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Preface

The standard model of particle physics, developed in the 1960s and 1970s,
has stood for 30 years as “the” theory of particle physics, passing numerous
stringent tests. In fact, while many people believe that the standard model is
not a complete description of particle physics, it is expected to be, at worst,
incomplete rather than wrong; that is, the standard model is at worst a
subset of the true theory of particle physics.
For this reason, a good working knowledge of the standard model and

its phenomenology is essential for the modern particle physicist. The goal
of this book is to provide all the tools for a working, quantitative knowl-
edge of the standard model, with the minimum of formal developments.
It presents everything needed to understand the particle spectrum of the
standard model, and how to compute decay rates and cross sections at lead-
ing order in the weak coupling expansion (tree level). We assume a solid
quantum-mechanics background, up to and including canonical quantization
and the Dirac equation, but we do not assume familiarity with formal quan-
tum field theory (renormalization, path integrals, generating functionals).
As we see it, this book fills two gaps in the existing literature. The first

of these concerns the balance between theoretical sophistication and phe-
nomenological utility. Most treatments of the standard model appear at the
end of quantum field theory books. This is rational in the sense that the
reader then has the complete set of tools to compute standard-model phe-
nomena at the loop level. This approach has its merits; both authors learned
the standard model in this way. Unfortunately, for many, especially exper-
imental practitioners, the quantum field theory preliminaries may be too
burdensome. Also, such books frequently do not present the standard model
in complete detail, and they generally develop little of its phenomenology.
The opposite style of approach is a more “cookbook” book, which introduces
quantum field theory at the tree level, typically using electrodynamics as an

x
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example, and again presents the standard model at the end. Generally these
treatments are incomplete and abbreviated. The intention of this book is
to be similar to the latter type of book, except that the presentation of
the standard model is complete and contains a discussion of the model’s
phenomenology and a complete presentation of its Feynman rules.
Our philosophy is that it is important for a particle physicist to have

a complete and quantitative knowledge of the standard model; indeed, for
many, this is much more important than having a good background in formal
quantum field theory. One cannot present the standard model in detail
without some quantum field theory; but one can get surprisingly far without
understanding the details of renormalization and loop e↵ects. Of course,
especially for theorists, a good knowledge of quantum field theory is also
necessary; indeed, it should be obvious to the reader, at many points in the
text, that more formal development is needed to compute to high accuracy.
Knowing the material in this book may help the student of more formal
quantum field theory by motivating and providing context for that study.
Conversely, a student already proficient in quantum field theory can use this
book as a succinct presentation of the standard model, and will have the
tools to fill in the gaps left in the presentation, where loop corrections are
required.
The second gap which we believe this book fills concerns the modern the-

oretical framework within which the standard model rests: the framework
of e↵ective field theories. Today we understand the theories we construct
to describe nature – including the standard model – to be e↵ective theories
which capture the low-energy limit of some more fundamental, microscopic
physics. E↵ective field theories capture a basic experimental fact: although
nature comes to us with many scales, it can be understood one scale at
a time. For instance, atomic physics can be understood with only limited
knowledge of nuclei, and it can because short-distance physics tends to de-
couple from long-distance physics. In the modern understanding it is this
observation which ultimately explains the otherwise puzzling requirement of
renormalizability which our fundamental theories generally have. This book
starts by using the standard model to build up the tools of e↵ective field
theory, by showing how and why scattering amplitudes simplify in the low-
energy limit. Later chapters then exploit these tools to categorize the kinds
of new physics which might ultimately replace the standard model, starting
with a discussion of neutrino oscillations and ending with a broad survey of
such new physics topics as supersymmetry and grand unified theories.
The first chapter of this book is devoted to introducing the field theory

concepts we will need to present the standard model. We present the allowed
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fields that can make up a quantum field theory (scalars, fermions, and gauge
bosons), with particular emphasis on Majorana fermions and on the gauge
principle, which appear to play especially important roles in the standard
model. We introduce the required rules for formulating the theory’s Lagran-
gian – the “basic principles,” such as Lorentz invariance, locality, unitarity,
and renormalizability. We see what kinds of interactions are allowed, given
the available fields and these basic principles. Then we give a few illustra-
tive examples, including QED and QCD. Supplementary material on group
theory, the Lorentz group, and spinors is provided in two appendices.

The second chapter introduces the standard model itself. We present
the gauge group and the field content. The Lagrangian then follows as
the most general Lagrangian consistent with these fields and with basic
principles. This section then explores the consequences, determining the
mass eigenstates and their interactions. We present in complete detail what
the interaction Hamiltonian of the model is in the mass basis. We also
briefly discuss the symmetries of the model, especially the accidental global
symmetries of baryon and lepton number, and very briefly discuss anomalies
and gauge anomaly cancellation.

The third chapter discusses the S matrix formalism in just enough detail
to define and motivate decay rates and cross sections, and to show how
they are to be computed in the interaction picture. Together, the first three
chapters represent an introduction to the framework of the standard model.

Next, we start using the standard-model interactions to compute pro-
cesses, introducing the needed technology as we go with the philosophy of
“learning by doing” and using specific examples to figure out the patterns.
We begin with the simplest processes in the standard model, the decays of
heavy bosons, in Chapter 4. The rates of Z0, W±, and Higgs-boson decays
can be computed using interaction picture perturbation theory and an ex-
pansion of the fields in creation and annihilation operators, without much
di�culty. In Chapter 5, where we consider the decays of leptons lighter than
the W boson mass, we first encounter virtual intermediate particles, requir-
ing the introduction of the propagator. After these examples it is possible
to generalize the procedure for computing a decay process. This allows us to
introduce the Feynman rules. Chapter 5 ends with a complete presentation
of the unitary gauge Feynman rules of the standard model, su�cient for tree
level analysis. (The R⇠ gauge Feynman rules appear in Appendix D.)

In Chapter 6 we address scattering processes, concentrating on fermion–
fermion scattering. We discuss s-channel scattering in some length, espe-
cially near the Z0 pole, where we first discover the necessity of including loop
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corrections. We also introduce crossing symmetry and interference between
diagrams, external photon states, and initial state radiation.
In Chapter 7 we introduce the notion of e↵ective field theories, using

the Fermi theory as the main example. This is especially important as the
standard model itself is probably just an e↵ective theory for some more
inclusive theory, which is manifested at higher energies. We also present
some of the most important results of loop corrections, particularly the
running of gauge couplings with scale.
Chapter 8 begins the discussion of hadrons. We motivate why the running

of couplings causes the confinement of quarks and gluons within hadrons,
and we describe and motivate the spectrum of heavy-light and light-light
mesons and of baryons, emphasizing the use of approximate symmetries.
Chapter 9 discusses hadronic interactions. It explains why both the low-

and high-energy regimes are somewhat tractable, but the intermediate en-
ergy regime is not. We discuss deep inelastic scattering and the partonic
structure of hadrons, up to and including the Altarelli–Parisi (DGLAP)
equations. Then we discuss chiral perturbation theory, leptonic meson de-
cays, and oscillation phenomena in the K and B meson systems.
The last part of the book gives a brief survey of what may lie beyond

the standard model. We begin in Chapter 10 with a discussion of neutrino
masses. Technically, these cannot lie beyond the standard model, because
they have been observed, and the meaning of the standard model must be
enlarged to accommodate them. However, as we discuss, there are two viable
ways to do so, Majorana neutrino masses and Dirac neutrino masses, and we
do not (yet) know which is correct. We discuss the Majorana possibility at
some length in the context of non-renormalizable field theories. We discuss
oscillation phenomena in some length, including the MSW e↵ect, and briefly
cover neutrinoless double beta decay. We also give examples of high-energy
physics that could lead to the non-renormalizable operator responsible for
Majorana neutrino masses.
Finally, Chapter 11 discusses what may lie beyond the standard model.

We organize this material in terms of problems with the standard model,
which can in turn be organized in terms of the dimensionality of the operator
presenting the problem. The hierarchy problem appears because of the
dimension-2 Higgs mass term, and may be solved by supersymmetry. The
strong CP problem appears because of the dimension-4 ⇥ term in QCD, and
may be solved by the axion mechanism. The baryon-number conservation
“problem” (opportunity) arises because of the possibility of dimension-6
operators in the standard model; these might arise at an interesting level
within grand unified theories.
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Our approach is modern and synthetic; we present the model first and
then explore its phenomenology, without first presenting the experimental
evidence which has led us to the field content of the model. We also do not
cite previous literature in the text, leaving references to our (hopefully suf-
ficient) bibliography. We also adopt what we hope is a modern and stream-
lined notation. In most respects our nomenclature is that in conventional
use, even where this does not correctly reflect the historical development of
ideas. For instance, we refer to the Higgs mechanism and the Higgs boson,
rather than the (more correct but cumbersome) Anderson-Brout-Englert-
Higgs-Guralnik-Hagen-Kibble mechanism.
There is one respect in which we do not follow the most conventional set of

conventions. Namely, we have used the metric convention, ⌘µ⌫ = Diag[�1+
1 +1 +1], which is the less common convention within the phenomenology
community. However, to ease the text’s use, we present in Appendix E a
clear discussion of how to convert between conventions, culminating in a
metric convention conversion table.
In our experience it is possible to cover most of this book in a high-paced,

one-semester first-year graduate level course. To do so, it is necessary to
shave some corners. Most of Chapter 1, and Chapter 2 through Section 2.4,
are essential, but Section 2.5 can be skipped without too much loss to the
continuity. Similarly Section 4.2 and Section 4.3 can be given as problems
instead of covered as sections. Chapter 5 and Chapter 6 should be covered
in full, but then material from the remaining chapters can be picked and
chosen as time and interest allow. The material in Chapter 10 does not rely
on Chapter 8 or Chapter 9. A full year course should quite easily be able to
cover all of the material in this book.
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Theoretical framework





1

Field theory review

Quantum field theory is the language in terms of which the laws of physics
are cast, and so we start with a whirlwind summary of some of its main
features. Interspersed amongst the introductory topics in this chapter we
also discuss some of the more general features that are usually demanded of
any reasonable field-theoretic description of nature.

1.1 Hilbert space, creation and annihilation operators

Quantum field theories are special kinds of quantum mechanical theories
which describe the behavior of particles. As quantum mechanical theories,
their most basic objects are the Hilbert space of possible states H, and the
Hamiltonian H which describes time evolution in that Hilbert space.
The possible kinds of states are zero-particle states, one-particle states,

two-particle states, and so on. Therefore, the Hilbert space in which all
operators live is the sum of the zero-particle space with the one-particle
space with the two-particle space, and so on:

H = H0 �H1 �H2 � · · · (1.1)

Here

H0 = {|0i} (1.2)

denotes the one-dimensional space spanned by the zero-particle state or
vacuum: |0i.

H1 = {|p, ki} (1.3)

is similarly the span of all one-particle states with the basis states chosen to
be eigenstates of linear momentum. Here p represents the momentum of a
state, and k denotes all of the other particle labels.

3



4 Field theory review

The space of N -particle states is constructed as the tensor product of N
copies of the one-particle space. For instance, H2 is the set of all two-particle
states,

H2 = {|p1, k1;p2, k2i = ±|p2, k2;p1, k1i} (1.4)

etc.The sign, ±, is + for bosons and � for fermions. A Hilbert space con-
structed in this way is conventionally referred to as a Fock space.
It is convenient to express the operators that act within this space in terms

of a basic set of creation and annihilation operators in the following way.
The annihilation operator, apk, is the operator that removes the particle
with quantum numbers p and k from a given state. If the state on which
apk acts does not contain the particle in question then the operator is defined
to give zero. That is,

apk|0i = 0

apk|q, li = 2Ep(2⇡)
3�3(p� q)�kl|0i

apk|q, l;k,mi = 2Ep(2⇡)
3�3(p� q)�kl|k,mi

±2Ep(2⇡)
3�3(p� k)�km|q, li (1.5)

and so on. Here, Ep is the energy of a particle of spatial momentum p,
namely,

p
p2+m2, with m the mass of a particle with labels k. The sign in

this last result is ± according to the statistics of particles |p, ki and |q, li.
Here and throughout, we use units for which h̄ = c = 1. The normalization
is chosen to make Lorentz invariance more manifest, as discussed below.
This definition implies that the Hermitian conjugate, a⇤pk, of apk is a

creation operator for the same particle type; i.e.

a⇤pi|0i = |p, ii (1.6)

a⇤pi|q, ji = |p, i;q, ji (1.7)

etc.(Our notation is to use an asterisk for complex conjugation of c-numbers
and Hermitian conjugation of operators, and to reserve a dagger, †, for
Hermitian conjugation of matrices.)
These definitions, together with the normalization convention

hp, i|q, ji = 2Ep(2⇡)
3�3(p� q)�ij (1.8)

imply the following properties. For bosons,

|p, i;q, ji = |q, j;p, ii (1.9)

[api, aqj ] =
h
a⇤pi, a

⇤
qj

i
= 0 (1.10)

h
api, a

⇤
qj

i
= 2Ep(2⇡)

3�3(p� q)�ij (1.11)
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and for fermions,

|p, i;q, ji = �|q, j;p, ii (1.12)

{api, aqj} = {a⇤pi, a⇤qj} = 0 (1.13)

{api, a⇤qj} = 2Ep(2⇡)
3�3(p� q)�ij (1.14)

in which [A,B] = AB �BA and {A,B} = AB +BA.
A few comments are in order about the field normalizations above. First,

note that momentum integrations dp/2⇡ always have factors of 2⇡ in the
denominator, and momentum delta functions 2⇡�(p� q) always have factors
of 2⇡ multiplying them. Following these rules,

• momentum space and energy integrations always involve
R
d3p/(2⇡)3,R

dE/2⇡;

• delta functions are always of form (2⇡)3�3(p�q) or (2⇡)�(E1�E2),

accounts for all 2⇡ factors we will ever encounter.
Second, the momentum delta functions we have written are accompanied

by factors of 2Ep, and the same 2Ep appears in the denominator in momen-
tum integrations. This normalization, called relativistic normalization, is
convenient in a Lorentz invariant theory, because it makes it easier to make
Lorentz invariance manifest. Note in particular, that

Z
d3p

2Ep(2⇡)3
=
Z

d4p

(2⇡)4
2⇡�(p2+m2)✓(p0) (1.15)

which is manifestly Lorentz invariant. [Note that our metric convention is
that ⌘µ⌫ = Diag[�1, 1, 1, 1], so p2 ⌘ ⌘µ⌫pµp⌫ = �(p0)2 + p2.] This ex-
pression can be verified by performing the p0 integration, using the � func-
tion. Its Lorentz invariance is not quite manifest, since the step function
✓(p0) does not look invariant, as it refers to the time component; but the
2⇡�(p2+m2) forces pµ to be timelike for m2 > 0 and lightlike for m2 = 0,
which ensures that the sign of p0 does not change under (orthochronous)
Lorentz transformations. Throughout this book, whenever there is an in-
tegral

R
d3p/(2⇡)32Ep, we will always implicitly define p0 = Ep inside the

integral.
The fundamental claim now to be made is that any operator acting on

our Hilbert space, H, can be written as a linear combination of monomials
of the as and a⇤s; i.e.,

O = A0,0 +
X

i

Z
d3p

2Ep(2⇡)3

h
A0,1(p, i)api +A1,0(p, i)a

⇤
pi

i
(1.16)
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+
X

ij

Z
d3p d3q

4EpEq(2⇡)6

h
A0,2(p, i;q, j)apiaqj +A1,1(p, i;q, j)a

⇤
piaqj

+A2,0(p, i;q, j)a
⇤
pia

⇤
qj

i
+ · · · (1.17)

The operators, O, are in one-to-one correspondence with the coe�cient func-
tions {A0,0, A1,0(p, i), A0,1(p, i), . . .}. This can be shown inductively by ex-
plicitly solving for these coe�cients in terms of the matrix elements of O:
h |O|�i. For example h0|O|0i = A0,0, h0|O|p, ii = A0,1(p, i), and so on.
In particular, the Hamiltonian for a system of free particles has a simple

expression in terms of the as and a⇤s:

H0 = E0 +
X

i

Z
d3p

2Ep(2⇡)3
"(p, i)a⇤piapi. (1.18)

To learn the interpretation of the coe�cients E0 and "(p, i), calculate the
action of H0 on various states. On the vacuum H0 gives

H0|0i = E0|0i (1.19)

since api|0i = 0. E0 is clearly the energy of the no-particle state |0i, i.e.,
the vacuum energy. Similarly,

H0|q, ji = [E0 + "(q, j)] |q, ji (1.20)

and

H0|q1, j1; . . . ;qN , jNi =
"

E0 +
NX

k=1

"(qk, jk)

#

|q1, j1; . . . ;qN , jNi (1.21)

etc.The many-particle momentum eigenstates, |q1, j1; . . . ;qN , jNi are also
eigenstates of the energy, H0, with eigenvalue

E = E0 +
NX

k=1

"(qk, jk). (1.22)

This implies that the energy of a single-particle state |p, ii relative to the
vacuum is "(p, i). Relativistic kinematics then determines the momentum-
dependence of " on p as

"(p, i) =
q
p2 +m2

i = Ep (1.23)

where mi is the mass of particle type i. Notice that the energy of a many-
particle state relative to the vacuum is just the sum of the single-particle
energies, showing that the particles described by H0 do not interact.
We emphasize that this is a special property of free field theories; in
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general, even if single-particle states are eigenstates of the Hamiltonian,
many-particle states are in general not eigenstates of the Hamiltonian. This
means that they can undergo non-trivial time evolution. Indeed, almost all
interesting phenomena in particle physics arise from the fact that many-
particle states are not eigenstates of the Hamiltonian.

1.2 General properties of interactions

We are interested in writing down a Hamiltonian

H = H0 +Hint (1.24)

that describes the interactions of the particles we know. The present sec-
tion is devoted to summarizing the minimal requirements for a physically
reasonable theory. These properties translate into a set of restrictions on
what form will be allowed for H. The purpose of this process is to arrive
at the general class of theories from which the standard model is to be cho-
sen. Being aware of the alternatives available gives some feeling for which
features may be changed and which are inviolable.
We now return to a statement of these requirements. A sketch of their

justification is given in the next subsection, but for a complete discussion
the reader should consult a field theory text.

1.2.1 Physical constraints on H

The basic principles we demand of any candidate physical theory are:

(i) Unitarity: (i.e. conservation of probability)
The requirement here is to ensure that time evolution preserve the
property that the sum of probabilities over all mutually exclusive
events gives one. This requires that the time-evolution operator

U = e�iHt (1.25)

be unitary. Equivalently the Hamiltonian must be Hermitian:

H = H⇤. (1.26)

(ii) Cluster decomposition: (i.e. locality)
This requirement is that physics be independent at di↵erent points
in space at a given time. Specifically we require that amplitudes
(and hence probabilities) for events that are well separated from one
another factorize into a product of independent amplitudes. Such a
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factorization is what would be expected for statistically independent
events.

The condition that physics at spatially separated positions be in-
dependent comes in two parts. The first is that physical observables
must commute at spatially separated points and the second is that
time evolution must preserve this property. We consider each of these
in turn:

(a) Microcausality

The first condition is to require that physical observables may be
separately measurable at di↵erent positions and equal times. In a
quantum theory we must therefore demand that all physical observ-
ables commute at space-like separations. That is:

[A(x), B(y)] = 0 for (x� y)2 > 0. (1.27)

Condition (1.27) is sometimes referred to as the requirement of mi-
crocausality.

(b) Locality

We next require that this property, that spatially separated physical
amplitudes must factorize, be preserved by time evolution, provided,
of course, that no physical signals propagate from one point to the
other. Since the time-evolution operator, Eq. (1.25), is the exponen-
tial of the Hamiltonian, the property that it factorizes turns out to
require that the Hamiltonian should be the sum of those for each
of the spatially separated regions. The Hamiltonian must therefore
have the form

H =
Z

d3x H(x, t) (1.28)

which boils down to requiring that the total energy be a sum of the
energy of the degrees of freedom at each point. This is consistent
with the intuition that the degrees of freedom at each point of space
at a given time are independent, since the total energy for a set of
independent systems is the sum of the energies of the independent
constituents.

(iii) Invariance under Lorentz transformations and translations (Poincaré
invariance)

Here we build in the requirements of special relativity and translation
invariance in space and time. In quantum mechanics this implies the
existence of corresponding conserved charges, Pµ and Jµ⌫ = �J⌫µ
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(with µ, ⌫ = 0, 1, 2, 3), representing four-momentum and angular mo-
mentum respectively. In particular, the total energy is given by

H = P 0

The particle states transform under unitary representations of the
Poincaré group given by the operators:

U(a,!) = exp

�iaµPµ +

i

2
!µ⌫J

µ⌫
�

(1.29)

generated by these conserved charges. The states, |p,�, ji, may then
be labelled by their three-momenta, p, mass, m, total spin, s, and
spin-projection, �, together with any other internal labels, j. The
labels m and s are generally not explicitly indicated.

The Minkowski-space conventions used in what follows are:

⌘µ⌫ =

0

BBB@

�1
1

1
1

1

CCCA (1.30)

Pµ = (E,p), and Pµ = (�E,p) (1.31)

xµ = (t,x), and xµ = (�t,x) (1.32)

✏0123 = +1 (1.33)

implying that the invariant product x2 = �(x0)2 + x2 is negative
for timelike vectors and positive for space-like vectors. We provide a
review of Lorentz symmetry in Appendix C.

(iv) Stability:

The final condition to be imposed is that the spectrum of H be
bounded from below. This is necessary if the vacuum state, defined
as the state of lowest energy, is to exist.

1.2.2 Renormalizability

A further condition to be imposed on the standard model that is not as
fundamental as those just described is the requirement of renormalizability.
In fact, perfectly good theories, such as general relativity, are not renormal-
izable and yet are still very successful at accounting for experiments. Some
explanation is therefore required to justify this demand.
The physical motivation comes from the idea that physical theories gener-

ically come with an implicit minimum distance, d, (or maximum energy, ⇤)
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beyond which they are not meant to apply. For example, the quantum elec-
trodynamics of electrons and photons is only physically correct up to an
energy of twice the mass of the lightest particle that is heavier than the
electron: ⇤ = 2mµ, twice the muon mass. At energies higher than this,
muons can no longer be neglected, since they can be pair-produced in the fi-
nal state even if they are not present initially. The correct theory for physics
at energies above ⇤ becomes the quantum electrodynamics of photons, elec-
trons and muons. This theory is in turn only valid up to the next threshold,
the pion mass, and so on.
Classically, it is not important to specify this “cut-o↵” carefully. In a

quantum theory, however, since all states can contribute to any given pro-
cess as intermediate (or “virtual”) particles, any quantum calculation will
depend explicitly on the cut-o↵ scale, ⇤. This may be seen, for example,
by considering the expression, in time-independent perturbation theory, for
the quadratic energy shift due to a perturbing Hamiltonian,

�E =
0X

n

|h |H|ni|2
E � En

|ni 6= | i (1.34)

Clearly any state, |ni, contributes to Eq. (1.34) regardless of its energy.
Given our ignorance of the spectrum above the energy ⇤, it only makes
sense to include those states with energy less than ⇤ in this sum. The result
therefore depends explicitly on ⇤ in a potentially complicated way.
If detailed knowledge of physics at the ⇤ scale is necessary in order to

calculate probability amplitudes for processes at energies lower than ⇤, then
the theory is called non-renormalizable. These theories have less predictive
power, since predictions depend on physics at the scale ⇤, about which we
are by assumption quite ignorant.
In renormalizable theories, on the other hand, ⇤ only appears in physical

predictions (for large ⇤) through a small number of parameters, such as
the masses and charges of some or all of the particles involved. All other
processes may then be computed in terms of these parameters. Once the
few incalculable parameters are taken from experiment, definite predictions
may be made.
Whether or not a renormalizable theory should be expected to describe a

given system depends therefore on the properties of the system. Physically,
successful description in terms of a renormalizable theory is equivalent to
the statement that the physics of interest, at energies E ⌧ ⇤, is largely
insensitive to the higher-energy physics appropriate to the scale ⇤. In gen-
eral, a renormalizable description of the physics at an energy E is justified
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to the extent that contributions of order E/⇤ are not important. Otherwise
non-renormalizable interactions must be included.
As an example, consider the theory describing the energy levels of the hy-

drogen atom. Neglecting the structure of the nucleus, this theory is given by
the quantum electrodynamics of pointlike electrons, protons, and photons.
Ignoring nuclear structure (such as the proton magnetic moment) means
neglecting powers of Eatom/Mproton, and the resulting theory is renormaliz-
able. Within this theory atomic physics depends only on the electron and
proton mass and charge. If we demand accuracy higher than Eatom/Mproton,
the proton structure cannot be ignored, leading to a non-renormalizable de-
scription.
An example of a situation for which no renormalizable theory should be

expected is provided by the theory describing the nuclear scattering of the
deuteron. Suppose that in this theory we wish to ignore the fact that the
deuteron consists of a proton and neutron bound by these same nuclear inter-
actions, instead taking the deuteron as a point particle. The corresponding
theory that describes the scattering data cannot be renormalizable. This
reflects the fact that in this case the scale, ⇤, of the physics being neglected
(the nuclear binding) and the scale, E, of the physics being studied (the
nuclear scattering) are essentially the same. Non-renormalizability is the
theory’s way of telling us that e↵ects of order E/⇤ cannot be neglected.
Turning this argument around, we can use the renormalizability of a the-

ory to tell us what the next scale, ⇤, of new physics is. If we succeed in
describing all data at presently accessible energies, E, in terms of a renor-
malizable theory then we learn that the scale of any new physics can be
large: ⇤� E. If a non-renormalizable theory is required, we learn that we
are still missing some fundamental ingredients.
This physical picture implies that renormalizability is the minimal crite-

rion for a theory which purports to describe all of the physics appropriate to
any given scale. Demanding renormalizability for the standard model then
amounts to the assumption that no hitherto unknown particles or interac-
tions are required to understand present experiments. As judged by the
splendid success of the standard model, this turns out to be a fairly good
assumption. The sole exception (at the time of this writing) is the physics of
neutrino oscillations, which appears to demand new physics; this can be un-
derstood within the standard model as the existence of non-renormalizable
interactions. We return to this point at some length in Chapter 10 (and
more generally to the issue of renormalizability and high-dimension opera-
tors in Chapter 7). Note, for the current purposes, that the scale required
to explain neutrino masses is ⇤ ⇠ 1014 GeV. This is so much higher than
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the intrinsic scales in the electroweak theory that, if the standard model
is correct up to this scale, there are virtually no other consequences of the
high-energy physics expected, and therefore we are (otherwise) very well
justified in treating the standard model as a renormalizable theory (with
one possible exception, see Section 11.5).

1.2.3 Canonical quantization

We now turn to the problem of how to ensure that a given set of interactions
incorporates the properties listed above. The most e�cient way to do so is
to set up the formalism in terms of the action

S =
Z

L(t) dt (1.35)

rather than the Hamiltonian. The conditions listed above forH then become
relatively simple conditions for S.
H is related to S by the usual canonical methods. That is, given a set of

physical variables qi and a Lagrangian, L(q, q̇), define the canonical momenta
by

pi =
@L

@q̇i
(1.36)

The Hamiltonian, H, is then given by

H =
X

i

piq̇
i � L (1.37)

In this last expression, Eq. (1.36) is supposed to be inverted to allow the
elimination of q̇i in favor of pi. The formalism may be generalized in the case
when this cannot be done, or when L depends on higher time-derivatives of
q such as q̈i etc.
We consider the implications for S of each of the properties of the previous

sections in turn.

(i) Unitarity:

H is real provided that the action, S, is real.

(ii) Locality:

In order for H to be a local function,

H =
Z

d3x H(x, t) (1.38)
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we require that L must also be expressed as an integral over a La-
grangian density:

L =
Z

d3x L(x, t) (1.39)

so S =
Z

d4x L(x, t) (1.40)

It is a customary abuse of language in quantum field theory to refer
to the Lagrangian density as the Lagrangian.

Recall that H and L, like any operators, are to be expressed in
terms of the creation and annihilation operators, api and a⇤pi. But H
and L are built of operators at a single spacetime point, which means
that they must be built from the Fourier transforms of api and a⇤pi:

A↵(x, t) =
X

k

Z
d3p

2Ep(2⇡)3
u↵(p, k)apk e

ipx (1.41)

In this equation px = pµxµ = �p0x0 + p · x, with p0 = Ep =p
p2 +m2. ↵ denotes any labels that distinguish the fields due to

one particle type from another. The coe�cients u↵(p, k) ensure that
both sides of the equation transform the same way under Lorentz
transformations. The Lagrange density then becomes

L = L(x,A↵(x), @µA↵(x), . . .) (1.42)

We return to the related consequences of causality after first con-
sidering Poincaré invariance.

(iii) Translation invariance:

Translation invariance implies that L depends on the spacetime co-
ordinates x and t only implicitly through its dependence on A↵(x)
and its derivatives:

L(x,A↵(x), @µA↵(x), . . .) = L(A↵(x), @µA↵(x), . . .) (1.43)

(iv) Lorentz invariance:

Noether’s theorem (see Subsection 1.4.2) allows the construction of
the conserved charges Pµ and Jµ⌫ provided that the action, S, is
invariant under Poincaré transformations (unless there is an anomaly,
see Subsection 2.5.3). From Eq. (1.40) this implies that L must be
constructed out of the A↵(x) in such a way as to be a Lorentz scalar.
In order to do so it is convenient to choose the fields, A↵(x), to
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transform in (finite-dimensional) representations of the Lorentz group

U(!)A↵(x)U(!)⇤ = D↵�A�(exp[!] · x) (1.44)

This, together with the transformation law for the single-particle
states, determines the coe�cients, u↵(p, k) appearing in Eq. (1.41).
This is the main topic of Section 1.3. L must then be constructed
from various combinations of the fields, their derivatives and the in-
variant tensors ⌘µ⌫ and ✏µ⌫�⇢.

(v) Causality:

Causality implies that bilinears of fields, such as the Hamiltonian
density, must commute at spacelike separations. This is a strong
condition, since the fields defined by Eq. (1.41) satisfy

[A↵(x, t), A
⇤
↵(y, t)] 6= 0 (1.45)

Causality is ensured provided that, for each particle, there exists
another particle (its antiparticle) of equal mass and spin, described
by the field

B↵(x) =
X

k

Z
d3p

2Ep(2⇡)3
v↵(p, k)bpk e

ipx (1.46)

L must depend on the fields A(x) and B(x) only through the combi-
nation

�↵(x) = A↵(x) + ⇠B⇤
↵(x) (1.47)

in which ⇠ is a phase, since in this case

[�↵(x, t),�
⇤
↵(y, t)] = 0 (1.48)

In general the antiparticle need not be distinct from the particle.
If the particle and antiparticle are identical, apk = bpk , then ⇠ can
be chosen such that � = �⇤.

This observation has three physical consequences.

(a) Antiparticles exist and couple with a strength identical to parti-
cles. This is called crossing symmetry. Since Hint involves apk
and bpk only in the schematic combination apk + b⇤pk there are no
interactions that can conserve the total number of particles.

(b) For fermions the fields must anticommute at spacelike separations.
For general spins the condition that bilinears, such as H0, commute
for space-like separations implies that integer-spin particles must
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be bosons and half-integer-spin particles must be fermions – the
spin-statistics theorem.

(c) The behavior of particles and antiparticles under symmetries such
as parity or gauge transformations are related. In particular the
electric charge of a particle is the opposite of that of the antiparti-
cle.

(vi) Stability:
The generalization of the canonical method to theories with higher
time derivatives shows that the Hamiltonian is in this case generically
linear in one of its variables. Such a Hamiltonian cannot be bounded
from below. Stability then implies that the Lagrangian must be a
function of at most one time derivative of the fields. In practice, this
forbids the appearance of more than quadratic powers of derivatives
of fields.

(vii) Renormalizability:
Renormalizability may be summarized as the requirement that all
parameters that appear in the Lagrangian must have positive dimen-
sion in powers of mass. That is to say, if the operator O appears in
L with a coe�cient c:

L = cO (1.49)

then c must have dimension Md for d � 0. Since all of the con-
stituents, A↵(x) and @µ, of O each have dimension Mp for p > 0 and
L has dimension M4, this severely limits the allowed interactions to
only include operators for which d  4. Generally, all such inter-
actions which are consistent with the assumed symmetries must be
included.

1.3 Free field theory

In this book we will generally be interested in theories which, at least on
some energy scale, can be described in terms of weakly coupled particles; that
is, by a Hamiltonian which is dominated by a “free theory” piece H0, with
interactions HI which can be treated by perturbation theory. The standard
model turns out to be such a theory, and most of the tools we have available
to study quantum field theories are based on this assumption. In most of
this book we will only treat corrections to the free-theory approximation at
the leading order, that is, at the lowest power in the interaction Hamiltonian
HI at which the phenomena of interest happen.
To proceed with this project we first need to see what the most general
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free field theories can look like. We focus on particles with spins zero through
one since all known non-gravitational experiments appear to be describable
in terms of these, and since renormalizability seems to require an interacting
field theory to be composed of such particles.
Recall that the Hamiltonian for a system of free particles is given by

H0 = E0 +
X

i

Z
d3p

2Ep(2⇡)3
Epa

⇤
piapi (1.50)

which is quadratic in the operators api. We wish to construct the corre-
sponding Lagrangian in terms of the fields, A↵(x). Since the fields are linear
in the creation and annihilation operators the desired Lagrangian density,
L0, must also be at most quadratic in the A↵s and their derivatives.
The discussion will use properties of the Lorentz group, which are reviewed

in Appendix C.

1.3.1 Spin-zero particles

Spin-zero particles are described by fields that transform as scalars under
Lorentz transformations. That is,

U(!)�(x)U(!)⇤ = �(⇤ · x) (1.51)

where ⇤µ
⌫ = (exp!)µ⌫ is a Lorentz-transformation matrix. In terms of

creation and annihilation operators

�(x) =
Z

d3p

2Ep(2⇡)3

h
ap e

ipx + a⇤p e
�ipx

i
(1.52)

in which

Ep =
q
p2 +m2 (1.53)

and px = �Epx0 + p · x. The field �(x) has been chosen real, as may be
done without loss of generality because any complex field can always be de-
composed into its real and imaginary parts. The energy relation, Eq. (1.53),
implies that the four-momentum pµ satisfies

pµpµ = �E2
p + p2 = �m2 (1.54)

which becomes the Klein–Gordon equation

(�@µ@µ�+m2�) = 0 (1.55)

in position space. In the canonical approach these conditions are derived as
equations of motion from the action rather than the representation theory
of the Poincaré group.
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We now consider the most general possible theory of several scalars, and
show that it always reduces to a set of independent scalars, with potentially
di↵erent masses. Consider then, a system of N types of spinless particles.
Such a system may be described in terms of N real fields, �i(x), with i =
1, . . . , N . The most general Lagrangian that is Poincaré invariant, involves
only two time derivatives (stability), and is quadratic in these N fields, is

L0 = �
1

2
Aij@µ�

i@µ�j � 1

2
Bij�

i�j � C (1.56)

A sum from 1 to N is implied over repeated indices.
A term such as

Dij�
i@µ@µ�

j

is not included since it is equivalent to

�Dij@
µ�i@µ�

j

after an integration by parts. This Lagrangian is real (unitarity) provided
that the (symmetric) coe�cients Aij , Bij and C all are.
The corresponding conjugate momentum and Hamiltonian are:

⇡i(x) =
@L0

@�̇i
= Aij�̇

j(x) (1.57)

so H0 = ⇡i�̇
i � L0

= +
1

2

h
Aij�̇

i�̇j +Aijr�i ·r�j +Bij�
i�j
i
+ C (1.58)

This Hamiltonian is bounded below provided that the matrices Aij and Bij

are non-negative definite. We assume in what follows that Aij is strictly pos-
itive definite, since there would otherwise be a particle without any kinetic
energy.
There are considerably more parameters appearing in the Lagrangian,

Eq. (1.56), than appeared in the Hamiltonian, Eq. (1.50). This is because
many of the constants in Eq. (1.56) may be absorbed into redefinitions of
the field variables by putting L0 into canonical form. Only linear transfor-
mations

�i = M i
j�

0j ⌘ (M�0)i (1.59)

need be considered since these are the only ones that ensure that L0 remains
quadratic when expressed in terms of the new variable, �0j . We use this
freedom to put Aij and Bij into standard form.
Since Aij is assumed positive definite, its eigenvalues a1, . . . , aN are all
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positive and its square root and inverse exist. If we define the new fields �0i

as

�i = (A�1/2�0)i (1.60)

then L0 becomes

L0 = �
1

2
@µ�

0i@µ�0i � 1

2
B0

ij�
0i�0j � C (1.61)

where

B0
ij ⌘ (A�1/2BA�1/2)ij (1.62)

This does not exhaust the freedom (1.59) to redefine fields. Indeed, the
transformation �0 = O' in which OTO = I preserves the form (1.61). Recall
now that any real symmetric matrix can be diagonalized by an orthogonal
transformation

OTB0O =

0

BBB@

b1
b2

bN

1

CCCA (1.63)

with bk � 0 from stability. The redefinition �0 = O' with this O then
diagonalizes the mass matrix, B0

ij , giving:

L0 = �1

2
@µ'

i@µ'i � 1

2
bi'

i'i � C (1.64)

and H0 =
1

2
'̇i'̇i +

1

2
(r'i) · (r'i) +

1

2
bi'

i'i + C (1.65)

Unless some of the eigenvalues of the matrix Bij are degenerate, this
exhausts our freedom to linearly redefine fields. Equation (1.64) is then the
standard form for L0. The equations of motion are

(�@µ@µ + bi)'
i = 0 (1.66)

The parameters appearing in L0 may be related to the physical vacuum
energy, E0, and masses, mi, by expressing the total Hamiltonian, Eq. (1.65),
in terms of api and comparing to Eq. (1.50):

H0 =
Z

d3x H(x)

= E0 +
NX

i=1

Z
d3p

2Ep(2⇡)3
Epa

⇤
piapi (1.67)

with Ep =
q
p2 + bi (1.68)
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and E0 = C
Z

d3x+
X

i

1

2

Z
d3p

(2⇡)3
Ep(2⇡)

3�3(0) (1.69)

Clearly the eigenvalues bi = m2
i give the square of the particle masses.

The vacuum energy is more delicate since it diverges at both long and short
distances. The long-distance divergence may be regularized by putting the
system within a space of finite, but large, volume ⌦. The divergence of E0 as
⌦!1 merely indicates that the total energy is not the quantity of physical
interest, since the total energy is by construction an extensive variable that
grows with the size of the system. The well behaved quantity in this limit
is the energy density, ⇢ = E0/⌦. Using

(2⇡)3�3(0) =
Z

⌦
d3x ei(p=0)·x = ⌦ (1.70)

the energy density is

E0

⌦
= C +

NX

i=1

Z ⇤

0

1

2

d3p

(2⇡)3
Ep

= C +
1

16⇡2

NX

i=1

"

⇤4 +m2
i⇤

2 � 1

4
m4

i log

 
⇤2

m2
i

!

+ o

 
m2

i

⇤2

!#

(1.71)

The short distance divergence has been regulated by cutting o↵ the integra-
tion at a maximum momentum, |p| < ⇤. The ⇤-dependence can then be
renormalized by canceling it with a ⇤-dependent constant C.

