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Abstract
The Internet reshapes the way people connect to the world. The online platforms
such as social media and e-commerce websites collect a large number of various
users’ behavior data (e.g., retweets in Twitter or orders in Amazon). Such data
provides an unprecedented opportunity to apply machine learning methods to
modeling user behavior and further influencing it to improve the way people
connect to the world. In this thesis, several specific real-world scenarios related to
modeling and influencing user behavior are studied using various machine learning
methods. On the other hand, challenges and observations from those scenarios
inspire improvement on general machine learning methods.

First, a challenge from representation of user behavior is studied. When
emotional reactions of users toward posts in social media (i.e., Facebook) are
represented as a ranking over a given set of emoticons, the task to predict the
users’ reactions given post content can be formulated as a label ranking problem.
On the other hand, the imbalance property in emotional reaction data requires
robustness in both label ranking performance measure and algorithms. Second,
what influences user behavior is studied. More specifically, the task is to find the
influence of news channels on their readers’ reactions besides the content they post.
It can be formulated as a multi-task learning problem. On the other hand, an
observation, that the influence from channels can be different for different news
content, inspires a novel multi-task learning architecture. Third, how to influence
user behavior is studied. More specifically, an industry problem, recommending
search story to improve search experience of users, is solved. In order to address the
cross-channel challenge, a reinforcement learning framework is designed. Finally,
this work is closed by a discussion on a future direction, that what users can do
to combat the influence of the systems powered by machine learning methods.
Recommendation problem is used as a playground to illustrate its necessity.
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Chapter 1 |
Introduction

The Internet reshapes the way people connect to the world. The world includes
other people, i.e., users of social media platforms (e.g., Facebook, Twitter), and
also items, i.e., goods in e-commerce platforms (e.g., Amazon, JD.com). Those
platforms easily collect a large number of user’s behaviors, such as retweeting a
post she finds interested in Twitter, or clicking an item recommended in JD.com.
That amount of data provides an unprecedented opportunity to apply machine
learning methods to modeling user behavior and further influencing it to improve
the way people connect to the world.

1.1 Background and Scope
In this section, some related areas are introduced as background and compared
with this proposal to clarify the scope here.

1.1.1 Sentiment Analysis

The user behavior in social media platforms often involves users’ interaction with,
or reactions to user generated contents, i.e., posts. The analysis of the relationship
between users’ reactions and the content they read is related to but not exactly the
same with sentiment analysis.

There are a significant amount of works in analyzing human emotion underlying
certain content. The term sentiment analysis, usually refers to mining emotions
of text content, but here it can be generalized to any content forms. The major
difference with this thesis is that sentiment analysis tries to recognize emotions
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Alice: “I like this dog!”

Bob

“But can you keep it quiet?!” Eve

Sentiment Analysis

Social Emotion Mining

Figure 1.1: Examples of sentiment analysis and Social Emotion Mining

conveyed by authors via some form of content; while here, I try to analyze the
emotions of readers triggered by some form of content. An illustrating example
can be found in Fig. 1.1

This difference makes most conventional sentiment analysis works not able to
be applied to our problem directly. A key difficulty can be shown by the above
example, where the quoted sentence of the first example is clearly emotional, while
that of the second is more neutral. This can be summarized as the difference
between author’s and readers’ emotion.

Instead of digging deeper in the textual content itself as in sentiment analysis,
this work turns to the representation of users’ reactions and other meta data that
may influence users’ reactions besides content.

1.1.2 Recommendation

When it comes to user behavior as their interactions with items in e-commerce
platforms, one of the most well-known problem dealt with machine learning is
recommendation. The goal is to help each user find her desired items based on her
previous behavior, when the number of items is so large that prohibits exhausted
search of any user. When it is formulated as a machine learning problem, it is
a problem that given part of users behavior, a method is required to predict the
remaining part.

The recommendation problem, because of its wide applications in real world,
is taken as a playground to test our proposals in this work. First, in order to
observe how we can influence users’ behavior, we use an industrial problem as
recommending search stories to influence users’ search behavior in an e-commerce
platform. Second, the interplay between the recommender system and users provides
a good playground to show what users can do to combat the control of machines
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(i.e., recommendation system).
In all the adoption cases of recommendation problem in this work, only the

original goal but not the machine learning formulation of recommendation is used.

1.2 Subproblems in Different Aspects
In this work, I study several sub-problems as different aspects of modeling and
influencing user behavior with machine learning

1.2.1 How to represent user behavior?

User behavior can be represented in different forms in different scenarios, such
as retweeting a post in twitter and click of items on e-commerce platforms. The
representation should be both enough to convey users’ reactions, but also easy for
other users to understand. Some representations bring extra challenges to machine
learning methods.

In this work, we study the problem of finding the relationship between online
content and emotional reactions it triggered in the readers in Facebook, which is
called SEM (Social Emotion Mining). For example, what is the emotional reactions
of all readers of the news example shown in Sec. 1.1.1. Here in this scenario, the
user behavior is represented as the ranking of six emoticons given number of votes
on each by readers. The rationale behind this representation can be seen from a
comparison with two alternatives. On one hand, if the representation is simply the
number of votes of each emoticons, though the users’ reactions are fully conveyed,
the extra information makes other users more difficult to obtain the main idea of
users’ reactions quickly. On the other hand, the representation as the most voted
emoticon is not sufficient to show users’ emotional reactions. Because it is not
the focus of this work to analyze or design the best representation, the fact that
such ranking representation is deployed in a popular social media platform, i.e.,
Facebook, is enough to study it.

When users’ emotional reactions are represented as rankings of emoticons, the
problem can be straightforwardly formulated as a label ranking problem in machine
learning. However, the nature of emotional reactions bring an extra challenge,
imbalance, to solving the problem as label ranking. In this work, we propose formal
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definition of imbalance in label ranking context, a performance measure that is
robust in imbalanced data and a robust label ranking model [1].

1.2.2 What influences user behavior?

User behavior can be influenced by many factors. Some of them are obvious, i.e.,
the influence of post content on reader’s emotional reactions, while other implicit
factors are also worth studying.

In this work, I aim at the problem of finding the influence of news channels
on their readers’ reactions besides the content they post. For instance, emotional
reactions to news of similar if not the exact same content can be various given
different news channels. The cause can be two-fold. On one hand, the readers
toward different news channels can be different, which naturally results in different
reactions because of different stance; on the other hand, the cumulative tastes of
news channels enforce prior impression in their readers. Here influence of news
channels is used to warp the two factors. The problem is formulated as a multi-task
learning problem, where each news channel is considered a task. The influence of
news channels can be represented by the task difference. The answer format it will
provide is that given some content as input, what will be the reactions of readers
as output, given the channel as a task.

An observation in the news channel influence evokes a new challenge or op-
portunity in multi-task learning problem, i.e., the influence from channels can be
different for different news content. For instance, readers’ reactions can be highly
consistent across different news channels for news on the topics of natural events
and festivals; however, different standing points of different channels often result in
exactly opposite readers’ reactions for the news on the topics of sports and political
news. Inspired by this observation, I propose a new multi-task learning method in
this work. It obtains better performance by noticing the task relationship difference
in different groups of data.

1.2.3 How to influence user behavior?

The objective of user behavior modeling for business platforms (e.g., e-commerce
platforms) is to influence user behavior and create more profit. However, conven-
tional machine learning (i.e., supervised and unsupervised learning) is only finding
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relationship among data. For example in recommendation problem, the machine
learning solution only predicts the relationship among items (i.e., items a user will
click if she has clicked certain items), but not tries to influence user behavior on
purpose. Notice that the recommendation system does influence user behavior, as
can be seen later, but not on the purpose of the machine learning solution.

In this work, I take a reinforcement learning framework to influence users’
searching experience by recommending search stories to them, which is called
personalized search story recommendation. This application scenario illustrates
the difficulty of influencing user behavior. The actions taken by the system
is recommending search stories, while the goal is to influence users’ searching
experience. It is different from conventional recommendation problem where the
actions taken by the system is recommending items, and the goal is to recommend
the “correct" items (i.e., which the user will click). This cross-channel difficulty can
be addressed by reinforcement learning.

1.2.4 What users can do?

The Sec. 1.2.3 describe that machine learning methods can be applied to influence
user behavior on purpose. However, user behavior is more often shaped by systems
powered by machine learning methods unconsciously. In this case, are users capable
to combat such influence?

In the end of this work, I propose an intelligent user model to test whether
user can obtain better recommendation results from a recommendation system by
reacting intelligently. The recommendation systems based on machine learning
methods are known to provide sub-optimal results for users, though it shows great
success in applications. As people become more and more relying on recommen-
dation system, such sub-optimal results can be severe. Instead of designing more
advanced recommendation methods, I propose to consider whether users themselves
are under-estimated, which is the user model assumed by current works.

5



Chapter 2 |
Representation of User Behav-
ior

In this chapter, a imbalanced label ranking study is conducted to illustrate the
challenge and its solution of representation of user behavior, i.e., social emotion
mining.

2.1 Introduction
It has become increasingly important for businesses to better understand their users
and leverage the learned knowledge to their advantage. One popular method for
such a goal, so-called social emotion mining, is to mine users’ digital footprints to
unearth users’ “emotions" toward particular products or services on social platforms.
Users’ latent emotions can be indirectly peeked via various channels–e.g., low star
rating given to an Amazon review, angry comments left to a YouTube video, upvote
to a news story in Reddit, or re-twitting a friend’s post. In particular, we note
one recently-introduced function to social platforms where users may select one
emoticon, out of many choices, to more precisely express their emotions. Facebook
introduced this function in 2016, while Chinese news portal, Sina, supports a similar
function. Two Facebook posts are shown in Fig. 2.1 as examples. Then, a natural
question is whether one can predict the emotions expressed as emoticons in such a
setting.

Problem 2.1 (Social Emotion Mining (SEM)). Model and Understand the corre-
lation between online post content and cumulative emotional reactions of users.

6



(a) (b)

Figure 2.1: Two Washington Post Facebook posts with different emoticon reactions
@ www.facebook.com/washingtonpost/

Most existing research on social emotion mining focuses on extracting informative
features to infer emotions from data [2–9]. On the one hand, as taken by most
present works, predicting one dominant emoticon as a classification problem may
fail to catch the nuance of human emotions. For example, two posts in Fig. 2.1 share
the same top-2 dominating emoticons, like and haha, rendering such a classification
approach be less useful. On the other hand, the subjectivity makes predicting the
exact composition of emotions as a regression problem to be less useful too. For
instance, in Fig. 2.1(a), reporting the emotion of users as 69/430 haha, 40/430 love
and 1/430 wow conveys little extra information than simply saying that users feel
more haha than love and few wow. Therefore, to reflect the nuance and subjectivity
of human emotions, we propose to formulate social emotion mining as a label
ranking problem, where the emotions of users toward a given post are represented
by a ranking among a set of emotion labels. In this way, for nuance, the number of
all possible emotions is d! compared with d in a classification framework, where d
is the size of emotional label set; for subjectivity, only relative rather than absolute
strength of different emotional labels is mined.

The label ranking problem asks if one can learn a model to annotate an instance
with a ranking over a finite set of predefined labels. Label ranking can be seen as a
specific type of the preference learning problem [10] in AI. However, in the case of
social emotion mining, some labels may be preferred, causing a skewed distribution
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of chosen labels. For example, ordinary Facebook users (i.e., posters) tend to
post more happy stories and their friends (i.e., readers) are more willing to give
positive feedback such as like or haha. Therefore, the ranking distribution is highly
biased toward those rankings with positive labels ranked higher than negative ones.
However, posts with dominating negative labels are usually more informative. None
of existing label ranking methods has considered this “imbalance" issue.

Although there have been methods to address the imbalance issue in classifica-
tion, as will be illustrated in next section, imbalance in label ranking is still anything
but trivial due to its large and nontrivial target space (i.e., d! correlated possible
rankings). To the best of our knowledge, we are the first to point out and give
a formal definition of imbalance in label ranking and the first to formulate social
emotion mining as a “robust" label ranking problem. Toward this challenge, we
make two contributions: (1) we first show the inadequacy of popular performance
measures in label ranking to handle the imbalanced data, propose a novel robust
performance measure, named as G-mean-rank (GMR), and experimentally demon-
strate the superiority of GMR over existing measures; and (2) we propose a novel
robust label ranking model, ROAR, for imbalanced data without any re-sampling
or costs as hyper-parameters, and show that ROAR outperforms 6 competing
models, in real-life Facebook emoticon prediction task and achieves competitive
performance in semi-synthetic benchmark label ranking data sets.

2.2 Related Works
There are three classes of label ranking methods. First, label-wise methods [11–13]
treat label ranking as the regression problem for the relevant score of each label
or position of ranking. Second, pair-wise methods [10, 14–17] decompose label
ranking problem to binary classification problem for each pair of labels and then
aggregating pairwise results into rankings. Third, list-wise methods employ different
ranking distance measures to directly predict rankings without decomposing, such as
Mallows model [18] based methods [19,20], Plackett-Luce model based method [21]
and weighted distance model [22] based methods [23,24]. Our proposed solution,
ROAR, belongs to the third class.

Previous label ranking works [10–15,19,25] typically evaluate preformance using
ranking distance measure such as Kendall tau correlation [26] or Spearman’s rank

8



correlation [27]. On the other hand, social emotion mining works [3,4,7,9] typically
measure performance using metrics from information retrieval community, such as
ACC@k and nDCG@k [28], emphasizing the intuition that higher ranked positions
are more informative. Similarly, some rank modeling works in statistics [22–24]
weight the distance between ranks to model such bias. Note that the bias there is
rewarding heterogeneity of different ranking positions, rather than bias in ranking
distribution considered in this work. Hence, in imbalanced data, those performance
measures are not good enough.

Imbalanced data problem has been previously investigated under the classi-
fication framework [29]. Popular methods include random sampling [30, 31] and
cost-sensitive methods [32–34]. Both methods try to first obtain balanced data
from original imbalanced data so that the problem is reduced to the balanced
classification. However, these methods involve tricky hyper-parameter tuning, espe-
cially in multi-class classification [35], which will become even more severe in label
ranking framework. Besides, there is nontrivial correlation among rankings rather
than independent labels in classification. Hence it is hard to determine a sampling
parameter or a cost for each ranking. In contrast, the robust label ranking method
proposed in this work is free of hyper-parameters related to data imbalance.

