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Abstract

Real data are “dirty.” Despite active research on integrity constraints enforcement
and data cleaning, real data in real database applications are still dirty. To make
matters worse, both diverse formats/usages of modern data and demands for large-
scale data handling make this problem even harder. In particular, to surmount
the challenges for which conventional solutions against this problem no longer
work, we focus on one type of problems known as the Entity Resolution (ER) –
the process of identifying and merging duplicate entities determined to represent
the same real-world object. Despite the fact that the problem has been studied
extensively, it is still not trivial to de-duplicate complex entities among a large
number of candidates.

In this thesis, we have studied three specialized types of ER problems: (1) the
Split Entity Resolution (SER) problem, in which instances of the same entity type
mistakenly appear under different name variants; (2) the Mixed Entity Resolution
(MER) problem, in which instances of different entities appear together for their
homonymous names; and (3) the Grouped Entity Resolution (GER) problem, in
which instances of entities do not carry any name or description by which ER
techniques can be utilized, and thus the contents of entities are exploited as a
group of elements. For each type of problems, we have developed a novel scalable
solution. Especially, for the GER problem, we have developed two graph theoretic
algorithms - one based on Quasi-Clique and the other based on Bipartite Matching,
and experimentally validate the superiority of the proposed solutions.
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Chapter 1
Introduction

Large-scale data repositories often suffer from duplicate entities whose represen-

tations are different, but yet refer to the same real world object. For instance,

in digital libraries (e.g., ACM [24], DBLP [7], CiteSeer [49], arXiv e-Print [2],

etc.), there may be various name variants of an author due to errors introduced

in data entry or errors from imperfect data collection softwares. Let us denote

that, among the duplicate entities, the single authoritative one as canonical en-

tity while the rest as variant entities or variants in short. Since the existence of

variant entities degrades the quality of the collection severely, it is important to de-

duplicate them. Such a problem is, in general, known as the Entity Resolution

(ER) problem. The ER problem frequently occurs in many applications and is

exacerbated especially when data are integrated from heterogeneous sources. Note

that the ER problem cannot be completely avoided since not all entities in data

collections carry an ID system such as digital object ID (DOI) [54].

The ER problem can be categorized into two distinct cases. In the split entity

case, an entity is recorded under various variants. Thus the goal of this case

is to detect all variant entities, and consolidate them. On the other hand, in

the mixed entity case, the contents of different entities are mixed in the same

pool. Therefore, the goal is to group different contents into different clusters. For

instance, in DBLP [7], there are at least four and at most eleven “Wei Wang”s.

Since all share the same name spelling, all of their citations are mixed together,

causing a confusion. Furthermore, in the grouped entity case, each entity has “a

list of tuples” associated with it. Examples include an author entity with a list of
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citations, a singer entity with song list, or an intermediate result by GROUP BY

SQL query. Thus, the goal is to resolve entities that contain “a group of elements”

in them.

1.1 Motivation

In order to demonstrate the need for a solution to the ER problem, let us present

the following real cases drawn from a wide variety of applications.

1. Figure 1.1 is a screen shot of the ACM Portal, which contains the list of

author names who have ever published an article in ACM-affiliated confer-

ences or journals. In particular, Figure 1.1 shows names whose last names

are either “Ullman” or “Ullmann”. Note that the name of the renowned

computer scientist, “Jeffrey D. Ullman” at Stanford university, appears as

several variants, incorrectly . For instance, “J. D. Ullman” in the list is in

fact the same person as “Jeffrey D. Ullman”, however they are treated as

different scholars.

2. Recently data integration is a promising research topic in the database com-

munity. To integrate data from multiple independent, heterogeneous data

sources, we need to resolve main challenging conflict. For instance, Figure 1.2

shows the screen-shot of different author name formats between DBLP and

ACM in Microsoft SQL Server. For example, “Clement T. Yu” (name1 field)

in DBLP and “C. T. Yu” (name2 field) in ACM by name abbreviation. They

have different name conventions.

3. In the real world, duplicates refering to the same entity occur due to (1)

typographical errors; (2) abbreviated, imcomplete, or missing information –

e.g., “New Jersey” and “NJ”, “Peter Norvig” and “P. Norvig”, “Very Large

Data Bases 2007” and “VLDB07”, “Western Digital 120GB 7200RPM” and

“WD 120GB 7200RPM”; (3) different formatting conventions – e.g., “Street”

and “St.”, “Mary Irwin” and “Irwin, Mary”; (4) homonym – e.g., “cost” and

“price”; (5) noise information – e.g., “1995” and “<year>1995</year>”,

“Artificial Intelligence – a Modern Approach” and “Artificial Intelligence: A
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8 variants 
under “Ullman”

2 variants
under “Ullmann”

Figure 1.1: Screen-shot of author index for “Ull*” in the ACM Portal. Note
that the citations of “Jeffrey D. Ullman” appear as eight variants under
“Ullman” and two variants under “Ullmann.”

Modern Approach”, “..., WWW” and “..., WWW 2006 (Best Paper Award)”;

and (6) combinations thereof. Figure 1.3 illustrates the multiple variants of

author names in ACM because of name abbreviations and typos. Similarly,

Figure 1.4 shows the real case in which an author name “Alon Y. Levy” was

replaced by a new name “Alon Y. Halevy” in DBLP.
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Figure 1.2: Screen-shot of different author name formats between DBLP [7]
and ACM [24] in MS SQL Server (e.g., “Clement T. Yu” (name1 field) in
DBLP and “C. T. Yu” (name2 field) in ACM).

4. The Split Entity Resolution (SER) problem is ubiquitous in many domains.

This problem also occurs in popular search engines. Figure 1.5 is drawn

from CiteSeer, where we tried to locate all citations about a book, “Artificial

Intelligence: A Modern Approach”, by “S. Russell” and “P. Norvig”. As

illustrated in Figure 1.5, at the time of the search, CiteSeer returns 23 dif-

ferent formats of citations of the same book, incorrectly thinking that they

are all different. Part of the problem is caused by the ambiguous names of

the authors. Similarly, Google Scholar returns redundant citations referring

to the same book.
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(a) Multiple variants of “Edward Chan” by name abbreviations.

 

(b) Multiple variants of “Claudio Gutierrez” by typos.

Figure 1.3: Multiple name variants in ACM [24].

5. Duplicate records exist in the bio-medical informatics domain. As illustrated

in Table 1.1, one sequence is from UniProt [67] and the other is from Bond [9].

Both databases are constructed to provide comprehensive information for

biological sequence. However, although two sequences from UniProt and

Bond are identical, they are slightly different as shown in the example.
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(a) Alon Y. Halevy (2001 - present) (b) Alon Y. Levy (by 2000)

Figure 1.4: An example of current name “Alon Y. Halevy” and old name
“Alon Y. Levy”.

(a) CiteSeer (b) Google Scholar

Figure 1.5: Screen-shot of citation search for “Russell and Norvig” in CiteSeer
(a) and Google Scholar (b).

6. Grouped-Entity Resolution is a specialized problem of the Entity Resolution

problem. Many entities contain “a group of elements” in them. We refer to

such an entity as the Grouped-Entity and the ER problem on grouped-entity

as Grouped-Entity Resolution (GER) problem. Figure 1.6 illustrates a typ-

ical example of the GER problem from DBLP. Although “Yinfeng Xu” and

“Yin-Feng Xu” are the same scholar in Computer Science and Engineering,

such two names are split due to an error of name contraction. Here, an en-
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Table 1.1: The redundant sequences in bio medical informatics.
UniProt Bond

Accession P38910 6324594
Title 10kDa heat shock protein, mitochondrial Hsp10p [Saccharomyces cerevisiae]

Synonyms HSP10, 10kDa chaperonin Hsp10p, Mitochondrial matrix co-chaperonin
that inhibits the ATPase activity of
Hsp60p, a mitochondrial chaperonin;

involved in protein folding and sorting in
the mitochondria; 10kD heat shock

protein with similarity to E. coli groES,
Mitochondrial matrix co-chaperonin that
inhibits the ATPase activity of Hsp60p, a

mitochondrial chaperonin; involved in
protein folding and sorting in the

mitochondria; 10 kD heat shock protein
with similarity to E. coli groES; Hsp10p

[Saccharomyces cerevisiae], HSP10,
CPN10

Source Saccharomyces cerevisiae (Baker’s yeast) Baker’s yeast
Sequence MSTLLKSAKSIVPLMDRVLV MSTLLKSAKSIVPLMDRVLV

QRIKAQAKTASGLYLPEKNV QRIKAQAKTASGLYLPEKNV
EKLNQAEVVAVGPGFTDANG EKLNQAEVVAVGPGFTDANG
NKVVPQVKVGDQVLIPQFGG NKVVPQVKVGDQVLIPQFGG

STIKLGNDDEVILFRDAEIL AKIAKD STIKLGNDDEVILFRDAEIL
AKIAKD

tity “Yinfeng Xu” has 6 citations and the other entity “Yin-Feng Xu” has

19 citations. In this case, each entity (i.e., “Yinfeng Xu” or “Yin-Feng Xu”)

includes a group of citations in it.

7. The next problematic example is an inverse case of both split entity and

group-entity examples. It is drawn from DBLP, where users can browse a

collection of articles grouped by author’s full name (i.e., author’s full name

acts as a primary key). In particular, Figure 1.7 is a screen-shot of a collec-

tion of articles by “Wei Wang”. However, there are at least four (possibly

up to eleven) active computer scientists with the same name spelling of “Wei

Wang.” Not surprisingly, their citations are all mixed here. Any biblio-

metric analysis using this data would be, needless to say, faulty. When we

manually checked this mixed entity cases in DBLP, we gathered many real

cases 1. “H. Cai”, “Wei Cai”, “John M. Carroll”, “Li Chen”, “Yu Chen”,

1We directly requested authors to verify if their citations are mixed with different scholars
with the same name spellings.
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(a) Yin Feng Xu (b) Yin-Feng Xu

Figure 1.6: An example of the Grouped-Entity problem.

“Hui Han”, “Youngjae Kim”, “Dongwon Lee”, “Chen Li”, “Jia Li”, “Jian

Li”, “Lin Li”, “Peng Liu”, “Wei Liu”, “Zhenyu Liu”, “Jiebo Lou”, “Murali

Mani”, “Prasenjit Mitra”, “Sanghyun Park”, “Hui Song”, “James Ze Wang”,

“Wei Wang”, “Yuan Xie”, “Wei Xu”, and “Bo Luo” are such authors. This

indicates that the mixed entity problem frequently occurs in Digital Libraries

(DLs).

8. The mixed entity problem does not occur only in digital libraries, such as

DBLP, ACM, BioMed, and so forth. Figure 1.8 illustrates a real case where

entities are mixed due to their name homonyms. There are at least 41 movies

with the title “Love” in Internet Movie Data Base (IMDB) [38].

9. The mixed entity problem is one of the main issues in Information Retrieval.

According to the U.S. Census Bureau, only 90,000 different names are shared

by 100 million people and about 30% of search engine queries include person

names. This indicates that the search results are a mixture of web pages

about different people with the same name spellings. Thus, ideal search en-

gines should cluster web pages by different people sharing the same name.

For example, Bekkerman et al. [4] introduced interesting examples, in which

“Tom Mitchell” is issued as a query to Google [27], 92 web pages are retrieved.

Among these 92 documents, there are 37 namesakes to “Tom Mitchell”. For

example, “Tom Mitchell” appears as musicians, executive managers, astrolo-

gist, a hacker, and a rabbi. A set of 32 entities are mixed since they all have
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Figure 1.7: Screen-shot of a collection of citations under author “Wei Wang”
in DBLP. Note that there are at least four distinct computer scientists with
the same name “Wei Wang.”

Figure 1.8: Screen-shot of mixed entities in IMDB.
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Figure 1.9: Three bus images and one historical remains image [48, 69].

the same name description of “Tom Mitchell”.

10. In the area of image information retrieval, effective solutions for the mixed

entity resolution problem are also required. In order to locate and download

an online copy of a particular image, one typically uses image search engines

with keywords. As illustrated in Figure 1.9, suppose that the local database

of an image search engine contains four images, three red bus images and one

historical remains image. When we want to find bus images, entity resolution

methods can cluster the entire set of images to similar categories and return

the correct category to us.

These real examples indicate that the Split Entity and Mixed Entity Resolution

problems frequently occurs in many applications, and entity resolution solutions

should be developed to handle these problems. In our context, we focus on “sci-

entific literature Digital Libraries (DLs)”.
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Table 1.2: The data size of modern digital libraries.

DL Domain Size (in M)
ISI/SCI General Sciences 25

CAS Chemistry 23
Medline/PubMed Life Science 12

CiteSeer General Sciences/Engineering 10
arXiv Physics/Math 0.3

SPIRED HEP Physics 0.5
DBLP CompSci 0.8
CSB CompSci 1.4

1.2 Contributions

In general, these ER problems prevail in the current bibliographic DLs (e.g.,

DBLP [7], CiteSeer [49], or e-Print arXiv [2], etc.). Note that these problems

have been exacerbated as the number and volume of DLs increase, posing signifi-

cant challenges to the management of large-scale DLs, as shown in Table 1.2. One

of the key challenges is to make the ER algorithms scalable and resilient in order

to cope with the rapid growth of the DLs while not degrading their accuracy. The

traditional approaches that rely on the syntactic similarity of name variants (e.g.,

measuring string edit-distance [14] between two name entities) will likely fail to

scale because, as the size of DLs increases, more numbers of common or similar

names will appear in DLs, making it increasingly difficult to distinguish them using

only their names.

To investigate these problems, in this thesis, we introduce a two-step frame-

work, where many alternative methods can be used in each step in order to optimize

the performance. We identify the contributions of our work as follows:

1. If all entity names (i.e., author names in our context) have to be compared

against each other in order to find similar names, the resulting algorithm

will be quadratic to the total number of entity names in the input. Clearly,

this algorithm will not be scalable for large DLs. In order to address this

problem, we advocate a scalable two-step SER framework. In the first step,

the algorithm partitions all entity-name strings into a set of disjoint blocks.

In the second step, the algorithm visits each block and compare all possible

pairs of names within the block in order to find the name variants. This
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blocking-based pruning method has been introduced and successfully applied

in other problem contexts such as record linkage [23] or identity uncertainty

problems [55].

2. In our Split Entity Resolution (SER) and Mixed Entity Resolution (MER)

framework, we focus on a set of “unsupervised” distance measures other than

supervised algorithms. Using citations from large real-world DLs, we show

that, some of the unsupervised algorithms (e.g., cosine2 or TF/IDF Cosine

similarity) show comparable or even superior accuracy to supervised ones

(e.g., the Naive Bayes model [31] or the Support Vector Machines [31]).

Since unsupervised algorithms in general do not require large training sets,

they are useful for resolving two entities. In addition, we exploit informa-

tion associated with entities (e.g., co-authors) in order to further improve

the algorithm’s accuracy. This approach is based on the hypothesis that

using associated information more than name entities themselves would be

beneficial in resolving name variants.

3. We formulate the GER problem as a specialized form of the ER problem.

Since the grouped entities in the GER problem contain a wealth of informa-

tion (i.e., a group of elements), its exploitation can result in better outcome.

More specifically, we introduce how to capture “contextual information” hid-

den in a group of elements in grouped entities. In particular, we propose

to use the technique of superimposition to mine hidden relationships into

graphs. Furthermore, to capture the “contextual distance” between grouped

entities, we exploit the notion of Quasi-Clique [56], a measure to see how

strong inter-relationships between two graphs are, and propose a simple yet

effective two-step GER algorithm, distQC.

4. Often entities are represented as groups of relational records, rather than

individual relational records, e.g., households in a census survey consist of

a group of persons. We refer to the problem of determining if two entities,

represented as groups, are approximately the same as group linkage. Intu-

itively, two groups can be linked to each other if (i) there is high enough

2Cosine is the abbreviated term of Cosine similarity in this thesis.
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similarity between “matching” pairs of individual records that constitute the

two groups, and (ii) there is a large fraction of such matching record pairs. In

this problem, we formalize this intuition and propose a group linkage mea-

sure based on bipartite graph matching [15]. Given a data set consisting

of a large number of groups, efficiently finding groups with a high group

linkage similarity to an input query group requires quickly eliminating the

many groups that are unlikely to be desired matches. To enable this task,

we present simpler group similarity measures that can be used either during

fast pre-processing steps or as approximations to our proposed group linkage

measure. These measures can be easily instantiated using SQL, permitting

our techniques to be implemented inside the database system itself.

5. For solutions to the MER problem, many clustering approaches have been

proposed [31, 51, 32, 3]. However, since such methods are not scalable,

we propose a scalable citation labeling algorithm using the sampling based

approximated join algorithm to quickly determine a small number of candi-

dates from an entire set of entities. As an alternative method, we propose a

scalable name disambiguation algorithm using multi-level graph partition 3.

According to Han et al. [32], k-way spectral clustering algorithm is the most

effective method. However, as the size of a graph is significantly huge, it

takes a large amount of time. To speed up such a graph partitioning algo-

rithm but yet optimize clusters, we apply the multi-level graph partitioning

algorithm to the MER problem.

In essence, the ER problems cannot be completely avoided unless each entity

carries a universal ID. Note that these problems would still occur even if digital

object identifier (DOI) system is fully adopted, since it usually does not govern

the identity of an entity or its name. In this thesis, we plan to investigate effective

solutions for these problems.

The rest of this thesis is organized as follows. In Chapter 2, we review previous

work related to our research. In Chapter 3, we discuss the Split Entity Resolution

problem. In Chapter 4, we discuss the Grouped-Entity Resolution problem. Then,

3The disadvantage of classification methods is that training data sets are required. To sur-
mount such limitation, we focus on designing and developing novel clustering methods in the
MER problem.
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the discussion to the Mixed Entity Resolution problem is given in Chapter 5.

Finally, we conclude this work in Chapter 6.



Chapter 2
Background Literature Survey

In this chapter we present an overview of previous research concerning the current

research topic. The general ER problem has known as various names – record

linkage (e.g., [23, 8]), citation matching (e.g., [52]), identity uncertainty (e.g., [55]),

merge-purge (e.g., [34]), object matching (e.g., [11]), duplicate detection (e.g., [60,

1]), approximate string join (e.g., [29]) etc. Before we can process citations, we

assume that field segmentation and identification has been completed using some

methods like one in [10]. Blocking was first proposed by Kelley et al. [43] in

the record linkage literature. Our blocking scheme is also similar in flavor to the

two-step citation matching schemes proposed in [37, 52] where initial rough but

fast clustering (or “Canopy”) is followed by more exhaustive citation matching

step. String similarity measures used in our work were proposed by Jaro [39]

and Winkler [71]. Bilenko et al. have studied name matching for information

integration [8] using string-based and token-based methods. Cohen et al. have

also compared the efficacy of string-distance metrics, like JaroWinkler, for the

name matching task [14, 63, 22]. In DLs, this problem is called citation matching.

In the citation matching domain, [44] experimented with various distance-based

algorithms with a conclusion that word based matching performs well.

2.1 The Split Entity Resolution (SER) Problem

ALIAS system in [60] proposes a framework to detect duplicate entities such as

citations or addresses, but its focus is on the learning aspect. Unlike the exist-
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ing entity matching solutions exploiting “syntactic similarities” (e.g., string dis-

tance metrics), Constraint-based Entity Matching (CEM) [61] examines “seman-

tic constraints” in both scalable and unsupervised way. They use two popular

data mining techniques, the Expectation-Maximization (EM) algorithm, estimat-

ing the parameters of the generative model on how data sets satisfying constraints

are genrated, and relaxation labeling , exploiting the constraints. This framework

differs from our approach because of the motivation of domain constraints and

user interaction. [5] present a generic approach, named as Swoosh algorithms. In

the algorithms, they consider the functions for matching and merging records as

black boxes for a generic, extensible solution. The objective of these Swoosh algo-

rithms is to minimize time complexity of black boxes, compared to naive algorithm.

The recent work by [21] proposes an iterative ER solution for complex personal

information management. Their work reports good performance for its unique

framework where different ER results mutually reinforce each other (e.g., the re-

solved co-author names are used in resolving venue names). Although not directly

comparable to our work, it would be interesting to see how the hybrid approach

works. Another stream of works that are relevant to our work is name/entity dis-

ambiguation and authority controls in NLP community. For instance, works done

in [70] aim at detecting name variants automatically using data mining or heuris-

tics techniques, but do not consider the issue of scalability nor in the context of

digital libraries. Similarly, [18] introduces a method to find matching variants of

named entity in a given text such as project name (e.g., DBLP vs. Data Base and

Logic Programming). [66] discusses an effort to standardize author names using

a unique number, called INSAN, and [17] is a recent implementation for name

authority control, called HoPEc. On the contrary, we focus more on two specific

problems relevant to citations of digital libraries. In [35], we investigated issues

related to system support for both problems.
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2.2 The Grouped-Entity Resolution (GER) Prob-

lem

When entities are “grouped entities,” existing ER methods do not distinguish

them, while our distQC tries to exploit them using Quasi-Clique. Our method

can be used together with any of these ER methods as the first step. The recent

trend in the ER problem shows similar direction to ours (e.g., [13, 8, 6, 60, 51, 46])

– Although each work calls its proposal under different titles, by and large, most

are trying to “exploit additional information beyond string comparison.” A more

extensive and systematic study is needed to investigate the usefulness and limi-

tations of the context in a multitude of the ER problem. Especially, to capture

“contexts,” graph-based partitioning techniques have been exploited. Recent work

by Kalashnikov et. al [40] presents a relationship-based data cleaning (RelDC)

which exploits context information for entity resolution, sharing similar idea to

ours. RelDC constructs a graph of entities connected through relationships and

compares the connection strengths across the entities on the graph to determine

correspondences. The main difference is the notion of data structure used (i.e., we

used Quasi-Clique along with superimpostion to derive distances between graphs).