1.3.2 Spin-half particles

We assume familiarity with the Dirac equation and the Lorentz group in the
following; readers unfamiliar with one or both may consult Appendix C.
Spin-half particle states are labeled by |p,�i, in which the label �= ± 1

2
represents the projection of intrinsic angular momentum along some axis.
Representation theory of the Poincaré group implies that spin-12 particles
are most easily represented by spinor fields. Four-component spinor fields
transform as follows under Lorentz transformations:

U(!) (x)U(!)⇤ = D(�!) (⇤ · x) (1.72)

in which D(!) is the four-by-four matrix given explicitly by

D(!) = exp

i

2
!µ⌫J µ⌫

�
(1.73)
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with the matrices J µ⌫ given, in the chiral basis which will be used through-
out this book, by

Jk =
1

2
✏klmJ lm =

 
1
2�k 0
0 1

2�k

!

(1.74)

Kk = Jk0 =

 
� i

2�k 0
0 i

2�k

!

(1.75)

Here the two-by-two matrices, �k with k = 1, 2, 3, denote the usual Pauli
spin matrices.
It is clear that this representation is block-diagonal and so is reducible.

That is, the upper two components of a spinor field never “mix” with the
lower two components under any Poincaré transformation. Therefore, it is
consistent to consider quantum field theories in which only the upper or
lower components of a spinor exist as fields of the theory. Though this does
not happen for quantum electrodynamics–the electron can be represented
by a 4-component Dirac spinor – it turns out that it does happen for every
spinor field in the standard model.
There are two equivalent choices of notation to handle such fields, which

we will now list.

(i) Weyl spinors:

AWeyl spinor is one for which the upper two or lower two components
are zero. That is, define left-handed and right-handed spinors by

 L =
1

2
(1+ �5) = PL =

 
⇠
0

!

(1.76)

 R =
1

2
(1� �5) = PR  =

 
0
�

!

(1.77)

in which ⇠ and � are two-component objects and �5 is the following
four-by-four matrix:

�5 =

 
I 0
0 �I

!

(= �i�0�1�2�3) (1.78)

I here denotes the two-by-two unit matrix, and �µ are defined below.

(ii) Majorana spinors:

Alternately, we may work in terms of 4-component spinors where the
bottom two components are not independent but are determined by
the upper two components. Specifically, first define a two-by-two,
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real antisymmetric matrix ",

" ⌘ i�2 =

"
0 1
�1 0

#

(1.79)

Now note that if ⇠ is left-handed under Lorentz transformations, then
� = "⇠⇤ is right-handed. This follows from the property

"�⇤i = ��i" (1.80)

With this in mind, a Majorana spinor is then defined by

 M =

 
⇠
"⇠⇤

!

(1.81)

These two formulations of fermions with two independent components
are equivalent, and the choice of which one to use to formulate a theory is a
matter of taste. It is our preference in this book to work with the Majorana
notation, mostly because it is simple to make contact with the 4 component
�-matrix algebra in which calculations are generally performed.
The relation between a Majorana spinor field and the creation and anni-

hilation operators is

 (x) =
X

�=± 1

2

Z
d3p

2Ep(2⇡)3

h
u(p,�)ap�e

ipx + v(p,�)a⇤p�e
�ipx

i
(1.82)

In this expression  (x), u(p,�), and v(p,�) are all 4-component objects
with v(p,�) defined in terms of u(p,�) by

v
✓
p,� = ±1

2

◆
= ±�5u

✓
p,� = ⌥1

2

◆
(1.83)

It turns out that for this decomposition to be consistent with Lorentz
invariance, the spinor u in the rest frame, p = 0, must satisfy

m�u
✓
p = 0,� = ±1

2

◆
= mu

✓
p = 0,� = ±1

2

◆
(1.84)

where � denotes the following matrix:

� =

 
0 I
I 0

! ⇣
= i�0

⌘
(1.85)

The non-zero p generalization of Eq. (1.84) can be found by applying a
boost, using Eq. (1.73). The mass m on the right-hand side becomes the
four-vector pµ, which in the rest frame has a single component, E = m. The
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matrix �i� is really the time component of a four-vector of matrices, the
Dirac matrices �µ, so Eq. (1.84) in a general frame becomes

(i/p+m)u(p,�) = 0 (1.86)

with /p defined by /p = �µpµ (and in general /a ⌘ �µaµ). Equation (1.73)
uniquely determines the Dirac matrices:

�0 =

 
0 �i
�i 0

!

, �k =

 
0 �i�k

i�k 0

!

(1.87)

In position space, Eq. (1.86) is the Dirac equation:

(/@ +m) = 0 (1.88)

The Dirac or gamma matrices �µ used here di↵er by a factor of i from the
form they would take if we adopted a ⌘µ⌫ = diag[+���] Lorentz metric no-
tation. The reader should be aware of this notation choice. This is discussed
in some detail in Appendix E.
The matrix �0 = �i� is anti-Hermitian, while the spatial � matrices are

Hermitian. Therefore the Dirac matrices transform di↵erently under Her-
mitian conjugation. Similarly, the matrices Jk which perform rotations are
Hermitian, while the matrices Kk which perform boosts are anti-Hermitian;
so D†(!) does not equal D�1(!) in general. However, the matrix � satisfies

� = �† = �T = ��1 , ��†µ = ��µ� , ��5 = ��5� (1.89)

Also, since J µ⌫ = �i[�µ, �⌫ ]/4, these imply that

K†
k� = �Kk , J †

k � = �Jk (1.90)

Because of these properties of �, it is convenient to define theDirac conjugate
of a spinor,  , as

 ⌘  †� (1.91)

which transforms under Lorentz transformations as

U(!) (x)U(!)⇤ =  (⇤ · x)D�1(�!) (1.92)

Therefore   transforms as a Lorentz scalar. As can be readily checked,
D�1(!)�µD(!) = ⇤µ

⌫�⌫ , so  �µ transforms as a vector.
It is also convenient to introduce the charge conjugation matrix C, as the

matrix which relates a Majorana spinor to its Dirac conjugate:

C =

 
�" 0
0 "

!

(= �2�) , so  M = C 
T

M
, and  T

M
= � 

M
C (1.93)
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Its properties are

�C = C† = C�1 = CT , �T

µC = �C�µ , C� = ��C , C�5 = �5C
(1.94)

Returning to Eq. (1.86), we can solve explicitly for the spinor u(p,�),
giving

u(p,�) =
1p
2

 
A+ �A�� · p̂ 0

0 A+ +A�� · p̂

! 
�(�)
�(�)

!

(1.95)

where

�
✓
� = +

1

2

◆
=

 
1
0

!

and �
✓
� = �1

2

◆
=

 
0
1

!

(1.96)

p̂ is the unit vector p̂ = p/|p|, and the coe�cients A± are the following
functions of the particle energy Ep =

p
p2 +m2:

A±(p) =
q
Ep ±m (1.97)

As defined by Eq. (1.95), u(p,�) satisfies the normalization condition:

u(p,�0)u(p,�) = 2m���0 (1.98)

The dyadics uu and vv are often encountered in calculations. They can
be thought of as matrices, with values

u(p,�)u(p,�) =
1

2
(m� i/p)(1 + i�5s/) (1.99)

and

v(p,�)v(p,�) = �1

2
(m+ i/p)(1 + i�5s/) (1.100)

In these expressions sµ(�) is the spin axial four-vector. It is defined in the
following way. Suppose the spin projection, � = ±1

2 , is measured along the
direction defined by the unit vector e in the particle rest frame. Define sµ

in this frame by s0 = 0 and s = ±e in which the sign ± denotes the sign
of �. The result in any other frame is found by performing the appropriate
Lorentz boost. Notice that this definition implies the following invariant
properties:

s2 = sµsµ = +1 and s · p = sµpµ = 0 (1.101)

Now we repeat the exercise of showing that it is always possible to write a
free theory of spin-half particles in a canonical form. Consider the Lagran-
gian description of a system of N non-interacting spin-half particles. Just as
there is no loss in choosing our scalar fields to be real, we may always take
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our spinor fields to be Majorana. The Lagrangian must then be a Lorentz-
invariant function of N Majorana spinors,  m, that is at most quadratic in
the fields and involves the fewest (nonzero) number of derivatives. The most
general such Lagrangian is

L0 = �
1

2
Amn 

m
/@ n� i

2
Bmn 

m
�5/@ 

n� 1

2
Cmn 

m
 n� i

2
Dmn 

m
�5 

n�E

(1.102)
The Lagrangian must be Hermitian; together with the results of problem
1.1, this implies that Amn, Bmn, Cmn, Dmn, and E must all be real. We
may also take the matrices A, C, and D symmetric and B antisymmetric,
since the operators multiplying them have the same property.
As usual, most of the parameters in this Lagrangian may be eliminated by

performing field redefinitions. The purpose of the remainder of this section
is to use this freedom to put the Lagrangian (Eq. (1.102)) into a standard
form in which all parameters have an obvious physical significance. Consider
then the following field redefinition:

 m = V m
n  0n + iUm

n�5 
0n (1.103)

with real matrices V and U . This is the most general transformation that
preserves the Majorana character of the spinors and the quadratic form of
the Lagrangian. It is convenient in what follows to handle the left- and
right-handed parts of the fields separately. We therefore rewrite Eq. (1.102)
and Eq. (1.103) as

PL 
m = (V + iU)mn PL 

0n (1.104)

PR  
m = (V � iU)mn PR  

0n (1.105)

L0 = �
1

2

h
(A+ iB)mn 

m
PL /@ 

n + (C + iD)mn 
m
PL 

n
i
+h.c.�E (1.106)

Define the complex matrices A = (A + iB), C = (C + iD), and V =
(V + iU). The properties of A, B, C, and D then imply that A is Hermitian
and C is symmetric. For stability we require that A be positive definite. In
terms of the new variables the Lagrangian is then:

L0 = �
1

2

h
(VTAV⇤)mn 

0m
PL /@ 

0n � (VTCV)mn 
0m
PL 

0n
i
+h.c.�E (1.107)

In order to simplify L0 choose V as follows:

V = (A⇤)�
1

2M (1.108)
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in which M is the unitary matrix that satisfies the following property:

MTC0M =

0

BBB@

c1
c2

cN

1

CCCA (1.109)

C0 is the complex symmetric matrix C0 = [A� 1

2C(A⇤)�
1

2 ]. For any such
matrix, a unitary matrix, M, satisfying (1.109) always exists (see Problem
1.6). In fact, M may always be chosen such that the numbers ck, k =
1, . . . , N are all real and non-negative. It must be emphasized that since
Eq. (1.109) is not a similarity transformation, the ck are not the eigenvalues
of the matrix C or C0. Instead, c2k turn out to be the eigenvalues of the
Hermitian matrix C0†C0.
Having made this redefinition, the Lagrangian is in canonical form:

L0 = �
1

2
 
m
/@ m � 1

2
cm 

m
 m � E (1.110)

The equation of motion for this action is

(/@ + cm) m = 0 (1.111)

which is recognized as the Dirac equation with mass cm. To confirm this
connection we compare the resulting free Hamiltonian with the general form
(1.50):

H0 =
Z

d3x  
m
(� ·r+ cm) m + E

= E0 +
NX

m=1

X

�=± 1

2

Z
d3p

2Ep(2⇡)3
Epa

⇤
p�map�m (1.112)

with E0 = E
Z

d3x�
X

m

X

�

1

2

Z
d3p

(2⇡)3
Ep(2⇡)

3�3(0) (1.113)

The corresponding vacuum energy density is

E0

⌦
= E � 1

8⇡2

NX

i=1

"

⇤4 +m2
i⇤

2 � 1

4
m4

i log

 
⇤2

m2
i

!

+ o

 
m2

i

⇤2

!#

(1.114)

Notice the relative factor of �2 between the zero-point energy, Eq. (1.114),
of free spin-half Majorana fermions and that, Eq. (1.71), of free real scalars.



26 Field theory review

1.3.3 Spin-one particles

The fields that are most convenient for representing spin-one particles di↵er
for massive and massless particles. This is as might have been expected
given that massive and massless spin-one particles have di↵ering numbers
of spin states. The particle states are labeled by |p,�i in which � = ±1 for
massless particles and � = 0,±1 for massive ones.

1.3.3.1 Massive spin-one particles

Massive particles are most conveniently represented in terms of a four-vector
field, V µ. This transforms under a Lorentz transformation according to

U(!)V µ(x)U(!)⇤ = (⇤�1)µ⌫V
⌫(⇤ · x) (1.115)

The relation between such a field and the creation and annihilation oper-
ators for a massive spin-one particle is,

V µ(x) =
1X

�=�1

Z
d3p

2Ep(2⇡)3

h
✏µ(p,�)ap� e

ipx + ✏µ⇤(p,�)a⇤p� e
�ipx

i
(1.116)

Here the three four-vectors ✏µ(p,�) denote the three linearly independent
directions that correspond to each polarization �. For example, for linearly
polarized particles these would correspond to the three unit vectors ex, ey,
and ez in the particle rest frame. For circularly polarized particles choose
instead the combinations ez and e± = 1p

2
(ex ± iey). These polarization

vectors are all characterized by the covariant constraint that is the analogue
of Eq. (1.101):

pµ✏
µ(p,�) = 0 (1.117)

They satisfy the normalization condition

✏µ⇤(p,�)✏µ(p,�
0) = ���0 (1.118)

and completeness relation

1X

�=�1

✏µ(p,�)✏⌫
⇤(p,�) = ⌘µ⌫ +

pµp⌫
m2

(1.119)

Together with the condition p2 + m2 = 0, Eq. (1.115) implies that in
position space V µ(x) must satisfy

(�@2 +m2)V µ = 0 and @µVµ = 0 (1.120)

These are the conditions that V µ must satisfy in order to represent massive
spin-one particles.
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Turn now to the Lagrangian formulation of a system of free massive
spin-one particles. We must construct the most general quadratic, Lorentz-
invariant etc. Lagrangian whose equations of motion imply Eq. (1.120). The
new feature here is that the condition that the equations of motion be equiv-
alent to Eq. (1.120) will be found to impose conditions on what form we
may entertain for the Lagrangian. This is unlike what we encountered for
spin-zero and spin-half particles, where the most general Lagrangian au-
tomatically implied the analogues of Eq. (1.120), i.e. the Klein–Gordon or
Dirac equations. This new feature arises because, unlike for scalar or spinor
fields, a four-vector may a priori represent particles of more than one spin.
It may correspond to either spin zero or spin one. (Schematically, a vector
represents a spin-zero particle when it is the gradient of a scalar.)
To see how this works consider the most general quadratic Lagrangian for

a single vector field, given by

L0 = �
1

2
A@µV⌫@

µV ⌫ � 1

2
B@µV⌫@

⌫V µ � 1

2
CV µVµ �D (1.121)

The constants A, B, C, and D must all be real. The equations of motion
for such a Lagrangian are

A V µ +B@µ@⌫V
⌫ � CV µ = 0 (1.122)

Taking the divergence of Eq. (1.122) gives the further equation,

[(A+B) � C]@µVµ = 0 (1.123)

These equations only imply that @ · V = 0 when A+ B = 0 and C 6= 0. In
this case they are equivalent to Eq. (1.120). We may also always rescale V µ

to ensure that A = 1. The Lagrangian must therefore be

L0 = �1

2
(@µV⌫@

µV ⌫ � @µV⌫@⌫V µ)� 1

2
C 0V µVµ �D

= �1

4
fµ⌫f

µ⌫ � 1

2
C 0V µVµ �D (1.124)

in which fµ⌫ = @µV⌫ � @⌫Vµ, which is called the field strength.
Comparison with Eq. (1.120) or the expression for the corresponding free

Hamiltonian implies that C 0 = C/A = m2 has the interpretation of the
squared mass of the particle being described. The vacuum energy is similarly

E0

⌦
= D +

3
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(1.125)

For N massive spin-one particles the argument above, together with one



28 Field theory review

that exactly parallels that given for scalar fields, implies that the most gen-
eral Lagrangian,

L0 = �
1

2
Aab@µV

a
⌫ @

µV b⌫ � 1

2
Bab@µV

a
⌫ @

⌫V bµ � 1

2
CabV

aµV b
µ �D (1.126)

may be rewritten as

L0 = �1

2
(@µV

a
⌫ @

µV a⌫ � @µV a
⌫ @

⌫V aµ)� 1

2
C 0
aV

aµV a
µ �D

= �1

4
fa
µ⌫f

aµ⌫ � 1

2
C 0
aV

aµV a
µ �D (1.127)

1.3.3.2 Massless spin-one particles

Massless spin-one particles are, on the other hand, most conveniently repre-
sented in terms of an antisymmetric tensor field, fµ⌫ . The relation between
such a field and the creation and annihilation operators for a massless spin-
one particle are:

fµ⌫(x) =
X

�=±1

Z
d3p

2Ep(2⇡)3

h
(ipµ✏⌫(p,�)� ip⌫✏µ(p,�)) ap� e

ipx + h.c.
i

(1.128)
Here the two quantities ✏µ(p,�) denote the linearly independent directions
that correspond to each polarization �. For particles moving along the Z
axis, linearly polarized particles correspond to the choice of the unit vectors
ex and ey perpendicular to the particle motion. The alternative combina-
tions e± = 1p

2
(ex± iey) correspond instead to circularly polarized particles.

Notice that Eq. (1.128) only determines the polarization vector, ✏µ, up to
the gauge freedom

✏µ(p,�)! ✏µ(p,�) + pµ (1.129)

This freedom may be used to ensure that ✏µ satisfies the following Lorentz-
covariant properties:

pµ✏
µ(p,�) = pµ✏

µ(p,�) = 0 (1.130)

in which pµ is a null vector pµp
µ = pµpµ = 0 satisfying pµpµ = �1. The nor-

malization and completeness relations satisfied by such polarization vectors
are

✏µ⇤(p,�)✏µ(p,�
0) = ���0 (1.131)

and
X

�=±1

✏µ(p,�)✏
⇤
⌫(p,�) = ⌘µ⌫ + pµp⌫ + p⌫pµ (1.132)
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Note that the null vector p is not unique; indeed, the substitution

pµ ! pµ + a✏µ +
a2

2
pµ (1.133)

for any spacelike ✏µ satisfying ✏ · p = 0 = ✏ · p and ✏⇤µ✏
µ = 1, yields a

new vector satisfying the required properties for p. However, if we choose
particular polarization vectors ✏µ(�) and require p · ✏(�) = 0 for each �, then
the choice is made unique.
In position space, the conditions, Eq. (1.128) through Eq. (1.130), imply

that

fµ⌫ = @µA⌫ � @⌫Aµ (1.134)

Aµ(x) =
X

�=±1

Z
d3p

2Ep(2⇡)3

h
✏µ(p,�)ap�e

ipx + · · ·
i

(1.135)

in which the gauge potential, Aµ(x), is only defined up to the freedom,
Eq. (1.129)

Aµ ! Aµ + @µ!(x) (1.136)

where !(x) is an arbitrary function. The mass-shell condition p2 = 0 then
becomes

@µf
µ⌫ = 0 (1.137)

or, using Eq. (1.136) to impose the gauge condition @µAµ = 0, equivalently:

Aµ = 0 (1.138)

The corresponding free Lagrangian then is

L0 = �
1

4

NX

a=1

fa
µ⌫f

aµ⌫ (1.139)

It is crucial to realize that, whereas the field-strength fµ⌫ defined in this
way is a tensor under Lorentz transformations, the gauge potential, Aµ, is
not a four-vector. Rather, it transforms as:

U(!)Aµ(x)U(!)⇤ = ⇤µ
⌫A

⌫(� · x) + @µ!(x) (1.140)

for some scalar field !(x). That is, Aµ transforms as a four-vector only
up to a gauge transformation. This is a crucial observation because if we
wish to write down interactions that do not vanish in the zero-momentum
limit between massless spin-one particles and other particles (such as, for
example, the Coulomb interaction in electromagnetism) then we must build
our Lagrangian from the field Aµ rather than fµ⌫ . Since Aµ is only a Lorentz
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four-vector up to gauge transformations, we see that Lorentz invariance of
the Lagrangian requires that the interactions be invariant under the gauge
transformations of Eq. (1.136). In this way we see gauge invariance emerge
as a consequence of Lorentz invariance for massless particles of high spin.
(A similar argument may be made for massless particles with spin-3/2 or
-2, leading to supersymmetry or general covariance.)

1.4 Implications of symmetries

We pause here for a short aside on the general symmetry features that may
arise in a Lagrangian. There are two motivations for this aside, correspond-
ing to the two roles played by symmetries in what follows. First, symmetries
are useful because they often allow us to make exact statements, even with-
out a detailed understanding of a theory’s dynamics. Namely, they can
provide general conservation laws and spectral degeneracies familiar from
quantum mechanics. Second, symmetries play a crucial role in the cou-
plings of massless (or light) spin-one particles, by virtue of the requirement
of gauge invariance that must be imposed. In this section we address the
first of these roles in the first two subsections and return to the issue of
gauge invariance in the last subsection.

1.4.1 Symmetries and conservation laws

Perhaps the simplest example of the connection between symmetry and
a conservation law is given by the example of a discrete symmetry. For
example, suppose the Hamiltonian of a system has a symmetry, in the sense
that it remains unchanged after the replacement �(x)! ��(x); i.e.

H(��,�@µ�) = H(�, @µ�) (1.141)

identically for any field configuration �(x). This ensures that there is a
conservation law, inasmuch as it is possible to define a unitary operator, X ,
which represents this replacement in the following sense:

X�(x)X ⇤ = ��(x) (1.142)

and so

XapX ⇤ = �ap , (1.143)

Such an operator necessarily satisfies the symmetry property of a quantum
symmetry: XH = HX .
If any Hermitian operator, X , satisfies the condition [X , H] = 0, it defines
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a conservation law. (For instance, in the example being discussed the con-
dition X 2 = I together with the unitarity of X automatically ensures X is
Hermitian.) It defines a conservation law because the fact that X commutes
with H ensures that energy eigenstates may be labeled consistently by the
eigenvalues of X : X|E, xi = x|E, xi. Furthermore, this label is conserved
because it cannot change under time evolution:

X|E, x; ti = X e�iHt|E, xi = e�iHtX|E, xi = x|E, x; ti (1.144)

If it is true that X 2 = I, then the eigenvalues satisfy x = ±1.
It bears emphasis that this conservation is an exact statement, provided

only that X commutes with the exact Hamiltonian of the system, and so
can have very powerful consequences. It implies, for example, that the
lowest-energy state having eigenvalue x = �1 must be absolutely stable. It
must be stable since it cannot decay into lower energy states, since energy
conservation requires that any decay products have lower energy and yet
they must also share the eigenvalue x = �1. Since no states satisfy both
requirements, the decay cannot occur.

1.4.2 Local conservation laws: continuous symmetries

A particularly important class of conservation laws arises in the case when
the theory has a continuous symmetry: U(g)H = HU(g), where U(g) is a
unitary operator and g is any element g 2 G of a continuous group (whose
properties are reviewed in appendix B). Since any element of the group g can
be written as g = exp(i✏ata) with ta the Lie algebra elements of the group,
the unitary operator can be written U(g) = exp(i✏aQa). The operators Q
defined in this way satisfy both [Q,H] = 0 and Q⇤ = Q, with the latter
condition following as a consequence of the unitarity of U(g).
This connection between a conserved charge, Q, and a symmetry holds

equally well regardless of whether one is interested in classical mechanics,
“ordinary” quantum mechanics of a few degrees of freedom, or field the-
ory. For example, the symmetries of time translation, spatial translation
or spatial rotations imply the conservation of energy, linear, and angular
momentum respectively.
A new feature which appears in field theories having continuous symme-

tries is that the resulting conservation law holds locally through the existence
of a spacetime-dependent conserved current, according to Noether’s theo-
rem. This local conservation may be seen as follows.
Suppose the Lagrangian density, L[�, @µ�], is invariant with respect to a
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local transformation of the field variables, �i(x)

��i(x) = ✏aF i
a[�, @µ�;x] (1.145)

in which ✏a represent a set, a = 1, . . . , N of spacetime-independent infinites-
imal parameters and F i

a indicates a local functional of the fields. The in-
variance of the action may be expressed as
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i
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✏aF i
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"
@L

@(@µ�i(x))
F i
a

#

✏a(1.146)

The first term in the final line of Eq. (1.146) vanishes once the equations
of motion for �i are used. The final line then shows that the equations of
motion imply that the four-vector Noether current,

jµa (x) ⌘ �
@L

@(@µ�i(x))
F i
a (1.147)

is conserved; @µjµa (x) = 0 for each a. (The overall minus sign is conven-
tional.) This last equation expresses conservation because it implies that
the charge, Q, defined by

Qa(t) ⌘
Z

d3x j0a(x, t) (1.148)

is time-independent:

dQa

dt
=
Z
d3x

@j0

@t
= �

Z
d3x r ·~j =

I
d2x ~n ·~j = 0.

We assume here that there is no net flux going out of the boundary at
infinity.
A symmetry for which the Lagrangian density is invariant as in Eq. (1.146)

is known as an internal symmetry. This is to distinguish it from spacetime
symmetries such as Poincaré transformations. In general, symmetries that
act on spacetime coordinates as well as the fields cannot leave the Lagrangian
density invariant because the Lagrangian density is not constant throughout
spacetime. In this case a slightly more general form for Noether’s theorem
is necessary.
Suppose, then, that under the transformations

��i(x) = ✏aF i
a[�, @µ�;x]

�xµ = ✏a⇠µa (x) (1.149)
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the Lagrangian density transforms into a total derivative (so the actionR
L d4x is invariant)

�L ⌘ ✏a@µV µ
a (1.150)

for some Lorentz-vector fields, V µ
a [�i, @ ], that are local functionals of �i(x).

Repeating the arguments leading to Eq. (1.146) again implies conserved
currents, @µjµa (x) = 0, with jµa (x) given by

jµa (x) = �
@L

@(@µ�i(x))
F i
a + V µ

a (x) (1.151)

Conservation laws such as these are significant because they are exact
results, and so allow conclusions even in the absence of a detailed under-
standing of the dynamics of a particular system. In a quantum theory the
conserved charges, Qa, are of particular interest since they are Hermitian and
commute with the system Hamiltonian (since they are conserved!). They
are therefore ideal operators for labeling the individual particle states. With
particle states labeled in this way, conservation laws imply general selection
rules concerning how quantum numbers must be related before and after
collision processes.
It is often true that the symmetry transformation law given in the first

line of Eq. (1.149) is more general than is necessary for a particular physical
situation. It is often su�cient to consider symmetry transformations that
are linear in the field variables

��i(x) = i✏a(Ta)
i
j�

j(x) (1.152)

1.4.3 Spectral relations

The second major conclusion that may be drawn from symmetry properties
of the Lagrangian of a system concerns the system’s energy spectrum. The
general statement is that states that are related by a symmetry transforma-
tion must have the same energy. This is a simple consequence of the fact
that the conserved charge, Qa, commutes with the system Hamiltonian. If,
for instance, two energy eigenstates are related by | i = Qa|�i, then

H| i = HQa|�i
= QaH|�i
= E�Qa|�i
= E�| i (1.153)

It follows that | i and |�i have the same energy eigenvalue, E = E�, or
are degenerate.
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In general, states in the Hilbert space fall into unitary representations of
the symmetry and all of the elements of a given representation must have
the same energy.
Now, in a field theory we would like to apply this reasoning to the single-

particle states in order to derive relations among the particle masses. This
can be done subject to a single caveat: the ground state of the theory must
be invariant under the symmetry transformations. That is to say, if the
symmetry transformations are represented in the Hilbert space by the uni-
tary transformations U(✏) = exp(i✏aQa), then the invariance of the ground
state, |0i, is expressed by: U(✏)|0i = |0i or, equivalently, Qa|0i = 0.
The connection between the invariance of the vacuum and symmetry re-

lations among particle masses arises because symmetry transformations in
field theory are usually defined as acting on the fields representing the vari-
ous particles. If the fields representing a particular two particles are related
by a symmetry transformation, it does not necessarily follow that the cor-
responding particle states are related by this same symmetry. It is this
link between the fields and the particles that relies on the invariance of the
ground state.
To see this in some detail, suppose that the fields, �1(x) and �2(x), cor-

responding to particle types “1” and “2”, are related by the action of some
symmetry:

�1(x) = i[Q,�2(x)] (1.154)

where Q⇤ = Q is Hermitian. Then the same is true for the corresponding
creation and annihilation operators:

a1 = i[Q, a2] (1.155)

The particle states are therefore related as follows:

|1i = a⇤1|0i
= i[Q, a⇤2]|0i
= iQa⇤2|0i � ia⇤2Q|0i
= iQ|2i � ia⇤2Q|0i (1.156)

The particle states therefore satisfy |1i = iQ|2i if the no-particle state is
invariant: Q|0i = 0. Once it is known that the particle states are related
in this way, the arguments leading to Eq. (1.153) may be used to infer that
they have equal masses.
To summarize, the general quantum-mechanical result, which implies that

states that are related by symmetry transformations must be degenerate,
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applies equally well within the field-theoretical context. It does not follow,
however, that particles whose representative fields are related by symmetry
transformations must be degenerate (i.e. have equal masses). This last im-
plication does hold, though, if the ground state of the system is invariant
under the action of the symmetry. It is a general feature of field theories
that the ground state need not be invariant with respect to symmetry trans-
formations. If the ground state is not invariant, the symmetry is said to be
spontaneously broken. For spontaneously broken symmetries it is generic
that naive symmetry relationships among masses fail.
The conserved currents discussed in the previous section, however, exist

regardless of whether a symmetry is spontaneously broken or not, because
Noether’s theorem only uses the invariance of the action. It is true, how-
ever, that spontaneous breaking of a symmetry makes it impossible to use
the corresponding charge to define conserved quantum numbers for particle
states.

1.5 Renormalizable interactions

We now turn to the construction of general interactions involving particles
with spin-zero, -half, or -one. The goal is to construct the most general form
for these interactions that is consistent with the five principles outlined in
Section 1.2. In this section the general form for renormalizable interactions
involving particles of spins zero through one is summarized, largely without
proof. The purpose is to outline the general features of these interactions.

1.5.1 Spin-zero and spin-half particles

In order to get started, consider first the most general renormalizable inter-
actions allowed for N interacting spin-zero particles. As outlined in Subsec-
tion 1.3.1, we may, without loss of generality, represent these particles with
N real scalar fields, �i(x), i = 1, . . . , N .
We are instructed to write down a Lorentz-invariant Lagrangian density,

Ls = L0 + Lint (1.157)

where L0 is the free Lagrangian of Subsection 1.3.1 and Lint is the interaction
term that is by definition not quadratic or linear in the fields. Lint is to
be constructed solely from �i(x) and @µ�i(x) subject to the requirement
(renormalizability) that it involves interactions of at most dimension four
in powers of mass. In order to do so it is necessary to compute the mass
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dimension of the fields, �i(x), themselves. This is easily done once the free
Lagrangian is put into canonical form.
Comparing with standard form, Eq. (1.64), shows that the scalar field

must have dimensions of M1 (when h̄ = c = 1) if L0 is to have dimension
M4. This may then be used to infer the restrictions imposed on Lint by
renormalizability. It is easy to now show that the most general renormaliz-
able interactions possible among N spin-zero particles are:

Ls = L0 � V (�)

= �1

2
@µ�

i@µ�i � ⇢� vi�
i � 1

2
µ2
ij�

i�j � 1

3!
⇠ijk�

i�j�k

� 1

4!
�ijkl�

i�j�k�l (1.158)

The generalization to include also spin-half particles is again straightfor-
ward. Inspection of the canonically normalized kinetic term, Eq. (1.110),

implies that a spinor field carries dimension M
3

2 . This implies that the most
general renormalizable Lagrangian involving spins zero and half must be:

Lm = Ls�
1

2
 

n
/@ n� 1

2
mn 

n
 n�gmni 

m
 n�i� ihmni 

m
�5 

n�i (1.159)

Here Ls is as in Eq. (1.158) and the new spin-half/spin-zero interaction
terms are known generically as Yukawa couplings.

1.5.2 Spin-one couplings: gauge invariance

We would like to write down a general set of renormalizable couplings in-
volving particles from spins zero through one. It turns out not to be possible
to do so for the massive spin-one particle (apart from one exception that is
a special case of the general situation considered below). We turn therefore
directly to the case of massless spin-one particles.
The straightforward thing to try is to couple massless spin-one particles to

other particles by writing down interactions that involve the field-strength,
fµ⌫ . Dimension counting again shows that this is impossible because the free
Lagrangian, Eq. (1.139), implies that fµ⌫ has dimensions of M2. The lowest-
dimension interaction possible would then be something like  �µ⌫ fµ⌫ which
has dimension M5 and so is not renormalizable.
The only remaining possibility then is to build couplings directly from the

gauge potential, Aµ(x). This is somewhat delicate, because as we have seen,
Aµ(x) does not transform as a four-vector – it is only a four-vector up to a
gauge transformation: Aµ ! Aµ + @µ!. It follows that the interaction La-
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grangian itself will only be Lorentz invariant provided that the interactions
are required to be gauge invariant.
It is beyond the scope of this book to work out the requirements of gauge

invariance in all of their detail. We content ourselves here with simply
motivating the construction and then quoting the final results.
Suppose, then, that we write down an interaction term

Lint = Aµ(x)J
µ[�] (1.160)

with Jµ[�] some four-vector function of the other fields and possibly their
derivatives. Under a gauge transformation, �Aµ(x) = @µ!(x), if ��i = 0,
this interaction Lagrangian transforms to

�Lint(x) = @µ!(x)J
µ[�(x)] (1.161)

We need to cancel Eq. (1.161) with the contribution from another term in the
Lagrangian. One can imagine doing so in one of two ways. Extra interaction
terms can be added, and/or the transformation rules can be altered. The
first of these options must fail in the present instance because the required
term would have to be linear in the gauge potential in order to produce a
variation like Eq. (1.161), and Eq. (1.160) is already the most general such
Lagrangian.
The required transformation rule may be most easily seen by repeating

the steps leading to Eq. (1.146) in the proof of Noether’s theorem, with one
alteration. In the previous section Noether’s theorem was derived subject
to the condition that the transformation parameter, ✏a, be independent of
spacetime position, xµ. In the present case, however, the transformation
parameter, !, cannot be spacetime independent because the gauge potential
transforms into its gradient. Consider, then, the variation of the Lagrangian
under a transformation as in Eq. (1.145)

��i(x) = ✏a(x)F i
a[�, @µ�;x] (1.162)

but with the transformation parameter a function of xµ. Suppose further
that the Lagrangian would be invariant if ✏a had been chosen as constant.
The Lagrangian in this case fails to be invariant with spacetime-dependent
✏a only because of its dependence on the derivatives, @µ�i, of the fields. The
variation of the Lagrangian therefore becomes

�L =
@L

@�i(x)
✏a(x)F i

a[�, @µ�;x] +
@L

@(@µ�i(x))
@µ(✏

a(x)F i
a[�, @µ�;x])

=
@L

@(@µ�i(x))
F i
a[�, @µ�;x]@µ✏

a(x)
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= �jµa (x)@µ✏a(x) (1.163)

Comparing Eq. (1.161) with Eq. (1.163) shows that the gauge variation of
the spin-one coupling can cancel against the variation of the spin-zero and
spin-half “matter” Lagrangian if

(i) the coe�cient function, Jµ
a [�], is identified with the conserved cur-

rent,

Jµ
a [�] = jµa (x) (1.164)

associated with a symmetry of this matter Lagrangian, and

(ii) the gauge transformations are enlarged to include the transformation
of the matter fields with respect to this symmetry with a spacetime-
dependent parameter:

�Aµ(x) = @µ!(x) (1.165)

��i(x) = !(x)F i[�, @µ�;x] (1.166)

This promotion of a spacetime-independent symmetry of the matter La-
grangian to a spacetime-dependent symmetry of the matter/spin-one La-
grangian is called the gauging of the symmetry. The corresponding spin-one
particles are known as gauge bosons.
More generally, if there are more than one spin-one fields, and if the

symmetries involved transform one spin-one particle into another, then the
conserved current, jµa (x), will itself depend on the Aa

µ(x)s. This leads to
self-couplings of the gauge bosons amongst themselves. Such a symmetry
is called a non-abelian symmetry, and will require a generalization of the
above discussion. We here summarize the results of such a generalization.
Consider a (renormalizable) Lagrangian, Lm[�], depending on a collection

of spin-zero and spin-half “matter” fields. Suppose that Lm is invariant
with respect to the following global (i.e. spacetime-independent) symmetry
transformations:

��i(x) = i!a(Ta)
i
j�

j(x) (1.167)

In general, repetition of several symmetry transformations produces fur-
ther symmetries so the transformations, Eq. (1.167), form a Lie algebra
and the matrices (Ta)ij necessarily satisfy the commutation relations (see
Appendix B):

[Ta, Tb] = if c
abTc (1.168)

where the coe�cients f c
ab are a set of numbers that are characteristic of the
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algebra involved. The good news is that all of the algebras of this type that
are of physical interest have been found and are cataloged once and for all.
The most general renormalizable way to couple this Lagrangian to a bunch

of spin-one particles is given by the following prescription.

(i) Associate each spin-one particle, Aa
µ(x), with one of the generators,

(Ta), of the symmetry algebra.
(ii) Replace ordinary spacetime derivatives everywhere in Lm with the

following covariant derivatives:

Dµ�
i(x) ⌘ @µ�i(x)� iAa

µ(x)(Ta)
i
j�

j(x) (1.169)

(iii) Add the following gauge-boson Lagrangian

Lg ⌘ �
1

4
F a
µ⌫F

aµ⌫ (1.170)

with the covariant field strength, F a
µ⌫(x), defined by

F a
µ⌫ ⌘ @µAa

⌫ � @⌫Aa
µ + gfa

bcA
b
µA

c
⌫ (1.171)

The total Lagrangian is then given by the sum: L = Lm[�,Dµ�] + Lg. It
is invariant (in fact Lm and Lg are separately invariant) under the local or
gauged generalization of transformation, Eq. (1.167):

�Aa
µ(x) = @µ!

a(x)� fa
bc!

b(x)Ac
µ(x), (1.172)

��i(x) = i!a(x)(Ta)
i
j�

j(x) (1.173)

1.6 Some illustrative examples

Before proceeding it is useful to consider a few illustrative examples.