2.3 Preliminaries

2.3.1 Social Emotion Mining

Here we formulate social emotion mining as the label ranking problem. Given a post
x in social media, with x ∈ X as feature vector, and a set of emotional labels Y =
{y1, y2, ..., yd}, called emoticons, the goal is to associate the post with an aggregated
emotion of crowd φ(x) it triggers, represented by the emoticons. As argued, we
choose φ(x) to be a ranking over the emoticon set, φ(x) = (φ1(x), φ2(x), ..., φd(x)),
where φi(x) ∈ Y and φi(x) 6= φj(x), ∀i 6= j. φi = yl indicates that label yl ranks
on position i. For consistent annotation, a ranking position vector is defined as
π(x) = (πy1(x), πy2(x), ..., πyd(x)), where yi ∈ Y and πyi ∈ {1, 2, ..., d}, which means
that label yi ranks on position πyi(x). With a ranking, the represented emotion
consists of more of emoticons ranking higher and less of those lower. Therefore,
the social emotion mining is formulated as a label ranking problem.
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Problem 2.2 (Label Ranking). Find a mapping f : X → Ωd, where Ωd is the set
of all possible rankings over a label set of size d, such that given an instance with
feature vector x, predict ranking φ̂(x) = f(x).

2.3.2 Imbalance in Label Ranking

In social emotion mining context, imbalance in data refers to the characteristics of
data where documents with some emotional reactions are rarer than those with
others. In the context of label ranking, it means that instances with some rankings
are rarer than those with others. As for a formal definition of this intuition, a naive
choice is treating different rankings as different classes and the problem reduces to
a classification problem. However, classification framework ignores the fact that
different rankings are not independent or equal-interval with each other. Instead,
therefore, here imbalance is defined based on pairwise comparisons.

Given any pair of labels {yi, yj}, yi, yj ∈ Y, and an instance ν, a pairwise
comparison function is defined as:

Iν(yi, yj) =

1, if πyi < πyj for instance ν

0, otherwise.
(2.1)

Then, for each label pair yi, yj , imbalance in data distribution D = {(x, φ(x))} ⊂
X × Ωd can be seen as the difference between ∑ν∈D Iν(yi, yj) and ∑ν∈D Iν(yj, yi).
Since a ranking consists of pairwise comparisons of all pairs, a single-value imbalance
measure for label ranking, IMBA-rank (or IMBA without ambiguity), of D is
defined as:

IMBA(D) = 1
2

d∑
i,j=1,i 6=j

∣∣∣∣∣log(
∑
ν∈D Iν(yi, yj) + 1∑
ν∈D Iν(yj, yi) + 1)

∣∣∣∣∣ . (2.2)

When data is perfectly balanced, IMBA-rank should be 0. The more imbal-
anced the data is, the larger IMBA-rank gets.

2.4 Robust Performance Measure
We first show that commonly used performance measures in label ranking are no
longer adequate in imbalance case, and then introduce a robust one.
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2.4.1 Previous Measures for Label Ranking

One of the most popular performance measures in label ranking community is
Kendall’s tau correlation [26]. The correlation tau for two rankings {π, π̂} is
formally defined as:

tau = C(π, π̂)−D(π, π̂)
C(π, π̂) +D(π, π̂) , (2.3)

where D(π, π̂) = |{(i, j)|i < j, πyi > πyj ∧ π̂yi < π̂yj}| and C(π, π̂) = |{(i, j)|i <
j, πyi > πyj ∧ π̂yi > π̂yj}| denote the number of discordant and consistent-ordered
pairs of labels between two rankings, respectively. To emphasize the importance of
higher positions in ranking, previous works on social emotion mining usually use
ACC@k as performance measure. The ACC@k of an instance is defined as:

ACC@k(φ, φ̂) = I(φi = φ̂i|∀i ∈ {1, 2, ..., k}), (2.4)

where I() is the indicator function.
Concerning one pair of labels and two candidate ranking positions, the imbal-

anced label ranking problem reduces to imbalanced classification problem. Both
tau and ACC@k consider only true fractions without distinguishing true positives
and true negatives, which has been well known to be inadequate in imbalanced clas-
sification [29]. This is similarly true for other label ranking performance measures,
such as Spearman’s rank correlation and nDCG@k.

For a better illustration, consider a toy data set as an example. Here the label
set Y = {yi|i ∈ {1, 2, 3, 4}} with d = 4. The dataset contains 100 instances where
90 of them are associated with rank φ9 = (y1, y2, y3, y4) while the rest are associated
with φ1 = (y1, y4, y2, y3). Then, a trivial label ranking model predicts all instances
to be with rank φ̂ = φ9 for this toy data set. Then, the performance of the trivial
model is tau ≈ 93% and ACC@k = 90% if k = 2, which is relatively high compared
with a perfect model with tau = 100% and ACC@k = 100%. Hence, both measures
help little in recognizing such trivial solution in imbalanced data or giving sufficient
attention to minority rankings.
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2.4.2 Robust Measure for Label Ranking: GMR

As shown above, it is critical to distinguish negative and positive classes for
performance measure in imbalanced classification problem. Similarly in label
ranking problem, we first decompose it into pairwise comparison classification
problem. For each ordered pair of labels (yi, yj), the class of instance ν is defined
as Positive if Iν(yi, yj) = 1 or Negative if Iν(yj, yi) = 1. Since the Negative class
of ordered pair (yi, yj) is the same as Positive class of (yj, yi), only positive class
for each ordered pair is considered. Hence only recall can be defined. Similar to
classification, the recall for ordered pair (yi, yj) in data set D is defined as

recallD(yi, yj|f) =
∑
ν∈D Iν(yi, yj)Iν̂(yi, yj) + 1∑

ν∈D Iν(yi, yj) + 2 , (2.5)

where Iν̂(yi, yj) is the pairwise comparison function for predicted ranking for instance
ν, and the extra +1 term in numerator and +2 term in denominator are smooth
terms. To combine recalls of different pairs, inspired by G-Mean [35] for imbalanced
multi-class classification, geometric mean is used and G-mean-rank (GMR) for
data set D is defined as:

GMRD(f) = P

√√√√√ d∏
i 6=j

recallD(yi, yj|f) , (2.6)

where P is the number of ordered pairs involved. For each pair of labels, GMR is
the same as G-mean for two-class classification. Hence according to the definition
of imbalance in label ranking, GMR is insensitive to imbalanced label ranking
data.

Using the aforementioned toy dataset again, the performance of the trivial
algorithm in terms of GMR is GMR ≈ 53%, which is not high compared to 97%
for a perfect one. Therefore, GMR rightfully gives sufficient penalty to a trivial
solution which is not supposed to perform well, a behavior that we intended.

2.4.3 Is GMR Superior to Previous Measures?

To show the robustness of GMR compared to two popular measures–i.e., tau and
ACC@k, we apply the idea of toy example above to real datasets. We use four
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Datasets
Measures Methods ROU NYT WSJ WaPo
IMBA 3.03 1.94 2.96 2.14

RPC 0.850 0.185 0.191 0.182
ACC@3 KNN-PL 0.770 0.125 0.169 0.144

NAIVE 0.837 0.0532 0.171 0.0976
Gain (%) −3 191 5 67
RPC 0.933 0.497 0.595 0.541

tau KNN-PL 0.929 0.495 0.584 0.544
NAIVE 0.932 0.399 0.567 0.503
Gain (%) −0.1 24 4 8
RPC 0.241 0.429 0.345 0.358

GMR KNN-PL 0.408 0.458 0.513 0.461
NAIVE 0.152 0.0796 0.0881 0.0770
Gain (%) 113 457 387 432

Table 2.1: Comparison of GMR with ACC@3 and tau using real datasets

Facebook post datasets with emoticon set size of d = 6, whose detail can be found
in Empirical Validation section later.

We extend the idea of the trivial model in the toy example by designing a
naive model, denoted as NAIVE, that assigns the most common ranking in a
training set to all instances in a test set regardless of their feature values. As
the datasets we use are rankings converted from number of votes for different
emoticons, the most common ranking (i.e., the output) in NAIVE is set as the
ranking of emoticons according to the number of accumulated votes in the training
set. Therefore, NAIVE is a “dumb” solution and is not supposed to work well.

Next, we choose 2 state-of-the-art models, RPC and KNN-PL, as examples
of good models, whose detail will be explained in Robust Label Ranking Model
section. The idea is that a robust performance measure should be able to clearly
distinguish good models (e.g., RPC and KNN-PL) from bad ones (e.g., NAIVE)
even when a dataset is severely unbalanced.

The result is shown in Table 2.1. For ACC@k, k is set as 3 to mimic the
behavior of Facebook, where only top-3 emoticons of posts are shown by default.
The row, Gain (%), in Table 2.1 shows the average improvement of two good
models over NAIVE in terms of three different measures. In all four datasets,
the improvement in terms of GMR is always far larger than ACC@3 and tau,
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which illustrates the robustness of GMR. Table 2.1 also shows the IMBA-rank of
each dataset as IMBA. Note that the improvement in terms of ACC@3 and tau
decreases as IMBA-rank increases. For the most imbalanced dataset, ROU, the
improvement in terms of both ACC@3 and tau is even negative, which indicates
that GMR is capable of capturing the fact that two state-of-the-art models far
outperform a naive poorly-designed model.

Now we are ready to formally define robust label ranking problem.

Problem 2.3 (Robust Label Ranking). Find a mapping f : X → Ωd, for data
distribution D, with large IMBA-rank(D), such that GMRD(f) ≥ GMRD(f ′),
∀f ′ : X → Ωd.

2.5 Robust Label Ranking Model

2.5.1 Competing models

In this work, to our best knowledge, we consider all existing state-of-the-art label
ranking models as follows.

• Ranking by Pairwise Comparison (RPC) [10]: It predicts pairwise order for
each pair of labels using logistic regression and then combines them into
ranking output with Borda count [36].

• Label-Wise Decomposition (LWD) [13]: It predicts position probability distri-
bution of each label and then combines them to minimize expected Spearman’s
footrule [37].

• Soft Multi-Prototype (SMP) [17]: It fits label ranking data with multiple
prototypes both in feature and ranking space, and combines prototypes into
ranking prediction given feature values.

• K-Nearest-Neighbor with Plackett-Luce model (KNN-PL) [21]: It predicts
ranking by aggregating rankings of instances whose feature values are nearest
to given feature value. The aggregation is based on Plackett-Luce model.

• K-Nearest-Neighbor with Mallows model (KNN-M) [19]: It is the same with
KNN-PL except the aggregation is based on Mallows model [18].
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• Log-Linear model (LogLinear) [12]: It learns utility functions for each label via
pairwise comparison and sorts labels by utility function values into ranking.
Here the utility function is adopted from [10], in which case LogLinear is
equivalent to the Constraint Classification algorithm [11].

• Label Ranking Tree (LRT) [19]: It is a decision tree method whose induction
is based on Mallows model [18].

2.5.2 Robust Label Ranking Model: ROAR

Now, we propose a robust label ranking model, named as ROAR (RObust lA-
bel Ranking), which is a simple, efficient, and effective tree based model. The
performance measure GMR is difficult to be directly optimized, as it is not an
average over some performance measure for each instance. Hence an alternative
learning objective function, an induction criterion in decision tree, is proposed.
This supports the model searching for finest structure in feature and target space
without overfitting, which makes it robust against imbalanced data.

Learning. To learn a decision tree, a general algorithm begins with all instances in
the root node. Then, it partitions the training data recursively, by one-dimension
splits according to the comparison between thresholds and a feature value. The
decision tree in this work is a binary tree.

The threshold and the feature for each split are selected by exhaustive search
so that the sizes of the neighborhoods in the target space, estimated by training
data in the resultant child nodes, become the smallest. The size of a neighborhood
is estimated by the impurity of the set of rankings in a node. One intuition about
the impurity of a set of rankings is the impurity of labels on each ranking position.
Because labels are independent of each other, for a given position, we choose the
popular Gini index, and the Gini index of a tree node T for position i is defined as:

Ginii(T ) =
∑
y∈Y

(ni(T )− niy(T ))niy(T )
ni(T )2 , (2.7)

where niy(T ) = ∑
ν∈T I(φi(xν) = y) is the number of instances with label y ranking

on position i and ni(T ) = ∑
y∈Y niy(T ) denotes the number of instances with any

label ranking on position i. Then the impurity for rankings of the node T can be
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measured by weighted sum of Gini index for each position, that is,

Gini(T ) =
d∑
i=1

ni(T )Ginii(T )
|T |

, (2.8)

which is called point-wise Gini index. For parent node T and potential child nodes
T− and T+, the split criterion is defined as

criterion = |T |−1(|T+|Gini(T+) + |T−|Gini(T−)). (2.9)

The stopping criterion is straightforward. The partitioning stops when no further
partitioning is possible, that is, when there is no partitioning whose criterion is
smaller than Gini(T ) for current node T .

Prediction. Here for ROAR, we use a position-wise ranking aggregation method.
From highest to lowest ranking position, given a position, it assigns the label that
has not been assigned and appears most frequently at that position, to each position.
When there is no such label for a position, it resorts to label distributions of other
positions, from highest to lowest and does the same.

Consistency with Ranking Theory. This point-wise Gini index is consistent
with our intuition about the purity of a set of rankings. To show that, we have
to assume a measurement of the size of a neighborhood Ω(T ) around a point in
Ωd, noting that the center ranking π0 is unknown. Mallows model [18] is a popular
assumption of probability model of rankings, using the annotation from [19], defined
as

P (π|θ, π0) = exp(−θD(π, π0))
ψ(θ) , (2.10)

where ψ(θ) = ∑
π∈Ωd exp(−θD(π, π0)) is a normalization constant, θ the spread

parameter, π0 the center ranking and D(·, ·) the distance between two rankings,
which is the number of discordant pairs between two rankings. Assuming that the
rankings in T are independently generated according to Mallows model, the spread-
ing parameter θ measures the size of Ω(T ). Under the independence assumption,
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(a) E(Gini) versus θ (b) Running time

Figure 2.2

the expectation of point-wise Gini index for node T is

E(Gini(T )) = E(
d∑
i

ni(T )Ginii(T )
|T |

)

=
d∑
i

E(Ginii(T )),
(2.11)

E(Ginii) = (ni − 1)
ni

(1−
∑
y∈Y

P (φi = y)2). (2.12)

According to Mallows model, without loss of generality, we assume the center
ranking φ0

i = yi, ∀i ∈ {1, 2, ..., d}. Then ranking φ with φi = yj , is with probability
P (φ) = O(exp(−|i−j|θ))

ψ(θ) . Therefore, for large enough θ, P (φi = yj) = O(exp(−|i−j|θ)).
Hence, when θ is larger, which is when the spread of Mallows model is smaller,
then the probabilities P (φi = yj) over yj ∈ Y are more skewed toward smaller
|i− j|. Therefore according to eq. 2.12, E(Ginii) is smaller, so is E(Gini(T )), as
illustrated in Fig. 2.2a with different sizes of label set in the limitation of ni →∞.
Therefore, Gini is a good estimator of the impurity of rankings in a node.

