

of items to be clustered.

The crux of hierarchical clustering is measuring the distance between clusters.

Depending on the choice of distance metrics, major agglomerative algorithms in-
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clude single linkage, complete linkage, average linkage and average group linkage

algorithms [MS99]. For recent work on divisive methods, Zhao et al. [ZHT05]

use entropy as a measure of cluster inhomogeneity and greedily increase the size of

partition by one in each iteration. Dubnov et al. [DEYG+02] recursively split clus-

ters using a statistical transformation, and Boley [Bol98] proposes the principal

direction divisive partitioning method.

2.1.2 Partitional Clustering

Unlike hierarchical clustering, the number of clusters is usually required in par-

titional clustering. Given the number of clusters k known, partitional clustering

methods divide data items into k clusters in one step. Since no hierarchical struc-

ture is generated, partitional clustering algorithms are also known as flat clustering.

Compared to hierarchical clustering, partitional clustering algorithms are compu-

tationally more efficient and can be used as the intermediate partition method

in divisive hierarchical clustering. For example, the k-means and EM clustering

method are partitional and both have linear complexity. Based on the clustering

criterion adopted, partitional algorithms can be further categorized.

In density-based methods, clusters are viewed as regions in the data space

in which the items are dense, and the decision boundary always lies in the low

density region. Density-based algorithms can identify clusters of arbitrary shapes.

However, because density-based algorithms apply a local clustering criterion, the
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clustering solution is not globally optimal. DBSCAN [EKSX96] is a representative

density-based clustering algorithm. Mean shift [CM02] is another representative

density-based approach that detects the modes of density and assigns every data

item to its corresponding density mode. Mean shift is widely used in computer

vision applications, such as visual tracking and image segmentation.

Spectral clustering methods have emerged as one of the most effective clustering

algorithms and have shown great success in many applications including computer

vision, bioinformatics, speech recognition, VLSI design, and document clustering.

By representing the proximities between data items into a graph format, spec-

tral clustering involves finding the best cuts of the graph that optimizes certain

predefined objective functions. Various objective functions have been proposed

(e.g., average cut [CSZ93], average association [SM97a], normalized cut [SM97a],

and min-max cut [DHZ+01]). Directly optimizing graph cut objective functions is

NP-hard. To find an approximate solution instead, a graph cut problem is trans-

formed into an eigenvalue problem. Spectral clustering methods differ from other

clustering methods in that they guarantee to find the global optima in terms of the

predefined objective functions. Due to this reason, although an approximate solu-

tion, spectral clustering can often produce better result than direct optimization

techniques such as k-means.

In mixture-model-based methods, each cluster is mathematically represented

as a parametric distribution, for examples, Gaussian distribution for continuous
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input values or Poisson distribution for discrete input values. Hence the entire

data set is modeled by a mixture of these distributions. Well-studied statistical

inference techniques are available to find parameters of the model. The EM algo-

rithm [DLR77] [CS96] is a well-known technique for estimating the parameters in

the general case. Besides, mixture-model-based methods enable “soft clustering”,

which means a data item is assigned to a cluster with a probability, as contrast

to “hard clustering” where every item is assigned exclusively to one and only one

cluster.

2.2 Representative Clustering Algorithms

2.2.1 k-means

k-means [Mac67a] [Llo82] is probably the most widely used clustering algorithm.

k-means aims to partition n observed data items into k clusters where each item

is assigned to the cluster with the nearest center. The objective of k-means is

to minimize the sum of distance from every data point to its closest center. Let

{ci}|ki=1 be the centroids of k clusters. Let η(·) be the assignment function. Then

η(i) = j means the ith item is assigned to the jth cluster. k-means minimizes the

following objective

arg min
C,η

n∑
i=1

‖xi − cη(i)‖2 (2.1)
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Lowering the objective function leads to more compact clusters, where each item

gets closer to its cluster centroid.

Finding the global optima for the k-means objective function is an NP-complete

problem [GJW82]. Heuristic approximations have been proposed. Lloyd’s algo-

rithm is the most popular heuristics for solving k-means. It is based on a simple

iterative scheme for finding a locally minimal solution [For65] [Mac67b]. The

heuristic solution indicates that k-means can be viewed as a special case of EM

that assumes

1. Each cluster is modeled by a spherical Gaussian distribution;

2. Each data item is assigned to one and only one cluster;

3. The mixture weights are equal.

The pseudocode for k-means is given in Algorithm 1.

Algorithm 1: k-means

Input : A set of data items {xi}ni=1;
the number of clusters k.

Output: A disjoint set of clusters.
1. Initialize clusters: cluster centroids {c(0)

j }kj=1 are chosen at random;
2. Repeat until converge:

2a. Assign data items following the nearest neighbor rule, that is

η(i) = arg min
j=1,...,k

‖xi − c
(0)
j ‖2

2b. Update centroids

c
(t)
j =

∑
i:η(i)=j xi

nj

2c. t← t+ 1
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2.2.2 Spherical k-means (SPKM)

The spherical k-means algorithm (SPKM)[DHZ+01] is a k-means method that uses

cosine similarity to measure the distance from every data point to its closest center.

SPKM is a popular method for clustering high-dimensional text data. It is shown

that the spherical k-means algorithm is one of the fastest document clustering

algorithms [Zho05].

Before text data can be analyzed, the popular vector space model (”bag-of-

words”) [SWY97] is usually used to represent raw text data as high-dimensional

vectors, where each dimension of the vector is a unique term [SM86]. The adoption

of cosine similarity in SPKM is based on the observation that text vectors have

only non-negative entries, and the high-dimensional text vectors have directional

properties, i.e., the length of the vectors is much less discriminative than their

direction. In SPKM, each data item as well as cluster centroids are normalized

and are represented as unit-length vectors. The effect of this normalization is to

only account for the direction of each vector but not the length, since the Euclidean

distance between normalized vectors is equivalent to one minus the cosine similarity

between the vectors.

2.2.3 Normalized Cut (NC)

Normalized Cut has been shown to be the one of the best spectral clustering

approaches [SM97b]. In this thesis, I use Normalized Cut as a representative of
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spectral clustering approaches to demonstrate idea and concept.

Spectral clustering approaches model a data set as an undirected graph, where

each data item is a vertex in the graph, and the edge between two vertices i, j is

assigned a weight wij to reflect the similarity between items i and j. Let matrix

W be the affinity matrix associated with the graph, such that W(i, j) = wij. Let

Ci, Cj denote two clusters of the given data set S, and W(Ci, Cj) denote the sum

of similarities between the two clusters Ci and Cj

W(Ci, Cj) =
∑

u∈Ci,v∈Cj

wuv (2.2)

The objective of Normalized Cut is to minimize

k∑
i=1

W(Ci, Ci)

W(Ci, S)
(2.3)

where k is the number of clusters. The numerator W(Ci, Ci) measures how tightly

the cluster Ci is connected to the rest of the data set, while the denominator

measures how compact the entire data set is. To find the approximate solution, let

xi = (x1i, . . . , xni)
T be the indicator vector of the cluster Ci in which each element

xki takes a binary value {0, 1} to indicate if the k’th item in data set belongs to

Ci or not. After introducing indicator vectors, the objective function of NC is

k −
k∑
i=1

yTi D−1/2WD−1/2yi (2.4)
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where D is the diagonal row sum matrix, i.e., Dii =
∑

l Wli, yi = D1/2xi
‖D1/2xi‖

, and

YTY = I, where I is the identity matrix having the same order than YTY. As in-

troduced in Section 2.1.2, directly optimizing equation 2.4 is NP-hard. If we relax

the problem by letting the indicator vectors xi take real values, the optimization

problem can be easily solved under the constraint YTY = I. As shown by Golub et

al. [GL89], when y1, . . . ,yk are k eigenvectors associated with the k largest eigen-

values of matrix D−1/2WD−1/2, the Normalized Cut objective function reaches the

minimum, and y1, . . . ,yk encode the cluster membership information of the given

data set. However, since these eigenvectors take real values for their elements, they

do not directly indicate the cluster membership for each data item. A common

approach for deriving the final cluster set is to project each data point into the

eigenspace spanned by the above k eigenvectors, and apply the k-mean algorithm

within this eigen-space.

2.3 Overview of Feature Reduction with Trans-

formations

Feature reduction is closely related to clustering. Both techniques focus on the

intrinsic structure of a data set. Feature reduction aims to preserve the structure

with fewer features, while clustering aims to identify the structure for the purpose

of data analysis. Because many clustering approaches lose algorithmic effectiveness
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when handling high-dimensional data, a feature reduction step is usually adopted

to enhance clustering performance.

Feature reduction can be achieved by linear or non-linear transformations. Two

classical approaches of finding optimal linear transformations are Principal Compo-

nent Analysis (PCA) [Hot33] for the unsupervised setting, and Linear Discriminant

Analysis (LDA) for the supervised setting. The linear transformation methods can

be less efficient when sever non-linearity is involved in the data. To this end, Ker-

nel PCA [SSM97] and Kernel LDA [MRW+99] are developed using the popular

kernel technique [STC04]. Besides, multidimensional scaling (MDS) is another

widely used linear feature reduction method. PCA, LDA, and MDS are all global

methods in that they preserve only the global structure of a data set. To overcome

the drawbacks of global methods and their variants, a number of local dimension

reduction methods have been proposed, such as Laplacian Eigenmaps [BN02], Lo-

cally Linear Embedding (LLE) [RS00] and Locality Preserving Projections (LPP)

[HN03]. Local methods embed data in the low-dimensional space such that nearby

data points in the original space are still near to each other in the embedded

space. Local methods are particularly useful for data whose local geometry is close

to Euclidean, but whose global geometry may not be.

Compared to nonlinear methods, linear transformations of features are particu-

larly attractive because they are simple to compute and are analytically tractable.

For the above reasons, in this thesis, I focused on linear transformations.
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2.3.1 Principal Component Analysis (PCA)

PCA is an unsupervised dimension reduction technique. PCA seeks a projection

that best represents the data in the reduced space. The optimal projection is

defined in the least squares sense. Assume that we have n f -dimensional data

vectors x1, . . . ,xn, which form the f × n data matrix X = [x1 x2 . . . xn]. The

matrix X is decomposed into X ≈ SA, where S is a f × r matrix, A is a r × n

matrix and r ≤ f . The reconstruction error is defined as

E = ‖X− SA‖2
F =

f∑
i=1

n∑
j=1

(xij −
r∑

k=1

sikakj)
2 (2.5)

and the PCA projection minimizes E . It can be showed that E is minimized when

the column vectors of S, which are {si}|ri=1, are the r eigenvectors of the scatter

matrix H =
∑n

i=1(xi−µ)(xi−µ)T corresponding to the largest eigenvalues. Then

A is the optimal rank r approximation of X. Before applying PCA reduction, the

data should be mean-removed. This preprocessing ensures that the matrix S will

not be affected by the location of the center of the data. With mean removed,

the scatter matrix H is in fact a covariance matrix. Therefore, PCA preserves the

variance of data. Oftentimes the covariance matrix only has a few large eigenvalues.

This implies that the r-dimensional subspace contains the signal and the remaining

f − r dimensions generally contain noise.
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2.3.2 Linear Discriminant Analysis (LDA)

Contrary to PCA, LDA is a supervised dimension reduction technique. Besides a

set of data vectors x1, . . . ,xn, LDA also requires the class assignment of each vector

as prior knowledge. Whereas PCA seeks directions that are efficient for represen-

tation, i.e. maximally preserves variances, discriminant analysis seeks directions

that are efficient for discrimination.

To that purpose LDA maximizes the following objective

J(a) =
aTSBa

aTSWa
(2.6)

where a is a projection vector, SB is the “between classes scatter matrix” and SW

is the pooled “within classes scatter matrix” defined as

SB =
∑
C

(µC − x̄)(µC − x̄)T (2.7)

SW =
∑
C

∑
i∈C

(xi − µC)(xi − µC)T (2.8)

where x̄ is the overall mean of the data set, and µC is the mean of class C.

The objective says that the optimal LDA solution is the one where classes

are well separated, measured in terms of class-means, and each class is compact,

measured in terms of pooled variances of the data items assigned to a particular

class.
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2.3.3 Locality Preserving Projections (LPP)

LPP is a linear dimension reduction technique that is applicable to both unsuper-

vised and supervised settings. Unlike PCA and LDA, LPP is a local method that

optimally preserves local neighborhood information of a data set.

LPP first constructs the adjacency graph of data, where each data item is a

vertex in the graph. Let W be the adjacency matrix associated with the graph.

Then a non-zero wij stands for the existence of an edge between items i and j if

item i is near to item j, i.e., j is in the k nearest neighbors of i for some k. Let yi

and yj be the projections of xi and xj in the r-dimensional space. LPP minimizes

the following objective function

J(a) =
∑
i,j

(yi − yj)
2Wi,j (2.9)

=
∑
i,j

(aTxi − aTxj)
2Wi,j (2.10)

under the constraints

aTXDXTa = 1 (2.11)

where X = [x1, . . . ,xn], and D is the row (or column) sum matrix where Dii =∑
l Wli. Minimizing Equation 2.10 is an attempt to ensure and if xi and xj are

close then their projections in the r-dimensional space are close as well.
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2.4 Evaluation of Clustering

The quality of clustering can be evaluated by either an internal criterion or an

external criterion. An internal criterion is usually adopted in constructing the

objective function of a clustering algorithm, formalizing the goal of achieving high

intra-cluster similarity (i.e., items within a cluster are similar) and low inter-cluster

similarity (i.e., items from different clusters are dissimilar). For example, in k-

means clustering, the value of the objective function when the algorithm converge

indicates the quality of the data partition. But good score on an internal crite-

rion does not necessarily leads to good effectiveness in an application. Moreover,

different clustering approaches adopt different objective functions. The objective

function scores by different approaches are not comparable to indicate which clus-

tering approach generates better quality clusters. Alternatively, we can apply

clustering approaches to an evaluation benchmark or gold standard. For example,

labeled data can be used in evaluation. We remove the class labels and apply a

clustering algorithm to the data set, then evaluate how well the clustering solution

matches the class labels by using an external criterion.

There are four widely adopted external criteria of clustering quality

1. Purity

2. Normalized Mutual Information (NMI)

3. Rand Index (RI)
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4. F-measure (F)

To calculate Purity, each cluster is assigned to the class which is most frequent

in the cluster, and Purity is the accuracy of this assignment which is evaluated by

counting the number of correctly assigned items divided by the total number of

items. However, Purity is biased towards large number of clusters. In particular,

Purity is 1 if each data item forms its own cluster. The three other metrics are

not influenced by the number of clusters and are adopted in this thesis.