1.6.1 Quantum electrodynamics: an abelian gauge theory

Consider, first, the theory describing physics at scales below the mass of the
muon, mµ = 106 MeV. The elementary particles in this energy range are
the electron and the neutrinos, represented by a Dirac spinor field, e(x), and
three Majorana spinor fields, ⌫i(x); and the photon, represented by the gauge
potential, Aµ(x). We wish to write down the most general renormalizable
interactions of these particles, which should furnish a reasonable description
of their behavior at energies much less than 2mµ.
From the previous discussion, the coupling of the photon must be to some

conserved current – in this case electric charge. The current is

Jµ
em(x) = �iee�µe(x) (1.174)
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(where unfortunately the electric coupling and the electron field have the
same symbol e and must be told apart by context), and the corresponding
local symmetry transformation is therefore

�e(x) = �ie!(x)e(x)
�⌫i(x) = 0

�Aµ(x) = @µ!(x) (1.175)

The most general renormalizable interaction must therefore be

L = �e(/D +me)e � ⌫i(/@ +m⌫i)⌫i �
1

4
Fµ⌫F

µ⌫ (1.176)

in which

Fµ⌫ = @µA⌫ � @⌫Aµ

and Dµe(x) = @µe(x) + ieAµ(x)e(x) (1.177)

Equation (1.176) has two features that are worth remarking on here. The
first is that the Lagrangian has broken up into the sum of two terms:
L = LQED + L⌫ in which LQED is independent of the neutrino fields and
L⌫ depends only on the neutrino fields. Since L⌫ is quadratic this implies
that the neutrinos cannot interact at all with the other particles through
renormalizable interactions. This is the major part of the present under-
standing of why it is that neutrinos couple so feebly to the rest of matter.
The other observation is that the part of the Lagrangian, LQED, that de-
pends on electrons and photons is precisely the standard Lagrangian for
quantum electrodynamics (QED). This Lagrangian is indeed known to give
an extremely precise description of the interactions of electrons and pho-
tons. We here have the beginnings of an explanation of why it must have
the form that it does. To the extent that any theory at higher energies has
the observed spectrum of particles and preserves the conservation of electric
charge, it must reproduce QED at energies, E, well below the mass of the
muon, up to non-renormalizable corrections that are suppressed by powers
of (E/mµ).

1.6.2 Scalar electrodynamics: spontaneous symmetry breaking

The gauge-invariant Lagrangian of the previous sections appears to have
the serious drawback that it can only describe the interactions of massless
spin-one particles. This turns out not to be true in general, as we shall
demonstrate using a less orthodox example, called the abelian Higgs model.
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The theory consists of a single charged spinless particle, with complex field
�(x) = (�re + i�im)/

p
2, coupled to electromagnetism, Aµ(x).

The most general renormalizable matter Lagrangian that is invariant un-
der the global rephasing (or U(1)) symmetry � ! eie!� (and is analytic in
�) is

L� = �@µ�⇤@µ�� a(�⇤�)2 � b(�⇤�)� c (1.178)

Gauging this symmetry and coupling to the photon gives the Lagrangian,

L = �1

4
Fµ⌫F

µ⌫ �Dµ�
⇤Dµ�� a(�⇤�)2 � b(�⇤�)� c (1.179)

in which

Dµ� = @µ�� ie Aµ� (1.180)

and the field strength is as in Eq. (1.177). Although stability implies that
the real constant a = �2 must be non-negative, the sign of b is arbitrary.
We wish to extract the spectrum of this theory for weak couplings e⌧ 1

and �2 ⌧ 1. There are two qualitatively di↵erent possibilities, depending on
the sign of b. If b = µ2 is positive, then the unperturbed Lagrangian simply
consists of those terms that are quadratic in the fields. The spectrum for this
unperturbed theory was worked out in the previous sections and consists of a
massless spin-one photon and a charged, spinless particle with massm2

� = µ2

(see the sentence following Eq. (1.69)).
Things are di↵erent if it should happen that b = �µ2 were negative. In

this case a naive repetition of the steps outlined earlier would have us identify
the quadratic part of Eq. (1.179) as the unperturbed Lagrangian. One sign
that this cannot be quite right is that the mass of the spinless particle in this
unperturbed theory would then be imaginary: m2

� = �µ2. A tachyonic mass
such as this is the sign that the assumed ground-state field configuration – in
this case � = 0—is unstable, since a negative squared-mass implies that the
field modes with |p| < µ have a complex energy: E =

p
p2 � µ2 = Er� iEi,

and so have a runaway time dependence: exp(�iEt) = exp[+Eit� iErt].
More properly, since we are interested in the energies of the lowest exci-

tations about the ground state, i.e. the vacuum, we must first check that
we have properly identified the ground state. The weak-coupling limit we
are interested in may be used to justify doing so semiclassically. In the
semiclassical limit the ground state is just described by its classical field
configuration. Being a ground state, this configuration must by definition
minimize the energy. Furthermore, the energy of the configuration is semi-
classically dominated by the classical energy which is easily computable from
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the system’s Lagrangian. In the present instance the energy density is

H =
@�

@t

⇤@�

@t
+D�⇤ ·D�+ �2(�⇤�)2 + b �⇤�+ c+

1

2
(E2 +B2) (1.181)

Here Ei = Fi0 and Bi =
1
2✏ijkF

jk. Since this is a sum of non-negative terms,
it is minimized by minimizing each term separately. The electromagnetic
field energy is minimized at zero field, B = E = 0, and the gradient terms
in the scalar energy are smallest for constant fields, @�/@t = r� = 0. If
b � 0 then the potential energy is also minimized by zero field, � = 0, as was
implicitly assumed above. If b = �µ2, however, then the scalar-field energy
is minimized when �⇤� ⌘ v⇤v = µ2/(2�2). This value v which the scalar
field takes in vacuum is called its vacuum expectation value, or v.e.v..
The low-energy excitations are found semiclassically by perturbing about

this stable field configuration. The unperturbed system consists of all terms
that are quadratic or less in the fluctuations about the minimum-energy
field configuration. Since the ground-state constructed in this way is by
construction stable, tachyonic modes never appear in such an expansion.
When b � 0 and the ground-state configuration is zero, this agrees with the
naive treatment outlined earlier.
For b < 0 we must expand instead in powers of the di↵erence: ' ⌘ �� v.

Doing so with the Lagrangian of Eq. (1.179) gives the following unperturbed
result:

L0 = �1

4
Fµ⌫F

µ⌫ � @µ'⇤@µ'+ ie Aµ(v@
µ'⇤ � v⇤@µ')� e2v⇤v AµA

µ

�V0 � �2(v⇤'+ v'⇤)2 (1.182)

The constant V0 contains all of the '-independent terms and so represents
the ground-state energy density.
Unfortunately, because of the terms that mix the vector with scalar fields,

we cannot directly use the results of the previous sections to read o↵ the
particle spectrum. Happily enough, gauge invariance now comes to our aid.
Recall that the Lagrangian, and so all of the physics, is unchanged by the
gauge transformation

Aµ(x) ! Aµ(x) + @µ!(x)

�(x) ! exp[ie!(x)]�(x) (1.183)

We may therefore use this freedom to redefine fields to put the Lagrangian
into a particularly convenient form. A useful choice for the present purposes
is to use the transformations of Eq. (1.183) to make the scalar field every-
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where real, �⇤(x) = �(x) for all x. The utility of this choice arises from the
observation that the Aµ@µ' cross terms then vanish.
The spectrum may now be directly read o↵ as before. The quadratic

terms in the electromagnetic potential describe a spin-one particle with mass
M2

A
= 2e2v2. The photon is no longer massless! The spin-zero sector now

consists of a single real scalar of mass m2
' = 4�2v2 = 2µ2. Since the gauge

condition completely eliminates the imaginary part of the scalar field, an
entire scalar degree of freedom has been “removed” from the spectrum.
This degree of freedom has re-emerged as the longitudinal spin state of the
massive spin-one particle. This process, in which a vector field “eats” a scalar
one in the process of becoming massive, is known as the Higgs mechanism.
The process of using the gauge freedom to impose conditions on the fields

is known as “choosing a gauge.” The choice made here is known as “uni-
tary” or “physical” gauge since it makes the spectrum of the theory easy to
identify.
The lesson to be learned is that a gauge symmetry need not imply that the

corresponding spin-one gauge particle need be massless. This is the second
time we have encountered an exception to a general symmetry consequence
for the particle spectrum. The circumstances here are similar to those de-
scribed in Subsection 1.4.3. In both cases the root cause lies in the fact that
the ground state is not invariant under the symmetry in question, and it is
this non-invariance that ruins the symmetry predictions for the spectrum
of fluctuations about that ground state. This is again the phenomenon of
spontaneous symmetry breaking.
To see that the ground state indeed breaks the relevant symmetry in the

present example, notice that any ground state field configuration � = v is
not invariant under the transformations of Eq. (1.183). This condition is
intimately related to what was our working definition of spontaneous sym-
metry breaking in Subsection 1.4.3. There we defined it by the condition
that the conserved charge, Q, not annihilate the ground state, Q|⌦i 6= 0.
The one condition is a consequence of the other, since h⌦|�|⌦i = v 6= 0 im-
plies that the commutator h⌦|[Q,�]|⌦i cannot be zero as would be required
if Q|⌦i = 0.

1.6.3 QCD: an SU(3) gauge theory

To a good approximation, the theory of nuclei and their constituents is
quantum chromodynamics (QCD), a gauge theory with group SUc(3). We
review it here in some detail, because it is a good lesson in how non-abelian
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gauge theories work, as well as being directly a component of the standard
model.
The theory of QCD contains several types of Dirac fermions called quarks,

labeled u, d, s, . . . for up, down, strange, . . . (There are six altogether, named
u, d, s, c, b, and t, but only u, d, s are light.) However, when we say there is
“a” quark u, we really mean there are three quark fields, written ur, ug,
and ub (rgb for “red,” “green,” and “blue”), which have exactly the same
mass; similarly, d, s, . . . are replicated in triplicate, also labeled r, g, b. It
is convenient to group these three fields in a column vector, [ur, ug, ub]T ,
or ua in index notation. It is customary when possible to suppress this
index (matrix notation), and it is important to appreciate that the index
a is not the spinorial index we have already met – each ur, ug, ub has
four spinor components. When one writes uu, it really means uaua with
the a sum implicit and where the spinor indices are summed over for each
color separately (spinorial and color indices are independent). The free
Lagrangian for the up quarks is,

L0,u = �ua(/@ +mu)ua ⌘ �u(/@ +mu)u (1.184)

and the Lagrangians for the d, s quarks are similar.
At the free theory level, nothing would change if we made the replacement,

[ur, ug, ub]T ! [ug, �ur, ub]T , exchanging the role of red and green quarks.
More generally, nothing is changed by making an arbitrary unitary rotation
ua ! Ũabub, Ũ † = Ũ�1, under which the free Lagrangian changes to

�ua(/@ +mu)ua ! �ubŨ †
ba(/@ +mu)Ũacuc = �ua(/@ +mu)ua (1.185)

At the free level, the theory has a symmetry under U(3) (3 ⇥ 3 unitary
matrix) rotations between the u quarks – and separately under indepen-
dent U(3) rotations of each other quark type. This U(3) matrix can be
decomposed as Ũ = ei✓U , with U 2 SU(3) a special unitary matrix, that is,
unitary matrix of determinant 1. Any SU(3) matrix can be exponentiated
as U = exp(iM), with M a traceless, 3 ⇥ 3 Hermitian matrix. An N ⇥ N
complex Hermitian matrix has N2 independent entries, and the traceless-
ness condition removes one, so there are eight independent parameters to
describe M . Such matrices can always be written in terms of a standard
basis of traceless Hermitian matrices, U = exp(i!↵�↵/2), with !↵ some
coe�cients and �↵ the Gell-Mann matrices, explicitly,

�1 =

0

B@
0 1 0
1 0 0
0 0 0

1

CA �2 =

0

B@
0 �i 0
i 0 0
0 0 0

1

CA �3 =

0

B@
1 0 0
0 �1 0
0 0 0

1

CA
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�4 =

0

B@
0 0 1
0 0 0
1 0 0

1

CA�5 =

0

B@
0 0 �i
0 0 0
i 0 0

1

CA �6 =

0

B@
0 0 0
0 0 1
0 1 0

1

CA

�7 =

0

B@
0 0 0
0 0 �i
0 i 0

1

CA �8 =
1p
3

0

B@
1 0 0
0 1 0
0 0 �2

1

CA (1.186)

chosen to satisfy tr�↵�� = 2�↵� . (Do not confuse the index ↵ with the in-
dices a, b earlier: the ↵ index runs over the eight such independent matrices,
while a, b are row and column indices for these matrices and run over three
values.) The Gell-Mann matrices satisfy an algebra,


�↵
2
,
��
2

�
= if�↵�

��
2

(1.187)

where f�↵� , the structure constants of the group SU(3), are real and anti-
symmetric in all three indices.
QCD is defined as the interacting theory for which the rotations in which

u, d, s, . . . are each rotated by the same SU(3) matrix are gauged. (These
gauge interactions break all the remaining symmetries except each U(1)
symmetry associated with separate phase rotations for each quark species.
We return to this issue in Section 2.5.) Now let us see in this example
why the conditions, Eq. (1.169) – Eq. (1.171), are necessary. For the u
field kinetic term to be invariant under symmetry transformations, it must
involve the covariant derivative,

Lu = �u(/D +mu)u, Dµ = @µ � ig3G
↵
µ
�↵
2

(1.188)

Here G↵
µ are eight spin-1 gauge fields, called gluon fields, with the sum on ↵

implicit and g3 a coupling constant analogous to the electric charge of QED,
called the strong coupling (frequently written as gs). (Remember that we
suppress matrix indices; � is a 3⇥3 matrix multiplying the column vector u,
so �↵u means (�↵)abub.) However, the invariance of this expression also re-
quires a specific transformation rule for the field G↵

µ. Under an infinitesimal
gauge transformation,

u!
✓
1 + ig3!

↵�↵
2

◆
u (1.189)

and taking G↵
µ to change to G↵

µ + �G↵
µ under gauge transformations, this

Lagrangian changes to

Lu ! u

 

1� ig3!
↵�

†
↵

2

!
mu + �µ

✓
@µ � ig3(G

�
µ + �G�

µ)
��
2

◆�
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⇥
✓
1 + ig3!

� ��
2

◆
u

= u

mu + �µ

✓
@µ � ig3G

↵
µ
�↵
2
� ig3�G

↵
µ
�↵
2

+ ig3(@µ!
↵)
�↵
2

+ ig23f
↵
��G

�
µ!

� �↵
2

◆�
u (1.190)

(at linear order in infinitesimal !), which is unchanged only if we identify
the change under gauge transformations of the field G as

�G↵
µ = @µ!

↵ � gf↵��!
�G�

µ (1.191)

reproducing Eq. (1.172). The combination @µG↵
⌫ � @⌫G↵

µ transforms quite
non-trivially under this gauge transformation rule, and is not the correct
object to identify as a field strength. However, the combination (compare
with Eq. (1.171))

G↵
µ⌫ ⌘ @µG↵

⌫ � @⌫G↵
µ + gf↵��G

�
µG

�
⌫ (1.192)

transforms as

G↵
µ⌫ ! G↵

µ⌫ � f↵��!
�G�

µ⌫ (1.193)

and therefore the combination G↵
µ⌫G

↵µ⌫ is invariant, and may appear in the
Lagrangian. The full Lagrangian of QCD is therefore

LQCD = �
X

q

q̄(/D +m)q � 1

4
G↵

µ⌫G
↵µ⌫ (1.194)

where q = u, d, s.
The physics of this theory is quite non-trivial and occupies Chapter 8 and

Chapter 9.

1.7 Problems

[1.1] Identities for Majorana spinors
Prove the following useful relations for Majorana spinors  1,  2,

 1 2 = + 2 1

 1�5 2 = + 2�5 1

 1�
µ 2 = � 2�

µ 1

 1�
µ�5 2 = + 2�

µ�5 1

 1[�
µ, �⌫ ] 2 = � 2[�

µ, �⌫ ] 1
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Hint: It is possible to invert the order of a series of matrices which con-
tract a column vector on the right and row vector on the left, cM1M2v =
vTMT

2 M
T

1 c
T , for instance. However, since the operators  1,  2 are anti-

commuting objects, there is a factor of -1 when doing so here; so  1 2 =
� T

2 
T

1 . Use this manipulation, and the identities in Eq. (1.93) and
Eq. (1.94).

Next, show that for any spinors, Hermitian conjugation takes the form,
⇣
 1 2

⌘⇤
= + 2 1

⇣
 1�5 2

⌘⇤
= � 2�5 1

⇣
 1�

µ 2

⌘⇤
= � 2�

µ 1
⇣
 1�

µ�5 2

⌘⇤
= � 2�

µ�5 1
⇣
 1[�

µ, �⌫ ] 2

⌘⇤
= � 2[�

µ , �⌫ ] 1

by using repeatedly Eq. (1.89)and Eq. (1.91). Note that Hermitian con-
jugation involves a reversal of the order of operators, so ( †

1 2)† =  †
2 1

without a minus sign.

Combine these to get the following relations for Majorana spinors:
⇣
 1 2

⌘⇤
= + 1 2

⇣
 1�5 2

⌘⇤
= � 1�5 2

⇣
 1�

µ 2

⌘⇤
= + 1�

µ 2
⇣
 1�

µ�5 2

⌘⇤
= � 1�

µ�5 2
⇣
 1[�

µ, �⌫ ] 2

⌘⇤
= + 1[�

µ, �⌫ ] 2

Use these to justify the requirements on the coe�cients A, B, C, D, and
E mentioned under Eq. (1.102).

[1.2] O(N) scalar theories

The kinetic term 1
2@µ'i@µ'i for N real scalar fields is invariant under a

symmetry 'i ! Oij'j , where OTO = 1, i, j = 1, . . . , N . These form the
group of N ⇥N real orthogonal matrices O(N). When N is even, O(N)
contains as a subgroup the group of (N/2)⇥ (N/2) complex unitary ma-
trices, U(N/2). When the interactions respect only this subgroup rather
than the full O(N) group, it is often convenient to use complex fields.

[1.2.1] Example 1: N = 2.
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(i) Write down the most general renormalizable Lagrangian for two
real scalar fields, '1 and '2, subject to the discrete symmetries
'1 ! �'1, '2 ! '2 and '1 ! '1, '2 ! �'2.

(ii) Re-express this Lagrangian in terms of the complex variables
 = 1p

2
('1 + i'2) and  ⇤ = 1p

2
('1 � i'2).

(iii) In this case the groups O(2) and U(1) are equivalent to one
another. If the O(2) transformations are written

O(✓) =

 
cos ✓ sin ✓
�sin ✓ cos ✓

!

find the transformation rules for  and  ⇤.
(iv) What further restrictions are placed on the Lagrangian by re-

quiring that it be O(2) invariant (including interaction terms)?
Write the resulting Lagrangian in terms of both the variables
('1,'2) and ( , ⇤).

(v) Assuming the coupling to be weak, allowing a semiclassical ap-
proximation, what is the ground state (i.e. background value for
the fields) and spectrum (i.e. masses) of this O(2)-symmetric
model if the coe�cient of the quadratic term of the potential is
positive? What are the ground states and spectrum if the coef-
ficient of the quadratic term is negative? Which field is massless
(such a massless field is called a Goldstone boson)?

[1.2.2] Example 2: N = 4.

(i) What is the most general form for a renormalizable theory of
four real scalars, (assuming as above invariance under separate
reflections of each field)?

(ii) In this case the maximal symmetry group is O(4) which consists
of 4 ⇥ 4 real orthogonal matrices. These by definition are the
group that leaves �T� = (�1)2 + (�2)2+ (�3)2 + (�4)2 invariant.
As a group O(4) is equivalent to SU(2) ⇥ SU(2). This can be
seen as follows: Define the complex fields ' = 1p

2
(�1 + i�2) and

 = 1p
2
(�3 + i�4) together with their complex conjugates and

construct the 2 ⇥ 2 matrix whose columns are � ⌘
 
'
 

!

and

�̄ ⌘ "�⇤ =

 
 ⇤

�'⇤

!

, i.e.

� =

 
'  ⇤

 �'⇤

!
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Then � satisfies

�̄ ⌘ "�⇤" = � (1.195)

det� = �('⇤'+  ⇤ ) = �1

2

4X

i=1

�2i = �
1

2
�T� (1.196)

The group O(4) can therefore be described as those linear trans-
formations of � that preserve Eq. (1.195) and Eq. (1.196). Show
that these conditions are satisfied by

(a) �! U�; or

(b) �! �V

for U and V arbitrary 2⇥ 2 complex unitary matrices with unit
determinant. Transformations (a) and (b) each form an SU(2)
group and O(4) ⇡ SU(2)⇥ SU(2).

(iii) The complex variable � =

 
'
 

!

is convenient if invariance

under only one of the SU(2)s is required. Choosing this to be the
SU(2) formed by multiplication on the left, � and �̄ transform
as doublets: � ! U�, �̄ ! U �̄. Construct the most general
renormalizable Lagrangian consistent with invariance under a
single SU(2). Did you include the invariant term

3X

a=1

(�†⌧a�)(�†⌧a�)

with ⌧a being the Pauli matrices? Should you? Which terms, if
any, are not invariant under the “other” SU(2)?

(iv) For the SU(2)-invariant model, give the ground state and spec-
trum in the semiclassical approximation for both choices of sign
for the coe�cient of the quadratic term of the potential. When
the background field is non-zero, what subgroup of the original
invariance group leaves the background fields invariant? What
is the dimension of this subgroup? What is the dimension of the
original symmetry group? How many massless states are there?

[1.3] Vacuum energies

Consider the model consisting of one free Majorana fermion and one
complex scalar field:

L = �1

2
 ̄(/@ +m) � (@µ')

⇤(@µ')� µ2'⇤'



50 Field theory review

The Hamiltonian density for this model is (defining '̇ = @t')

H(x) = '̇⇤'̇ + (r')⇤(r') + µ2'⇤'+
1

2
 ̄(� ·r+m) 

Use the mode expansions

'(x) =
1p
2

h
'(1) + i'(2)

i

'(i)(x) =
Z

d3p

(2⇡)32Ep

h
eipxa(i)p + e�ipxa⇤(i)p

i

 (x) =
X

�=± 1

2

Z
d3p

(2⇡)32Ep

h
up,� e

ipxbp,� + vp,� e
�ipxb⇤p,�

i

to express the total energy, H, in terms of the creation and annihilation
operators a(i)p and bp,�. What is the zero-point energy in this theory?
What is the zero-point energy when µ = m? Assume the standard order-
ing convention: AB ! 1

2(AB + BA) ⌘ 1
2{A, B} when quantizing. Also

assume the standard relations:

[a(i)p , a⇤(j)p0 ] = 2Ep(2⇡)
3�3(p� p0)�ij

n
bp,�,b

⇤
p0,�0

o
= ��,�02Ep(2⇡)

3�3(p� p0)

and
h
a(i)p , bp0,�

i
= 0 etc.

[1.4] Symmetries and Yukawa interactions

Consider a theory with one Majorana fermion, and two real scalar fields
',� subject to the symmetry:

� = i!�5 
�' = 2!�
�� = �2!'

for ! an infinitesimal, spatially constant parameter.

[1.4.1] Write down the most general renormalizable Lagrangian coupling
the scalars to each other and to the fermion. Identify the vacuum
field configuration and mass spectrum both in the broken and unbroken
phases (i.e. for both choices of sign for the coe�cient of the quadratic
term of the potential).



1.7 Problems 51

[1.4.2] Couple a spin-one particle to this symmetry; i.e., write down co-
variant derivatives for the fields  , �, and ' and construct an action
invariant with respect to these transformations with @µ! 6= 0. Again
identify the spectrum in both broken and unbroken phases.

[1.5] Spinor identities
Derive the following formulae concerning the spin-half wave function:

u(p,�)ū(p,�) =
1

2
(m� i6p)(1 + i�56s)

and
X

�=± 1

2

u(p,�)ū(p,�) = (m� i6p)

in which pµ is the particle four-momentum and sµ is a four-pseudovector
whose components in the rest frame are s0 = 0, s = 2�e where e is the
unit vector in the direction along which the spin components, � = ±1

2 , are
measured. (Choose e to lie along the positive x3-axis.) Notice these imply
the frame-independent conditions: sµsµ = +1 and sµpµ = 0. Recall, also
that (i6p+m)u(p,�) = 0 and pµpµ = �m2.

Hint: Since u(p,�)ū(p,�) is a 4 ⇥ 4 matrix, expand it in terms of the
basis matrices S, P, V,A, and T , defined as S = 1, P = �5, V = �µ,
A = �µ�5, and T = [�µ, �⌫ ]. Since uū transforms covariantly under
Lorentz transformations, the coe�cients of these matrices are scalars,
pseudoscalars, vectors, etc.Evaluate the coe�cients by taking traces after
multiplying by an appropriate matrix. It may prove convenient to eval-
uate those coe�cients that transform as vectors and tensors in the rest
frame of the particle.

Is the resulting expression well behaved in the zero-mass limit?
[1.6] Fermion mass matrix diagonalization

Prove the theorem that, for any complex, symmetric matrix, A, there
exists a unitary matrix, U , for which

UTAU = M

is real, diagonal and non-negative. (Recall we used this theorem to show
that the spin-half mass matrix could always be put into standard form.)

Hint: Notice that this would be trivial if [A,A†] = 0 because then if
we break A into its real and imaginary parts, A = R + iS for R,S real
and symmetric, we see that [A,A†] = 2i[S,R] = 0. Since S and R are
both real and symmetric and commute, they can both be diagonalized
by the same real orthogonal matrix, O. This implies that OTAO = diag
and we could define U = OD with D being a diagonal matrix whose
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elements are phases that can be chosen to make the entries of M real and
non-negative. In the general case when [A,A†] 6= 0, we know that A†A
is Hermitian and so is diagonalizable by a unitary matrix, V . Define the
new matrix B ⌘ V TAV and show that B = BT and [B, B†] = 0.

[1.7] A Dirac matrix identity
Prove the identity which shows that �µ⌫�5 is not linearly independent

of ✏µ⌫�⇢��⇢

✏µ⌫�⇢�
�⇢ = 2i�µ⌫ �5 (1.197)

Here �µ⌫ = 1
2 [�

µ, �⌫ ].

[1.8] More useful identities: Prove the following identities:

[1.8.1]

�µ�⌫���⇢PR = (⌘µ⌫⌘�⇢ � ⌘µ�⌘⌫⇢ + ⌘µ⇢⌘�⌫ � i✏µ⌫�⇢)PR (1.198)

+(⌘µ⌫��⇢ � ⌘µ��⌫⇢ + ⌘µ⇢�⌫� � ⌘⌫��⇢µ + ⌘⌫⇢��µ � ⌘�⇢�⌫µ)PR

Here PR = 1
2(1 � �5) is the usual projection matrix onto right-handed

spinors and �µ⌫ = 1
2 [�

µ, �⌫ ] is half of the commutator of two Dirac
matrices.

[1.8.2] For X and Y any product of an odd number of gamma matrices
prove the following trace formula:

tr[XY PR ] =
1

2
tr[X�µPR ] tr[Y �µPL ] (1.199)

PR is as before and PL = 1
2(1 + �5).

[1.9] Fiertz rearrangements
The sixteen Dirac matrices I, �5, �µ, �µ�5, and �µ⌫ = 1

2 [�
µ, �⌫ ] provide

a basis in terms of which any 4 ⇥ 4 complex matrix can be expressed
(prove this). Given this property, show that this provides the following
useful way to rewrite a dyadic product of two anticommuting spinors:

PL [ 1 2]PR = �1

2
[ 2�

µPL 1]�µPR

PR [ 1 2]PL = �1

2
[ 2�

µPR  1]�µPL

PL [ 1 2]PL = �1

2
[ 2PL 1]PL �

1

8
[ 2�

µ⌫PL 1] �µ⌫PL

PR [ 1 2]PR = �1

2
[ 2PR  1] PR �

1

8
[ 2�

µ⌫PR  1] �µ⌫PR (1.200)
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The standard model: general features

The last chapter developed the general principles for writing down a rela-
tivistic quantum field theory. It showed what types of fields are possible,
and explained that spin-one fields can only appear in an interacting, renor-
malizable theory if they are coupled via the gauge principle.

In this chapter, we write down specifically what the field content of the
standard model is. The interactions will then follow as the most general set
of renormalizable interactions, compatible with that field content. We then
explore what the vacuum and the particle content are, and write down the
complete interaction Hamiltonian in the particle basis.

We will not attempt to motivate theoretically why the particle content of
the standard model is what it is. We have no deep understanding of why
the gauge group is SUc(3)⇥ SUL(2)⇥UY (1), for instance. We just take the
field content as observed fact, and present it. Note however that the field
content of the standard model is not completely arbitrary; once the gauge
group is known, the fermionic field content is somewhat constrained by the
requirement of anomaly cancellation, which we discuss at the end of the
chapter.

2.1 Particle content

The strong, weak, and electromagnetic interactions are understood as aris-
ing due to the exchange of various spin-one bosons amongst the spin-half
particles that make up matter. The gauged symmetry group of the standard
model is SUc(3)⇥SUL(2)⇥UY (1). The specific gauge bosons associated with

53
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the generators of the algebra of the group are:

SUc(3)
#

8 G↵
µ

↵ = 1, . . . , 8

⇥ SUL(2)
#

3 W a
µ

a = 1, 2, 3

⇥ UY (1)
#
Bµ

(2.1)

The eight spin-one particles, G↵
µ(x), associated with the factor SUc(3) are

called gluons and the associated subscript “c” is meant to denote “color.”
Gluons are thought to be massless. Any particle that transforms with re-
spect to this factor of the gauge group, and so which couples to the gluons,
is said to be colored or to carry color. This interaction is also called the
“strong interaction,” and any particle which couples to the gluons is said to
be “strongly interacting.” Three spin-one particles, W a

µ (x), are associated
with the factor SUL(2), and one, Bµ(x), with the factor UY (1). The sub-
script “L” is meant to indicate that only the left-handed fermions turn out to
carry this quantum number. The subscript “Y ” is meant to distinguish the
group associated with the quantum number (defined below) of weak hyper-
charge, denoted Y , from the group associated with ordinary electric charge,
denoted Q. The electromagnetic group will be written as Uem(1). The four
spin-one bosons associated with the factors SUL(2) ⇥ UY (1) are related to
the physical bosons that mediate the weak interactions, W± and Z0, and
the familiar photon from QED, in a way we will explain in Section 2.3.
Apart from spin-one particles we are aware of a number of fundamental

spin-half particles and one fundamental spin-zero particle. Our knowledge
to date about the character of the interactions of these fields may be com-
pactly summarized by giving their transformation properties with respect
to the gauge group SUc(3)⇥ SUL(2)⇥ UY (1). The fermions transform in a
relatively complicated way with respect to this symmetry group. There are
three copies (families or generations) of particles, each copy of which couples
identically to all spin-one particles.
Leptons are, by definition, those spin-half particles which do not take part

in the strong interactions. Six leptons are known to date. They are denoted
individually by e, µ, ⌧, ⌫e, ⌫µ, and ⌫⌧ , and collectively by `.
Hadrons, on the other hand, are defined as those particles that do take

part in the strong interactions. The spectrum of known hadrons is rich and
varied but, as we shall see, appears to be accounted for as the bound states
of six quarks u, d, s, c, b, and t, denoted collectively as q.
Because of the relatively large number of spin-half fields involved, a few

words on notation may be appropriate. Spinors written in capital let-
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ters L,E,D,U,Q, or script letters E ,U ,D, and neutrinos ⌫i are taken as
Majorana spinors. The left- and right-handed components of these spinors
are denoted by subscripts L, R. Spinors written in lower case Roman letters
li, ui, di, e, u, c, t, d, s, b, or by µ, ⌧ are Dirac spinors, which we will introduce
in turn.
For example, the electron field is represented in quantum electrodynamics

by the Dirac spinor, e(x). Denote the left- and right-handed components of
this spinor by eL and eR respectively:

e =

 
eL
eR

!

(2.2)

In the standard model, however, the electron is represented by two Majorana
fields, E(x) and E(x), that are defined to contain the left- and right- handed
parts of e(x) respectively. That is,

E =

 
eL
✏e⇤

L

!

, E =

 
�✏e⇤

R

eR

!

(2.3)

where the 2 ⇥ 2 matrix ✏ is defined in Eq. (1.79). The Dirac spinor, e, is
therefore related to the Majorana fields, E and E, by projecting onto the
left- or right-handed part:

e = PLE + PRE (2.4)

The “left-handed” electron field, E , itself appears within an SUL(2)-doublet
with the field, ⌫, whose left-handed part contains the left-handed electron-
neutrino. This doublet is denoted L(x):

PLL =

 
PL ⌫

PL E

!

(2.5)

The notation here is somewhat confusing; the matrix structure shown for L
above does not show spinorial matrix structure, but shows matrix structure
under the group SUL(2); each component, ⌫ and E , is a 4-component Ma-
jorana spinor. Generally, when possible spinorial structure is suppressed in
what follows.
Members of successive generations are denoted by a generation index, m,

that runs from 1 to 3. The generations are numbered in increasing order
with respect to the mass of the corresponding charged lepton:

⌫m denotes ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧

em denotes e1 = e, e2 = µ, e3 = ⌧

um denotes u1 = u, u2 = c, u3 = t
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and dm denotes d1 = d, d2 = s, and d3 = b (2.6)

The transformation properties of the fermions and scalar are summarized
by giving the representation of the gauge group in which they transform. A
standard way to label the representations of SUL(2) and SUc(3) is with their
dimension. So the two-dimensional spinor representation of SUL(2) is writ-
ten 2 (familiar from the physics of spin as the spin-half representation) and
the two three-dimensional representations of SUc(3) would be 3 or 3. The
trivial (invariant) representation is written as 1. The transformation prop-
erties with respect to UY (1) may be specified by giving the corresponding
eigenvalue of the generator, Y , called the weak hypercharge. Y is normal-
ized so that the action of UY (1) on a field with eigenvalue y is given by
 ! exp[i!(x)y] .
With these conventions the fermionic particle content of the standard

model may be summarized as follows:

PLLm =

 
PL⌫m
PLEm

!

transforms as
✓
1,2,�1

2

◆

PREm

✓
1,1,�1

◆

PLQm =

 
PLUm

PLDm

! ✓
3,2,+

1

6

◆

PRUm

✓
3,1,+

2

3

◆

PRDm

✓
3,1,�1

3

◆
(2.7)

Here the first number represents the SUc(3) representation, the second num-
ber is the SUL(2) representation and the final number is the eigenvalue
of the weak hypercharge, Y . In the case of SUL(2) doublets, we have
named their upper and lower SUL(2)components, Lm = (PL ⌫mPL Em)T and
Qm = (PLUmPLDm)T . We could in principle do this for the three separate
colors of the Q, U , and D fields; but it turns out to be useful to do so for
the SUL(2) content but not for the SUc(3) content.
Since the left- and right-handed pieces of a Majorana spinor are the com-

plex conjugates of one another, they must transform in complex-conjugate
representations. It follows then that

PRLm =

 
PR⌫m
PREm

!

transforms as
✓
1,2,+

1

2

◆
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PLEm

✓
1,1,+1

◆

PRQm =

 
PRUm

PRDm

! ✓
3,2,�1

6

◆

PLUm

✓
3,1,�2

3

◆

PLDm

✓
3,1,+

1

3

◆
(2.8)

We note in passing that if the standard model were to be supplemented to
include a right-handed neutrino field, Nm, this field would be a singlet,

PRNm transforms as: (1,1, 0) (2.9)

with respect to the gauge group SUc(3)⇥ SUL(2)⇥ UY (1). We will discuss
such a singlet some more in Chapter 10, see also Problem 2.3.
Apart from fermions, the Lagrangian must also involve the fields repre-

senting the spin-one gauge bosons. These fields and their transformation
rules are denoted as follows:

G↵
µ transforms as: (8,1, 0)

W a
µ (1,3, 0)

Bµ (1,1, 0) (2.10)

Lastly, the theory contains a scalar field, which contains the physical
degree of freedom which becomes the celebrated Higgs boson. The Higgs
field � transforms as

� =

 
�+

�0

!

transforms as
✓
1,2,

1

2

◆
. (2.11)

As discussed in Appendix B, if we multiply the conjugate of �, �⇤, by the
antisymmetric tensor ✏ (acting on its SUL(2) indices), the result is also a
valid SUc(3)⇥ SUL(2)⇥ UY (1) representation, which we call �̃:

�̃ ⌘
 
�0⇤

��+⇤

!

= "�⇤ transforms as
✓
1,2,�1

2

◆
(2.12)

which is the same representation as PLL. It is a matter of convention whether
one considers the field � as fundamental and �̃ as derived from it, or vice
versa; we follow the almost universal convention to do the former. As we
shall see, although � contains four real components, only one of them mani-
fests as a scalar particle, due to the Higgs mechanism, which we will discuss
in Section 2.3.
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The representation content we have presented is merely a short form for
the invariance of the Lagrangian under the following symmetries:
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�W a
µ = @µ!

a
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2(x) W
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�Bµ = @µ!1(x) (2.13)

In these expressions the generators of SUL(2) have been explicitly written
as Ta = 1

2⌧a where ⌧a, a = 1, 2, 3 denotes the 2 ⇥ 2 Pauli matrices that act
on the SUL(2)-indices

⌧1 =

 
0 1
1 0

!

, ⌧2 =

 
0 �i
i 0

!

, ⌧3 =

 
1 0
0 �1

!

(2.14)

(The same matrices appeared in discussing the spin structure of fermions in
Section 1.3. We use the notation ⌧i when they act on SUL(2) indices and
�i when they act on spinorial indices.) Similarly, the generators of SUc(3)
(when acting on the 3 representation) are given explicitly by T↵ = 1

2�↵ where
�↵,↵ = 1, . . . , 8 denote the 3⇥ 3 Gell-Mann matrices given in Eq. (1.186).