Time Complexity. In ROAR, the amortized running time for each potential
partition is θ(d2), constant in terms of |T |. Hence the running time for each
induction of a tree node is Θ(m|T |(log|T | + d2)). In contrast, LRT takes Ω(|T |)
steps for each potential partition, so that the running time for each induction of
a tree node is Ω(m|T |2d2). The running time of two methods applied to data of
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different sizes are shown in Fig. 2.2b. As LRT becomes prohibitively slow as data
gets large, it is not considered in following empirical validation.

2.6 Empirical Validation
We attempt to validate if: (1) our proposed G-mean-rank is superior to two
popular label ranking measures in imbalance datasets, which has been done in
Robust Performance Measure section; and (2) our proposed ROAR outperforms 6
competing label ranking models. The data sets and codes will be publicly available.

2.6.1 Datasets and Set-Up

In this work, we use emoticon clicks data of Facebook posts. For each post, there
are six emoticon labels, {like, love, haha, wow, sad, angry}. Each user (i.e., reader)
can select one of the six labels for each post. For evaluating NAIVE in Robust
Performance Measure section, we use the number of votes for labels per post as the
input. To obtain ranking, for each post, the labels are sorted according to their
number of votes. If the number is zero for some labels, they are considered ranked
at an extra tail position attached to the normal ranking without preference to
each other and the ranking positions without labels are treated as missing. There
are four data sets: (1) public posts from random ordinary users, denoted as ROU
(Random Ordinary Users); (2) New York Times (NYT)1 posts; (3) the Wall Street
Journal (WSJ)2 posts; and (4) the Washington Post (WaPo)3 posts. We have
crawled all four sets of posts in 2016 after Facebook introduced six emoticons.

As our focus is on the evaluation of our two proposals for the robust label ranking
problem (instead of finding effective features), we avoid sophisticated features (e.g.,
user related or network structure based), and instead use fundamental textual
features, extracted via AlchemyLanguage API (by IBM Watson Lab). For posts
in ROU, only posts with text are included, and the document emotion of the text
given by AlchemyLanguage is used as features. For posts in other three sets, if there
is a link to external original full news, the document emotion of the full news is used
as feature, and otherwise, only the text in posts is used. The returned document

1www.facebook.com/nytimes/
2www.facebook.com/wsj/
3www.facebook.com/washingtonpost/
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ROU NYT WSJ WaPo
# posts 17, 394 4, 684 7, 464 6, 117
IMBA 3.03 1.94 2.96 2.14

# like 834K 7.99M 2.44M 3.81M
# love 14K 578K 105K 222K
#haha 3, 281 434K 130K 248K
#wow 2, 610 328K 84K 179K
# sad 2, 430 786K 70K 332K

# angry 678 1, 07M 93K 549K

Table 2.2: Summary of four datasets

emotion from AlchemyLanguage consists of [0, 1] scores, for five emotion dimensions,
“anger", “joy", “fear", “sadness" and “disgust". The scores measure the amplitude
of each emotion conveyed by the text. Then the four data sets are with the same
feature and target format, that is, Y = {like, love, haha, wow, sad, angry} with
d = 6 and m = 5 dimensional feature space.

The details of four data sets are shown in Table 2.2. Comparing ROU and the
other three sets, the IMBA-rank of ROU is much higher. This is due to the fact
that readers of the posts from ordinary users are usually their friends, who tend to
give positive feedback, {like, love, haha} rather than negative one, {sad, angry}
All our datasets are significantly imbalanced in that like or other positive labels are
more frequent. This is partially due to the interface limitation such that users have
to hover their mouse over the Like button to be able to select other emoticons. To
illustrate imbalance in label ranking more clearly, we show the pairwise comparison
matrix of WaPo, as Table 2.3, where the number in each entry (yi, yj) counts the
number of posts (support) with yi being higher ranked than yj . For instance, there
are only 209 posts where angry is ranked higher than like compared with 5, 906 in
contrast.

We also use 16 semi-synthetic data sets obtained by converting benchmark
multi-class classification using Naive Bayes and regression data using feature-to-
label technique from the UCI and Statlog repositories into label ranking [19]. These
data sets are widely used as benchmark in label ranking works.
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like love haha wow sad angry

like − 6, 117 6, 093 6, 115 5, 982 5, 906
love 0 − 2, 994 2, 654 2, 978 3, 116
haha 23 2, 003 − 1, 872 2, 415 2, 295
wow 2 2, 623 3, 036 − 3, 093 2, 968
sad 130 2, 203 2, 104 1, 717 − 1, 880
angry 209 2, 014 1, 979 1, 821 2, 040 −

Table 2.3: Pairwise comparison matrix of WaPo

Datasets
Methods ROU NYT WSJ WaPo
RPC 0.933 0.497 0.595 0.541
LWR 0.937 0.499 0.603 0.562
SMP 0.933 0.495 0.601 0.547

tau KNN-PL 0.929 0.495 0.584 0.544
KNN-M 0.928 0.504 0.595 0.550
LogLinear 0.935 0.488 0.593 0.537
ROAR 0.954** 0.634** 0.612* 0.554
RPC 0.241 0.429 0.345 0.358
LWR 0.295 0.433 0.289 0.390
SMP 0.246 0.351 0.257 0.247

GMR KNN-PL 0.408* 0.458 0.513 0.461
KNN-M 0.387 0.455 0.468 0.435
LogLinear 0.209 0.287 0.253 0.203
ROAR 0.343 0.680** 0.534* 0.478*

Table 2.4: Summary of results on Facebook posts datasets (* means significance
level of 0.1, and ** 0.01)

2.6.2 Results

2.6.3 Competing Models

First we test models on Facebook posts data sets, which are imbalanced. All
results are obtained with 5-fold cross validation. We compare ROAR with 6 existing
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state-of-the-art label ranking models, RPC4, LWD, SMP5, KNN-PL6, KNN-M and
LogLinear.

For evaluation, as we have shown the superiority of GMR in imbalanced data,
here GMR is used. For consistency with previous label ranking works, results in
terms of tau are also included in Tabel. 2.4.

Table 2.4 shows that ROAR achieves significantly better performance in all four
data sets except ROU in terms of GMR. In ROU dataset, ROAR loses only to two
KNN based methods. As pointed out previously, that posts emotion extracted from
posts in ROU may not be meaningful enough, hence lack of structural correlation
between feature and target favors instance-based learning method such as KNN.
Hence the experiment shows that ROAR outperforms other models in real-world
imbalanced label ranking data.

Next, ROAR and other label ranking models are applied to benchmark semi-
synthetic data sets, evaluated by tau and GMR. As shown in Table. 2.5, ROAR
achieves competitive results against other models and wins in the most data sets in
terms of both tau and GMR.

2.6.4 Case study

What does it mean that an model performs better in terms of GMR in imbalanced
label ranking data sets? Here we use WaPo data set result to answer it. Because
imbalance measure of label ranking data IMBA − rank is defined based on im-
balance between two orders of each pair of labels (eq. 2.2), here we want to know
whether an model can recall those minority orders in imbalanced pairs. In WaPo
(Table. 2.3), we choose (haha, like), (sad, like) and (angry, like) three minority
pair orders, where (yi, yj) means yi ranks higher than yj . The number of posts with
each of these orders is 23, 130 and 209, respectively, compared with that of those
opposite, 6 093, 5 982 and 5 906. The recall of each pair order is shown in Fig. 2.3.
It is obvious that ROAR is superior than any other models. Actually any models

4There is only one minor modification. In case of missing labels, missing label pairs indicate
that they are not preferred to each other, as abstention means. Therefore, missing label pairs are
assigned a small weight α, and counted as one preference relation for each order. The weight is
picked empirically, α = 1/64 used in this work, and results do not appear sensitive to the weight
for a range of α values.

5There is a hyperparameter k [17], which is set to default value 100 for Facebook data, and
slightly smaller than number of all possible rankings for each semi-synthetic data.

6Two KNN based model takes default K = 20.
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Figure 2.3: recall of minority pair orders. Actually any models except ROAR do
not recall any posts with those minority pair orders, which is why they get same
recall (not vanishing due to the smooth term in recall definition).

except ROAR do not recall any posts with those minority pair orders, which is why
they get same recall. Hence ROAR works better in recalling minority pair orders,
as it achieves highest GMR in WaPo (Table. 2.4). However, this advantage is not
well appreciated by tau as shown in Table. 2.4.

2.7 Conclusion
In this work, we formally define robust label ranking problem for social emotion
mining. To overcome the challenges, we first propose a robust measure, GMR, as
the criterion for the problem. Both synthetic and experimental analysis show the
superiority of GMR over popular measures such as Kendall’s tau correlation and
ACC@k. Then, we also propose a robust model, ROAR, and empirically validate
its superiority over 6 competing label ranking models in Facebook posts data sets
and benchmark semi-synthetic data sets.

23



Chapter 3 |
What Influences User Behavior?

In this chapter, a multi-task learning study is conducted aiming at finding the
influence of news channels on their readers’ reactions besides the content they post.
On the other direction, an observation from this specific problem inspires a new
framework design of multi-task learning.

3.1 Introduction
The development of advanced machine learning techniques (e.g., deep learning)
often requires a large amount of labeled samples to train a good model. However,
this requirement is hard to meet for many applications due to the prohibitive cost
of data collection and labeling. To mitigate this problem, the Multi-Task Learning
(MTL) approach takes an advantage of multiple related tasks to facilitate the
training of some or all of the tasks that have limited training samples [38]. MTL
has been successfully applied to many learning problems in various domains (e.g.,
computer vision and natural language processing).

The principle of MTL is to leverage the relationship assumptions among tasks
through a model design–e.g., commonalities across tasks. Some well-known MTL
designs can be categorized as feature selection, task structure, the low rank structure
of model parameters of tasks in linear models [39], and parameter sharing and
information sharing in neural network models [40]. The validity of the task-
relationship assumption in these models is vital to achieve successful learning.
However, we observe that, such a task relationship used in previous methods does
not always hold. More specifically, a task relationship can often hold only within
topics–i.e., commonalities across tasks hold only for certain topics (or groups) of

24



data. Consider the following two motivating examples.

Example 3.1 (Predicting User Emotions). Consider the problem to accurately
predict news readers’ reactions (e.g., LIKE, ThumbsDown) toward news posts from
different news channels (e.g., NYT, Wapo, Fox). To overcome insufficient data
per new channel, one models the problem as MTL (i.e., news channels as tasks),
assuming that readers’ reactions across tasks be similar. However, in practice,
such an assumption on the task relationship may not hold. For instance, readers’
reactions can be highly consistent across different news channels for news on the
topics of natural events and festivals; however, different standing points of different
channels often result in exactly opposite readers’ reactions for the news on the topics
of sports and political news.

Example 3.2 (Searching Relevant Products). In e-commerce applications, consider
a problem of searching products for different user groups. For instance, both male
and female users may have similar taste for products related to food (i.e., topic), but
different taste for books or music (i.e., topic). In this case, considering the same
task relationship across all products will either miss the similarity (i.e., treating
two tasks as independent) or cause negative knowledge transfer (i.e., treating two
tasks the same).

Based on these observations, therefore, we propose a “within-topic" task rela-
tionship hypothesis to reveal the data-dependent task relationship. This hypothesis
assumes that task relationship may appear different within data if from different
topics. The topics are determined by input features of data (clusters of data),
different from task groups in within-group clustering design [41]. Compared with
the recent works [42,43] on data-dependent task relationship, with the clear notion
of topics, the data dependency and task relationship can be “decoupled" here,
which enables the application of any existing task relationship designs to reveal
within-topic task relationship. In this work, therefore, we propose a topic-wise
multi-task architecture using a topic module to distribute data from different topics
to different modules, so that different task relationship can be learned. Within each
topic, we propose two topic-task-sparsity constraints to enforce a multi-task sparsity
structure for task relationship, where only a few tasks are allowed to deviate from
a global structure shared by all other tasks. This multi-task sparsity structure is
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consistent with the aforementioned example, where only a few news channels are
different from the others per topic.

Our contributions can be summarized as follows: (1) we propose the within-topic
task relationship hypothesis for the MTL problem; (2) we propose a topic-wise
multi-task architecture based on the hypothesis; (3) we propose two types of
topic-task sparsity constraints, topic-task-element and topic-task-exclusive and the
optimization algorithms with proof; and (4) the proposed topic-wise multi-task
sparsity model consistently outperforms state-of-the-art MTL models in experiments
on both synthetic and real world datasets.

3.2 Related Works
In this section, we review related works on linear MTL models, MTL neural
networks and sparsity constraints used in neural networks.

There are a lot of works on linear MTL models. Interested readers are referred
to [39] for a comprehensive survey. Those models are designed based on different
assumptions of task relationships. More specifically, [44–46] assume different tasks
share similar sparse feature selection pattern. [47–52] assume that the weight vectors.
With similar spirit of above task structure assumption, [41, 53,54] directly assume
that the weight matrix should be low-rank, which enforce different tasks to share
the same low-dimension feature transformation. Though the simplicity of the linear
structure provides such flourishing of MTL designs, it is less flexible compared with
neural network models.

The neural network MTL models are based on two designs, parameter sharing
and information sharing. The most common shared-bottom model is similar to
the feature selection design in linear MTL models. Built upon the shared-bottom
design, [55–57] propose further constraints on parameter sharing. Unique for neural
network MTL models is information sharing [58], where cross-stitch structures
are used to enable information flows from one task to another. Though neural
network provides more flexibility of model design, as the information sharing, task
relationship still relies only on design assumptions but not further information.

There are two recent works [42, 43], whose task-specific gates can be considered
as data-dependent task relationship design. The distribution of weights given
to different experts by different tasks are determined by the inputs. When such
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distributions of two tasks given a group of input samples are similar, those two tasks
are related and vice versa. However, both data-dependency and task relationship
are modeled by the weights of different tasks, which excludes the application of more
flexible task relationship designs. Moreover, it can be seen later that MMoE [42]
can be seen as a special instantiation of our proposed architecture.