Given the true class labeling of a data set, Normalized Mutual Information

(NMI) measures how closely a clustering algorithm can reconstruct the true label

distribution of the data [SSGM00]. Let C and Ĉ be the random variables de-

noting the data partitions based on the ground truth and a clustering algorithm,

respectively. Then NMI is defined as

NMI(C, Ĉ) =
2I(C; Ĉ)

H(C) +H(Ĉ)
(2.12)

where I(C; Ĉ) = H(C)−H(C|Ĉ) is the mutual information between the random

variables C and Ĉ. H(C) is the Shannon entropy of C, and H(C|Ĉ) is the condi-

tional entropy. NMI is a preferred and widely used metric because it does not suffer

from biases like purity, entropy, and the F-measure. Singletons are not evaluated

as perfect.

The Rand Index (RI) measures the degree of similarity in terms of pairwise
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co-assignments between the cluster membership C from the ground truth and the

solution Ĉ generated by a clustering algorithm. It is defined as

RI(C, Ĉ) =
|ci = cj ∧ ĉi = ĉj|+ |ci 6= cj ∧ ĉi 6= ĉj|

n(n− 1)/2
(2.13)

where ci and ĉi are the cluster membership of item i according to C and Ĉ, and

n is the number of data items being clustered. Obviously, RI penalizes both the

false positive and false negative decisions during clustering.

It is possible to penalize each type of error with different weight and this is

achieved by the F-measure [vR79]. Let T denote the set of pairs of data items

that belong to a same cluster according to ground truth and R denote the set of

pairs of data items that have been assigned to a same cluster by the clustering

algorithm. Then, precision and recall are defined as

precision =
|R ∩ T|
|R|

recall =
|R ∩ T|
|T|

And the general form of F-measure is defined as

Fβ =
(1 + β2)(precision× recall)
β2 × precision+ recall

(2.14)

When β = 1, precision and recall are evenly weighted, and it is the commonly used
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F-score, which is also known as the F1 measure, defined as

F1 =
2× precision× recall
precision+ recall

(2.15)

The F1 score is used in the thesis for clustering evaluation.



Chapter 3
Related Work

This chapter briefly reviews existing work on semi-supervised learning (SSL), with

focus on semi-supervised clustering approaches.

3.1 Semi-Supervised Classification and

Semi-Supervised Regression

Semi-supervised classification and regression try to explore the wealth of unlabeled

data to improve the accuracy of a learner. Thus, the training data for semi-

supervised classification and regression tasks include labeled data plus unlabeled

data. Usually, the amount of labeled data is small, but unlabeled data are available

in large amount.

Semi-supervised classification and regression approaches are based on three

major assumptions
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• Cluster assumption says that if items are in the same cluster, they are likely

to belong to the same class.

• Low density assumption says that the decision boundary always lie in a low

density region.

• Manifold assumption says that if two items x1, x2 are linked by a path of

high density then their outputs y1, y2 are likely to be close.

To incorporate the semi-supervised assumptions in the classification and regression

objectives, usually an additional regularization term on the distribution or geom-

etry of both labeled and unlabeled samples is introduced. Transductive Support

Vector Machines (TSVM)[Vap98], Laplacian SVM (LapSVM)[BNS06], Laplacian

Regularized Least Squares (LapRLS)[BNS06], semi-supervised mixture models,

and semi-supervised entropy minimization [GB04] are some representative works.

Besides, Zhu et al. [ZGL03] exploits the manifold structure of labeled and unla-

beled samples by Gaussian fields and harmonic functions. Moreover, self-training

[Yar95] and co-training [NG00] represent another major branch of semi-supervised

classification and regression approaches.

3.2 Semi-Supervised Clustering

Semi-supervised clustering tries to cluster data items with the help of side informa-

tion. Side information can take various forms, such as restrictions on the number
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of data items in a cluster and the variance of a cluster [GEJD07], a few labeled

data items [BBM02], or pairwise constraints. Side information in the form of pair-

wise constraints is most general. I study pairwise constraints in this thesis and

briefly review semi-supervised clustering approaches using pairwise constraints in

this section.

According to how constraints are explored, semi-supervised clustering tech-

niques fall into three major categories, which are constraint enforcement, distance

metric learning, and dimension reduction.

3.2.1 Constraint Enforcement

One can enforce constraints during the clustering process. For example, Wagstaff

et al. [WC00] [WCRS01] propose to adjust the data item assignment step in k-

means, such that none of the constraint is violated in the final k-means solution.

This clustering approach is known as constrained k-means. Because every pair of

constraint should be strictly conformed, this kind of methods may encounter the

over-constrained problem where no solution can be found. For example, Davidson

et al. [DR05] study the feasibility issue of k-means clustering for each type of

pairwise constraints. Another way to enforce side information in k-means is to

initialize k-means with labeled data items [BBM02]. Instead of heuristically mod-

ifying the cluster assignment step in k-means, Basu et al. [BBM04a] propose to

model the constrained k-means problem based on Hidden Markov Random Fields.
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Moreover, Blum et al [BLRR04] and Ji et al. [JX06] propose frameworks to explore

pairwise constraints for spectral clustering methods.

3.2.2 Distance Metric Learning

One can also learn a distance metric based on constraints, and use the learned

metric to measure pairwise distance between items in clustering. Learning distance

metric is equivalent to learning an adaptive feature weighting scheme. Note that

all the clustering techniques rely on some notion of pairwise distance between

data items. Instead of assigning the same weight to every feature, the relative

importance of features can be learned from constraints. Thus, the learned distance

metric evaluates pairwise distances between items better. Xing et al. [XNJR03]

consider a distance metric in the form of general Mahalanobis distance and use

convex optimization and iterative projections to learn it. Cohn et al. [CH00]

learns the distance metric in a probabilistic setting for EM clustering, which is

equivalent to learning the Kullback-Leibler divergence. Klein et al. [KKM02] use

all pairs shortest path algorithm to adjust the squared Euclidean distance. The

effectiveness of metric learning can be improved through boosting. Hertz et al.

[HBhW04] learns the distance by boosting weak learners based on partitioning the

original feature space. [LJJ07] do metric learning iteratively to take full advantage

of the sparse constraints.

One problem with distance metric learning is that the learning is not efficient
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nor effective for high-dimensional data. Distance learning is usually reduced to

solving a convex optimization problem with gradient descent and iterative projec-

tion, and often suffers from large computation cost. The number of parameters to

be learned equals to or is quadratic to the feature space dimensions. Besides, it

has been shown that some metric learning methods may even degrade the cluster-

ing performance if applied to the high dimensional sparse feature spaces, although

they work pretty well with low dimensional data [TXZW07].

3.2.3 Dimension Reduction

One can use constraints to define an optimal subspace, such that data represented

in the subspace show a more evident clustering structure or data are distributed

in a way that conforms to pairwise constraints.

Bar-Hillel et al. [BHHSW03] propose Relevant Component Analysis (RCA)

that changes the feature space via a global linear transformation where relevant

features are assigned with larger weights. RCA can only handle pairwise must-link

constraints. Hoi et al. [HLLM06] extends RCA and propose Discriminative Com-

ponent Analysis (DCA) that can use both must-link and cannot-link constraints.

An et al. [ALV08] propose to incorporate constraints using a modified Locality

Preserving Projections (LPP) cost function. All the above dimension-reduction-

based approaches explore constraints only and do not consider the usefulness of

abundant unconstrained data. With sparse constraints, the methods face the over-
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fitting problem. That is, the subspace that best satisfies a few pairs of constraints

does not necessarily reveal the true structure of the entire data set. To this end,

Zhang et al. [ZZC07] and Cevikalp et al. [CVJK08] propose semi-supervised di-

mension reduction methods that explore both constraints and unconstrained data.

However, both methods require users to intuitively set parameters to balance the

constrained and the unconstrained data. The Dual Subspace Projections (DSP)

approach introduced in Chapter 6 does not overfit and is able to explore constraints

and unconstrained data in a principled way.

Moreover, Tang et al. [TXZW07] propose to place data items into groups

based on constraints and then maximally separate the data groups. The clustering

method proposed in Chapter 4 based on Approximate Structure Preserving (ASP)

dimension reduction shares similar idea, but is computationally more efficient and

has more robust performance. Yan et al. [YD06] propose to project data and con-

straints in multiple subspaces, where metric learning and clustering are performed.

Then the ensemble clustering result is the final clustering solution. This method

divides the metric learning problem for high-dimensional data into many metric

learning problems for low-dimensional data and aggregates the results. However,

the computation cost is still high, and the clustering performance is highly de-

pendent on the ensemble approach adopted. Yan et al. [YWLG09] propose to

first perform semi-supervised dimension reduction, then do distance learning in

the reduced space. Oncel et al. [TPM09] propose a semi-supervised kernel mean
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shift method that explore must-link constraints in the kernel space. The method

is effective, but is unable to use cannot-link information.



Chapter 4
Semi-Supervised Clustering by

Approximate-Structure-

Preserving Dimension Reduction

4.1 Motivation

Pairwise constraints define an “approximate-clustering structure on a data set”.

For example, suppose data items xi and xj are “must-linked” while xp and xq

are “cannot-linked” according to pairwise constraints. Even though the cluster

membership of each data item is unknown, in order to satisfy constraints, data

items xi and xj should be close to each other, while xp and xq should be far apart

from each other. The pairwise cluster-membership relations among xi,xj,xp, and

xq “approximately” outline the desired clustering structure of the entire data set.
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To explore the approximate-clustering structure defined by constraints, a clus-

tering problem can be formulated as a semi-supervised clustering task by approxi-

mate-structure-preserving (ASP) dimension reduction. That is, we seek a projec-

tion U ∈ Rf×r to project input data X ∈ Rf×n onto a much reduced-dimension

subspace by

X̂ = UTX (4.1)

where X̂ ∈ Rr×n is data represented in the r-dimensional reduced space, r � f .

The approximate-clustering structure defined by pairwise constraints is more clear

in the reduced space X̂ than in the full space X. This purpose is achieved by

splitting the f -dimensional input space into an r-dimensional space which contains

all the structure-relevant dimensions (i.e., attributes), and an s-dimensional space

(r + s = f) which contains all the structure-irrelevant dimensions (i.e., noise).

Suppose x is a data vector in the full space and P is some projection matrix, then,

we can split the space into PTx = [Ur Vs]
Tx, or more explicitly

 X̂

X̂⊥

 =

UT
r X

VT
s X

 (4.2)

where X̂ is in r-dimensional relevant space, and X̂⊥ is in s-dimensional subspace of

noise orthogonal to the relevant space. A desired projection matrix P = [Ur Vs]

should satisfy

X̂⊥ = VT
s X = 0 (4.3)
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which means that the structure-irrelevant noise that exists in the full space is re-

moved, and only relevant dimensions are kept in the reduced space. Thus, the

subspace representation of data is X̂ = UT
r X. To achieve this subspace represen-

tation, all we need is to find the projection U (i.e., no need to find V).

The ASP method is based on this motivation and can effectively preserve the

approximate-clustering structure in the reduced space. The projection U can be

generated by well-studied matrix factorization techniques. Thus, ASP is efficient

for dealing with large data sets that are usually encountered in real applications.

4.2 Outline

This section presents a step-by-step description to the ASP dimension reduction

method as well as the corresponding semi-supervised clustering method. Theoret-

ical justification is given in the next section.

Given a collection of pairwise constraints, the first step is to do transitive closure

to all the data items involved in must-link constraints since a must-link constraint

is a binary equivalence relation. For example, if items a and b are must-linked, b

and c are must-linked, then items a and c are must-linked too. Note that, perform-

ing transitive closure is a common preprocessing step in semi-supervised learning.

The assumption is that constraints are error free. The assumption holds well if

constraints are generated by human efforts but does not hold well if constraints

are derived from domain knowledge by some automatic schemes. Chapter 5 will
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discuss this problem more and introduces a method that performs robustly even

with noisy constraints.

After performing transitive closure, a set of data items are partitioned into

several data groups. Given n f -dimensional data vectors x1, . . . ,xn, which form

the data matrix X ∈ Rf×n, f � n, suppose b data groups are generated. For any

given data group Bi, i = 1, · · · , b, suppose the group contains m data items (i.e.,

|Bi| = m), and let matrix Xi = [xi1 · · · xim] ∈ Rf×m represent the collection of

the m data items. The next step is to calculate the centroid ci of group Bi as

ci = 1
m

∑
m xim. The centroid ci ∈ Rf is simply a rank-1 approximation to the

data group Bi.

The relations between data groups are either cannot-linked or do-not-know,

while the relations between the data items within a group are must-linked. Thus,

data groups reflect the approximate-clustering structure defined by constraints.

Such approximate-clustering structure can be encoded into a representative matrix

as follows

Definition 1. Representative Matrix Let matrix C =

[
c1 c2 · · · cb

]
∈

Rf×b be a representative matrix, where the ith column, ci, is the centroid vector of

data group Bi.

Given a representative matrix C ∈ Rf×b, the orthonormal basis U for range(C)

(from Definition 2) is the desired projection. Suppose rank(C) = r, where rank(·)

denotes matrix rank, then U ∈ Rf×r. Note that, for data whose feature space
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dimension is much bigger than the number of data items, i.e., r < n � f , data

can be directly projected to the r-dimensional space. In this case, the dimension

of the reduced space is automatically determined by the rank of matrix C. Given

the projection U, input high-dimensional data are projected onto a reduced space

using Equation 4.1. After the projection, data are in the r-dimensional space

(r � f). The ordinary k-means clustering method is applied to the reduced space

to generate data partitions.

For easier reference, the definition of range is given as follows

Definition 2. The range of matrix A ∈ Rm×n is the set of all vectors y ∈ Rm that

can be expressed as Ax for some x ∈ Rn: range(A) = {y|y = Ax, x ∈ Rn}.

The main steps of semi-supervised clustering by approximate-structure-

preserving dimension reduction are summarized in Algorithm 2.

Algorithm 2: ASP

Input : A set of data items X = {xi}ni=1, X ∈ Rf×n (f � n);
A set of must-link and cannot-link constraints ΩM = {(xi,x′i)}
and ΩC = {(xi,x′i)};
The number of desired clusters k.