The electric charge Q of a field is defined in terms of the hypercharge Y
and the SUL(2) charge’s T3 component, according to Q = T3 + Y . Note
that the electromagnetic group is not directly the UY (1) component of the
standard model gauge group, and electric charge Q is not one of the basic
charges particles carry under SUc(3)⇥SUL(2)⇥UY (1); rather it is a derived
quantity.
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2.2 The Lagrangian

Now we write the most general renormalizable Lagrangian involving these
fields. We will break the Lagrangian into two parts, those terms which do
not contain the Higgs field � and those terms which do. The Lagrangian
takes the form

LSM = Lfg + LHiggs (2.15)

Lfg = � 1

4
G↵

µ⌫G
↵µ⌫ � 1

4
W aµ⌫W a

µ⌫ �
1

4
Bµ⌫B

µ⌫� g23⇥3

64⇡2
✏µ⌫�⇢G

↵µ⌫G↵�⇢

� g22⇥2

64⇡2
✏µ⌫�⇢W

aµ⌫W a�⇢ � g21⇥1

64⇡2
✏µ⌫�⇢B

µ⌫B�⇢ � 1

2
Lm /DLm

� 1

2
Em /DEm �

1

2
Qm /DQm �

1

2
Um /DUm �

1

2
Dm /DDm (2.16)

LHiggs = �(Dµ�)
†(Dµ�)� V (�†�)

�(fmnL̄mPREn�+ hmnQ̄mPRDn�+ gmnQ̄mPRUn�̃+ h.c.)(2.17)

V (�†�) = �
h
�†�� µ2/2�

i2

= �(�†�)2 � µ2�†�+ µ4/4� (2.18)

in which the gauge field-strengths are given by

G↵
µ⌫ = @µG

↵
⌫ � @⌫G↵

µ + g3f
↵
��G

�
µG

�
⌫ (2.19)

W a
µ⌫ = @µW

a
⌫ � @⌫W a

µ + g2✏abcW
b
µW

c
⌫ (2.20)

Bµ⌫ = @µB⌫ � @⌫Bµ (2.21)

The gauge-covariant derivatives are

DµLm = @µLm +

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2
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2
g2W
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DµEm = @µEm + ig1Bµ(PR Em)� ig1Bµ(PLEm) (2.23)
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DµDm = @µDm +

� i

2
g3G

↵
µ�↵ +

i

3
g1Bµ

�
PRDm

+

+
i

2
g3G

↵
µ�

⇤
↵ �
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PLDm (2.26)

Dµ� = @µ��
i

2
g2W

a
µ⌧a��

i

2
g1Bµ� (2.27)

Unitarity requires that the constants � and µ2 be real and stability demands
that � be positive.
It is worth emphasizing at this point why certain terms do not appear in

Lfg. In particular, only the µ2�†� term can be interpreted as a conventional
mass term; there are no mass terms for the gauge fields, nor for the fermionic
fields. The reason is that only terms which are singlets under SUc(3) ⇥
SUL(2)⇥UY (1) can appear in the Lagrangian – otherwise it would not respect
gauge invariance, that is, it would change under a gauge transformation.
The rules for telling if a combination of fields is a singlet under SUc(3) or
SUL(2) are summarized in appendix B; basically the rule is that all color
and SUL(2) indices must “tie o↵” against each other. The rule for UY (1) is
even easier; the charges of the fields must add to zero.
Consider for instance the would-be mass term for the E field,

Lwould-be = �
mmn

2
EmEn

Write EmEn = EmPLEn + EmPR En, and just consider the PR term. PR E
has hypercharge �1. The hypercharge of EPR is also �1. To see this, note
that

EPR = E†�PR = E†PL� (2.28)

is actually the conjugate field of PLE, and has the opposite charge as PLE.
Therefore, the combination EPR E is hypercharge �2 and is not a gauge sin-
glet. The combination EPLE is hypercharge +2 and is also not allowed. One
can quickly check that no combination of two spinor fields is hypercharge
neutral, so no such mass is permitted. The kinetic terms are invariant be-
cause PL �µ = �µPR ; so the left-handed component of a field couples to the
Hermitian conjugate of the left-handed component and the gauge depen-
dence does cancel.
For the case µ2 < 0, the minimum energy is obtained when � = 0, and

the spectrum may be analyzed by perturbing in the gauge couplings, gi,
i = 1, 2, 3. (We return to the accuracy of this approximation in more detail
later.) The unperturbed part of the Lagrangian becomes in this case those
terms that are quadratic in the fields. The spectrum of this unperturbed
theory is therefore that of a system of free spin-zero, spin-half, and spin-one
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particles, as was described in the previous chapter. Following the discussion
leading up to Eq. (1.67)–Eq. (1.125), the scalar is massive with mass m2

H
=

�µ2, and all spin-half and spin-one fields are massless!
Since the perturbative semiclassical analysis should apply to at least the

electroweak part of the theory, we should instead consider the case µ2 > 0.
Indeed, this is the reason for our convention choice in introducing µ2. As
we will see in the following sections, this choice gives rise to a spectrum of
massive particles which is in good agreement with experiment.
The following general features of LSM bear special mention.

(i) Lfg, LHiggs and LSM are the most general Lagrangian consistent with
the given particle content and invariance under SUc(3) ⇥ SUL(2) ⇥
UY (1). If the predictions made from such an L are wrong, then either
the particle-content or renormalizability or the gauge group is wrong.

(ii) Because of SUc(3)⇥ SUL(2)⇥ UY (1) invariance, all masses vanish in
the absence of LHiggs.

(iii) There are six parameters in Lfg of which only four enter into physical
predictions (since ⇥1 and ⇥2 turn out to have no physical e↵ects, for
reasons we will not discuss). LHiggs, on the other hand, contains no
less than 15 parameters (as we shall see these may be taken to be the
ten masses, the Higgs self-coupling, and the four Kobayashi–Maskawa
angles). In this sense LHiggs parameterizes most of our ignorance
and is the part of the theory that is the least understood. All of
the couplings also turn out to be small (modulo some restrictions to
which we return for g3), allowing the use of perturbation theory to
calculate the predictions of L .

(iv) The terms on the first line of Eq. (2.17) could be equally well written
in terms of �̃, rather than �. The terms on the second line are most
easily written as shown, and emphasize the importance that the Higgs
field can enter the Hamiltonian either in the form � or the form �̃.
No term �̃†� can occur, because this combination is identically zero!

2.3 The perturbative spectrum

The first step in analyzing the consequences of the standard model is to find
its spectrum. We do so semiclassically, following the procedure of Subsec-
tion 1.6.2. For these purposes it is convenient here, as it was there, to use
the gauge freedom to transform to unitary gauge. In the present context



62 The standard model: general features

unitary gauge is defined by the following condition:

� =

 
0

1p
2
(v +H(x))

!

(2.29)

where H(x) is a real field and v is a real constant that minimizes the scalar
potential. It may be shown that it is always possible to reach Eq. (2.29)
from an arbitrary initial field configuration via a gauge transformation. The
motivation for this gauge choice is that it ensures that no vector-scalar cross
terms survive in the quadratic terms once we expand about the ground
state. It is worth noting in passing that the gauge, Eq. (2.29), does not fix
those gauge invariances that leave the Higgs v.e.v. invariant. In the present
context, as is shown later in this section, this means that the electromagnetic
gauge invariance still remains to be fixed.
v is determined by minimizing the potential in Eq. (2.18) and satisfies

v2 = µ2/� (2.30)

In order to read o↵ the particle masses we must identify the unperturbed
Lagrangian, L0. This is equal to that part of LSM that is quadratic in
the fluctuations. The expansion of Lfg is trivial and just contributes the
spin-half and spin-one kinetic terms to L0. Everything else comes from the
expansion of LHiggs. Using the following result,

Dµ� =
1p
2
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@µH

!

� i

2
p
2

 
g2W 3

µ+g1Bµ g2W 1
µ�ig2W 2

µ

g2W 1
µ+ig2W 2

µ �g2W 3
µ+g1Bµ

! 
0

v+H

!

(2.31)
the expansion of the scalar-field kinetic term becomes:

�(Dµ�)
†(Dµ�) = �1

2
@µH@

µH � 1

8
(v+H)2g22(W

1
µ � iW 2

µ)(W
1µ+ iW 2µ)

�1

8
(v+H)2(�g2W 3µ+ g1B

µ)(�g2W 3
µ + g1Bµ) (2.32)

The scalar potential term contributes

V =
�

4

h
(v +H)2 � µ2/�

i2

=
�

4
(2vH +H2)2

= �v2H2 + �vH3 +
�

4
H4 (2.33)
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The Yukawa couplings may be expanded in an identical way:

L̄mPR En� =
1p
2

 
⌫̄m
Ēm

!
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PR En

 
0

v +H

!

=
1p
2
(v +H)ĒmPR En (2.34)

and similarly for Q, d, and D, and

Q̄mPR Un�̃ =
1p
2

 
Ūm

D̄m

!
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PR Un

 
v +H
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!

=
1p
2
(v +H)ŪmPRUn (2.35)

Combining all of these results gives the expansion of LHiggs to be

LHiggs = � 1

2
@µH@

µH � �v2H2 � �vH3 � �

4
H4

� 1
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⇤

� 1p
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(v +H)
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gmnŪmPR Un + h.c.

⇤

� 1p
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(v +H)

⇥
hmnD̄mPR Dn + h.c.

⇤
(2.36)

2.3.1 Boson masses

LHiggs contains all of the mass terms, although some of these are not diag-
onal. They are, in more detail

2.3.1.1 Spin-zero particles

Comparing the H2 term of LHiggs with the standard form, �1
2m

2
H
H2, gives

m2
H
= 2�v2 = 2µ2 (2.37)

2.3.1.2 Spin-one particles

The relevant terms in this case are:

�1

8
g22v

2|W 1
µ � iW 2

µ |2 �
1

8
v2(� g2W

3
µ + g1Bµ)

2 (2.38)
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The fields W 1
µ and W 2

µ only appear in the combination Wµ
1 W1µ+Wµ

2 W2µ

and do not mix with any other fields. Their masses can therefore be read
by inspection. Comparing this term to

� 1

2
M2

1W
1
µW

1µ � 1

2
M2

2W
2
µW

2µ (2.39)

gives the masses

M2
1 = M2

2 =
g22v

2

4
(2.40)

It is not an accident that these masses are equal. They are equal because
the particlesW1 andW2 are related by a symmetry that is not spontaneously
broken, even when v 6= 0. To see this, consider performing a constant gauge
transformation, @µ!a = 0. The ground-state scalar field configuration then
transforms as

�

 
0

v

!

=
i

2
!a
2⌧a

 
0

v

!

+
i

2
!1

 
0

v

!

=
i

2

 
[!1

2 � i!2
2]v

[!1 � !3
2]v

!

(2.41)

which vanishes provided that !1
2 = !2

2 = 0 and !1 = !3
2 ⌘ ! . This particular

combination of SUL(2)⇥ UY (1)-transformations is therefore a symmetry of
the ground state.
Under this symmetry the W fields transform according to Eq. (2.13):

�W a
µ = �✏abc!b

2W
c
µ , or , �

 
W 1

µ

W 2
µ

!

= !

 
0 1
�1 0

! 
W 1

µ

W 2
µ

!

(2.42)

This shows that W 1
µ and W 2

µ transform into one another under this sym-
metry. The condition !3

2 = !1 implies that the generator of this unbroken
symmetry is T3 + Y . Now, we saw earlier that the electric charge, Q, of
a field is related to the SUL(2) ⇥ UY (1)-generators by Q = T3 + Y . It is
precisely the electromagnetic gauge invariance, Uem(1), which is unbroken
by the vacuum. W 1

µ and W 2
µ must therefore correspond to the two degrees

of freedom associated with the distinct particle and antiparticle states re-
quired for an electrically charged particle. It is convenient in these cases to
deal with fields that diagonalize the generator of electric charge. This corre-
sponds, in the present case, to writing W1 and W2 as the real and imaginary
parts of a complex, charged field:

W±
µ ⌘

1p
2
(W 1

µ ⌥ iW 2
µ) (2.43)
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which satisfies �W±
µ = ±i!W±

µ under electromagnetic gauge transforma-
tions, Eq. (2.42).
The mass term appropriate to such a charged field is �M2

W
W+

µ W�µ.
Comparing with the Lagrangian, Eq. (1.121), therefore gives the W± mass
to be

MW = M1 = M2 =
g2v

2
(2.44)

The remaining vector fields that appear in the mass term are W 3
µ and Bµ.

They also only appear in one particular combination, g1Bµ � g2W 3
µ . We

may normalize this combination (in order not to alter the standard form for
the kinetic terms) to define the mass eigenstate:

Zµ ⌘
�g1Bµ + g2W 3

µq
g21 + g22

⌘ W 3
µ cos ✓W �Bµ sin ✓W (2.45)

This last equation defines the weak-mixing angle or Weinberg angle, ✓W,
given by

cos ✓W =
g2q

g21 + g22

sin ✓W =
g1q

g21 + g22
(2.46)

In terms of this field the mass term, Eq. (1.124), is

�1

8
v2(g21 + g22)ZµZ

µ (2.47)

from which the mass may be read o↵:

M2
Z
=

1

4
(g21 + g22)v

2 (2.48)

The final mass eigenstate is the combination of W 3
µ and Bµ that is or-

thogonal to Zµ:

Aµ = W 3
µ sin ✓W +Bµ cos ✓W =

g1W 3
µ + g2Bµq
g21 + g22

(2.49)

This is massless, as are the gluons, G↵
µ, that gauge SUc(3) . The masslessness

of Aµ corresponds to the fact that the linear combination Q = T3 + Y is
unbroken even when v 6= 0. Aµ is the corresponding massless gauge boson
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required for this unbroken symmetry. Since Q is the electric charge, we
expect Aµ to have the couplings of the usual photon.
To summarize the relations between field bases, writing cW ⌘ cos ✓W and

sW ⌘ sin ✓W,

W 3
µ = cWZµ + sWAµ Zµ = cWW 3

µ � sWBµ

Bµ = �sWZµ + cWAµ Aµ = sWW 3
µ + cWBµ

p
2W+

µ = W 1
µ � iW 2

µ

p
2W 1

µ = W+
µ +W�

µp
2W�

µ = W 1
µ + iW 2

µ

p
2W 2

µ = iW+
µ � iW�

µ

q
g22+g21W

3
µ = g2Zµ + g1Aµ

q
g22+g21Zµ = g2W 3

µ � g1Bµq
g22+g21Bµ = �g1Zµ + g2Aµ

q
g22+g21Aµ = g1W 3

µ + g2Bµ

(2.50)

2.3.2 The custodial SU(2)

Notice that there is a relation amongst the three quantities MW , MZ , and
✓W

MW

MZ

=
g2q

g21 + g22
= cos ✓W (2.51)

It is natural to ask how much this relation depends on the details of how
the symmetry SUL(2) ⇥ UY (1) is broken, since any information that can
restrict the arbitrariness in the symmetry breaking sector is welcome. Con-
sider therefore the most general form for the spin-one mass matrix that is
consistent with the symmetry-breaking pattern SUL(2)⇥ UY (1)!Uem(1):

0

BBB@

M2
W

M2
W

M2
3 m2

m2 M2
0

1

CCCA (2.52)

This form has a simple explanation. As we saw above, unbroken electro-
magnetic gauge invariance dictates that the upper left 2 ⇥ 2 block of the
matrix be proportional to the unit matrix: M2

W
I2⇥2. It similarly implies

that the upper-right and the lower-left blocks must vanish. The lower-right
2 ⇥ 2 block is a priori an arbitrary symmetric matrix, subject to the one
constraint that one of its eigenvalues must vanish. The vanishing of one
of the eigenvalues corresponds to the masslessness of the photon, and is a



2.3 The perturbative spectrum 67

general consequence of the fact that the electromagnetic gauge invariance is
unbroken.
The requirement that one eigenvalue be zero is equivalent to the vanishing

of the determinant:

det

 
M2

3 m2

m2 M2
0

!

= M2
3M

2
0 �m4 = 0 , (2.53)

implying the condition m2 = ±|M0M3|. (In the standard model, m2 as
defined here is negative.) The corresponding zero eigenvector may be written
as  

⌥ sin ✓W
cos ✓W

!

(2.54)

Equation (2.54) defines the mixing angle, ✓W, in the general case. We may
now eliminate M2

0 in favor of ✓W. The required relation is

tan ✓W =
±m2

M2
3

=

����
M0

M3

���� (2.55)

The non-zero eigenvalue, MZ , is then given in terms of M3 and ✓W by

M2
Z

= tr

 
M2

3 m2

m2 M2
0

!

= M2
0 +M2

3 = M2
3 (1 + tan2 ✓W) = M2

3 sec2✓W (2.56)

The mass relation implied by the symmetry breaking pattern SUL(2)⇥UY (1)
! Uem(1) is therefore M3 = MZ cos ✓W. An alternative way of expressing
the mass formula, Eq. (2.51), is therefore M1 = M2 = M3 = MW .
The equality ofM3 andMW within the standard model is a consequence of

using a scalar SUL(2)-doublet, �, to break SUL(2)⇥UY (1). The connection
arises because of an accidental symmetry of the scalar self-couplings that
determine the symmetry-breaking pattern that in turn determines the gauge
boson mass matrix. The Higgs doublet, �, may be thought of as four real
scalar fields, corresponding to the real and imaginary parts of �0 and �+ in
Eq. (2.11). An alternative way to write these four real fields would be as a
column vector:

� =

0

BBB@

�1
�2
�3
�4

1

CCCA (2.57)

As we saw in Subsection 1.3.1, the kinetic terms for four real scalar fields can
be written as @µ�T@µ� and so is always invariant under the multiplication
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of � by an arbitrary 4 ⇥ 4 orthogonal matrix, O 2 O(4). Now, in general
the interaction terms of the Lagrangian break this symmetry completely.
However, for the standard model, the two requirements of gauge invariance
and renormalizability imply that the only possible scalar self-couplings are
of the form V = V (�†�) = V (�T�). Even though it was not required to
be so, this potential is therefore also invariant under these general O(4)
transformations. Any such global symmetry that appears as a simple conse-
quence of gauge invariance and renormalizability is known as an accidental
symmetry.

Once � develops a v.e.v.,

h�i =

0

BBB@

v
0
0
0

1

CCCA (2.58)

this O(4)-invariance gets broken to the 3 ⇥ 3 orthogonal, O(3), transfor-
mations that shu✏e the lower three components amongst themselves. Since
this O(3) is unbroken, it constrains the form that the mass matrix may take.
The � gauge couplings that ultimately produce the gauge boson mass matrix
are also invariant under these O(3) transformations if the W a

µ s transform
as a three-dimensional vector. Invariance of the mass matrix under this
3⇥ 3 transformation therefore implies that the upper-left 3⇥ 3 block of the
spin-one mass matrix, Eq. (2.52), must be proportional to the unit matrix,
implying M3 = M1 = M2 = MW as required.

Since the group O(3) is locally isomorphic to the group SU(2), it is said
that the symmetry-breaking sector has an accidental custodial SU(2) invari-
ance that is responsible for the mass formula, Eq. (2.51).

The utility of having such a symmetry understanding of this mass formula
is that it points to the circumstances under which it might be altered and
to how big the corrections might be. In fact, some of the interactions in
the standard model, like the ��Bµ coupling and the Yukawa couplings, do
not respect this custodial symmetry. We may expect, then, that radiative
(quantum) corrections that involve these interactions can alter the mass
relation. This is discussed in Section 7.5. Experimental verification of this
relation is clearly of great importance since deviations point to detailed
e↵ects within the standard model, and potentially to indications of new
physics.
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2.3.3 Fermion masses

The terms quadratic in the fermion fields come from the Yukawa couplings
after the shifting of the scalar field by v. The relevant terms are

L = � vp
2

⇥
fmnĒmPR En + gmnŪmPRUn + hmnD̄mPRDn + h.c.

⇤
(2.59)

(It now becomes clear why it was convenient to label separately the di↵erent
SUL(2) components of the fields L and Q; the fact that the v.e.v. of the Higgs
field breaks SUL(2) symmetry means that a Yukawa coupling introduces a
mass which picks out one or the other component.)
The mass terms induced by the Yukawa couplings of fermions to the Higgs

v.e.v. are in general not diagonal in the generation indices, m and n. They
may be diagonalized following the procedure outlined in Subsection 1.3.2.
To this end, redefine the spin-half fields as follows:

PLEm = U (e)
mnPL E 0

n PREm = V (e)
mnPR E0

n

PLUm = U (u)
mnPLU 0

n PRUm = V (u)
mnPR U 0

n

PLDm = U (d)
mnPLD0

n PRDn = V (d)
mnPR D0

n (2.60)

where the matrices U (e), U (u), U (d), V (e), V (u), V (d) act on the generation in-
dices (e.g. connect e to µ to ⌧) and must be unitary in order to preserve the
canonical form for the kinetic terms.
As argued in Subsection 1.3.2, it is always possible to choose U (e) =

V (e)⇤, U (u) = V (u)⇤, U (d) = V (d)⇤, and then choose U (e) to ensure that the
new mass matrices are diagonal:

U (e)†fV (e) = V (e)T fV (e) = diag(fe, fu, f⌧ ) (2.61)

with fe, fµ, f⌧ real and non-negative. The same may be done for V (u)T gV (u)

and V (d)T hV (d). The resulting mass terms then become (dropping the
primes on the new fields)

L = � 1p
2
v
⇥
fmĒmPREm + gmŪmPRUm + hmD̄mPRDm + h.c.

⇤
(2.62)

This has a simple expression in terms of the Dirac spinors, em, dm, and
um, defined as

em ⌘ PL Em + PR Em

dm ⌘ PLDm + PR Dm

um ⌘ PLUm + PR Um (2.63)
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To see this, use

ĒmPREm + h.c. = ĒmPREm + ĒmPLEm

= ĒmPREm + ĒmPLEm
= ēmPRem + ēmPLem

= ēmem (2.64)

(The derivation of the identities used here was the subject of Problem 1 of
Chapter 1.)
In terms of these Dirac spinors, the final form for the mass terms is

L = � 1p
2
v(fmēmem + gmūmum + hmd̄mdm) (2.65)

which, when compared to the standard mass term, �m ̄ , gives the fermion
masses as

m(e)
n =

1p
2
fnv, m(u)

n =
1p
2
gnv, m(d)

n =
1p
2
hnv (2.66)

Notice that there is a separate Yukawa parameter, fn, for every independent
mass, mn, so there are no mass formulae along the lines of Eq. (2.51) for
the fermions. The numerical values of these fermion masses are presented
in Appendix A.
Note that no mass term for the neutrinos is generated. If only renor-

malizable interactions and the minimal field content of the standard model
are included, then this is exactly true, not just at the semiclassical level.
A neutrino mass could appear if we extended the theory to include right-
handed neutrinos Nm, because this would allow another Yukawa matrix
between L and N . However, nothing forbids a mass term mmN̄mNm for
such right-handed neutrinos. One interpretation of the recent evidence for
neutrino masses is that such right-handed neutrinos exist but their mass is
very heavy. This is discussed in more detail in Chapter 10 and in Problem
2.3.

2.3.4 Hadrons

What we have just presented is the perturbative spectrum, that is, the spec-
trum assuming all interactions are weak. As we will discuss in Section 7.4,
this is a valid approximation except for the SUc(3) (“strong”) interactions,
which become strong at scales of order 500 MeV. The result is that quarks
and gluons do not appear as actual particles of the spectrum. Rather, the
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particles we observe are bound states of quarks and gluons, in appropri-
ate combinations to be color singlets. Such bound states are called hadrons.
This is discussed in much more detail in Chapter 8. Here, we will just briefly
explain the results and the nomenclature.
There are three ways to form a colorless combination of quarks and gluons.

One is to have a bound state made purely of two or more gluons, called
a “glueball.” It is believed that such states should be heavy and highly
unstable, making their identification di�cult. The next way is to have a
bound state made up of a quark and an antiquark, qq̄ (possibly together
with gluons and more qq̄ pairs). Such bound states exist and are called
mesons; the lightest meson is the pion, made up of a ud̄ (⇡+), a dū (⇡�),
or (uū � dd̄)/

p
2 (⇡0). The final way is to have a bound state of three

quarks (possibly together with gluons and more qq̄ pairs). Such a three-
quark state is called a baryon, and its antiparticle, with three antiquarks, is
an antibaryon. The lightest two baryons are the familiar proton and neutron,
made up of uud and udd respectively. There is no straightforward way to
relate the masses of the hadrons to the masses of the constituent quarks
and gluons, because the binding energies involved are of order 500 MeV. In
the case of the b- and c-containing hadrons, however, the mass is dominated
by the mass of the heavy quark, making possible simpler relations between
hadron and quark masses.
When energies are large compared to the hadronic binding energy, the

language of quarks and gluons can be appropriate – within limits. For
instance, in computing Z boson decays in Chapter 4, we will see that the
total rate of decay into hadrons is given, up to small corrections, by the rate
of decay into quarks; how the quarks stick together into hadrons determines
what the actual final state is, but not the likelihood for the Z boson to create
the quarks. Similarly, when a hadron is one of the particles participating
in a collision, then at high energies we can often describe the collision in
terms of the quarks and gluons residing within the hadron, as discussed in
Chapter 9.

2.4 Interactions

We have determined the particle masses in terms of the various parameters
of the Lagrangian. The predictive nature of the theory only appears once
we identify how these parameters determine the strengths of particle inter-
actions and compare the interactions we see with those that are predicted.
This section is largely bookkeeping. The most important parts to un-

derstand are the charged and neutral current interactions and the necessity
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of the Kobayashi–Maskawa matrix. Most of the content of this section is
summarized by the Feynman rules presented in Section 5.4.

2.4.1 Higgs couplings

The couplings of the Higgs boson are found in the expansion of the Higgs
Lagrangian, LHiggs, of Eq. (2.36):

LHiggs = � 1

2
@µH@

µH � �v2H2 � �vH3 � 1

4
�H4

� 1

8
g22(v +H)2|W 1

µ � iW 2
µ |2

� 1

8
(v +H)2(�g2W 3

µ + g1Bµ)
2

� 1p
2
(v +H)

⇥
fmnĒmPREn + h.c.

⇤

� 1p
2
(v +H)

⇥
gmnŪmPRUn + h.c.

⇤

� 1p
2
(v +H)

⇥
hmnD̄mPRDn + h.c.

⇤

This Lagrangian completely specifies the Higgs couplings to other parti-
cles.

2.4.1.1 Higgs self-couplings

The couplings of the Higgs to itself are easily read from the potential in
Eq. (2.36):

LH-H = ��vH3 � 1

4
�H4

= �m2
H

2v
H3 � m2

H

8v2
H4 (2.67)

2.4.1.2 Higgs–gauge-boson couplings

The Higgs–gauge boson couplings are similarly given by

LH�g = � 1

8
g22(2vH +H2)|W 1

µ � iW 2
µ |2 �

1

8
(2vH +H2)(�g2W 3

µ + g1Bµ)
2

= �
 
H

v
+

H2

2v2

!⇣
2M2

W
W+

µ W�µ +M2
Z
ZµZ

µ
⌘

(2.68)
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2.4.1.3 Higgs–fermion couplings

The final Higgs interactions consist of Yukawa couplings between the Higgs
scalar and the various fermions:

LH�f = � 1p
2
H(fmēmem + gmūmum + hmd̄mdm)

= �
X

f

mf

v
f̄fH (2.69)

Here and in the following we use f (for fermion) to run over the nine Dirac
and three Majorana species labels ei, ui, di, ⌫i; but the m⌫ are zero.
Several points about these couplings are worth noting.

(i) Notice first that all other particles couple to the Higgs boson with
strength m/v, in which m is the mass of the particle in question
and v (which turns out to equal 246 GeV) is the symmetry-breaking
vacuum expectation value. This ratio is small provided that m ⌧
v, which is true for all known particles, though only marginally so
for the top quark, t. H must therefore couple weakly to all of the
particles that have been discovered to date, and must furthermore
couple preferentially to the heavier particles.

(ii) The Higgs-fermion couplings are automatically flavor-diagonal when
expressed in terms of mass eigenstates. That is to say, the act of
emission of a Higgs particle by a fermion does not convert one type
(or “flavor”) of fermion into another. This is an important property
of the model since there are very strong limits on the existence of any
transitions of this type. The only known interactions that can change
fermion flavor are the W± interactions we meet later. The strongest
limits on these types of flavor-changing couplings arise for those that
involve the strange quark, Hs̄d for example. Such an interaction
would contribute to the extremely well measured mass di↵erence,
mKL

�mKS
= (3.490± 0.006)⇥ 10�12 MeV, between the two neutral

kaons, KL and KS, or to flavor-changing neutral-current processes
such as the decay KL ! µ+e�, which has never been observed to
occur. More quantitatively, this last process is known to happen less
frequently than once in every 5⇥ 1012 KL decays.

(iii) As will be shown in Section 2.5, these Higgs couplings also conserve
the discrete symmetries of charge conjugation, C, parity, P, and time
reversal, T. This property is also not a general feature of more com-
plicated symmetry-breaking sectors.

(iv) The Higgs boson has recently been discovered with a mass (as of late
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2012) of about 126 GeV. The Higgs self-coupling is related to the
mass, 2� = (mH/v)2, so for the physical value of the Higgs mass,
the self-couplings are perturbative but relatively large. Since the
Higgs self-coupling terms are fixed by the now-known Higgs mass,
measuring Higgs self-interactions would be a good way to test this
sector of the model. As of this writing, only rather poor experimental
limits exist on the Higgs self-coupling strengths.

2.4.2 Strong interactions

The strong interactions are by definition those that involve the spin-one
gluons. The relevant terms in L are

Lstrong = �1

4
G↵

µ⌫G
↵µ⌫ � g23⇥3

64⇡2
✏µ⌫�⇢G

↵µ⌫G↵�⇢

�1

2
Qm /DQm �

1

2
Um /DUm �

1

2
Dm /DDm (2.70)

2.4.2.1 Gluon self-couplings

The G↵
µ⌫G

↵µ⌫ term describes the couplings of the gluons among themselves:

Lgl�gl = �
1

4
G↵µ⌫G↵µ⌫ �

g3
2
f↵��G↵µ⌫G�µG�⌫ � g23

4
f↵��f

↵
�✏G

�
µG

�
⌫ G

�µG✏⌫ (2.71)

plus the ⇥3 term which we have not written out. Here, G↵µ⌫ denotes the
linearized field strength, @µG↵

⌫ � @⌫G↵
µ. The ⇥3 term has almost no impact

in the following, because it has no e↵ect on any perturbative calculation, and
because ⇥3 is numerically almost exactly zero. This is a mystery, discussed
in Subsection 11.4.2.

2.4.2.2 Gluon–fermion couplings

The couplings between gluons and fermions may be read from Eq. (2.70),

Lgl�f = +
ig3
2

X

q

G↵
µ q̄�µ�↵q (2.72)

in which the sum is over the six Dirac spinors representing the di↵erent
flavors of quarks, q = um, dm.
The emission of a gluon by a fermion causes a transition in the fermion’s

color quantum numbers. We return to these couplings in more detail later.
In the meantime some features of these couplings bear comment.

(i) Because the standard model gauge group, SUc(3)⇥ SUL(2)⇥UY (1),
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is the product of a strong-interaction factor, SUc(3), with an elec-
troweak factor, SUL(2)⇥UY (1), all of the particles of the theory can
be divided into two classes according to whether or not they carry
strong-interaction quantum numbers. Quarks and gluons do and
electrons, neutrinos, the Higgs particle, and the electroweak gauge
bosons, W,Z,A, do not. This is the origin of the classification of ele-
mentary particles as hadrons or leptons. Hadrons involve the quarks
and gluons and so participate in the strong interactions. For histori-
cal reasons only the spin-half particles that do not interact strongly
are called leptons, and these therefore consist of the electron-type
and neutrino-type fermions.

(ii) Gluon interactions are called “strong,” as will be pursued in more
detail in subsequent chapters, because unlike the electroweak in-
teractions, the spectrum of strongly interacting particles cannot be
described perturbatively in the gluon coupling, g3. The observed
hadrons consist of bound states of the more elementary quarks and
gluons. This greatly complicates the interpretation of interactions
that involve hadrons as initial or final particles. As we shall see, it
turns out that it is nevertheless possible to accurately describe some
carefully chosen observables in hadron collisions at su�ciently high
energies within perturbation theory.

(iii) Just as was the case for the Higgs–fermion couplings, the emission
of a gluon by a fermion can never change the flavor of the fermion.
This may be seen from the above expressions, since the gluon–fermion
interactions always have the form Gq̄q and never involve two di↵erent
types of quark, such as Gq̄q0. As a result, flavor type is conserved
by the strong interactions. This has important consequences for the
interactions and spectrum of all strongly-interacting particles, which
will be explored in more detail later.

(iv) Apart from the ⇥3 term, the strong interactions as given above are
invariant with respect to all three of the discrete symmetries, C, P,
and T. (This conclusion is justified in more detail in Section 2.5.) The
present evidence for the invariance of the strong interactions under
these discrete symmetries (principally the current upper bound on the
neutron’s intrinsic electric dipole moment) implies that the strong-
CP parameter, |⇥3|, must be smaller than ⇡ 10�9. The potential
significance of this CP-violating parameter is taken up in more detail
in Subsection 11.4.2.

(v) The strength of all strong interactions is governed by a single cou-
pling constant, g3, so the strong interactions have a universal strength
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that is independent of the particle type that is participating in the
interaction. This is an important experimental fact that is explained
here as the natural consequence of the observation that the gluons
are gauge bosons, and that all of the strongly-interacting fermions
fall into the same representation (in this case triplets or antitriplets)
of the gauge group SUc(3).

2.4.3 Electroweak interactions

We next turn to the couplings that involve the electroweak gauge bosons
– those spin-one particles that correspond to the SUL(2) ⇥ UY (1) factor of
the gauge group. These come in two basic types. There are self-couplings
that arise due to the non-linear terms in the gauge potentials within the
SUL(2)⇥UY (1) field strengths, and there are couplings with other particles
that arise due to the use of gauge covariant derivatives in the kinetic-energy
terms of the Lagrangian. We consider each of these in turn.

2.4.3.1 Electroweak boson self-interactions

There are both cubic and quartic self-couplings of the spin-one electroweak
gauge bosons. Both arise from the non-linear terms in the SUL(2) gauge
boson field strength

L = �1

4
W a

µ⌫W
aµ⌫ (2.73)

The cubic terms are

Lcubic = �
1

2
g2✏abcWa

µ⌫W
bµW c⌫ = LWW� + LWWZ (2.74)

with the W -photon and W–Z trilinear couplings given in terms of the mass
eigenstates, W 1

µ = 1p
2
(W+

µ + W�
µ ), W 2

µ = �ip
2
(W�

µ � W+
µ ), and W 3

µ =
Zµ cos ✓W +Aµ sin ✓W, by

LWW� = ig2 sin ✓W
h
W+

µ⌫W
�µA⌫ �W�

µ⌫W
+µA⌫ +W+

µ W�
⌫ Fµ⌫

i
(2.75)

LWWZ = ig2 cos ✓W
h
W+

µ⌫W
�µZ⌫ �W�

µ⌫W
+µZ⌫ +W+

µ W�
⌫ Zµ⌫

i
(2.76)

In these expressions, Wa
µ⌫ , W

±
µ⌫ , Zµ⌫ and Fµ⌫ are the linear curls of the

gauge potentials W a
µ , W±

µ , Zµ and Aµ respectively, eg, W±
µ⌫ = @µW±

⌫ �
@⌫W±

µ .
The interaction terms that are quartic in these fields are

Lquartic = �1

4
g22✏abc✏adeW

b
µW

c
⌫W

dµW e⌫
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= �1

4
g22
h
(W a

µW
µ
a )

2 �WaµW
a
⌫W

µ
b W

b⌫
i

= LWWWW + LWWZZ + LWW�� + LWWZ� (2.77)

which, using the relation W a
µW

a
⌫ = W�

µ W+
⌫ +W+

µ W�
⌫ +W 3

µW
3
⌫ with W 3

µ =
Zµ cos ✓W +Aµ sin ✓W, gives,

Lquartic = �1

2
g22
h
(W+

µ W�µ)2 � (W+
µ W+µ)(W�

⌫ W�⌫)
i

�g22
h
(W+

µ W�µ)W 3
⌫W

3⌫ � (W+
µ W 3µ)(W�

⌫ W 3⌫)
i
(2.78)

so

LWWWW = �1

2
g22
h
(W+

µ W�µ)2 � (W+
µ W+µ)(W�

⌫ W�⌫)
i

(2.79)

LWWZZ = �g22 cos2 ✓W
h
(W+

µ W�µ)Z⌫Z
⌫ � (W+

µ Zµ)(W�
⌫ Z⌫)

i
(2.80)

LWW�� = �g22 sin2 ✓W
h
(W+

µ W�µ)(A⌫A
⌫) � (W+

µ Aµ)(W�
⌫ A⌫)

i
(2.81)

LWWZ� = �g22 sin ✓W cos ✓W
h
2(W+

µ W�µ)(Z⌫A
⌫)� (W+

µ Aµ)(W�
⌫ Z⌫)

�(W+
µ Zµ)(W�

⌫ A⌫)
i

(2.82)

Some brief comments.

(i) These self-interactions have been probed by the LEP-II experiments
at the 2–3% level. However, compared to the precision with which
the electroweak interactions of the fermions have been probed, these
measurements are comparatively poor.

(ii) The interactions of the W particles with the massless A boson only
involve the particular combination of couplings g2 sin ✓W. As will
become clear once the remainder of the A couplings are presented,
this combination has the interpretation of being the electromagnetic
coupling constant, e, as is appropriate for the interactions of the
photon, A, with a particle of electric charge 1.

(iii) These interactions preserve C, P, and T (see Section 2.5).

2.4.3.2 “Charged-current” fermion interactions

The only other electroweak interactions in the theory are the couplings be-
tween the electroweak bosons and spin-half and spin-zero particles. Since
the couplings with the Higgs boson are given in Subsection 2.4.1, they need
not be reconsidered again here.
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The W a
µ and Bµ–fermion couplings arise from the following kinetic terms,

L = �1
2
Lm /DLm�

1

2
Em /DEm�

1

2
Qm /DQm�

1

2
Um /DUm�

1

2
Dm /DDm (2.83)

Expanding each field in terms of the mass eigenstates gives

Lew = +
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Ēm

!
T

�µPL

 
�g1Bµ+ g2W 3

µ g2(W 1
µ � iW 2

µ)
g2(W 1

µ + iW 2
µ) �g1Bµ� g2W 3

µ

! 
⌫m
Em

!

+
i

4

 
Ūm
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µPREm+ h.c. (2.84)

The couplings between fermions and the charged spin-one particle, W+
µ ,

are called the charged-current interactions. Because these interactions al-
ways involve projection operators PL or PR , we may replace the Majorana
fermions U ,D, E with the Dirac fermions u, d, e (since the additional U,D,E
fields introduced in this substitution are removed by the projection opera-
tor), giving

Lcc =
ig2p
2

h
W+

µ (⌫̄m�
µPL em+ ūm�

µPLdm) +W�
µ (ēm�

µPL ⌫m+ d̄m�
µPLum)

i

(2.85)
Unfortunately, as written this expression is correct in the generation basis we
had before making the field redefinitions described in Subsection 2.3.3. To
learn what the interactions are in terms of the mass basis, we must perform
the same transformations, em = U (e)

mne0n, um = U (u)
mnu0n, and dm = U (d)

mnd0n,
on this expression. Since there is no mass term for neutrinos, we are free
to also redefine the neutrino field by ⌫m = U (e)

mn⌫ 0n, since this does not alter
their mass or kinetic terms (see, however, Chapter 10). Defining

Vmn = (U (u)†U (d))mn (2.86)

and introducing eW ⌘ g2/2
p
2, gives the following expression:

Lcc = ieW
h
W+

µ (⌫̄ 0m�
µ(1+�5)e

0
m + Vmnū

0
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µ(1+�5)d
0
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+W�
µ (ē0m�

µ(1+�5)⌫
0
m + (V †)mnd̄

0
m�

µ(1+�5)u
0
n)
i

(2.87)

Vmn is a 3⇥ 3 unitary matrix called the Kobayashi–Maskawa (KM) – or
sometimes the Cabbibo–Kobayashi–Maskawa (CKM)–matrix. It arises due
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to the necessity to perform di↵erent field redefinitions for up- and down-
type quarks when diagonalizing masses. Since the matrix Vmn is 3 ⇥ 3
and unitary, it is described by nine real parameters. Not all of these nine
parameters can be physically significant, however, because they may be
changed by performing a field redefinition which has no other e↵ects on the
standard model Lagrangian. The only field redefinitions which can alter
Vmn but which do not a↵ect any other terms in the Lagrangian consist of
multiplication of the various quark fields, u0n and d0n by a phase. Notice that
since an overall rotation of all quarks by a common phase is a symmetry of
the entire Lagrangian, and so leaves Vmn unchanged, this freedom to redefine
fields allows the removal of at most five phases from Vmn. This would leave
only four parameters of potential physical significance.
The choice of how to use these phase redefinitions to rotate the KM matrix

is somewhat arbitrary. Partly for this reason, there are several di↵erent
conventional ways in which to parameterize the KM matrix. The principal
three are listed here for convenience. The parameterization advocated by
the Particle Data Group is:

V =

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA (2.88)

=

0

B@
c12c13 s12c13 s13 e�i�13

�s12c23� c12s23s13 ei�13 c12c23� s12s23s13 ei�13 s23c13
s12s23� c12c23s13 ei�13 �c12s23� s12c23s13 ei�13 c23c13

1

CA

(2.89)

in which cij and sij are shorthand for cos ✓ij and sin ✓ij respectively, and the
mixing angles, ✓ij , are experimentally known to satisfy ✓13 ⌧ ✓23 ⌧ ✓12 ⌧ 1.
This implies that (for unknown reasons) charged-current interactions that
link fermions of di↵ering generation are highly suppressed in the standard
model and so in particular Vmn is very close be being a unit matrix. We
return to the experimental constraints on the matrix Vmn shortly.
There are two other parameterizations of the KM matrix that are com-

monly used in the literature. Many of the older sources parameterize the
KM matrix in terms of the Euler angles of an O(3) rotation together with
one phase:
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=

0

B@
c1 s1c3 s1s3
�c2s1 c1c2c3 + s2s3ei� c1c2s3 � c3s2ei�

�s1s2 c1s2c3 � s3c2ei� c1s2s3 + c2c3ei�

1

CA (2.90)

Again ci(= cos ✓i) and si(= sin ✓i) denote trigonometric functions of the
Euler angles.
The third common parameterization is the Wolfenstein parameterization,

which indicates the size of each matrix element in a particularly simple way.
It is given, up to fourth order in the small quantity �, by:

V =

0

B@
1� 1

2�
2 � A�3(⇢� i⌘)

�� 1� 1
2�

2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

CA (2.91)

The utility of this parameterization is that, since � is found experimentally
to be a small quantity, � ⇡ 0.2, and A and ⇢2 + ⌘2 are O(1), Eq. (2.91)
summarizes the small size and hierarchy of the o↵-diagonal elements of Vmn.
It turns out (see Subsection 2.5.1) that these interactions preserve time

reversal symmetry, T (or equivalently, CP) if the KM matrix can be made
real by suitably redefining fields. Hence, it is interesting to know under
which circumstances this is possible. In the generic case in which Vmn does
not take any special form this can be decided by comparing the number of
parameters available in a real versus a complex unitary matrix.
It is instructive to make the argument for the case of N generations of

fermions. The counting goes as follows. The KM matrix is an N⇥N unitary
matrix and so generically contains N2 real parameters. If the KM matrix
were real then it would be an orthogonal matrix, which can be described in
terms of 1

2N(N�1) real parameters. The di↵erence between these numbers,
N2� 1

2N(N�1) = 1
2N(N+1), is therefore the number of complex “phases”

contained in Vmn. Not all of these phases, however, are physically significant,
since some may be removed by absorbing phases into the various quark fields.
Since such a redefinition does not a↵ect any other term in the Lagrangian,
any phase that can be removed in this way cannot cause any physical e↵ects.
Even though there are 2N species of quark fields, only 2N � 1 phases may
be removed in this way, since the overall multiplication of all quark fields
by a common phase is a symmetry of the Lagrangian and does not change
Vmn. The number of remaining physical phases is therefore

P =

N2 � 1

2
N(N � 1)

�
� (2N � 1)

=
1

2
(N � 1)(N � 2) (2.92)
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Notice that if there were only two generations, then P = 0 and so the KM
matrix could be chosen to be a real 2⇥ 2 orthogonal matrix:

Vmn =

 
cos ✓c sin ✓c
�sin ✓c cos ✓c

!