Many task relationships in linear MTL models are achieved by constraints
over weight matrix, especially sparsity constraints (e.g., l1,q penalty). Within
neural network models, the sparsity constraints are recently applied to model
compression [59–62]. For example, [60, 61] use group sparsity (l1,q) loss to zero-out
the entire neurons to learn a sparse model for both memory and computation
efficiency. [62] combines both group sparsity (l2,1) and exclusive penalty (l1,2). In
this work, we adopt group sparsity as topic-task-element penalty (l1,1,2) and propose
group exclusive penalty as topic-task-exclusive penalty (l2,1,2), together with its
optimization algorithm.

3.3 Problem Definition
We formally define the multi-task learning (MTL) problem.

Definition 3.1 (Multi-Task Learning Problem). Given T tasks, for each task
t ∈ [T ], there are Nt samples (Xt, Yt), with each xt ∈ Rdt as input feature and
yt ∈ Rpt as labels. Here in this work, we take homogeneous MTL setting, where
the dimensions and types of the features and labels for different tasks are the
same, respectively, that is, for ∀t ∈ [T ], dt = d and pt = p. Then, the MTL
problem is to find a mapping f : Rd × [T ] 7→ Rp, such that the overall cost
L = ∑

t∈[T ]
1
Nt

∑
nt∈[Nt] L(f(xt, t), yt) is minimized.

The proposed within-topic task relationship hypothesis can be formally defined
as follows:

Definition 3.2 (Within-Topic Task Relationship Hypothesis). Given each sample
input x, there is a topic h(x) given by h : Rd 7→ [K], where K is the number of
topics. The prediction function f : Rd × [T ] 7→ Rp can be decomposed as f(x, t) =
g(h(x), x, t). Within each topic k ∈ [K], g(k, ., .) shows the task relationship between
each g(k, ., t1) and g(k, ., t2) with t1 6= t2.
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Figure 3.1: Neural Network MTL architectures: (a) Existing neural network MTL
architectures; (b) Topic-wise multi-task architecture

3.4 Topic-Wise Multi-Task Sparsity Model
In this section, we describe the proposed topic-wise multi-task sparsity model.
First, the topic-wise multi-task architecture is described as the overview of the
model, which can be combined with any existing MTL design as within-topic task
relationship. Second, the two sparsity constraints are introduced for within-topic
task relationship. Third, the optimization algorithm is described.

3.4.1 Topic-Wise Multi-Task Architecture

The topic-wise multi-task architecture is designed based on the within-topic task
relationship hypothesis. Specifically, given input x, it is cast by a set of topic-task-
specific functions {g(k, x, t)‖k ∈ [K]} into the topic-task-specific hidden layers, and
the task-specific layer afterward is obtained by aggregating topic-task-specific layers
over different topics weighted by topic distribution h(x) such that ∑k h(x)k = 1,
which can be formulated as

f(x, t) =
∑
k

h(x)kg(k, x, t). (3.1)

When a task relationship is enforced in topic-task-specific functions {g(k, x, t)}
within each topic k, the topic-wise multi-task architecture reveals Definition. 3.2.
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Compared with the existing shared-bottom architecture (Fig. 3.1), the topic module
h(x) distributes data samples to different within-topic task relationship, rather
than all data with the same task relationship. This clearer task relationship within
each topic leads to more compact structure of g(k, x, t) (i.e., low-rank structure,
parameter sharing), compensating the redundancy by the extra topic dimension
and boosts the performance.

We compare the proposed architecture to the recent MMoE work [42], that
models data-dependent task relationship. From its viewpoint, our work decouples
the data-dependent task relationship into data-dependence (h(x)) and within-
topic task relationship (g(k, x, t)), which enables the application of all existing task
relationship designs for the latter. To see this, if we choose the factorization structure
(DMTRL) [55] for within-topic task relationship, g(k, x, t) = ∑

e p(k, t)eq(x, e),
Eq. 3.1 becomes f(x, t) = ∑

k

∑
e h(x)kp(k, t)eq(x, e). Compared with Eq. 7 in [42],

MMoE can be seen as a special instantiation of the proposed architecture by setting
gate(x, t)e = ∑

k h(x)kp(k, t)e.

3.4.2 Topic-Task Sparsity

In this subsection, we describe a new MTL design, called topic-task sparsity, to
capture task relationship with the help of the proposed topic-wise multi-task
architecture.

We assume that, within each topic, only a few tasks (news channels) may deviate
from the majority. For example, within political topic, the readers’ reactions to
similar posts under extreme conservative or liberal news channels are usually
different from those under the majority milder channels. We proposed the topic-
task-sparsity design that

θk,t = θ0 + θsk,t, (3.2)

where θk,t is the vector of the parameters of topic-task-specific function g(k, x, t) =
g(x|θk,t), θ0 is the global parameters that shared by different topics k and tasks t,
and θsk,t is the topic-task-sparse part of the parameters. We note Θs as the tensor
combining θsk,t for all topics and tasks.

To enforce sparsity structure in Θs, we proposed two types of topic-task-sparsity
constraints Ω(Θs). First, an element-wise sparsity structure is assumed for Θs,
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which is enforced by topic-task-element constraint defined as

Ωel(Θs) =
∑
k

∑
t

||θsk,t||2, (3.3)

where ||.||q is the lq norm. The entire topic-task-element constraint Ωel() is a l2,1,1
norm, which is also known as group sparsity constraints. It is used in [60, 61] to
zero out entire neurons for compression. Here, similar property is used to enforce
certain topic-task-specific parameters θk,t to be the same as the global ones θ0. The
effect of the additional topic dimension in the above topic-task-element constraint
lies in its element-wise sparsity. Without topics, it is reduced to task-wise sparsity,
often a too-strong assumption for task relationship.

Next, we consider another topic-task-sparsity constraint that more explicitly
takes advantage of the topic dimension. It is called topic-task-exclusive constraint,
defined as

Ωex(Θs) = 1
2
∑
k

(
∑
t

||θsk,t||2)2. (3.4)

The entire topic-task-exclusive constraint Ωex is the square of a l2,1,2 norm. The
l1 norm for the task dimension still enforces the entire θsk,t parameters to zero for
certain topics k and task t. The l2 norm for the topic dimension however, tends
to balance the deviation of topic-task-specific parameters θk,t from the global θ0

to be similar. In other words, the competition is now across tasks within each
topic rather than among topic-task pairs under topic-task-element constraint. This
norm is first applied to sparsity constraint, to our best knowledge. The usage of
similar exclusive sparsity constraint, the square of l1,2 norm in [62] shows its effect
to find sparse feature selection structure for each neuron. The topic-task-sparsity
designs given two proposed constraints are visualized as the norms of the learned
topic-task-sparse parameters in Fig. 3.2.

3.4.3 Topic-Wise Multi-Task Sparsity Model

The topic-wise multi-task sparsity model (TMTS) is the combination of the
topic-wise multi-task architecture and either of the topic-task-element or topic-
task-exclusive constraints. As shown in Fig. 3.1, we use a common shared-bottom
module φ(x) to extract features and task-specific modules ŷ = ψ(f(x, t), t) before
final output. The topic module h(x) can be normalized by a softmax function.
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(a) (b)

(c) (d)

Figure 3.2: The topic-wise multi-task structures as the l2 norm of topic-task-sparsity
parameters from the synthetic data: (a) ground truth as the weight wsk,t used to
generate the data; (b) without topic as learned by TMTS-el with K = 1; (c)
TMTS-el, as learned by TMTS-el with K = 2; (d) TMTS-ex, as learned by
TMTS-ex with K = 2.

The overall loss function L is defined as

L =
∑
t∈[T ]

1
Nt

∑
nt∈[Nt]

L(ŷ, yt) + λΩ(Θs), (3.5)

where Ω can either be Ωel or Ωex, and λ controls the strength of the sparsity
penalty. When λ → +∞, the topic-task-specific functions g(x, θk,t) reduce to a
global function g(x, θ0), leading to the closest task relationship, and vice versa.
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3.4.4 Optimization

Both topic-task-element and topic-task-exclusive constraints are non-smooth func-
tions. Therefore we use the stochastic proximal gradient method to minimize
Eq. 3.5. At each iteration j, it calculates an intermediate parameters Θ̄s using the
conventional SGD step and optimizes the solution or proximal operator as

Θs,j+1 = arg min
Θs

1
2λr ||Θ

s − Θ̄s||22 + Ω(Θs), (3.6)

where r is the learning rate of the current iteration. As for the topic-task-element
constraint Ωel(Θs) in Eq. 3.3, the proximal operator, the proximal operator from
Eq. 3.6 for each topic k and each task t can be calculated independently. Therefore,
the proximal operator can be easily derived as

proxel(θsk,t) = (1− λr

||θ̄sk,t||2
)+θ̄

s
k,t, (3.7)

where ()+ is the clip function max(, 0). The proximal operator for the topic-
task-exclusive constraint Ωex(Θs) is more complicated because the parameters for
different tasks are coupled by the l2 norm at the topic-dimension.

Lemma 3.1. The solution for Eq. 3.6 with Ω = Ωex, is

proxex(θsk,t) = (1− Ak

||θ̄sk,t||2
)+θ̄

s
k,t, (3.8)

where Ak is maximum of the “diluted" average AT ′ of {||θsk,t||2 |t ∈ T ′}, ∀T ′ ⊂ [T ],
Ak = maxT ′⊂[T ] Ak,T ′ , s.t., Ak,T ′ = 1

1
λr

+|T ′|
∑
t′∈T ′ ||θ̄sk,t′||2.

The key of its proof is to notice that the maximum “diluted" average Ak
is a threshold that divide the tasks into two sets, Tk and [T ]\Tk, where Tk =
arg maxT ′ Ak,T ′ .

Lemma 3.2. If t ∈ Tk, then ||θ̄sk,t||2 ≥ Ak and if t ∈ [T ]\Tk, ||θ̄sk,t||2 ≤ Ak.

Proof. First, assume otherwise ||θ̄sk,t||2 < Ak for some t ∈ Tk. It can be seen that

||θ̄sk,t||2 < Ak ⇔ ||θ̄sk,t||2 < Ak,Tk\{t}. (3.9)
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Using this, we obtain

Ak − Ak,Tk\{t} = δ [ ||θ̄sk,t||2 − Ak,Tk\{t}] < 0 (3.10)

where δ = ( 1
λr

+|Tk\{t}|)
( 1
λr

+|Tk|)( 1
λr

+|Tk\{t}|)
> 0. It contradicts with the condition that A is the

maximum “diluted" average. Second, for the second statement, it is straightforward
to prove with Tk\{t} replaced by Tk

⋃{t}.
Algorithm 3.1 Greedy Calculation of Ak

Input: ||θ̄sk,t||2 for t ∈ [T ], λ, r
output: Ak
1: Sort ||θ̄sk,t||2, and denote ai = ||θ̄sk,ti ||2 for i ∈ [T ]

s.t., a1 ≥ a2 ≥ ... ≥ aT ≥ 0;
2: S0 ← 0, Si ← Si−1 + ai for i = 1, 2, ..., T ;
3: Si ← 1

1
λr

+iSi for i ∈ [T ];
4: Return Ak = maxi Si.

With Lemma. 3.2, Lemma. 3.1 can be proved by sub-differential calculus.
The maximum “diluted" average Ak in Eq. 3.8 can be calculated by a simple
greedy algorithm (Algorithm. 3.1), with time complexity O(T log(T )). The proof
of correctness is straightforward with Lemma. 3.2.

Proof. Using Lemma. 3.2, we can prove that Tk must be the subset of the largest
|Tk| norms. Formally, ∀t ∈ Tk, t′ ∈ [T ]\Tk, we have ||θ̄sk,t||2 ≥ A, and ||θ̄sk,t′||2 ≤ A.
Hence ||θ̄sk,t||2 ≥ ||θ̄sk,t′||2.

3.5 Experiment
In this section, we apply the proposed models against one synthetic and four real-
world datasets to validate the proposal. All codes and datasets will be published. 1

1Link will be added here after paper gets published.
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3.5.1 Datasets

3.5.1.1 Synthetic Dataset

We generate a synthetic MTL dataset following the within-topic task relationship
hypothesis.

1. Input feature: K topic cores ek ∈ Rd are sampled from normal distributions
N (0, σ2

e) for each k ∈ [K]. Input features are generated as xt ∈ Rd from
normal distributions N (0, σ2

x). The topic distribution h(x) of an input x is
determined as h(x)k ∝ exp (||x− ek||22/σ2

topic).

2. Parameters: a global linear weight w0 ∈ Rd×p is element-wise sampled from
N (0, σ2

w0). Topic-task-sparsity weight wsk,t are generated in the way that
within each topic, z � T tasks Tk ⊂ [T ] are randomly sampled and their
topic-task-sparsity weight are assigned random values from N (0, σ2

ws), while
the rest are assigned 0. The topic-task-specific weight is wk,t = w0 + wsk,t.

3. Label: The linear output ȳt for input xt is generated by
ȳt = softmax(∑d

i=1 xt,i
∑K
k=1 h(xt)kwk,t,i). We add non-linearity to the final

label yt = β(ȳt), with β the non-linear function used in [42].

3.5.1.2 MNIST-MTL Dataset

We use the multi-task version of the MNIST data (MNIST-MTL) [63]. Each task is
a binary classification problem that distinguish one digit from the others. For each
of the T = 10 tasks, we sample 900 positive samples and 900 negative samples with
100 samples for each of the other digits. We adopt the feature extraction method
used in linear methods [44] to get input of dimension d = 64.

3.5.1.3 AwA2 Dataset

AwA2 is a benchmark dataset containing 37,322 images of 50 animals [64]. Each
task is a binary classification problem similar to MNIST-MTL data. For each of
the T = 50 tasks, we sample 50 positive samples and 1 negative samples for each of
the other animals. We use the pre-trained features [64] and reduce the dimension
to 500 with PCA.
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data Synthetic MNIST-MTL AwA2 School MCSEM
input dim d 64 64 500 28 756
output dim p 5 2 2 3 5

# tasks T 12 10 50 139 12
# samples/task Nt 2,000 1,800 100 111 3,523

Table 3.1: Data statistics summary

3.5.1.4 School Dataset

School data is a benchmark dataset containing performance of 15362 students from
139 schools [65]. The score performance is partitioned to 3 segments, [0, 10), [10, 20)
and [20, 71). Each task is to classify the performance of students from a school.