Output: A disjoint set of clusters
1 Do transitive closure to generate b data groups;
2 Compute centroids ci ∈ Rf for each data group Bi, i = 1, · · · , b;
3 Compose the representative matrix C =

[
c1 c2 · · · cb

]
∈ Rf×b, where

each column ci is a centroid vector;
4 Find the orthonormal basis U ∈ Rf×r for range(C), where rank(C) = r;

5 Project data using U. That is X̂ = UTX, and X̂ ∈ Rr×n is the reduced
r-dimensional representation of data;

6 Apply k-means clustering method to X̂ to generate data partition that
better meets the clustering requirements defined by pairwise constraints.
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4.3 Analysis and Validation

In this section, the correctness of the ASP method is validated. To measure the

clustering structure of a data set, two concepts, overall volume and group volume

are defined. Overall volume V ol measures the spread of the entire collection of

data items, and group volume V oli measures the spread of data items that belong

to the ith data group.

Definition 3 (Overall Volume). Given a collection of data items distributed into

b groups Bi, i = 1, . . . , b, and ci be the centroid of group Bi, let c be the overall

centroid of the entire data collection. Then the overall volume V ol is defined as

V ol = 1
b

∑b
i=1 ‖ci − c‖2

2.

Definition 4 (Group Volume). Given a data group Bi that contains ni data items

xij, j = 1, · · · , ni, the volume V oli of group Bi is defined as V oli = 1
ni

∑ni
j=1 ‖xij−

ci‖2
2 where ci = 1

ni

∑ni
j=1 xij is the centroid of group Bi.

The ASP method has the properties that, after dimension reduction, the overall

volume is strictly preserved, while the volume of a data group is decreased, as stated

below.

Property 1 (Constant Overall Volume). The overall volume V ol is strictly pre-

served in the subspace: V̂ ol = V ol, where V̂ ol denotes the overall volume after

ASP dimension reduction.
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Property 2 (Group Volume Shrinkage). The volume of any given data group Bi

shrinks in the subspace: V̂ oli < V oli , where V̂ oli denotes the volume of the ith

group after ASP dimension reduction.

The following metric is defined to measure the clustering structure of a data

set

V oldiff =

∑b
i=1 V oli
V ol

(4.4)

Given a fixed overall volume V ol, smaller V oldiff means that data items from the

same group are more packed together, and thus the clustering structure of the

data collection is more evident. According to Properties 1 and 2, the following

inequation holds. ∑b
i=1 V̂ oli

V̂ ol
<

∑b
i=1 V oli
V ol

(4.5)

Inequation 4.5 shows that the data group structure, which represents the approxi-

mate-clustering structured defined by constraints, is preserved and is more evident

in the reduced space. Note that, both “must-link” and “cannot-link” constraints

are satisfied in the ASP method. Property 2 guarantees that if two data items

are must-linked, they will get closer to each other in the subspace, while Property

1 keeps two cannot-linked data items apart by preserving the constant center-to-

center distance for the two data groups where the two cannot-linked data items

belong to.

To prove the properties, I first restate the definition of left null space here for



43

easier reference, and then show Lemma 1 that will be used in the proofs.

Definition 5 (Left Null Space). The left null space of matrix A ∈ Rm×n is the set

of all vectors y ∈ Rm such that ATy = 0: lnull(A) = {y|ATy = 0}.

Lemma 1 (Orthogonal Matrix Composition). Let U = [u1 · · ·ur] ∈ Rf×r be an

orthonormal basis of range(C), and V = [v1 · · ·vs] ∈ Rf×s be an orthonormal

basis of lnull(C). Then P =

[
U V

]
= [u1 · · ·ur v1 · · ·vs] is an orthogonal

matrix, and its columns form an orthonormal basis of Rf .

Lemma 1 can be easily proved based on the fact that lnull(C) is the orthogonal

complement of range(C), that is

Rf = U⊕V, and r + s = f (4.6)

Now, let us prove Properties 1 and 2.

Proof 1 (Property 1). Let V be an orthonormal basis of lnull(C). According

Definition 5, VTC = 0 . Let U be an orthonormal basis of the of range(C).

According to Lemma 1, P =

[
U V

]
is an orthogonal matrix. Moreover, for data

group Bi, we have ĉi = 1
ni

∑
j x̂ij = 1

ni

∑
j UTxij = UTci. According to the norm

preserving property of an orthogonal transformation, we have

‖ci − c‖2
2 (4.7)

= ‖PT (ci − c)‖2
2 (4.8)
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= ‖UT (ci − c)‖2
2 + ‖VT (ci − c)‖2

2 (4.9)

= ‖ĉi − ĉ‖2
2 + ‖VT (ci − c)‖2

2 (4.10)

= ‖ĉi − ĉ‖2
2 (4.11)

where ‖VT (ci − c)‖2
2 = 0 follows the fact that VTC = 0, and centroid c is a

linear combination of group centroids ci: c = 1
n

∑n
i=1 xi = 1

n

∑b
i=1 nici. Thus,

V̂ ol = 1
b

∑b
i=1 ‖ĉi − ĉ‖2 = V ol = 1

b

∑b
i=1 ‖ci − c‖2

Proof 2 (Property 2). We know VTC = 0

‖xi − ci‖2
2 (4.12)

= ‖PT (xi − ci)‖2
2 (4.13)

= ‖UT (xi − ci)‖2
2 + ‖VT (xi − ci)‖2

2 (4.14)

= ‖x̂i − ĉi‖2
2 + ‖VTxi‖2

2 (4.15)

> ‖x̂i − ĉi‖2
2 (4.16)

Therefore V̂ oli = 1
m

∑m
j=1 ‖x̂ij − ĉi‖2

2 ≤ V oli = 1
m

∑m
j=1 ‖xij − ci‖2

2.

4.4 Structure-Irrelevant Noise Deduction

This section introduces how the ASP method can split a feature space and remove

the structure-irrelevant portion in the reduced space. Since Rf = U⊕V (Lemma

1), every data item x ∈ Rf in the full-dimension space can be equally expressed in
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the form

x = u + v (4.17)

with u in U ∈ Rr and v in V ∈ Rs, where r+s = f . u is the portion of x that is in

the range of the representative matrix C. That is, this portion of data item x can

be linearly represented by the centroids of data groups. Since the representative

matrix encodes the approximate-clustering structure, the portion u is structure-

relevant. On the other hand, v is orthogonal to range(C), which means that the

v portion is structure-irrelevant. By ASP, the reduced-dimension representation

of a data item is

x̂ = UTx = UT (u + v) = UTu (4.18)

This implies that a feature space is split and only the structure-relevant portion is

preserved by the ASP method.

The space-splitting view is useful to quantitatively measure how effective the

ASP method preserves and strengthens the approximate-clustering structure in

the reduced space. We have proved that the volume of a data group shrinks in the

reduced space through ASP reduction (Property 2). The amount of shrinkage can

be explicitly measured. For example, for a data group Bi with ni data items, the

volume of Bi in the full space is

V oli =
1

ni

ni∑
j=1

‖xij − ci‖2
2 (4.19)
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=
1

ni

ni∑
j=1

(‖x̂ij − ĉi‖2
2 + ‖VTxi‖2

2) (4.20)

= V̂ oli +
1

ni

ni∑
j=1

‖VTxij‖2
2 (4.21)

Therefore, the term 1
ni

∑ni
i=1 ‖V Txi‖2

2 measures the amount of volume shrinkage

of a data group after the ASP reduction. The larger value this term has, the

smaller volume a data group has in the reduced space, and the ASP reduction is

more effective in the sense that data in the reduced space show a more compact

clustering structure. We know that

x̂⊥ = VTx = VT (u + v) = VTv (4.22)

Then,

1

ni

ni∑
i=1

‖VTxi‖2
2 =

1

ni

ni∑
i=1

‖VTvi‖2
2 (4.23)

This means that for a fixed matrix V, if data items xi contain larger portion of

structure-irrelevant information vi, the ASP method is more effective. The result

is reasonable, since in such a case, more noise is removed in the reduced space.

On the other hand, when data xi are fixed, matrix V will impact the perfor-

mance of the ASP method. Since V is constructed from the representative matrix

C, where each column is a rank-1 approximation to a data group, the way we

approximate a data group influences the performance. Given a data group Bi

with ni data items in f -dimensional space, our choice of using centroid to approx-
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imate Bi is based on the following fact the centroid ci ∈ Rf is the optimal rank-1

approximation to Bi [JPR01] in the sense

ci =

ni∑
j=1

‖xi,j − ci‖2
2 = min

y∈Rf

ni∑
j=1

‖xi,j − y‖2
2 (4.24)

4.5 Finding Orthonormal Basis for

Range

To find the orthonormal basis U of range(C), where rank(C) = r ≤ b � f , two

well-studied rank-revealing matrix factorization techniques can be adopted.

1. Singular Value Decomposition (SVD): We compute the reduced SVD decom-

position of C ∈ Rf×d as: C = UrΣVT
r , where Ur ∈ Rf×r is an orthonormal

set of basis vectors that span range(C). Thus Ur is our projection. The

SVD basis has a useful property that it automatically orders the dimensions

according to their importance. If we desire to project data to a lower than r-

dimensional subspace, i.e., a t-dimensional subspace, t < r, we can construct

the transformation matrix by using the first t eigenvectors of Ur.

2. QR factorization: The reduced QR decomposition of C ∈ Rf×d is computed

as: C = QR =

[
QrQf−r

]Rr

0

 = QrRr. Then U = Qr ∈ Rf×r is the

desired orthonormal basis used for the ASP method. Compared to SVD, QR
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decomposition has the advantages of being computationally more efficient

and requiring less storage. The properties make QR decomposition more

suitable for handling large data sets.

Note that the representative matrix C ∈ Rf×d is sparse and is a “tall and thin”

matrix, since r ≤ d � f . Therefore, both the reduced SVD and reduced QR are

significantly faster than the the corresponding full decompositions. Besides, the

representative matrix C is easy to construct. Suppose that the average number of

data items within each data group is m and there are b data groups, constructing

C takes m × b = n flops (flops is Floating item Operations Per Second). These

features of the representative matrix C make the ASP method computationally

very efficient. At last, note that ASP automatically determines the dimensionality

of the reduced space as the rank of C.

4.6 Relation to Other Methods

ASP shares similarities with another dimension-reduction-based semi-

supervised clustering method, SCREEN [TXZW07]. Moreover, ASP has close

relation with the classical unsupervised dimension reduction technique Principal

Component Analysis (PCA), the classical supervised dimension reduction tech-

nique Linear Discriminant Component Analysis (LDA), and the supervised di-

mension reduction method centroidQR [JPR01][HJP03].

Let X = [x1 · · ·xn]f×n be the matrix representation of data to be clustered, b
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be the number of data groups according to constraints, ci be the centroid of the ith

group, and c be the global centroid. We can define three kinds of scatter matrices,

which are the “within group/class scatter matrix” Sw, “between group/class scatter

matrix” Sb, and the “overall scatter matrix” St

Sw =
b∑

j=1

n∑
i=1

(xi − cj)(xi − cj)
T (4.25)

Sb =
b∑

j=1

n∑
i=1

(cj − c)(cj − c)T (4.26)

St =
n∑
i=1

(xi − c)(xi − c)T (4.27)

Sw + Sb = St

Note that, the compactness of a data group/class is determined by the trace of Sw,

trace(Sw), i.e., the summation of diagonal elements of Sw. The separation between

groups/classes is determined by trace(Sb). High quality clusters should have small

trace(Sw) and large trace(Sb). The goal of a dimension reduction method is thus to

find a projection P that minimizes trace(PTSwP) and maximizes trace(PTSbP).

The objective of ASP and other dimension reduction methods can be expressed in

terms of the scatter matrices as

LDA : max trace(
PTSbP

PTSwP
)

CentroidQR : max trace(PTSbP), s.t. PTP = I
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PCA : max trace(PT (Sw + Sb)P), s.t. PTP = I

SCREEN : max trace(PT S̃bP), s.t. PTP = I

where S̃b is a weighted version of Sb

ASP : max trace(PT (S̃w + Sb)P), s.t. PTP = I

where S̃w is the optimal approximation of Sw

Compare the two semi-supervised methods SCREEN and ASP, ASP is better at

preserving the overall data structure because of the S̃w term in the objective func-

tion. This advantage is also shown by the empirical evaluation.

4.7 Performance Evaluation

4.7.1 Data Description

The semi-supervised clustering based on ASP projection method is evaluated using

two public available data sets: the Reuters-21578 document corpus1, and the 20-

Newsgroups 18828 version2 document corpus. Both document corpora are among

the most widely used data sets for document clustering/classification purposes.

The Reuters corpus contains 21,578 documents which are manually grouped into

135 clusters. In evaluations, only documents with a single label are included to

ensure unambiguous results. The Newsgroups corpus contains 18,828 documents.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2http://www.ai.mit.edu/people/jrennie/20Newsgroups/, 18828 version
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Each document has no header except ‘From’ and ‘Subject’ lines. The Newsgroups

data set is more challenging for clustering purpose because some of the newsgroups

are very closely related to each other. Each document is preprocessed by tokeniza-

tion, stop-words removal, and stemming. Each document is then converted into a

feature vector based on the processed words, without frequency cutoff.

9 data sets, as summarized in Table 4.1, are generated from the two corpora as

follows

1. To evaluate the clustering performance on data sets with various number of

clusters, without the lose of generality, Reu-k data sets are generated from

the Reuters corpus, with the number of topics k ranging from 2 to 7. For

data set Reu-k with k topics, first k topics are randomly selected, then 100

documents from each topic are randomly sampled and mixed (for topics with

less than 100 documents, all the documents are selected).

2. To evaluate the performance on data sets that show various levels of clus-

tering difficulties, 3 data sets are generated from the 20-Newsgroups corpus.

Each data set contains 300 documents randomly sampled from 3 newsgroups.

In the 20-Newsgroups corpus, some of the newsgroups are very closely related

to each other (thus are more difficult to be clustered), while others are highly

unrelated. News-difficult consists of 3 newsgroups on very similar topics,

News-mediocre consists of 3 newsgroups on related topics, and News-easy

consists of 3 newsgroups on totally unrelated topics (thus are easy to cluster).
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4.7.2 Competing Methods

To test whether the ASP method can effectively employ constraints to improve

clustering accuracy, ASP is compared against a total of five competing methods.