(2.93)

It happens that the experimental values for the angles in the full KM matrix
are such that those parts of it that mix the first two generations are very
close to being of the form of Eq. (2.93). For historical reasons the first few
components of the KM matrix are therefore sometimes written in this way.
The Cabbibo angle is accordingly defined by: cos ✓c = Vud and sin ✓c = Vus.
Some comments.

(i) The charged-current interactions are the only ones within the model
that connect fermions with di↵ering flavors. In the absence of these
charged-current interactions, the lightest species of fermion of any
flavor would be absolutely stable, since flavor would be conserved.
As a result, the charged-current interactions are the ones responsible
for the majority of particle decays that have been observed.

(ii) Since there is no Kobayashi–Maskawa matrix in the leptonic com-
ponent of the charged-current interactions, all leptons participate in
these interactions with equal strength, determined by g2. Just as was
the case with the strong interactions, this result follows theoretically
from the spin-one and hence gauge nature of the W boson, and the
fact that all leptons that couple to the W boson are in doublets of
SUL(2). The experimentally observed property that all leptons par-
ticipate in charged-current weak interactions with equal strength is
called weak universality.

(iii) Weak universality does not hold for charged-current interactions in-
volving quarks, because of the appearance there of the Kobayashi–
Maskawa matrix, although there will be relationships amongst various
hadronic charged-current interactions that follow from the unitarity
of the KM matrix.

(iv) As is shown in Section 2.5, the charged-current interactions violate
both C and P, since they involve only the left-handed components of
the various fermion fields. They can only violate T if the KM matrix
cannot be made real by a suitable choice of fields. It follows that
all charged-current lepton interactions must preserve T and that the
hadronic charged-current interactions can violate T only in a very
specific way and only if there are at least three generations. At this
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time (2013), this source of T-violation is consistent with all of the
experimental evidence.

(v) Although the lepton sector of the standard model does not involve
a KM matrix and so cannot violate CP, this would not be so if the
model were enlarged in such a way as to generate a neutrino mass
matrix. As discussed in Chapter 10, very small neutrino masses are
in fact observed. These suggest that CP violation in the neutrino
sector may be observable. The observation of CP violation is a major
experimental goal of modern neutrino physics.

2.4.3.3 “Neutral-current” fermion interactions

It remains to write out the couplings of the two neutral gauge bosons, Aµ, Zµ,
of the electroweak gauge group, SUL(2)⇥ UY (1). Using the expressions

 
W 3

µ

Bµ

!

=

 
cos ✓W sin ✓W
�sin ✓W cos ✓W

! 
Zµ

Aµ

!

(2.94)

we see that these couplings are flavor-diagonal and of the form

Lnc =
X

f

�
h
f̄�µPL

⇣
�ig2W 3

µT3�ig1BµYL

⌘
f + f̄�µPR (�ig1BµYR)f

i
(2.95)

where YL is the hypercharge of the left-handed fermion and YR is that of
the right-handed one, e.g., YL = �1/2 for PL em = PL Em and YR = �1 for
PRem = PREm etc. Notice that YR agrees with the electric charge, Q, since
all right-handed fields are singlets under SUL(2) and so have T3 = 0 . This
then implies Q = T3 + YL = YR.
Now, define the combination of Dirac matrices, gauge potentials and group

generators, T3 and YL,R, that appear in Eq. (2.95) above as Mµ. It may be
reexpressed in the following form:

Mµ ⌘ PL g2W
3
µT3 + PL g1BµYL + PR g1BµYR

= PL g2W
3
µT3 + PL g1Bµ(Q� T3) + PR g1BµQ

= T3PL(g2W
3
µ � g1Bµ) + g1BµQ

= T3PL [g2(Zµ cos ✓W +Aµ sin ✓W)� g1(Aµ cos ✓W � Zµ sin ✓W)]

+g1(Aµ cos ✓W � Zµ sin ✓W)Q (2.96)

This simplifies further if we use the following relations among the coupling
constants

g2 = cos ✓W
q
g21 + g22 and g1 = sin ✓W

q
g21 + g22
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so

g1 cos ✓W = g2 sin ✓W ⌘ e

and

g2 cos ✓W + g1 sin ✓W =
q
g21 + g22 =

e

sin ✓W cos ✓W

Therefore,

Mµ =
e

sin ✓W cos ✓W

h
T3PL �Q sin2 ✓W

i
Zµ + eQAµ (2.97)

It is easily verified that the form of these interactions are not changed by
the process of rotating to a basis of mass eigenstates for the fermion fields.
We may read from this the fermion couplings with the Z-boson and the

massless photon, A. The photon–fermion coupling is

Lem =
X

f

ieAµf̄�
µQf (2.98)

in which the sum is over all fermion types, f = em, ⌫m, dm, um, weighted
by their electric charge, Q. Since the neutrino is electrically neutral it does
not appear in the electromagnetic interactions. Comparing the interaction of
Eq. (2.98) with that of QED in Eq. (1.176), we see that it is the combination

e = g1 cos ✓W = g2 sin ✓W = sin ✓W cos ✓W
q
g21 + g22 that plays the role of the

electromagnetic coupling constant – i.e. the absolute value of the electron
charge – in this theory.
The Zµ – or neutral-current – couplings are similarly given by

Lnc =
ie

sin ✓W cos ✓W

X

f

Zµf̄�
µ
h
PLT3 �Q sin2 ✓W

i
f

=
ie

sin ✓W cos ✓W

X

f

Zµf̄�
µ(gV + �5gA)f (2.99)

in which gV = 1
2T3 �Q sin2 ✓W and gA = 1

2T3. Here T3 refers to the charge,
under the third generator of SUL(2), of the left-handed constituent of f ,
that is, E , D, or U . The values of the charges gV , gA are given in Table 2.1.
These interactions share several noteworthy properties.

(i) The couplings of the massless spin-one particle are precisely those of
quantum electrodynamics, justifying its identification with the pho-
ton. This is not an accident, but follows as a result of the requirement
that the symmetry-breaking order parameter not break the gauge
symmetry generated by the electric charge, Q.
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Table 2.1. Neutral-current charges of the fermions

Fermion type T3 Q gV gA

⌫e, ⌫µ, ⌫⌧ + 1
2 0 +0.25 +0.25

e, µ, ⌧ � 1
2 �1 �0.0189 �0.25

u, c, t + 1
2 + 2

3 +0.0959 +0.25

d, s, b � 1
2 � 1

3 �0.1730 �0.25

(ii) The neutral-current interactions that couple fermions to Z-bosons
never involve fermions of more than one flavor at a time and so cannot
change flavor. As was indicated earlier for the Higgs and strong
interactions, the experimental absence of such flavor-changing neutral
currents was a strong clue to the structure of the standard model and
was even used to predict the existence of the fourth type of quark, c!

(iii) Electromagnetic interactions all conserve P, C, and T separately.
(iv) The neutral-current interactions, on the other hand, violate both P

and C but do not break T (see Section 2.5 for details).

This concludes the tabulation of the interactions that are contained in the
standard model Lagrangian.

2.5 Symmetry properties*

When exploring the consequences for experiment of any potential theoretical
model, it is always necessary to make use of various approximation schemes.
It is therefore of crucial importance to understand which of the predictions
of the model are of general validity, and which depend on more details of
the approximation scheme used. For this reason, the first step to take in
exploring any model is to identify the symmetries that it predicts, since
these can be used to draw exact conclusions concerning the existence of
conservation laws and of systematics (such as degeneracies) in the spectrum
of particles. Therefore, we will now discuss at some length the symmetries
of the standard model, and what exact conservation laws they predict.
One of the most beautiful features of the standard model is its success in

reproducing precisely the conservation laws and symmetries that had been
distilled from experiment over the several decades before the discovery of

⇤ This section, while good for your teeth and bones, is not necessary for most of the development
of this book, and can be skipped in whole or in part if necessary.
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the model. This accomplishment is all the more remarkable in light of the
fact that the standard model is the most general theory consistent with a
few very general principles, together with the given particle content and the
requirement of renormalizability. As a result, none of the properties to be
discussed in this section are built into the model as assumptions, and so
they may be understood as general consequences of the basic principles of
Section 1.2, together with the explicit particle content of the model.
Symmetries such as these, that are simply consequences of gauge invari-

ance, particle content and renormalizability, are known as accidental sym-
metries. One example that has already been encountered is the custodial
SU(2) of the symmetry-breaking sector of Subsection 2.3.2.

2.5.1 Discrete symmetries

There are three discrete transformations that naturally arise within the
quantum mechanics of any relativistic system. Two of these – parity, P,
and time reversal, T – are related to (i.e. automorphisms of) the Lorentz
group itself. The third discrete transformation – charge conjugation, C –
consists of the interchange of every particle with its antiparticle.
It turns out that none of these are symmetries of the standard model,

although the combined symmetry CPT is (and, in fact, is a symmetry of
any quantum field theory which satisfies the basic principles laid out in Sec-
tion 1.2). Nevertheless, we will take some time to discuss them. The reasons
for doing so are, first, that the combined symmetry CP (or equivalently T)
is almost a symmetry of the standard model, broken by very small subtle
e↵ects; and, second, that while C and P are very far from being symme-
tries of the standard model, at low energies E ⌧ MW they turn out to be
accidental symmetries, as we will discuss in Section 7.3.

2.5.1.1 Definitions: P and T

The existence of the operations of parity and time reversal is related to the
connectedness of the Lorentz group itself. The Lorentz group is reviewed in
Appendix C. We show there that not all coordinate transformations per-
mitted in special relativity can be built infinitesimally from the identity. In
particular, two transformations of coordinates cannot: the parity transfor-
mation,

xµ ! Pµ
⌫ x

⌫ , Pµ
⌫ =

0

BBB@

+1
�1

�1
�1

1

CCCA (2.100)
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which reflects each space coordinate, and the time reversal transformation,

xµ ! Tµ
⌫ , Tµ

⌫ =

0

BBB@

�1
+1

+1
+1

1

CCCA (2.101)

which reverses the sign of time (see Appendix C).
Transformations P and T need not be symmetries of a given theory. If

they are symmetries, and if their representations in the theory’s Hilbert
space are denoted by P and T respectively, then P can always be chosen
to be a unitary operator and although T cannot be made unitary, it may
always be chosen to be anti-unitary (that is, an operator which flips the
sign of i). The reason T is antiunitary is that H must transform under the
symmetry into an operator which still has a positive spectrum; this will be
satisfied if PHP⇤ = H and T HT ⇤ = H. On the other hand, time evolution
by a positive amount of time t, e�iHt, should be carried under time reversal
to time evolution by a negative amount of time �t, T e�iHtT ⇤ = eiHt. The
only way that both of these can be true is if T is an anti-unitary operator,
reversing the sign of i.

2.5.1.2 Definition: C
Charge conjugation is defined as the interchange of every particle with its
antiparticle. The unitary operator that represents this interchange in the
Hilbert space will be denoted by C.
Notice that the condition that a theory be charge-conjugation invariant is

stronger than the condition of crossing symmetry discussed in Section 1.2.
Crossing symmetry is a general consequence of relativistic quantum mechan-
ics; it states that particles and antiparticles must appear in the action only
in the schematic combination (a+ ā⇤). This ensures that particles and an-
tiparticles appear in all interactions with the same strength but does not
imply that all interactions must be invariant with respect to interchange of
a with ā.
It is a theorem, though, that the combined action of all three of these dis-

crete transformations, CPT, must be a symmetry in any Lorentz invariant,
local field theory.

2.5.1.3 Transformation rules

The action of P, T , and C on particle states and on fields is determined
(up to a conventionally fixed freedom to redefine fields) by their transfor-
mation properties under Lorentz transformations. Their action on a state,
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|p,�i, that describes a particle of three-momentum p, total spin j, and third
component of angular momentum �, may be chosen to be

P|p,�i = ↵p|� p,�i
T |p,�i = ↵t(�)j��|� p,��i
C|p,�i = ↵c|p,�i (2.102)

In these expressions, ↵p, ↵t, and ↵c are phases that are characteristic of
each particle type, and the state | · · ·i denotes the antiparticle for the state
| · · ·i. The transformation properties of the corresponding creation and an-
nihilation operators are determined by those of the particle states

Pa⇤p,�P⇤ = ↵pa
⇤
�p,�

T a⇤p,�T ⇤ = ↵t(�)j��a⇤�p,��

Ca⇤p,�C⇤ = ↵cā
⇤
p,� (2.103)

The transformation rules for the fields are then determined by their ex-
pansions in terms of creation and annihilation operators. Since these have
the generic form

� ⇠
X

p,�

[u(p,�)ap,� + v(p,�)ā⇤p,�] (2.104)

the transformation rules for fields representing spin-zero particles become

P�(x)P⇤ = ↵⇤
p�(xp)

C�(x)C⇤ = ↵⇤
c�

⇤(x) (2.105)

in which xp = (�x, t) denotes the image of x = (x, t) under parity. (Since
invariance of the theory under the combination CPT is guaranteed on general
grounds, T-invariance is equivalent to CP-invariance. For this reason it
su�ces to have explicit expressions for the transformation rules under C
and P in order to determine its symmetry properties.)
For spinor fields we have instead,

P (x)P⇤ = ↵⇤
p� (xp)

C (x)C⇤ = ↵⇤
cC 

T

(x) (2.106)

in which � and C are the matrices defined in Eq. (1.85) and Eq. (1.93)
respectively. (The factor � exchanges left- and right-handed components
and is necessary because parity flips handedness.)
Finally, for spin-one gauge potentials, V µ

a , that correspond to the gauge
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generator, ta, we have (up to gauge transformations)

P[taV
µ
a (x)]P⇤ = Pµ

⌫ [taV
⌫
a (xp)]

C[taV µ
a (x)]C⇤ = �[taV µ

a (x)]⇤ (2.107)

The phase in the transformation rule for the gauge potentials is fixed by
the requirement that the covariant derivative, D = @ � iTaVa, transform
properly.

2.5.1.4 Invariance of the model

Using these transformation rules, we can test the standard model inter-
actions of the previous section for invariance under the three independent
symmetries of C, P, and CP.
The typical interaction Lagrangian density is the sum of several local

operators, On(x), with some constant coe�cients, cn: Lint =
P

n cnOn(x).
The transformation properties of the operators, On(x), can be inferred in
terms of those of the various fields of the theory in terms of which they are
expressed. The resulting transformation rule for the interaction Lagrangian
is

PLintP⇤ =
X

n

(↵n)pcnOn(xp)

CLintC⇤ =
X

n

(↵n)ccnO⇤
n(x)

(CP)Lint(CP)⇤ =
X

n

(↵n)p(↵n)ccnO⇤
n(xp) (2.108)

The phases (↵n)p and (↵n)c are products of the phases associated with the
transformation of each field.
Since the action is given by the integral of L(x) over spacetime, the con-

dition PL(x)P⇤ = L(xp) su�ces to ensure that the action is invariant. The
condition for parity invariance is therefore that there exist a choice of phases,
↵ps, for each of the fields for which

(↵n)p = 1 for all n (2.109)

This is a nontrivial condition because there can be more interactions, On,
than there are fields appearing within them.
The Lagrangian is also required by unitarity to be Hermitian, so the fol-

lowing relation among the operators is also true:
P

n c
⇤
nO⇤

n =
P

n cnOn. The
action is therefore charge-conjugation invariant provided that there exists a
choice of charge-conjugation phases, ↵cs, for each of the fields for which the
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coe�cient of O⇤
n is unchanged:

(↵n)ccn = c⇤n for all n (2.110)

CP-invariance is similarly ensured if phases can be chosen such that

(↵n)c(↵n)pcn = c⇤n for all n (2.111)

If we apply this formalism to the standard model Lagrangian then we find
the results quoted in Section 2.4. The Higgs interactions, gluon interactions,
and electromagnetic interactions all respect each of the three discrete sym-
metries, C, P, and CP. The neutral current couplings of the fermions to the
neutral Z boson break both C and P but in such a way that the combination
CP is unbroken. Finally, the charged-current coupling of the fermions to the
W boson not only violates C and P, but can also violate CP, provided that
there is not su�cient freedom to make the Kobayashi–Maskawa matrix real.
As an illustration we show the manipulations for the charged-current quark
interactions,

L =
ig2
2
p
2

h
VmnW

+
µ ūm�

µ(1+�5)dn + (V †)mnW
�
µ d̄m�

µ(1+�5)un
i

(2.112)

In this case the transformation rules for the spin-one fields become CW±
µ C⇤ =

�W⌥
µ and PW±

µ P⇤ = P ⌫
µW±

⌫ . Then, under charge conjugation, we have

C L C⇤ =
ig2
2
p
2

n
(↵um

)c(↵dn)
⇤
cVmnW

�
µ

⇥
d̄n�

µ(1��5)um
⇤⇤

+(↵un
)⇤c(↵dm)c(V

†)mnW
+
µ [ūn�

µ(1��5)dm]⇤
o

(2.113)

and under parity transformations we get

P L P⇤ =
ig2
2
p
2

h
(↵um

)p(↵dn)
⇤
pVmnW

+
µ ūm�

µ(1��5)dn

+(↵dm)
⇤
p(↵un

)p(V
†)mnW

�
µ d̄m�

µ(1��5)un
i

(2.114)

It is clear that there is no choice of phases for which the Lagrangian is
parity or charge-conjugation invariant, because any choice that would make
the term involving �µ invariant would make the �5�µ term not invariant
(and vice versa). The point is that each operation replaces the projector
PL = (1+�5)/2 with the projector PR = (1��5)/2.
Combining both transformations, however, gives the following result:

(CP)L(CP)⇤ =
ig2
2
p
2

⇥
⇢
(↵um

)c(↵dn)
⇤
c(↵um

)p(↵dn)
⇤
pVmnW

�
µ

⇥
d̄n�

µ(1+�5)um
⇤⇤
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+(↵un
)⇤c(↵dm)c(↵un

)⇤p(↵dm)p(V
†)mnW

+
µ [ūn�

µ(1+�5)dm]⇤
�

(2.115)

If the phases can be chosen to satisfy (↵um
)c(↵dn)

⇤
c(↵um

)p(↵dn)
⇤
p = 1, and

the KM matrix can be simultaneously chosen to be real, then this last equa-
tion would be precisely the complex conjugate of the original Lagrangian.
Inspection of the other terms in the Lagrangian confirms that the phase
choice can be made provided that the KM matrix may be chosen to be real.
Therefore, as claimed, the standard model fails to conserve CP invariance
only in that the KM matrix cannot be made purely real.

2.5.2 Continuous symmetries

It is of considerable interest to determine the continuous global symmetries
of the standard model Lagrangian. The purpose of this section is to identify
the exact, and some approximate, symmetries of this Lagrangian.
The starting point is the class of symmetries of the Lagrangian in the

absence of all interactions or mass terms. This will give the maximum
possible symmetry group which could exist, given the particle content of the
model. The interactions of the theory will not respect all of this symmetry.
We will consider each interaction in turn and see how it cuts down the size
of the actual symmetry group, until we find what symmetries remain.
As is discussed in Chapter 1, when the basis of fields is chosen to be real (or

Majorana), this class consists of a general independent orthogonal rotation
among all of the bosonic fields of a given spin, as well as a unitary rotation
amongst the left-handed fermions. For the standard model the group of
all such transformations is Gmax = O(4) ⇥ O(12) ⇥ U(45), corresponding
to the four real scalar fields, 12 gauge potentials and three generations of
fermions each containing 15 di↵erent species of fermion (one E, two from
L, three each from U and D, and six from Q). We will write this group as
Gmax = G0⇥G 1

2

⇥G1, with G0 = O(4) the group of scalar transformations,

G 1

2

= U(45) the group of fermionic transformations, and G1 = O(12) the

group of gauge-field transformations.
We wish to determine what subgroup of this group of transformations is

preserved once the interactions are turned on. One immediate subgroup of
this type is the group of gauge transformations themselves: Gg ⌘ SUc(3)⇥
SUL(2)⇥ UY (1) ⇢ G.

2.5.2.1 Gauge self-interactions

We next describe conditions G must satisfy if it is not to be broken by the
gauge interactions.
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Consider first the self-interactions of the twelve gauge bosons. As is dis-
cussed in more detail in Chapter 1, the free kinetic terms for these fields are
invariant under the replacement of each field by an arbitrary linear combi-
nation of the fields, �V a

µ = Ma
b V

b
µ , provided that the 12 ⇥ 12 matrix Ma

b

is antisymmetric (and so its exponential, [exp(M)]ab , is orthogonal). The
group formed by these transformations is the group G1 = O(12). We wish
to determine what subgroup of these transformations are also symmetries of
the gauge boson self-interactions. In order to be an invariance of these inter-
actions, a candidate symmetry transformation must preserve the structure
constants of the gauge group

M b
ac

c
bd +M b

dc
c
ab = M c

b c
b
ad (2.116)

The algebra of infinitesimal symmetry transformations of the gauge boson
self interactions is given by that subalgebra of G1 that satisfies Eq. (2.116).
This subalgebra must include the Lie algebra of the gauge group itself, be-
cause infinitesimal gauge rotations, �V a

µ = ✏bcabcV c
µ , automatically satisfy

Eq. (2.116) by virtue of the Jacobi identity that is satisfied by the structure
constants, cabc.
An immediate consequence of Eq. (2.116) is that if the gauge group con-

sists of several mutually commuting factors, Gg = H1 ⇥H2 ⇥ · · · (as is the
case for the standard model), then M b

a = 0 unless both a and b correspond
to generators that are in the same factor of Gg. It is a theorem of the the-
ory of compact semisimple Lie groups that the only Lie subgroup of G1 that
satisfies Eq. (2.116) is the gauge subgroup itself (i.e. G1 ⇠ Gg consists of the
group of inner automorphisms of Gg). As a result, there are no accidental
global symmetries within the gauge boson sector of the theory.

2.5.2.2 Scalar–gauge and scalar self-couplings

The next simplest case is the scalar sector of the model. The Higgs doublet
consists of four real scalar fields, �i = �⇤i , and so the free kinetic terms
of these fields are invariant under arbitrary G0 = O(4) rotations, ��i =
iRi

j�
j with R + RT = 0, of these fields into one another. As discussed in

Subsection 2.5.2, this symmetry is not broken by the scalar self-interactions
as described by the scalar potential. We wish to know which subgroup of
G0 is also a symmetry of the scalar-gauge interactions. Our answer to this
question is not specific to the example O(4) but applies more generally for
larger symmetry groups, G0.
Consider a group GR of symmetry transformations, with group generators

we will designate as R. If the generators of the gauge transformations are
ta, then the condition for the group of symmetry transformations to be
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unbroken by the gauge transformations is

[ta, R] = N b
atb (2.117)

for each R and each ta of the gauge group. The coe�cients N b
a represent a

rotation among the gauge potentials of the theory that might be necessary
to compensate for the e↵ects of the scalar rotation, R. For our application,
we are interested in the case where GR is a subgroup of G0.
Note that R and ta are all generators of the group G0; so Eq. (2.117) is

a special case of the Lie algebra of G0. Choose a basis for the generators of
G0 such that the structure constants fA

BC
are totally antisymmetric. Then

[ta, R] = fB

aRgB, with gB one of the generators of G0. For Eq. (2.117) to
hold, either fB

aR vanishes, or gB must be one of the tb. But that would imply
that [ta, tb] / R, which cannot be – the ta must be a subgroup of G0, so
their algebra should be closed. Therefore, R must either be a generator
of the group of gauge transformations, or it must commute with all of the
generators of the gauge group.
Since the solution in which R is a gauge transformation generator does not

represent a new, accidental, symmetry, we focus on the alternative for which
R commutes with all of the gauge transformations in Gg. By Schur’s lemma,
this implies that the transformations, R, cannot mix fields that transform
in di↵erent irreducible representations of the gauge group. The resulting
symmetry of the gauge interactions then becomes a product of orthogonal
groups, O(N1) ⇥ O(N2) ⇥ · · · in which each factor describes the rotations
of the Ni fields that all transform in the common representation, ri, of the
gauge group.
Since only a single irreducible representation of scalar fields appears in

the standard model, and since there is no other subgroup of O(4) which
commutes with the SUL(2)⇥UY (1) subgroup, there are no accidental global
symmetries of the scalar gauge couplings. It is purely the UY (1) gauge
couplings that break the potential O(4) symmetry of the scalar sector. One
way to see this is to notice that the Lie algebra of O(4) is isomorphic to
that of the algebra SU(2)⇥ SU(2), of which one of the SU(2) factors may
be taken to be the gauge group SUL(2). In the absence of the UY (1) gauge
couplings to the scalars, there would therefore be an entire SU(2) subgroup
ofG0 that commutes with the gauge group. This is the origin of the custodial
SU(2) symmetry of Subsection 2.3.2.
Although the standard model is not invariant under the full O(4) invari-

ance, conclusions based on this symmetry do become correct in the limit
that the UY (1) gauge coupling—and, as we shall see, the Yukawa couplings
– vanish. Since this coupling is known to be experimentally small, it follows
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that the O(4) symmetry is a good approximate symmetry of the standard
model. Such approximate symmetries can be almost as useful as exact sym-
metries if the non-invariant couplings are su�ciently small.

2.5.2.3 Fermion–gauge couplings

The only place left to look for accidental global symmetries is inside the
group G 1

2

= U(45) of transformations between the 45 species of left-handed

fermions. (The number 45 arises as three generations times one E, two L,
three U , three D, and six Q fields per generation. A quark species counts
for three because of its three colors, L and Q count double because of the
two flavors in each.)
If we work with a basis of fermions which are in definite representations

of the gauge group—as opposed to being mass eigenstates – the condition
that the symmetry transformations be preserved by the fermion gauge in-
teractions is a direct analog of Eq. (2.117). It follows that a subgroup of
G 1

2

preserves the fermion–gauge interactions if it is either the subgroup of

the gauge transformations themselves, or it commutes with this gauge sub-
group. Since the 15 fermion species of a given generation transform under
the gauge group

SUc(3) ⇥ SUL(2)⇥ UY (1) as
✓
3,2,+

1

6

◆
�
✓
3,1,�2

3

◆
�
✓
3,1,+

1

3

◆

�
✓
1,2,�1

2

◆
� (1,1,+1)

and since none of these irreducible representations is big enough to admit
an internal potential symmetry that commutes with the gauge group, there
are no accidental symmetry transformations relating the fermions within a
single generation.
The accidental symmetries of the fermion–gauge couplings are therefore

Gf ⌘ UQ(3)⇥ UU(3)⇥ UD(3)⇥ UL(3)⇥ UE(3) ⇢ G 1

2

(2.118)

Each factor of this group corresponds to a unitary rotation in generation
space of the five types of irreducible SUc(3)⇥SUL(2)⇥UY (1) representations
of the model’s fermion content.

2.5.2.4 Yukawa interactions

From the previous paragraphs, the only exact non-gauge symmetries of the
gauge interactions of the standard model are Gf = [U(3)]5, representing
independent transformations, in generation space, of each type of fermion
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fields. The final issue is to determine which of these potential symmetries
also preserves the Yukawa interactions of the theory.
The conditions that must be satisfied in order for these transformations

to preserve the form of the Yukawa couplings of Eq. (2.17) are

(UT

L
fUE)mn = fmn

(UT

Q
gUU)mn = gmn

(UT

Q
hUD)mn = hmn (2.119)

These equations imply that the potential symmetry transformations must
also satisfy the following additional conditions, which each involve only left-
handed or only right-handed unitary transformations:

(U †
Ef

†fUE)mn = (f †f)mn

(UT

L
ff †U⇤

L
)mn = (ff †)mn

(U †
Ug

†gUU)mn = (g†g)mn

(UT

Q
gg†UQ)mn = (gg†)mn

(U †
Dh

†hUD)mn = (h†h)mn

(UT

Q
hh†UQ)mn = (hh†)mn (2.120)

In order to analyze the implications of these conditions, it is convenient to
work with a basis of fields for which the fermion mass matrix, and so also the
Yukawa coupling matrices, are real and diagonal. (Since the transformation
to this basis introduces the Kobayashi–Maskawa matrix into the charged-
current fermion gauge couplings, these couplings must be re-examined for
invariance at the end.)

In this basis, and taking the experimental information that none of the
eigenvalues of the Yukawa coupling matrices fmn, gmn, and hmn vanish or
are degenerate, Eq. (2.120) implies that each of the unitary matrices must
be diagonal with phases along their diagonals. This reduces the candidate
symmetry group for the fermions to the multiplication of the left- and right-
handed parts of each mass eigenstate by an independent U(1) phase.
Using this form for the unitary transformations in the original condition

of Eq. (2.119) implies that the left- and right-handed transformations must
be equal for each type of fermion; that is UQ = U⇤

U
= U⇤

D
and UL = U⇤

E
.

For leptons this is the end of the story, implying that the accidental sym-
metry of the lepton sector is Ue(1)⇥ Uµ(1)⇥ U⌧ (1):

UL = U⇤
E
=

0

B@
ei✓e

ei✓µ

ei✓⌧

1

CA (2.121)
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For quarks, we must also check that these phase transformations pre-
serve the form for the charged-current gauge interactions when written in
terms of mass eigenstates as in Eq. (2.114). To be invariant, the candidate
transformation must therefore commute with the KM matrix. For a generic
unitary KM matrix the only combination of such transformations are those
that are proportional to the unit matrix in generation space, and so which
rotate all quarks by a common phase. Therefore, there is only a single U(1)
transformation left:

UQ = U⇤
U
= U⇤

D
=

0

B@
ei✓B/3

ei✓B/3

ei✓B/3

1

CA (2.122)

The corresponding group is UB(1). The factor of 1/3 is chosen so that the
charge of a quark under this U(1) is 1/3. Since bound states of quarks
always contain a multiple of 3 quarks (see Chapter 8), they have integer
charge (0 or± 1) under this symmetry.
The accidental global symmetry group of the standard model is therefore

G = Ue(1)⇥ Uµ(1)⇥ U⌧ (1)⇥ UB(1) (2.123)

Each of the four generators of this symmetry group corresponds to a
quantum number that appears to be experimentally conserved. They are:

(i) electron number: Le(e�) = L(⌫e) = +1, Le(e+) = L(⌫e) = �1,

Le = 0 for all others;
(ii) muon number: Lµ(µ�) = L(⌫µ) = +1, Lµ(µ+) = L(⌫µ) = �1,

Lµ = 0 for all others;
(iii) tau number: L⌧ (⌧�) = L(⌫⌧ ) = +1, L⌧ (⌧+) = L(⌫⌧ ) = �1, L⌧ = 0

for all others;
(iv) baryon number: B(q) = 1

3 for all quarks, q, B(q) = �1
3 for antiquarks,

and B = 0 for all others.

The sum L = Le + Lµ + L⌧ is also known as lepton number. It is
one of the triumphs of the standard model that its accidental symmetries
correspond exactly with those conserved quantum numbers that had been
experimentally observed.
Conservation of these quantum numbers immediately implies the stability

of the lightest particles that carry nonzero values for them. Given that the
neutrinos are massless and the charged leptons are not, we conclude that
all neutrino types are absolutely stable in this theory. Similarly, the lightest
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baryon, which turns out to be the proton, is also predicted never to decay.
The electron is similarly stable because it is the lightest particle in the theory
that carries electric charge.
These conservation laws similarly forbid processes such as the reaction

µ! e�, since these do not conserve Le or Lµ. This agrees with the current
experimental upper bound on this decay, which at present indicates that it
must occur less frequently than once in every 1011 µ decays.
In fact, there is now evidence that the separate lepton numbers are not

conserved, and that neutrinos are not perfectly massless – though the e↵ects
which violate lepton number are tiny and are of no bearing in most particle
physics experiments. Chapter 10 discusses the evidence for this violation,
together with some of its implications. At present, experiments do not
provide evidence for L = Le + Lµ + L⌧ violation.
As it happens, one of the puzzling features of the standard model is the

small size of the Yukawa couplings for almost all of the fermions of the
theory. An equivalent way to phrase the same puzzle is to ask why the
fermion masses (apart from that of the top quark) are all so small in com-
parison to, say, the masses of the W and the Z. To the extent that these
Yukawa couplings can be ignored, there is a larger approximate flavor sym-
metry, [UL(3)⇥ UE(3)] for leptons and [UQ(2)⇥ UU(2)⇥ UD(3)] for quarks.
A related UL(3)⇥UR(3) approximate symmetry emerges when electroweak
interactions are turned o↵, and is very useful for analyzing the low-energy
properties of the strongly interacting quark sector in which the implications
of such a chiral UL(3) ⇥ UR(3) symmetry provides otherwise unobtainable
information about the spectrum of the light strongly interacting particles.
These approximate symmetries are considered in much more detail in Chap-
ter 8.

2.5.3 Anomalies

The discussion of the previous sections has dealt exclusively with the sym-
metries of the classical action of the model and has neglected quantum
considerations. We devote this section to a discussion of the potential com-
plications that arise when considering symmetries within a quantum, as
opposed to classical, field theory.
In order to outline the issue at stake, recall that there are several uses to

which symmetries are applied. The most important place is in the coupling
of light spin-one particles. Here it was argued that these interactions could
only be Lorentz invariant and unitary if they were also invariant under
local gauge transformations. Another application was to use the existence
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of global (or local) symmetries to infer the existence of local conservation
laws and symmetry relations amongst the energy eigenvalues of the system
concerned.
The logic used in all of these applications has been: (i) The invariance of

the classical action under a particular symmetry transformation ensures, by
Noether’s theorem, the existence of a set of currents, jµa , whose conservation,
@µjµa = 0, follows from the equations of motion for the fields; (ii) these con-
served currents may be used to construct conserved charges, Qa =

R
j0a d

3x,
for which the equations of motion for the fields imply [H,Qa] = 0.
Unfortunately, such classical arguments do not always hold in a quantum

theory. The process of quantizing a given classical theory introduces ambi-
guities associated with the ordering of operators in the quantum theory. In
a field theory this operator-ordering ambiguity is intimately related with the
divergences at short distances, since operators only fail to commute when
their spacelike separations tend to zero. Since di↵erent operator orderings
for the system Hamiltonian give rise to di↵erent equations of motion, and
since the conservation of the Noether current depends on these equations of
motion, the form taken by the conserved current will in general depend on
how these operator-ordering issues are resolved.
It could potentially happen that there is no operator ordering under which

all would-be currents are conserved, even if they should be conserved at the
classical level. That is to say, it might happen that the existence of a sym-
metry of the classical action might not be su�cient for the existence of a
conserved quantum charge operator. Should this occur, we would lose the
exact results we hoped to derive from the existence of the symmetry. The
discovery that classical symmetries can fail in this way was so surprising
when it was discovered that this failure of a symmetry to survive quantiza-
tion was termed an anomaly. The purpose of the remainder of this section
is to summarize under what circumstances a symmetry is “anomalous” in
this way.
Precisely such an anomaly can indeed occur for a current if the symmetry

at issue involves transformations on Majorana fermions. Since the distinc-
tion between right- and left-handed fields is essential here, the anomaly is
termed the chiral anomaly. While it is beyond the scope of this book to
derive how such an anomaly arises, the condition for the absence of a chiral
anomaly may be fairly simply stated. Suppose that the generators of a clas-
sical symmetry acting on left-handed spinor fields are denoted by Ta. Then,
as is discussed in Section 2.1, the action of the symmetry on a Majorana
spinor becomes � m = i✏a[(Ta)mn PL � (T ⇤

a )
m
n PR ] n. The classical symmetry

survives quantization, and so is called anomaly free, if the anomaly coef-
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ficients, Aabc, vanish for all a, b, and c. These coe�cients are completely
symmetric under permutations of the indices a, b, and c, and are defined by

Aabc = tr(Ta{Tb, Tc}) (2.124)

The curly brackets in this equation denote the anticommutator, {Tb, Tc} ⌘
TbTc +TcTb, and the trace means that a sum is to be taken over all types of
fermions, e.g. every color of every flavor of quark and every lepton, in each
generation, with T denoting the action of the symmetry on that particular
particle type (so if Ta represents the action of one of the color generators,
it is �a/2 in color space when acting on a quark, and 0 when acting on a
lepton, since leptons are colorless and do not change under a color rotation).
In particular, when the anomaly coe�cient Aabc does not vanish and the

indices b, c correspond to gauge symmetries, then the conservation of the
current Jµ

a is violated by

@�J
�
a =

Aabc

64⇡2
✏µ⌫↵�gF b

µ⌫gF
c
↵� (2.125)

with F the field strength corresponding to symmetry b and g the associated
gauge coupling.
A consequence of the structure of Eq. (2.124) is that there are no anoma-

lies for real (or pseudoreal) fermion representations. A (pseudo-) real rep-
resentation is defined to be one for which the generators iTa are real up
to a similarity transformation: T ⇤

a = �STaS�1 for some invertible matrix
S. To see that this ensures freedom from anomalies, notice that since the
generators Ta are Hermitian it follows that T T

a = T ⇤
a . Then

Aabc = tr(Ta{Tb, Tc})
= tr[(Ta{Tb, Tc})T ]
= tr({T T

c , T
T

b }T T

a )

= tr({T ⇤
c , T

⇤
b }T ⇤

a )

= �tr(S{Tc, Tb}TaS
�1)

= �tr({Tc, Tb}Ta)

= �Aabc = 0 (2.126)

This will make the calculation of several anomaly coe�cients much easier.
An important special case of this last result occurs when fermion number

is conserved and when the left- and right-handed fermions (as opposed to
antifermions) transform in the same representation, ta say, of the group
of interest. In this case the generator of this group acting on all of the
left-handed spinors (for fermions and antifermions) may be written in the
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block-diagonal form

Ta =

 
ta 0
0 �t⇤a

!