3.5.1.5 MCSEM Dataset

The multi-channel social emotion mining (MCSEM) data is crawled from public
posts from 12 news channels on Facebook, together with their public users’ emotional
reactions (i.e., clicks on the emoticon buttons, love, angry, wow, happy, and sad).
We used the pre-trained BERT model [66] to obtain the document embeddings as
the input with d = 756. The emotional reactions for each post are normalized to
label distributions over the five emoticon labels. Each task is to predict the label
distribution given the posts of each channel.

3.5.1.6 Statistics of Datasets

The data statistics is summarized in Table. 3.1. We use sample weighting to ensure
that the sums of all sample weights for different tasks are the same, following L
in Definition 3.1. The task-wise data imbalance problem is beyond the scope of
this work. For each dataset, 20% samples are used for testing the remaining 80%
as training. The results reported are averages from 10 iterations of random splits.
The split uses stage-wise sampling with tasks as stages to avoid random imbalance
across tasks.

3.5.2 Competing Models

We compare the proposed models with a list of state-of-the-art MTL neural network
models.
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First, we use two baselines to validate the usage of MTL framework: Separate,
learns each task with separate neural network modules that do not correlate; on
the other hand, Single, learns all tasks with a single neural network module.

Besides them, a comprehensive list of state-of-the-art models are included.
Shared-bottom: it is a broadly used MTL model where all tasks share bottom
feature extraction module and own their own top modules. Inter-task-l2 [56]:
the l2 penalty is applied to constrain task-specific module parameters difference.
DMTRL [55]: the tensor consisting of task-specific parameters of all tasks are
assumed of a low-rank structure, modeled by tensor factorization. MRN [57]:
the tensor consisting of task-specific parameters of all tasks are assumed with a
fully-decomposed tensor normal distribution, whose parameters are jointly learnt
with model parameters. Cross-stitch [58]: task-specific modules are assumed to
be able to communicate with each other by stitches connection between each pair
of them. MMoE [42]: consists of multiple expert modules and task-specific expert
distribution modules to combine the output of experts for each task.

We experiments the two variants of the proposed model TMTS, TMTS-el,
TMTS with topic-task-element constraint Ωel from Eq. 3.3 and TMTS-ex, with
topic-task-exclusive constraint Ωex from Eq. 3.4.

Here in this work, we only focus on their capability to capture task relationship in
MTL problems. Therefore, we implement a unified architecture for all models. They
share the same shared-bottom module structure as MLP (multi-layer perceptron)
of one layer except Separate and other modules of different models are MLP. All
models are trained using stochastic gradient descent (SGD) with learning rate at
iteration i, ri = r0γ

i/η, where r0 is the initial learning rate, γ is the decay rate and
η is the decay steps. Random dropout for certain layers and l2 regularization are
used to avoid overfitting.

3.5.3 Results

3.5.3.1 Performance metric

As the evaluation metric, we use the miss-classification rate for the experiments on
Synthetic, MNIST-MTL, AwA2 and School datasets, and the cross-entropy for the
experiments on MCSEM dataset where label distribution is given.

Q1: Are the proposed models able to capture the within-topic task
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Dataset synthetic MNIST-MTL AwA2 School MCSEM
Separate 16.55 2.59 7.49 50.95 1.371

Shared-bottom 14.51 2.68 4.92 50.01 1.326
Single 14.24 49.98 16.75 51.80 1.342

Inter-task-l2 14.21 2.49 4.92 50.41 1.322
DMTRL 15.08 2.60 4.75 49.34 1.333
MRN 14.47 2.68 9.81 51.06 1.329

Cross-stitch 14.69 2.68 4.63 50.22 1.327
MMoE 14.40 2.59 13.60 48.18 1.337

TMTS-el 14.09 2.44 4.16 45.00 1.322
TMTS-ex 14.10 2.32 5.50 46.72 1.321

Table 3.2: Overall performance

relationship?
We show the l2 norm of topic-task-sparsity parameters learned from the synthetic

data in Fig. 3.2. Compared to Fig. 3.2.(a), the ground truth parameters, both the
TMTS-el (c) and TMTS-ex (d) models can exactly capture the sparsity structure.
We also test the case without topic by TMTS-el (Similar results can be obtained
by TMTS-ex) (b), which cannot find the similarity between the majority tasks
and task 2 and 7 (task 0 and 9) in data from topic 0 (1), but only treat all of
them different from other tasks. This shows the effect of the topic-wise multi-task
architecture.

Q2: How do the proposed models perform?
The overall performance results are presented in Table. 3.2. First, the proposed

models TMTS-el and TMTS-ex consistently outperforms all the competing mod-
els. This validates the superiority of the proposed topic-wise multi-task architecture
and also the proposed two topic-task-sparsity MTL designs. Second, the task
relationship varies a lot across different datasets. On the one hand, comparing
Single and Separate, which are the two extreme cases in MTL, their performance
difference in different datasets varies. Therefore, some of the datasets (e.g., MNIST-
MTL) have task relationship that is hard to catch, while others (e.g., synthetic)
make it more beneficial to risk negative transfer for more data. On the other
hand, the performance of different models, which are different assumptions of task-
relationship, vary across different datasets. For example, Cross-stitch performs
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Dataset synthetic MNIST-MTL AwA2 School MCSEM
Separate 0.00 0.00 0.00 0.00 0.00

Shared-bottom 2.44 -0.09 3.05 3.18 3.08
Single 2.75 -48.66 -9.70 -2.04 2.20

Inter-task-l2 2.79 0.10 3.05 1.96 3.39
DMTRL 1.75 -0.01 3.22 5.56 2.68
MRN 2.49 -0.08 -2.34 -0.05 3.00

Cross-stitch 2.23 -0.08 3.35 2.76 2.98
MMoE 2.57 0.00 -6.29 8.96 2.39

TMTS-el 2.94 0.16 3.88 16.74 3.38
TMTS-ex 2.92 0.28 2.41 12.93 3.62

Table 3.3: Average task-wise improvement percentage

good on MCSEM data, but even worse than Separate baseline on synthetic data.
This shows that the topic-wise multi-task architecture is more flexible in leveraging
different task relationship.

Q3: How is the trade-off between positive and negative transfer?
The topic-wise multi-task architecture is proposed to capture more subtle task

relationship so that achieve better trade-off between positive and negative transfer.
Table. 3.2 gives an overall view of the answer, that the proposed architecture
does perform better. Further more, here we take a detail view. In Table. 3.3,
the average task-wise improvement is presented. For each model on each dataset,
we calculate its performance on each task t as perfmodel,t of the dataset. After
that, for each task, we calculate the relative improvement over the Separate
model 100∗ (perfSeparate,t−perfmodel,t)/perfSeparate,t. This task-wise improvement
provides the judgement of positive or negative transfer. When this improvement
is negative, for the specific task, there is no benefit to take into account other
tasks, which is negative transfer, and vice versa. For each entry in Table. 3.3, we
report the average task-wise improvement percentage over all tasks of a datasets
from a model. We observe that the proposed models give consistent and better
improvement over all datasets. Therefore, it shows that the proposed methods do
achieve better trade-off between positive and negative transfer.

Q4. Ablation study: Are the proposed architecture and MTL design
nontrivial in real world data?
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Figure 3.3: Ablation study: (a) Performance over different number of topics K; (b)
performance over different sparsity constraint strength λ

We notice that there are two hyperparameters that distinguish the proposed
models from the existing ones. First when the number of topics K = 1, the proposed
topic-wise multi-task architecture reduces to conventional MTL architecture. From
the ablation study with differentK values, Fig. 3.3(a), the performance of TMTS-el
(TMTS-ex) with K = 16 (K = 4) is better than that of trivial model with K = 1.
This validates the topic-wise multi-task architecture. Second when the sparsity
penalty strength, λ = 0, the sparsity constraints are disabled. From the ablation
study with different λ values, Fig. 3.3(b), the best performance is achieved with
λ = 1e− 2. It validates the topic-task-sparsity MTL design.

3.6 Conclusion
In this work, from a closer look into the validity of task relationship, we propose
a within-topic task relationship hypothesis and develop a topic-wise multi-task
architecture, which is general enough to be combined with any existing MTL design.
Further, we propose the topic-task-sparsity MTL design, specially designed for the
topic-wise multi-task architecture, along with two types of sparsity constraints.
The experiments on both synthetic and real-world datasets show that the proposed
models outperform existing state-of-the-art models consistently, which supports
the validity of the within-topic-task relationship hypothesis.
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Chapter 4 |
How to Influence User Behav-
ior?

In this chapter, a reinforcement learning framework is applied to influence user
behavior on purpose. More specifically, it is applied to the personal search story
problem in industry.

4.1 Introduction
Imagine that a customer visits a retail shop to purchase a dress that she likes.
As the customer walks in, a business assistant is present to assist the customer
by answering questions on fashion trend or suggesting related dresses. In online
e-commerce applications, more business units are adding a component that plays a
similar role as the business assistant in a shop. In this paper, we are interested in
a particular component, commonly referred to as search story, that has become
popular among e-commerce search engines on many online platforms. For instance,
in news feed platforms and web and image search platforms, each search story is a
display of recommended high-quality content which is relevant to a user’s personal
interests. In e-commerce search platforms, a search story is instead a display of
sponsored article which gives an overview and comparison of several product items.
Figure 4.1 illustrates an example of a search story in a real e-commerce search
engine, which is embedded within the organic search results. In this example, the
search story itself displays, when clicked, a landing page of a short survey that
summarizes and compares a list of selected product items and related styles.

The search story recommendation can be naturally formulated as a conventional
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Figure 4.1: An illustrative (not a screenshot) example of search story recommenda-
tion. The left part shows a search result page that displays a search story within
organic product item search results; the right part is the landing page after clicking
the search story, which contains both shopping guides and shopping product items.

recommendation or ranking problem that aims to suggest relevant items to users
based on search keywords. For instance, one may model the problem as a click-
through prediction task and recommend the search story with the highest predicted
click-through rate. However, compared with conventional recommendation systems
or search engines, recommendation of search stories focuses more on guiding users to
figure out their own preferences and personal intents. Consider the following concrete
example that illustrates a multitude of objectives of a search story recommender.

Example 4.1. As shown in Figure 4.1, suppose a customer wants to purchase a
“dress outfit" for a party, but she does not know what exact style she is looking for
(e.g., “sleepless loose plain dress"). The purpose of a search story recommender is to
assist and guide the customer within each search session, as if it plays the role of an
assistant in a shop. On the one hand, a user’s search session history can be leveraged
to learn the user’s intent and subsequently to build a better recommendation model
for future search stories. On the other hand, the recommended search story guides
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the user to figure out her preferences and personal intents, which affects not only
her immediate behavior (e.g., clicking or ordering product items from the current
page of the search story in Figure 4.1(b)), but also her long-term behavior (e.g.,
clicking or ordering product items in future search session in Figure 4.1(a)).

As this example illustrates, the ultimate goal of a search story recommendation
in e-commerce search applications is to recommend the best search story that
maximizes both short-term reward (e.g., purchasing a product shown in the landing
page of a search story) and long-term reward (e.g., returning back to start another
search session in a week). Compared with organic search results, search stories
risk disrupting users’ current search to achieve better long-term benefit in their
following search. Therefore, search story recommendation requires a solution to
consider both immediate and future benefits. Although we consider direct feedbacks
(i.e., users’ clicking or ordering product items in the landing page of search stories),
indirect feedbacks (i.e., users’ clicking or ordering product items in the search page)
is more important. Such a cross-channel effect [67] is difficult to model using the
conventional supervised learning framework. This motivates us to propose a novel
reinforcement learning framework for personalized search story recommendation.

In this work, we focus on the following characteristics of the personalized
search story recommendation problem: the return cannot be directly optimized
by supervised learning (i.e., long-term or cross-channel); only heuristic policy has
been applied as the existing policy (i.e., recommending the search story with the
highest predicted click-through rate); and it is costly to explore the environment.
The first factor motivates the use of reinforcement learning as discussed above, and
the other two factors bring two additional challenges.

• Offline data: Offline data should be effectively used. Because it is too expensive
to explore the environment of the RL problem, which is real-world users [68] in
our context, only offline data can be used for learning and evaluation.

• Stability: The learned policy should not be far from the existing one, which
is less mentioned in applications on recommendation. Due to the difference of
the optimization goals between supervised learning used by existing systems
and RL methods, the latter may provide results (i.e., recommendations) clearly
different from existing one, which is highly risky for an industry platform. In
personalized search story recommendation, the existing recommender is trained
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with click-through rate of stories in a supervised manner, while the RL method
is to optimize users’ long term preference on organic search results. On the
other hand, the difficulty of offline evaluation of RL methods enlarge the risk
when the learned policy is far from the existing one. In personalized search
story recommendation, offline evaluation requires an estimation of user behavior,
building the relationship between search story and organic results. When such
an estimation is done by a user model, the difference between learned policy
and the existing one will cause selection bias [69]; when the estimation is done
by importance sampling, large difference leads to large variance [70].

The two challenges intervene each other. Effective use of offline data suggests
larger policy improvement given limited data. However, larger policy improvement
implies larger difference against the logging policy, which means less stability.
Therefore, a trade-off has to be considered between the two challenges.

The characteristics of the personalized search story recommendation problem
should also be considered in other real-world application scenarios. For example,
in dynamic treatment recommendation [71], where treatments are recommended
to patients dynamically given their status, the return, the mortality rate, cannot
be directly optimized by supervised learning; existing dynamic treatment is given
by doctors based on their knowledge and experience; and it is costly to explore
the treatment effect on real patients. For another example, in intelligent traffic
signal control [72], the return, the traffic efficiency, cannot be directly optimized by
supervised learning; existing traffic lights control is by heuristic rules designed by
domain experts [73]; and it is risky to explore real traffic. Therefore, our work can
be adapted to those applications or any others with the three characteristics.