Malin [51] presented a less strict similarity requirement by using random walks

between duplicate entities on a global social network constructed from all sources,

or a community similarity. Bhattacharya [6] make use of attribute similarity mea-

sures, but in addition, it takes into account the similarity of linked objects through

the “iterative” deduplication process. However, their approach has the downside

that the process is more expensive computationally.

2.3 The Mixed Entity Resolution (MER) Prob-

lem

There have been works focusing on the case of mixed entities such as [4, 45, 31]

(i.e., how to cluster mixed citations into groups of distinct authors despite con-

fusing author names). Han et al. [31] proposed two supervised learning-based

approaches. Their algorithm solves the so called the citation labeling problem
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– given a citation, cross out an author name, and using the remaining citation

information, recover the author name via two supervised learning methods: (1)

the Naive Bayes model; (2) the Support Vector Machines. Furthermore, Han et

al. [32] presented an unsupervised learning approach using K -way spectral clus-

tering that groups different citations into different clusters, using three types of

citation attributes – co-author names, paper titles, and publication venue titles.

In addition, Malin [51] utilizes hierarchical clustering, relying upon exact name

similarity. However, all the approaches are not scalable to handle large-scale en-

tities. As a scalable solution, Lee et al. [45] proposed a scalable citation labeling

algorithm recently. In their algorithm, authors use the sampling-based technique

to quickly determine a small number of candidates from the entire authors in a

digital library. The idea of the citation labeling algorithm is as follows: For each

citation in the collection, the algorithm tests if the citation really belongs to the

given collection; First, remove an author from the citation; Then, guess back the

removed author name using additional information. If the guessed name is not

equivalent to the removed name, the citation is false citation.

In general, the of person name disambiguation has been studied in the domain

of citations. Recently Bekkerman et al. [4] proposed techniques to disambiguating

collections of Web appearances using Agglomerative and Conglomerative Double

Clustering.



Chapter 3
The Split Entity Resolution (SER)

Problem

In this chapter, we consider the Split Entity Resolution (SER) problem caused

by duplicate entities (i.e., ambiguous author names) in bibliographic DLs (e.g.,

DBLP [47], CiteSeer [49], or e-Print arXiv [2]). These DLs have been an im-

portant resource for academic communities since scholars often try to search for

relevant work from DLs. Researchers also use citation records in order to measure

a publication’s impact in the research community. It is thus an important task to

keep the citation records consistent and up-to-date. However, because of various

reasons (e.g., data-entry errors, diverse formats, and imperfect citation gathering

softwares), citations of the same scholar commonly appear under different name

variants in DLs. Thus, keeping citations correct and up-to-date proved to be a

challenging task in a large-scale DL.

In general, the name variants refer to the different spellings of author names

that are in fact referring to the same scholar. Because of this problem, it is difficult

to get the complete list of the publications of some authors. For instance, imagine

a scholar “Peter Keleher” has published 18 articles. However, a DL keeps three

separate purported author names, “P. Keleher”, “Peter J. Keleher”, and “Peter

Keleher”, each of which contains 5, 9, and 4 citations, respectively. In such a case,

users searching for all the articles of “Peter Keleher” will get only 5, 9, or 4 of them.

Similarly, any bibliometrical study would underestimate the impact of the author

“Peter Keleher”, splitting his share into “Peter Keleher”, “P. Keleher”, “Peter J.
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Figure 3.1: Screen-shot of three name variants of “Peter Keleher” from ACM in
MS SQL Server (citations of “P. Keleher” (top), “Peter J. Keleher” (middle), and
“Peter Keleher” (bottom)).

Keleher”, and “Peter Keleher” incorrectly. Figure 3.1 shows this problem well.

In order to cope with the SER problem, we introduce a scalable two-step frame-

work, in which step 1 is to substantially reduce the number of candidates via block-

ing, and step 2 is to measure the distance of two names via co-author information.

Through this framework, we comparatively study alternative approaches to iden-

tify and correct such name variants. We consider several alternatives in each step

of the framework (e.g., use sampling in the first step and TF/IDF Cosine similarity

in the second step), and empirically evaluate the effects of various combinations

of such algorithms for various data sets. We conduct an extensive experimental

study to validate our claims – four alternatives in the first step and seven alter-

natives in the second step are examined on four different data domains, a total of

4× 7× 4 = 112 combinations.

3.1 Two-step SER Framework: Problem

Problem Definition. We formally define the Split Entity Resolution problem

as follows:
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Given two long lists of entities (i.e., author names), X and Y , for each entity x (∈
X), find a set of entities, y1, y2, ..., yn (∈ Y ) such that both x and yi (0 ≤ i ≤ n)

are variants of the same entity.

The baseline approach to solve the problem is to treat each author name as a

“string”, and perform all pair-wise string distance using some distance function1,

dist(x, y):

for each name x (∈ X) do
for each name y (∈ Y ) do

if dist(x, y) < φ then
x and y are name variants;

Algorithm 1: Baseline

Since the baseline approach is prohibitively expensive to run for large DLs

(because of its quadratic time complexity, O(|X||Y |)), there is a need for more

scalable algorithms that are not dependent on the syntactic similarities of author-

name strings.

3.2 Two-step SER Framework: Solution

Figure 3.2 illustrates our two-step SER framework. We use the following ideas

to design our algorithm: (1) Instead of comparing author-name spellings to find

author-name strings that refer to the same author, we use information associated

with the author-name strings like co-author list, authors’ paper titles, venue list

that authors often publish, or even institute etc. For instance, to identify if “Qiang

Zhu” is the name variant of “Q. Zhu”, instead of computing the string edit-distance

of two names, we may test if there is any correlation between the co-author lists

1 Both distance and similarity functions quantify closeness between two strings. That is,
0.0 ≤ distance(l

′
, r

′
) or similarity(l

′
, r

′
) ≤ 1.0, where l

′
and r

′
are strings. In general, a smaller

value indicates greater similarity between two strings in distance functions (e.g., Normalized
Euclidean distance) while a larger value indicates greater similarity in similarity functions (e.g.,
Jaccard). In this paper, we will use these terms interchangably, depending on which interpretation
is most natural. [14]
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1: Jeffrey Ullman
...

...

...
m: Wei Wang

...
10550: W. Wang

...

150466: Jeffrey D. Ullman
...

351455: Liwei Wang

...
n: J. D. Ullman
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Wei Wang:
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Rank    ID Name
------------------------------------------
1 150466   Jeffrey D. Ullman
2      n J. D. Ullman

Figure 3.2: Overview of two-step framework.

of “Qiang Zhu” and “Q. Zhu.” In the remainder of this chapter, we only focus

on exploiting co-author information as the associated information of an author.

Exploiting other associated information (or even hybrid of them as in [31]) is an

interesting direction for future work (the case of exploiting both author name and

its co-author is discussed in Section 3.4.1); (2) To make the algorithm scalable, we

borrow the Blocking technique popular in the solutions of record linkage problem,

and modify the baseline approach as follows:

Note that the time complexity after blocking becomes O(|X| + |Y | + C|B|),
where C is the average number of names per block. In general C|B| � |X||Y |.

3.2.1 Step 1: Blocking

The goal of step 1 is to put similar inputs into the same group by some criteria

(thus called Blocking) so that distance measures of step 2 can be done per group.

If the filtering criteria (i.e., blocking methods) are too aggressive, then only small
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// let Ca be co-author information of author a;
for each name x (∈ X) do

create a block Bx(∈ B);

// Step 1;
for each name y (∈ Y ) do

assign y to all relevant blocks Bi(∈ B);

// Step 2;
for each block Bx (∈ B) do

for each name z (∈ Bx) do
if dist(Cx, Cz) < φ then

x and z are name variants;

Algorithm 2: Scalable Two-Step Algorithm

number of inputs will pass them and be put into the same block, and sometimes

even right answers may be incorrectly pruned away. On the other hand, if the

criteria are too lenient, then too many number of inputs (including noisy data)

will pass them, bloating up the size of blocks. Furthermore, in general, the size

of blocks has a close correlation with the scalability of the next step – the bigger

a block is, the longer it takes to do step 2. In order to see the effects of different

blocking schemes in the SER context, therefore, we examine four representative

(and distinct) blocking methods – heuristic, token-based, n-gram, and sampling.

Informally, given a set of p author names, n1, ..., np, blocking methods return a

set of q blocks, B1, ..., Bq as follows:

{B1, ..., Bq} ← Blocking({n1, ..., np})

where each Bi contains a set of author names nj. Note that depending on the

blocking scheme, the same author name can be put into multiple blocks.

3.2.1.1 Spelling-based Heuristics

The simplest approach is to group author names based on their name spellings, and

can be attributed to a more general method known as sorted neighborhood [34]. In

our context, all names with the same heuristics are grouped into the same block.

For instance, “Jeffrey Ullman” is grouped together with “J. Ullman” if the heuris-
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tics is “the same initial of the first name and the same last name (iFfL)”. Other

plausible heuristics are: “the same initial of the first name and the same initial

of the last name (iFiL),” or “the same last name (fL),” or even the combination

of the above. Different heuristics would have slightly different impact on the per-

formance of the two-step methods. For instance, fL would generate bigger sized

blocks than iFfL does so that it usually has a higher accuracy while being slower.

Since comparing different heuristics is not the goal of this research, and iFfL is the

most commonly used in citation matching context [37], in our experimentation,

only iFfL is used.

3.2.1.2 Token-based

In the token-based blocking, author names sharing at least one common token

are grouped into the same block (e.g., “Jeffrey D. Ullman” and “Ullman, Jason”).

When authors have rare name spellings, this scheme tends to generate a small sized

block. However, when authors’ name spellings are common (e.g., “D. Lee”), have

long names (e.g., “Juan David Gonzalez Cobas El-Nasr”), or have several initials

in the name (e.g., “V. S. P. Srivastava”), then the resulting block can have a large

number of names.

3.2.1.3 N-gram

The idea of the N -gram blocking is similar to that of the token-based one, except

that it has finer granularity – instead of checking common tokens, this method

checks the existence of common N continuous characters from author names (we

use N = 4 that gave good results in [8]). Since the granularity is finer, the number

of author names put into the same block is the largest among the four blocking

methods. For instance, using the N -gram blocking, “David R. Johnson” and

“F. Barr-David” are grouped into the same block because of the common 4-gram

“davi”.

3.2.1.4 Sampling

Another alternative blocking method is to use Sampling . Given a name string x,

suppose we want to draw a number of samples that are most similar to x, and
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group them into the same block. If the sampling process is somehow fast while it

generates accurate samples, then it can serve as a good blocking method. One of

the state-of-the-art sampling techniques that satisfy both criteria (i.e., being fast

and accurate) is the sampling-based join approximation method recently proposed

by [29]. We adopt it to our context as follows: Imagine each token from all author

names has an associated weight using the TF/IDF metric in Information Retrieval

(IR) (i.e., common tokens in author names have lower weights while rare ones have

higher weights). Then, each author name t is associated with its token weight

vector vt. Suppose that for each name tq in an author name set R1, we want to

draw a sample of size S from another author name set R2 such that the frequency

Ci of name ti ∈ R2 can be used to approximate sim(vtp , vti) = σi. That is, σi can

be approximated by Ci
S
TV (tq), where TV (tq) =

∑|R2|
i=1 σi. Then, put ti into a block

only if Ci
S
TV (tq) ≥ θ, where θ is a pre-determined threshold. This strategy assures

that all pairs of names with similarity of at least θ can be put into the same block

with a desired probability, as long as the proper sample size S is given.

3.2.2 Step 2: Measuring Distances

After a set of blocks is created in step 1, the goal of step 2 is, for each block, to

identify top-k author names that are the closest to the name in question. For this,

intuitively, we can use various methods that one have developed to measure the

distance or similarity of two strings. For this, we have compared two categories of

methods – the supervised and unsupervised methods.

3.2.2.1 The Supervised Methods

Han et al. [31] recently showed the effectiveness of two supervised methods when

there are enough number of training data, the Naive Bayes model [50] and the

Support Vector Machines [16], in a slightly different name disambiguation context.

The Naive Bayes Model (NBM). In this method, we use Bayes’ Theorem

to measure the similarity between two author names. For instance, to compute

the similarity between “Gene H. Golub” and “Golub, G.,” we estimate each co-

author’s probability of “Gene H. Golub” in terms of the Bayes rule in training,

and then calculate the posterior probability of “Golub, G.” with the co-authors’
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probabilities of “Gene H. Golub” in testing. As shown in Figure 3.2, given a block

corresponding to an author name x in X and x’s candidate names yi in Y (i ∈ [1, k],

where k is the total number of author names selected from Y ), we calculate the

probability of each pair of x and yi and find the pair with the maximal posterior

probability as follows:

• Training: all co-author names of x are randomly split, and only the half

is used for training. We estimate each co-author’s conditional probability

P (Am|x) conditioned on the event of x from the training data set, Ai ∈
{A1, ..., Aj, ..., Am} and Aj is the j-th co-author of x:

P (Aj|x) = P (Aj|Frequent, CoAuthor, x)× P (Frequent|CoAuthor, x)× P (CoAuthor|x)

+P (Aj|Infrequent, CoAuthor, x)× P (Infrequent|CoAuthor, x)× P (Alone|x)

– P (Aj|Frequent, CoAuthor, x): the probability of x working for a paper

with a particular co-author Aj

– P (Frequent|CoAuthor, x): the probability of x working for a paper

with the co-authors, who worked with x at least twice in the training

data, conditioned on the event of x’s previous co-authors

– P (CoAuthor|x): the probability of x working for a paper with co-

authors in the future

– P (Alone|x): the probability of x writing a paper alone

• Testing: we use the following target function: VNBM = argmaxyi∈N{P (yi)ΠkP (Ak|yi)}

– N : the total number of author names, selected from Y , in the block

– k: the k-th co-author in yi, being the common co-author as x

The Support Vector Machines (SVM). SVM is one of the popular super-

vised classification methods. In our context, it works as follows:

• Training: all co-authors of an author in a block is transformed into vector-

space representation. Author names in a block are randomly split, and 50%

is used for training, and the other 50% is used for testing. Given training
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Name Description
x, y co-author names
Tx all tokens of the co-author x
Cx all characters of x

CCx,y all characters in x common with y
Xx,y # of transpositions of char. in x relative to y

Table 3.1: Terms.

examples of author names labeled either match (e.g., “J. Ullman” and “Jef-

frey D. Ullman”) or mismatch (e.g., “J. Ullman”, “James Ullmann”), SVM

creates a maximum-margin hyperplane that splits the match and mismatch

training examples.

• Testing: given SVM classifies vectors by mapping them via kernel trick

to a high dimensional space where the two classes of equivalent pairs and

different ones are separated by a hyperplane, and the corresponding similarity

is obtained. For the SVM prediction, we use the Radial Basis Function (RBF)

kernel [16], K(xi, yi) = e−γ||xi−yi||
2
, (γ > 0), among alternatives (e.g., linear,

polynomial, sigmoid kernels).

3.2.2.2 The Unsupervised Methods

The second group of methods that we consider is the unsupervised ones that do

not require any training.

String-based Distance. In this scheme, the distance between two author

names are measured by the “distance” between their co-author lists. That is, to

measure the distance between “Timos K. Sellis” and “Sellis, T. K.,” instead of

computing the sim(“Timos K. Sellis”, “Sellis, T. K.”), we compute the sim(co-

author-list(“Timos K. Sellis”), co-author-list(“Sellis, T. K.”)). Among many possi-

ble distance measures, we use two token-based string distance metrics (e.g., Jaccard

and TF/IDF ), and two edit-distance based ones (e.g., Jaro and Jaro-Winkler) that

were reported to give a good performance for the general name matching problem

in [14]. We briefly describe the metrics below. For details of each metric, refer

to [14].

Using the terms of Table 3.1, the four metrics can be defined as follows:
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• Jaccard(x,y) = |Tx
⋂
Ty |

|Tx
⋃
Ty |

• TF/IDF(x,y) =
∑

w∈Tx∩Ty V (w, Tx)× V (w, Ty)

– V (w, Tx)=log(TFw,Ty + 1) × log(IDFw)√∑
w
′ (log(TFw,Ty+1)×log(IDFw))

(symmetrical

for V (w, Ty))

– TFw,Tx : the frequency of w in Tx

– IDFw: the inverse of the fraction of names in a corpus containing w

• Jaro(x,y) = 1
3
× ( |CCx,y ||Cx| + |CCy,x|

|Cy | +
|CCx,y |−XCCx,y,CCy,x

2|CCx,y | )

• Jaro−Winkler(x,y) = Jaro(x, y) + max(|L|,4)
10

× (1− Jaro(x, y))

– L: the longest common prefix of x and y

Vector-based Cosine Similarity. In this approach, instead of using string

distances, we use vector space to measure the similarity of the co-author lists. We

model the co-author lists as vectors in the vector space, each dimension of which

corresponds to a unique author name appearing in the citations in the block. For

example, suppose we have a block that has three groups of citations, one for “A.

Y. Halevy,” another for “Alon Halevy,” and the other for “A. Halevy.” In the

first group, suppose we have five papers, each co-authored by “A. Y. Halevy” with

one or more of “A. Doan,” “L. Dong,” and “M. Liu.” Further suppose among the

five papers “A. Y. Halevy” co-authored three times with “A. Doan,” four times

with “L. Dong,” and once with “M. Liu.” Similarly, suppose we have 10 papers in

the second group, in which “Alon Halevy” co-authored five times with “A. Doan,”

seven times with “L. Dong,” and three times with “P. Mork.” In the last group,

suppose we have seven papers in which “A. Halevy” co-authored three times with

“P. Chopra,” five times with “J. Xu,” and once with “A. Doan.”

The total number of unique co-author names in the block is 6 except the three

“A. Y. Halevy” name variants. In order to determine if the three name variants are

indeed referring to the same scholar, we model the co-author information for each

variant as a vector and compute the similarities between the vectors. The resulting

vectors have 12 dimensions, each of which corresponds to one of 6 unique co-author

names appearing in the block. For example, for the first group of citations for “A.
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Data set Domain # of authors # of co-authors # of tokens
per author per author

# of citations average average
median mediane
std-dev std-dev

DBLP CompSci 364,377 4.9 11.5
562,978 2 6

7.8 18
e-Print Physics 94,172 12.9 33.4

156,627 4 12
33.9 98.3

BioMed Medical 24,098 6.1 13.7
6,169 4 12

4.8 11
EconPapers Economics 18,399 1.5 3.7

20,486 1 3
1.6 4.1

Table 3.2: Summary of data sets.

Y. Halevy,” we have a vector v(“A. Y. Halevy”) = [0 3 4 1 0 0], provided that the

dimensions are ordered by co-authors’ last name and values in the vector represent

the number of papers that the author represented by the dimension co-authored

with “A. Y. Halevy.” For example, the value, 1, in the third dimension represents

the number of papers that “M. Liu” co-authored with “A. Y. Halevy.” Similarly,

we have v(“Alon Halevy”) = [0 5 7 0 3 0] and v(“A. Halevy”) = [3 1 0 0 0 5]. In

order to measure the similarity between the vectors, ~v and ~w, we use the simple

Cosine similarity, an angle between two vectors, defined as: cos θ = ~v·~w
‖~v‖·‖~w‖ .

3.3 Experimental Set-up

Data sets. We have gathered real citation data from four different domains, as

summarized in Table 3.2. Compared to previous work, all of the four data sets

are substantially “large-scale” (e.g., DBLP has 360K authors and 560K citations

in it). Different disciplines appear to have slightly different citation policies and

conventions as shown in Table 3.3. For instance, Physics and Medical communities

seem to have more number of co-authors per article than Economics community.
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Stephan Wiesener, Wolfgang L. J. Kowarschick, Pavel Vogel, Rudolf

Bayer: Semantic Hypermedia Retrieval in Digital Libraries. ADL 1995:

115-12

(a) DBLP
Optical and Infrared Properties of the 2 Ms Chandra Deep Field North

X-Ray Sources. A. J. Barger, L. L. Cowie, P. Capak, D. M.

Alexander, F. E. Bauer, E. Fernandez, W. N. Brandt, G. P. Garmire,

and A. E. Hornschemeier. The Astronomical Journal, 126, 632-665

(2003)

(b) e-Print
Luiz F Poli de Figueiredo, Mali Mathru, Jaclyn R Jones, Daneshvari

Solanki, George C KramerInhaled nitric oxide reverses cell-free

hemoglobin-induced pulmonary hypertension and decreased lung

compiance, crit care 1997 1: 111-116.

(c) BioMed
"The Choice of IPO Versus Takeover: Empirical Evidence," James C.

Brau, Bill Francis and Ninon Kohers, Journal of Business Volume 76,

Issue 4, Pages 583-612, 2003

(d) EconPapers

Table 3.3: Example citations of each data set.

Furthermore, the conventions of citations also vary. For instance, citations in e-

Print use the first name of authors as only initial, while ones in DBLP use full

names.

Artificial name variants. Ideally, it would be desirable to apply our frame-

work to existing DLs to find all real name variants. However, given the large

number of citations that we aim at, it is not possible nor practical to find a “real”

solution set. For instance, to determine if “A” and “B” are indeed name variants,

human experts had to trace it carefully. Therefore, we use artificial solution sets.

Nevertheless, in practice, we envision that our framework be used as a tool to

assist human experts to narrow down candidate name variants from hundreds to

thousands.

To make solution sets, for each data set, we prepare two lists of author names,

X and Y , where X is initially empty, and Y contains the entire author names

(e.g., 364,377 names for DBLP). Then, we pick top-100 author names from Y

according to their number of citations, and generate 100 corresponding new name

variants artificially. Note that the reason why we have to use “top 100” instead

of “random 100” is because of two supervised methods in step 2. That is, two

supervised methods, first proposed in [31], do not work without enough numbers

of training sets. For instance, for “Grzegorz Rozenberg” with 344 citations and
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Figure 3.3: Accuracy with various error types (DBLP).