(2.127)

This is manifestly pseudoreal since T ⇤
a = �STaS�1. It follows that any

symmetry that is left-right symmetric in this way must be anomaly-free.
Because of the central role symmetries play in field theory, we must check

two things.

(i) First, since the gauge symmetries of the standard model are chiral in
the sense just described, we must verify that they are anomaly-free,
that is, that all anomalies involving three gauge symmetries vanish.
Otherwise, the gauge fields will not couple to conserved currents, and
the gauge interactions will not be simultaneously Lorentz-invariant
and unitary. Since these are both basic principles of quantum field
theory, a theory with anomalous gauge symmetries does not exist (is
not a valid theory).

(ii) Next, we must see whether the exact and approximate global “ac-
cidental” symmetries of the standard model have anomalies or not.
No issues of consistency need arise if they do have anomalies, since
these symmetries are not associated with the couplings of any spin-
one particles. It is nevertheless important to understand which are
anomalous, since anomalies negate the argument that would allow
these classical symmetries to imply the existence of exact conserva-
tion laws or spectral relations.

These two issues are the topics of the following two sections.

2.5.3.1 Cancellation of gauge anomalies

Let us verify that the anomaly coe�cient, Aabc, vanishes in the standard
model when all of the indices, a, b, and c, correspond to gauge group gen-
erators. As we shall see, this anomaly cancellation relies on the detailed
quantum numbers of the standard model fermions and requires all of the
members of a complete generation in order to work.
We consider each combination of generators in turn. We will use the

notation “A(3, 3, 3)” for the anomaly coe�cient involving three generators
etc.We demonstrate that the contribution to the anomaly coe�cient from
each generation separately vanishes.

(i) A(3, 3, 3): The SUc(3) representations are all left-right symmetric.
This anomaly coe�cient must therefore vanish for the general reasons
given above.
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(ii) A(3, 3, 2): These coe�cients are all proportional to the trace of the
Pauli matrices since these furnish the two-dimensional SUL(2) rep-
resentations. Since the Pauli matrices are all traceless this anomaly
coe�cient must vanish.

(iii) A(3, 3, 1): The three-dimensional SUc(3) generators are given by the
Gell-Mann matrices, �↵/2, of Eq. (1.186). These are all tracefree and
satisfy the following property:

{�↵,��} =
4

3
�↵� + 2d↵����

The trace over colors of �↵� will give 3, while the trace over d↵����
gives zero; so A(3,3,1) is therefore proportional to the trace over all
left-handed colored fields (i.e. quarks) of the UY (1) generator—weak
hypercharge, Y . The anomaly coe�cient therefore is

A(3, 3, 1) =
X

quarks

Y = 3(2yQL
+ yUL

+ yDL
)

= 3

2
✓
1

6

◆
+
✓
�2

3

◆
+
✓
1

3

◆�

= 0 (2.128)

The overall factor of 3 is the number of generations. The factor of 2
on yQL

is because of the two SUL(2) flavors.
(iv) A(3, X, Y): This coe�cient vanishes for X and Y equal to either 2 or

1 since it is proportional to the trace of a Gell-Mann matrix, which
vanishes.

(v) A(2, 2, 2): As observed above, the only nontrivial SUL(2) represen-
tations that appear within the standard model are doublets, and so
the generators are represented by the Pauli matrices. Since all three
Pauli matrices satisfy the following identity, ⌧⇤a = �⌧2⌧a⌧2, it follows
that this representation is pseudoreal, and so the anomaly coe�cient
must vanish by the general argument of Eq. (2.124).

(vi) A(2, 2, 1): The Pauli matrices satisfy an identity similar to that
satisfied by the Gell-Mann matrices: {⌧a/2, ⌧b/2} = �ab/2, which is
doubled when summed over a doublet. This anomaly coe�cient is
therefore the sum over SUL(2) doublets of the weak hypercharge, Y :

A(2, 2, 1) =
X

doublets

Y = 3(yLL
+ 3yQL

)

= 3
✓
�1

2

◆
+ 3

✓
1

6

◆�

= 0 (2.129)
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The factor of 3 on the Q contribution arises from the trace on colors.

(vii) A(2, 1, 1): This coe�cient vanishes simply because it is proportional
to the the trace of a single Pauli matrix, which is zero.

(viii) A(1, 1, 1): This coe�cient is proportional to the sum over all left-
handed fermions of the cube of the weak hypercharge:

A(1, 1, 1) = 2
X

all

Y 3 = 6(2y3
LL

+ y3
EL

+ 6y3
QL

+ 3y3
UL

+ 3y3
DL

)

= 6

 

2
✓
�1

2

◆3

+ (+1)3 + 6
✓
1

6

◆3

+ 3
✓
�2

3

◆3

+ 3
✓
1

3

◆3
!

= 0 (2.130)

It is clear that anomaly cancellations in the standard model require non-
trivial relationships between the number of species of and the quantum
numbers for the quarks and leptons. It is also clear that the values of
the hypercharges of the di↵erent species are not accidental. The relations
YEL

+ YLL
= 1/2, YDL

+ YQL
= 1/2, and YUL

+ YQL
= �1/2 are enforced

by the requirement that the Yukawa interaction terms be hypercharge-
invariant. However, until now, the fact that YEL

= 1 and not, say, 1+ ✏, has
been a mystery. This is important; if it were 1+ ✏, the neutrinos would pos-
sess electric charges of �✏. Similarly, YDL

could be 1/3 + � rather than 1/3,
in which case the neutron would be charged, and the electron and proton
charges would di↵er. (The proton charge is 2Qu + Qd.) In fact, limits on
neutrino and neutron charges and on proton–electron charge di↵erences are
very strong; for instance, the electron and proton charges di↵er in absolute
value by no more than a part in 1021. The reason is that Eq. (2.129) and
Eq. (2.130) only sum to zero if ✏ = � = 0. Therefore the equality of the
proton charge and the electron charge, and the vanishing of the neutrino
and neutron charges, are exact identities within the standard model.
We next consider the potential anomalies that could arise in the Lorentz

algebra. The Lorentz group has been treated here as a global rather than a
gauge symmetry and so might be treated in the following section. However,
the introduction of gravitational interactions requires it to be gauged, so
if gauge-Lorentz anomalies exist, then the theory of gravitation would be
inconsistent. Therefore we consider it here.
The only standard model particles that are in complex representations of

the Lorentz group are the fermions. Since the Lorentz generators on fermi-
ons (c.f. Subsection 1.3.2) are essentially equivalent to SU(2) transforma-
tions, the anomaly cancellation arguments are similar to those for an SU(2)
gauge group. It follows that the only anomaly coe�cient that does not van-
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ish immediately due to the properties of the Pauli matrices is A(J,J,1), in
which J generically denotes the Lorentz generators. The condition that this
anomaly coe�cient be zero is that the trace of the weak hypercharge over
all left-handed fermions vanish:

tr
all
Y = 3(2yLL

+ yEL
+ 6yQL

+ 3yUL
+ 3yDL

)

= 3

2
✓
�1

2

◆
+ (+1) + 6

✓
1

6

◆
+ 3

✓
�2

3

◆
+ 3

✓
1

3

◆�

= 0 (2.131)

2.5.3.2 Anomalies in global symmetries

We next compute the anomalies for the accidental global symmetries and
for some of the approximate global symmetries that were identified in the
previous sections.
For baryon number, B, the anomaly coe�cients are:

A(3, 3, B) =
X

quarks

B = 6
✓
1

3

◆
+ 3

✓
�1

3

◆
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�1

3

◆
= 0

A(2, 2, B) =
X

doublets
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= 3
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2Y 2B
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✓
1

3
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= 0;

A(B,B,B) =
X

all

2B3 = 2(36� 18� 18)/27 = 0;

A(J, J,B) =
X

all

B = (12� 6� 6) = 0 (2.132)

For lepton numbers, Le, Lµ, L⌧ , each of these charges gets contributions
only from its own generation, so the factors of 3 from the generation sum in
the baryon results will be absent. It su�ces to compute the anomalies for
one of them since the results are identical for the others. Anomalies between
lepton symmetries vanish.

A(2, 2, Le) =
X

doublets

Le = 1
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A(1, 1, Le) =
X

all

2Y 2Le = 4
✓
�1

2

◆2

(+1) + 2 (+1)2 (�1) = �1

A(1, Le, Le) =
X

all

2Y L2
e = 4

✓
�1

2

◆
(+1)2 + 2 (+1) (�1)2 = 0;

A(Le, Le, Le) =
X

all

2L3
e = 4(+1)3 + 2(�1)3 = 2

A(J, J, Le) =
X

all

Le = 2(+1) + 1(�1) = 1 (2.133)

Chiral U(3) is an approximate symmetry under which the three lightest left-
and right-handed quarks get shu✏ed amongst one another, UqL(3)⇥UqR(3).
It will be of interest in Chapter 8, where we will need to know how much
of this approximate symmetry group is anomaly-free. We consider here
only the quark sector since this is the case that is of most direct interest
in subsequent chapters. For brevity, we consider only the left-handed case
explicitly here. Denote a general UqL(3) generator by Ta and denote its
specific 3⇥ 3 representation by ta. Then

A(3, 3, Ta) / tr ta

A(2, 2, Ta) / tr ta

A(1, 1, Ta) / tr ta

A(1, Ta, Tb) / tr(tatb) / �ab
A(Ta, Tb, Tc) / tr(ta{tb, tc})
A(J, J, Ta) / tr ta (2.134)

Some comments.

(i) Perhaps the most basic observation about these anomaly coe�cients
is that they are not zero. It follows that the naive conclusions that
are based on the corresponding symmetries can break down and so
must be treated with caution. It turns out, however, that for physics
at temperatures low compared to the W boson mass, any violation
of the corresponding conservation laws due to quantum e↵ects are
proportional to exp(�8⇡2/g2) and so are negligibly small for weak
couplings (g ⌧ 1). The same arguments indicate that those global
symmetries that have anomalies due to any strong interactions are
strongly broken, and so should not provide good approximations to
the dynamics of the full quantum theory.

As a result, all of the consequences of the exact global symmetries
are expected to hold for the standard model to an extremely good
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approximation. However, those symmetries having SUc(3) anomalies
are expected to be strongly broken.

(ii) The only anomaly-free global symmetries of the standard model are
found by taking appropriate linear combinations of the anomalous
symmetries given above. The symmetries free of all anomalies, in-
cluding gravitational anomalies, are Le � Lµ, Le � L⌧ , and Lµ � L⌧
(which is linearly dependent on the first two).

(iii) Notice that all of the SUL(3) ⇥ SUL(2) ⇥ UY (1) anomalies are the
same for baryon number, B, as they are for the total lepton number,
L = Le+Lµ+L⌧ . The Lorentz, B3, and L3 anomalies would also agree
if the model were to be supplemented by a right-handed neutrino field
per generation. This suggests that the combination B–L would be
anomaly free, including gravitational e↵ects, in the presence of right-
handed neutrinos.

(iv) It is clear from Eq. (2.134) that all of the chiral U(3) transforma-
tions have anomalies of one type or another. Only those with a non-
vanishing trace receive SUc(3) anomalies, however, so the traceless
ones would be bona fide symmetries to the extent that the electroweak
interactions are negligible. Now, since the group U(3) is generated
by arbitrary 3 ⇥ 3 Hermitian matrices, and since any such matrix
may always be decomposed as a linear combination of traceless Gell-
Mann matrices and the unit matrix, it follows that the Lie algebra
for U(3) is equivalent to that of the product SU(3) ⇥ U(1). Since
only the U(1) generator has a non-vanishing trace, only it su↵ers
from an SUc(3) anomaly. As a result, the strong interactions break
the approximate symmetry UqL(3) ⇥ UqR(3) down to its subgroup
SUqL(3)⇥SUqR(3)⇥UB(1). The unbroken UB(1) is that combination
of the U(1)s that acts equally on left- and right-handed quark fields,
and so may be recognized simply as baryon number.

2.6 Problems

[2.1] Anomaly cancellation and charge assignments

Complete the proof that anomaly cancellation fixes the charges of the
standard model fermions.

First, take the hypercharge of the Higgs field � to be exactly +1/2.
This can be considered as the definition of the normalization of g1. Then,
write the hypercharges of PLL and PLQ as qL ⌘ �1/2�✏ and qQ ⌘ 1/6��.

Show that the hypercharges of the E, U , and D fields are fixed by the
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requirement that the Yukawa interactions be gauge invariant, and find
expressions for qE, qD, and qU , the hypercharges of PLE, PLD, and PLU .

Then find expressions for the two anomaly conditions, Eq. (2.129) and
Eq. (2.130), in terms of � and ✏. Show that the only simultaneous solution
to both equations is ✏ = � = 0.

[2.2] Muon decay
The muon µ decays via the reaction

µ� ! e�⌫µ⌫̄e

However, the decay

µ� ! e��

with � a photon has never been observed. Explain in terms of symmetries
why there is no obstacle in principle to the first decay, but the second
decay is forbidden and is expected to have a rate in the standard model
of zero.

[2.3] Right-handed neutrinos
Suppose a right-handed neutrino for each generation (invariant under

SUc(3)⇥ SUL(2)⇥ UY (1) ) is added to the standard model.

[2.3.1] Show that the only new renormalizable terms that can appear in
the Lagrangian are (also rewriting the kinetic term for the left handed
leptons):

L = �1

2
L̄m /DLm �

1

2
N̄m/@Nm �

1

2
MmN̄mNm � (kmnL̄mPR Nn�̃+ h.c.)

where Nm is the Majorana spinor whose right-handed piece is the right-
handed neutrino and Lm is the usual lepton doublet. Mm is a real mass
parameter and kmn are Yukawa coupling constants.

[2.3.2] Do any combinations of electron-number, muon-number and tau-
number remain conserved in the presence of these terms?

[2.3.3] Argue that these new terms induce a neutrino mass. Specializing
to the case of one generation for simplicity, write down the neutrino
mass matrix and identify the basis of fields in which it is diagonal and
positive.

[2.3.4] Express the lepton–Higgs and lepton–gauge-boson interactions in
terms of these mass eigenstates. (It is most convenient to keep using
Majorana spinors here because the mass matrix does not take a simple
form in terms of Dirac spinors.)
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[2.4] Two Higgs doublet models
Suppose the Higgs doublet of the standard model is supplemented by

a second complex doublet,  , transforming as (1,2,�1
2) under SUc(3) ⇥

SUL(2)⇥ UY (1).

[2.4.1] If  is written  =

 
�
⇠

!

, what are the electric charges of the

component fields � and ⇠?
[2.4.2] Write out the covariant derivative Dµ explicitly in terms of the

gauge fields G↵
µ, W

a
µ and Bµ.

[2.4.3] Assuming the potential must be a function of the invariants a =
�†�, b =  † , and c = �T" , where � is the usual Higgs doublet,
what is the most general renormalizable form? How many independent
real parameters does it contain? Need the parameters appearing in
the potential be real? Is the combination d = �† SUL(2) ⇥ UY (1)
invariant?

[2.4.4] Suppose the parameters of the potential are such that it is mini-
mized when

� = �min =

 
0

v/
p
2

!

 =  min =

 
1p
2
(u+ iw)

0

!

u, v, w all real. Do these values break the electromagnetic group Uem(1)
generated by the electric charge Q = T3 + Y ? Identify the terms in the
Lagrangian that are quadratic in the gauge fields and find their masses
in terms of u, v, and w. Call the mass eigenstatesW±

µ = 1p
2
(W 1

µ⌥iW 2
µ),

Zµ = W 3
µ cos ✓ � Bµ sin ✓, and Aµ = Bµ cos ✓ +W 3

µ sin ✓. Express cos ✓
in terms of the gauge couplings g1 and g2. Is the standard model mass
relation MW = MZ cos ✓ also true for this model?

[2.4.5] What are the possible Yukawa couplings of the spin zero fields,
� and  , to the fermions? Suppose the Lagrangian is required to be
invariant under the symmetry:

PREm ! ei✓PREm, PRUm ! ei✓PRUm, PRDm ! ei✓PRDm

�! e�i✓� and  ! e�i✓ 

with ✓ a real constant and all other fields being invariant. What are
the resulting restrictions on the Yukawa couplings and Higgs potential,
V (�,  )?
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[2.5] Adjoint Higgs fields
Suppose that the standard model is supplemented by a second complex

Higgs field that transforms as a triplet of SUL(2) rather than as a doublet;
i.e.

 =

0

B@
 1

 2

 3

1

CA

and

�2 = i!a
2ta 

with

t1 =
1p
2

0

B@
0 1 0
1 0 1
0 1 0

1

CA , t2 =
1p
2

0

B@
0 �i 0
i 0 �i
0 i 0

1

CA , t3 =

0

B@
1 0 0
0 0 0
0 0 �1

1

CA

(You can verify that t1, t2, t3 satisfy the algebra of SUL(2) generators.)
Suppose also that the hypercharge, Y, of the field  is zero.

[2.5.1] What is the electric charge of each component field,  1,  2, and
 3?

[2.5.2] Suppose the potential for  and the usual Higgs field, �, is mini-
mized when

� = �min =

 
0

v/
p
2

!

 =  min =

0

B@
0

1p
2
(u+ iw)

0

1

CA

Do these values respect the electromagnetic gauge group Uem(1) gener-
ated by the electric charge Q = T3 + Y ?

[2.5.3] Find the masses of the spin-one fields W±
µ , Zµ, and Aµ, where, as

usual, Zµ = W 3
µ cos ✓ � Bµ sin ✓ and Aµ = Bµ cos ✓ + W 3

µ sin ✓. What
is cos ✓ in terms of the gauge couplings? Is the mass relation MW =
MZ cos ✓ still valid?

[2.6] Gauged B–L coupling
Suppose the standard model is extended to contain an extra U(1) sym-

metry U(1)0, with gauge boson Fµ and gauge coupling g4. Suppose that
the Higgs boson has charge 0 under this gauge boson, but the left-handed
lepton doublet PLL has charge -1.
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Also assume a complex scalar field �, of charge +1 under the new
symmetry but uncharged under hypercharge, is added to the Lagrangian.
Write its e↵ective potential as

V (�) = ��

 

�⇤�� µ2

2

!2

(2.135)

so that when µ2 > 0, it develops a vacuum expectation value. (There can
also be an interaction term between the Higgs boson and �, but assume
that such a term is absent.)

[2.6.1] Revisit Problem 2.3, where a right-handed neutrino N is added to
the standard model. What is the charge of PRN under U(1)0, and is the
Majorana neutrino mass MN̄N still allowed?

[2.6.2] Based on the requirement that the Yukawa couplings preserve
U(1)0 symmetry, and that all gauge anomalies cancel (in particular,
the (3, 3, 10), (2, 2, 10), (1, 1, 10), (1, 10, 10), and (10, 10, 10) anomaly coe�-
cients are non-trivial), what must be the charges of the standard model
fermions? Show that anomaly cancellation actually demands that the
theory possess an N field.

[2.6.3] What linear combinations of baryon number and the three lepton
numbers remain conserved? Are there any Yukawa couplings involving
the � field?

[2.6.4] Argue that if µ2 < 0 so the � field has no condensate, the F field
is massless. In analogy with the Coulomb interaction mediated by the
electromagnetic A field between charged particles, argue that there will
be a Coulomb-like interaction between the electron and the neutron. Is
it attractive or repulsive? How might it be observed or (very tightly!)
constrained?

[2.6.5] Suppose that µ2 > 0. What is the spectrum of bosons? Does the
normal relation between W and Z boson masses hold? Is there any
mixing between Fµ and Zµ, Aµ?

[2.7] Colored scalar fields

Suppose the standard model is extended to include a complex scalar
field D̃, transforming under the (3,1,�1

3) representation of SUc(3) ⇥
SUL(2)⇥ UY (1);

�D̃ =
✓�ig1

3
!1+

ig3
2
�↵!

↵
3

◆
D̃ , DµD̃ =

✓
@µ �

ig3
2
G↵

µ�↵+
ig1
3
Bµ

◆
D̃

(This is the same as the transformation property of PR D.)
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[2.7.1] Show that D̃⇤ transforms under the (3,1,+1
3) representation of

SUc(3)⇥SUL(2)⇥UY (1)(which is the same as the transformation rule for
PLD, see Eq. (2.13) and Eq. (2.26)), and that D̃†D̃ (with the contraction
over the color indices implicit; the † means that D̃⇤ is written as a row
vector) is an SUc(3)⇥ SUL(2)⇥ UY (1) invariant.

[2.7.2] Show that the following renormalizable interactions are allowed for
the D̃ field: a kinetic and gauge interaction term,

�(DµD̃)†(DµD̃)

a mass term,

�M2
D̃
D̃†D̃

the following scalar interaction terms,

��0(D̃†D̃)2 � �00�†� D̃†D̃

and the following new Yukawa interactions:

�xmnQ̄mPRLnD̃ � ymn✏rstŪ
r
mPR Ds

nD̃
t � zmnŪmPLEnD̃ + h.c.

in which xmn, ymn, and zmn are new (complex 3 ⇥ 3 matrix) Yukawa
couplings, r, s, t are color indices, ✏rst is the totally antisymmetric tensor
on color indices, and color indices are implicitly summed in the other
two terms.
Argue that there are no other renormalizable interactions which are
gauge invariant and satisfy all of the basic principles.

[2.7.3] What is the mass squared of D̃, including both the explicit e↵ects
of its mass term and the e↵ects of v the v.e.v. of the Higgs boson? Is
the mass of D̃ determined by its coupling to the Higgs boson, or is it
an independent free parameter of the model?

[2.7.4] Argue that there is no assignment of lepton or baryon number to
the D̃ field which leaves either B or L symmetry unbroken. Hence, the
addition of such a scalar field generically leads to the violation of B and
L symmetries.
Show, however, that if the Lagrangian is required to be invariant under
a discrete symmetry, D̃ ! �D̃ with all other fields una↵ected, then
none of the Yukawa couplings are permitted and conserved baryon and
lepton numbers can again be defined. Further, show that in this case
there is a new global U(1) symmetry D̃ ! ei✓DD̃ which ensures that
the number of D̃ particles is conserved.

[2.8] Adjoint representation fermions
Suppose that two Majorana fermions were added to the standard model;
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W̃ , a triplet under SUL(2), transforming as (1,3, 0), and G̃, an octet under
SUc(3), transforming as (8,1, 0). That is, the transformation properties
are,

�PLW̃
a = �✏abc!b

2PLW̃
c , DµPLW̃

a =
⇣
@µ�ac + g2✏abcW

b
µ

⌘
PLW̃

c ,

and

�PLG̃
↵ = �f↵��!�3PLG̃

� , DµPLG̃
↵ =

⇣
@µ�↵� + g3f↵��G

�
µ

⌘
PLG̃

�

[2.8.1] Show that the reality of ✏abc and f↵�� cause PR W̃ and PR G̃ to have
the same transformation properties as PL W̃ and PL G̃.

[2.8.2] Show that, contrary to what happened with the fermions of the
standard model, the new fields W̃ and G̃ do have SUc(3) ⇥ SUL(2) ⇥
UY (1) invariant mass terms,

�
mW̃

2
W̃W̃ �

mG̃

2
G̃G̃

Therefore, these particles may possess masses independent of their cou-
pling to the Higgs boson.

[2.8.3] Show that the only new Yukawa interaction is

ymLm⌧a�̃PRW̃a + h.c.
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Cross sections and lifetimes

Most of the applications of the standard model to experimental situations
are concerned with processes in which almost free particles interact briefly
and over short distances. These processes could be the collisions of various
elementary particles within an accelerator (Chapter 6 and Chapter 9) or they
could be the decay of an unstable elementary particle in flight (Chapter 4
and Chapter 5). Scattering (S-matrix) theory is the formalism that has
been devised to study these systems.
This chapter presents a whirlwind review of the quantum theory of scat-

tering. The purpose is to gather into one place all of the results that are
required in order to use the Lagrangian of Chapter 2 to predict the outcomes
of experiments. The first section sets up the notion of scattering states,
which are meant to represent in a precise way the idea that the particles
involved do not interact except for a short time interval. This is followed by
a review of the calculation of scattering amplitudes using time-dependent
perturbation theory.
In later chapters this formalism is finally used to compute the Feynman

rules that describe the interactions contained within the standard model
Lagrangian.
Readers in a hurry, or who find themselves bogged down in this section,

should try to understand Section 3.2 and will need to learn the results at
the end of Section 3.3, particularly Eq. (3.40) and Eq. (3.43).

3.1 Scattering states and the S-matrix

In a real scattering (or decay) process, the particles involved only interact
briefly because they physically move apart from one another. For instance,
in a scattering experiment, the initial particles are initially well separated
from one another, but moving with velocities which bring them into mutual

111
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contact. From the perspective of quantum mechanics, this means that these
initial states cannot be exact momentum eigenstates, since such states are
not spatially localized at all. Similarly, they cannot be exact energy eigen-
states to the extent that their profiles in position space change with time
(as opposed to simply being multiplied by an overall phase e�iEt). Instead,
the initial particles are usually given by wave packets which are somewhat
localized in both position and momentum (in a way which is consistent with
the uncertainty relations), with the packets describing the relative approach
of initially well-separated particles.

To the extent that the initially colliding particles are not correlated with
one another and that the reactions do not depend on the environment within
which they occur, one expects the probability of any given reaction to fac-
torize into the product of the probability for the particles to meet, times the
probability for the reaction to occur given that the meeting has taken place.
Of these, the first factor can be expected to depend on the details of the
wave packets which describe the initial state, since this controls things like
how many particles are present and how quickly they approach one another.
The second factor, however, might be expected to be independent of the
details of the initial state and instead be more of an intrinsic property of the
interactions involved. Indeed, these expectations are borne out in practice
for collisions, and motivate the definition of initial-state-independent quan-
tities, like cross sections, which describe the part of the reaction which does
not depend on the details of how a particular reaction has been set up.

It is the inference of quantities like cross sections from experimental mea-
surements which is of practical interest, since these directly bear the in-
formation about the underlying interactions like those described in earlier
chapters. Because they are largely insensitive to the details of the wave
packets describing the initial states, it turns out to be possible to compute
quantities like cross sections directly in the limit that these initial states be-
come energy and momentum eigenstates, even though this is not the limit
within which real experiments take place. The idealized energy eigenstates
to which one is led in this way are called scattering states, and their definition
is the topic of this section.

Suppose, then, that the complete Hamiltonian, H, can be broken into
two pieces, H = H0 + V , in such a way that H0 describes the evolution
of the initial and final wave packets before and after the scattering. In the
simplest instance H0 might describe just the kinetic energy of moving free
particles, with all of the interactions being put into V . But more complicated
divisions of H are also possible, such as by including the strong and/or
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electromagnetic interactions in H0 while placing the weak interactions into
V .
In general the Hilbert space, H, for the full system divides into two parts,

H = B � S (3.1)

for which S contains those states of the full system whose evolution in time
using H is well approximated at late or early times by evolution using H0.
That is, S are the states (particles) of the theory with Hamiltonian H0. It is
useful to define the origin of time so that the initial and final wave packets of
the interacting particles are su�ciently widely separated that H0 evolution
su�ces outside of a region �T < t < T , for some appropriately large and
positive T . Not all states need reside in S, and those which do not live in B,
which we loosely call bound states. For example, if our system consisted of
electrons and protons interacting electromagnetically, then S might contain
freely-moving electrons and protons, but B might contain bound hydrogen
atoms.
Let us denote the eigenstates of H0 by |↵i, with ↵ collectively denoting all

of the labels which are required to describe single- and many-particle states
and H0|↵i = E↵|↵i. We write a wave packet of such states as

|�gi ⌘
Z

d↵ g(↵)|↵i (3.2)

where g(↵) defines an appropriately normalizable packet. The label ↵ here is
treated as a continuous variable because we envisage it to include (possibly
among other labels) the momenta of the various particles included in the
state. We assume that H0 has the same spectrum on H as H does on
S, so the same labels, ↵, and energies, E↵, may be used to describe the
eigenstates of the full system, H|↵ii = E↵|↵ii (where the double angle ii is
used to denote an eigenstate of H).
To describe scattering processes we work within the Schrödinger picture,

where the burden of time evolution is carried by the state of the system. In
a scattering problem we imagine that the time evolution of states prepared
in appropriate wave packets, |�gi, have essentially the same evolution in the
remote past and the remote future, |t| � T , using either H or H0. That
is, we require that there must exist an out state, |�giio, which at late times
evolves under H in the same way as does any properly normalizable packet
|�gi under H0:

lim
t�T

e�iHt|�giio = lim
t�T

e�iH0t|�gi (3.3)

There must similarly exist an in state, |�giii, – in general di↵erent than
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|�giio – whose evolution under H agrees with the evolution of a packet |�gi
under H0 in the remote past:

lim
t⌧�T

e�iHt|�giii = lim
t⌧�T

e�iH0t|�gi (3.4)

By choosing the limiting case of appropriately peaked wave packets, g(↵),
we may also formally define in this way idealized scattering eigenstates of
the full Hamiltonian, |↵iio,i, which satisfy

lim
t�T

e�iHt|↵iio = lim
t�T

e�iH0t|↵i and lim
t⌧�T

e�iHt|↵iii = lim
t⌧�T

e�iH0t|↵i
(3.5)

In terms of these states a scattering event corresponds to the transition
from a state resembling a packet |�gi at asymptotically early times to one
resembling a di↵erent packet |�f i at asymptotically late times. From the
above definitions the amplitude for a such a process is given by the overlap

ohh�f |�giii (3.6)

Any such scattering event may therefore be found from the limiting ampli-
tude for the ideal process where the initial and final state are approximately
energy eigenstates, and the matrix of all possible such amplitudes,

S�↵ := ohh�|↵iii (3.7)

therefore plays an important role, and is called the S-matrix. It is also
convenient to define the operator, S, whose matrix elements between H0

eigenstates, |↵i, reproduce these transition amplitudes:

h�|S|↵i := S�↵ (3.8)

Our goal is to provide an explicit expression for S in terms of the known
operators H0 and V . A step towards this end is the definition of the Møller
wave operators

⌦(t) := eiHt e�iH0t (3.9)

in terms of which we have

|↵iio = lim
t�T

⌦(t)|↵i and |↵iii = lim
t⌧�T

⌦(t)|↵i (3.10)

Since |↵i and |↵iio,i are normalized, ⌦± = limt!±1⌦(t) are isometric op-
erators. Notice, however, that the states |↵iio,i only span S, while |↵i span
H, so ⌦± can only be unitary if B = ; (i.e. there are no bound states).
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These operators are useful because the S-matrix can be constructed from
them using

S = lim
t!1

lim
t0!�1

⌦⇤(t)⌦(t0) = (⌦+)⇤⌦� (3.11)

The limit t ! ⌥1 must of course be defined with some care, using appro-
priately normalized wave packets. This complication is ignored here with
the understanding that a more careful treatment justifies the formal manip-
ulations we present.

3.2 Time-dependent perturbation theory

We now derive an approximate expression for S as powers of the interaction
V . In order to express S in a form that lends itself to such a perturbative
approximation, we rewrite the operator ⌦⇤(t)⌦(t0) by re-expressing it as
a solution to a first-order di↵erential equation in the variable t. That is,
⌦⇤(t)⌦(t0) satisfies

⌦⇤(t)⌦(t0) = eiH0t e�iHteiHt0 e�iH0t0

= eiH0t e�iH(t�t0) e�iH0t0 (3.12)

Evidently,

i
d

dt

⇥
⌦⇤(t)⌦(t0)

⇤
= eiH0t(H �H0) e

�iH(t�t0) e�iH0t0

= (eiH0tV e�iH0t)⌦⇤(t)⌦(t0)

= V (t)⌦⇤(t)⌦(t0) (3.13)

where this last equality defines the interaction picture V operator at time t,
V (t) := eiH0tV e�iH0t.
Solutions of this di↵erential equation, together with the initial condition

⌦⇤(t0)⌦(t0) = 1, are equivalent to solutions of the integral equation

⌦⇤(t)⌦(t0) = 1� i
Z t

t0
d⌧ V (⌧)⌦⇤(⌧)⌦(t0) (3.14)

This has the obvious iterative solution

⌦⇤(t)⌦(t0) =
1X

n=0

(�i)n
Z t

t0
d⌧1

Z ⌧1

t0
d⌧2 · · ·

Z ⌧n�1

t0
d⌧n V (⌧1)V (⌧2) · · ·V (⌧n)

(3.15)
The S-matrix becomes

S = lim
t!+1
t0!�1

⌦⇤(t)⌦(t0)
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=
1X

n=0

(�i)n
Z 1

�1
d⌧1

Z ⌧1

�1
d⌧2 · · ·

Z ⌧n�1

�1
d⌧n V (⌧1)V (⌧2) · · ·V (⌧n)

(3.16)

One of our goals is to make Lorentz invariance as manifest as possible,
so to this end it is desirable to rewrite this expression in a form where
the temporal integration is over the same range as any spatial integrations,
i.e. from �1 to 1. This can be done via the following trick. Define the
time-ordering operation by

T [V (t1) · · ·V (tn)] ⌘ V (tlatest) · · ·V (tearliest) (3.17)

=
X

Pn

V (tP1
) · · ·V (tPn

)✓(tP1
� tP2

) · · · ✓(tPn�1
� tPn

)

The sum here is over all permutations of the n times t1, . . . , tn, and the
Heaviside step function,

✓(x) =
⇢
1, if x > 0
0, otherwise

(3.18)

ensures that only the permutation in which tP1
> tP2

> · · · > tPn
con-

tributes. Consider, then, the integral,

I ⌘
Z 1

�1
d⌧1 · · ·

Z 1

�1
d⌧nT [V (⌧1) · · ·V (⌧n)]

=
X

Pn

Z 1

�1
d⌧P1

· · ·
Z 1

�1
d⌧Pn

V (⌧P1
) · · ·V (⌧Pn

)✓(⌧P1
�⌧P2

) · · · ✓(⌧Pn�1
�⌧Pn

)

= n!
Z 1

�1
d⌧1 · · ·

Z ⌧n�1

�1
d⌧nV (⌧1) · · ·V (⌧n) (3.19)

Comparing the last line with the iterative expression for S, given above,
implies that

S =
1X

n=0

(�i)n
n!

Z 1

�1
d⌧1 · · · d⌧n T [V (⌧1) · · ·V (⌧n)] (3.20)

This will be the final form for the perturbative expansion of the S-matrix
in time-dependent perturbation theory.
Equation (3.20) has a particularly pretty form if the interaction Hamilto-

nian is given as an integral over a local Hamiltonian density,

V (t) =
Z

d3x HI(x, t) (3.21)

since in this case the S-matrix becomes

S =
1X

n=0

(�i)n
n!

Z 1

�1
d4x1 · · · d4xn T [HI(x1) · · ·HI(xn)] (3.22)



3.2 Time-dependent perturbation theory 117

This last equation is one of the main results of this chapter.
If we use energy and momentum eigenstates it is convenient to use the

identity:

h�|O(x)|↵i = h�|e�iP ·xO(x = 0) eiP ·x|↵i = ei(p↵�p�)·xh�|O(x = 0)|↵i
(3.23)

to factor an overall energy-momentum conserving factor out of the S-matrix:

S�↵ = ��↵ � iM�↵(2⇡)
4�4(p� � p↵) (3.24)

The quantity M�↵ is called the matrix element for the transition from state
↵ to state �. It is also conventional to define the T -matrix element, in which
only the energy conserving delta function is factored out:

S�↵ = ��↵ � iT�↵2⇡�(p
0
� � p0↵) (3.25)

We can read o↵ the first few terms in the expansion of M directly from
Eq. (3.22):

M�↵ = h�|HI(x = 0)|↵i+ �i
2!

Z
d4xh�|T [HI(x)HI(x = 0)] |↵i+ · · · (3.26)

This is an important result because it gives the S-matrix in terms of quan-
tities that we know, namely the matrix elements of the interaction Hamil-
tonian density.
Equation (3.22) or Eq. (3.26) do not quite appear Lorentz-invariant, for

two reasons. One reason is the appearance of the time-ordering operation,
which leads to the functions ✓(ti � tj) whose values may di↵er in di↵erent
frames. (Recall that di↵erent Lorentz observers can disagree on the ordering
in time of spacelike separated events.) This turns out not to be important
because the operator ordering is only relevant for operators which do not
commute. Locality ensures that commutators vanish for spacelike separated
points; it is only for timelike or lightlike separated operators that the time
ordering operation is important, and for such operators the time ordering is
the same in all frames. Therefore, the time-ordering operation on a product
of local operators is Lorentz invariant in a local theory, and this is not an
obstacle to the Lorentz invariance of Eq. (3.22).
The other reason to doubt the Lorentz invariance of the S-matrix is be-

cause the integral of the Hamiltonian density need not be Lorentz-invariant.
Note, however, that it is only the interaction part of the Hamiltonian den-
sity which appears in the above formulae, and to the extent that this does
not involve derivatives of the fields it is typically related to the interaction
part of the Lagrangian density by H = �L. When this is so we see that the
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Lorentz invariance of the S-matrix and of M is manifest, since we know thatR
d4x L is Lorentz invariant by construction. As we see in later chapters

Lorentz invariance also holds for interactions involving derivatives of fields,
although this invariance arises in a more subtle way.
We shall use these equations – Eq. (3.23), Eq. (3.24), and Eq. (3.26) –

extensively throughout what follows.

3.3 Decay rates and cross sections

The expressions obtained above for the S-matrix are proportional to an
energy-conserving (and possibly to a momentum-conserving) delta function
when expressed in terms of energy eigenstates rather than wave packets.
This means that the square of S-matrix elements – the transition prob-
abilities – are proportional to �(0) and so must diverge. Physically, this
divergence reflects the fact discussed earlier that scattering processes nec-
essarily involve wave packets and cannot involve energy eigenstates. (It is
also related to the di�culty, in infinite volume, of correctly normalizing an
energy eigenstate.) If the initial and final states are energy and momentum
eigenstates then their interactions never really turn on and o↵, because their
wave functions spread throughout all of space, which prevents their influ-
ence on one another from changing over time. As a result, if we insist on
using such eigenstates to compute the S-matrix (as we shall for convenience
of calculation), we must more carefully sort out the relationship between
physical quantities and the S-matrix elements we find. This is the purpose
of the present section.