In order to address the two challenges, we propose a deep reinforcement learning
framework, named as DRESS (Deep REinforcement learning for Search Story rec-
ommendation) with (i) a combination of both imitation learning and reinforcement
learning, as well as (ii) a combination of both model-based and model-free rein-
forcement learning. The imitation learning procedure fits a policy to offline data,
so that on one hand the stochastic logging policy of offline data is estimated. This
imitated policy works as several roles of the architecture to keep the learned policy
close to the logging one, as required by the stability property. A dynamic model
is trained by offline data to infer user behavior pattern (i.e., the environment) and
is applied as the virtual environment for further controller learning besides the
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direct use of offline training data. The dynamic model makes the method more
data effective by extrapolating offline data. With the help of imitated policy and
dynamic model, we propose a RL learning strategy as safe learning with offline
data, augmented by online learning with a dynamic model to achieve both effective
data usage and stability.

The main contribution of this work can be summarized as follows:

Novel Problem. We study an emerging search story recommendation problem
and develop a solution based on deep reinforcement learning framework,
addressing the challenges that originate from its cross-channel and long-term
property.

Sound Methodology. We propose a framework combining model-free and model-
based reinforcement learning, as well as imitation learning and reinforcement
learning to achieve both effective usage of offline data and stability.

Practical Solution. Experiments on real-life data sets from JD.com have empiri-
cally demonstrated the effectiveness of our proposed solution.

4.2 Related Works
In this session, we briefly review two topics that are relevant to our work, namely
reinforcement learning and recommendation/ranking.

4.2.1 Reinforcement Learning

In the general reinforcement learning framework, an agent sequentially interacts
with the environment and learns to achieve the best return, which is in the form
of accumulated immediate rewards. In the partially observable Markov decision
process (POMDP) model, at each time step t, when the agent has the observation of
the environment ot, an action at is taken to obtain a reward rt from the environment.
As the environment is partially observable, the state st of the environment at time
t can only be inferred from the whole history up to time t, which can be denoted
as st = δ(o1, a1, r1, ..., ot−1, at−1, rt−1, ot). The goal of the reinforcement learning
problem is to learn an optimal policy, a mapping from state s to action a, to
maximize the expected accumulated long term reward.
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Deep reinforcement learning has achieved remarkable success in various tasks
including but not limited to game playing [74, 75], search and recommendation [76,
77], robotics and autonomous vehicles [78,79], online advertising [80,81], several
NLP tasks [82, 83], and database management systems [84–86]. We refer readers to
surveys [87,88] for more details.

4.2.2 Reinforcement Learning in Recommendation and Ranking

Conventional works on recommendation focus on one round static optimization
of the recommendation model. To better incorporate real-time user’s feedback,
several contextual bandit based ranking/recommendation approaches [89–91] were
proposed to update the selection strategy based on user-click feedback to maximize
total user clicks.

However, a major assumption of bandit approaches is the ineffectiveness of
action (i.e., choice of arms in bandit) on the environment state transitions, which
fails in personalized search story recommendation scenario, where the environment
state or users’ preference and intent here will be affected by the recommended
search story. Hence we turn to reinforcement learning (RL) framework which can
take into account the long-term effect of current actions.

There are some pioneering works applying RL to different tasks in recommen-
dation and ranking, such as cross-channel recommendation [67], personalized news
recommendation [77], impression allocation of advertisements [92], and learn-to-
rank for search sessions [93]. Their motivations to use RL are all based on the
long-term effect of current actions in the corresponding problems. For example,
in personalized news recommendation, the current recommended piece may shape
users’ interests so that it can affect later recommendation results [77]. Further
works consider variants of the settings of the recommendation problem, such as
pairwise [94] and page-wise [95], which are not applicable to our problem.

There are also recent works exploring learning from offline data. The off-policy
correction [68] explores the combination of imitation learning and reinforcement
learning for recommender system. However, the imitation is only used in estimating
the stochastic logging policy, and no model-based learning is used to improve data
effectiveness. The user engagement recommender system [69] is learnt by a model-
based method. However the environment model only considers reward-related
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feedback, such as users’ clicks or orders of items [93], while the environment model
in our problem includes state transition and other feedback predictions due to its
cross-nature property. No existing works in RL in recommendation and ranking
considers stability and its trade-off with data effectiveness.

4.3 Problem Definition

4.3.1 Preliminary

For ease of presentation, we first introduce the list of notations and basic concepts
used through the entire work. The notations are summarized in Table. 4.1. Specifi-
cally, we use lower case symbols u, q, d, p to represent a single user, query, story
item, and an item from another channel (e.g., the product item), respectively. Upper
case symbols U , Q, D, P are used to represent a set of users, queries, story items,
and product items respectively. Let f denote the search story recommendation
function that maps a context c to a selected story d ∈ D. The context c can be
a specific query q for general search or a specific user u for recommendation or a
single user u plus a single query q for personalized search. With the above notations,
we define the concept of search session and personalized search episode as follows.

Definition 4.1 (Search Session). A search session is a series of feedback I (e.g.,
click, order, page view) by the user u at time t towards the returned page with a
search story d addressing a given query q. Formally, we can use a tuple e =< t, u,
q, d, I > to denote a search session.

Definition 4.2 (Search Episode). A search episode E is a temporal sequence of
search sessions by the user u, which is denoted as E = (e1, · · · , et, · · · , eT ). We
add a subscript to E (e.g., Eu) to denote a search episode of a specific user u.

4.3.2 Problem Formulation

As introduced earlier, in this work, we focus on reinforcement learning for person-
alized search story recommendation. Specifically, we aim to find a strategy that
updates the search story item recommendation function of a search engine along
search episodes to achieve the best reward for each user.
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u(U) user (set) DLog logging data
q(Q) query (set) DRL imagination generated data
d(D) story (set) MT transition model
p(P ) product item (set) MR reward model
t(T ) time step (episode length) h user’s hidden feature
yd story click MS state module
yp product click Vϑ value function (critic network)
yrp feature of product clicked πΘ policy (actor network)
I user feedback (yd, yp, yrp) π0

Θ imitated policy
e search session b logging policy of DLog
E search episode γ discount factor
ot observation w weights of loss terms
at action ε clipping factor
st state H horizon of TWIS
rt reward or reward function
RT cumulative reward

Table 4.1: Notations summary

When putting the personalized search story recommendation into the general
reinforcement learning framework, the corresponding observation ot, the action at,
the state st, the transition T, the reward rt are defined as:

Observation ot is the user-dependent and query-dependent feature x represented
as x(u, q, t) or in short xt.

Action at is the selection of the search story d ∈ D.

State st is the combination of users search episode up to time t, i.e., the history
E1: t−1 = (e1, ..., eτ , ..., et−1), and the observation ot.

Transition T is the state transition function dependent on at, st+1 = T(st, at).

Reward rt(st, at) can be quantified as the number of clicks, the number of orders,
or gross merchandise volume received from users when users are in state st
and search story recommender performs action at. In this work, we set reward
as the binary indicator yp of whether a user clicks any products in the search
session et.

Therefore, in this work, we aim to solve the following problem:
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Problem 4.1. Given the entire search episode of a user Eu, we aim to sequentially
refine the action towards each search session eu based on observed feature space X
and a policy π(a|s) as a distribution of actions conditioned on states. Specifically,
the objective is to find the best policy to maximize the estimated cumulative rewards.
That is:

arg max
π

E[RT | s1, π]

subject to RT =
T∑
τ=1

γτrτ (sτ , aτ ),
(4.1)

where RT is the discounted cumulative rewards, γ ∈ [0, 1] is the discount factor,
and E[X] denotes the expectation of X.

4.4 Deep Reinforcement Learning for Search Story
Recommendation
In this section, we give an overview of our deep reinforcement learning framework for
personalized search story recommendation, referred to as DRESS. Given only offline
training data, we propose to combine both model-based augmentation and imitation
learning with the conventional reinforcement learning. Model-based reinforcement
learning requires much less training data compared with model-free reinforcement
learning. On the other hand, imitation learning estimates the logging policy (that
leads to the offline data) from the offline data, which is both the initialization of
the actor network and a critical component in safe policy learning algorithm, which
ensures stability of the learned new policy.

The approach is outlined in Algorithm 4.1. Randomly sampled logging search
session data are collected and added to dataset DLog, which is first used to train
the dynamic model Mθ to fit the environment (user behaviors), as proposed in
Section 4.5 (Line 1). Search story recommendation controller is built upon the
Actor-Critic framework [83], which is parametrized as πΘ and Vϑ (Line 2). Next,
instead of directly performing reinforcement learning with environment, an initial
policy was learned from log data DLog with the controller imitation learning (Line
3). We thus further improve the initial policy with a standard proximal policy
gradient approach [96] from the logging data DLog (Line 4), where the imitated
policy is used as the logging policy since it is an estimate of the logging policy. The
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proximal policy gradient approach and the imitated initial policy, both enabled by
the imitation learning, together ensure that the policy learned is not too far from
the logging policy that is currently used in JD.com.

However, the policy learned only directly from the offline data DLog using
proximal policy gradient may not be enough for performance improvement in terms
of the comparison against the baseline (logging) policy on cumulative rewards,
because it is restricted to be close to the estimated logging policy. Therefore it
is ideal to apply the learned policy to the environment, obtain on-policy logging
data, and iteratively improve the policy. In our framework, our “on-policy” data
are generated by the interaction between the dynamic model Mθ and our search
story recommendation controller πΘ. The process is called imagination. The
dynamic model serves as a virtual environment that interacts with our search story
recommendation controller to alleviate the challenge of using only offline data. We
thus repeatedly perform the following procedure to learn a better policy: 1) perform
imagination to gather new session data and add them to a separate dataset DRL;
2) perform controller reinforcement learning to improve the recommendation policy
from DRL (Lines 5 – 8).

Algorithm 4.1 DRL for Search Story Recommendation

Input: Logging Data DLog
Output: The search story recommender
1: Mθ = Dynamic_Model_Training(DLog) (Section 4.5)
2: Initialize the critic network Vϑ, actor network πΘ
// imitation learning

3: π0
Θ = Controller_Imitation(DLog, MT

θ ) (Section 4.7.1)
// one step reinforcement learning on DLog

4: πΘ, Vϑ = Controller_Learning(DLog, Vϑ, π0
Θ)

(Algorithm 4.2)
// reinforcement learning on DRL (Section 4.6)

5: repeat
6: DRL = Imagine(Mθ, πΘ) (Section 4.7.3)
7: πΘ, Vϑ = Controller_Learning(DRL, Vϑ, πΘ)

(Algorithm 4.2)
8: return Mθ, Vϑ, πΘ
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4.5 Dynamic Model

4.5.1 Illustrative Overview

Figure 4.2: The illustrative view of neural network dynamic function.

In order to obtain effective use of offline data, we use a dynamic model to
mimic the environment, i.e., the user behavior. In search story recommendation
problem, user behaviors include various feedbacks, such as click on search story,
click on products, and which products to click and next queries given user history.
Compared with conventional environment model for recommender system [69], here
only click on products is directly related to the reward function. The other two
feedbacks are modeled in order to help the reward function learn the correlation
between search story and products, as required by the cross-channel property of
the problem. For example, without the knowledge of whether a user clicks a search
story, we cannot accurately predict its influence on her future click on products.
Moreover, unlike common recommender systems, here user behaviors also include
user query as a part of the observation at each time step. Hence the dynamic model
should predict next observation in addition to various feedbacks.

We parameterize the dynamic modelMθ as a neural network function and thus θ
represents the weights of neural networks. As illustrated in Figure 4.2, our dynamic
model consists of two units: a reward model MR and a transition model MT . The
transition model MT updates the user’s hidden feature hi to hi+1 and predicts the
next query qi+1, based on the query qi, the search story di, the feedback fi, and
user’s hidden feature hi as inputs. The user’s hidden feature hi is the hidden state
of recurrently applying MT to the user search sessions until timestamp i and the
initial user’s hidden feature h0 is determined by the user profile u.

The reward model can be intuitively interpreted as a click-through prediction
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model (CTR model). The inputs are the user’s hidden feature hi, the query qi, the
product item pij , and the search story di, whereas the output is the reward r̂i. The
user state si is calculated by the state module MS as the concatenation of hi and
qi, representing the user intent. Finally, si is combined with di as inputs to the
core submodule to predict the reward r̂i.

4.5.2 Transition Model

We outline the detailed architecture of transition model on the left side of Figure 4.3.

4.5.2.1 Featurization

The hidden feature h0 is represented as a user vector constructed from both user’s
long-term profile and real-time profile. Regarding the user search session ei, as
defined in Definition 4.1, the user search session ei consists of the query qi, the
story d, and the feedback I. For each query, as shown in Figure 4.3, we represent
it as an aggregated vector of its token embeddings (yellow boxes). For each story,
we first represent it as raw tokens plus dense human crafted features. The raw
tokens were obtained from both the title/description of story itself as well as those
of product items within the story d. The raw tokens were fed into the embedding
layer (shared with query embedding) and transformed into an aggregated vector of
token embeddings (red boxes). The aggregated embedding vector (red box) was
concatenated with dense vectors (pink box) as the final representation of the story
d.

The feedback I is represented as the concatenation of two one-hot encoding
session-level search story/product item engagement binary indicator vectors (green
boxes) and the aggregated vector of token embeddings from user engaged product
items (light blue boxes).

4.5.2.2 Layers of Model

The transition model is empowered with a traditional encoding-decoding architec-
ture using the gated recurrent unit (GRU). The inputs are the concatenation of
feature vectors of story, query and feedbacks as well as the hidden state hi. The
output is the feature representation of predicted next query qi+1.
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Figure 4.3: The architecture of implemented RNN dynamic model. Colors are
used to distinguish different types of objects. Components which are connected by
dotted line denote shared module across transition model and reward model (best
viewed in color).

4.5.2.3 Loss Functions

We simply use the mean square error MSE between the predicted feature vector of
query and the ground truth feature vector of query as the loss function for the
transition model.

LT = MSE(q̂i+1, qi+1), (4.2)

where MSE(ŷ, y) = ||ŷ − y||22.

4.5.3 Reward Model

The architecture of reward model is outlined on the right side of Figure 4.3.

4.5.3.1 Featurization

The featurization of search story d is the same as that in the transition model.
For the product item pij, similar to story, we represent it as an aggregated vector
of token embeddings (orange box). The user intent si (the dark blue box), was
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featurized as a hidden representation, which is learned by the state submodule
Ms. Ms takes the input of hidden history hi (shared with the transition model)
and observed query qi (same featurization as the transition model, yellow box) and
outputs the user state si.

4.5.3.2 Layers of Model

We use a multilayer perceptron (MLP) network, which takes the input of user,
search story, and product items, and predicts the feedback for search story and
product items. The output layer is formulated as a classification layer for search
story feedback prediction and a combination of classification and regression layer
for product item feedback prediction.