All the five methods have been successfully applied to clustering high-dimensional

data, including text data. First, ASP is compared to two of the most widely-used

unsupervised clustering methods for high-dimensional data

• Spherical k-means (SPKM) [DM01] adopts the standard k-means algorithm

to cluster the normalized unit-length items by using the cosine similarity as

the proximity function. SPKM is particularly suitable for handling text data.

• Normalized Cut (NC) [SM97a] has been recognized as one of the best spectral

clustering method.

Moreover, ASP is compared to three semi-supervised clustering methods that well

represent the three major branches of semi-supervised clustering techniques.

• MPCK [BBM04b, BBM04a] integrates metric learning, constraint-enforce-

ment, and constraint-guided initialization into a probabilistic framework of

Hidden Markov Random field. MPCK has been shown to outperform other

metric learning methods, such as the one by Xing et al. [XNJR03].

• Constrained Normalized Cut (CNC) [JX06, YS04] represents the graph-based

semi-supervised techniques and has shown success in handling high dimen-

sional data, such as clustering text data and segmenting images.
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• SCREEN [TXZW07], recently proposed, exploits pairwise constraints

through semi-supervised feature projection and is designed particularly for

handling high dimensional data.

4.7.3 Effectiveness in Handling Constraints

This experiment demonstrates the effectiveness of the ASP method in adopting

constraints to improve clustering accuracy. The ASP method is compared against

SPKM and NC using different amount of constraints, which ranges from 100 pairs

to 800 pairs. Constraints are generated by randomly sampling data pairs according

to ground truth. For a fixed amount of constraints, the final performance score is

obtained by averaging the scores from 20 independent test runs.

Table 4.2 shows the normalized mutual information (NMI) values on Reuters

and Newsgroups data sets. In the table, the first row (with the label “SPKM”) and

the second row (with the label“NC”) show the results generated by the traditional

SPKM and NC methods, respectively. The remaining rows show the results gen-

erated by the ASP method under different amount of constraints. It is clear from

the table that SPKM generates better data partitions on the Reuters data sets,

while NC is more suitable for clustering the Newsgroups data sets. For all data

sets, ASP always outperforms SPKM and NC with large margins. Furthermore,

when more number of pairwise constraints are available to ASP, better clustering

accuracy is achieved.
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4.7.4 Noise Reduction and Visualization

Given pairwise constraints, this experiment demonstrates that the ASP method

can preserve the approximate-clustering-structure defined by constraints and re-

move structure-irrelevant noises in feature space. Thus ASP is useful for visualizing

high dimensional data. Figure 4.1 shows the scatter plots of the News-dif data set

before and after the ASP dimension reduction. The first 2 principal components

are used to visualize the data clustering structure on a 2-d plan. Marker colors and

shapes differentiate data items that belong to different clusters according to the

ground truth. Figure 4.1(a) is the scatter plot before the ASP reduction. It is clear

that data items from different clusters largely overlap. Besides, the within-cluster

variance is larger. In other words, data items in the full-dimensional feature space

do not show evident clustering structure. On the other hand, Figure 4.1(b) shows

the scatter plot after ASP reduction with 800 pairs of constraints. Clusters in the

reduced space are well separated, meanwhile, data items that belong to the same

cluster get closer to each other as indicated by the smaller within-cluster variance.

It is clear from Figure 4.1(b) that data clustering structure in the reduced space

is more evident.

4.7.5 Clustering Accuracy

To reveal the effectiveness of ASP method as a semi-supervised clustering tech-

nique, this experiment conducts clustering accuracy comparisons with (1) MPCK,
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Figure 4.1: Scatter plot of News-dif data set before and after the ASP method is
applied (# constraints = 800).

(2) CNC, and (3) SCREEN semi-supervised clustering methods. The three meth-

ods explore pairwise constraints through three different perspectives, and each

represents the state of the art of the corresponding branch of semi-supervised clus-

tering techniques. I used SPKM as the baseline. The results on the Newsgroups

data sets are shown in Figure 4.2 and the results on the Reuters data sets are
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shown in Figure 4.3 and Figure 4.4

As Figures 4.2, 4.3 and 4.4 indicate, for all data sets with varying amount

of constraints, overall, the ASP method yields better clustering accuracy than

other semi-supervised methods. To further examine if this out-performance is

statistically significant or not, the one-sided Wilcoxon signed rank test is conducted

and the p-values between ASP and CNC, ASP and SCREEN, and ASP and MPCK

pairs are calculated. The one-sided Wilcoxon signed rank test is a nonparametric

paired test without assuming the underly distribution of the tested values. A

sample pair is one pair of clustering accuracy values by two algorithms. Since

the amount of constraint ranges from 100 to 800, there are 8 sampled pairs for

each signed rank test. The results with p-value smaller than 0.05 are considered

statistically significant. The test results are listed in Table 4.3. Except for the

Reu-2 data set, the ASP method significantly outperforms other semi-supervised

clustering methods. The relatively larger p-value on the Reu-2 data set is due

to the fact that all the methods achieved accuracy equals 1 after the available

constraints reached 400 pairs. Thus the difference between any two methods is not

as significant as shown by other data sets.
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Figure 4.2: Accuracy comparison between ASP and other semi-supervised cluster-
ing methods on 20-Newsgroup corpus.
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Figure 4.3: Accuracy comparison between ASP and other semi-supervised cluster-
ing methods on Reuters corpus.
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Figure 4.4: Accuracy comparison between ASP and other semi-supervised cluster-
ing methods on Reuters corpus (continue).
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Besides the higher clustering accuracy, the ASP method is also more robust

than other methods. Notice when the available amount of constraints is small (e.g.,

less than 400 pairs), the performance of CNC, MPCK and SCREEN can be inferior

to that of the unsupervised method SPKM, while the ASP method still outperforms

SPKM. The performance of ASP steadily increases when the amount of constraints

increases, and always outperforms the unsupervised clustering method SPKM.

4.7.6 Computational Efficiency

This experiment evaluates the computational performance of ASP, and compares

it against the CNC and SCREEN methods. Again, SPKM is the baseline. The

comparisons to the MPCK method are left out because MPCK is based on met-

ric learning and its execution time is significantly longer than all other methods.

Moreover, the computational performance is compared using different matrix fac-

torization techniques in the ASP method. The ASP methods based on the SVD

and QR decompositions are denoted as ASP-SVD and ASP-QR, respectively.

The computational performance is evaluated by measuring the running time

(RT) of 1 run for each algorithm on both the 20-Newsgroups data sets and the

Reuters data sets. Experimental results on the 20-Newsgroups data sets are sum-

marized in Figure 4.5 and results on the Reuters data sets are summarized in

Figure 4.6 and Figure 4.7. Because the running time of different methods covers

a large range of values, the logarithm scale for running time (log(RT )) is used for
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the y-axis to reduce the range and to get a better visualization.

As Figures 4.5, 4.6, and 4.7 indicate, for all the data sets, when the number

of constraints increases, the running time of ASP decreases. This shows the nice

scalability of ASP in exploiting constraints to aid the clustering process. Therefore,

ASP can handle a large amount of constraints efficiently. Obviously, the largest

running time of ASP is achieved when no constraint is available. After that, the

more constraints are available, the shorter running time will be achieved, as well

as the better clustering accuracy. Compared to the unsupervised SPKM method

which clusters data in the full-dimensional space, when the amount of available

constraints is small, due to the matrix factorization step of ASP, the running time

of ASP is larger than SPKM. However, when more constraints are available, the

representative matrix C becomes “thinner”. So factorizing C is faster, and the

running time of ASP becomes shorter than the running time of SPKM. Notice

that, for all the data sets and various number of constraints, ASP-QR is always

faster than ASP-SVD. This observation matches the fact that the QR orthogonal

decomposition is more computationally efficient than the SVD decomposition.

In contrast with ASP, the other dimension-reduction-based method SCREEN

is computationally more expensive. Although SCREEN can also projects high-

dimensional data onto a much-reduced space, where more efficient unsupervised

data partitions can be performed, the scheme it employs to seek the desired data

projection is computationally expensive (refer to [TXZW07] for details). The
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Figure 4.5: Running time comparison & subspace dimensionality on 20- Newsgroup
corpus
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Figure 4.6: Running time comparison & subspace dimensionality on Reuters cor-
pus.
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Figure 4.7: Running time comparison & subspace dimensionality on Reuters corpus
(continue).
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graph-based method CNC is a relatively efficient method. When the amount of

constraints is small, CNC can be faster than ASP. However, when the amount of

constraints increases, the running time of CNC increases too, and CNC becomes

slower than ASP.

4.7.7 Dimensionality of the Reduced Space

Given a data set and pairwise constraints, the ASP method can automatically

determine the dimensionality of the reduced space through rank-revealing ma-

trix factorization techniques. And the dimensionality of the reduced space equals

to the rank of the representative matrix. This feature of ASP sets a nice con-

trast to other dimension reduction techniques which often require large amount

of repeated experiments to empirically determine the best dimensionality of the

reduced space. Usually, the best dimensionality varies for different data set and

in the semi-supervised clustering case, also varies for different amount of con-

straints. Therefore, potentially large amount of extra computations are required

to determine the subspace dimensionality. ASP can save these computations. The

dimensionality of the subspace found by ASP are shown in the x-axis of Figure

4.5, Figure 4.6 and Figure4.7.
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4.7.8 Summary of Experiments

The finding can be summarized as follows: (1) As long as the constraints are pro-

vided, ASP always outperform the traditional SPKM and NC methods. (2) ASP

can remove noise in the feature space to reveal evident clustering structure of the

data set. (3) ASP significantly outperforms other semi-supervised clustering meth-

ods in clustering accuracy (p-value < 0.05). (4) ASP is computationally efficient.

As the number of constraints increases, the running time of ASP decreases. Table

4.4 summarizes the comparison results between ASP and other semi-supervised

methods. (5) ASP automatically determines the desired dimensionality of the

reduced space.

Table 4.4: Summarization of experiments (Improvement by ASP in percentage)
metric Accuracy Running time

data set 20-Newsgroups Reuters 20-Newsgroups Reuters

ASP vs. CNC 32.90% 9.43% 15.16% 51.86%
ASP vs. SCREEN 53.36% 19.29% 97.84% 94.08%
ASP vs. MPCK 128.67% 26.51% faster faster



Chapter 5
Semi-Supervised Clustering with

Domain-Driven Noisy Constraints

In semi-supervised clustering, side information in the form of pairwise constraints

can come from two sources. Constraints can be provided by human users and

experts, or automatically identified based on domain knowledge. In most exist-

ing semi-supervised clustering approaches, the existence of well-defined noise-free

constraints is often assumed, and semi-supervised approaches that use such con-

straints do not perform robustly when constraints contain noise. Noisy constraints,

however, arise unavoidably in many real world applications. The noisy-constraints

problem is particularly serious when constraints are automatically identified based

on domain knowledge. This chapter studies the noisy-constraints problem in the

domain of document clustering, although the technique is equally applicable to

semi-supervised clustering in other domains.
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5.1 Motivation

“Networked” documents proliferate with the development of the World Wide Web

and Digital Libraries. In addition to text content attributes, networked documents

are correlated by links (e.g., hyperlinks between Web pages, citations between sci-

entific publications, and co-acted-by or co-directed-by relationships between movies

etc.). These links are useful information for text analysis because they convey rich

semantics that are usually independent of word statistics of documents [Hen05].

Among many successful techniques, PageRank [BP98] and HITS [Kle99] are two

representative models which use the link information for document importance

ranking.

Exploiting link information of networked documents to enhance text classi-

fication has been studied extensively in the research community [CDI98, CH00,

GFKT03, OML00, TAK02]. It is found that, although both content attributes

and links can independently form reasonable text classifiers, an algorithm that

exploits both information sources has the potential to improve the classification

[BEG06, Men04]. Similar conclusion has been drawn for text clustering by a grow-

ing number of works [AS06, BEG06, HZHDDS02, MS00, NAJ03, WK02, YL07].

However, the fundamental question still remains

How to effectively couple the content and link information to get the most of

both sources?

Most of the previous studies couple content and link information for clustering
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in one of the four following ways. Given documents represented by the bag-of-words

model, the first way extends the term-based feature space with in-link and out-link

features [MS00]. The second way linearly combines text similarity with link sim-

ilarity [HZHDDS02, NAJ03]. The third way locally adjusts a document’s cluster

assignment based on its neighbors’ cluster assignment in the link graph [AS06].

The fourth way weights terms according to link structure [BEG06]. Whereas these

approaches provide valuable insights on employing link information, they either

rely on heuristic combination of content and links, or assume the link graph to be

dense or noise-free.

This chapter studies this problem for document clustering in a semi-

supervised setting, and introduces a novel semi-supervised clustering approach

for networked documents based on COntent and STructure COnstrained (Costco)

feature projection. In particular, pairwise constraints are extracted from link struc-

tures and are further used to supervise the document clustering process. The link

graphs of real-world data are usually sparse and noisy. Two link analysis methods

are proposed to extract a small portion of links that are less noisy and are of higher

probability to indicate topic correlations between documents.

5.2 Problem Statement

There are two major issues with clustering networked documents. First, text data,

usually represented by the bag-of-words model, have extremely high-dimensional
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feature space (1000+). Thus, most document vetors tend to be equally far apart

from each other, no matter they belong to the same topic or not. The effect is

evident as shown in Figure 5.1. The distributions of pairwise distances are roughly

the same for documents with the same topic and documents with different topics.

An explanation of this phenomenon is that, the contribution of really discriminative

words is marginal with respect to all the other words in the high-dimensional space.

As introduced in Section 1.4, feature reduction is a better choice than feature

selection in significantly reduce the dimensionality for text data.

Second, in the networked environment, semantically related documents tend

to cite each other. If the link structure is noise-free and dense enough, then link-

based clustering augmented by textual content [AS06, BEG06], will generally yield

well separated clusters. However, the link structure is often noisy and sparse. For

instance, many links in Web pages are for navigational purpose and therefore are

not indicators of semantic relations [PT03]. Thus, it is crucial to find a text-based

clustering solution that incorporates information from the available link structure

as well.

The approach introduced in this chapter addresses the above two issues and

bridges the disconnect between text and link structure from a feature projection

perspective. An optimal projection direction is defined by satisfying constraints

on both content and link structures. The low-dimensional data show more evident

clustering structures and can be clustered with better quality.
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Figure 5.1: Histograms of pairwise distances from two clusters (using 80 documents
about topics sci.med and comp.sys.ibm.pc.hardware from 20-Newsgroups corpus).