3.3.1 Wave packets

If the initial state is described by a wave packet, |�giii =
R
d↵ g(↵)|↵iii, then

the probability of finding the system in the final state labeled by � becomes

Pg(�) = |ohh�|�giii|2 =
Z

d↵ d↵0 g⇤(↵0)g(↵) ohh�|↵iii ihh↵0|�iio (3.27)

In most cases of practical interest, the initial state is prepared in such a way
that the function g(↵) is peaked about some value ↵, and the width of the
wave packet is classical in the sense that the resolution of initial position
and momentum measurements are much too large to push the limits of
the uncertainty relations. It is also usually true that support of the initial
wave packet is chosen to be over a region of ↵, over which S�↵ depends only
weakly on ↵. For instance, the energy width of a wave packet is usually small
compared to the energy dependence of the scattering cross section or particle
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decay width. (Otherwise the experiment does a poor job in measuring the
S-matrix, because it uses an inadequately resolved initial state.)
Under these circumstances (and assuming � is distinguishable from all of

the ↵ in the support of g(↵), so we may write S�↵ = �iT�↵2⇡�(E� � E↵)),
then Eq. (3.27) is approximately given by

Pg(�) ⇡ |T�↵|2
Z

d↵̂ d↵̂0 g⇤(↵0)g(↵) (3.28)

In this expression d↵ 2⇡�(E↵ � E�) = d↵̂, and we use the fact that T�↵
is approximately independent of ↵ within the domain of support of g(↵)
to bring it outside of the integral. Notice that the energy-conserving delta
functions are no longer a problem since they are used to perform part of the
integration over ↵ and ↵0.
We see that the probability in this case factorizes into a reaction dependent

factor (|T�↵|2) and a factor depending on the details of the experimental set-
up. Our interest in the remainder of this section is in precisely identifying a
convenient quantity which captures the initial-condition-independent factor.

3.3.2 The finite-volume trick

For the present purposes the important consequence of the previous sec-
tion is Eq. (3.28), which expresses how reaction probabilities factorize in the
situations of common practical interest. Since our interest is in finding a
convenient way to identify the |T�↵|2 factor in a calculation of S�↵ based on
energy and momentum eigenstates, we may feel free to use any old speci-
fication of the initial state, provided it captures this factorization (involves
narrow ranges of energy and momentum). Obviously we should choose one
which makes the calculations convenient.
A particularly simple way of specifying states, and seeing how to handle

the subtleties associated with the delta functions in S�↵, is to imagine the
system being inside a box having large but finite volume ⌦, and allowing the
interactions to last only over a large but finite time interval, T . In this case
we may simply use energy and momentum eigenstates, with the knowledge
that the divergences associated with squaring delta functions are regularized
by T and ⌦. Once the regularization dependence cancels in the final physical
quantities of interest, we may drop the temporary theoretical contrivance of
the box.
In a finite-volume box we use particles in momentum states, |p], that are

normalized to 1 in the box,

[p|p0] = �p,p0 (3.29)
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which satisfy the completeness relation
X

p

|p][p| = 1 (3.30)

This is to be distinguished from the continuum normalization we use in the
infinite-volume limit,

hp|p0i = 2Ep(2⇡)
3�3(p� p0) (3.31)

for which completeness is expressed by
Z

d3p

2Ep(2⇡)3
|pihp| = 1 (3.32)

For a cubic box of volume ⌦, subject to periodic boundary conditions on
the walls, momentum eigenvalues take discrete values. There is one state
for each cube of volume (2⇡)3/⌦ in momentum space. In the limit ⌦!1,
the spacing between momentum levels goes to zero and sums over momenta
go to integrals according to

1

⌦

X

p

f(p)!
Z

d3p

(2⇡)3
f(p) (3.33)

Here f(p) represents an arbitrary function that satisfies the boundary con-
ditions at the edge of the box. Comparison with the completeness relations
shows that the states |pi = (2E⌦)1/2 |p] are the ones which have the desired
normalization for large ⌦.
For a state, |↵i, involving N↵ particles this implies |↵i = (2E⌦)N↵/2|↵].

The box-normalized matrix element S�↵ ⌘ [�|S|↵] is therefore related to
the continuum-normalized S�↵ = h�|S|↵i by

S�↵ = (2E⌦)(N↵+N�)/2S�↵ (3.34)

When particle energies di↵er, (2E)(N↵+N�)/2 is to be interpreted as the
square root of the product of the energies of the particles in the in and
out states.
At finite volume, in translationally invariant theories, the T -matrix is

T�↵ ⌘M�↵(2⇡)
3�3⌦(p� � p↵) (3.35)

so the S-matrix is given by

S�↵ = �(� � ↵)� i(2⇡)4�4⌦T (p� � p↵)M�↵ (3.36)

The delta functions express energy and momentum conservation and appear
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in the form,

(2⇡)3�3⌦(p↵ � p�) =
Z

⌦
d3x ei(p↵�p�)·x (3.37)

(2⇡)4�4⌦T (p↵ � p�) =
Z

⌦T
d4x ei(p↵�p�)·x (3.38)

The spatial integration is over the volume, ⌦, and the temporal integration
is from �T/2 to +T/2 respectively. As ⌦T !1, �⌦T goes to the standard
delta-function but for finite T and ⌦, (2⇡)4�⌦T (0) = ⌦T .
In a time-translationally invariant theory it is the transition probability

per unit time, or the transition rate, which is independent of time and so
is well behaved as T ! 1. Similarly, as ⌦ ! 1 the number of states in
any finite momentum range diverges, making the probability of a transition
to a specific state go to zero. It is therefore the rate, d�, for the state |↵i
to make a transition into any state in a small number, ��, of states in the
vicinity of |�i that is well behaved as ⌦T !1. Since the density of states
in momentum space is ⌦/(2⇡)3, the number of states in an interval d� for an
N�-particle state is �� = (2E⌦)N� d�. Here we have absorbed the powers
of 2⇡ into the measure on d�, so that d� ⌘

Q
d3k/[(2⇡)32Ek]. With this

notational convention, the rate becomes

d�(↵! �) =
dP (↵! �)

T

=
|S�↵|2

T
��

=

"
|S�↵|2
T

✓
1

2E ⌦

◆(N↵+N�)
#

��

=
1

T
(2⇡)4�4⌦T (p��p↵)(2⇡)4�4⌦T (0) |M�↵|2

✓
1

2E⌦

◆N↵+N�

��

= ⌦(2⇡)4�4⌦T (p↵ � p�)
1

(2E⌦)N↵

|M�↵|2 d�

= ⌦1�N↵

"
Y

i✏↵

1

2Ei

#

|M�↵|2(2⇡)4�4⌦T (p↵ � p�) d� (3.39)

where the product means a product over the particles in the initial state.
Notice that the �-function ensures that the final integral over � runs over a
finite range of integration and so can never diverge unless M�↵ is singular
for some momenta.
Consider now the cases of most present interest, with N↵ = 1, N↵ = 2,

and N↵ > 2.
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3.3.2.1 Decay processes: N↵ = 1

In the limit ⌦ ! 1 and T ! 1 the decay rate for a single particle is
explicitly independent of ⌦ and T , and is given by

d�(↵! �) =
1

2E↵
|M�↵|2(2⇡)4�4(P↵ � P�) d� ,

d� ⌘
Y

f2�

d3kf

2Ekf
(2⇡)3

(3.40)

This result is not quite Lorentz-invariant, because of the 1/(2E↵) in front.
But indeed, it should not be Lorentz-invariant, since a fast-moving particle’s
lifetime should be extended by time dilation; the 1/(2E↵) factor precisely
generates this time dilation e↵ect.

3.3.2.2 Two-body scattering: N↵ = 2

When N↵ = 2, d� is proportional to ⌦�1. Since the single-particle states are
normalized with

R
⌦ d3x| (x)|2 = 1, the number density of particles in the

box as seen by an incident particle is n = ⌦�1. The fact that d� is inversely
proportional to the volume reflects the property that in the absence of initial-
state coherence the reaction rate is proportional to the number density of
target particles.
It is convenient and conventional to remove this dependence on the num-

ber of particles by dividing out a factor proportional to the incident flux of
particles. Define, then, the cross section, d�, by

d�(↵! �) =
d�

F
(↵! �) (3.41)

In this expression the denominator, F , is fixed by requiring that (a) d� be
Lorentz invariant; and (b) F , when evaluated in the rest-frame of either of
the particles, equals the particle flux: nvrel = vrel/⌦.
Our next task is to find the function, F , determined by these conditions.

Condition (a) implies that F must transform the same way as d� does under
Lorentz transformations. Because of our choice of state normalization and
integration measure d�, the final-state factors are already Lorentz-invariant.
Invariance of the cross section is therefore ensured if F = f/(4E1E2⌦),
where Ek denotes the energy of the particles in the initial two-particle state,
|↵i, and f is a Lorentz-invariant function chosen to satisfy condition (b).
Since the relative velocity of two particles,

vrel =

s

1� m2
1m

2
2

(p1 · p2)2
(3.42)
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is Lorentz-invariant and the scalar �p1 · p2 equals E1E2 in the particle rest
frame the solution is f = �4Vrel(p1 · p2).
We are led in this way to the following expression for the two-body cross

section:

d�(↵! �) =
|M�↵|2

f
(2⇡)4�4(p↵ � p�) d� (3.43)

with f = (�4p1 · p2)vrel = 4
q
(p1 · p2)2 �m2

1m
2
2 (3.44)

To be completely explicit, and for later convenience, we pause here to
calculate the factor (2⇡)4�4(p↵�p�) d� for a two-body final state, N� = 2, in
the center-of-mass frame of the two bodies. Denote the final-state quantum
numbers by primes. In an arbitrary frame �4(p↵ � p�) d� is

(2⇡)4�4(p↵ � p�) d� = (2⇡)4�4(p↵ � p01 � p02)
d3p0

1d
3p0

2

(2⇡)64E0
1E

0
2

= 2⇡�(E↵ � E0
1 � E0

2)
d3p0

1

(2⇡)34E0
1E

0
2

�����
p0
2
=p↵�p0

1

=
p021 d2⌦0

1

(2⇡)24E0
1E

0
2|d(E0

1 + E0
2)/dp

0
1|

=
p031 d2⌦0

1

16⇡2(E0
2p

0
1�E0

1p
0
2) · p0

1
(3.45)

d2⌦0
1 = sin ✓0d ✓0 d�0 is the element of solid angle where ✓0 and �0 give the

direction of the vector p0
1. In the center-of-mass frame, p0

1 = �p0
2 and

E0
1 + E0

2 = E↵, so

(2⇡)4�4(p↵ � p�) d� =
p01d

2⌦0
1

16⇡2E↵
(c.m.) (3.46)

In this case, the final-state integral consists of the sum over the direction of
one of the two final-state particles.

3.3.2.3 Many-body collisions: N↵ > 2

The reaction rate per unit volume, d�/⌦, is proportional to ⌦�N↵ . For
N↵ distinct particles in the initial state this again represents the incident-
particle density that is expected for incoherent scattering:

⌦�N↵ =
N↵Y

i=1

ni (3.47)
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In this case the reaction rate per unit volume becomes

d�(↵! �)

⌦
=

N↵Y

i=1


ni

2Ei

�
|M�↵|2(2⇡)4�4(p↵ � p�) d� (3.48)
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4

Elementary boson decays

We wish to put the formalism of the previous chapters to use to describe the
properties of the standard-model particles. Since many of the properties of
the theory are simpler at higher energies we choose to do this by starting
with the properties of the heavy bosons of the theory and then working our
way down in energy towards more familiar particles. We also choose to focus
here on the properties of the elementary bosons since these furnish among
the simplest examples of the scattering formalism of the previous chapter.
Among the most basic particle properties are their masses and lifetimes.

The masses of the gauge bosons of the theory are dealt with in previous
(and in subsequent) chapters, so we concentrate here on their lifetimes.

4.1 Z
0 decay

4.1.1 Z
0 decay: preliminaries

We wish to compute within the standard-model the decay lifetime of the
neutral electroweak gauge boson, Z0, as a function of the parameters of the
model. We do so using the perturbative framework of Chapter 3. The basic
result of that chapter, for the present purposes, is given by Eq. (3.24) and
Eq. (3.26),

S�↵ = ��↵ � i (2⇡)4�4(p��p↵)M�↵, with

M�↵ = h�|HI(0)|↵i+
�i
2!

Z
d4xh�|T [HI(x)HI(0)]|↵i+ · · · (4.1)

We see that, in the absence of other e↵ects, the dominant contribution to
Z0 decay will come from any interactions of the model for which the matrix
element

h�|HI(0)|Z0i 6= 0 (4.2)

127
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for some final state |�i into which the Z0 may kinematically decay. If there
is no such final state or interaction then the dominant contribution must
instead be second order, i.e.,

(�i)2
2!

Z
d4xh�|T [HI(x)HI(x = 0)]|Z0i 6= 0 (4.3)

We must continue in this way until a nonzero result is eventually obtained.
If the Z0 boson is to decay, it cannot appear in the final state. It follows

that, in order to contribute to the matrix element of Eq. (4.2), any can-
didate interaction must be strictly linear in the field Zµ(x). Inspection of
the Z0 couplings of Section 2.4 shows that there are only a few candidate
interactions of this type. The candidates are LWWZ of Eq. (2.76), LWWZ�

of Eq. (2.82), and Lnc of Eq. (2.99). These would respectively describe the
processes Z0 ! W+W�, Z0 ! W+W��, and Z ! ff̄ . Conservation of
four-momentum implies that the sum of the masses in any candidate final
state, |�i, must be less than the mass of the Z0. This rules out the first two
processes, leaving only the decay of the Z0 into a fermion–antifermion pair
through a neutral-current weak interaction.
We now compute the resulting Z0 decay rate. We do so in some detail

in this section in order to develop some of the computational tools that are
useful for general calculations of this sort. The first step is to identify the
interaction Hamiltonian that corresponds to Lnc. Since this term of the
Lagrangian does not involve any time derivatives it is tempting to conclude
that Hnc = �Lnc. This is not quite true in the present instance, however,
because of the appearance of the time component of the gauge potential,
Z0(x). The additional terms in Hnc that arise from this source are the
analogs of the contact Coulomb interaction of quantum electrodynamics
and are not even Lorentz invariant. At this point one might sensibly worry
that they could potentially ruin the Lorentz invariance of the S-matrix being
computed. Happily, their e↵ect turns out to precisely cancel another source
of Lorentz non-invariance that is encountered in Section 5.2. The upshot is
that the naive relation, HI = �LI , may be used after all, so these terms are
therefore ignored in all of what follows.
The interaction Hamiltonian density therefore is

HI = �Lnc = �ieZZµf�
µ(gV + gA�5)f (4.4)

in which the coupling constant is eZ = e/(sin ✓W cos ✓W). The desired matrix
element then becomes

M(Z ! ff̄) = hf(p,�); f̄(q, ⇣)|HI(0)|Z(k,�)i
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= �ieZhf(p,�); f̄(q, ⇣)|f�µ(gV + gA�5)fZµ|Z(k,�)i
= �ieZh0|bp,� b̄q,⇣f�µ(gV + gA�5)fZµa

⇤
k,�|0i (4.5)

This matrix element may be evaluated once the fields appearing within the
interaction Hamiltonian are expressed in terms of creation and annihilation
operators. These are given in Chapter 1 by Eq. (1.116) and Eq. (1.82):

Zµ(x) =
1X

�0=�1

Z
d3k0

2Ek0(2⇡)3

h
✏µ(k

0,�0)ak0,�0 e
ik0x + h.c.

i
(4.6)

 (x) =
X

�0=± 1

2

Z
d3p0

2Ep0(2⇡)3

h
u(p0,�0)bp0�0 eip

0x + v(p0,�0)b̄⇤p0�0e�ip0x
i

(4.7)

The matrix element, Eq. (4.5), clearly gets contributions only from those
terms in the expansion of the fields, Eq. (4.6) and Eq. (4.7), in which the
destruction operator, a, appearing in Zµ(x) destroys the incoming Z0 bo-
son, and the creation operators, b⇤ from f̄(x) and b̄⇤ from f(x), create the
fermion–antifermion pair. The matrix element then is

M(Z ! ff̄) = �ieZ✏µ(k,�)ū(p,�)�µ(gV+gA�5)v(q, ⇣) (4.8)

The di↵erential decay rate is related to this result by Eq. (3.40):

2EZd�[Z(k,�)! ff̄ ] =
��M(Z ! ff̄)

��2 (2⇡)4�4(k�p�q) d3p d3q

4EpEq(2⇡)6

= e2
Z
|✏µū�µ(gV+gA�5)v|2

⇥ (2⇡)4�4(k�p�q) d3p d3q

4EpEq(2⇡)6
(4.9)

The next step we must take is to evaluate the square of the matrix ele-
ments, |✏µū�µ(gV+gA�5)v|2, that arise in this last expression. The evaluation
proceeds di↵erently depending on whether the particles involved are polar-
ized or unpolarized. We consider the two cases of polarized and unpolarized
initial Z0 bosons separately.

4.1.2 Unpolarized Z
0 decay

Consider the decay of a sample of Z0s that have no net polarization. We
take the initial density matrix in the 3⇥ 3 spin space of the Z0 meson to be
the unit matrix:

⇢ =
1

3

1X

�=�1

|Z(k,�)ihZ(k,�)| (4.10)
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In order to proceed we need to generalize the S-matrix formalism slightly
to include the case for which the initial state is not a pure state, |↵i, but is
rather described by a density matrix, ⇢. In this case the probability of there
being a transition to a final state, |�i, is given by the trace

p(�) = tr(⇢P�) (4.11)

in which P� = |�ih�| is the projection operator onto the subspace of Hilbert
space that is spanned by |�i. In the special case where the initial state is a
pure state, ⇢ = |↵ih↵|, this reduces to the squared amplitude |h�|↵i|2. More
generally, if the initial system could be in state |ii with probability Pi, then
⇢ =

P
i Pi|iihi| and p(�) =

P
i Pi|h�|ii|2.

Using this expression, the di↵erential decay rate for a sample of Z0s that
is described by the density matrix of Eq. (4.10) is then given by averaging
the result of Eq. (4.9) over the initial Z0 spin, �. If, as is usually the case,
the spins of the final fermions are not measured in the detector, then we
must also sum over all possible final-state polarizations:

d�[Z(k)! ff̄ ] =
1

3

1X

�=�1

X

�=± 1

2

X

⇣=± 1

2

d�[Z(k,�)! ff̄ ] (4.12)

The spin sums may be evaluated using the polarization vector identity given
by Eq. (1.119) and the spinor identities given in Eq. (1.99) and Eq. (1.100).
That part of the squared amplitude which involves the Z0 polarization

then becomes
1X

�=�1

|✏µū�µ(gV + gA�5)v|2

=
1X

�=�1

✏µ(k,�)✏
⇤
⌫(k,�)[ū�

µ(gV + gA�5)v][ū�
⌫(gV + gA�5)v]

⇤

=

⌘µ⌫ +

kµk⌫
M2

Z

�
[ū�µ(gV + gA�5)v][ū�

⌫(gV + gA�5)v]
⇤ (4.13)

A similar manipulation may be performed for the fermion spinors, u and v,
once the trick of rewriting the spinor product as a trace over Dirac matrices
is used:

ūMu =
X

ij

ūiMijuj = tr[M(uū)] (4.14)

In this last expression, (uū) denotes the dyadic matrix whose matrix ele-
ments are given by (uū)ij = uiūj . Using this trick gives

[ū�µ(gV + gA�5)v][ū�
⌫(gV + gA�5)v]

⇤
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= �[ū�µ(gV + gA�5)v][v̄�
⌫(gV + gA�5)u]

= � tr [�µ(gV + gA�5)vv̄�
⌫(gV + gA�5)uū] (4.15)

The utility of this way of writing things is that the dyadics uū and vv̄ have
simple expressions, given by Eq. (1.99) and Eq. (1.100) respectively, when
both of the spinors in the dyadic refer to the same particle. Performing the
fermion spin sums using these expressions gives

X

�=± 1

2

u(p,�)ū(p,�) = (mf � i/p) (4.16)

X

�=± 1

2

v(q, ⇣)v̄(q, ⇣) = (�mf � i/q) (4.17)

so summing the result of Eq. (4.15) over the fermion spins then gives
X

�,⇣=± 1

2

[ū�µ(gV + gA�5)v][ū�
⌫(gV + gA�5)v]

⇤

= tr[�µ(gV + gA�5)(mf + i/q)�⌫(gV + gA�5)(mf � i/p)] (4.18)

4.1.3 Evaluating Dirac traces

Further progress requires the evaluation of various traces over Dirac matri-
ces, of form tr [�µ1

. . . �µn
] or tr [�5�µ1

. . . �µn
]. (Traces involving multiple �5

can always be handled by anti-commuting a �5 across the �µ which separate
it from another, and using �5�5 = 1.)

There are two procedures for evaluating such traces. One procedure is to
use repeatedly the identity, Eq. (C.56) from Appendix C and the cyclicity
of the trace. Here we will present an alternative, in some respects more
powerful, approach. Namely, we take advantage of their transformation
properties under the (improper) Lorentz group.

The key observation is that the Dirac gamma-matrices, �µ, satisfy the
following property:

D�1(⇤)�µD(⇤) = ⇤µ
⌫�

⌫ (4.19)

in which ⇤µ
⌫ is an arbitrary Lorentz transformation whose representation on

spinor fields – c.f. Eq. (1.72) – is denoted D(⇤). This implies that a trace
over n gamma matrices is an invariant tensor of the Lorentz group. That is,

⇤µ1
⌫1 · · ·⇤µn

⌫n tr[�
⌫1 . . . �⌫n ] = tr[�µ1 . . . �µn ] (4.20)

for all Lorentz transformations. A trace that includes a factor of the matrix
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�5 is similarly an invariant Lorentz pseudotensor:

⇤µ1
⌫1 · · ·⇤µn

⌫n tr[�5�
⌫1 . . . �⌫n ] = det(⇤) tr[�5�

µ1 . . . �µn ] (4.21)

Now comes the main point: any such invariant tensor of the Lorentz
group may be constructed from products of the invariant metric tensor, ⌘µ⌫ .
Similarly, any invariant pseudotensor may be constructed from products of
the metric tensor and an odd power of the completely antisymmetric Levi–
Civita symbol, ✏µ⌫�⇢. This last tensor is an invariant pseudotensor by virtue
of the following identity that is satisfied by any 4⇥ 4 matrix:

⇤µ1

⌫1⇤
µ2

⌫2⇤
µ3

⌫3⇤
µ4

⌫4 ✏
⌫1⌫2⌫3⌫4 = det(⇤)✏µ1µ2µ3µ4 (4.22)

The traces may therefore be evaluated up to an overall multiplicative fac-
tor by writing down the most general combinations of metric and Levi–Civita
tensors that has the same number and symmetry of indices. The multiplica-
tive factor may then be chosen by evaluating the trace for a particularly
simple choice of indices. This procedure may be illustrated as follows.

(i)

tr[�µ1 . . . �µn ] = 0 if n is odd. (4.23)

This is so because the result must be expressed as a combination of
metrics and Levi–Civita symbols. However, each of these has an even
number of indices. They cannot be combined into an object with an
odd number of indices, so the result must vanish.

(ii)

tr[�5�
µ1 . . . �µn ] = 0 if n is odd (4.24)

This result is an immediate consequence of the previous one since
�5 = i�0�1�2�3 involves an even number of gamma matrices.

(iii)

tr[�µ�⌫ ] = 4⌘µ⌫ (4.25)

There is only one invariant second-rank symmetric tensor: the metric
itself, ⌘µ⌫ . This establishes Eq. (4.25) up to the value of the propor-
tionality constant. To fix this constant, choose the special case where
µ = ⌫ = 1, for which tr[(�1)2] = tr[1] = 4 = 4⌘11.

(iv)

tr[�5�
µ�⌫ ] = 0 (4.26)

To see this, note that �5�µ = ��µ�5. The �µ may then be moved
to the end by cyclicity of the trace, proving that the result must be
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antisymmetric in µ, ⌫. But the only second-rank invariant tensor is
symmetric, so the answer must be zero.

(v)

tr[�µ�⌫���⇢] = 4(⌘µ⌫⌘�⇢ � ⌘µ�⌘⌫⇢ + ⌘µ⇢⌘⌫�) (4.27)

A fourth-rank invariant tensor (as opposed to pseudotensor) must be
constructed from a sum of pairs of metric tensors. The three distinct
pairs that are possible are those that appear on the right-hand side
of Eq. (4.27). The coe�cient of each of these terms is most easily
determined by evaluating both sides with a simple choice for the
indices. For example, the coe�cient of the first term is determined
to be 4 by the choice µ = ⌫ = 0 and � = ⇢ = 1. With this choice
only the first term on the right-hand side is nonzero since the metric
is diagonal, and the left-hand side becomes tr[(�0)2(�1)2] = tr[�1] =
�4 = 4⌘00⌘11.

(vi)

tr [�5�
µ�⌫���⇢] = 4i✏µ⌫�⇢ (4.28)

The right-hand side of this result is again the unique fourth-rank
invariant pseudotensor. Its coe�cient is easily determined by the
evaluating the choice µ = 0, ⌫ = 1, � = 2 and ⇢ = 3 for which the
right-hand side is 4i✏0123 = 4i (c.f. Eq. (1.33)) and the left-hand side
is tr[�5�0�1�2�3] = tr[i(�5)2] = 4i.

These results su�ce for the present purposes. Traces involving more than
four gamma matrices may be evaluated in a similar fashion.

4.1.4 Z
0 decay: formulae

With these results, we can evaluate the traces that arise in Eq. (4.18):

tr[�µ(gV + gA�5)(mf + i/q)�⌫(gV + gA�5)(mf � i/p)]

= m2
f tr[�µ(gV + gA�5)�

⌫(gV + gA�5)]

+ tr[�µ(gV + gA�5)q/�
⌫(gV + gA�5)/p]

= m2
f tr[�µ(g2

V
� g2

A
)�⌫ ]

+ tr[�µ(g2
V
+ g2

A
+ 2gV gA�5)q/�

⌫/p]

= 4m2
f (g

2
V
� g2

A
)⌘µ⌫

+ 4(g2
V
+ g2

A
)(qµp⌫ + pµq⌫ � ⌘µ⌫p · q) + 8igV gA✏

µ⌫↵�p↵q� (4.29)

In going from the first to second expressions, we have dropped terms linear in
mf because they involve an odd number of gamma matrices, and therefore
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vanish in the trace. Between the second and third expressions, we have
moved (gV + gA�5) across either 1 or 2 intervening gamma matrices; as �5
anticommutes with each �↵, its sign flips once for each intervening gamma
matrix. The last step uses the trace identities numbered 3, 5, and 6 above.
Contracting against [⌘µ⌫ + kµk⌫/M2

Z
] from Eq. (4.13), and using (due to

the � function) kµ = pµ + qµ, the averaged matrix element squared M2
=

1
3

P
��� |M|2 becomes

M2 =
4e2

Z

3

"

�2(g2
V
+ g2

A
)p · q+4m2

f (g
2
V
� g2

A
) +

4m2
f

M2
Z

g2
A
(m2

f � p · q)
#

(4.30)

This should be combined with Eq. (4.9) to give the polarization averaged
di↵erential decay rate,

d�[Z(k)! ff̄ ] =
1

2k0
M2(2⇡)4�4(k � p� q)

d3p d3q

2p02q0(2⇡)6
(4.31)

Notice that this displays the proper Lorentz-transformation properties ap-
propriate to a decay rate. All of the factors in Eq. (4.31) are manifestly
Lorentz invariant except for the 1/2k0 prefactor. Since the Z0-boson en-
ergy, k0, is related to its rest mass, MZ , and speed, v, by k0 = MZ/

p
1� v2,

it follows that in a general frame d� = d�rest

p
1� v2, implying the correct

time dilation for the lifetime ⌧ = 1/�.
The decay rate in the Z0 rest frame is found by making the substitution

kµ = (MZ ,0), which implies that (2⇡)4�4(p + q�k) = 2⇡�(p0 + q0 �MZ)
(2⇡)3�3(p+q). It follows that the outgoing fermion and antifermion have a
specific energy in the Z0 rest frame. In this case, because the fermion and
antifermion have equal masses, the outgoing fermion energies and momenta
are

p0 = q0 = MZ/2

|p| = |q| =
q
(p0)2 �m2

f =
1

2

q
M2

Z
� 4m2

f (4.32)

This kind of delta-function distribution of outgoing-particle energies is char-
acteristic of a two-body decay process.
The rest-frame di↵erential decay rate may be simplified by using the delta

functions to perform the integrals over q and p = |p|. Suppose ✓ and � are
the polar angles that give the direction of the outgoing fermion in the Z0

rest frame. Then the result p ·q = �p0q0+p ·q = �(p0)2�p2 = m2
f �M2

Z
/2

implies that the di↵erential decay rate, d�, for the decay of unpolarized Z0s
is independent of ✓ and �. This is not surprising, as the initial state is
rotationally symmetric.
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The total and di↵erential decay rate in the Z0 rest frame is therefore,

�(Z ! ff̄) = 4⇡
d�

sin ✓ d✓ d�
(Z ! ff̄)

=
e2
Z

12⇡
MZ

"

(g2
V
+ g2

A
) + 2(g2

V
� 2g2

A
)
m2

f

M2
Z

#vuut1�
4m2

f

M2
Z

(4.33)

Before turning to the implications of this expression, a short aside is in
order to compute the same quantity for a perfectly polarized sample of Z0s.

4.1.5 Polarized Z
0 decay

The di↵erential decay rate for polarized Z0s is found using the same tech-
niques. Assuming that the spin of the outgoing fermion and antifermion are
not observed, the main di↵erence is that there is in this case no sum over the
initial Z0 spin, and so the identity used in Eq. (4.13) is no longer available.
The di↵erential decay rate is therefore still given by Eq. (4.31), with the

di↵erence that in this case

M2 ! M2
pol ⌘ e2

Z

X

�,⇣

|✏µū�µ(gV + gA�5)v|2

= e2
Z
tr [/✏(gV + gA�5)(mf + i/q)/✏⇤(gV + gA�5)(mf � i/p)] (4.34)

This trace may be evaluated using the techniques of Subsection 4.1.2. If the
initial Z0 is linearly polarized so that ✏µ = ✏⇤µ and ✏ · ✏ = 1, then the result
is

M2
pol = 4e2

Z
{m2

f (g
2
V
� g2

A
)� (g2

V
+ g2

A
)[p · q � 2(✏ · p)(✏ · q)]} (4.35)

In the Z0 rest frame, choose the direction of the Z0 spin, ✏µ, to define the
z-axis. Then taking the polar angles of the direction of the outgoing fermion
to be (✓,�), we have ✏ · p = �✏ · q = |p| cos ✓. The resulting di↵erential cross
section is independent of �, as is expected due to the axial symmetry of the
initial state, but does depend on ✓ in the following way:

d�

sin ✓ d✓
= 2⇡

d�

sin ✓ d✓ d�

=
e2
Z
MZ

16⇡

vuut1�
4m2

f

M2
Z

⇥
"

g2
V

 

1� cos2 ✓ +
4m2

f

M2
Z

cos2 ✓

!

+ g2
A

 

1�
4m2

f

M2
Z

!

(1� cos2 ✓)

#

(4.36)
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As a check, notice that the integral of Eq. (4.36) over the interval 0 < ✓ <
⇡ reproduces the same total decay rate as does the unpolarized result of
Eq. (4.33), as it must.

4.1.5.1 The massless limit

Eq. (4.36) has a particularly simple physical interpretation in the limit of
vanishing fermion mass, mf ! 0. In this limit the di↵erential decay rate
becomes

d�

sin ✓ d✓
⇡ e2

Z

16⇡
MZ(g

2
V
+ g2

A
)(1� cos2 ✓) (4.37)

This result vanishes when the outgoing fermion comes out parallel or an-
tiparallel to the initial Z0 boson’s polarization vector, ✏µ. This has a simple
explanation in terms of the interplay between conservation of angular mo-
mentum and conservation of helicity (which is conserved in the limit of
massless fermions).
The neutral-current interaction of Eq. (4.4) that is responsible for the

Z0 decay always pairs up fermions of definite helicity. That is, since this
interaction Hamiltonian always involves the field combination f̄L�µfL, it
must always create a left-handed fermion together with the antiparticle to a
left-handed fermion, which is a right-handed antifermion. The term which
involves f̄R�µfR must similarly create a right-handed fermion and a left-
handed antifermion. When the fermion or antifermion comes out along
the direction of the initial Z0 boson’s polarization vector, then the total
component of angular momentum along this direction is Jz = ±1. The
angular momentum of the initial state along this direction is zero, however,
so this decay configuration must be forbidden by conservation of angular
momentum.
We return now to the main line of argument and explore the implications

of Eq. (4.33) for the Z0 decay width in the Z0 rest frame.

4.1.6 Z
0 decay: applications

The rate for a Z0 to decay into a particular species of fermion–antifermion
pair, ff̄ , is given by Eq. (4.33):

�(Z ! ff̄) =
e2
Z

12⇡
MZ

"

(g2
V
+ g2

A
) + 2(g2

V
� 2g2

A
)
m2

f

M2
Z

#vuut1�
4m2

f

M2
Z
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Table 4.1. Fermion neutral-current coupling constants

Fermion Type T3 Q gV gA (g2V +g2A)

⌫e, ⌫µ, ⌫⌧ + 1
2 0 0.25 0.25 0.125

e, µ, ⌧ � 1
2 –1 –0.0189 –0.25 0.0629

u, c, t + 1
2 + 2

3 0.0959 0.25 0.0717
d, s, b � 1

2 � 1
3 –0.1730 –0.25 0.0924

⇡ e2
Z

12⇡
(g2

V
+ g2

A
)MZ for m2

f ⌧M2
Z

(4.38)

The last line gives the approximate form for the decay rate to the extent that
the mass ratio, m2

f/M
2
Z
, is negligible. This is a very good approximation for

all of the fermions of the standard model except the top quark, which is
anyway too heavy to appear as a decay product for the Z0. The heaviest
allowed decay product is the b quark, for which this mass ratio is m2

b/M
2
Z
⇡

(5/90)2 ⇡ 3⇥ 10�3.
Given this formula for the Z0 decay rate into di↵ering fermion species, we

may sum the contributions of all of the species of fermions in the standard
model that are kinematically allowed to contribute, and thereby compute
the total lifetime of the Z0 within the standard model.
The coupling constants gV and gA in the standard model are given in

terms of the third component of weak isospin, T3, and electric charge, Q,
by gV = 1

2T3 �Q sin2 ✓W and gA = 1
2T3. The corresponding couplings of the

standard model fermions are tabulated in Table 4.1 (using sin2 ✓W = 0.2311,
see Appendix A.)
From this table it is straightforward to compute the total Z0 lifetime

within the standard model.
Rather than computing the decay rate for each species of fermion in the

model, it is convenient to compute the total decay rate, �tot, and the fraction
of Z0 decays – or branching fraction, Bf = �(Z ! ff̄)/�tot – that go into
each particular fermion species. The reason for quoting results in this way is
that the branching fraction is more reliably computable since it just depends
on the numbers gV and gA and so is less subject to errors in the values of
the experimentally determined couplings. The branching fractions are also
much easier to measure experimentally.
Using the numerical values for parameters given in Appendix A, we find

�(Z ! ff̄) =
↵

3 sin2 ✓W cos2 ✓W
MZ(g

2
V
+ g2

A
)Nc

= (1.336 GeV) · (g2
V
+ g2

A
)Nc (4.39)
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Table 4.2. Computed and measured Z0 branching fractions

Fermion type Computed Measured

⌫e⌫̄e + ⌫µ⌫̄µ + ⌫⌧ ⌫̄⌧ 20.5% f1(20.00± 0.06)%
e+e� 3.45% (3.363± 0.004)%
µ+µ� 3.45% (3.366± 0.007)%
⌧+⌧� 3.45% (3.370± 0.008)%
bb̄ 15.18% f2(15.14± 0.05)%
uū+ dd̄+ ss̄+ cc̄ 54% f3(54.76± 0.06)%

Total width 2.44 GeV (2.4952± 0.0023) GeV

f1: i.e. Z ! unobserved final state.
f2: i.e. Z ! BB̄.
f3: i.e. Z ! non-BB̄ hadrons.

The constant Nc here represents the number of colors that is appropriate
to fermion type f . Nc = 1 must therefore be chosen when f is a lepton
and Nc = 3 when f is a quark. ↵ = e2/(4⇡) denotes the electromagnetic
fine-structure constant whose value we take at µ = MZ to be ↵ = 1/127.9.
The total Z0 width then becomes

�tot = (1.336 GeV)[3 · (0.125) + 3 · (0.0629) + 9 · (0.0924) + 6 · (0.0717)]
= 2.44 GeV (4.40)

The corresponding Z0 lifetime is therefore

⌧(Z) =
1

�tot
= 2.69⇥ 10�25 s (4.41)

Since even an ultra-relativistic particle can only travel around 10�18 m in
this time, Z0 particles decay well before they are seen, and so must be
reconstructed in a detector from their decay products.
Some of the branching fractions are listed in Table 4.2.
There are several points to be made about these results.

(i) The factor MZ

q
1� (4m2

f/M
2
Z
) in the decay rate has its origin in the

integration over phase space. That is, it arises from the integration
over the final-state momenta

R
d3q d3p. For mf ⌧ MZ this factor

is O(MZ) since this is the typical size of the momentum available to
the final-state particles. Since the total rate for a process is given
by an integral over all of the final states that can take part, it is a
rule of thumb that if two processes have equal-size couplings then the
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one with more available phase space (i.e. the one with more available
final states) will have the larger rate.
The phase-space factor is proportional to the momentum available

to the final fermions, and so tends to zero as mf approaches MZ/2,
as is required by four-momentum conservation. In the event that mf

should be close to MZ/2 this phase-space suppression can make the
decay rate into fermion species f much smaller than might otherwise
be expected.

(ii) The overall order of magnitude of the Z0 decay rate can be estimated
reasonably well without performing the entire detailed calculation.
This may be done by keeping track of factors of coupling constants
and the volume of phase space appropriate to the process of interest.
Since factors of 2⇡ are ubiquitous in these calculations, and since their
omission can appreciably a↵ect the size of the result, it is important
also to keep track of these factors. There is a factor of (2⇡)4 from the
momentum-conserving delta function, a (2⇡)�3 from each final state
particle’s momentum integration, and a (2⇡) from the d⌦ angular
integral for all but one of the final-state particles. (As will be seen
later there can also be an additional factor of (4⇡)�2 for each loop in
the relevant Feynman diagram if such loops arise.)
The matrix element for Z0 decay is clearly proportional to the

coupling constants, eZgV and eZgA, of the neutral-current interaction
term in the Lagrangian. Since, for massless fermions, the total rate is
found by incoherently adding the rate due to left-handed fermions to
that for right-handed fermions, these two couplings must appear in
the combination e2

Z
(g2

V
+g2

A
) when fermion masses are neglected. The

momentum integrals and squared matrix element therefore provide
� ⇠ [e2

Z
(g2

V
+ g2

A
)/2⇡]X. Here the phase-space volume, X, repre-

sents the result obtained by integrating over all final-state momenta,
and whose value can be estimated by dimensional analysis. In the
present example the volume of phase space is O(MZ) if mf is not
too close to MZ , since MZ is the typical energy available in the de-
cay. Since � has dimensions of mass (in units with h̄ = c = 1), we
get � ⇠ [e2

Z
(g2

V
+ g2

A
)/2⇡]MZ . Comparing this estimate with the full

calculation, Eq. (4.38), shows that the estimate has only missed the
purely numerical factor 1/6. This is typical of the accuracy of this
type of simple order-of-magnitude estimate for two-body decays (see
also Subsection 5.1.1).