114 co-authors in DBLP, we create a new name like “G. Rozenberg” (abbreviation

of the first name) or “Grzegorz Rozenbergg” (typo in the last name). Then, after

splitting the original 344 citations into halves, each name carries half of citations,

172, and is put back into X and Y , respectively. At the end, there are 100 and

364,377 names in X and Y , respectively. Then, through the proposed two-step

framework, for each name in X, we test if the algorithm can find the corresponding

artificial name variant in Y (that we generated and thus know what they are).

Note that the way we generate artificial name variants may affect the per-

formance of blocking. For instance, if all artificial names that we generated are

abbreviation of first names, then both heuristic and 4-gram blocking would work

well. However, if artificial name variants were generated by adding garbage char-

acters in last names, then this will negatively affect the performance of heuristic

blocking, while it has little effect on the 4-gram blocking method. In general, it is

difficult to precisely capture the right percentages of different error types in author

name variants. For the original name “Ji-Woo K. Li”, some of possible error types

are name abbreviation (“J. K. Li”), name alternation (“Li, Ji-Woo K.”), typo

(“Ji-Woo K. Lee” or “Jee-Woo K. Lee”), contraction (“Jiwoo K. Li”), omission

(“Ji-Woo Li”), or combinations of these.

To quantify the effect of error types on the accuracy of algorithms in the frame-

work, we first compared two cases: (1) mixed error types of abbreviation (30%),

alternation (30%), typo (12% each in first/last name), contraction (2%), omission

(4%), and combination (10%); and (2) abbreviation of the first name (85%) and



32

0.4

0.5

0.6

0.7

0.8

0.9

1

Multi-class Binary class

Classification type

A
cc

ur
ac

y

 

Figure 3.4: Comparison of multi-class vs. binary-class classification based SVM.

typo (15%). The accuracy of the former case is shown in Figure 3.3, and that of

the latter case is in Figure 3.10(a). Note that regardless of the error types or their

percentages, all blocking methods, except iFfL, show reasonably similar accuracies.

That is, since both token-based and sampling-based blocking have a granularity of

“tokens” in processing, they are more tolerable than iFfL which can only handle

well name abbreviation error type. Likewise, since the granularity of 4-gram is

the finest (i.e., characters), it shows the best tolerance for diverse error types. All

subsequent experimentations are done using the latter case (85%/15%).

Implementations. We have implemented various algorithms of Section 3.2.1

and 3.2.2 as follows: (1) Step 1 : Token-based and N -gram blocking methods are

implemented by the open source tool, SecondString [65], where all space-delimited

words from co-author lists are treated as tokens and “4” was used for N -gram

(i.e., 4 continuous characters) as tokens. For the sampling-based blocking, we used

the implementation of [29] with a sample size of 64 and a threshold of 0.1, and

ran the experimentation in Microsoft SQL Server 2000. (2) Step 2 : For the su-

pervised learning methods, citations per author are randomly split, with half of

them used for training, and the other half for testing. For the implementation of

Support Vector Machines, LIBSVM [25] was used. In particular, we found that

the multi-class classification based implementation in [31] performs poorly for our

experimentation. This is because a classifier needs to be prepared for each candi-

date, and there are usually large number of candidates in our large-scale setting.



33

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Rank

%

TFIDF
Jaccard
Jaro
JaroWin
Cosine

 

Figure 3.5: Distribution of name variants in top-10.

Therefore, instead, our implementation of SVM is based on binary-class classifica-

tion. In the comparison, as shown in Figure 3.4, binary-class classification based

SVM showed an accuracy about 25% higher than multi-class classification based

one (while taking about 20% less time). For the string-based distance functions

of the unsupervised learning methods, we used the implementations of TF/IDF,

Jaccard, Jaro, and Jaro-Winkler from SecondString [65].

Evaluation metrics. Two main metrics that we used are scalability and

accuracy : (1) The scalability of the framework was measured by the “size” of blocks

generated in step 1 and the “time” it took to process both step 1 and 2; (2) To

measure how effectively name variants can be found, we measured the “accuracy”

of top-k as follows. For a name in X, our algorithm finds top-k candidate name

variants in Y . If the top-k candidates indeed contain the solution, then it’s match.

Otherwise, it is a mis-match. This is repeated for all 100 names in X. Then,

overall accuracy is defined as: Accuracy = # of matches
100

.

The accuracy was measured for different k values (i.e., k = 1, 5, 10). For in-

stance, with k = 5 in the DBLP data set, for each author in X, methods return

the top-5 candidate name variants out of 364,377 authors, and if one of these 5

candidates is the artificial name variant that we created, then it is a match. We

repeated all of the subsequent experiments for three window sizes of 1, 5, and 10,

and found that accuracies with larger window size (k = 10) are about 10% higher

than those with smaller window size (k = 1). The seemingly only-small drop of
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Method Step 1 Step 2
naive 1-N – name

two-step name-name 2-NN name name
two-step name-co-author 2-NC name co-author

two-step name-hybrid 2-NH name hybrid

Table 3.4: Solution space.

the accuracy can be explained as follows. As shown in Figure 3.5, about 70% of

correct name variants are returned as the first among 10 candidates. That is, even

if we use a smaller window size (k = 1), 70% of name variants would be found

correctly. Since the most of name variants are found within rank 3, when we used

k = 5, its accuracy is almost as good as that of k = 10. In the following, therefore,

we show the results for k = 5.

3.4 Experimental Results

3.4.1 Our Framework versus Other Alternatives

Table 3.4 summarizes four possible approaches to the given problem: (1) 1-N is a

single-step pair-wise name matching scheme without using blocking or co-author

information; (2) 2-NN uses the two-step approach, but do not exploit co-author

information; (3) 2-NC is the main proposal in the framework; and (4) 2-NH is the

modification of 2-NC in that in step 2, it combines both author and co-author

information together with proper weights (e.g., we used 1/4 and 3/4 for author

and co-author, respectively).

Figure 3.6 summarizes the experimental results of four alternatives using three

representative metrics – TF/IDF, Jaccard, and Jaro. In terms of the processing

time, 1-N is the slowest for TF/IDF and Jaccard, as expected, due to its quadratic

time complexity (i.e., 100× 364, 377 times of pair-wise name comparisons). How-

ever, Figure 3.6(c) shows a rather unexpected result in that both 2-NC and 2-NH

take more time than 1-N does, despite their advantages through blocking in step 1.

This is due to the combination of the slow distance computation of Jaro method

and long co-author list, and can be explained as follows. To make the discussion

simple, suppose computing dist(x, y) takes 1 sec, and its computation time is pro-
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(a) Time (TF/IDF) (b) Time (Jaccard) (c) Time (Jaro)
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(d) Accuracy (TF/IDF) (e) Accuracy (Jaccard) (f) Accuracy (Jaro)

Figure 3.6: Comparison of four alternatives (DBLP with k = 1).
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Figure 3.7: Average # of authors per block.

portional to the number of characters in x and y. That is, dist(x, y) takes 1 sec,

while dist(x100, y20) takes 100 × 20 = 2, 000 sec (if xn denotes characters x with

the length of n).

Then, (1) Since 1-N computes dist(x, y) for all pairs from X and Y , it takes

|X| × |Y | = 100 × 364, 377 ≈ 36.4M sec. (2) In Section 3.3, we chose top-100

authors with the most number of citations as our targets. Since these 100 authors

have a large number of citations, their number of co-authors is large too (i.e., on

average 100 co-authors per author). Therefore, using 2-NC, computing dist(x′, y′)

(i.e., x′ and y′ are co-authors of x and y, respectively) is equal to computing
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Figure 3.8: Processing time for Step 1.

dist(x100, y100), taking about 100 × 100 = 10, 000 sec. Since all names in a block

must be compared, if a block has 3,500 names (e.g., 4-gram blocking in Figure 3.7),

then it takes 3, 500× dist(x′, y′) = 3, 500× 10, 000 ≈ 35M sec. Note that the time

for 1-N, 36.4M sec, is roughly the same as that for 2-NC, 35M sec. That is,

when computation-heavy distance metrics such as Jaro or Jaro-Winkler are used

in step 2, and since co-author names to consider are very long, the expense offset

the benefit of the blocking in step 1. Note that our 100 target names in testing

are those with the largest number of co-authors. Therefore, the scenario in our

experimentation is the “worst case” for 2-NC.

In terms of accuracy, both 2-NC and 2-NH shows about 20%-30% improvement,

compared to 1-N and 2-NN, validating the assumption that exploiting additional

information is more beneficial than the simple name spelling in the SER prob-

lem. Compared to 2-NC, 2-NH shows no significant improvement. However, for

Jaro method (Figure 3.6(f)), the accuracy of 2-NH, when token-based or 4-gram

blocking is used, improves by 10%-15% from 2-NC. Note that Jaro method tends

to work better when an input string is short. Therefore, when both name and

co-author are considered in 2-NH, Jaro takes advantage of relatively good accu-

racy from “name” side, although it suffers from “co-author” side. At the end, this

results in about 10%-15% improvements of accuracy. Since 2-NH takes longer than

2-NC while it shows only a negligible improvement in accuracy, in the remaining

experiments, we use 2-NC as our default scheme.
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(a) DBLP (b) EconPapers

Figure 3.9: Processing time for Step 2.

3.4.2 Scalability

Figure 3.7 illustrates the average number of authors per each block. Regardless

of data sets, 4-gram blocking generates the most number of author names into

each block. On the other hand, both heuristic and sampling blocking methods

put a small number of author names into each block. Nevertheless, the time it

takes to perform the blocking is quite small, except the sampling-based blocking

which needs a pre-processing step for TF/IDF weighting and sampling as shown

in Figure 3.8.

The processing time for step 2 is shown in Figure 3.9 for DBLP (364,377 au-

thors) and EconPapers (18,399 authors) data sets. The other two data sets have

similar graphs to that of EconPapers and omitted. In general, Cosine similarity is

the fastest and edit-distance based metrics such as Jaro or Jaro-Winkler are the

slowest. This is especially so since the string to compare is a long co-author list

(instead of short author name). Both NBM and SVM are relatively faster than

TF/IDF, Jaccard, Jaro, and Jaro-Winkler. Note that those token-based distance

metrics such as TF/IDF and Jaccard are slower than NBM, SVM, and Cosine sim-

ilarity methods, because there are a large number of candidate name variants in

each block. Detailed comparison of cosine similarity vs. two supervised methods

(NBM and SVM) are shown in Table 3.5. Although all three appear to take the

same processing time in Figure 3.9 due to the enlarged Y-axis, cosine method is

in fact much faster than the others, showing a better scalability. The SVM takes

more time than the others since the hyperplane needs to be split in succession due

to SVM’s binary-class classifier.
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NBM SVM Cosine
iFfL 3.452 59.088 5.057

Token 73.509 292.752 17.625
4-gram 108.362 334.819 21.182

Sampling 3.906 69.092 5.176

Table 3.5: Processing time for step 2 of NBM, SVM, and Cosine methods.

3.4.3 Accuracy

Figure 3.10 summarizes the accuracies of four blocking methods of step 1 combined

with seven distance metrics of step 2 for all four data sets (with k = 5). Several

phenomenons are noticeable.

In general, the distance metrics such as SVM, Cosine similarity, TF/IDF and

Jaccard perform much better than the others, regardless of the blocking methods

used in step 1. For instance, for the DBLP, the four methods achieved near perfect

accuracies finding all 100 name variants out of 364,377 candidates. The similar

accuracies are observed for e-Print data set as well. Although their accuracies

drop to about 0.9 for BioMed, they are still outperforming the other methods such

as NVM, Jaro, or Jaro-Winkler. The reason of the lower accuracy for BioMed

data set can be explained next. Although fast, the accuracy of spelling-based

heuristics such as iFfL is poor throughout all experimentations. This is because

it is incapable of handling various error types in name variants (e.g., “J. Ullman”

and “Jef. D. Ullmannn”).

The accuracies of DBLP and e-Print data sets are better than that of BioMed

(and the omitted EconPapers) data set. The poor performance of BioMed case

is mainly due to the small number of citations per author in data set. Since 2-

NC scheme is exploiting co-author information of the author in question to find

name variants, the existence of “common” co-author names is a must. However,

in the BioMed data set, each author has only a small number of citations, 1.18,

on average, and only small number of co-authors, 6.1, on average, making a total

number of co-authors as 7.19 = 1.18 × 6.1 (assuming all co-authors are distinct).

Therefore, for two arbitrary author names x and y, the probability of having

“common” co-authors in the BioMed data set is not high. On the other hand,

for the e-Print data set, the average number of citations (resp. co-authors) per
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Figure 3.10: Accuracy comparison (k = 5).

author is higher, 4.27 (resp. 12.94), making the total number of co-authors as

55.25 = 4.27× 12.94 – roughly 8 times of the BioMed data set.

In general, Jaro or Jaro-Winkler method in step 2 gave poorer accuracy than

the others. Since they are edit-distance based methods that are heavily affected

by the number of transpositions, as the length of string to compare increases (in

2-NC, it is a long co-author string), its error rate increases as well. In the e-

Print data set, the accuracies are lower, compared to those of DBLP, when the

sampling-based blocking is used in step 1. This is because most citations in the

e-Print data set use abbreviation for the first name of authors (e.g., “F. E. Bauer”

or “E. Fernandez” in Table 5.2). Since the sampling technique use TF/IDF for

weighting tokens, common tokens like abbreviated first name (e.g., “E.”) would

have lower weight via IDF, negatively affecting matching process. This is why the

sampling-based blocking performed worse than the plain token-based blocking.
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3.4.4 Summary of Experiments

In short, 2-NC showed a better scalability and accuracy compared to 1-N or 2-

NN, validating our assumption that using associated information would be more

beneficial than name itself in disambiguating name variants. One could even get

a better accuracy with 2-NH at the cost of time. When 2-NC was used, a com-

bination of token-based or N -gram blocking (step 1) and SVM as a supervised

method or Cosine similarity as a unsupervised method (step 2) gave the best scal-

ability/accuracy trade-off. In addition, this combination was tolerable to various

error types in names. Finally, the accuracy of simple name spelling based heuris-

tics were shown to be quite sensitive to the error types, while edit-distance based

metrics such as Jaro or Jaro-Winkler proved to be inadequate for large-scale SER

problem for its slow processing time.

3.5 Summary

Based on our scalable two-step framework, we compared various configurations –

four blocking in step 1 (i.e., heuristic, token, N -gram, sampling), seven distance

metrics via “co-author” information in step 2 (i.e., NBM, SVM, Cosine similar-

ity, TF/IDF, Jaccard, Jaro, Jaro-Winkler), against four data sets (i.e., Computer

Science, Physics, Medical, Economics). Experimental results verify that our pro-

posed two-step framework using co-author relation (instead of author name alone)

shows much improved scalability and accuracy (e.g., 4 times faster and 50% more

accurate using sampling and TF/IDF on DBLP data set) compared to one-step

approach.



Chapter 4
The Grouped Entity Resolution

(GER) Problem

In this chapter, we focus on the Grouped Entity Resolution (GER) problem, where

each grouped entity has “a group of elements” in it. Examples include authors with

a paper list or actors with a movie list. Unlike the previous approaches, relying on

textual similarity and producing a large number of false positives 1, we presented

the experience of applying a recently proposed graph mining technique, distQC,

atop conventional entity resolution solutions. This approach exploits contextual

information mined from the group of elements per entity in addition to syntactic

similarity. Furthermore, we focus on the intuition that two groups can be linked to

each other if there is a high enough simialrity between matching pairs of individual

records that constitute the two groups and there is a large fraction of such matching

record pairs. To formalize this intuition, we present a Group Linkage measure

based on bipartite graph matching with better accuracy than the existing textual

similarity measures.

4.1 Quasi-Clique based Distance Measure

With an array of extensive research on the ER problem (surveyed in Chapter 2), in

general, there are various efficient and effective methods to identify split entities.

1An entity determined to be a variant when it is not.
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However, we observed that a particular type of entities occur quite common in real

applications, and a more aggressive method can exploit the characteristics of the

type better. That is, we noticed that many entities contain “a group of elements”

in them. We refer to such an entity as a Grouped-Entity and the ER problem

on grouped-entity as the Grouped-Entity Resolution (GER) problem. Unlike

a regular entity, a grouped-entity contains a wealth of information in its elements.

How to unearth such hidden information for resolving grouped-entities is the focus

of this problem. Throughout the rest of this chapter, we simply use “entity” to

refer to the grouped-entity.

The GER problem frequently occurs in many situations as follows:

• Examples of grouped-entities include an author entity with a paper list or

an actor entity with a movie list. Figure 1.1 and Figure 1.6 illustrate the

screen-shots of the GER problem from two real digital libraries – ACM and

DBLP. Here, each grouped-entity (i.e., author) has a group of citations in

it. Due to various errors, however, citations of the same author may be

split under multiple author names. For instance, in the ACM, the citations

of computer scientist “Jeffrey D. Ullman” appear under ten different name

variants. If we take entity “Jeffrey D. Ullman” as the canonical one, then the

other nine (e.g., “D. Ullman” and “J. Ullmann”) are variants, and should

be consolidated. Similarly, in DBLP, a partial list of citations of “Yin-Feng

Xu” appears under the variant entity “Yinfeng Xu.”

• The US census bureau2 needs to keep track of people in families. To do this,

they often use people’s names or known addresses. However, due to data-

entry errors or confusing homonyms, the tracking is not always successful.

Moreover, comparing two people by their names alone yields many false

positives. Now, suppose one uses as context the family information of each

person – two persons are similar if their “families” are similar, e.g., they

share the similar family members such as names of spouse and children.

That is, each grouped-entity (i.e., person) has a group of elements (i.e., family

names). Then, in determining if “John Doe” is the same person of “Jonathan

Doe,” for instance, one may combine the textual similarity, sim(“John Doe”,

2The example is derived from the discussion with Divesh Srivastava at AT&T Labs.
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“Jonathan Doe”), as well as the contextual similarity – if the family of “John

Doe” shares similar names with that of “Jonathan Doe.” If so, it is likely

that “Jonathan Doe” is a name variant of “John Doe.”

By and large, previous approaches to the GER problem (e.g., [8, 34, 11]) work

as follows: (1) the information of an entity, e, is captured in a data structure,

D(e), such as a multi-attribute tuple or an entropy vector; (2) a binary distance

function, f , is prepared; (3) the distance of two entities, e1 and e2, is measured

as that of the corresponding data structures, D(e1) and D(e2), using function f :

dist(e1, e2) = f(D(e1), D(e2)); and (4) finally, if the result, r = dist(e1, e2), is less

than certain threshold, φ, then the two entities are variants: r < φ → e1 ∼ e2.

Although it works well in many scenarios, this approach often suffers from a large

number of false positives (i.e., an entity determined to be a variant when it is

not). Consequently, the overall recall and precision suffer. If a user asks for top-k

answers, such false positives can even override correct variants out of the answer

window of |k|, degrading the precision substantially.

Consider the example of Figure 1.1 again. Suppose the distance of two en-

tities is measured as that of author name spellings themselves. If we use Edit

distance, for instance, dist(“J. D. Ullman”, “J. Ullman”) = 2. If the thresh-

old φ is set to 3, then “J. Ullman” can be correctly identified as a variant of

“J. D. Ullman”. However, other entities such as “J. L. Ullman” or “K. Ull-

mann” whose distances are less than 3 will also be detected as variants. How-

ever, both are in fact false positives . Even if we use more sophisticated data

structures to capture entities, the problem may still persist. For instance, sup-

pose an author entity of Figure 1.1 is represented as a multiple-attribute tu-

ple, (coauthor, title, venue), where each attribute is a vector of tokens from

the citations. That is, “J. D. Ullman” and “K. Ullman” are represented as

([Hopcroft, Aho], [Cube, Query], [KDD, ICDM]) and ([Cruise, Kidman],

[Mining, Query], [KDD, SIGMOD, ICDM]), respectively. Then, depending on

the distance function, it is possible that “K. Ullman” is identified as a variant

of “J. D. Ullman” since both share many tokens. However, “K. Ullmann” is a false

positive which happens to bear certain textual similarity to “J. D. Ullman” (since

maybe both share research interests).

The culprit of this false positive problem is in essence the use of distance func-
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tions that solely rely on the “textual similarity” of two entities, regardless of the

adopted data structures. Toward this problem, in this chapter, we present a novel

graph partition based approach that boosts up precision significantly. We un-

earth the relationship hidden under the grouped-entities, and exploit it together

with textual similarities. Experimental results using real and synthetic data sets

validate our claim.

Our contributions are as follows:

• We formulate the GER problem as a special form of the ER problem. Since

the grouped-entities in the GER problem contain a wealth of information

(i.e., a group of elements), the exploitation of GER can result in better

outcome.

• We introduce how to capture “contextual information” hidden in a group of

elements in grouped-entities. In particular, we propose to use the technique

of superimposition to mine hidden relationships into graphs.

• To capture the “contextual distance” between grouped-entities, we exploit

the notion of Quasi-Clique, a measure to see how strong inter-relationships

between two graphs are, and propose a simple yet effective two-step GER

algorithm, distQC.

• The proposed techniques of superimposed graphs and subsequent Quasi-

Clique-based distance measurement are implemented and tested extensively

against five test cases (1 real and 4 synthetic cases). Experiments verify that

our proposal improves precision and recall up to 83% (when used with a

variety of existing ER solutions) but never worsens them.

4.1.1 Quasi-Clique based Distance Measure: Problem

Unlike regular entities, each grouped entity contains a group of tuples in it. Exam-

ples include an author entity with a paper list or an actor entity with a movie list.

This is illustrated in Figure 4.1(a). Then, the distance of two entities can be mea-

sured by many things. For instance, we compare “Jeffrey D. Ullman” and “Jeffrey

Ullman” to determine if both author entities are variants or not (Figure 4.1(b)).
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(a) (b) (c) (d)

Figure 4.1: Illustration of our approach: (a) regular vs. grouped entities; (b) distance
based on entity names; (c) distance based on the contents of entities (as multi-attribute
vectors); and (d) distance based on the context of entities (as graphs).