4.5.3.3 Loss function

We use the cross entropy loss (CE) for the classification layer and use the conditional
square error (CSE) for the regression layer. Specifically, assume that the ground
truth feedback label for search story and product item, and the ground truth
product representation, are yd/yp/yrp, respectively, and the predicted feedback
label for search story and product item and the product representation is ŷd/ŷp/ŷrp,
respectively, then, the loss function is defined as:

LD = CE(ŷd, yd),

LP = CE(ŷp, yp),

LPl = CSE(ŷrp, yrp|yp),

(4.3)

where the cross entropy loss CE is defined as: CE(ŷ, y) = −y log ŷ−(1−y) log(1− ŷ)
and the conditional square error CSE is defined as: CSE(ŷrp, yrp|yp) = yp||ŷrp−yrp||22.

4.5.4 Dynamic Model Training

Given the logging data Dlog, we thus train the dynamic model by optimizing the
following loss function:

LM = wTLT + wDLD + wPLP + wPlLPl (4.4)
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where w is the coefficient that is proportional to the contribution of each loss function.
For ease of presentation, we use (MR

θ ,M
T
θ ) = Dynamic_Model_Training(DLog) to

denote the procedure of training the dynamic model with the architecture shown
in Figure 4.3.

4.6 Controller Architecture

Figure 4.4: Network structure of reinforcement learning controller (best viewed in
color).

Our reinforcement learning controller is designed based on the actor-critic
architecture [83]. Specifically, the controller is a multi-head neural network, which
is used as the function approximator for choosing the best story from a story
embedding pool. Figure 4.4 illustrates our network structure of reinforcement
learning controller, which consists of the state-value head (i.e., critic network) and
policy head (i.e., actor network) with the shared input of state representation, the
user hidden feature hi from the transition model MT . The details are presented as
follows.
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4.6.1 Critic Network

As shown in Figure 4.4, the value network is jointly learned with the policy network,
where the input is the user hidden feature ht from the transition model MT ,
representing the state st, and the output is the Vπ value Vπ(st) of state st under
policy π. Without ambiguity, we use V, omitting the policy subscription. Our
value network uses a neural network to learn the value function V with parameter ϑ.
Specifically, the ϑ is updated by the gradient descent optimizer with the following
loss function:

LV
ϑ(πΘ) = MSE(Vϑ(st),Vtarget(st))

Vtarget(st) = r(st, at) + γV(st+1)
(4.5)

The updated formula of the parameter ϑ with regard to Equation 4.5 is the
stochastic version of the Bellman equation.

4.6.2 Actor Network

The actor network takes the state representation vector as input. Through one
fully-connected (FC) layer, it is mapped to a selection vector of the dimension of
story features. The stories (actions), are scored as the inner product of the selection
vector and the story features. The action is selected by the probability as the scores
normalized by softmax function.

Our policy optimization is designed based on the state-of-the-art Proximal
Policy Optimization (PPO) controller [96]. It is a safe policy iteration method,
whose policy is guaranteed to be improved for each learning step as long as policy
update is small enough. This combined with the imitation learning (Section 4.7)
improve stability. Our policy π is again parametrized as a neural network function
with parameter Θ (in order to distinguish with the dynamic model parameter
θ). The architecture of our policy neural network, is shown on the right side of
Figure 4.4.

In the controller reinforcement learning procedure, it learns the policy π by
maximizing the accumulated state value of a policy averaging over the state
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distribution of a search session history:

π = arg max
Θ

LR(πΘ)

subject to LR(πΘ) =
∑
u

∑
e∈Eu

[Lclip
e (πΘ) + wHlH(πΘ(·|s))],

(4.6)

where Lclip
e = min{ πΘ(·|s)

πold(·|s)Â, clip( πΘ(·|s)
πold(·|s) , 1 − ε, 1 + ε)Â} and Â is the estimated

advantage function defined as Ât = rt + γV(st+1)− V(st). The advantage function
estimator here is equivalent with setting λ = 0 in the GAE estimate for advantage
used in the original PPO paper [96] as the experiment suggests no better performance
with a non-zero λ value. H is the entropy of the policy πΘ given state s, and wHl is
the weight.

4.7 Policy Learning
With the design of both dynamic model and controller network, we introduce
imitation learning, safe learning on offline data, and imagination learning to learn a
policy (i.e., tune the parameters of the actor network πΘ) that is effective in using
offline data and stable at the same time.

4.7.1 Imitation Learning

In our search recommendation task, and most other real-world decision-making
problems (e.g., finance and health-care), we have access to the logging data of the

Algorithm 4.2 Controller_Learning(D, Vϑ, πΘ)

Input: Data D, current actor network πΘ
and the critic network Vϑ

Output: The updated actor network πΘ and
critic network Vϑ

1: Repeat sampling a mini-batch bs of search sessions
from D

2: update the critic network Vϑ minimizing eq. 4.5
3: update the actor network πΘ minimizing eq. 4.6
4: return Vϑ, πΘ
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system being operated by its previous controller, but we do not have access to an
accurate simulator of the system. The goal of the imitation learning is thus to
learn to imitate the previous controller with a fixed policy π0. Specifically, we learn
the policy π0, parameterized by the actor network πΘ from DLog by optimizing the
likelihood of the actions chosen. Formally, imitation learning can be formulated as
the following optimization task:

π0 = arg min
Θ

LI(πΘ), (4.7)

where LI(πΘ) is the likelihood function of observing actions in DLog given the policy
πΘ, together with an entropy penalty,

LI = −
∑
u

∑
e∈Eu

log(πΘ(a|s))− wHIH(πΘ(·|s)), (4.8)

where wHI is the weight for the entropy regularizer H .
The imitated policy π0

Θ works as several roles. First, we use it as the initialization
of the actor network for further policy learning, which keeps the initial policy close
to the logging polity. Second, it is used as the logging policy, πold in Equation 4.6,
in the subsequent safe learning on offline data (Section 4.7.2). Finally, importance
sampling offline evaluation uses the imitated policy as an estimation of the logging
policy.

4.7.2 Safe Policy Learning on Offline data

We propose safe policy learning on offline data as the first step to improve the
policy. It follows Algorithm 4.2, with data as offline data D = DLog and the current
actor network as the imitated policy πΘ = π0

Θ in Controller_learning. Though
it looks similar to normal actor-critic learning, the use of imitated policy makes it
safe and unbiased on offline data.

First, the imitated policy π0 is used as πold in Equation 4.6. As the imitated pol-
icy is an estimation of the logging policy of DLog, we obtain an unbiased estimation
of the evaluation of the updated policy πΘ, πΘ(·|s)

πold(·|s)Â in Equation 4.6, from offline
data [68]. Second, with the current policy input πΘ = π0 in Controller_learning,
we initialize the actor network by the imitated policy π0

Θ. Combined with the above
choice of πold, such PPO learning (Equation 4.6) ensures improvement with limited
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policy difference [96]. This distinguishes our method as safe policy learning from
off-policy correction [68].

4.7.3 Imagination Learning

It is not effective in using offline data that only model-free reinforcement learning
method is applied on the data, especially the previous safe policy learning (Sec-
tion 4.7.2) is only one iteration of the PPO algorithm [96]. The goal of controller
imagination is thus to use the trained dynamic model to further improve the actor
network.

Specifically, we use randomly selected sessions in DLog as starting sessions, from
each of which, the dynamic model (MR

θ , MT
θ ) and the current actor network are

applied to rollout Timg fictional search sessions, stored in DRL. The imagined data
DRL is then used in the controller reinforcement learning (Section 4.6) to further
tune the actor network. Generally, it is similar to the original PPO controller
learning [96], except that the real environment is replaced by the dynamic model
here.

The imagination learning uses the learned dynamic model to extrapolate offline
data to updated policy. Hence it uses offline data more effectively. However, with
the selection bias caused by the difference between the updated policy and the
logging policy, in addition to the learning error of the dynamic model, we should
limit imagination learning considering the trade-off between data effectiveness and
stability.

4.8 Experimental Validation

4.8.1 Experimental Setup

4.8.1.1 Dataset

We evaluate our methods on a dataset collected between Apr 2018 and Jul 2018
from JD.com [69]. We sampled all search sessions that are related to a category
“women dress" and filtered out search episodes with only a few sessions or a huge
number of sessions. Our dataset is carefully pre-processed and anonymized. The
distributions of the episode length and the number of search sessions in which each
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Figure 4.5: Histograms of (a) episode length and (b) story impression frequency.
Both follow a power-law distribution.

# users # stories # products # sessions
122 ,886 2 ,185 304 ,780 1 ,842 ,879

Table 4.2: Statistics of dataset.

search story appears are shown in Fig. 4.5a and 4.5b. Other statistics of our dataset
is summarized in Table 4.2. We randomly divide the dataset into 5 folds by users.
Hence each fold of the dataset contains equal number of complete search episodes.
We conducted 5-fold cross-validation experiments with one random fold as testing
data for each experiment.

The processed feature dimensions are summarized as follows. Each query
is represented as an aggregation of 200 dimensional word embedding vectors of
segmented query words. Each product is represented as an aggregation of 200
dimensional word embedding vectors of words from product titles. For each story,
it is featured as a concatenation of 200 dimensional word embedding vectors of
words from story titles, 200 dimensional word embedding vectors of title words
from the products embedded within a story, and 13 human crafted features of a
story.

4.8.1.2 Baseline Methods

We compare the proposed method DRESS as described in Algorithm 4.1 with the
following baseline methods:
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1. ORIGIN: This is the state-of-the-art implementation of a search story recom-
mendation, that results in the offline data, currently being used by JD.com.
It is parameterized as the imitated policy π0.

2. DNNC (Deep Neural Network Classifier): Without considering the cross-
channel effect, this method is trained to recommend a search story that is
likely to be clicked, given the story feedback data. To be a fair comparison,
DNNC uses the architecture with the actor network and is initialized with
the imitation policy π0

Θ, same as DRESS.

3. DNNC-p: Deep Neural Network Classifier for Product click. It is a supervised
learning method similar to DNNC baseline, but with target replaced with
product click, which considers the cross-channel effect; it is similar to DRESS-
m in terms of myopic prediction, but different in optimization.

4. DQN [74]: Deep Q network is shown to be successful in many different
applications [77,97,98]. We implemented the double q-learning version [99].
As implemented in FeedRec [69], it learns by interacting the dynamic model
same as DRESS, because DQN is an online learning method.

5. SRL [71]: Supervised reinforcement learning combines imitation learning
and actor-critic policy learning. It is a state-of-the-art method in dynamic
treatment recommendation, which emphasizes stability due to the high risk
of the problem. We use stochastic policy gradient instead of deterministic
policy gradient in accordance with the discrete action space here.

6. OPC [68]: Off-policy correction method uses imitated policy to reweight the
sampling from offline data. However, the actor network is not initialized by
the imitated policy and there is not model-based imagination learning.

7. DPG-FBE [93]: DPG-FBE is a state-of-the-art method that does imagination
learning with an environment model to learn from offline data. We use stochas-
tic policy gradient instead of deterministic policy gradient in accordance with
the discrete action space here.

8. DRESS-m: This is the myopic version of DRESS that only considers immediate
short-term reward, which is implemented by setting γ = 0.
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9. DRESS-s: This is the simplified version of DRESS with the controller imagi-
nation module (Section.4.7.3) removed.

10. DRESS: The full version of the method proposed in this work.

4.8.1.3 Simulation Study

It is risky to evaluate the learned policy on a real-life system. Following recent
works [68,93], we use an environment simulator to evaluate different methods. The
environment simulator is the same with the dynamic model in architecture but is
trained by datasets different from method learning. We use CTRsimulate, the click
through rate in simulation experiment as evaluation metric.

4.8.1.4 Evaluation Metric

The goal of a search story recommendation is to facilitate users during the search of
products. Therefore, we use search session based user feedback on products as the
main performance measure. In particular, we use the percentage of search sessions
in which users have clicked a product, CTR (Click Through Rate):

CTR =
∑
e∈E clke
|E|

(4.9)

where clke is a binary indicator whether a user clicked a product in a search session
e, which is the same as the reward re in the RL framework. Similarly, we also use
CVR (Conversion Rate):

CVR =
∑
e∈E orde
|E|

(4.10)

where orde is a binary indicator whether a user ordered a product in a search
session e.

It is risky to evaluate the learned policy on a real-life system. Therefore, we use
a statistical estimate method, Truncated Weighted Importance Sampling (TWIS),
similar to NCIS [100] used in [69], to estimate the performance from the offline test
data as follows:

R̂(π) =
∑
e

∑Te
t=Te−H rt

∏Te
i=Te−H

πi
bi∑

e

∑Te
t=Te−H

∏Te
i=Te−H

πi
bi

(4.11)

where e is an episode, H is the horizon for the latest sessions to use per episode,
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rt can be clkt (ordt) so that R̂(π) is the estimate of CTR (CV R, respectively),
πi = π(ai|si) is the probability of the observed action given by the evaluated policy
π and bi = b(ai|si) by the logging policy. With only offline data, the imitated policy
π0

Θ is used as the logging policy. This evaluation metric is invariant toward the
arbitrary constant scale of bi and of πi. The truncated setting encourages the equal
importance of users with the episodes of different lengths. We use horizon H = 15
in this work.

The use of the imitated policy here can be justified from two aspects. On one
hand, the imitated policy π0 is an estimation of the logging policy of the offline
data. Therefore TWIS provides an unbiased estimation of the performance of the
learned policy π. On the other hand, TWIS is a valuable performance measure
even if the imitated policy π0 is not a perfect estimation of the logging policy.
Following the idea of importance sampling, R̂(π) is the estimate of CTR (CVR)
of the weighted policy πw = b∗ · π

b
, where b∗ is the true logging policy, which is

valid when π and b are close enough. When the true logging policy b∗ is different
from b, TWIS is an evaluation of the policy factor π

b
to be applied to the existing

policy b∗. In an application, the policy ratio π
b
can play the role as reinforcement

learning complements b∗ and validly evaluated by R̂(π). In this sense, the imitated
policy π0 maximizes the denominator b so that minimizes the variance caused by
the policy factor π

b
.

Both interpretations require small difference between the learned policy π and
the imitated policy π0 to bound the variance of TWIS [70]. Hence we only use
TWIS to evaluate methods with policy close to the imitated policy.