5.3 Outline

The overall clustering framework is outlined in Figure 5.2. Given networked doc-

uments, two preprocessing steps are performed. On the one hand, link analysis is

performed to extract core pairs, which are pairs of documents strongly correlated

with each other according to the link structure. On the other hand, the tradi-

tional Vector Space Model (VSM) [BDJ99] is employed to convert documents into
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high-dimensional vectors. Each dimension of a vector is a unique word after pre-

processing (stopping, stemming, etc.). Core pairs and document vectors are then

input into the feature projection module Costco. The generated low-dimensional

data are partitioned by the traditional k-means clustering method into k clusters,

where k is the desired number of clusters provided by users.

In the following sections, two link analysis methods that extract robust in-

formation from sparse and noisy link graphs are first introduced. Then, a novel

feature projection method is introduced. The method takes use of the extracted

link structure in searching for the optimal feature projection direction.

5.4 Link Analysis

The link graphs of real-world networked documents are usually sparse and noisy.

This fact is illustrated with five real networked document data sets. Data sets

Cornell, Texas, Wisconsin, and Washington are web pages collected from the

four universities, while the data set Cora contains scientific articles that cite each

other (refer to Section 5.7 for details). The small average outdegrees indicate

the sparseness of the graphs. The statistic informative links% is defined as the

percentage of links that the two connected documents by a link are about the

same topic. Small percentages indicate that the link graphs are noisy. Therefore,

instead of naively assuming a pair of connected documents being similar in topic,

we need schemes to extract more robust link information from a link graph.
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Figure 5.2: Framework of networked document clustering based on content and
structure constrained feature projection (Costco)
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Table 5.1: Link structure is sparse and noisy
Cornell Texas Wisconsin Washington Cora

avg. outdegree 1.56 1.75 2.00 1.94 2.01
informative links% 13.16% 11.58% 20.38% 24.89% 81.38%

5.4.1 Local Link Analysis

A link graph is modeled as directed and unweighted, denoted by G(V,E), where

V is the set of the vertices/documents, and E is the set of edges/links between

vertices. If document di links to/cites document dj, then there is an edge of unit

weight starting from di and pointing to dj. Let matrix L ∈ Rn×n, where n is the

number of documents, be the corresponding link matrix defined as

lij =


1 di cites dj

0 otherwise.

(5.1)

where lij is the element on the ith row and jth column of L. L embodies two

types of document concurrences: cociting and cocited, as illustrated in Figure 5.3.

A cociting relationship among a set of documents means that they all cite a same

document. For example, both documents A and C cite document D, so A and C

have a cociting relation. A cocited relation refers to that several documents are

cited together by another document. For example, document B and D are being

cocited by documents A. Both concurrences indicate the semantic correlations

between documents.

In order to capture the concurrences, two adjacency matrices X ∈ Rn×n and
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Figure 5.3: Cociting vs. Cocited

Y ∈ Rn×n are calculated

xij =
|li∗ ∩ lj∗|
|li∗ ∪ lj∗|

, 0 ≤ xij ≤ 1 (5.2)

yij =
|l∗i ∩ l∗j|
|l∗i ∪ l∗j|

, 0 ≤ yij ≤ 1 (5.3)

where li∗ and l∗i represent the i-th row vector and column vector of L respectively.

xij measures the Jaccard similarity of two documents di and dj in terms of the

cociting pattern, and yij measures the similarity of the cocited pattern. Combin-

ing the two concurrences patterns, we have the overall structure-based similarity

matrix

Z = αX + (1− α)Y (5.4)

where α ∈ [0, 1] is the parameter that controls the contribution of each individual

link pattern to the overall structure-based similarity. Note that, some previous

work only consider the cocited pattern by heuristic, but ignore the cociting pattern

[HZHDDS02]. It can be found that by exploiting both patterns, more robust

information can be extracted from the noisy link graph. Given Z, the set C of core
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pairs is then defined as

C = {(di,dj)|Zij > θ} (5.5)

where θ is a threshold that controls the reliability of link-based similarities.

5.4.2 Global Link Analysis

The link analysis scheme introduced in the previous section is a “local” method in

the sense that for any query vertex/document in the graph, only the links between

the query vertex and its direct neighbors are considered. Local analysis can miss

some informative document pairs. Figure 5.4 shows such an example. According to

the local method, documents A and B can be considered to be strongly connected

since they both cite document C. Similarly, we can find the document pair C and

D since they both cite E . However, the relations among documents A, B, D and E

are ignored. Naively applying the transitive closer rule to link the four documents

together may have the side effect of error diffusion if one of the judgement made

by the local method is incorrect.

To this end, a global scheme is proposed that robustly finds all the strongly

related document pairs in the link graph. In particular, a Markov random walk

is defined on the link graph. Different from the local method, the link graph

is modeled as undirected and weighted, denoted as G̃ = (Ṽ, Ẽ). That means, if

there is a link between two documents di and dj, a relation is considered to exits

between them, no matter who starts the link. The edge is further weighted by the
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Figure 5.4: Local method misses informative pairs

pairwise similarity D(di,dj) of the two documents. Let matrix W ∈ Rn×n, where

wij = D(di,dj), be the weight matrix. We then calculate the one-step transition

probabilities pik, which are the probabilities of jumping from any state (vertex) i

to one of its adjacent state k, from these weights as

pik =
wik∑
j wij

(5.6)

The one step transition probabilities can be organized as a matrix P whose ik-th

entry is pik.

Due to the sparseness of a link graph, two documents that are strongly corre-

lated in topics may not be linked together. For example, a scientific article can not

cite all the related work, and several Web pages with similar topics may scatter in

the Web without any link among them. See Figure 5.5 for an example. Suppose

document B and document D are similar in topics (e.g., suppose D is in B’s first

s nearest neighbors according to content similarity), but are not explicitly linked
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together through any path in the graph. Similarly, suppose document C, which

is a singleton vertex, shares similar topics with document A, but is completely

unconnected. It is impossible, therefore, to identify all the core pairs from the

link graph. To remedy this problem, for each vertex/document whose degree is

below the average, artificial links are added between the vertex and its s nearest

neighbors where s is a small number. For example, the dotted lines in Figure 5.5

denote the artificial links which establish correlations not originally conveyed by

the sparse link graph.

Figure 5.5: Sparse link graph misses informative pairs (real line: real links; doted
line: artificial links)

For the augmented link graph, the transition matrix P has the property that

Pe = e, i.e., P is stochastic, where e is the vector with all 1 elements. We can now

naturally define the Markov random walk on the undirected graph G̃ associated

with P. The relation between two documents is evaluated by an important quantity

in Markov chain theory, the expected hitting time h(j|i), which is the expected

number of steps for a random walk started at state i to enter state j for the first
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time. Formally, h(j|i) is defined as


h(i|i) = 0

h(j|i) = 1 +
∑n

k=1 pikh(j|k) i 6= j.

(5.7)

The hitting time can be solved iteratively using the above recurrence relations or

in closed form [AF95]. The choice of using expected hitting time to evaluate the

correlation between two documents is justified by the desired property that the

hitting time from state i to state j decreases when the number of paths from i to

j increases and the lengths of the paths decrease. The core pairs can be naturally

defined as

C = {(di,dj)|(h(j|i) + h(i|j))/2 < γ} (5.8)

for a certain threshold γ.

5.5 Content & Structure Constrained Feature

Projection (Costco)

This section introduces how to integrate content and link structure into a unified

framework to find the optimal subspace embedding of high-dimensional data.

Let matrix D ∈ Rf×n be the document-term matrix where each column di

is a document vector in the f -dimensional space. Let {(dj1,dj2)}|mj=1 be the set

of m document pairs that have been identified as core pairs at the link analysis
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step. Since these pairs of documents are strongly connected according to the

link structure, there is a high probability that documents in a core pair are also

semantically similar. We then prefer a projection direction, such that any two

documents in a core pair will be more similar to each other after being projected

along the direction, where the similarity between two documents is measured as

D(dj1,dj2) = 1−
dTj1dj2

‖dj1‖‖dj2‖
(5.9)

To achieve this goal, we can minimize the variance between documents in a core

pair. Let us define the scatter matrix V to encode the pooled variances for all the

core pairs

V =
1

m

∑
{(dj1,dj2)}∈C

(dj1 − dj2)(dj1 − dj2)T (5.10)

Then the desired projection is

S∗ = arg min
S
trace(STVS) (5.11)

where S ∈ Rf×r denotes the optimal transformation matrix, r is the desired sub-

space dimensionality provided by users, and trace(·) is the trace of a square matrix,

defined as the summation of the diagonal elements.

Directly minimizing Equation 5.11 leads to trivial solutions. For example, if

the entire data set is projected to one point, then the covariance between core pair

documents is minimized. To avoid trivial solution, we can put constrains on the
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variance of the entire data set to prevent all the data points huddle together. The

scatter matrix of the entire data set is defined as

U =
1

n

n∑
i=1

(di − µ)(di − µ)T (5.12)

where µ = 1
n

∑n
i=1 di is the global mean. Accordingly, the following objective is

defined

S∗ = arg max
S

trace(
STUS

STVS
) (5.13)

= arg max
S

trace((STVS)−1(STUS))

which can be interpreted as

arg max
S

trace(STUS) and arg min
S
trace(STVS) (5.14)

The objective function in Equation 5.13 defines a linear feature projection di-

rection that both maximally preserves the variations of the entire data set and

minimizes the pooled variances of core pairs. Simply put, after being projected

along the optimal projection direction, the documents that are strongly connected

(according to link structure) will be more similar to each other, while the rest

documents are still well separated.

After the transformation matrix S is solved, the high-dimensional (f -
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Algorithm 3: Costco (solving Equation 5.13). D̂ = Costco(U,V,D, k, r)

Input : Scatter matrix U;
Scatter matrix V;
document-term matrix D;
Desired # clusters k;
Desired # subspace dimension r.

Output: Low-dimensional data D̂.
1 Do eigen analysis of V = Φ∆ΦT;
2 Discard zero eigenvalues of V with their eigenvectors;

3 Form whitening transform H = Φ∆−1/2;

4 Obtain new Ũ = HTUH;

5 Do eigen analysis of Ũ = ΨΣΨT ;
6 Pick the r biggest eigenvalues λ1 · · ·λr;
7 Pack their associated eigenvectors into the transformation matrix

S = H× [ψ1 · · ·ψr];
8 Project data via D̂ = STD;

9 return Low dimensional data D̂.

dimensional) data can be optimally represented in the r-dimensional subspace as

D̂ = STD, where D ∈ Rf×n is the original document-term matrix, D̂ ∈ Rr×n is

the subspace representation, r � f . The optimization problem 5.13 is a general

eigenvalue problem. Detailed algorithm that solves Equation 5.13 and finds the

transformation matrix S is shown in Algorithm 3.

5.6 Regularization

There are two factors that may prevent Costco from behaving robustly over a

variety of data sets. First, if the covariance matrix V is singular and hence not

invertible, the optimization problem in Equation 5.13 is ill-posed. Second, if a small

number of core pairs are identified, the estimate of matrix V is highly variable due
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to the randomness related to small sample size, which may lead to over-fitting.

Regularization is the technique to solve the ill-posed problem and to prevent

overfitting. The regularized objective function of Costco is

S∗ = arg max
S

trace(
STUS

ST (V + βJ)S
) (5.15)

where J is the regularizer, and the coefficient β balances the model complexity and

the empirical loss. A regularizer is what deemed to be more “physically plausible”

to bias the sample-based estimate [Fri88]. The Tikhonov regularizer [Tik63],

which is an identity matrix J = I, is usually adopted. For the document clustering

problem, the following regularization term is proposed

J = diag(cov(D)) (5.16)

The hypothesis family of the diagonal regularizer preserves the differences in fea-

ture variances, thus is more realistic. Note that, if the data have been statistically

normalized to unit variance, the diagonal regularizer is reduced to the Tikhonov

regularizer since in such case diag(cov(D)) = I. However, statistical normalization

has the effect of making a data distribution “more Gaussian”. When the true

data distribution is quite different from Gaussian, normalization will impair data

clustering accuracy.

In unsupervised learning, the regularization parameter β is usually set to a fixed
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Algorithm 4: Networked Document Clustering Based on Costco.

Input : A set of n networked documents;
Desired # clusters k;
Desired # subspace dimensionality r.

Output: a set of clusters
1 begin link analysis
2 Extract core pairs C by local link analysis (Eq. 5.5)
3 or global link analysis (Eq. 5.8)

4 begin content analysis
5 Represent n documents using vector space model to get
6 the document-term matrix D ∈ Rf×n;

7 Construct covariance matrix U (Eq. 5.12);
8 Construct covariance matrix V (Eq. 5.10);
9 Construct the regularizer J (Eq. 5.16)

10 and pick β (Eq. 5.17);

11 D̂ = Costco(U,V,D, k, r)

12 k-means(D̂, k);
13 return a set of clusters.

value by the algorithm designer without pellucid intuition [WZL07]. Instead, we

can define the parameter as

β =
max(diag(V))

max(diag(J))
(5.17)

where max(diag(A)) is the maximum value of the diagonal elements of matrix A.

The intuition is to scale the regularizer such that the sample-based estimate V

and the regularizer βJ are “comparable”. That is, no one component will over-

whelm the other. Empirical evaluation validates the effectiveness of this adaptive

parameter setting scheme.

The overall clustering scheme is outlined in Algorithm 4.
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5.7 Performance Evaluations

5.7.1 Data Description

The proposed networked document clustering framework has been evaluated on 6

UCI benchmark data sets1, 3 data sets generated from the 20-Newsgroups docu-

ment corpus, 3 data sets generated from the Reuters document corpus, the WebKB

data sets2 of hypertext, and the Cora data set4 of scientific publications. All these

data sets have been widely used for machine learning and text analysis tasks.

Statistics of these data sets are listed in Table 5.2 to Table 5.5.

In particular, the 20-Newsgroups data sets are generated following the same

steps as described in Section 4.7.1. To generate the Reuters data sets, the process

is a little different from the process described in Section 4.7.1. For a given number

of topics b, firstly, b topics are randomly sampled, and then about 100 documents

of each topic are randomly sampled and mixed together. Instead of fixing the b

topics, I randomly select b topics for 5 times and generate 5 different data sets.

In total, 15 Reu-k data sets have been generated. Table 5.4 shows the average

statistics of 5 sets of independently generated data sets.