Similarly, two address entities, e1 and e2, may be detected as variants if their corre-

sponding properties, (“Foster Ave.”, 16802, “PA”) and (“East Foster Ave.”, 16802,

“Pennsylvania”), are similar. For the case of grouped entities, one can represent a

group of tuples in some data structures, and measure the distance as the distance

of two data structures. For instance, Figure 4.1(c) illustrates when vectors used to

capture the contents of grouped entities (i.e., multi-attribute tuples). Typically,

the group of tuples in the grouped entities follows certain formats, and contains a

lot of tokens “not” all of which are directly indicative of the entity. For instance,

the grouped entity of “Yin-Feng Xu” of Figure 1.6 contains 19 citations, each of

which contains co-authors, title, venue, year, etc. Then, some tokens in this long

list are not real indicative of the entity “Yin-Feng Xu” and may confuse regular

distance functions. Therefore, often, detecting variant grouped entities yields a

large number of false positives. Now, we formally define the Grouped Entity Res-

olution problem as follows:

Given a set of grouped entities, E, where each entity contains a group of tuples,

for each canonical entity, ec (∈ E), identify all variant entities, ev (∈ E), such that

dist(ec, ev) < φ with as few false positives as possible.

Note that our proposal works as long as “one” entity is selected as the canoni-

cal one.
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4.1.2 Quasi-Clique based Distance Measure: Solution

In general, as a domain independent technique, string distance metrics that com-

pare values of entity attributes are mainly employed to determine if two entities

are variants. However, we consider a web of entities connected via relationships

present in data sets. Our approach is based on the hypothesis that “if two en-

tities are variants, there is a high likelihood that they are strongly connected to

each other through a web of relationships, implicit in the database” [40]. In other

words, among “J. D. Ullman,” “J. Ullman,” and “J. K. Ullman” entities, in order

not to mistakenly mark “J. K. Ullman” as a variant of “J. D. Ullman” (i.e., no false

positive), we may unearth the hidden relationships between two and exploit them

(e.g., although both are Database researchers, the cores of their frequent co-author

list are slightly different). This is illustrated in Figure 4.1(d), where the contents of

the grouped entities are first captured as some “graphs” and subsequently the dis-

tance between two graphs are used to measure the distance between two grouped

entities. Since graphs may contain richer information than simple strings or vec-

tors, the corresponding distance results from graphs are likely to help identify real

variants.

Using Context as Additional Information. In general ER problem (e.g.,

record linkage, reference resolution, name disambiguation), often, the underlying

assumption is that there are some textual similarities among variant entities. For

instance, to identify if two given records are duplicate or not (i.e., record linkage

problem), one may apply either a token-based distance function (e.g., Jaccard) or

an edit-distance based function (e.g., Jaro) to measure how similar two records

are. However, in the situations where matching entities may “not” bear syntac-

tical similarities, the general ER methods do not work well. On the other hand,

an interesting observation from the previous studies is that a method often has

good performance if it can consider some “additional information” beyond tex-

tual similarities. We call this additional information as context. To illustrate

the usefulness of context, let us consider the following example. First, the US

census bureau needs to keep track of people in families. To do this, they often

use people’s names or known addresses. However, due to data entry errors or

confusing homonyms, the tracking is not always successful. Moreover, comparing

two persons by their names alone yields many false positives. Now, suppose we
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(a) “A. Puneli” entity (b) “A. Punelli” entity (c) “M. Sharir” entity

Figure 4.2: Graph representations of the “contexts” (i.e., co-authors) of three grouped
entities, and their superimposed quasi-cliques (solid lines).

use as context the family information of each person – two persons are similar if

their “families” are similar (e.g., they share the similar family members such as

names of spouse and children). Then, in determining if “John Doe” is the same

person as “Jonathan Doe”, for instance, one may combine the textual similarity,

sim(“John Doe”, “Jonathan Doe”), as well as the contextual similarity – if the

family of “John Doe” shares similar names with that of “Jonathan Doe.” If so,

it is likely that “Jonathan Doe” is a name variant of “John Doe,” both of whom

share the similar family members. As a second example, let us consider the col-

laboration network of digital libraries (i.e., a network with vertices being authors

and edges being co-authorship relations). Look at the GER problem of Figure 1.1

again. Here, the goal is to determine if two author entities, say, “J. D. Ullman”

and “J. K. Ullman”, refer to the same person or not. Since each entity is a type

of the “grouped” entity, it has a group of tuples in it. That is, each has abundant

repetition of related tokens – a set of co-author names, tokens of words used in

paper titles, or a set of venue names to which they submit often, etc. We may use

these as context and measure the corresponding contextual similarity. Consider

the following example drawn from the ACM digital library.

There are three grouped entities, Ea (“A. Puneli”), Eb (“A. Punelli”), and Ec

(“M. Sharir”), of which Eb is the name variant of Ea and Ec is the false positive of

Ea. In the ACM data set, each entity has the following co-authors in their group

of tuples:

• Ea={“M. Sharir”, “S. Harts”, “T. Henzinger”, “Z. Manna”, “M. Shalev”,

“E. Harel”, “O. Maler}
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• Eb={“M. Sharir”, “S. Harts”, “T. Henzinger”, “Z. Manna”, “O. Kupfer-

man”, “S. Kaplan”, “E. Singerman”, “M. Siegel”}

• Ec={“A. Pnueli”, “S. Harts”, “Z. Monna”, “A. Wiernik”, “P. Agarwal”, “M.

Shalev”, “E. Harel”, “O. Maler”}

If we draw graphs where the entity itself becomes the center node and its co-

authors become neighboring vertices attached to the center node, then we get

Figure 4.2. Furthermore, if there are known co-authorships among co-authors,

edges are created between them. For instance, “S. Harts” and “T. Henzinger”

co-authored elsewhere (i.e., other than in entities Ea, Eb, and Ec), and thus an

edge connecting them is created in Figure 4.2(a). First, suppose we compare

three entities by counting how many common co-authors they have. Then, Eb and

Ec have 5 and 7 common co-authors with Ea, respectively. Therefore, if we use

distance metrics that are based on the number of common tokens of two entities

such as Jaccard distance, then Ec would be probably returned as a variant of Ea

over Eb. However, this is incorrect, and we have a case of false positive. Second, if

we compare three entities in terms of how large the maximum common subgraph

(where all vertices and adjacent edges match) is, then Eb and Ec have a common

subgraph with 5 and 3 vertices with Ea, respectively. Therefore, Eb would be

returned as a variant of Ea over Ec – the opposite result of previous case. Note

that entities Ea and Eb have four common co-authors, {“M. Sharir”, “S. Harts”,

“T. A. Henzinger”, “Z. Manna”}, who are all well connected among themselves.

This can be used as a clue to unearth the hidden similarity between two entities,

Ea and Eb. On the other hand, Ec shares only small-sized well-connected subgraph

although overall it has more number of common co-authors. In other words, if we

look at the relationships existing in the whole graph, instead of individual vertices,

then we may be able to detect that Ec is not a variant of Ea.

Based on this observation, in the following sections, we introduce our proposal

of using graph-based partition to tackle the GER problem. We capture contex-

tual information as graphs through superimposition, and measure their contextual

similarity in terms of Quasi-Clique [56].

Quasi-Clique. Given a graph G, let V (G) and E(G) be the sets of vertices

and edges in the graph, respectively. Let U ⊆ V (G) be a subset of vertices. The
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subgraph induced on U , denoted by G(U), is the subgraph of G whose vertex-set

is U and whose edge-set consists of all edges in G that have both endpoints in U ,

i.e., G(U) = (U,EU), where EU = {(u, v)|(u, v) ∈ E(G) ∧ u, v ∈ U}. A connected

graph G is a γ-quasi-complete graph (0 < γ ≤ 1) if every vertex in the graph has

a degree at least γ · (|V (G)| − 1). Clearly, a 1-quasi-complete graph is a complete

graph (i.e., clique). In a graph G, a subset of vertices S ⊆ V (G) is a γ-Quasi-

Clique (0 < γ ≤ 1) if G(S) is a γ-quasi-complete graph, and no proper superset

of S has this property. Clearly, a 1-Quasi-Clique is a clique. As shown in [56], an

interesting property of Quasi-Cliques is that when γ is not too small, a γ-Quasi-

Clique is compact – the diameter of the Quasi-Clique is small. Technically, let G

be a γ-quasi-complete graph such that n = |V (G)| > 1. [56] proves the following

result.

diam(G)
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The upper bounds are realizable. In a network (e.g., a social network or a citation

network) scenario, a Quasi-Clique is a set of objects that are highly interactive

with each other. Therefore, a Quasi-Clique in a graph may strongly indicate the

existence of a potential community. Since a Quasi-Clique contains a group of

highly interacting (and thus likely highly similar in role) objects, it may be more

reliable in representing relationships than individual objects. Heuristically, we can

use Quasi-Clique to annotate the relationships in large scale subgraphs, which is

highly desirable for solving the GER problem.

4.1.2.1 Step 1: Mining Graphs from Context through Superimposition

In order to apply the Quasi-Clique to measure contextual distances, we first need

to capture this additional information of grouped entities as “graphs.” Let us
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Figure 4.3: Illustration of “superimposition” of co-author data set.

Figure 4.4: Exemplar graphs mined from the ACM data set: (a) A collaboration graph
on the 2-vertex neighborhood of “Umeshwar Dayal,” and (b) A venue relation graph
using Jaccard similarity on the authors of venues.

informally explain this process using examples. Suppose we want to mine a graph

out of an author entity A’s co-author tokens: B, C, D, and E. First, a vertex is

prepared for tokens, A through E, referred to as V (A) through V (E). Then, four

co-author vertices, V (B) through V (E), are connected to the main vertex V (A),

forming a graph, ga. Then, ga is “superimposed” to the collaboration graph, G,

that is pre-built using the entire set of co-authors from all grouped entities. For

instance, if an author C had co-authored with an author D elsewhere, then now

ga will have an edge connecting V (C) and V (D). At the end, if all neighboring

co-authors of A have co-authored each other, then ga becomes a clique. This

process is illustrated in Figure 4.3. Also, Figure 4.4(a) is a collaboration graph on

partial data set of the ACM digital library. Similarly, for venue information, once

we create an initial graph, ga, we can superimpose it against some semantically
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constructed graph. For instance, Figure 4.4(b) illustrates a venue graph where an

edge between two venue vertices represents the “semantic” similarity of two venues

(e.g., how many authors are common). If a grouped entity A has two distinct

venue tokens, “VLDB” and “SIGMOD,” then we first create an initial graph where

A is the main vertex and there are two neighboring vertices for “VLDB” and

“SIGMOD.” Then, when we superimpose this initial graph against Figure 4.4(b),

due to their close semantic relationship, an edge between vertices for “VLDB” and

“SIGMOD” may appear. The superimposition works as long as there is a base

graph (e.g., collaboration graphs, venue relation graphs) onto which an entity’s

graph is superimposed. For semantics-rich problem domains like citation data

sets, generating such a base graph is easy.

4.1.2.2 Step 2: distQC – Using Quasi-Clique to Measure Contextual

Distance

Input : A grouped entity e, an ER method M , and three parameters (α,
γ, and S).

Output: k variant grouped entites, ev(∈ E), such that ev ∼ e.

Using M , find top α× k candidate entities, eX ;
Gc(e)← context graph of e;
for ei(∈ eX) do

Gc(ei)← context graph of ei;
gi ← QC(Gc(e), γ, S);

Sort ei(∈ EX) by |gi|, and return top-k;

Algorithm 3: distQC

Once the contexts of entities are captured and represented as context graphs,

their similarity can be properly modeled using Quasi-Clique [57]. A connected

graph G is a γ − quasi− complete graph(0 < γ ≤ 1) if every vertex in the graph

has degrees of at least γ(|V (G)|−1). In a graph G, a subset of vertices S ⊆ V (G) is

a γ−Quasi−Clique(0 < γ ≤ 1) if G(S) is a r-quasi-complete graph, and no proper

superset of S has this property. Clearly, a 1-Quasi−Clique is a clique. In a network

(e.g., a social network or a citation network) scenario, a Quasi−Clique is a set of

objects that are highly interactive with each other. Therefore, a Quasi − Clique
in a graph may strongly indicate the existance of a potential community. Since
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Table 4.1: Summary of data sets.

Data set Domain # of grouped entities # of tuples in all entities
ACM Computer Science 707,368 1,037,968

EconPapers Economics 18,399 20,486
BioMed Medical 24,098 6,169
IMDB Entertainment 935,707 446,016

a Quasi − Clique contains a group of highly interacting (and thus likely highly

similar in role) objects, it may be more reliable in representing relationships than

individual objects.

While γ value indicates the compactness of Quasi−Clique, another parameter

that is of interest is the number of vertices of Quasi − Clique. We denote this

parameter as S. For a graph G, therefore, functions: (1) QC(G, γ, S) returns a

γ −Quasi− Clique graph g from G with |V (g)| ≥ S if it exists, and (2) QC(G1,

G2, γ, S) returns a common γ − Quasi − Clique graph g of G1 and G2 with

|V (g)| ≥ S. Then, |g| indicates how strongly two graphs G1 and G2 are related,

and can be used as a “distance.” Our two-step GER algorithm, distQC, is shown

in Algorithm 3. Given an entity e(∈ E), to locate matching k variant entities,

the distQC algorithm first relies on any existing ER solutions, and selects α (e.g.,

2 ≤ α ≤ 3) times more number of candidates than k as an extra. Since we try to

improve precisions by reducing false positives, once we get more candidates, if we

can boost up those correct variants up into higher ranks in subsequent steps, then

our aim can be met. γ value controls the “quasiness” of the graph, and S works

as the minimum filter.

4.1.3 Experimental Set-up

To validate our proposal, we first gathered four real data sets from diverse domains

– ACM, BioMed, EconPapers, and IMDB – as shown in Table 4.1. Ideally, in

order to validate our proposal to the GER problem, we need canonical and variant

entities (i.e., solution set). However, in general, manually gathering such a solution

set is a labor-intensive task. Therefore, we prepared only one “real” solution set

against ACM data set, and four synthetically generated artificial solution sets – a

total of five test sets. Since we have solutions for all five test sets, we can check

the correctness at the end.
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Real Case. From the ACM data set, we have gathered 47 real cases of canonical

and variant grouped entities. Each case has one designated canonical entity and

on average two variant entities. Furthermore, each grouped entity has on average

about 24.6 tuples in it (i.e., each author has 24.6 citations). Real cases include

variants as simple as “Luis Gravano” vs. “L. Gravano” (i.e., abbreviation) and

“Alon Levy” vs. “Alon Halevy” (i.e., last name change) to as challenging as

“Shlomo Argamon” vs. “Sean Engelson” (i.e., little similarity) or even ten variants

of “Jeffrey D. Ullman” of Figure 1.1. Since there are a total of 707,368 entities

in the ACM data set, locating all variants correctly without yielding any false

positives is a challenging task.

Synthetic Case. We synthetically generated a test case for each data set as

follows. For each data set, we first pick 100 grouped entities with enough tuples in

them. For instance, a canonical entity “Jeffrey D. Ullman” in the ACM data set

has 266 tuples (i.e., citations) and 114 co-authors. Then, we made up a variant

entity by either abbreviating the first name (“J. D. Ullman”) or injecting invalid

characters to the last name (“J. D. X-Ullman-Y”) in 7:3 ratio. Then, Both canon-

ical and variant entities carry halves, 133, of the original tuples. The goal is then

to identify the artificially generated variant out of the entire entities – e.g., 707,368

in ACM and 935,707 in IMDB. Note that we could have generated variants with

more difficult names using, for instance, alternation (“Ullman, Jeffrey D.”), con-

traction (“JeffreyD. Ullman”), omission (“Jeffrey Ullman”), or any combinations

of these. However, since we apply regular or Quasi-Clique based distance functions

to the contents of the grouped entities (i.e., citations or movie lists), not to the

names, such a variation attributes little to the results. Furthermore, due to the

large number of entities in data sets, the first step of the algorithm often yields

thousands of entities, out of which our Quasi-Clique-based method needs to find 1

or 2 variants in the second step – non-trivial task already.

Evaluation Metrics. Suppose there are R hidden variants. After top-k candidate

variants are returned by an algorithm, furthermore, suppose that only r candidates

are correct variants and the remaining k − r candidates are false positives. Then,

Recall = r
R

and Precision = r
k
. Since this traditional recall and precision do

not account for the quality of ranking the right variants in the answer window
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k, the Ranked Precision measures precision at different cut-off points [36]. For

instance, if the topmost candidate is a correct variant while the second one is a

false positive, then we have 100% precision at a cut-off of 1 but 50% precision

at a cut-off of 2. In our context, we set the cut-off points dynamically to be

all ranks at which only “correct” variant is found, referred to as C. Formally,

Ranked Precision =
∑
i∈C precisioni

k
, where precision i is the precision at a cut-off of

i. Finally, the Average Recall (AR) and Average Ranked Precision (ARP) are the

averages of recall and ranked precision over all cases (i.e., 47 cases for real ACM

test set and 100 cases for each of the four synthetic test sets).

Compared Methods. Recall that the goal of the proposed two-step algo-

rithm is to avoid false positives, and thus improve overall precision and recall.

To see the effectiveness of our distQC, we conducted various traditional distance

metrics in the first step to get initial candidate variants. In the second step, we

applied the distQC-based metric to the candidate variants to get the final an-

swers. Then, we compared the performance of “before” and “after” distQC-based

metric was applied. In the first step, we experimented the following distance met-

rics: Monge-Elkan (ME), Jaro (JR), Jaccard (JC), TF/IDF (TI), Jensen-Shannon

(JS), Felligi-Sunter (FS), SoftTFIDF (ST) and Cosine similarity (CS). For the

details, please refer to [65]. In addition, we also tried one of the state-of-the-art

algorithms to the GER problem – IntelliClean (IC) [46]. The IntelliClean solves

the GER problem by (1) selecting a few important context attributes by the asso-

ciative rule mining; (2) building a concept hierarchy on the attributes (e.g., values

like “VLDB” and “SIGMOD” for venue attribute are clustered under “Database”,

which in turn falls under “Systems” etc.); and (3) measuring distances to identify

variants. Authors reported good recall and precision using a manually-generated

concept hierarchy in [46]. Since our test sets are too large to manually generate

such a concept hierarchy, we extended the IntelliClean as follows: First, we mea-

sure all pair-wise distances among venues using Jaccard similarity, |A∩B||A∪B| , where A

and B are author sets of venues X and Y . The result is shown in Figure 4.4(b).

Once we can get an n × n matrix M , where M [i][j] tells the distance between

venues i and j, venues can be grouped into a concept hierarchy using popular

clustering methods such as hierarchical clustering or k-means clustering.
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Figure 4.5: Results of eight distance metrics against ACM real case.

4.1.4 Experimental Results

1. Results of existing distance functions. Our proposed method, distQC,

first uses one of the existing distance functions in the first step of distQC. There-

fore, first, we attempted to identify distance functions that work best for the given

GER problem. In this setting, the distance of two entities, dist(ec, ev), is measured

as that of the contents (as tokens) of two entities, dist(tokenlist(ec), tokenlist(ev)),

after stop words such as “the” are pre-processed first. Figure 4.5 illustrates per-

formance results of eight distance functions against the ACM real case. Results

for other data sets show similar pattern and thus omitted. In general, token-based

distance functions such as Jaccard similarity (JC) and TF/IDF (TI) show a good

combination of Average Recall (AR) and Average Ranked Precision (ARP). Fur-

thermore, for the real ACM data set, co-author information proves to be the most

effective attribute. Comparing tokens of venues and titles to measure distances

yield a rather poor AR and ARP due to noisy data. For instance, the venue at-

tribute often has the same conference in diverse names (e.g., “JCDL” vs. “Joint

Conference on Digital Libraries”). Therefore, functions using textual similarities

do not necessarily work well. In particular, note that the low average ranked pre-

cision for all distance functions that we examined due to a large number of false

positives – a good motivation for our Quasi-Clique technique later. In the proposed

two-step approach, since both JC and TI perform the best in Figure 4.5, we use

them as the distance metrics in the first step of distQC.

2. Parameter tuning test for distQC. distQC has two parameters to set:

(1) γ for the compactness of Quasi-Clique; and (2) S for the minimum size of

Quasi-Clique. In this test, we attempt to see if the performance of distQC is

sensitive to either parameters of Quasi-Clique. Figure 4.6 illustrates AR and ARP
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Figure 4.6: Parameter tuning test for distQC (e.g., “coauthors(2)” indicates that distQC
is performed on co-authors with the minimum size 2.) 
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Figure 4.7: Real test case for the ACM data set.

of Quasi-Clique using the ACM real case. In every graph, each object in a group

is connected to at least a portion γ (0 < γ ≤ 1) of the other objects in the same

group. As γ is increased from 0.1 to 0.5, and the minimum size of distQC, S, is set

to either 2 or 3. Note that Quasi-Clique perform consistently regardless of either

parameters. Therefore, we set γ = 0.3 and S=3 in the remaining test.

3. Quasi-Clique on the ACM real case. Next, we experiment to see if

Quasi-Clique can improve the performance of one-step distance functions. We

first measure the performance of three distance metrics JC, TI, and IC. Then, to

each, Quasi-Clique is applied as the second step of distQC, and the performance

is measured as JC+QC, TI+QC, and IC+QC. In particular, we vary two clus-

tering algorithms to generate a concept hierarchy for IC – hierarchical clustering

and k-means clustering (not shown) – both show similar performance. Figure 4.7

illustrates AR and ARP of these six methods. Note that Quasi-Clique improved

ARP visibly. For instance, the ARP of JC+QC (resp. TI+QC) significantly im-

proves from JC (resp. TI) on co-authors. On average, ARP improves by 63%,

83%, and 46% for three attributes, respectively. In general, JC and TI are simple

distance metrics, measuring distances based on the occurrences of common tokens.