4.8.1.5 Hyperparameters

Most hyperparameters are tuned using the validation set for each experiment.
For reproducibility of our experimental results, values of some hyperparameters
are summarized in Table. 4.3. More implementation details can be found in
Appendix. 4.10

4.8.2 Empirical Results

In this section, we conduct different groups of experiments to empirically validate
the proposed approaches. Specifically, we aim to answer the following questions:
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hyperparameters setting
discount factor γ (Eq.4.1) 0.7

transition loss weight wT (Eq.4.4) 1.0
story loss weight wD (Eq.4.4) 1.0

product CE loss weight wP (Eq.4.4) 1.0
product CSE loss weight wPl (Eq.4.4) 1.0

Entropy weight for controller learning wHl (Eq.4.6) 0.01
Entropy weight for controller imitation wHI (Eq.4.8) 0.0001

clipping factor ε (Eq.4.6) 0.2

Table 4.3: Hyperparameters.

method CTRsimulate

DNNC 0.579
DNNC-p 0.585
DQN 0.570
SRL 0.590
OPC 0.560

DPG-FBE 0.586
DRESS-m 0.565
DRESS-s 0.607
DRESS 0.614

Table 4.4: Performance comparison in simulation study

(1) Compared with competing methods, how does the proposed DRESS effectively
use offline data evaluated by the simulator study? (2) How does the proposed
DRESS ensure stability compared with other RL methods? (3) Among methods
whose policy is close to the imitated policy, how does DRESS perform in terms of
the unbiased estimation TWIS?

Question 4.1. Effectiveness: Compared with competing methods, how does
the proposed DRESS effectively use offline data evaluated by the simulator study?

We report the performance of different methods in simulation study in Table 4.4.
All results are the average of around 700,000 rollout episodes of length 50 starting
from real search sessions. We observe that the proposed DRESS performs best
compared with competing methods and its variants. More specifically, DNNC
performs worse than DRESS, showing the advantage of considering the cross-
channel effect. On the other hand, the results that DRESS-m is worse than DRESS
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showing the importance of the long-term effect. These results justifies the proposal
of an RL framework for the problem.

However, RL methods are not always better. The performance of DQN and
OPC is even worse than DNNC. DNNC uses imitated policy as initialization for
the actor network and its learning objective, story clicks, is similar to that of the
logging policy. Hence it is close to the logging policy. On the other hand, DQN
learns by interacting with the dynamic model, and OPC is not initialized with the
imitated policy. Their learned policies are far from the logging policy. Without
stability, the performance of learning from offline data cannot be guaranteed. The
comparison between OPC and DRESS-s supports the superiority of the proposed
safe policy learning on offline data.

Comparing DRESS and its variant DRESS-s or SRL, we observe the helpfulness
in data effectiveness from the imagination learning with the dynamic model. The
reason why SRL performs worse than DRESS-s will be provided after we show the
stability results.

Question 4.2. Stability: How does the proposed DRESS ensure stability com-
pared with other RL methods?

policy ratio DTV DKL
DNNC 0.038 0.018 0.002
DNNC-p 0.025 0.012 0.0008
unif 6.044 0.967 5.959
DQN 6.024 0.967 5.947
SRL 0.008 0.004 8e-5
OPC 7.885 0.979 7.886

DPG-FBE 6.144 0.969 6.057
DRESS-m 0.058 0.028 0.003
DRESS-s 0.049 0.024 0.002
DRESS 0.083 0.041 0.007

Table 4.5: Policy difference compared with the imitation policy.

We check the stability of the proposed approach and other RL methods by the
difference toward the imitated policy. The imitation policy is an estimate of the
logging policy currently in production that generates offline data. We expect the
learned policy to be close to the logging policy to ensure the stability of an online
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system. We use three measures of policy distribution difference. For session i,

1. absolute log probability ratio:

ratioi =
∣∣∣∣∣log

(
π(ai|si)
b(ai|si)

)∣∣∣∣∣ ;
2. total variation divergence [101]:

DTV(b||π)i = 1
2
∑
a′
|π(a′|si)− b(a′|si)|

3. KL-divergence:

DKL(b||π)i =
∑
a′
b(a′|si) log

(
b(a′|si)
π(a′|si)

)
.

We calculate the averages of each difference measure over sessions in test data.
Results are shown in Table 4.5. First, we observe a clear gap between two

groups of methods: large policy difference, unif , DQN, OPC and DPG-FBE,
and small policy difference, SRL, DRESS-m, DRESS-s and DRESS. We find that
the policy difference of most state-of-the-art RL methods is comparable with the
uniform unif policy. The reason is that those methods do not consider stability,
can result in learned policy very far from the logging policy of the offline data. On
the other hand, SRL shows the smallest policy difference in all measures. This is
as expected because SRL further includes imitation loss into the actor-critic loss
function comparing to DRESS where the actor network is only initialized by the
imitation learning. However, stability is not the sole objective of the solution. The
strong stability penalty in SRL may limit its effectiveness in policy improvement.
In order to better show the trade-off between data effectiveness and stability, we
use TWIS to get unbiased evaluation of the performance of methods in the small
policy difference group.

Question 4.3. TWIS evaluation: Among methods whose policy is close to
the imitated policy, how does DRESS perform in terms of the unbiased estimation
TWIS?
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method improvement CTR% improvement CV R%
DNNC 1.380 -0.437
DNNC-p 3.295 0.909
SRL 0.354 0.671

DRESS-m 3.344* 15.463
DRESS-s 3.194* 3.507
DRESS 3.952* 19.775

Table 4.6: CTR and CVR: shown as the improvement percentage over ORIGIN. ∗
indicates statistical significance (p-value < 0.05)

We show TWIS evaluation of methods with small policy difference to the imitated
policy in Table 4.6 as improvement percentage from the logging policy, ORIGIN1.
We see that only DRESS and its two variants obtain significant improvement
over the logging policy in CTR. Both supervised learning methods DNNC and
DNNC-p cannot obtain significant improvement, which shows the necessity of using
reinforcement learning framework. Further, DNNC-p shows better performance
than DNNC, which showcases the importance of the cross-channel effect. Large
variance is observed in CVR estimation due to the small number of orders compared
with clicks. Comparing SRL and DRESS, taking into account the policy difference
in Table 4.5, we see that the emphasis on stability of SRL prevents it from obtaining
significant policy improvement. On the other hand, comparing DRESS-s and DRESS
in both Table 4.5 and Table 4.6, we see DRESS-s is more stable but achieve less
policy improvement, while DRESS trades some stability for more performance gain
by adding imagination learning to extrapolate the offline data. The stability and
data effectiveness trade-off can be tuned by controlling the extent of imagination
learning.

4.9 Conclusion
Deep reinforcement learning has been successfully used as a powerful method
to capture a wide variety of non-trivial user behavior on online platforms (e.g.,
news feed recommendation, e-commerce search). In this work, following these
successes, we applied the reinforcement learning framework to the challenging
problem of cross-channel search story recommendation. Facing the offline data and

1We cannot provide the absolute values due to the information protection rule of JD.com
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stability challenges, we proposed a unified deep learning architecture employing
both imitation learning and reinforcement learning, model-based and model-free.
Comprehensive empirical validation indicates that our proposed framework DRESS
is effective in improving a conversion rate on real-world data sets from JD.com.

4.10 Implementation Details

4.10.1 Data Processing

The input features for both the dynamic model and the controller involve user
histories [(qi, di, fi) : ∀i ∈ [t−Lh, t− 1]] and the input of the target search sessions.
The maximal history length is set to Lh = 20, around the middle number of the
lengths of search episodes (Figure. 4.5a), which means that we exclude the influence
of a search story from a search session more than Lh sessions earlier on users’
current behavior.

The target search sessions are a single session for Dynamic_ Model_Training and
Controller_Imitation, but two subsequent sessions for Controller_Learning.
In order to use the data more effectively and reduce the influence of users with
short episodes, we sample target search sessions uniformly in terms of all search
sessions rather than one from each user.

4.10.2 Model Implementation

We randomly divide the dataset into 5 folds by users. Within each 4 folds of training
data, half-fold is used as validation. The hyperparameters are tuned separately by
learning stages.

The dynamic model is tuned by the four losses in Equation. 4.4. The size of the
GRU hidden layers (hi in Figure. 4.2) is 128. The sizes of the decoding hidden layers
(Figure. 4.3) are 64 for both next query prediction q̂i+1 (Equation. 4.2) and the
feedbacks for product items, ŷp and ŷrp (Equation. 4.3), and 128 for the feedback
for stories ŷd (Equation. 4.3). The learning rate and batch size are 1e− 4 and 512,
respectively.

The Controller_Imitation is tuned by the log likelihood loss in the imitation
loss (Equation. 4.8). The size of the FC layer of the actor network (Figure. 4.4)
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is 128. The learning rate and batch size are 1e − 4 and 512, respectively. Note
that the same actor network will be used in Controller_Learning. We use
Controller_Imitation to select the hyperparameter because of the higher stability
of supervised learning.

The Controller_Learning in safe policy learning on offline data and imagi-
nation learning is tuned by the TWIS estimated CTR (Equation. 4.11). The size
of the FC layer of the critic network (Figure. 4.4) is 64. We use a cloned critic
network [74] to improve the stability of the Bellman equation (Equation. 4.5). The
update delay is 5 mini-batches. The batch size is set to 64.

In safe policy learning on offline data, the learning rates for the critic network
and the actor network are both 1e− 6 in safe policy learning on offline data. The
critic network is fit first for 2 epochs, because the logging policy for the training
data does not change in this stage. After that the actor network trained for 1
epoch.

In imagination learning, the learning rate is 1e− 7 for the critic network and
1e− 5 for the actor network, respectively. In each iteration of imagination learning
(Step 6 and 7 in Algorithm. 4.1), queries of 0.005 portion of search sessions in
DLog, together with their history sessions, are sampled as starting points of the
imagination. In order to control the bias accumulation, the imagination is limited
to 2 sessions since the starting sessions. The critic network and actor network are
updated for 1 epoch on the DRL from the imagination. The imagination learning is
repeated for 10 iterations.

The optimization is done with the Adam optimizer [102]. The tanh function is
used for non-linear activation.
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Chapter 5 |
Conclusions and Future Work:
What Users Can Do?

This chapter closes this work by asking, what users can do to combat the influence
of systems powered by machine learning methods unconsciously. More specifically,
the interplay between recommender system and users is used as the playground.

5.1 Conclusions and Limitations
In previous chapters, different perspectives about user behavior is studied. As an
example of the representation of user behavior, the emotional reactions of users
towards online content are studied within the label ranking framework, in Chap. 2.
In the meanwhile, the imbalance challenge found in real world data calls for new
designs for label ranking methods. As an instance of the factors that influence
user behavior, the effect of news channels on emotional reactions of users towards
online content is studied within the multitask learning framework, in Chap. 3. The
observation in the real world problem inspires new multitask learning architecture.
Finally, the recommendation of search story to influence users’ search behavior
on e-commerce websites is studied as an example to show how to influence user
behavior, in Chap. 4. A reinforcement learning framework is built in accordance
with the two challenges, offline data and stability.

However, all the above studies assume user models that do not change when
they interact with online systems (e.g., recommender system). For example, in
Chap. 2, the users’ emotional reaction patterns given the content they read are
fixed; in Chap. 3, the effect of news channels on users’ emotional reactions is fixed;
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and in Chap. 4, though it is claimed to influence user behavior, it is still assumed
that the influence of the search stories seen by users on their search behavior is not
changed. Such assumption is on one hand unrealistic in the long term when users
are influenced by some online systems, and on the other hand underestimating the
power of users in deciding their behaviors.

5.2 Where is the Influence
“Assuming we have a recommender system that constantly provides us
recommendations, the question arises whether that resembles a ‘Big
Brother’ who guides us. ... Will the result be a problem for society if
we train ourselves to constantly listen to recommendations?" – [103]

Many works of recommendation in machine learning will describe the role of a
recommendation system as helping users find their desired items based on their
previous behavior given a large item pool. I call this role the first principle of
recommendation.

However it is said, most works of recommendation in machine learning do not
respect this principle in their design. In conventional works, including recommen-
dation with only rating matrix, content-based recommendation and sequential
recommendation, the task is to predict future behavior of users. For example,
in sequential recommendation, a sequence of items a users clicked as input, it is
to predict future items the user will click. If users will fully follow their desires
to move, such prediction does follow the first principle. However users behavior
is shaped by the recommendation systems already because users can only access
items recommended by the system rather than the large item pool. It is shown
to result in sub-optimal user behavior [104]. Advanced recommendation works
using multi-armed bandits to correct the selection bias. However, they are only
applicable to cold-start problem.

5.3 Users’ Perspective
Almost all the works in recommendation take the view of recommendation system,
i.e., how to design a better recommendation system, while few take users’ perspective,
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i.e., what users can do to get better recommendation results. It is due to the
subjectivity of users, which makes such works often limited in user study [105, 106].

It is worth noticing that users are modeled either implicitly or explicitly in
recommendation works. The most popular, if not the only one, is the user model
where each user has an interest vector, and the interests of items to the user are
determined by the distance between the item embedding vector and the interest
vector. For example, with matrix factorization method [107], the input rating
matrix is factorized into a user matrix and an item matrix; with GRU4REC, a
sequential recommendation model, the user interest vector is the aggregation of
users’ previous interacted items by a RNN structure. More explicitly, methods
requiring online interactions with users, such as multi-armed bandit [108] and
reinforcement learning [68, 90] often involves a synthetic user model where user
interest vectors and item embedding vectors are randomly generated.

The strategy that users follow their interests honestly when interacting with
a recommendation system works well if the recommendation system is perfect
that can infer users’ true interests from the behavior data. However, it is hard in
practice, if not impossible, due to the selection bias above and also inference error
that is inevitable. Hence given an imperfect recommendation system, should users
still play the honest strategy described above? This defines the question “what
users can do".

5.4 Discussion
All studies in this work except this chapter are taken from the perspective of
systems that users interact with. For examples, how can a system better predict
users’ emotional reactions when they are represented as ranking of labels; how a
machine learning method can find from data the influence of news channels on users
emotional reactions besides post content using a multi-task learning framework; how
can a recommendation system influence users’ searching behavior by recommending
the best search stories? All the above assumed that the users’ behavior is fixed. On
the other hand, using recommendation problem as an example, the assumptions
of users can be over-simplified. Therefore, before applying more complicated and
larger models to systems, we may need a better understanding of users whose
benefits are the ultimate goal of using those systems.
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