1http://archive.ics.uci.edu/ml/
2http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
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Table 5.2: UCI data sets
data sets # classes # instances # features

balance 3 625 4
vehicle 4 846 18

breast-cancer 2 569 30
sonar 2 208 60

ionoshpere 2 351 34
soybean 4 47 35

Table 5.3: 20-Newsgroups data sets
data sets topics # features

difficult comp.windows.x, comp.os.ms- 3,570
windows.mis, comp.graphics

mediocre talk-politicis.misc, talk.politics. 4,457
guns, talk.politics.mideast

easy alt.atheism, sci.space, 4,038
rec.sprot.baseball

5.7.2 Baseline and Competing Methods

The spherical k-means (SPKM) [DM01] and the Normalized Cut (NC) [SM97a]

3 are chosen as baseline clustering methods. For competing dimension reduction

techniques, the proposal is compared to two well-known unsupervised dimension

reduction methods, the principal component analysis (PCA) [Pea01] which is a lin-

ear method and the locally linear embedding (LLE) [RS00]4 which is a non-linear

3original authors’ implementation is used. http://www.cis.upenn.edu/~jshi/software/
4original authors’ implementation is used http://www.cs.toronto.edu/~roweis/lle/

Table 5.4: Reuters data sets
data sets # classes # instances # features

reu4 4 400 2,537
reu5 5 500 2,257
reu6 6 600 2,626
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Table 5.5: WebKB and Cora Data sets
data sets # classes # instances # features # links

WebKB 5 877 1,703 1,608
Cora 7 2,708 1,433 5,429

method. For competing techniques that couple content and link information, Aug-

mented [MS00] and L-Comb [HZHDDS02, NAJ03] are implemented. Augmented

augments the content-based vector space model with link features and applies k-

means to the augmented document vectors. L-Comb linearly combines content

similarity with link similarities and uses NC as the underlying clustering scheme.

Other schemes of combining content and link information in clustering are avail-

able, such as local cluster membership adjustment [AS06] and link-based feature

weighting [BEG06]. However, these techniques apply to dense or error-free link

graphs so I do not compare to them. Besides, the method Links is a k-means

clustering based on link similarity only. Table 5.6 summarizes all the algorithms

that have been evaluated. The two proposals are bold faced.

5.7.3 Controlled Experiments

In this section, controlled experiments are performed to evaluate the effectiveness of

various techniques in coupling content and links to improve clustering performance.

In particular, given a data set, artificial links are generated and inserted between

data points. In this way, the density of a like graph as the error rate of links are

under control, and the me a method can be evaluated with various settings. Every
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Table 5.6: Methods Summary
method description

FF(k-means) spherical k-means (SPKM), baseline, content only,
full feature space (FF) [DM01]

FF(NC) Normalized Cut (NC), baseline, content only,
full feature space (FF) [SM97a]

PCA content only, reduced dimensionality [Pea01]
LLE content only, reduced dimensionality [RS00]

Augmented content & links, full feature space
uses k-means for clustering [MS00]

L-Comb content & links, full feature space
uses Normalized Cut (NC) for clustering [HZHDDS02, NAJ03]

Links links only
Costco my proposal

nr-Costco Costco without diagonal regularization

method that uses link information will take use of all the available links instead

of pruning out some links with preprocessing steps. With controlled experiments,

clustering schemes can be evaluated in a fair setting without being influenced by

preprocessing.

To generate artificial links, the cluster membership relation of pairs of docu-

ments are randomly sampled from ground truth and x pairs are chosen to add links

in. Given an error rate e of links, we can control the samples such that dx ∗ ee

pairs of documents belong to different topics, which means these links are noise.

Coupling Content and Links In this experiment, the error rate of links is fixed

to be zero, i.e., e = 0, and the graph density is varied by introducing x =100

to 800 links between documents. This experiment measures the performance

of a method in the noise-free setting with various levels of graph density.
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Figures 5.6 5.7, 5.8 and 5.9 show the clustering performance measured by

NMI for the UCI, 20-Newsgroups, and Reuters data sets respectively. Tables

5.7, 5.8 and 5.9 show the same result measured by RI and F score, with fixed

400 links. For all the data sets and different graph density levels, Costco

consistently and significantly outperforms other competing methods. Notice

that, L-Comb and Augmented improve clustering accuracy for some data

sets e.g., vehicle, balance, easy, but do not consistently perform well for all

the data sets.

It is easy to observe that although the three evaluation metrics have different

absolute values, they show very similar patterns for all the data sets and

experiments.
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(a) balance
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(b) vehicle
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Figure 5.6: Clustering results on UCI data sets
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(d) sonar
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(e) ionoshpere
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(f) soybean

Figure 5.7: Clustering results on UCI data sets (continue)
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Figure 5.8: Clustering results on 20 Newsgroups data sets
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(a) Reu4
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(b) Reu5
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Figure 5.9: Clustering results on Reuters data sets
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Robustness to link errors Follow a similar setting of the previous experiment,

now the density of link graphs is fixed to have x = 400 links, and the error

rate e of links is varied from 0 to 1, with e = 0 means that there is no noise

in links and e = 1 means that all the links are noise. Figure 5.10 shows

the behavior of Costco for 3 representative data sets (results on other data

sets show similar patterns and thus omitted). As long as most of the links

are informative (i.e., the percentage of noisy links is below 50%), without

any link-pruning preprocessing steps, regularized Costco always improves

clustering accuracy. These results indicate the robustness of Costco to noisy

link graphs.

Regularization The effectiveness of the proposed diagonal regularizer can be eas-

ily observed from the reported experimental results. When no regularization

is applied, doing dimension reduction based on noisy and sparse link struc-

tures may even degrade a clustering solution. For example, the mediocre

data set (Figure5.8(b)) and the reu6 data set (Figure 5.9 (c)) show exam-

ples where the non-regularized Costco degrades clustering performance given

small number of links. Figure 5.10 shows that without regularization, the

use of noisy link structure in dimension reduction deteriorate clustering per-

formance very fast. However, when the diagonal regularizer is adopted, the

performance of clustering in the reduced space is much more robust. Note

that, for all the data sets and experiments, the regularization parameter
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Figure 5.10: Clustering results on Reuters data sets
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β is set automatically and adaptively. The robust performance of Costco

indicates the effectiveness of this parameter setting scheme.

Dimension Reduction In this experiment, for UCI data sets which have rela-

tively low-dimensional features, the reduced dimensionality r is fixed to be

the half of the original dimensionality. For text data sets, the reduced dimen-

sionality is set to 40 (this number does not change the relative performance

comparison among competing methods). As reported results show, Costco

always outperforms the other two unsupervised dimension reduction method,

PCA and LLE. The performance gain is due to the use of link information.

PCA and LLE, however, can not explore link information even when avail-

able. This experiment has shown that LLE does not perform well for text

data sets, thus its results on text data is not reported here. This observation

is due to the fact that LLE fails to handle sparse and weakly connected data

such as text [SRS03]. Figure 5.11 shows the difference in data distributions

after dimension reduction by PCA and Costco.

Local vs. Global Link Analysis In this experiment, instead of using all the

available links, Costco adopts the local and global link analyses to extract

robust core pairs of documents and does dimension reduction accordingly.

With fixed 400 links and an error rate of 0.5, Figure 5.12 shows the clustering

results. In most cases, both link analysis methods can prune noise in links and

improve clustering performance. Global link analysis usually outperforms
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local analysis as can be expected.
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5.7.4 Unrestrained Experiments

Instead of artificially control the graph density and error rate, now all the methods

are tested with real-world networked documents. Experimental results are shown in

Table 5.10. Basically, similar patterns to the controlled experiments are observed.

For example, in most cases, Costco outperforms competing clustering methods

and dimension reduction methods. The regularization improves the robustness in

clustering performance, and dimension reduction in general alleviates the curse-

of-dimensionality problem related to text data and generates more accurate data

partitions. Note that, because all the data sets have very sparse and noisy link

structures (refer to Table 5.1), the clustering method Links, which entirely relies

on link structures, has the worst performance. But when combining link struc-

ture with content information, all the three content and link coupling techniques

improves clustering performance. This observation confirms the usability of link

structure (can be sparse and noisy) in text analysis.
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Chapter 6
Semi-Supervised Clustering of

Non-linearly Separable Data

6.1 Motivation

This thesis has been focusing on semi-supervised clustering by linear transforma-

tions so far. Linear transformations perform well in general. However, when sever

non-linearity is involved in data, linear transformations can be less effective.

One common and effective solution to the non-linearity problem is to use the

popular kernel technique [STC04]. Kernel technique is based on the idea that non-

linearly separable data can be separated linearly in some high-dimensional space.

Data are first mapped to a high-dimensional feature space by non-linear transfor-

mations, then can be separated in the kernel-space with simple linear methods.

Kernel technique has been applied to many machine learning and pattern recogni-
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tion problems to improve performance. In terms of dimension reduction methods

by linear transformations, most methods have their kernel space equivalents to

deal with non-linearities in data. For example, kernel principal component analy-

sis (PCA) [SSM97], kernel discriminant analysis(KDA) [MRW+99] , kernel metric

multidimensional scaling (KMDS) [Web02], kernel locality preserving projections

(KLPP) [HN03] and kernel relevant component analysis (KRCA) [TmCK05] are

the kernel extensions to some representative dimension reduction approaches that

are introduced in Chapter 2.

However, kernel methods also have some drawbacks compared to linear meth-

ods, which will be discussed in detail in Section 6.2. This chapter presents a semi-

supervised clustering approach based on linear transformations, but the method

is still able to cluster non-linearly separable data effectively. The method takes

advantage of kernel technique but also preserves the simplicity of linear transfor-

mations.

6.2 Kernel Technique

A kernel method maps input data into a high-dimensional feature space using a

nonlinear function, and if the mapping is chosen properly, complicate structures

in the input space can be easily captured in the high-dimensional space [STC04].

Formally, let K : X × X 7→ R be a positive definite kernel function satisfying for
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all x,x′ ∈ X :

K(x,x′) = φ(x)Tφ(x′) (6.1)

where φ is a nonlinear mapping function

φ : X 7→ H (6.2)

that maps input space X into the fφ-dimensional feature space H.

Kernel k-means [SSM98] is a representative kernel-based clustering technique.

The traditional k-means has one major drawback that it cannot separate clusters

that not non-linearly separable in the input space. Kernel k-means partitions the

data points by linear separators in the new high-dimensional feature space.

Let πi denote the ith cluster of the total k clusters, and a partitioning of data

points be {πi}ki=1. Kernel k-means generates a data partition by minimizing the

following objective function

D({πi}ki=1) =
k∑
i=1

∑
x∈πi

‖φ(x)−mi‖2 (6.3)

where

mi =
1

|πi|
∑
x∈πi

φ(x) (6.4)

represents the centroid of cluster πi in the kernel space, and |πi| is the size of

cluster πi. As in traditional k-means, the kernel k-means assigns a data point to
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the nearest cluster, where the point-to-cluster distance is measured as the point to

cluster centroid distance in the kernel space.

To assign a data point to a cluster at each iteration, the Euclidean distance

from the point φ(x) to centroid mi needs to be calculated and is given by

‖φ(x)−mi‖2 = K(x,x)− 2

|πi|
∑
y∈πi

K(x,y)

+
1

|πi|2
∑

y,y′∈πi

K(y,y′)

The evaluation of the right-hand side of the above equation only involves the kernel

function K(·, ·) and the input data points, thus can be solved in the kernel space.

It has been shown that kernel k-means is closely related to spectral cluster-

ing, which is a type of clustering technique that can handel non-linearities in data

[DGK04]. Moreover, the objective function of normalized cut is identical to the

objective function of weighted kernel k-means with the weights being selected in

a particular way. Yet, kernel k-means is computationally more efficient than nor-

malized cut for large data set [DGK04].

6.3 Motivation

The goal of this chapter is to cluster data items that are not linearly separable in

the input space. For such data, the two types of constraints often lead to conflicting
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data partitions, even if constraints by themselves are consistent. For example, this

can lead to the over-constrained problem in semi-supervised k-means [WCRS01].

Kernel technique offers solutions to the non-linearity problem. However, despite

the advantages as introduced in the previous section, kernel methods have some

drawbacks

• How to properly choose the non-linear mapping is a big issue for kernel-based

techniques. If the mapping is not chosen well, data in the kernel-space are

not guaranteed to be linearly separable. For example, the clusters generated

by kernel k-means can be of less quality than those generated by traditional

k-means if the non-linear mapping is not chosen well.

• Kernel machines easily overfit. Any data that are not linearly separable in the

input space is guaranteed to be separated linearly in some high-dimensional

space. Thus, given pairwise constraints, it is always possible to find a data

partition that satisfies all the constraints in certain high-dimensional space.

However, kernel machine will overfit with limited constraints, since the non-

linear mapping that satisfies a few pairs of constrains does not necessarily

best reveal the structure in data.

• A kernel-based dimension reduction method is not easily generalized to han-

del new data. Because the mapping from the input space to the kernel space

is non-linear, in order to map testing points, all the training points besides

the transformation matrix need to be stored, and the inner product between
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the testing points to all the training points need to be calculated and stored.

The extra storage and computation cost limit the application of kernel-based

dimension reduction methods to large data sets.

With the issues of kernel-based methods in mind, this chapter presents a semi-

supervised dimension reduction technique based on Dual Subspace Projections

(DSP). The approach can simultaneously preserve the structure of original high-

dimensional data and the pairwise constraints specified by users. Thus, the method

does not overfit. Furthermore, the method has a closed-form solution of an gen-

eralized eigenvalue problem, and therefore can be solved efficiently in the training

phase. Moreover, the method uses kernel trick to handle nonlinearly separable

data, but the learned projection is still linear. So handling testing data is very

efficient. With the help of constraints, the method can also automatically identify

the best hyperparameter in the kernel function.

6.4 Method Overview

Semi-supervised clustering by Dual Subspace Projections (DSP) is a two-step op-

timization solution. In particular, the must-link constraints are exploited in the

first step by using a kernel subspace projection. At this step, a pair of must-link

data points are mapped to one point in the kernel space, and are guaranteed to be

assigned to a same cluster. In addition, the original distances are best preserved

while satisfying constraints. Therefore, the structure of data after the first step
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subspace projection is more informative for clustering analysis than the structure

of the input space.

Since the structure of data after enforcing must-link constraints is fully encoded

in the pairwise distances between data points in the kernel space, the method

preserves only the pairwise distance information and moves on to the next step.