Since some authors have name initials and common first names on co-author data,
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(c) BioMed
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(d) IMDB

Figure 4.8: Synthetic test cases for four data sets.

therefore, these metrics tend to generate a large number of false positives as shown

in Figure 4.7. Since Quasi-Clique uses additional information as to how closely

co-authors of the authors are correlated each other on graph representation, it

overcomes the limitations of the simple metrics.

4. distQC on Synthetic cases. Finally, we experiment to see how effective
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Quasi-Clique is against large-scale data sets with synthetically generated solu-

tion sets. For this purpose, we prepared four data sets with diverse domains –

ACM, EconPapers, BioMed, and IMDB. Figure 4.8 illustrates the final results of

AR and ARP for all data sets. Regardless of the distance function used in the

first step of distQC (either JC or TI), the type of attributes (co-authors, titles or

venues), or the type of data sets, distQC consistently improved the ARP up to

75% (BioMed/the title case). Figure 4.8(d) illustrates the performance result of

IMDB – a movie data set with attributes like movie IDs, countries, distributors,

editors, genres, keywords, languages, locations, producers, production companies,

and release dates. An example tuple looks like (935720, “USA”, “Fox Network”,

“Pier”, “Drama”, “Boat”, “English”, “Colusa California USA”, “Katir Tirnagi”,

“Columbia pictures television”, “December 2001”). Then, the GER problem in

this domain is that given two actors, X and Y (i.e., a movie star “Jim Carey” and

his name variant “J. Carey”), identify if they are the same actor or not, using their

movie record list. Note that, unlike citation data sets, both correlations of inter-

records and inter-attribute values are weak. For instance, authors in citations usu-

ally work with particular co-authors so that by mining hidden contextual distance

between co-authors, Quasi-Clique contributes to avoiding false positives. How-

ever, not all actors work with particular editors or distributors for many movies.

At the end, we select three attributes, “locations”, “production companies”, and

“release dates”, as these have more contextual information than other attributes

(e.g., French actors tend to star french movies more often). Figure 4.8(d) illus-

trates AR and ARP of JC and TI, and their two-step correspondents, JC+QC and

TI+QC. Overall, the location attribute shows relatively lower AR and ARP than

release dates and production companies, in all of the methods. This is because

there are a lot of uncommon tokens such as the city “Victorville” in the location

attribute. Nevertheless, distQC improve the ARP by 13%, suggesting its effective-

ness. Both AR and ARP of TI are low, compared to those of JC. This is because

there are common attribute values, such as “USA” in locations, and “pictures” or

“movies” in production companies. In TI, for weighting tokens, common tokens

(e.g., “movies”) would have lower weight via IDF, negatively affecting matching

process. In AR, distQC show much higher than both JC and TI. Compared with

citation data sets, note that our distQC algorithm performs slightly better than
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string distance metrics for the IMDB data set. This is because (1) records and

attribute values of an actor and his/her variant entities have no strong relation-

ships unlike those of citations; (2) attribute values of citations are long while those

of the IMDB data set are short, carrying less meaningful information; (3) many

attributes in the IMDB data set contain empty values and noises.

4.1.5 Summary

Toward the grouped-entity resolution problem, we present a graph partition based

approach using Quasi-Clique. Unlike string distance or vector-based cosine metric,

our approach examines the relationship hidden under the grouped-entities. Exper-

imental results verify that our proposed approach improves precision up to 83% at

best (in Figure 4.7), but never worsens it. Therefore, as a complementary approach

to existing ER solutions, we believe that our proposal can help improve the per-

formance of conventional approaches that are only based on syntactic similarities.

4.2 Group Linkage Measure

The quality of data residing in databases gets degraded due to a multitude of rea-

sons. Such reasons include transcription errors (e.g., lexicographical errors, char-

acter transpositions), lack of standards for recording database fields (e.g., person

names, addresses), and various errors introduced by poor database design (e.g.,

update anomalies, missing key constraints). Data of poor quality can result in

significant impediments to popular business practices: sending products or bills

to incorrect addresses, inability to locate customer records during service calls,

inability to correlate customers across multiple services, etc.

To be able to query and integrate such data in the presence of data quality

errors, a central problem is the ability to identify whether two entities are approx-

imately the same. When each entity is represented as a relational record, this

problem is referred to as the record linkage problem. Depending on the type of

data under consideration, various similarity measures (approximate match pred-

icates) have been defined to quantify the closeness of a pair of records in a way

that common mistakes are captured. Given any specific similarity measure, a key
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algorithmic problem in this context is the approximate match problem: given a

large relation of data records and a single query record, identify all data records

whose similarity with the query record exceeds a specified similarity threshold.

Often entities are represented as groups of relational records (sharing a group

ID), rather than individual relational records. For example, a household in a cen-

sus survey consists of a group of persons, where each person is represented by a

relational record. Similarly, an author in a digital bibliography consists of a group

of publications, where each publication is represented by a relational record. In

such cases, there is often a need to identify whether two entities (represented by

groups of relational records) are approximately the same. For example, re-sampling

strategies used in statistical census surveys would need to identify matching house-

holds between the original sampled set and the re-sampled set. Similarly, when

integrating different digital bibliographies (e.g., DBLP and ACM Digital Library),

there is a need to identify an author in one that matches an author in the other.

We refer to the problem of determining if two entities represented as groups are

approximately the same as the group linkage problem.

Determining if two entities, represented as groups, can be linked to each other

typically requires (approximately) matching elements (each of which is a relational

record) across the two groups using record linkage techniques. Intuitively, two

groups can be linked to each other if:

• There is high enough similarity between “matching” pairs of individual records

that constitute the two groups; the matching pairs of records do not need to

be identical.

• A large fraction of records in the two groups form matching record pairs; not

all records in each of the two groups need to match.

Our first technical contribution in the group linkage problem is to formalize this

intuition and propose a group linkage measure based on bipartite graph matching,

referred to as BMsim,ρ, where ρ is a lower bound on the similarity between pairs of

records in the two groups using record-level similarity measure sim. This measure

is a natural generalization of the popular Jaccard similarity measure between two

sets. In particular, if we constrain records from the two groups to match only when
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they are identical, our group linkage measure reduces to the Jaccard similarity

measure.

Given the BMsim,ρ group linkage measure, a key algorithmic problem in this

context is the approximate match problem: given a large relation of records (each

associated with a group ID) D and a single query group of records g, identify

all groups of records gi ∈ D such that BMsim,ρ(g, gi) ≥ θ, where 0 ≤ θ ≤ 1 is a

group similarity threshold. Computing the group linkage measure BMsim,ρ requires

the computation of maximum weight bipartite matching, which is an expensive

operation. Efficiently finding groups gi ∈ D with a high group linkage similarity

to an input query group requires quickly eliminating the many groups that are

unlikely to be desired matches.

To enable this task, our second contribution is the development of simpler group

similarity measures that can be used either as lower or upper bounds to BMsim,ρ,

or as a blocking technique during a fast pre-processing step. We show that these

simpler group similarity measures can be easily instantiated using SQL, permitting

our techniques to be implemented inside the database system itself.

Our third contribution is a detailed experimental study validating the utility

of our measures and techniques using a variety of real and synthetic data sets. We

show that our measures can be implemented efficiently, are more robust and can

achieve better recall than competing approaches.

4.2.1 Group Linkage: Problem

We use D to denote a relation of multi-attribute records, one of whose attributes

is a group ID; r (possibly with subscripts) to denote records in D; and g (possibly

with subscripts) to denote groups of records in D, i.e., a set of records that share

the same value of the group ID attribute. Let sim denote an arbitrary record-level

similarity measure, such that sim(ri, rj) ∈ [0..1], where 1 denotes a perfect match.

Table 4.2 summarizes the notations used throughout this chapter.

Group Linkage Measure. Consider two groups of records g1 = {r11, r12, . . . , r1m1}
and g2 = {r21, r22, . . . , r2m2}. The group linkage measure BMsim,ρ is the normal-

ized weight of the maximum weight matching M in the bipartite graph (N =



62

Notation Description
D relation of multi-attribute records

g1, g2, ... groups of records in D
r1, r2, ... records in D
sim(ri, rj) arbitrary record-level similarity function

θ group-level similarity threshold
ρ record-level similarity threshold
M maximum weight bipartite matching
BM bipartite matching based group linkage

UB, LB upper and lower bound of BM
MAX max() based heuristic group linkage

Table 4.2: Summary of notations.

g1 ∪ g2, E = g1 × g2), defined as:

BMsim,ρ(g1, g2) =
Σ(r1i,r2j)∈M(sim(r1i, r2j))

m1 +m2 − |M |

such that each sim(r1i, r2j) ≥ ρ.

The numerator of BMsim,ρ is the weight of the maximum weight bipartite

matching M using only edges with record-level similarity no less than ρ. The

denominator adds up the number of edges in the matching M and the number of

“unmatched” elements (i.e., records) in each of g1 (i.e., m1 − |M |) and g2 (i.e.,

m2 − |M |). BMsim,ρ is guaranteed to be between 0 and 1. When the numerator

is large, it captures the intuition that there is high enough similarity between

“matching” pairs of individual records that constitute the two groups; the matching

pairs of records do not need to be identical. When the denominator is small, it

captures the intuition that a large fraction of records in the two groups form

matching record pairs; not all records in each of the two groups need to match.

The group linkage measure BMsim,ρ is a natural generalization of the popu-

lar Jaccard similarity measure between two sets s1 and s2, defined as |s1∩s2||s1∪s2| . In

particular, if we constrain the records from the two groups to match only when

they are identical, our group linkage measure results in the same similarity value

as the Jaccard similarity measure. Likewise, since BMsim,ρ is a generalization of

the Jaccard measure, it can identify matching groups when the Jaccard fails as

shown in the following example.
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ID Group name Description
g127381 Amelie Marian canonical group
g583980 Amelie Marian matching group
g136440 Jean-Claude Mamou false positive
g32238 Brendan Hills false positive

Table 4.3: Example of “Amelie Marian”.

(a) Maximum weight bipartite matching for g583980.

(b) Maximum weight bipartite matching for g136440.

Figure 4.9: Illustration of BMcosine,0.1.

Consider a real example in Table 4.3 derived from the data set R1DB in Sec-

tion 4.2.3. The goal is to match g127381 with g583980, without being confused with

false positives, g136440 and g32238. Note that these false positives share many com-

mon tokens with g127381. For instance, g136440 (“Jean-Claude Mamou”) shares

common co-author tokens of {brendan, bruno, cassio, dos, hills, jean-claude,

marian, mignet, sophie, tova, vercoustre, abiteboul, aguilera, amann, anne-marie,

bernd, cluet, hubert, laurent, mamou, milo, santos, serge, souza, tessier,

vincent} and title tokens of {changes, documents, evaluating, optimizing}
with g127381 (“Amelie Marian”).

On the other hand, matching group g583980 (“Amelie Marian”) shares common

co-author tokens of {gravano, luis} and title tokens of {active, demonstration,
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Rank g1 g2 BMcosine,0.1(g1, g2)
1 g127381 g583980 0.19
2 g127381 g32238 0.07
3 g127381 g136440 0.07

Table 4.4: Result of BMcosine,0.1.

repository, views, xml, queries, databases, detecting, multimedia, repositories,

selection, xml} with g127381 (“Amelie Marian”). When the Jaccard measure is

applied, it would return g136440 (“Jean-Claude Mamou”) as the most similar group

to g127381 (“Amelie Marian”) with the similarity of 0.22. However, the real match-

ing group g583980 only comes second with the similarity of 0.2. On the other hand,

as illustrated in Figure 4.9, when BMcosine,0.1 is used (using cosine similarity as

the record-level similarity measure with 0.1 as threshold), it is able to identify the

correct matching group, partly due to the fact that the two matching groups share

three similar record-level pairs. The result is shown in Table 4.4.

Note that when ρ = 0, the group linkage measure permits any pair of records

(r1i, r2j) ∈ E to be part of the maximum weight matching M . In practice, however,

for two records to be considered approximately the same their similarity needs to

exceed some threshold ρ > 0 using a record-level similarity function sim, both of

which are parameters to the group linkage measure BM .

The main problem addressed in the group linkage problem is the approximate

match problem. Formally, our problem can be defined as follows.

Given a large relation of records (each associated with a group ID) D

and a single query group of records g, identify all groups of records

gi ∈ D such that BMsim,ρ(g, gi) ≥ θ, where 0 ≤ θ ≤ 1 is a group

similarity threshold.

A related problem is the top-k version of the problem where we are interested in

identifying the groups of records gi ∈ D whose BMsim,ρ(g, gi) values are the k

highest among all groups in D.

Addressing these problems are essential to be able to query and integrate en-

tities (such as households in census surveys and authors in digital bibliographies)

that are represented as groups of multi-attribute records, in the presence of data

quality errors.
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4.2.2 Group Linkage: Solution

4.2.2.1 Bipartite Matching

To solve the approximate match problem requires that we first identify all pairs of

records ri ∈ g, rj ∈ D such that the record-level similarity sim(ri, rj) ≥ ρ. Efficient

techniques are known for identifying such record pairs for a variety of record-

level similarity measures, including edit distance [28] and tf.idf cosine similarity

[29]. Recently, Chaudhuri et al. [12] proposed the SSJoin operator for optimizing

and efficiently evaluating a variety of record-level similarity measures inside the

database.

Once we have identified all such record pairs, the next step is to identify groups

gi in D such that BMsim,ρ(g, gi) ≥ θ. This requires the use of maximum weight

bipartite matching. Bipartite matching is a well-studied problem for which effi-

cient algorithmic solutions are known. Guha et al. [30] presented SQL realizations

of the Hungarian algorithm and of an incremental strategy referred to as SSP for

identifying maximum weight perfect bipartite matchings. While reasonably effi-

cient for identifying the maximum weight bipartite matching (and hence BMsim,ρ)

for a pair of groups, applying such a strategy for every pair of groups is infeasible

when the database relation contains a very large number of groups.

Efficiently finding groups gi ∈ D with a high group linkage similarity to input

query group g requires quickly eliminating the many groups that are unlikely to

be desired matches. To enable this task, we next develop simpler group similarity

measures that can be used either as bounds to BMsim,ρ, or as a blocking technique

during a fast pre-processing step.

4.2.2.2 Greedy Matching

Maximum weight bipartite matching is computationally expensive because of the

requirement that no node in the bipartite graph can have more than one edge

incident on it. We can quickly obtain (upper and lower) bounds on BMsim,ρ by

relaxing this requirement, using the following greedy strategy for each pair of

groups g1, g2.

• For each record ri ∈ g1, find a record rj ∈ g2 with the highest record-level
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similarity among those with sim() ≥ ρ. For the pair of groups g1, g2, let S1

denote the set of all such record pairs.

• Similarly, for each record rj ∈ g2, find a record ri ∈ g1 with the highest

record-level similarity among those with sim() ≥ ρ. For the pair of groups

g1, g2, let S2 denote the set of all such record pairs.

Note that neither S1 nor S2 may be a matching. In S1, the same record in g2

may be the target of more than one record in g1. Similarly, in S2, the same record

in g1 may be the target of more than one record in g2. However, these sets can be

used to quickly obtain bounds for BMsim,ρ, using the following formulas.

Upper and Lower Bounds. Consider two groups of records g1 = {r11, r12, . . . , r1m1}
and g2 = {r21, r22, . . . , r2m2}. The upper and lower bounds of group linkage measure

BMsim,ρ is defined as:

UBsim,ρ(g1, g2) =
Σ(r1i,r2j)∈S1∪S2(sim(r1i, r2j))

m1 +m2 − |S1 ∪ S2|

LBsim,ρ(g1, g2) =
Σ(r1i,r2j)∈S1∩S2(sim(r1i, r2j))

m1 +m2 − |S1 ∩ S2|

where S1 and S2 are defined above.

Comparing BMsim,ρ of Definition 4.1 and UBsim,ρ of Definition 4.2.2.2, we

can infer that the numerator of UBsim,ρ is at least as large as the numerator

of BMsim,ρ, and the denominator of UBsim,ρ is no larger than the denominator

of BMsim,ρ. Similarly, by comparing BMsim,ρ of Definition 4.1 and LBsim,ρ of

Definition 4.2.2.2, we can infer that the numerator of LBsim,ρ is no larger than the

numerator of BMsim,ρ, and the denominator of LBsim,ρ is at least as large as the

denominator of BMsim,ρ. As a result, we have the following result.

Consider two groups of records g1 and g2. Then, for this pair of groups, we

have that

LBsim,ρ(g1, g2) ≤ BMsim,ρ(g1, g2) ≤ UBsim,ρ(g1, g2)

That is, BMsim,ρ is bounded.

The advantage of these simpler group similarity measures UBsim,ρ and LBsim,ρ

is that these bounds can be easily and efficiently instantiated using SQL, permitting

them to be implemented inside the database system itself. Quickly computing
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UBsim,ρ and LBsim,ρ can help us efficiently address our approximate match problem

as follows.

1. Since UBsim,ρ is an upper bound on BMsim,ρ, if UBsim,ρ(g1, g2) < θ, then

it must be the case that BMsim,ρ(g1, g2) < θ. Hence, (g1, g2) is guaranteed

to not be part of the answer to the approximate match problem and can be

pruned away.

2. Since LBsim,ρ is a lower bound on BMsim,ρ, if LBsim,ρ(g1, g2) ≥ θ, then it

must be the case that BMsim,ρ(g1, g2) ≥ θ. Hence, (g1, g2) is guaranteed to

be part of the answer to the approximate match problem and can be selected

without computing the more expensive BMsim,ρ.

3. Only when LBsim,ρ(g1, g2) < θ ≤ UBsim,ρ(g1, g2), the more expensiveBMsim,ρ(g1, g2)

computation would be needed.

The group similarity measures UBsim,ρ and LBsim,ρ can be used in a pre-

processing step to speed up computation of the answers to the approximate match

problem, without incurring any false negatives.

4.2.2.3 Heuristic Measure

In this section, we describe a group similarity measure that is even simpler (and

hence faster to compute) than UBsim,ρ and LBsim,ρ, and can also be used during

a pre-processing step (called blocking).

Heuristic Group Linkage Measure. For a pair of groups (g1, g2), a heuristic

measure using the max function is defined as follows:

MAXsim,ρ(g1, g2) = max
(r1i,r2j)∈g1×g2

(sim(r1i, r2j))

The key intuition behind the use of MAXsim,ρ is that it is quite likely in practice

that pairs of groups with a high value of BMsim,ρ will share at least one record

with a high record-level similarity. By quickly identifying groups with the largest

values of MAXsim,ρ, we can avoid computing BMsim,ρ on a significant number of

groups. Unlike the use of UBsim,ρ and LBsim,ρ as described above, however, this is

a heuristic, without any guarantees of avoiding false negatives. We experimentally

evaluate the utility of MAXsim,ρ in Section 4.2.3.
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insert UB select T.gid1 as gid1, T.gid2 as gid2,

T.s/cast(T.cnt+abs(G1.numOfElm-T.cnt)+abs(G2.numOfElm-T.cnt) as float) as sim

from (

select count(*) as cnt, sum(B.sim) as s, B.gid1 as gid1, B.gid2 as gid2

from

(

select A.eid1 as eid1, max(A.sim) as sim, A.gid1 as gid1, A.gid2 as gid2

from

(

select S.eid1 as eid1, S.sim as sim, E1.gid as gid1, E2.gid as gid2

from GrpToElm1 E1, GrpToElm2 E2, ElmSim S

where E1.eid = S.eid1 and E2.eid = S.eid2

) A

where A.eid1 in (select S.eid1

from GrpToElm1 E1, GrpToElm2 E2, ElmSim S

where E1.eid = S.eid1 and E2.eid = S.eid2)

group by A.eid1, A.gid1, A.gid2

) B

group by B.gid1, B.gid2

) T, Group1 G1, Group2 G2

where G1.gid = T.gid1 and G2.gid = T.gid2 ...

// if there is a threshold

having T.s/cast(T.cnt+abs(G1.numOfElm-T.cnt)+abs(G2.numOfElm-T.cnt)

as float) > 0

Table 4.5: The SQL statement for UBsim,ρ.

4.2.2.4 Implementation

It becomes increasingly important to efficiently instantiate data quality algorithms

(e.g., record or group linkage algorithms) using SQL, enabling implementation on

top of any DBMS. Recent examples of this trend include the SQL implementation

of matching algorithms [29] and the merge algorithms in [30]. We built BMsim,ρ by

extending SSP in [30], and implemented all of the UBsim,ρ, LBsim,ρ, and MAXsim,ρ

in SQL.

The basic logic of UBsim,ρ is: for each element in gi, find the best match in

gj. It is possible that gi has multiple edges incident on it (i.e., match). Then, the

similarity between gi and gj is computed as the sum of edge weights divided by

(number of matched edges + number of unmatched nodes in gi and gj). Some of

the tables being used include:

• Groupk(gid, name, numOfElm): records the number of elements per group.

• GrpToElmk(gid, eid): associates each group with elements in it.

• ElmSim(eid1, eid2, sim): records, for all pair-wise records, record-level sim-

ilarity (≥ ρ) using cosine measure with TF/IDF weighting.
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insert MAX select T.gid1 as gid1, T.gid2 as gid2, max(T.sim) as sim

from (

select E1.gid as gid1, S.eid1 as eid1, E2.gid as gid2, S.eid2 as eid2, S.sim as sim

from GrpToElm1 E1, GrpToElm2 E2, ElmSim S

where E1.eid = S.eid1 and E2.eid = S.eid2

) T

group by T.gid1, T.gid2

Table 4.6: The SQL statement for MAXsim,ρ.

Table 4.5 and Table 4.6, for instance, shows a snippet of SQL statement to imple-

ment UBsim,ρ and MAXsim,ρ.

Table 4.7 shows the SQL statement for maximum weighted bipartite matching,

based on the Successive Shortest Paths (SSP). Block 1 initializes the T relation

to the most expensive edge out of position 1. We then iterate over all positions

from 2 to k. Within each iteration, block 2 computes the transitive closure from

the current position to all unmatched positions. Block 3 picks an unmatched tuple

with the largest similarity from the current position and block 4 computes the path

from the current position to this unmatched tuple. Finally, block 5 updates the

old solution using this path to obtain the new solution which includes the current

position.

The similarity measure between two elements can be estimated using TF/IDF

Cosine similarity, as illustrated in Table 4.8. Specifically, we create the following

relations for TF/IDF Cosine similarity (Let’s assume that there are two relations

i and j, and there are k ∈ n attributes).

• Tokeni(element-id, token): a tuple is associated with an occurrence of token

in Relation i tuple with element-id.

• IDFi(token, idf): a tuple indicates that token has inverse document fre-

quency idftoken in Relation i.

• TFi(element-id, token, tf): a tuple indicates that token has term frequency

tftoken for Relation i tuple with element-id.

• Lengthi(element-id, length): a tuple indicates that the weight vector associ-

ated with Relation i tuple with element-id has a Euclidean norm length.

• ElmToTokeni(element-id, token, weight): a tuple indicates that token has

normalized weight in Relation i tuple with element-id.
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delete from T insert into T(elem, pos) select max(Graph.elem), pos

from Graph where pos = 1 and cost = (select max(cost) from Graph

where pos = 1) group by pos;

declare @N int; set @N = (select count(elem) from Graph); declare @K

int; set @K = (select count(pos) from Graph); declare @INDEX int;

set @INDEX = 2; while (@INDEX <= @K)

begin

delete from R1

insert into R1(selem, delem, cost)

select T.elem, G2.elem, G2.cost-G1.cost from T, Graph G1, Graph G2

where T.elem = G1.elem and T.pos = G1.pos and T.pos = G2.pos;

delete from Reach4

insert into Reach4(elem, parent, cost)

select elem, @N+1, cost from Graph where Graph.pos = @INDEX;

declare @ITER int

set @ITER = 1

while (@ITER <= @INDEX)

begin

delete from RR

insert into RR(elem, parent, cost)

select Y.elem, X.elem, X.cost+R1.cost from Reach4 X, R1, Reach4 Y

where X.elem = R1.selem and Y.elem = R1.delem and X.cost+R1.cost < Y.cost;

delete from R41

insert into R41(elem, cost)

select elem, max(cost) from RR group by elem;

delete from Reach4 where elem in (select elem from R41);

insert into Reach4 (elem, parent, cost)

select RR.elem, max(RR.parent), RR.cost from RR, R41

where RR.elem = R41.elem and RR.cost = R41.cost group by RR.elem, RR.cost;

set @ITER = @ITER + 1;

end

delete from Augment

insert into Augment

select top 1 elem from Reach4 where elem not in (select elem from T) order by cost;

with AugmentingPath(elem, parent, lv) as

(

select Reach4.elem, Reach4.parent, 0 from Reach4, Augment

where Reach4.elem = Augment.elem

union all

select Reach4.elem, Reach4.parent, AugmentingPath.lv+1 from Reach4, AugmentingPath

where Reach4.elem = AugmentingPath.parent and AugmentingPath.lv < @N

)

delete from AugmentingPath1

insert into AugmentingPath1

select elem, parent from AugmentingPath;

insert into T values (@N+1, @INDEX);

delete from TempT

insert into TempT

select AugmentingPath1.elem, T.pos from T, AugmentingPath1

where T.elem = AugmentingPath1.parent;

delete from T where elem in (SELECT parent FROM AugmentingPath1);

insert into T SELECT * from TempT;

set @INDEX = @INDEX + 1;

end

Table 4.7: The SQL statement for maximum weighted bipartite matching.
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• AttrkElmSim(element-id, element-id, sim): a tuple indicates the similarity

between element-id in Relation i and element-id in Relation j in Attribute

k.

• ElmSim(element-id, element-id, sim): a combination of n AttrElmSim rela-

tions.

Then, top-k entity names selected by the highest similarity of their elements are

grouped into the same block. For example, suppose two author entities “J. D. Ull-

man” (a canonical author) and “Jeff. Ullmann” (a name variant), where “J. D. Ull-

man” has an element e1: ([Hopcroft, Aho],[Schema, Matching],[JCDL]), and “Jeff.

Ullmann” has two elements e2: ([Aho,Maier],[Value, Matching],[VLDB]) and e3:

([Aho],[Semantic,Matching],[JCDL]). The TF/IDF Cosine similarities (sim(ei, ej))

between two elements ei and ej are computed as follows (attribute weights α+β+

γ = 1 – since the co-author and venue attributes tend to contain “noise” data (e.g.,

“A.”/“E.” in co-authors or “Int’l”/“Conf.” in venues), we give higher weights to

the title attribute than to co-authors and venues.):

• sim(e1, e2) = α sim(co−author(e1), co−author(e2))+β sim(title(e1), title(e2))+γ sim(venue(e1), venue(e2))

• sim(e1, e3) = α sim(co−author(e1), co−author(e3))+β sim(title(e1), title(e3))+γ sim(venue(e1), venue(e3))

Meanwhile, we can implement the SQL statement for Jaccard distance in Ta-

ble 4.9

4.2.3 Experimental Set-up

We have introduced two versions of the group linkage problem – threshold and

top-k. In the experiments, we used the top-k version: given a group gi and the

answer window k, return the top-k matching groups to gi. We choose to do so in

order to be able to evaluate both performance as well as quality of the answers.

To evaluate our group linkage proposal, we extracted various data sets, as

summarized in Table 4.10, from the ACM and DBLP citation digital libraries.

These libraries typically have a list of citations per author. Therefore, we can

treat each author as a group, citations of an author as records in a group, and

linkage between authors as the group linkage problem. By using author names as
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insert into Sizei (s) select count(*) from Di;

insert into IDFi (token, idf) select T.token,

log(S.s)-log(count(distinct T.eid)) from Tokeni T, Sizei S group by

T.token, S.s

insert into TFi (eid, token, tf) select T.eid, T.token, count(*)

from Tokeni T group by T.eid, T.token

insert into Lengthi (eid, length) select T.eid,

sqrt(sum(I.idf*I.idf*T.tf*T.tf)) from IDFi I, TFi T where I.token =

T.token group by T.eid

insert into ElmToTokeni (eid, token, weight) select T.eid, T.token,

I.idf*T.tf/L.length from IDFi I, TFi T, Lengthi L where I.token =

T.token and T.eid = L.eid

insert into AttriElmSim (eid1, eid2, sim) select T1.eid, T2.eid,

sum(T1.weight*T2.weight) from ElmToTokeni T1, ElmToTokenj T2 where

T1.token = T2.token group by T1.eid, T2.eid having

sum(T1.weight*T2.weight) >= 0

insert into ElmSim (eid1, eid2) select eid1, eid2 from Attr1ElmSim

union

select eid1, eid2 from AttrkElmSim

union

select eid1, eid2 from AttrnElmSim

update ElmSim set sim = S.sim + T.sim from ElmSim S, Attr1ElmSim T

where T.eid1 = S.eid1 and T.eid2 = S.eid2

update ElmSim set sim = S.sim + 2*T.sim from ElmSim S, AttrkElmSim T

where T.eid1 = S.eid1 and T.eid2 = S.eid2

update ElmSim set sim = S.sim + T.sim from ElmSim S, AttrnElmSim T

where T.eid1 = S.eid1 and T.eid2 = S.eid2

update ElmSim set sim = sim / (n+1)

Table 4.8: The pre-processing SQL statement for computing TF/IDF cosine simi-
larities among records of groups.

insert into J1 select distinct E.gid, T.token from GrpToElm1 E,

Token1 T where E.eid = T.eid and T.cat = @I

insert into J2 select distinct E.gid, T.token from GrpToElm2 E,

Token2 T where E.eid = T.eid and T.cat = @I

insert into J1CNT select J.gid, count(*) from J1 J group by J.gid

insert into J2CNT select J.gid, count(*) from J2 J group by J.gid

insert into INTER select J1.gid, J2.gid, count(*) from J1, J2 where

J1.token = J2.token group by J1.gid, J2.gid

insert into Jaccard1 select S.gid1 as gid1, S.gid2 as gid2,

R.cnt/cast((N1.cnt+N2.cnt-R.cnt) as float) from NpJGrpSim S, J1CNT

N1, J2CNT N2, INTER R where (S.gid1 = N1.gid and S.gid2 = N2.gid)

and (S.gid1 = R.gid1 and S.gid2 = R.gid2)

order by S.gid1, S.gid2

Table 4.9: The SQL statement for Jaccard.
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Notation Left (all authors with at least 5 citations)
Right

R1a 279 authors with a keyword XML in titles from DBLP
700,000 authors from ACM

R1b 265 authors with a keyword Query in titles from ACM
400,000 authors from DBLP

R2DB 100 authors with keywords Query and Schema in titles from DBLP
700,000 authors from ACM

R2AI 100 authors with keywords Reasoning and Recognition in titles from DBLP
700,000 authors from ACM

R2Net 100 authors with keywords ATM and TCP in titles from DBLP
700,000 authors from ACM

S1a 279 authors with a keyword XML in titles from DBLP
700,000 authors from ACM + 279 1

3 -type dummies
S1b 279 authors with a keyword XML in titles from DBLP

700,000 authors from ACM + 279 3-type dummies
S2s 100 authors with keywords Memory and Power in titles from ACM

100 authors (same as left) + 100 authors with 30% errors
S2m 100 authors with keywords Memory and Power in titles from ACM

100 authors (same as left) + 100 authors with 45% errors
S2l 100 authors with keywords Memory and Power in titles from ACM

100 authors (same as left) + 100 authors with 60% errors

Table 4.10: Summary of data sets.

a key to link, we evaluate how well a method can link a group in the left data set

(e.g., “Vannevar Bush” in DBLP) to matching groups in the right data set (e.g.,

“V. Bush” in ACM).

Real data sets. First, we prepared two kinds of real data sets, R1 and R2, each

of which in turn has several variations, R1a and R1b for R1 and R2DB, R2AI , and

R2Net for R2, respectively. In both R1a and R1b data sets, authors in the left are

selected from DB venues such as SIGMOD, VLDB, and ICDE, and have at least

5 citations. The average number of citations in the left and right authors are 41

and 25 for R1a and 40 and 55 for R1b. Therefore, these are rather uniform data

sets.

Next, we create skewed data sets in three domains – (1) R2DB with authors

in the left from DB venues such as SIGMOD, VLDB, and ICDE, (2) R2AI with

authors in the left from AI venues such as AAAI, IJCAI, and ICML, and (3) R2Net

with authors in the left from Network venues such as INFOCOM, MOBICOM, and

SIGCOMM. The average numbers of citations in the left and matching right author

sets are 30 and 9 for R2DB, 31 and 10 for R2AI , 22 and 6 for R2Net. Therefore,
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Figure 4.10: JA(1) vs. JA(5)|BM(1) against R1.

these are rather skewed data sets.

For all these data sets, we have manually verified whether an author in the left

matches an author in the right. Note that some matched authors in the left and

right have little resemblance in their names. For instance, “Shlomo Argamon” in

DBLP and “Sean Engelson” in ACM are matching authors.3 On the other hand,

some authors in the left have multiple matching authors in the right. For instance,

“Jeffrey D. Ullman” in DBLP has numerous matching authors in ACM such as

“J. Ullman”, “J. D. Ullman”, and “Ullman, Jeffrey”, each of which has a varying

number of citations in it. In such a case, we merge all matching authors in ACM

into an arbitrary one (e.g., merge “J. Ullman” and ”J. D. Ullman” to “Ullman,

Jeffrey”). In the end, for all data sets of Table 4.10, for a group in the left, there

is only one matching group in the right.

Synthetic data sets. To see the effect of varying degrees of error in the data

sets, we introduce controlled errors into the real data sets. First, we prepare two

synthetic data sets, S1a and S1b. Both are the same as the real data set R1a, except

that dummy authors are injected to the right. Two types of dummy authors are

prepared. For an author A, its dummy author D has to use the same bag of words

3This is verified at his home page http://lingcog.iit.edu/ argamon/.
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in citations as A, but the number of citations in D is either 1
3

(for S1a) or 3 (for

S1b) times the number of citations in A. Therefore, in the dummy author for S1a,

each citation will have many more words than a citation in A so that the number

of citations becomes 1
3

that of A. Similarly, in the dummy author for S1b, each

citation will have fewer words than a citation in A so that the number of citations

becomes 3 times that of A. Note that a non-robust method such as Jaccard will

get confused and return the injected dummy author from the right as the matching

author of the left, incorrectly. The goal is to see if the bipartite matching group

linkage method is also confused or not.

Finally, since it is not feasible to run complete bipartite matching against the

700,000 authors in the right, we generated another synthetic data set. This time,

the right hand side has also a small number of authors like the left hand side so

that bipartite matching can be applied without any blocking. Using the dbgen

tool from the University of Toronto, for each author in the left, we have generated

a dummy author with varying levels of errors (i.e., typos, abbreviation, omission,

contraction, etc) and inserted it to the right data set. The goal is to see if a

method is able to detect the correct matching author, without being confused

with the dummy author.

Evaluation Metrics. For evaluating the methods, we used the average recall

with an answer window size of k as well as the running time. Note that for each

author a1 in the left, there is only one other matching author a2 in the right.

Therefore, if a2 is included in the top-k answer window for a1, then recall becomes

1, and 0 otherwise. As the window size k increases, recall is likely to increase. At

the end, we measure the average recall for all authors.

Compared Methods. Four methods, as summarized in Table 4.12, as well

as their hybrid combinations are evaluated. Given two groups, the Jaccard (JA)

method treats each group as a bag of tokens, and measures the size of intersected

tokens over the size of union of tokens. When a method A is used with an answer

window size of k, it is denoted as A(k). When a method A with a window k1 is

used in step 1, followed by a method B with a window k2 in step 2, the hybrid

approach is denoted as A(k1)|B(k2). For instance, the method MAX(5)|BM(1)

refers to the hybrid of MAX with top-5 in step 1 and BM with top-1 in step
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Data set Pre-processing time

R2DB 1:20:05
R2AI 1:23:57
R2Net 1:32:48

Table 4.11: Pre-processing time for computing cosine similarity of R2. (hh:mm:ss).

Notation Description
JA Jaccard based group linkage measure
BM BMsim,ρ group linkage measure
UB UBsim,ρ group linkage measure
MAX MAXsim,ρ group linkage measure

Table 4.12: Notation in experimentation.

2. As a record-level similarity measure, we used cosine similarity with TF/IDF

weighting. This computation is done once at a pre-processing stage. The running

times are shown in Table 4.11 for the case of R2. Other data sets took similar

time, except S2 which took only minutes.

Summary of Set-up. Using this set-up, we seek to answer the following

questions:

• Q1: Compared to the naive approach (e.g., Jaccard measure), how does

BMsim,ρ behave? We use the R1, S1, and S2 data sets.

• Q2: How robust is BMsim,ρ in the presence of errors? We use the S1 and S2

data sets.

• Q3: How does the heuristic based MAXsim,ρ behave? We use the R2 data

set.

• Q4: Can UBsim,ρ be used as fast pre-processing step (i.e., blocking) for

BMsim,ρ? We use the R2 data set.

All experiments were conducted using the Microsoft SQL Server 2005 on Pen-

tium III 3GHZ/512MB machine.
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Figure 4.11: JA(1) vs. BM(1) against S1.

4.2.4 Experimental Results

1. R1 real data set. Against R1a and R1b, in Figure 4.10, JA(1) (i.e., JA

with window size of 1) achieved recalls of 0.84 and 0.93, respectively. Since R1

data sets are rather uniform with respect to the number of citations between two

author groups, it is an ideal data set for JA. This explains the relatively high recall

of 0.84 and 0.93. Next, we examined whether using the bipartite matching (BM)

idea improves the overall recall or not. Since the graph-based BM has non-linear

running time, it is not feasible to apply BM directly to R1a and R1b which has

half million authors in the right. Therefore, we first apply JA(5) as the blocking

method to get five candidates per canonical author, then apply BM(1) to get the

top-1 matching author. Figure 4.10 shows that JA(5)|BM(1) archives recalls of

0.85 for R1a and 0.95 for R1b, respectively. Note that using BM does not worsen

the recall but the improvement is only minor – 1-2%. Therefore, when two groups

share many common tokens and when there is no other confusing group with

common tokens, JA works relatively well. Next, we show that this is no longer the

case when JA is faced with confusing groups.

2. S1 and S2 synthetic data sets. To demonstrate that our proposed BM is

more robust than JA, we created an extreme case that is the worst for JA, and see
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Figure 4.12: JA(1) vs. BM(1) against S2.

how BM behaves in the same environment. Note that JA determines a matching

group purely based on the commonality of tokens. Therefore, if we take a canonical

group, a, with N records from the left and inject a copy of it, ac, to the right, then

JA will always return ac from the right as the matching author of a since both

a and ac have an identical bag of tokens. Based on this idea, we generate two

dummy authors: (1) ac with N
3

citations and the same bag of tokens as a (S1a),

and (2) ac with 3×N citations and the same bag of tokens as a (S1b).

Figure 4.11 shows the result of this comparison. To speed-up, we used MAX(5)

as the blocking (i.e., pre-processing step), and both JA(1) and BM(1) are applied

at a later step. Against the S1a data set, first, MAX(5) achieves a recall of 0.82 in

the blocking stage. When both JA(1) and BM(1) are applied to the five candidate

authors that MAX(5) found, MAX(5)|JA(1) has a recall of 0 while MAX(5)|BM(1)

has a recall of 0.81. As per design, JA incorrectly selects dummy authors from the

right, yielding 0 as recall. However, the proposed BM does not get confused and

correctly identifies matching authors. Since the recall of 0.82 by MAX(5) is in a

sense the ideal recall for subsequent methods, the recall of 0.81 by MAX(5)|BM(1)

is a satisfactory result. The same pattern emerges for the S1b data set as well.

Next, we repeated the experimentation using S2. This time, we did not use block-

ing. Instead, both JA and BM are directly applied to S2. Figure 4.12 shows that
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Figure 4.13: UB(10)|BM(k) against R2AI .

R2DB R2AI R2Net
MAX(1) 0.23 0.2 0.27
UB(1) 0.35 0.28 0.4

MAX(5) 0.24 0.2 0.26
UB(5) 0.38 0.28 0.43

MAX(10) 0.24 0.2 0.27
UB(10) 0.38 0.28 0.43

UB(5)|BM(1) 4.91 4.44 4.61
UB(10)|BM(1) 7.45 6.66 6.41

Table 4.13: Running time (per group) of MAX(k), UB(k), and UB(k)|BM(1)
against R2 (in sec).

BM(1), regardless of the error levels, outperforms JA(1) by 16-17% in recall.

Therefore, JA is a fast and simple method which can be used for group linkage,

but it is prone to errors. If there exist groups with tokens similar to the canonical

group, or matching groups have intolerable noises, then JA is easily confused, as

shown in Figure 4.11. On the other hand, regardless of data types or error levels,

BM is able to perform better group linkage.

3. R2 real data set. R2 data sets are more challenging than R1 since the aver-

age number of elements per group between left and right is skewed. For instance,
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on average, canonical authors in the left have three times more citations than cor-

responding authors in the right. First, Figures 4.14 (a)(c)(e) show the comparison

of MAX and UB. For all three data sets, UB outperforms MAX in recall. Since

MAX is heuristic based, it tends to be looser than UB (i.e., as long as there is one

record pair with high similarity, group linkage will have a high similarity), allowing

more errors. On the other hand, for the same reason, MAX is slightly faster than

UB, as shown in Table 4.13 (first six columns).

Next, Figures 4.14 (b)(d)(f) show how BM behaves when either UB or MAX is

first applied as pre-processing. Regardless of data sets, UB followed by BM outper-

forms MAX followed by BM by 5-14%. This is consistent with Proposition 4.2.2.2,

supporting our claim that UB is a good pre-processing step for BM. The answer

window size in step 2 is somewhat correlated with the recall. For instance, Fig-

ure 4.13 is the case of UB(10)|BM(k) against R2AI , where k = 1, ..., 10 on the

Y-axis.

4.2.5 Summary

In this work, we have studied the new problem of group linkage, and proposed a

bipartite matching based on group similarity measures, BMsim,ρ, which naturally

generalizes the Jaccard measure. In addition, we proved the upper and lower

bounds of BMsim,ρ can be used as a filtering step for speed-up. Finally, through

extensive experiments and SQL implementations, we have validated that BMsim,ρ

is a more robust group similarity measure than others, and can efficiently detect

matching groups with proper pre-processing step.
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Figure 4.14: MAX vs. UB for (a)(c)(e) and MAX|BM vs. UB|BM for (b)(d)(f)
against R2.



Chapter 5
The Mixed Entity Resolution (MER)

Problem

In this chapter, we aim to solve an important problem that commonly occur in

bibliographic DLs, which seriously degrade their data qualities. When two scholars

have the same name spellings, their citation data are mistakenly merged into a

single collection, leading to an incorrect citation analysis results. We call this as

Mixed Entity Resolution (MER) problem. For instance, there is a collection of

citation data by one of the authors, “Lin Li,” in DBLP. Note that two citations

by “another” scholar with the same name spelling are listed. The reason of this

mixture is that there exist two computer scientists with the name “Lin Li” – one,

researching energy efficient system design, at Penn State and the other, with the

interest in theory of computing, at U. Nebraska, Lincoln. Thus, we investigate

an effective yet scalable solution since citations in such digital libraries tend to

be large-scale. After formally defining the problems and accompanying challenges,

we present an effective solution that is based on the state-of-the-art sampling-

based approximate join algorithm. As an alternative method, we propose name

disambiguation using multi-level graph partition. In general, it is known that the

k-way spectral clustering algorithm is the most effective method. On the other

hand, as the size of a graph is significantly huge, it takes a large amount of time.