In the second step, cannot-link constraints are further exploited to pull cannot-

linked data points apart. This step also makes sure that the original distances are

best preserved while satisfying constraints. An traditional k-means is then used to

cluster data items after the two step subspace projections.

The two-step scheme solves the conflicting constraints problem. The method

benefits from kernel technique in the first step and returns back to the original

input space in the second step. The learned transformation is linear and can be

easily generalized to handle new data.

6.5 Integrating Must-link Constraints and

Data Structure

Given a pair of must-link constraint (x,x′), following the idea presented in

[TPM09], the input space can be projected into the null space of the difference

vector (x−x′)T , which is the direction orthogonal to the difference vector. Hence,

x and x′ will be mapped to a same single point, and the must-link constraint is
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strictly satisfied. This method does not scale well with the increasing number

of must-links. For data with f -dimensional features, if the number of must-link

constraints exceeds f−1 all the data points will collapse to a single point. For this

reason, I first map data to an enlarged feature space, i.e., the kernel space and then

apply the same null space projection technique to explore must-link constraints. I

call this method kernel null space projection. Figure 6.1 illustrates this idea using

a one-dimensional data set.

Formally, define the m× fφ must-link constraint matrix M as follows

M =


(φ(x1)− φ(x′1))T

...

(φ(xm)− φ(x′m))T

 (6.5)

Then, the desired projection matrix is

P = Ifφ −U (6.6)

where

U = MT (MMT )#M

and # stands for the pseudo-inverse. P projects data in the feature space H to the

null space of M, and is the desired projection. One can prove that in the null space

of M, every pair of must-linked data points collapse to a single point, and thus the
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Figure 6.1: Illustration of must-link constraints enforcement. (a) Input space. 36
one-dimensional data points originated from two clusters (18 points each, differenti-
ated by markers) that are not linearly separable. Black crosses mark the must-link
constraint pair (m1,m2). (b) The input space is mapped to the 2-dimensional fea-
ture space via quadratic mapping φ(x) = [x x2]T . The blue arrow is the difference
vector (φ(m2)− φ(m1))T . The dotted line is the null space. (c) The feature space
is projected to the null space of the difference vector. Constrained points collapsed
to a single point and a clustering algorithm trivially groups them together.
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must-link constraints are maximally satisfied (refer to Appendix for proof).

By simple algebra formulation, the projected kernel function is given by

K̂(x,x′) = K(x,x′)−K(φ(x),M)TW#K(φ(x′),M) (6.7)

where K(φ(x),M) denotes the m-dimensional vector


K(x,x1)−K(x,x′1)

...

K(x,xm)−K(x,x′m)


and

Wi,j = K(xi,xj)−K(xi,x
′
j)−K(x′i,xj) +K(x′i,x

′
j)

Since all the computations of K̂(x,x′) can be expressed in terms of K(x,x′), the

subspace projection is performed implicitly in the kernel space.

Note that, the kernel null space projection P is the optimal projection in the

sense that it preserves the variance along the orthogonal directions to the projection

direction. Therefore, the original distances of data are best preserved while must-

link constraints are satisfied.
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6.6 Integrating Cannot-link Constraints and

Data Structure

There are two kinds of data structures influence clustering accuracies. If data

points from the same cluster are close to each other, the data set has better intra-

cluster structure, which means a cluster is more compact. If data points from

different cluster are far apart from each other, the data set has better inter-cluster

structure, which means clusters are well separated.

The kernel null space projection introduced in the last section guarantees the

enforcement of must-link constraints. Thus, the pairwise distances of the embedded

data d(φ̂(x), φ̂(x′)) reveals the intra-cluster data structure better than the pairwise

distances in the original space d(x,x′). However, the kernel null space projection

can also mistakenly pull data points from different clusters close to each other, thus

leading to clustering mistakes. Figure 6.2 illustrates this issue using the same data

as in Figure 6.1 but with a different pair of must-link constraint. As a result, the

pairwise distances of embedded data d(φ̂(x), φ̂(x′)) do not capture the inter-class

structure well.

This problem can be solved by further exploiting cannot-link constraints based

on the kernel null space projection result. The goal of adopting cannot-link con-

straints is to embed data in a subspace where data points from different classes

are further pushed away from each other while the intra-class distance measure is
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Figure 6.2: Illustration of a must-link enforcement error on unconstrained data
points. Same set-up as Figure 6.1 with a different pair of must-link constraint.
The null space projection result in (c) clearly demonstrates that although the
constrained points are mapped to a single point, points from different clusters are
mixed together too and leads to clustering mistakes.
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still best preserved. Before presenting how to find such a subspace, I first make

the following declaration and define a few concepts.

Without loss of generality, let us assume all the distances have been normalized

to [0, 1] in our discussion. Then the similarity between any two points xi and xj

is evaluated as 1 − d(xi,xj). Let N(xi) denotes the set of k-nearest neighbors of

point xi for a given k. Let S be the adjacency matrix, such that

Sij =


1− d̂φ(xi,xj) xi ∈ N(xj) ∨ xj ∈ N(xi)

0 otherwise

(6.8)

where d̂φ(xi,xj) is the kernel distance defined as

d̂φ(xi,xj) = d(φ̂(xi), φ̂(xj))

=

√
K̂(xi,xi) + K̂(xj,xj)− 2K̂(xi,xj) (6.9)

and satisfies d̂φ(xi,xj) = 0, if (xi,xj) ∈ ΩM . I adopt the kernel distances in the

adjacency matrix because they fit the intra-class structure better.

Let N(xi)
⊥ be the set of k points that are farthest from xi for a given k. Let

R be a matrix which is called the disjoint matrix, such that

Rij =


1− d(xi,xj) xi ∈ N(xj)

⊥ ∨ xj ∈ N(xi)
⊥

0 otherwise

(6.10)

Because the disjoint matrix mostly encodes the inter-class structure, the distance
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measure of the original input space preserves the structure better.

Let Z =

[
z1 · · · zr

]
be the matrix containing r transformation vectors zi|ri=1

that embeds data points in the f -dimensional input space in the r-dimensional

subspace by yi = ZTxi, xi ∈ Rf , yi ∈ Rr. In order to preserve both the intra and

inter-class structures, I minimize the following objective function

min

∑
ij(yi − yj)

2Si,j∑
ij(yi − yj)2Ri,j

(6.11)

The numerator incurs heavy penalties if nearby data points (i.e. Sij is big) are

mapped far apart. Therefore, minimizing it is an attempt to ensure that if xi and

xj are close then yi and yj are close as well. The denominator assigns big rewards

if nearby data points from different classes (i.e. Ri,j is big) are mapped far away.

Therefore, maximizing the denominator has the effect of pushing different classes

farther away. Overall, minimizing Eq. (6.11) both preserves the structure of data

and makes the structure more evident.

Similarly, the goal of pushing apart cannot-linked data points is achieved by

maximizing the following objective function

max
∑

(xi,xj)∈ΩC

(yi − yj)
2(1− d(xi,xj)) (6.12)

If modify the disjoint matrix R to incorporate cannot-link constraints as
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R̃ij =


1− d(xi,xj) xi ∈ N(xj)

⊥ ∨ xj ∈ N(xi)
⊥

∨ (xi,xj) ∈ Ωc

0 otherwise

(6.13)

then the two objectives in Equation (6.11) and Equation (6.12) can be integrated

into a single optimization problem as

z∗ = arg min
z

∑
ij(z

Txi − zTxj)
2Si,j∑

ij(z
Txi − zTxj)2R̃ij

= arg min
z

zTXLSXTz

zTXLR̃XTz
(6.14)

where LS = DS − S and LR̃ = DR̃ − R̃ are the graph Laplacians [Chu97] related

to the adjacency matrix S and the disjoint matrix R̃ respectively, and DS and

DR̃ are diagonal matrices with DS
ii =

∑
j Sij and DR̃

ii =
∑

j R̃ij. The r opti-

mal transformation vectors z∗i |ri=1 can be found by solving the general eigenvalue

problem

XLSXTz = λXLR̃XTz (6.15)

The r eigenvectors related to the r smallest eigenvalues are the solution.

Obviously, the performance of the above optimization problem strongly de-

pends on the pairwise distances of data points, which are encoded in matrices LS
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and LR̃. By adopting the kernel distance d̂φ(xi,xj), and distances d(x,x′) of the

original input space, the modification to the feature space in the kernel null space

projection step is incorporated. Therefore, the final optimal projection direction is

determined by both types of constraints as well as the intrinsic structure of data.

6.7 Performance Evaluation

6.7.1 Data Sets

Multiple real data sets from different domains are used to evaluate the performance

of double subspace projections. Data sets are summarized in Table 6.1. The data

sets used are very diverse in terms of size of data, size of feature spaces and number

of clusters. In particular, 10 data sets are gathered from the UCI machine learning

database 1 because of their popularity in the field of machine learning. Besides,

the COIL-20 database 2 is used, which is widely used in 3D object recognition

research. This database contains gray-scale images of 20 objects. Each object has

72 images taken at different orientations. Thus, the entire database contains 1,440

images. Each image is of size 128× 128 = 16, 384 pixels. I further perform bicubic

interpolation to downsize every image to 16× 16 pixels. This is a commonly used

technique to achieve tradeoff between complexity and accuracy. Thus, each image

is represented as a vector of dimension 256. Samples of the COIL-20 database are

1http://archive.ics.uci.edu/ml/
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Table 6.1: Data sets summary (n: # samples; f : # features; k: # clusters; δ:
kernel parameter )

data set n f k δ

wine 178 13 3 0.6
vehicle 846 18 4 0.9

iris 150 4 3 0.3
balance 625 4 3 0.7

ionosphere 351 34 2 1
glass 214 9 6 0.3

breast 682 10 2 1

Multiple Features 2,000 649 10 0.2
isolet 7,797 617 26 7

Pendigit 10,992 16 10 46
COIL-20 1,440 16,384 20 0.4

Figure 6.3: COIL-20 database. Left: 6 random samples, right: 6 orientations of
one object

listed in Figure 6.3.

6.7.2 Competitive Techniques and Evaluation

The semi-supervised clustering method by dual subspace projections has been

compared to four state-of-the-art and representative semi-supervised and unsuper-

vised dimension reduction techniques. LPPSI [ALV08] is a recent semi-supervised

dimension reduction method that has been successfully applied to solve face recog-
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nition problem. The proposal is compared to the kernel version of LPPSI since it

is reported to have better performance than the non-kernel version. LPP [HN03]

is a dimension reduction technique that preserves the local structures of data, and

has been widely adopted in visualization and text indexing. The proposal is also

compared to SLPP, which is the supervised version of LPP that is able to explore

constraints. PCA is the classical unsupervised dimension reduction technique that

optimally preserves data variance. The dimension reduction performance achieved

by each method is measured in a clustering setting and k-means is adopted as the

underlying clustering model in all experiments. A better semi-supervised dimen-

sion reduction method should be able to take full advantage of side information and

better reveal the intrinsic structure of the data, and thus leads to higher clustering

accuracy. F -score is adopted to evaluate clustering accuracy. The clustering error

rate is defined as 1−F -score. All the reported results are based on the average of

20 independent runs of experiments.

6.7.3 Parameter Setting

For all the kernel methods, I use the RBF kernel, which is defined as

K(x,x′) = exp(−‖x− x′‖2

2δ2
) (6.16)

The hyperparameter δ often significantly influences the performance of kernel

methods. With the help of constraints, the δ value is determined by a simple
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grid search. For a given δ, only the kernel null space projection is performed,

then the projected data are clustered. Since the kernel null space projection guar-

antees that all must-linked data points will be trivially clustered together, the δ

value that achieves the maximal clustering accuracy on cannot-link constraints is

picked. Empirical results show that this method works very well even with a few

pairs of constraints. The δ values chosen for each data set are listed in Table 6.1.

The number of nearest neighbors used in constructing the adjacency and disjoint

matrices is set to 5 and is kept the same for all the methods and all the data sets.

6.7.4 Fixed Subspace Dimensions

This experiment tests the dimension reduction performance on data sets with

moderate sizes. The purpose is to learn the best projection direction by using

all the available data and evaluate the performance. For each data set and each

cluster, I run the experiments by alternatively generating 5 and 20 random pairs of

must-link and cannot-link constraints each based on class labels. This end up with

2× k× 5(20) pairs of constraints in total for each data set, where k is the number

of clusters. For easy reference, I refer to them as “5(20) pairs” of constraints

hereafter. The subspace dimension is fixed to be half of the original dimension.

Table 6.2 shows the evaluation results. On 5 out of 7 data sets, DSP achieves

the best F-scores. For the remaining 2 data sets, DSP still shows satisfactory F-

scores. Most importantly, when the number of constraints is small (i.e. the 5 pairs
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Table 6.2: F-score on half-size feature spaces
unsupervised 20 pairs 5 pairs
PCA LPP SLPP LPPSI DSP SLPP LPPSI DSP

wine 0.9415 0.9541 0.9563 0.8198 0.9588 0.5962 0.7381 0.9322
vehicle 0.3070 0.3383 0.6024 0.4092 0.6042 0.3417 0.3306 0.3604

iris 0.8112 0.7716 0.8920 0.6982 0.9498 0.8471 0.6244 0.9405
balance 0.5075 0.4754 0.5789 0.5800 0.6068 0.5749 0.5845 0.5693

ionoshpere 0.6050 0.6050 0.7061 0.6205 0.7211 0.6108 0.5992 0.7145
glass 0.3950 0.3903 0.4032 0.4023 0.3833 0.3849 0.3058 0.4131

breast 0.9307 0.9307 0.9027 0.9352 0.9202 0.7478 0.9292 0.9288

case), the performance of DSP is still robust and is better than or similar to the

performances of the two unsupervised method PCA and LPP. This means that

DSP does not suffer from overfitting, unlike competing methods.