To speed up such a graph partitioning algorithm but yet optimize clusters, we

apply the mult-level graph partitioning algorithm to the MER problem.
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5.1 Sampling-based Citation Labeling Method

As solutions to this problem, Han et al. [31] proposed two classification meth-

ods. In their Nave Bayes, they use Bayes theorem to classify mixed citations.

In addition, they applied this problem to Support Vector Machines which is the

best classification method. Recently Malin [51] proposed Hierarchical clustering

to cluster mixed citations. Furthermore, Han et al. [32] proposed K-way Spectral

Clustering method. In their method, they represent citations as matrix, and then

cluster mixed citations, using Eigen values of the matrix.

However, these methods are not scalable. Since modern digital libraries tend

to have a large number of citations, a scalable approach is required. Thus, we

propose a scalable citation labeling algorithm.

In our approach, we use a sampling-based technique to quickly determine a

small number of candidate authors from the entire authors in DLs.

The idea of our citation labeling algorithm is: for each citation in the collection,

it tests if the citation really belongs to the given collection. First, remove an

author from the citation, and then, guess back the removed author name, using

additional information. If the guessed name is not equivalent to the removed name,

the citation will be false citation. For details, please refer to Section 5.1.2.

5.1.1 Sampling-based Citation Labeling Method: Problem

Problem Definition. We formally define the Mixed Entity Resolution problem

as follows:

Given a collection of elements (i.e, citations), C, by an entity (i.e., author), ei, can

we quickly and accurately identify false elements by another entity ej, when ei and

ej have the identical name spellings?

The challenge here is that since two different entities, ei and ej, have the “same”

name spellings, one cannot easily distinguish the two entities by using similarity

between their names (e.g., Jaro-Winkler). To overcome this difficulty, we propose
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to exploit entity’s associated information. That is, given an entity ei, we may

use additional information such as elements of the entity (i.e., his co-author list,

common keywords that he often use in the titles of articles, or common publication

outlets, etc).

5.1.2 Sampling-based Citation Labeling Method: Solution

Consider a citation ci with a set of co-authors A = {a1, ..., an}, a set of keywords

from the title T = {t1, ..., tm}, and a venue name V . Then, after removing the i-th

co-author ai (∈ A), can we correctly label ci to ai? That is, when ai is removed from

the citation ci, can we guess back the removed author using associated information?

Let us call this method as Citation Labeling algorithm. If we assume that there is

a “good” citation labeling function fcl : ci → aj. Then, using the fcl, the original

MER problem can be solved as follows. Given citations C by an author a1:

for each citation ci (∈ C) do
remove a1 (i.e., original name) from co-author list of ci;
fcl is applied to get a2 (i.e., guessed name);
if a1 6= a2 then

ci is a false citation;

remove ci from C;

Algorithm 4: Citation Labeling

At the end, C has only correct citations by a1. Therefore, if one can find a

good citation labeling function fcl, then one can solve the MER problem. Figure

5.1 illustrates overview of our solution.

5.1.2.1 Sampling

In general, the baseline approach has a quadratic time complexity which is pro-

hibitively expensive for large-size DLs (e.g., the ACM digital library has about

707K authors). However, note that for a citation c, one does not need to check if c

can be labeled as an author a for all authors. If one can quickly determine candi-

date author set from all authors (i.e., pre-filtering), then c better be tested against

only the authors in candidate set. We use the following sampling technique.
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Figure 5.1: Overview of our solution to MER problem.

Note that the complexity is reduced to O(|A|+ |C||S|), that is typically more

scalable than O(|C||A|) since |S| � |A|.
One of the state-of-the-art sampling techniques that satisfy both criteria (i.e.,

being fast and accurate) is the sampling-based join approximation method recently

proposed by [29]. We adopt it to our context as follows: Their main idea is that

if, for each string ni, one is able to extract a small sample S that contains mostly

strings suspected to be highly similar to ni, then this sample S serves as a candidate

set, and the remaining strings can be quickly ignored (i.e., pre-filtering). To get

the “good” sample S, imagine each token from all strings has an associated weight

using the TF/IDF metric in IR (i.e., common tokens in strings have lower weights

while rare ones have higher weights). Then, each string t is associated with its

token weight vector vt. Suppose that, for each string tq in a string set R1, we want

to draw a sample of size S from another string set R2 such that the frequency

Ci of string ti ∈ R2 can be used to approximate sim(vtq , vti) = σi. That is, σi

can be approximated by Ci
S
TV (tq), where TV (tq) =

∑|R2|
i=1 σi. Then, put ti into a

candidate set only if Ci
S
TV (tq) ≥ θ, where θ is a pre-determined threshold. This

strategy assures that all pairs of strings with similarity of at least θ survive the

pre-filtering stage and put into the candidate set with a desired probability, as long

as the proper sample size S is given.
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for each citation ci (∈ C) do
draw a sample set S(⊆ A);

Algorithm 5: Sampling

5.1.2.2 Citation Labeling Algorithm

Let us examine fcl more closely. Suppose one wants to “label” a collection of

citations, C, against a set of possible authors A. A naive algorithm, then, is (let

φ be a similarity measure between a citation ci and an author aj):

for each citation ci (∈ C) do
examine all names sj(∈ S);
return sj (∈ S) with MAX φ;

Algorithm 6: Scalable Citation Labeling

This approach presents a technical challenge – Since ci and aj are two different

entities to compare in real world, the choice of good similarity measure is critical.

In order to address this challenge, we propose a solution as follows:

Similarity between Citation and Author. In [31], authors reported a promis-

ing result by representing a citation as 3-tuple of co-authors, titles, and venues.

Although proposed for a different problem, the idea of 3-tuple representation of ci-

tations can be adapted to our context as follows: the similarity between a citation

c and an author a (hereafter, sim(c, a)) can be estimated as the similarity between

a 3-tuple representation of c and that of a:

sim(c, a) = α sim(~cc, ~ac) + β sim(~ct, ~at) + γ sim(~cv, ~av)

where α+ β + γ = 1 (i.e., weighting factors), ~cc, ~ct, and ~cv are token vectors of co-

authors, paper titles, and venues, respectively, of the citation c, and ~ac, ~at, and ~av

are token vectors of co-authors, paper titles, and venues from “all” citations of the

author a, respectively. In turn, each similarity measure between two token vectors

can be estimated using the standard IR techniques such as the cosine similarity ,

cos(θ) = ~v·~w
‖~v‖·‖~w‖ , along with TF/IDF.

For instance, a citation c “E. F. Codd: A Relational Model of Data for Large
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Shared Data Banks. Commun. ACM 13(6): 377-387 (1970)” is represented as: ~cc

= [“E.F. Codd”], ~ct = [“Relational”, “Model”, “Data”, “Large”, “Shared”, “Data”,

“Banks”], and ~cv = [“Commun.”, “ACM”])1. Similarly, an author “John Doe” with

two citations (“John Doe, John Smith: Data Quality Algorithm, IQIS, 2005”, and

“Dario Maio, John Doe, Mark Levene: Data Cleaning for XML, ACM/IEEE Joint

C. on Digital Libraries, 2005”) is represented as: ~ac=[“John Doe”, “John Smith”,

“Dario Maio”, “Mark Levene”], ~at=[“Data”, “Quality”, “Algorithm”, “Cleaning”,

“XML”], and ~av=[“IQIS”, “ACM/IEEE”, “Joint”, “C.”, “Digital”, “Libraries”].

In Section 5.1.3, we study the variance of handling duplicate tokens (in set and

bag models). Then, the similarity of the citation c and an author “John Doe” is

equivalent to: sim(c, a). That is, if sim(c, a) is beyond some threshold, we “guess”

that c is a false citation and should have been labeled under “John Doe”, not “E.

F. Codd” (false positive case). When there are many such authors, we label c as

the author with the maximum sim(c, a).

5.1.3 Experimental Set-up

We have gathered real citation data from four different domains, as summarized in

Table 3.2. Compared to previous work, all of the four data sets are substantially

“large-scale” (e.g., DBLP has 360K authors and 560K citations in it). Differ-

ent disciplines appear to have slightly different citation policies and conventions.

For instance, Physics and Medical communities seem to have more number of co-

authors per article than Economics community. Furthermore, the conventions of

citation also vary. For instance, citations in e-Print use the first name of authors

as only initial, while ones in DBLP use full names. All four data sets are pre-

segmented (i.e., each field of co-authors, title, and venue are already known to

us).

For the sampling technique, we used the implementation of [29] with a sample

S = 64 and a threshold θ = 0.1. Other remaining methods were implemented by

us in Java. All experimentation was done using Microsoft SQL Server 2000 on

Pentium III 3GHZ/512MB.

1We pre-prune all stopwords from the title.
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Figure 5.2: Scalability (EconPapers).

5.1.4 Experimental Results

Configuration. For this MER problem, we used two DLs as test-beds: DBLP

and EconPapers. For DBLP (which authors know well), we collected real examples

with the MER problem: e.g., Dongwon Lee, Chen Li, Wei Liu, Prasenjit Mitra, and

Wei Wang, etc, and for EconPapers (which authors do not know well), we injected

an artificial “false citations” into each author’s citation collection. For both data

sets, we tested how to find the “false citations” from an author’s citations (that is,

we had a solution set for both cases). In constructing token vectors, we used two

models, Set and Bag , depending on the preservation of the multiple occurrences of

the same token. For testing, we used the weights, α = 0.5, β = 0.3, and γ = 0.2.

As evaluation metrics, we used time for scalability, and percentage/rank ratio for

accuracy (i.e., A false citation cf must be ranked low in sim(cf , a). Thus, we

measured how much percentage of false citations were ranked in the bottom 10%,

20%, etc).

Results. First, Figure 5.2 clearly shows the superior scalability of the sampling-

based approach over the baseline one (about 3-4 times faster), regardless of set or

bag models. Since the time complexity of the sampling-based approach is bounded

by S, which was set to 64, for a large C such as DBLP, the scalability gap between

two approaches further widens. Second, Figure 5.3(a) illustrates the accuracy of

both approaches for EconPapers. For instance, when there is a single false citation

cf hidden in the 100 citations, the sampling approach with the bag model can

identify cf with over 60% accuracy (i.e., rank=0.1/%=64). Furthremore, when it
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Figure 5.3: Accuracy (EconPapers and DBLP).

can return upto 2 citations as answers, its accuracy improves to over 80% (i.e.,

rank=0.2/%=82). Since many tokens in citations tend to co-occur (e.g., same

authors tend to use the same keywords in titles), the bag model that preserves this

property performs better. Finally, Figure 5.3(b) shows results on DBLP using only

the bag model. Note that some collection has a mixture of “2” authors’ citations

while others have that of “over 3” authors (e.g., there exists more than 3 authors

with the same spellings of “Wei Liu”). Intuitively, collections with more number

of authors’ citations mixed are more difficult to handle. For instance, when 2

authors’ citations are mixed, 100% of false citations are always ranked in the lower

30% (i.e., rank=0.3) using the sampling approach. However, when more than 3

authors’ citations are mixed, the percentages drop to mere 35% – it is very difficult

to decipher a false citation when it is hidden in a collection that contains a variety

of citations from many authors.
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5.1.5 Summary

The Mixed Entity Resolution problem is formally introduced and their solutions

are explored. Since such a problem commonly occur in many of the existing biblio-

graphic DLs, it is important to devise an effective and efficient solution to them. By

utilizing one of the state-of-the-art sampling-based approximate join techniques,

our solution is scalable yet highly effective. Furthermore, our proposal exploits

associated information of author names (e.g., co-authors, titles, or venues) than

names themselves.

5.2 Name Disambiguation using Multi-level Graph

Partition (MGP)

In many applications, entities need to carry a unique identifier. This identifier can

be as simple as a primary key in Databases or ISBN of books, or as complex as DNA

fingerprint of people. When all applications adopt universal identifier system such

as DOI, one does not have to worry about issues related with identifiers. However,

in reality, it is not uncommon to find an application that uses non-unique data

values as an identifier. One of commonly used such identifiers is a short name

description (“names” in short hereafter) of entities. Examples include: name of

persons, name of movies, name of cities, etc. Since these names of entities are not

unique, inevitably, there can be multiple entities with the same names, causing

a confusion. This problem is often referred to as the Name Disambiguation

problem, where goal is to sort out the erroneous entities due to name homonyms.

Figure 5.4 illustrates the real case where entities are mixed due to their name

homonyms. This shows screen-shots of home pages of two different “Dongwon

Lee” returned from Google. In a sense, full names of users are used as a key for

home pages.

In general, one can model the name disambiguation problem as k-way clustering

problem. That is, given a set of mixed N entities with the same name description

d, group N entities into k clusters such that entities within each cluster belong to

the same real-world group (e.g., same author or movie). For instance, in Figure 5.4,

one needs to group many web pages returned from Google for the query keyword
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Figure 5.4: Examples of mixed entities due to homonyms – home pages of two
different “Dongwon Lee” are returned from Google.

“Dongwon Lee” into two clusters – one for a faculty member at Penn State and

the other for a graduate student at U. Minnesota.

In this problem, in particular, we study the scalability issue of the name dis-

ambiguation problem – when a large number of entities get un-distinguishable due

to homonyms, how to resolve it? By and large, the scalability issue has been

ignored in previous research of name disambiguation problem. Therefore, exist-

ing solutions tend to work well for a handful of mixed entities in the range of 10

or so, or a large number of entities with limited number of feature dimensions

(e.g., [32, 4]). However, as data applications become more complicated and users

increase rapidly, new needs arise to handle more large-scale name disambiguation

problem. For instance, for a given “name” query keyword t (e.g., person, company,

or movie), it is common to have thousands of web pages returned from search en-

gines, all of which contain the keyword t and could have high dimension spaces in

the vector space model. Therefore, it is important to have a scalable yet accurate

name disambiguation algorithm.

For this goal, in this thesis, we first carefully examine two of the state-of-the-art

solutions – k-way spectral clustering [32] and multi-way distributional clustering [4]

– to the name disambiguation problem, and point out their limitations with respect

to their scalability. Then, we adapt the multi-level graph partition technique to

solve the large-scale name disambiguation problem. Our claim is empirically vali-
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Name Description
k # of clusters
l # of tokens

m # of unique tokens
(i.e., m-dimensional vectors)

n # of documents (i.e., entities)
c Constant

Table 5.1: Terms.

dated via experimentation – our proposal shows orders of magnitude improvement

in terms of performance while maintaining equivalent or reasonable accuracy.

5.2.1 Name Disambiguation using MGP: Problem

Formally, using the terms of Table 5.1, the name disambiguation problem in our

setting is defined as follows:

Given a set of mixed entities E={e1, ..., en} with the same name

description d, group E into k disjoint clusters C={c1, ..., ck} (k ≤
n ≤ m ≤ l) such that entities {eip, ..., eiq} (1 ≤ p ≤ q ≤ n) within each

cluster ci belongs to the same real-world group.

Note that both n and k can be a substantially large number. In general, distance

functions to measure the distance between two entities in the name disambiguation

problem is more expensive than those used in conventional clustering framework.

This is because each entity can be a long record or a whole document, instead of

simple numeric or string values of attributes.

5.2.2 Name Disambiguation using MGP: Solution

The basic three-phased framework of our approach is illustrated in Figure 5.5:

In this section, we describe in details how to use MGP to solve the name

disambiguation problem.

5.2.2.1 Graph Formation

We convert the given N entities into a graph G = (V,E) as follows:
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Figure 5.5: The three phases of the multi-level graph partition technique [42].

• Each entity ei is mapped to a node vi(∈ V ).

• By treating the contents of an entity ei as documents, we apply the standard

vector space model to convert ei into an m–dimensional vector (e.g., X =

(α1, ..., αm))2. If the i–th token in the entire token space appears in an entity

ei, then αi is the TF/IDF3 weight value of the i’s token. Otherwise, αi = 0.

• Finally, edge weight between two entities x and y is computed as follows [14]:

TFIDF (x, y) =
∑

w∈Tx∩Ty V (w, Tx)×V (w, Ty), where (1) V (w, Tx)=log(TFw,Ty+

1)× log(IDFw)√∑
w
′ (log(TFw,Ty+1)×log(IDFw))

(symmetrical for V (w, Ty)), and (2) V (w, T ) =

log(TFw,T + 1) × log(IDFw)√∑
w
′ (log(TFw,T+1)×log(IDFw))

. In the TFIDF similarity func-

tion, TFw,Tx is the frequency of w in Tx, and IDFw is the inverse of the

fraction of names in a corpus containing w;

2Let us assume that a standard stemming process has been done to filter out stop words.
3By definition, a weight is a certain value normalized in terms of importance of a word token

in a document. The Term Frequency (TF) is a measure of the importance of the term t in a
particular document. Therefore, if a term t appears in a particular document frequently, the TF
weight of the term t will be high. On the other hand, Inverse Document frequency (IDF) is a
measure of importance across documents in a collection. If a term t appears infrequently in a
collection, the IDF weight will be high.
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5.2.2.2 Multi-level Graph Partition

The graph partitioning problem [41] is to cluster the given graph into equally sized

sub graphs among which the number of edges is optimized. However, as the size of

a graph is significantly huge, most graph partitioning algorithms can take a large

amount of time. Thus, to speed up graph partitioning algorithms but yet minimize

the number of edge-cuts, a multi-level graph partitioning algorithm, METIS [42],

was proposed in the parallel computing community as follows: (1) The given graph

is condensed into the smallest graph in which thare are only a few vertices; (2)

The vertices in the smallest graph are clustered by a clustering algorithm; and (3)

The clustered graph is magnified into the size of the original graph. When the

size of sub graphs is nearly equal, METIS is an efficient partitioning method on

very large graphs. However, equally sized partitions by METIS are not desired in

many other domains. To surmount such resriction of METIS, Dhillon et al. [20]

proposed a weighted kernel k–means algorithm. Formally, the multi-level graph

partitioning algorithm works as follows:

• The coarsening phase. The original graph G is successively subdivided

into smaller graphs G1, G2, ..., Gk such that |V | > |V1| > ... > |Vk|, where

level i ∈ [1..k] and |Vi| is the number of vertices in graph Gi. In Gi, visit

each vertex randomly, and then merge a vertex v with a neighbor w that

maximizes the edge weight between v and w. Once all the vertices in Gi are

visited, the coarsening process at level i is completed.

• The partitioning phase. Through the repeated coarsening steps, the

smallest graph is determined such that the size of the graph is less than

20 × k. Then, the spectral algorithm of Yu and Shi [72] is performed to

cluster the smallest graph.

• The uncoarsening phase. In order to derive partitions of the original

graph G, the uncoarsening step is required in which the clustered graphs

are repeatedly projected to larger graph. Suppose that the size of Gi was

decreased into that of Gi+1 in the coarsening phase. Furthermore, two ver-

tices v and w of Gi were binded to a single vertex (v, w) of Gi+1. Then, the

vertex (v, w) was partitioned into a cluster c in the partitioning phase. In
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the uncoarsening phase, the vertices v and w can be grouped to the same

cluster c. Then, more accurate projection to the larger graph is performed

using a weighted kernel k -means uncoarsening algorithm. According to [20],

graph clustering objective functions (e.g., Ratio Association) can be trans-

formed into weighted kernel k–means objectives, with the weight of vertex w

and kernel matrix K, to locally optimize these graph clustering objectives.

Therefore, given a similarity matrix M , the kernel matrix K of a graph clus-

tering objective function (i.e., Ratio Association) is computed by σI + M

where σ is a real number. Subsequently, compute the updated clusters as

argmink(Kxx −
2×Σ

y∈πi
k
×wy×Kxy

Σ
y∈πi

k
×wy +

Σ
y,z∈πi

k
×wy×wz×Kyz

(Σ
y∈πi

k
×wy)2

), where πik is the k-th

cluster in the i-th iteration.

5.2.3 Two State-of-the-art Solutions: MDC & SC

5.2.3.1 Multi-way Distributional Clustering (MDC)

Bekkerman and McCallum used the multi-way distributional clustering (MDC) to

solve the name disambiguation problem in [4]. We briefly describe about MDC

here.

Given a set of k clusters, c1, ..., ck, all tokens of ci∈[1..k] are placed in a single

cluster while each entity ci∈[1..k] is placed in a singleton cluster. For instance, given

a set of word tokens and documents in a collection, all the tokens are put in a

single cluster while each document in the collection is assigned to each singleton

cluster. Then, during top-down/bottom-up clustering iterations, the top-down

clustering scheduler splits each element (e.g., a word) uniformly at random to two

sub-clusters. On the other hand, the bottom-up clustering scheduler merges each

element (e.g., a document in a collection) with its closest neighboring cluster. The

scheduling scheme is pre-determined in MDC.

For example, if a schedule scheme is “words, words, words, documents, docu-

ments,” three clustering iterations over words will be processed first, followed by

two iterations over documents. Finally, for all elements, correct clusters are created

based on Mutual Information – that is, it correctly clusters a random variable X

(e.g., documents) by a joint probability distribution between X and an observed

variable Y (e.g., words). The joint probability distribution is computed based on
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a table summarizing # of occurrences of times x ∈ X occurred with y ∈ Y (e.g.,

# of times a term y appears in a document x).

5.2.3.2 k-way Spectral Clustering (SC)

Han et al. used the k-way spectral clustering (SC) to solve the name disambigua-

tion problem in [32]. Here, we again briefly explain the SC.

Consider a set of entities E. The spectral clustering methods consider the

similarity matrix S, where Si,j is a similarity measure between entities ep, eq ∈ E.

As one of commonly used spectral clustering methods, Shi-Malik algorithm [62]

partitions entities into two sets based on eigenvector v corresponding to the second

smallest eigenvalue (i.e., Fiedler vector) of the Laplacian of S. Similarly, the

Meila-Shi [53] and Han et al. [32] use the eigenvectors corresponding to k largest

eigenvalues of the matrix P = DS−1 for k, and then cluster entities using k-means

or pivoted QR decomposition by their respective k components in eigenvectors.

5.2.3.3 Computational Complexity

The MDC method iteratively performs agglomerative clustering over terms (e.g.,

word tokens) and conglomerate clustering over documents (e.g., web pages or cita-

tions in a collection) at random, and assigns documents to more accurate clusters

based on the joint probability distribution of terms and documents. Thus, this

algorithm is significantly expensive on large-scale data.

For instance, suppose that the MDC method has two clustering systems X

and Y . X is the agglomerative clustering system over tokens such that a cluster

x ∈ X and an element ei ∈ Xi=1..l. Y is the conglomerative clustering system

over documents such that a cluster y ∈ Y and an element ei ∈ Yi=1..n. Since the

MDC method focuses on clustering documents, the maximal number of iterations

to obtain the final clusters is O(logn). During each iteration, each cluster in X

is randomly split to two equally sized sub clusters and then each token ei ∈ xi

is correctly placed into xj based on Mutual Information. Next, each cluster in

Y is randomly merged to its nearest neighbor cluster and cluster corrections are

performed to minimize the Bayes classification error. At each iteration in the

top-down step, entity ei is placed into a cluster xj such that Mutual Information
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I(X, Y ) is maximal. Similarly, the same process is performed in the bottom-up

step. Therefore, the computational complexity of MDC is:

O(l · n · logn)

On the other hand, in the k-way SC algorithm, given a similarity matrix M ,

v1, ...vk eigenvectors of M are computed by the k largest eigenvalues to create

the matrix V with k columns of eigenvectors of M . Finally, the rows of V are

clustered. In general, the running time of these spectral clustering algorithms is

dominated by the computation of eigenvectors of M , and the complexity time is

known as [58, 33, 59, 26]:

O(
4

3
· c ·m3) ≈ O(m3)

As clearly shown here, since both MDC and SC have quadratic and cubic time

complexities, they do not scale well. The multi-level graph partition (MGP) [42, 20]

(to be elaborated in Section 5.2.2) consists of three steps. During the coarsening

step, the size of the graph is repeatedly decreased; in the clustering step, the

smallest graph is partitioned; and during the uncoarsening step, partitioning is

successively refined to the larger graph. During the coarsening step, since the size

of the graph is decreased from level to level and all the vertices in the graph are

visited at each level, the complexity gets O(log n). In the clustering step, if we

use one of spectral algorithms, the complexity is O(4
3
· c · {20 · k}3). During the

uncoarsening step, the running time at each level is O(nz), where nz is # of non-

zero entries in the kernel matrix. Overall, therefore, the computational complexity

of the MGP is:

O(log n+
4

3
· c · (20 · k)3 + log n) ≈ O(k3)

In conclusion, since k � n, the computational complexity of the MGP is the

most efficient, compared to that of MDC and of SC.
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5.2.4 Experimental Set-up

For the MDC, k-way SC, and MGP methods, we used the implementation of [3], [68],

and [19], respectively. For the implementation of TF/IDF Cosine similarity, we

used SecondString [65]. All experimentation were done on 4 × 2.6Ghz Opteron

processors with 32GB of RAM.

Data sets.

For validation, we have used four data sets – two small and two large data sets

from real examples. Figure 5.6 illustrates the overall statistics of four data sets.

• First, the ACM-s is real test case that we have gathered from the ACM digital

library. When two scholars have the same name spellings, their citation data

are mistakenly merged into a single collection, leading to an incorrect citation

analysis results. For instance, Figure 5.4(a) illustrates a collection of mixed

citation by four “Wei Wang” in DBLP. We collected 24 real examples as

shown in Table 5.2, and manually checked their correctness.

• The WWW-s is a small-sized test case using the 1,085 web pages that [4] used.

In 2004, [4] extracted 12 personal names from Melinda Gervasio’s email di-

rectory. Then, 100 top-ranked web pages of each name were retrieved from

Google, and cleaned and manually labeled by authors. The resulting data set

consists of 1,085 web pages, 187 different persons, and 420 relevant pages.

Table 5.3 shows the statistics of the data set. For instance, when “Tom

Mitchell” is issued as a query to Google, 92 web pages are retrieved. Among

these 92, there are 37 namesakes to “Tom Mitchell”. For example, among

92 web pages, “Tom Mitchell” appears as musicians, executive managers, an

astrologist, hacker, and rabbi – 32 different kinds. That is, a set of 32 entities

are mixed since they all have the same name description of “Tom Mitchell”.

Like ACM-s, WWW-s is a small but high-quality test case with more number of

clusters per case.

• Next, the DBLP-m is a medium-sized citation test case generated from DBLP

digital library. To generate an ambiguous name data set, we clustered author

names from the entire DBLP citation data 4 if two authors share the same

4DBLP has about 360,000 authors and 560,000 citations in it.
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Figure 5.6: Overview of statistics of test cases: (a) average k (b)

average n (c) average m.

first name initial and full last name. Then, we sorted the formed name clus-

ters by the number of name variants. Finally, we obtained top-10 ambiguous

names. For instance, # of “J. Lee” variants is 421 (top ranked), # of “S.

Lee” variants is 391 (2nd ranked), # of “J. Kim” variants is 377 (3rd ranked)

and so. For the details, please refer to Table 5.4.

• Finally, DBLP-l is a large-scale citation test case, similar to DBLP-m, except

that this time only the full last name is used in the blocking. Table 5.5 shows

the statistics of the data set.

Evaluation Metrics.

To evaluate competitive clustering methods, each cluster ci ∈ Ci=1,..,k is as-

signed with the most dominant label in ci. Then, we measure the precision and

recall for ci as follows [64]:

Precision(ci) =
Σi=k
i=1α(ci)

Σi=k
i=1(α(ci) + β(ci))

Recall(ci) =
Σi=k
i=1α(ci)

Σi=k
i=1(α(ci) + γ(ci))

where α(ci) denotes # of entities correctly assigned to ci, β(ci) denotes # of entities

incorrectly assigned to ci, and γ(ci) denotes # of entities incorrectly not assigned

to ci.
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Name data set k n m
H Cai 2 5 89

Wei Cai 2 7 120
John M. Carroll 2 92 673

Li Chen 2 60 718
Yu Chen 2 46 594
Hui Han 2 15 184

Youngjae Kim 2 3 62
Dongwon Lee 2 30 322

Chen Li 2 31 343
Jia Li 2 27 276
Jian Li 2 21 284
Lin Li 2 11 145

Peng Liu 2 32 344
Wei Liu 2 43 530

Zhenyu Liu 2 8 139
Jiebo Lou 2 34 311

Murali Mani 2 11 131
Prasenjit Mitra 2 11 115
Sanghyun Park 2 18 201

Hui Song 2 6 79
James Ze Wang 2 33 310

Wei Wang 4 143 1,264
Yuan Xie 2 20 210
Wei Xu 2 17 230
Average 2 30 320

Table 5.2: Statistics of test case ACM-s.

Table 5.6 illustrates an example of clustered documents. In “Cluster 2”, since

the most dominent label is SriEng , “SriEng” is assigned as the class label of the

second cluster. α(c2) = 3, β(c2) = 2, and γ(c2) = 1. Therefore, the precision of

Cluster 2 is α(c2)
α(c2)+β(c2)

= 3
3+2

= 0.6, and the recall of Cluster 2 is α(c2)
α(c2)+γ(c2)

= 3
3+1

=

0.75.

5.2.5 Experimental Results

First, let us consider how accurate three methods are. Table 5.7 shows precisions of

MDC, SC, and MGP in four test cases. MGP shows better average precisions than

both SC and MDC for three cases. On the other hand, SC is not a straightforward
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Name data set k n m
Adam Cheyer 2 97 12,146

William Cohen 10 88 9,036
Steve Hardt 6 81 14,088
David Israel 19 92 11,739

Leslie Pack Kaelbling 2 89 12,153
Bill Mark 8 94 10,720

Andrew McCallum 16 94 11,166
Tom Mitchell 37 92 10,356

David Mulford 13 94 16,286
Andrew Ng 29 87 10,441

Fernando Pereira 19 88 10,999
Lynn Voss 26 89 22,706
Average 16 90 12,653

Table 5.3: Statistics of test case WWW-s. Note here n (i.e., # of entities) is in fact
# of web pages.

Name data set k n m
C. Chen 220 787 4,129
Y. Chen 238 853 4,689
H. Kim 290 713 3,931
J. Kim 377 1,104 5,567
S. Kim 302 847 4,469
Y. Kim 240 559 3,376
C. Lee 234 676 3,842
H. Lee 242 557 3,509
J. Lee 421 1,281 6,234
S. Lee 391 1,320 6,011

Average 296 870 4,576

Table 5.4: Statistics of test case DBLP-m.

method as shown in Table 5.7. Overall, the larger the data size gets, the poorer the

precision becomes. This is because the name data sets of these three methods are

clustered into multi classes. Note that the precision of MGP in the WWW-s test case

and that of MDC in the ACM-s test case. According to Table 5.7, MDC is a better

name disambiguation method than MGP for web page data set, but it becomes

the opposite case for citation data set. This indicates that using TF/IDF cosine

similarity to obtain edge weights between vertices (e.g., web pages or citations) is
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Name data set k n m
Brown 416 1,233 6,611
Chan 478 1,310 6,225
Cheng 451 1,508 6,936

Johnson 437 1,630 7,604
Jones 398 1,561 6,869

Lu 471 1,581 7,071
Martin 398 1,400 7,489
Wong 450 1,730 7,022

Xu 485 1,799 7,494
Zhou 441 1,532 6,824

Average 443 1,528 7,015

Table 5.5: Statistics of test case DBLP-l.

Cluster 1:

ID#1_Other.txt

Cluster 2:

ID#63_SriEng.txt

ID#85_SriEng.txt

ID#39_Player.txt

ID#1_Lawyer.txt

ID#40_SriEng.txt

Cluster 3:

ID#6_PSUProf.txt

ID#8_SriEng.txt

Table 5.6: An example of clustered documents (i.e., entities) with the format of
ID#document ID document label.txt [64].

more effective in the citation data set. Intuitively, there is likely to be stronger

relationship among an author and its variants than web page data sets. That is,

a document contains a number of terms only a few of which can be considered to

be important to identify variants.

Table 5.8 illustrates the average recall of three methods. For the small data

sets, SC is the winner while for the large data sets, MDC is the winner – MGP is

always the 2nd. While MGP performs coarsening and un-coarsening steps for the

initial graph partitioning, the graph is approximately transformed to smaller sized

one. These processes can decrease the recall of MGP in the large-scale test cases.
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Test Case MDC SC MGP
ACM-s 0.84 0.82 0.86
WWW-s 0.73 0.59 0.65
DBLP-m 0.43 0.06 0.54
DBLP-l 0.4 0.05 0.44

Table 5.7: Average precision.

Test Case MDC SC MGP
ACM-s 0.57 0.82 0.64
WWW-s 0.36 0.57 0.36
DBLP-m 0.35 0.06 0.34
DBLP-l 0.3 0.05 0.24

Table 5.8: Average recall.

Please note that MGP outperforms MDC in precision but MDC shows better recall

than MGP. This indicates that there exists a trade-off between MGP and MDC in

clustering. In conclusion, although MGP is not the clear winner for all test cases

in both precision and recall, it appears to show pros of both approaches. This can

be clear in Figure 5.7 showing F-measure (i.e., a harmonic sum of precision and

recall) of both small test cases and Figure 5.7 of both large test cases.

Figure 5.8 (a)-(c) illustrates F-measure changes with the variation of n in three

test cases, ACM-s, DBLP-m, and DBLP-l, respectively. Similarly, Figure 5.8 (d)-(f)

shows F-measure changes with the variation of m in the test cases. Note that

as # of citations and # of dimensions of a vector are increased, F-measures are

decreased considerably. For instance, Figure 5.8 (b), in case of n = 500, MGP

shows about 0.6 as the F-measure. On the other hand, when n = 900, F-measure

is less than 0.4. Figure 5.8 (c) shows the similar pattern to (b). In addition, as

shwon in Figure 5.8 (d) and (e), when # of dimensions of a vector is increased, the

F-measures are reduced. In particular, according to Figure 5.8, the SC method is

the worst, compared to MDC and MGP.

Table 5.9 shows running time of three methods for four test cases. It is clear

that MGP is always winner, as we have predicted in Section 3.3. Note that both

DBLP-m and DBLP-l are large-scale test cases. In DBLP-m, MGP is 157 times faster

than SC, and in DBLP-l 383 times faster than MDC. Even if WWW-s is a small sized
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(a) (b)

(c) (d)

Figure 5.7: F-measure of (a) ACM-s, (b) WWW-s, (c) DBLP-m, and (d) DBLP-l.

Test Case MDC SC MGP
ACM-s 0.12 2.2 0.0
WWW-s 2.3 4,274 0.0
DBLP-m 74 77 0.49
DBLP-l 609 169 1.59

Table 5.9: Running time (in sec.).

data set, the running time of SC is significantly large – 4,274 sec. This is because

# of dimension per vector in WWW-s is considerably large. For instance, the average

# of dimensions a vector in WWW-s is about 13K while in DBLP-l, the largest data

set, there is on average 7K dimensions per vector. Note that, unlike MDC and

MGP, k-way SC method compute k eigenvectors of a matrix. Thus, as the number

of dimensions of the matrix increases, SC takes considerably more time to identify

and categorize name variants. Unexpectedly, MDC is the slowest method, even

worse than SC in DBLP-l. This is because MDC considers # of words as its input

data while SC and MGP use # of documents. Thus, the input size of MDC is



105

(a) (b) (c)

(c) (d) (e)

Figure 5.8: (a-c) F-measure changes with the variation of n in ACM-s, DBLP-m, and
DBLP-l; (d-f) F-measure changes with the variation of m in ACM-s, DBLP-m, and
DBLP-l.

significantly larger than that of SC and MGP.

In summary, when MGP is used in the name disambiguation problem, it shows

better precision and equivalent or slightly worse recall than both MDC and SC.

However, MGP outperforms the other two in terms of scalability by orders of

magnitude (upto 383 times).

5.2.6 Summary

In this chapter, we have studied the name disambiguation problem and their solu-

tion. In particular, we pointed out the limitations of two state-of-the-art methods

to the name disambiguation problem, and instead proposed to use multi-level graph

partition techniques. Our proposal is empirically validated at the end.

As to future direction, we plan to improve recall and precision of MGP-based

Name Disambiguation technique.



Chapter 6
Conclusions and Future Research

6.1 Contributions

In this work, we have investigated three specialized types of the Entity Resolution

(ER) problems: (1) the Split Entity Resolution (SER) problem; (2) the Grouped-

Entity Resolution (GER) problem; and (3) the Mixed Entity Resolution (MER)

problem. For each type of problems, the goal of our research is to develop a set of

generic domain-independent, effective, efficient data cleaning solutions in terms of

compatibility with SQL and Database engine.

Toward this goal, our dissertation work is centered around novel, scalable so-

lutions using Blocking-based Framework, Sampling-based Approximated Join, and

Multi-level Graph Partition. Especially, for the GER problem, we have developed

two graph theoretic algorithms, Quasi-Cliques and Group Linkage based on Bipar-

tite Matching.

In detail, some of the major contributions of this research are as follows:

1. The Split Entity Resolution (SER) problem. we developed a scalable

two-step framework, in which step 1 is to substantially reduce the number of

candidates via blocking, and step 2 is to measure the distance of two entities

via collective knowledge. Through this framework, we comparatively studied

various approaches (e.g., supervised methods, distance functions, and vector-

based methods) to identify and correct name variants.

2. The Grouped-Entity Resolution (GER) problem. Unlike the previ-
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ous approaches, relying on textual similarity, producing a large number of

false positives, we presented the experience of applying a recently proposed

graph mining technique, Quasi-Clique, atop conventional entity resolution

solutions. This approach exploits contextual information mined from the

group of elements per entity in addition to syntactic similarity. In addition,

we focus on the intuition that two groups can be linked to each other if

there is high enough similarity between matching pairs of individual records

that constitute the two groups and there is a large fraction of such match-

ing record pairs. Formalizing this intuition, we proposed a Group Linkage

measure based on bipartite graph matching with better accuracy than the

existing textual similarity measures.

3. The Mixed Entity Resolution (MER) problem. Although the existing

clustering and classification methods are not scalable, we propose a scal-

able citation labeling algorithm using the sampling-based approximated join

algorithm to quickly determine a small number of candidates from the en-

tire entities. In addition, we proposed a scalable name disambiguation using

multi-level graph partition. In general, although k-way spectral clustering

algorithm is the most effective, it tends to take a large amount of time as the

size of a graph is considerably huge. To speed up such a graph partitioning

algorithm but yet optimize clusters, we applied multi-level graph partitioning

algorithm to this MER probelm.

6.2 Limitations and Assumptions

A more critical analysis of this work can be carried out by discussing limitations

and assumptions of this work.

1. For the data cleaning problem, the research direction is as follows: The

crawling softwares take documents from several digital libraries. Then, using

some algorithms, meta data are extracted and raw citation data are given

to make clean redundant data. We have not researched how to extract meta

data and raw citation data. Thus, after we assume that raw citation data

are given, we start to study a variety of solutions to SER, GER, and MER
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problems in our work. Subsequently, we need to develop system support to

exploit the clean knowledge. The final purpose of this research is to build a

prototype system.

2. Two-step SER Framework. In our context, we only focus on exploiting

co-author information as the associated information of an author. However,

Han et al. [31] reported a promising result by using co-authors, titles, venues,

or even hybrid of them as additional information. Therefore, one possible

area of extension is to support other associated information to our two-step

framework.

3. Quasi-Clique based Distance Measure. We plan to examine how to

overcome the shortcoming to make the superimposition technique generic: As

we have demonstrated, our proposal shows consistent improvement in both

precision and recall on various data sets. However, there is the limitation

that we need to overcome. In mining context graphs, we require the base

graph. For data sets with rich semantics such as citation data set, we can use

domain-specific graphs as the base graph (e.g., collaboration graph from all

co-authors). Otherwise, when such domain-specific graphs are not available,

we should use the token co-occurrence graph as the base graph, but the

contribution of our distQC decreases. In essence, this make sense – the more

semantics are provided in the base graph, the better “ context graphs” can

be made.

4. Sampling-based Citation Labeling Method. According to our experi-

mental results, when more than 3 authors’ citations are mixed, our citation

labeling algorithm shows poor performance. Therefore, we need to build a

solution to remedy this complicated problem. The MER problem can be

naturally cast to K-Clustering Problem (i.e., Cluster N data points into

K clusters). Such clustering methods are proposed by Han et al. [31] and

Malin [51]. Therefore, we need to compare their methods to ours.
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6.3 Future Research

First, we can extend current work to address issues discussed in Chapter 6.2.

Furthermore, some of the possible future research extensions are as follows:

1. Clean Databases

To achieve clean databases, improving the quality of data must be an impor-

tant research issue in modern days. This Data Cleaning problem commonly

occurs in a wide veriety of applications – information integration, data ware-

house, digital libraries, search engines, e-commerce, census surveys, image

processing, bio medical informatics, and so forth. In addition, there are

many challenges to handle: (1) Improving the existing cleaning algorithms;

(2) Constructing effective evaluation tools; (3) High performance record link-

age; and (4) Improving missing value estimation.

2. Domain Ontologies for Web Services

Recently, the semantic web services technology is the main tool to auto-

matically build domain ontologies in the context of the World Wide Web.

However, since individual web services tend to be created in isolation, there

exist variant affairs over different sources in terms of different formats, ab-

breviation, typographical, or homonym (e.g., “cost” and “price”). That is,

the same concepts and instances may be represented quite differently over

heterogeneous web service sources. Therefore, the major challenge is to iden-

tify the semantic correspondences between concepts and instances retrieved

from different sources.

3. Semantic Web Services Discovery and Composition Problem.

When no single web service satisfies the given request fully, one needs to com-

pose multiple web services to fulfill the goal. In the web services discovery

and composition problem, to determine when an operation in a web service

can invoke another application in other web service, it should be considered

if their corresponding input and output parameters are “lexicographically”

matching. But since individual web services are often created in isolation,
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matching the parameters is non-trivial due to different formats, abbrevia-

tion, typographical, or homonym (e.g., “cost” and “price”). To handle such

web service environment, we can consider approximate matching approaches.

Currently, majority of public web services need to have annotated semantics.

4. Information Integration and Security

In the database community, the issue for sharing minimal information across

private databases will be promising. For instance, consider two credit card

companies that wish to identify fraudulent customer list common to both

companies. However, two companies do not want to share their customer-

related information with the other party. In this problem, one faces two

challenges of how to design the proper security model of information inte-

gration and how to detect/consolidate redundant data occurred by likely

differences in conventions among private databases.

5. Advanced Search Engines

(a) Challenge 1. A search engine (e.g., PaperFinder) regularly queries new

articles to several digital libraries such as ACM and DBLP. However,

such a system usually return different formats of citations because of

diverse citation formats in digital libraries (e.g., “Russell S, Norvig P

(1995) Artificial Intelligence: A Modern Approach, Prentice Hall Series

in Artificial Intelligence. Englewood Cliffs, New Jersey” and “[RN95]

Artificial Intellignece-aModern Approach by S. Russell and P. Norvig.

Prentice Hall International, Englewood Cliffs, NJ, USA, 1995”). This

problem commonly occurs in other popular scientific search engines such

as CiteSeer and Google Scholar as well. Therefore, one needs to develop

system support to exploit the clean knowledge in search engines.

(b) Challenge 2. It is known that about 30% of queries include person names

and 100 million persons share only about 90,000 person names. This

indicates that the search results are a mixture of web pages about dif-

ferent people with the same name spellings. Thus, ideal search engines

should cluster web pages by different people sharing the same name.
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