6.7.5 Various Subspace Dimensions

This experiment evaluates the dimension reduction techniques for various subspace

dimensions on the 3D object recognition task and the handwritten digit recognition

task. Results on the COIL-20 database for 3D object recognition and the Multiple

Features data set for handwritten digit recognition are shown in Figures 6.4 and

6.5 respectively. For each data set 5/10/20/30 pairs of constraints per cluster are

generated following the procedure introduced in last experiment. The reduced

dimensions range from 2 to 200. DSP significantly outperforms other dimension

reduction techniques for both data sets under all experiment settings. The stable

performance of DSP given a few constraints and very low subspace dimensionality

is particularly impressive. It is interesting to notice that although LPPSI and

SLPP perform well for the COIL-20 data set, their performances on the digit data
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set are worse than the unsupervised LPP for low dimensions and small number of

constraint pairs. This effect could be the result of overfitting due to few training

data.
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Figure 6.4: Error Rate vs. Reduced Dimensions for 3D object recognition
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Figure 6.5: Error Rate vs. Reduced Dimensions for handwritten digit recognition

6.7.6 Generalization

This experiment evaluates how well DSP handles new data points on four large

scale data sets. For each data set, I do 5-fold cross validation. Four folds of data

are used for training. The training part includes generating 20 pairs of constraints

and learning the best subspace embedding. Then the one fold testing data points

are projected to the learned subspace for further clustering evaluation. Table

6.3 shows the generalization performance, compared to the result of clustering
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Table 6.3: F-score for Generalization (r: subspace dimensionality)
full feature DSP-generalize(r)

Multiple Features 0.7101 0.9459(20)
isolet 0.5311 0.4740(20)

Pendigit 0.5502 0.5873(5)
COIL-20 0.5732 0.7872(20)

testing data without dimension reduction. Because the subspace dimensions are

significantly smaller than the dimensions of the original full input space, clustering

in the subspace will most of the time sacrifice accuracy for efficiency. With the help

of constraints, for three data sets, the clustering accuracy after DSP reduction is in

fact being improved. This indicates that DSP is effective in exploiting constraints

and generalizing to new data points.

6.8 Appendix

Let us prove that in the null space of M, every pair of must-linked data points col-

lapse to a single point, and thus the must-link constraints are maximally satisfied.

Proof 3. Let (φ(xi), φ(x′i)) be the i-th pair of must-link data points in the kernel

space H. For any data point φ(x) ∈ H, its embedding in the null space of M is

given by

φ̂(x) = Pφ(x) (6.17)

we then have
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φ̂(xi)− φ̂(x′i) = P(φ(xi)− φ(x′i))

= (I−U)(φ(xi)− φ(x′i))

= (φ(xi)− φ(x′i))−U(φ(xi)− φ(x′i))

= (φ(xi)− φ(x′i))− (φ(xi)− φ(x′i))

= 0 (6.18)

The identity U(φ(xi) − φ(x′i)) = (φ(xi) − φ(x′i)) follows from the fact that

(φ(xi)− φ(x′i)) is in the row space of M. Since P is not null, we get

φ̂(xi) = φ̂(x′i) (6.19)

Thus the two points are mapped to the same point.



Chapter 7
Future Work and Conclusion

7.1 Future Work Directions

High-dimensional data are prevalent in real-world applications in various domains.

Learning from high-dimensional data efficiently and effectively is a constant need

both in research and in practice. Side information other than labeled data can im-

prove learning with much less human effort. The study of semi-supervised learning

on exploring side information to improve the analysis of high-dimensional data is

a research topic that deserves more efforts. Besides the issues that are covered in

the thesis, this section describes several directions for future work that are of key

interest.

Fuzzy Side Information As introduced in Section 1.2, side information can take

various forms. No matter which form of side information is under consider-

ation, existing work on semi-supervised clustering assumes the information
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is clear and straightforward. For example, either the two data items a and

b belong to a same cluster or not. However, fuzzy side information is pos-

sible and is more realistic in several scenarios. For example, suppose users

provide side information to direct a clustering process. It may be difficult

for a user to tell for sure whether two data items belong to a same cluster

or not. On the contrary, it is a lot easier for a user to describe that item

a is more similar to item b than to item c. Mathematically, this leads to

the side information expressed as dist(a,b) < dist(a, c). Or the user can

state that items a and b are more similar to each other than items c and d

are to each other. This information is expressed as dist(a,b) < dist(c,d).

Moreover, given two clustering solutions X and Y , a user may point out that

solution X is better than solution Y , although neither is a perfect solution.

The user’s judgement provides information that can be explored to improve

a clustering scheme. Because such side information is not straightforward, I

call them fuzzy side information. To exploit fuzzy side information will be a

challenging yet worthy direction to go.

Active Learning Active learning is a closely related field to semi-supervised

learning. Given a data set to be clustered, the number of possible pair-

wise constraints is huge. Presenting a large amount of pairwise queries to

users is not realistic. In active learning, the learner picks the constraint query

that will improve learning most, and asks an oracle or user for side informa-
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tion. Among all the pairwise queries, which subset of queries can improve

the learning accuracy most? The answer to this question varies according

to clustering approaches. In general, the goal of introducing active learning

in semi-supervised clustering is to let the learning system adaptively and

optimally select the best queries about constraints. Existing work has stud-

ied the active learning problem for distance-metric-learning-based methods.

For dimensionality-reduction-based semi-supervised clustering methods, the

problem of actively selecting the most informative queries is not well studied.

Automatic Side Information Generation Deriving side information auto-

matically from domain knowledge is a key factor that can influence the ap-

plicability of semi-supervised learning techniques to real-world applications.

In this thesis, I have studied this problem for the application of networked

document clustering. The proposed method can be easily adjusted to fit

other application domains. For example, in the task of segmenting a video

according to human faces or objects appeared in the video, faces/objects that

appear in roughly the same position in consecutive fames can be considered

as “strongly connected” and constraints can be generated accordingly. How-

ever, for many other domains, automatically deriving constraints requires

in-depth understanding of domain knowledge, as well as designing schemes

that are adaptive to the domain under consideration. For example, for the

record linkage problem arising in many database applications, “blocking” can
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be performed to generate side information [YLKG07]. Blocking is a cheap

and fast preprocessing step that partitions a large list of records into disjoint

blocks, so that the more expensive detailed comparisons of records are per-

formed only within each block. Thus, record from different blocks can be

considered as candidates for cannot-link constraints.

7.2 Conclusion

Research presented in this thesis has focused on semi-supervised clustering of high-

dimensional data with sparse features based on dimension reduction given pair-

wise supervision. I have shown that by exploiting pairwise must-link and cannot-

link constraints, high-dimensional data can be embedded into a much reduced-

dimension subspace where the clustering structure of data is more evident. The

low-dimensional embedding thus leads to more efficient and more effective cluster-

ing solutions. The better quality clusters are essential for exploratory data analysis

or for the subsequent supervised classification tasks.

Novel semi-supervised clustering approaches introduced in this thesis are based

on dimension reduction techniques. Compared to traditional semi-supervised clus-

tering techniques based on distance metric learning, dimension-reduction-based

methods have the advantage of being efficient and effective in handling high-

dimensional data. The number of parameters needs to be learned in distance

learning is quadratic to the number of features. Thus, when dealing with high-
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dimensional data, a metric learning based technique cannot learn a robust and in-

formative distance given limited constraints. Besides, distance learning is usually

reduced to solving a convex optimization problem with gradient descent and iter-

ative projection, and often suffers from large computation cost. On the contrary,

dimension-reduction-based techniques use limited constraints to find a better data

representation, and the optimal low-dimensional embedding is found by exploiting

both a small set of constraints and the structure of a large amount of unlabeled

data. Thus, dimension-reduction-based techniques proposed in the thesis yield ro-

bust clustering solutions even with very limited side information. Moreover, most

dimension-reduction-based techniques boil down to a general eigenvalue problem

to which well-studied solutions exist and can be solved efficiently.

First, I study how to explore both constraints and unlabeled data in semi-

supervised dimension reduction efficiently. Although constraints encode the de-

sired clustering criteria provided by user or derived from domain knowledge, a

clustering scheme that is entirely based on constraints may lose the important

structure information of the data set. Instead, I find that constraints define an

approximate-clustering structure on data, and the goal of semi-supervised dimen-

sion reduction is to embed high-dimensional data in a low-dimensional subspace

such that the approximate-clustering structure is not only preserved but also en-

hanced. When applying a clustering scheme to the embedded data, better quality

clusters can be expected since the clustering structure is more evident after di-
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mension reduction. This idea leads to the scheme of semi-supervised clustering

by approximate-structure-preserving dimension reduction (ASP). ASP performs

robustly given limited constraints, and significantly improves clustering accuracy

as the number of constraints increases. For high-dimensional data whose feature

space dimension is larger than the number of items, i.e., most text data sets, the

reduced QR factorization technique can be adopted for fast ASP reduction. Oth-

erwise, the reduced SVD factorization technique can be adopted to project data

to a desired dimension.

I then study the noisy constraints issue involved in real applications of semi-

supervised clustering. In many real-world applications, pairwise constraints can

be automatically derived from domain knowledge. However, such constraints are

inevitably noisy. Most existing semi-supervised clustering techniques are designed

for well-defined noise-free constraints, and do not perform well given noisy con-

straints. I focus my work on the networked document clustering domain, although

the proposed technique is equally applicable to other domains.

In the first part of the work, I study how to automatically derive high-quality

pairwise constraints from domain knowledge. In particular, constraints are ex-

tracted from the link structure of networked documents as complement to text-

based content information. A local and a global link analysis methods are proposed

to extract robust link information from noisy and sparse link graphs. These meth-

ods analyze link graphs from a local and a global view respectively. Then I bridge
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the disconnection between content and links by searching for an optimal subspace

data representation, where the search space is constrained by both content simi-

larity and link structure similarity. The propose content & structure constrained

(Costco) feature projection method couples content and link structure in a unified

objective function, and hence avoids heuristic combination of the two information

sources. Besides, the method does not rely on the availability of dense link struc-

ture and is robust to noisy links, which suits it well for real-world networked data.

Moreover, the method is very simple to implement, so can be used for exploratory

data analysis before any complicated in-depth analysis.

I further study the non-linear separability problem in dimensionality-reduction-

based semi-supervised clustering. Dimension reduction can be achieved by either

linear or non-linear transformations. Linear transformations are simple to com-

pute and are analytically tractable. In general, linear transformations perform

well. However, when sever non-linearity is involved in data, and clusters are not

linearly separable, non-linear transformations, such as kernel-based techniques are

usually adopted. However, non-linear methods have many drawbacks as have been

introduced in Section 6.3. To this end, I propose semi-supervised dimension reduc-

tion approach that benefits from both linear and non-linear transformations. In

particular, I propose a novel semi-supervised dimension reduction technique based

on dual subspace projections (DSP) in both the kernel space and the input space.

Projections in the two spaces interact and data are embedded in an optimal low-
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dimensional subspace where the intrinsic structure of data is more evident, and

thus eases the subsequent data analysis. Significant improvement in clustering

quality is achieved after the DSP dimension reduction with only a few constraints.

Overall, the work presented in this thesis contributes methods leading to state-

of-the-art performance on semi-supervised clustering tasks. This research demon-

strates the power of using dimension reduction techniques and side information

in the form of pairwise constraints in learning from high-dimensional data with

sparse features. I hope that the thesis work will motivate further research in

dimensionality reductions, semi-supervised clustering, and high-dimensional data

analysis, and encourage such techniques in various applications where analyzing

high-dimensional data is essential.



Bibliography

[AF95] David Aldous and James Allen Fill. Reversible markov chains and
random walks on graphs-chapter 9: A second look at general markov
chains, 1995.

[ALV08] Senjian An, Wanquan Liu, and Svetha Venkatesh. Exploiting side
information in locality preserving projection. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–8, 2008.

[AS06] Ralitsa Angelova and Stefan Siersdorfer. A neighborhood-based ap-
proach for clustering of linked document collections. In ACM Con-
ference on Information and Knowledge Management (CIKM), pages
778–779, 2006.

[BBM02] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Semi-
supervised clustering by seeding. In International Conference on
Machine Learning (ICML), pages 27–34, 2002.

[BBM04a] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A proba-
bilistic framework for semi-supervised clustering. In ACM Interna-
tional conference on Knowledge discovery and data mining (KDD),
pages 59–68, 2004.

[BBM04b] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating
constraints and metric learning in semi-supervised clustering. In
International conference on Machine learning (ICML), 2004.

[BDJ99] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices,
vector spaces, and information retrieval. SIAM Review, 41(2):335–
362, 1999.



139

[BEG06] Levent Bolelli, Seyda Ertekin, and C. Lee Giles. Clustering scientific
literature using sparse citation graph analysis. In European Confer-
ence on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), pages 30–41, 2006.

[Bel61] Richard E. Bellman. Adaptive control processes - A guided tour.
Princeton University Press, Princeton, New Jersey, U.S.A., 1961.

[BHHSW03] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Wein-
shall. Learning distance functions using equivalence relations. In
International Conference on Machine Learning (ICML), pages 11–
18, 2003.

[BLRR04] Avrim Blum, John Lafferty, Mugizi Robert Rwebangira, and Ra-
jashekar Reddy. Semi-supervised learning using randomized min-
cuts. In International conference on Machine learning (ICML),
page 13, 2004.

[BN02] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Computation,
15:1373–1396, 2002.

[BNS06] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold reg-
ularization: A geometric framework for learning from labeled and
unlabeled examples. Journal of Machine Learning Research, 7:2399–
2434, 2006.

[Bol98] Daniel Boley. Principal direction divisive partitioning. Data Mining
and Knowledge Discovery, 2(4):325–344, 1998.

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In International World Wide Web Conference
(WWW), 1998.

[CDI98] Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hy-
pertext categorization using hyperlinks. In ACM’s Special Interest
Group on Management Of Data (SIGMOD), pages 307–318, 1998.

[CH00] David A. Cohn and Thomas Hofmann. The missing link - a prob-
abilistic model of document content and hypertext connectivity. In
Advances in Neural Information Processing Systems (NIPS), pages
430–436, 2000.

[Chu97] Fan R. K. Chung. Spectral Graph Theory. American Mathematical
Society, 1997.



140

[CM02] D. Comaniciu and P. Meer. Mean shift: a robust approach toward
feature space analysis. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 24(5):603–619, August 2002.

[CMM03] Csaba Czirjek, Sean Marlow, and Noel Murphy. Face detection
and clustering for video indexing applications. In in Proceedings of
Advanced Concepts for Intelligent Vision Systems, pages 2–5, 2003.

[CS96] Peter Cheeseman and John Stutz. Bayesian Classification (Auto-
Class): Theory and Results, chapter 6, pages 62–83. 1996.

[CSZ93] Pak K. Chan, Martine D. F. Schlag, and Jason Y. Zien. Spectral
k-way ratio-cut partitioning and clustering. In International Con-
ference on Design Automation (DAC), pages 749–754, 1993.

[CVJK08] Hakan Cevikalp, Jakob Verbeek, Frédéric Jurie, and Alexander
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