(iii) The next feature of this result that bears remarking is that the de-
cay width, �, is much smaller than the mass, MZ , since �/MZ ⇡
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e2
Z
/(12⇡) ⇠ 10�2. This implies that the Z0 is reasonably stable for

a particle of its mass. As we shall see, Z0s have been observed as
a resonance in e+e� annihilation in high-energy electron–positron
storage rings at CERN and at SLAC. The small size of the width of
the Z0 translates into the narrowness of the resulting resonance (see
Subsection 6.4.1).

(iv) Inspection of the coupling constants, gV and gA, of the table shows
that the neutrinos couple to the Z0 with the largest strength of the
fermions of the standard model. The vector coupling, gV , of the
remaining fermions is smaller due to a partial cancellation between
1
2T3 and Q sin2 ✓W. This cancellation is most complete for the charged
leptons, e, µ, and ⌧ , and would be perfect if sin2 ✓W were exactly
0.25. As a result, the charged-lepton neutral-current couplings may
be considered to first approximation as being purely axial in nature.

(v) Although the data measures the decay rate into hadrons, the decay
rate we have computed is really the decay rate into a quark–antiquark
pair. Since the observed hadrons are really bound states of the quarks
and since no isolated quark has ever been directly detected, it is not
immediately clear that the rate for producing quark–antiquark pairs
should be related to the rate for Z0 decays into hadrons.
The argument is discussed in more detail in later chapters, but the

main point can be made schematically here. The key observation
that makes this connection relies on the fact that the rate we have
computed is an inclusive rate in the sense that only the total rate for
producing hadrons is considered without trying to distinguish one
type of hadron from another. The observable therefore has the form
of a sum over all possible final hadronic states:

d�(Z ! hadrons) / tr[⇢(Z)P (�)] (4.42)

in which ⇢(Z) denotes the density matrix that describes the sample of
initial Z0 bosons and P (�) is the projection matrix within the Hilbert
space onto the subspace spanned by the observables labeling the final
state. For the total rate for producing hadrons this projection matrix
is the projector, PH , onto the entire subspace of strongly interacting
particles: PH =

P
h |hihh| for some basis of hadronic states, |hi.

Now an equally good basis for the subspace of hadronic states is
formed by the set of color-neutral many-quark and - gluon states,
|q, gi, even though no particular hadron-mass eigenstate may be well
approximated by any particular multi-quark and - gluon state. The
projector that appears in Eq. (4.42) may therefore be written PH =
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P

q,g |q, gihq, g|. Once the projector is expressed in terms of a sum on
quark and gluon states the calculation simplifies dramatically. This is
because the strong coupling constant is small, ↵3 = g23/(4⇡) ⇡ 0.12,
when it is evaluated at the scale, µ ⇡MZ , appropriate to a Z0 decay.
It follows that the contribution of each of the quark basis states to
Eq. (4.42) is well approximated at these energies by perturbation
theory. To lowest order the dominant quark states that contribute
are precisely the quark–antiquark pairs for which we have performed
the calculation.
This is the general pattern. Although rates that involve identifying

specific strongly interacting final-state particles cannot be computed
without detailed knowledge of the wavefunctions of these particles, in-
clusive quantities that simply involve a sum over all possible hadronic
states (possibly with some prescribed value for a quantum number
such as B that is conserved by the strong interactions) may be reli-
ably calculated (at high energies) within perturbation theory.

(vi) The above table allows a comparison between the computed and ob-
served widths for Z0 decays into various final states. Since measure-
ments of Z0 properties have been made with great precision, this
comparison furnishes a significant test of the standard model’s ac-
curacy. This is all the more true given the success of the model in
describing other neutral-current phenomena (to be described in later
chapters) using the same set of model parameters.
Before performing this comparison, however, we need to have an

idea of the size of the potential corrections to the computed result.
These corrections arise from processes that involve more than one
power of the interaction Hamiltonian in Eq. (4.1). Corrections to the
leading result can be expected to be suppressed in size by additional
powers of the relevant coupling constants. For processes involving
strongly interacting particles the typical size of a correction from ad-
ditional strong interactions is O(↵3/(4⇡)) ⇡ 1%. All other things be-
ing equal, electroweak interactions can be expected to be even smaller
since they are instead proportional to O(↵/(4⇡ sin2 ✓W)) ⇡ 3⇥ 10�3.
This counting turns out to be modified somewhat in the case when

the correction involves the exchange of a massless particle such as
a photon or a gluon. Then the appearance of infrared mass singu-
larities can introduce factors of the logarithm of a large mass ratio
which can increase the size of the correction. For strongly interact-
ing particles this kind of e↵ect would increase the above estimate
to O{[↵3/(4⇡)] log(M2

Z
/⇤2

QCD
)} ⇡ 5 ⇥ 10�2. ⇤QCD ⇡ 150 MeV is a
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scale that is typical of the strong interactions, and which is discussed
at length in Chapter 8. The analogous estimate for the size of an
electromagnetic correction is O{[↵/(4⇡)] log(M2

Z
/m2

f )}, which can be
as large as 7⇥ 10�3 when f is an electron.
To summarize, we expect the uncertainty in the theoretical predic-

tion to be in the neighborhood of around 5% for decays that involve
strongly interacting quarks in the final state. Electromagnetic cor-
rections should be the largest for Z0 decays into electrons, for which
they could be in the neighborhood of 1% of the lowest-order result.
Electromagnetic corrections to decays into other final states should be
smaller still. Since the neutrino does not interact strongly or electro-
magnetically, the prediction for the branching fraction into neutrino
pairs should be accurate to within fractions of a percent.
These estimates would indicate that the uncertainty in the predic-

tion, Eq. (4.41), for the total rate should be accurate to the level of
roughly 0.13 GeV. The calculations of the hadronic branching frac-
tions could also be in error at the few percent level. A real calculation
of the size of these corrections is required in order to use the accuracy
of the experiment to make a better test of the model. To date, such
more precise comparisons between experiment and theory have been
spectacularly successful. For instance, one of the best current exper-
imental determinations of ↵3 arises from the corrections it generates,
in the width �Z .

4.2 W
± decays

The calculation of the decay properties of the charged electroweak boson,
W±, follows the same lines as did that for the Z0. The total decay rate (but
not necessarily the partial widths) of the W+ and W� are guaranteed to
be equal to one another by the fact that CPT is a symmetry of the theory.
The partial width W+ ! � must also be equal to the conjugate process,
W� ! �, to the extent that the relevant interactions preserve CP. Since our
interest in this section is restricted to the dominant decays of the W± which
are well-described within the Born approximation, which is CP perserving,
it su�ces to focus here on, say, the W+.

4.2.1 W
± decays: formulae

The first step is to identify the standard-model interactions for which the
matrix element h�|HI |W i 6= 0, since these can directly mediate the decay.
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An argument that is identical to the one used for the Z0 shows that the only
such interaction is the charged-current fermion coupling of Eq. (2.87),

HI = �Lcc

= �ieW
h
W+

µ (⌫̄m�
µ(1 + �5)em + Vnmūm�

µ(1 + �5)dn)

+W�
µ (ēm�

µ(1 + �5)⌫m + (V †)mnd̄m�
µ(1 + �5)un)

i
(4.43)

As before, eW is the coupling constant eW ⌘ g2
2
p
2
= e

2
p
2 sin ✓W

. The dominant

W± decays are therefore predicted to be into fermion–antifermion pairs, like
W+ ! e+⌫e, W+ ! s̄u, etc.

4.2.1.1 Neglect of fermion masses

To the extent that all fermion masses may be neglected compared to MW –
an excellent approximation for the standard model given that the t quark is
too heavy to allow the decayW+ ! td̄, ts̄, or tb̄ – no additional calculation is
necessary to determine the di↵erential rate for W+ decays. This is because
the di↵erential decay rate for the process W+ ! f̄mfn may be directly lifted
from the results of the previous section using the following translation table:

gV , gA ! 1

MZ ! MW

eZ ! eWUnm

with Unm =
⇢
unit matrix, �mn if fm, fn are leptons
KM matrix, Vnm if fm, fn are quarks

(4.44)

The di↵erential decay rate for the decay of a linearly polarized W± bo-
son into a fermion–antifermion pair, f̄mfn, (with the final fermion spins
unmeasured) therefore is

d�

sin ✓d✓
[W+ ! f̄mfn] ⇡

e2
W

8⇡
|Unm|2MWNc(1� cos2 ✓); m2

m,m2
n ⌧M2

W

(4.45)
The notation is the same as in the previous section. ✓ denotes the polar
angle of the outgoing fermion in the rest frame of the decaying W+ with the
initial polarization direction chosen to define the z-axis.
The total (unpolarized) decay rate is similarly

�(W+ ! f̄mfn) ⇡
e2
W

6⇡
|Unm|2NcMW ; m2

m,m2
n ⌧M2

W
(4.46)

4.2.1.2 Non-vanishing fermion masses

Before exploring the implications of these expressions, we pause to generalize
the above results to the case where the fermion masses are not neglected.
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These generalizations may be straightforwardly proven using the techniques
of the previous section.
The full expression for the di↵erential decay rate for polarized W+ bosons

into an unpolarized fermion–antifermion pair, f̄mfn, is

d�

sin ✓d✓
[W+! f̄mfn] =

e2
W

8⇡
|Unm|2NcMW

vuut
 

1� m2

M2
W

!2

� 4m2
mm2

n

M4
W

⇥

2

41� m2

M2
W

�

2

4
 

1� m2

M2
W

!2

� 4m2
mm2

n

M4
W

3

5 cos2 ✓

3

5

(4.47)

in which m2 = m2
m + m2

n is the sum of the squared masses of the final
spin-half particles.
Of particular interest is a special case of this last expression for which

the mass of only one of the fermions is negligible. This is the result that is
appropriate if fn is a neutrino and the rate is desired as a function of the
charged lepton mass. The results are

d�

sin ✓ d✓
[W ! f̄mfn] =

e2
W

8⇡
|Unm|2MWNc

"

1�
 

1� m2
m

M2
W

!

cos2 ✓

#

⇥
 

1� m2
m

M2
W

!2

; m2
n ⌧ m2

m, M2
W

(4.48)

The total decay rate in this last case becomes

�(W ! f̄mfn) =
e2
W

6⇡
|Unm|2MWNc

 

1 +
m2

m

M2
W

! 

1� m2
m

M2
W

!2

(4.49)

Since this is a two-body decay, four-momentum conservation implies that
the spectrum of outgoing fermions has a delta-function distribution as a
function of the energy of the outgoing fermions: d�/dE / �(E �E0). Since
the fermions have equal and opposite three-momenta in the W± rest frame,
it follows that their energies in this frame are given in terms of the particle
masses by

p0m =
MW

2
+

m2
m �m2

n

2MW

p0n =
MW

2
� m2

m �m2
n

2MW

(4.50)

This process is clearly kinematically allowed provided only that the sum of
fermion and antifermion masses is smaller than MW .
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4.2.2 W
± decays: applications

The total decay rate and the branching fractions of the W± boson into
fermion–antifermion pairs may now be computed within the standard model
by applying these formulae.
It is convenient to normalize the total decay rate by the partial rate for

the decay of a W+ into an positron–neutrino pair:

�(W+ ! e+⌫e) =
↵

12 sin2 ✓W
MW

= (226 MeV) (4.51)

In terms of this partial rate the total W± decay width therefore is

�tot = �(W+ ! e+⌫e)

"

3 + 3
2X

n=1

3X

m=1

|Vnm|2
#

= 9�(W+ ! e+⌫e)

= 2.04 GeV (4.52)

The first factor of 3 in the square bracket in the first equation corresponds
to the three families of leptons. The second 3 represents the three colors of
each quark. The sum over ‘up-type’ quarks only runs over the first two gen-
erations because the top quark is too heavy to be a W+ decay product. The
second equality in Eq. (4.52) uses the unitarity of the Kobayashi–Maskawa
matrix

P2
n=1

P3
m=1 |Vnm|2 =

P2
n=1 [V V †]nn = 2.

The decay width of Eq. (4.52) corresponds to a W± boson lifetime of

⌧(W±) =
1

�tot
= 3.22⇥ 10�25 s (4.53)

These particles clearly decay well before they may themselves be directly
detected.
Many branching fractions are once again calculable as pure numbers, in-

dependent of model parameters. A few branching fractions are presented in
Table 4.3.
The W± boson is again very long lived on the scale of its mass, and decays

into leptons 33% of the time, and hadrons the rest of the time.
Since the strengths of the W± couplings to fermions do not depend on the

fermions’ electric charges or other such quantum numbers, to this approx-
imation the only di↵erence in the branching fractions into di↵erent species
of particles is due to the existence of the Kobayashi–Maskawa matrix. As
a result, the model predicts absolutely no di↵erence among the decay rates
into lepton pairs until masses and radiative (loop) corrections are included.
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Table 4.3. Computed and measured W+ branching fractions

Fermion type Computed Measured

e+⌫e 11.1% (10.75± 0.13)%
µ+⌫µ 11.1% (10.57± 0.15)%
⌧+⌫⌧ 11.1% (11.25± 0.20)%
Hadrons 66.7% (67.60± 0.27)%

Total width 2.04 GeV (2.085± 0.042) GeV

The size of these corrections are expected to be roughly the same size as for
Z0 decays – around a percent for electrons and less for µs and ⌧s.
Like the Z0 width, the W± width is larger than our theoretical estimate.

This is because of (computable) positive O(↵3) corrections; the width is in
good agreement with a more detailed calculation.

4.3 Higgs decays

The last massive elementary boson of the model to be considered here is the
spinless Higgs particle. Here we compute its decay rate to two-body final
states, which are in fact believed to dominate its decay rate. We will find,
however, that the decay rate is suppressed, because the Higgs coupling is
proportional to the relatively small mass of the final state particles. This
means that a significant fraction of Higgs decays may occur via formally
higher-order processes, which we will explore in the next chapter.
The interaction terms in the Lagrangian that are linear in the Higgs scalar,

which can potentially mediate Higgs decay through a matrix element of the
form h�|HI |Hi 6= 0, are of two types: the Higgs-fermion Yukawa couplings
of Eq. (2.69), and the Higgs-electroweak boson interactions of Eq. (2.68):

Hf = �LHf =
X

f

mf

v
f̄fH (4.54)

and

Hg = �LH�g =
H

v

⇣
2M2

W
W+

µ W�µ +M2
Z
ZµZ

µ
⌘

(4.55)

The first of these can mediate the potential decay H ! ff , and the second
can mediate H ! W+W� and H ! Z0Z0. Since we now know that
mH < 2MW < 2MZ , the latter decay processes are not allowed, due to
energy conservation; the final state energy is bounded below by the sum of
the final particles’ masses. Therefore we will focus exclusively on decays
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to fermions. Since the coupling strength is proportional to the mass of the
fermion in question, the dominant decay is expected to be into the heaviest
particle that is still light enough for the decay to be kinematically allowed,
which is the b-quark. Therefore we expect Higgs decay to be predominantly
to bb pairs.
The matrix element for this process may be evaluated using the expansion

of the fields in terms of creation and annihilation operators, as in Subsec-
tion 4.1.3. The result is

M(H ! ff) = hf(p,�); f(q, ⇣)|Hf (0)|H(k)i

=
mf

v
hf(p,�); f(q, ⇣)|ffH|H(k)i

=
mf

v
u(p,�)v(q, ⇣) (4.56)

Summing the square of this matrix element over final-state spins gives

M2
f ⌘

X

�,⇣

|M(H ! ff)|2

= �
m2

f

v2
tr[(mf � i/p)(mf + i/q)]

=
4m2

f

v2
(�p · q �m2

f ) (4.57)

The di↵erential decay rate is therefore

d�(H ! ff) =
1

2k0
M2

f (2⇡)
4�4(p+ q � k)

d3p d3q

4p0q0(2⇡)6

=
2m2

f

v2k0
(�p · q �m2

f )(2⇡)
4�4(p+ q � k)

d3p d3q

4p0q0(2⇡)6
(4.58)

In the Higgs rest frame the fermions clearly come out back-to-back and
with energies equal to half the Higgs mass. Owing to the rotational symme-
try of the problem, the decay probability in the rest frame is also indepen-
dent of the direction of the outgoing fermion–antifermion pair. Including
the potential sum over final-state color, the total Higgs decay rate into a
particular flavor of fermion in the Higgs rest frame becomes

�(H ! ff) =
mH

8⇡

✓
mf

v

◆2

Nc

 

1�
4m2

f

m2
H

!3/2

⇡ mH

8⇡

✓
mf

v

◆2

Nc for mf ⌧ mH (4.59)

This decay rate is clearly very sensitive to the final-state fermion mass,
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and as advertised is largest for the heaviest fermions. Given the physical
value of the Higgs mass, the largest contribution comes from the b quark.
Neglecting the ratio m2

b/m
2
H
and using the present value of 126 GeV for mH

gives a Higgs partial width of

�(H ! bb) = (3.5⇥ 10�5) mH = 4.4 MeV (4.60)

which corresponds to a Higgs lifetime of ⌧(H) ' 1.5 ⇥ 10�22 s. Such a
particle would typically propagate less than 10�13 meters before decaying,
which is far too short to be separated from the production point. Therefore
the Higgs boson must be detected through its decay products.

4.4 Problems

[4.1] W width at finite fermion mass
Calculate the rate �(W� ! e�⌫̄e) without assuming me ⌧Mw.
Use

L = ieWW�
µ ē�µ(gV + gA�5)⌫ + h.c. , gV = gA = 1

[4.1.1] Show that the matrix element is

he(p)⌫̄e(q)|H|W (k)i = �ieW ✏µ(k)ū(p)�µ(gV + gA�5)v(q)

[4.1.2] Show that, if m⌫ 6= 0 and me 6= 0, we would get
X

�1�2

|✏µ(k)ū(p)�µ(gV + gA�5)v(q)|2 =

4
n
mem⌫(g

2
V
� g2

A
) + (g2

V
+ g2

A
) [�p · q + 2✏ · p ✏ · q]

o

[4.1.3] Suppose the initial W� is linearly polarized in the direction ~e . In
the W� rest frame, show that

d�

d cos ✓
=

e2
W
MW

16⇡
(g2

V
+ g2

A
)

"

1�
 

1� m2
e

M2
W

!

cos2 ✓

# 

1� m2
e

M2
W

!2

where ✓ is the angle between ~p and ~e . Assume m⌫ = 0.
[4.1.4] Show that the unpolarized rate is

�(W� ! e�⌫̄e) =
e2
W
MW

12⇡
(g2

V
+ g2

A
)

 

1 +
m2

e

2M2
W

! 

1� m2
e

M2
W

!2

[4.2] Decay of the top quark
Consider the top quark, with a mass of mt ' 173 GeV.
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[4.2.1] Identify the only interaction term in the Lagrangian which is linear
in the top quark. Can a single insertion of this interaction term cause
the top quark to decay? What are the decay products?

[4.2.2] Write an expression for the matrix element for the dominant top-
quark decay process.

[4.2.3] Find a compact expression for the square of the matrix element,
summing over final-state spin or helicity states and averaging over the
initial top-quark helicity state.

[4.2.4] Compute the width of the top quark. Neglect the masses of any
other fermions in comparison to the top-quark mass, but treat the
masses of W and Z bosons as comparable to the top-quark mass. You
should be able to find an analytic expression for the decay rate. Then,
substitute in physical values and express the answer in GeV.

[4.3] Heavy Higgs decay and the ‘Equivalence Theorem’
Before its discovery, experimentalists had to search for the Higgs boson

in a wide mass range, including masses heavy enough to allow the decay
to W+W� or to two Z bosons. This calculation is also instructive in what
it teaches about how longitudinal spin-states of the gauge bosons behave
in the limit of weak gauge couplings.

[4.3.1] Show that the matrix element for H !W+W� can be written

M(H !W+W�) = hW+(p,�);W�(q, ⇣)|Hg(0)|H(k)i

=
2M2

W

v
✏⇤µ(q, ⇣)✏

⇤µ(p,�) . (4.61)

[4.3.2] Square and sum over gauge boson spins using Eq. (1.119), and
show that the di↵erential decay rate is

d�(H !W+W�) =
1

2k0

 
2M2

W

v

!2 "

2 +
(p · q)2
M4

W

#

⇥

(2⇡)4�4(p+q�k) d3p d3q

2p02q0(2⇡)6
, (4.62)

and the total Higgs decay rate in the Higgs rest frame is

�(H !W+W�) =
mH

16⇡

m2
H

v2

2

41�4
 
M2

W

m2
H

!

+12

 
M2

W

m2
H

!2
3

5
s

1�4M2
W

m2
H

⇡ mH

16⇡

m2
H

v2
for MW ⌧ mH . (4.63)

An interesting feature about this result is that it is proportional to the
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square of the Higgs mass, (mH/v)2, rather than to the square of the
mass of the final-state particle as was the case for Higgs decays into
fermions, Eq. (4.59). Since the ratio (mH/v)2 is essentially the Higgs
self coupling, �, (c.f. Eq. (2.37)), this reflects the fact that the longitu-
dinal component of the massive gauge bosons originate as components
of the scalar doublet that are ‘eaten’ by the Higgs mechanism. This
allows a simple interpretation for the two terms in the square bracket
in the last equality of Eq. (4.62): The factor of 2 corresponds to the
two transverse polarization states of the W meson which couple with
a strength proportional to the gauge coupling, g2 ⇡ MW/v, and the
remaining term represents the momentum-dependent coupling of the
longitudinal ‘Goldstone mode’ that couples proportional to the Higgs
self-coupling as above. This ability to compute the interactions of lon-
gitudinally polarized gauge bosons in terms of the scalars that they’ve
eaten is sometimes called the “Equivalence Theorem.”

[4.3.3] Compare the width you find to the width to decay to a bb pair, for
a Higgs mass of 180 GeV.

[4.3.4] For the decay H ! Z0Z0 the only di↵erence is the statistics of the
final two-boson state. Show that the final result is

�(H ! Z0Z0) =
1

2
�(H !W+W�)

����
MW!MZ

, (4.64)

so the rate for decay into Z0’s is the same as it is separately for each of
the two states, W1 or W2, that make up the W± (with the substitution
of MZ for MW ).
Hint: Since the two final Z0 particles are identical, there are three
changes to be made:

(i) In the evaluation of the matrix element, M, of Eq. (4.61), there is
a factor of 1

2 because the numerical coe�cient of the interaction
Hamiltonian, Eq. (4.55), is half as large for Z0’s as it is for W±’s.

(ii) There is a factor of 2 because there are now two ways the fields,
ZµZµ, can create the two particles in the final state.

(iii) Finally, the range of the final integration over the solid angle
of the direction of one of the outgoing particles need only be
2⇡ steradians rather than the usual 4⇡ since it is impossible to
distinguish which Z boson heads in which direction.

[4.3.5] What would be the observed final-state particles from these decay
processes, considering that the W and Z bosons are themselves un-
stable? How might these decays be distinguished experimentally from
other processes that produce the same final states?
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[4.4] Gamma-matrix identities
Prove the following useful formulae involving gamma matrices. You

should need only the relations, �µ�⌫ = 2⌘µ⌫ � �⌫�µ, and ⌘µµ = 4.

/k/k = k2

/k/p/k = 2p · k/k � k2/p

�µ�µ = 4

�µ/k�µ = �2/k
�µ/p/k�µ = 4p · k
�µ/p/kq/�µ = �2q//k/p
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Leptonic weak interactions: decays

The next simplest application of the standard model to understanding the
properties of the observed elementary particles is to compute the decay
lifetimes of the other weakly interacting particles of the model. The only
remaining particles that do not participate in the strong interactions are the
leptonic fermions. This chapter is devoted to a calculation of their decay
properties.
The purpose of this chapter is threefold. Two of these are straightfor-

ward. Lepton decays furnish our first example of a “second-order” decay
that proceeds via a virtual particle, and so provide a good motivation for
a full description of the Feynman rules of the theory. This calculation also
provides some insight into the observed properties of real leptons and so
allows more contact with experimentally accessible quantities. Indeed, the
weak decays of the known fundamental particles provide much of our cur-
rent information concerning the electroweak couplings. The third and final
motivation is to provide the first illustration of the utility of the technique
of e↵ective Lagrangians for computing the virtual e↵ects of heavy particles.

5.1 Qualitative features

The six flavors of fundamental leptons are e, µ, ⌧, ⌫e, ⌫µ, and ⌫⌧ . Four of these
are absolutely stable in the standard model by virtue of exact or extremely
good approximate conservation laws of the model. The stable species are the
three neutrino types and the electron. They are absolutely stable because
they are each the lightest particles that carry nonzero values for a conserved
quantum number. They cannot decay because any potential decay product
would have to be lighter than the decaying particle, and would have to carry
a nonzero value for the quantum number in question. No such particles exist

152
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by the very assumption that the original particle is the lightest one that
carries this quantum number.
The neutrinos, being massless, are the lightest particles that carry the

appropriate lepton number: Le, Lµ, and L⌧ . The electron is similarly sta-
ble since it is the lightest particle that carries electric charge. One might
wonder whether the stability of the neutrinos might be suspect because of
the anomalies in the conservation of Le, Lµ, and L⌧ discussed in Subsec-
tion 2.5.3. This turns out not to be so; there are three anomaly-free quan-
tum numbers in the standard model, Le � Lµ, Lµ � L⌧ , and B � L, which
(together with the fact that the neutrinos are all lighter than any particle
carrying a nonzero baryon number) are su�cient to ensure the stability of
all three neutrinos. Note however that if the standard model is enlarged by
relaxing renormalizability to allow dimension-5 operators, as discussed in
Chapter 10, then lepton numbers are generically violated and the neutrinos
may not be absolutely stable. However, estimates of their lifetimes are so
long that the question of their stability is not experimentally interesting.
The decay properties of the remaining two leptons, µ and ⌧ , are computed

here. The first step is to determine which interactions are responsible for
their decays. In this regard, notice that in the absence of the charged-
current fermion interactions, the symmetry group of the leptonic sector of
the standard model would be larger than Ue(1)⇥Uµ(1)⇥U⌧ (1). They would
in particular include a separate symmetry under the rotation of the muon,
say, by a phase that is independent of the muon neutrino. This would imply
the separate conservation of the number of muon (minus antimuons) and
muon neutrinos (minus muon antineutrinos), and so imply the stability of
the µ (and similarly of the ⌧). It follows that any process which results in µ
or ⌧ decay must necessarily involve the lepton charged-current interaction at
least once. The dominant contribution to the decay will be that one which
involves the fewest interactions.
For definiteness consider ⌧� decay. In order to involve the minimum

number of interactions – one – there must be a potential decay product, |�i,
for which the matrix element

h�|Hcc(0)|⌧�i = �
ig2
2
p
2
h�|W+

µ ⌫⌧�
µ(1+�5)⌧ |⌧�i 6= 0 (5.1)

The only state, |�i, for which this matrix element is not zero is |�i =
|W�; ⌫⌧ i. This cannot be a decay product for a ⌧� particle, since the W�

boson is more massive than is the ⌧�.
It follows that ⌧�- (and µ�-) decay must arise at at least second order in

the perturbative expansion of Eq. (3.26). That is, the dominant contribution



154 Leptonic weak interactions: decays

to a decay ⌧� ! � must proceed via the matrix element

M(⌧� ! �) =
�i
2!

Z
d4xh�|T [HI(x)HI(0)]|⌧�i+ · · · (5.2)

if not at higher order.
From the above considerations, the interaction term which destroys the

⌧� particle must be the charged-current Hamiltonian appearing in Eq. (5.1).
Besides destroying the ⌧�, this interaction also creates W� and ⌫⌧ particles.
The second interaction term must therefore destroy the created W� parti-
cle, in order to produce a final state that involves only particles that are
less massive than the initial ⌧� lepton. As is demonstrated in some detail
in Section 4.2, the only interaction that can cause a transition from a W�

particle to lighter particles is once again the charged-current fermion inter-
action. These interactions destroy the W� and produce a fermion and an
antifermion, for instance, e�⌫e. The ⌧ -neutrino that is produced when the
⌧ lepton is destroyed must appear in the final state to carry o↵ the nonzero
L⌧ of the original ⌧�.
The dominant decay processes must therefore be three-body decays, of

the form ⌧� ! fmfn⌫⌧ , in which fm and fn are any two fermions that are
related to one another through the charged-current interactions and which
are lighter than the initial ⌧�. The rate for this decay is given to first
approximation by Eq. (5.2), in which the relevant terms in the interaction
Hamiltonian are

HI ⇢ �ieW
 

W+
µ ⌫⌧�

µ(1 + �5)⌧ +
X

mn

U⇤
mnW

�
µ fn�

µ(1 + �5)fm

!

(5.3)

The matrix Umn in this expression is the same as that used in Section 4.2 and
represents the unit matrix, �mn, if fm and fn are leptons and the Kobayashi–
Maskawa matrix, Vmn if they are quarks. As before, eW ⌘ g2/2

p
2 =

e/(2
p
2 sin ✓W).

Many of the properties of µ� and ⌧� decays follow from these general
observations before any detailed calculations are performed.

5.1.1 µ
� decays

(i) For µ� decays there is only one combination of three fermions for
which the sum of the masses is smaller than the µ� mass itself, and is
therefore kinematically allowed. The three particles in the final state
are completely determined by the conservation laws for the decay.
The final state must include the electron, e�, since this is the only
negatively charged particle that is lighter than the µ�. Conservation
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of Le and Lµ then dictate that the remaining two fermions must be
⌫µ to carry o↵ the initial muon number, and ⌫e to cancel the electron
number of the final electron. The dominant decay must therefore be

µ� ! e�⌫e⌫µ (5.4)

(ii) Of the three particles in the final state, only the electron is detectable
(without heroic e↵orts) since the neutrinos interact so weakly as to
make them easily leave any detector without interacting at all. The
observable of most interest is therefore the decay rate as a function of
the final electron’s quantum numbers. Since Eq. (5.4) is a three-body
decay, the electron can emerge with a continuous range of energies,
with energy conservation satisfied by having the remainder of the
initial muon’s energy shared by the remaining neutrinos. One of the
goals of the next section is to compute the number of electrons of any
given energy that emerge from a sample of decaying muons.

(iii) Counting the coupling constants and (2⇡)s associated with the decay
rate allows a simple estimate of its size and so of the muon lifetime.
This estimate compares reasonably well with the more detailed cal-
culation to follow. The decay involves two insertions of HI , which is
linear in g2, so it follows that M / g22.

There is another factor that must be included as well, the suppres-
sion associated with the necessity to produce and destroy a virtual
W� boson. As is justified in more detail in what follows, this sup-
pression is given by a factor of 1/M2

W
in the amplitude. This factor

is the relativistic analog of the familiar energy denominators of non-
relativistic quantum mechanical perturbation theory (c.f. Eq. (1.34)
for example.)

Including this factor gives the estimate M ⇠ g22/M
2
W
. Since the

typical energy available to the final particles in the muon rest frame is
mµ, the integral of the squared matrix element over phase space may
be estimated by including the appropriate power of mµ. Since our
estimate for |M|2 has dimensionM�4 and the decay rate is dimension
M , the power of mµ required by dimensional analysis is m5

µ.

It remains to find the power of (2⇡) arising from the phase space
integration. Each of the three integrals over final particle momenta
introduces (2⇡)�3, but there is a (2⇡)4 from the energy and mo-
mentum conserving delta function. There are two independent solid
angle integrations, each contributing ⇠(2⇡). The total power of (2⇡)
is therefore (2⇡)�3.
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The decay rate is therefore of order

�(µ� ! e�⌫e⌫µ) ⇠
|M|2m5

µ

(2⇡)3

⇠ g42
(2⇡)3

m5
µ

M4
W

⇠ 2↵2

⇡ sin4 ✓W

m5
µ

M4
W

⇠ 2⇥ 10�15 mµ

⇠ 2⇥ 10�16 GeV (5.5)

corresponding to a lifetime of ⌧(µ) ⇠ 3⇥10�9 s. Unlike in the previous
chapter we take here the value ↵ ⇡ 1/137 for the electromagnetic fine
structure constant that is appropriate to low energies compared to the
weak scale. (The scale dependence of ↵ is discussed in Section 7.4.)
This di↵ers from the measured lifetime of ⌧exp = 2.2 ⇥ 10�6 s by

some three orders of magnitude, motivating the more careful calcula-
tion performed below. Notice that an extremely relativistic particle
with a lifetime of a microsecond can travel several hundred meters
before decaying. Muons therefore live long enough to escape the re-
gion immediately surrounding the interaction point and can enter the
surrounding detector for observation.

(iv) The branching fractions for di↵ering final states in µ� decay may
also be simply estimated. As argued above, the decay into e⌫⌫ is the
only one that may proceed to second order in the interactions of the
model. This will therefore have a branching fraction of essentially
⇡100%.
There will be other decay products available, and so deviations

from the 100% branching fraction, to the extent that higher-order
processes are possible. One such process that arises once three pow-
ers of the interaction Hamiltonian are allowed is the decay µ� !
e�⌫e⌫µ�, in which a photon is emitted by the initial muon or by the
final electron. Apart from all of the factors of coupling constants that
already arise for the purely three-body decay, the matrix element for
emitting an additional photon involves an extra factor of the elec-
tromagnetic coupling, e, and the phase-space integration involves an
extra (2⇡)/(2⇡)3 (the numerator from an angular integration, the
denominator from the momentum integration measure).
The estimate of the branching fraction for decays with an extra

photon in the final state is therefore B(µ� ! e⌫⌫�) ⇠ e2/(2⇡)2 ⇠
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2⇥10�3. Having the photon pair produce an electron–positron pair –
µ� ! e�e+e�⌫⌫ – would bear another factor of e2/(2⇡)2 of suppres-
sion, for a branching fraction ⇠10�5. These are in rough agreement
with the measured branching fractions

Bexp(µ
� ! e�⌫⌫) = ⇠100%

Bexp(µ
� ! e�⌫⌫�) = (1.4± 0.4)%

Bexp(µ
� ! e�⌫⌫e+e�) = (3.4± 0.4)⇥ 10�5 (5.6)

The photon branching fraction is larger than our estimate because it
turns out to be enhanced by a factor of log(mµ/me), for reasons we
will discuss in Subsection 6.7.2.

5.1.2 ⌧
� decays

(i) The tau lepton di↵ers from the muon only through the size of its
mass. The arguments of the preceding section for muons therefore
apply equally well to taus to the extent that they do not rely crucially
on the value of the initial lepton’s mass.

Because of its larger mass, the ⌧ lepton can decay at second order in
Hcc to many more three-fermion final states than could the relatively
light muon. It has two purely leptonic decays: ⌧� ! e�⌫e⌫⌧ and
⌧� ! µ�⌫µ⌫⌧ . At the quark level it can also decay into either ⌧� !
ud⌫⌧ or ⌧� ! us⌫⌧ . All of the other quark combinations are ruled
out by energy conservation. (The cs and cd combination superficially
appears to be just possible since the charm and strange quark masses
sum to a value just below the tau mass. The c quark nevertheless
cannot contribute to ⌧ decays because real hadrons are bound states
of these quarks and all of these bound states that contain a single
charmed quark are too heavy to be produced as a tau decay product.)

(ii) The decay rate for the ⌧ is easily estimated given the decay rate of
the muon. All of the estimates that lead to Eq. (5.5) apply equally
well to tau decays and so the same result holds here. In particular
the ratio of the tau decay rate to the muon decay rate must scale like
the fifth power of the ratio of their masses. Using the experimentally
observed muon lifetime therefore gives

⌧(⌧) ⇠
✓
mµ

m⌧

◆5

⌧(µ)

⇠ 1.6⇥ 10�12 s (5.7)
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This estimate is just about right (to within the accuracy of the es-
timate) since the observed ⌧ lifetime is (2.906 ± 0.010) ⇥ 10�13 s.
The factor of about 5 is expected because of the five allowed decay
products for the ⌧ (the ud counts as 3 because there are three avail-
able colors.) A relativistic particle with this lifetime can travel a
tenth of a millimeter or more before decaying, which can be a visible
displacement with the proper experimental setup.

(iii) As is noted above, the tau meson has more decay channels open to
it than does the muon just by virtue of the fact that it is so much
heavier. Predictions for the ⌧� branching fractions may be made
simply by counting the degrees of freedom available in each channel.
These predictions are quite robust since they rely on few (if any) of the
details of any potentially poorly-measured parameters of the model.
One of these predictions, that follows simply from the observation
that the tau decays via a virtual W boson and from the universal
nature of the couplings of the W , is that the branching fraction for
the two leptonic decays must be equal. This and other predictions
are summarized in the following.

B(⌧ ! e⌫⌫) = B(⌧ ! µ⌫⌫)

⇡ 1

2 + 3(|Vud|2 + |Vus|2)
⇡ 20%

B(⌧ ! strange hadrons) ⇡ B(⌧ ! us⌫)

⇡ 3|Vus|2
2 + 3(|Vud|2 + |Vus|2)

⇡ 2%

B(⌧ ! non-strange hadrons) ⇡ B(⌧ ! ud⌫)

⇡ 3|Vud|2
2 + 3(|Vud|2 + |Vus|2)

⇡ 58% (5.8)

By way of comparison, the corresponding experimental numbers
are

Bexp(⌧ ! e⌫⌫) = (17.83± 0.04)%

Bexp(⌧ ! µ⌫⌫) = (17.41± 0.04)%

Bexp(⌧ ! strange hadrons) ⇡ (2.875± 0.050)%

Bexp(⌧ ! non-strange hadrons) ⇡ (61.85± .11)% (5.9)
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The agreement is within the accuracy of the estimate. Note that
the branching fraction to hadrons is systematically higher than the
leading-order prediction. A more detailed calculation turns out to
show that the rates for the ud and us decay modes receive a positive
O(↵3) correction; so the di↵erence from the naive branching fraction
estimates allows a determination of the size of ↵3. The size of ↵3

determined in this way di↵ers from the determination from the width
of the Z0 boson, discussed at the end of Subsection 4.1.6; but this
is expected, as we will discuss in Subsection 7.4.1, and the di↵erence
turns out to agree with the predictions of the standard model.

5.2 The calculation

Consider, for simplicity, the decay ⌧� ! ⌫⌧fmfn in which none of the initial
or final polarizations are measured. We must evaluate the matrix element,
Eq. (5.2), using the interaction Hamiltonian, Eq. (5.3). The first term in the
interaction Hamiltonian is responsible for destroying the initial ⌧� meson
and creating the ⌫⌧ . The second term creates the final fermion–antifermion
pair, fmfn. Since the total amplitude is the product of two powers of the
interaction Hamiltonian, there are two types of contributions, corresponding
to which interaction Hamiltonian destroys the ⌧ particle and which creates
the fmfn pair. Each of these turns out to contribute equally to the total
amplitude, and so we compute here only one of them and multiply the result
by two.
It is convenient to write out the action of the interaction Hamiltonian

separately for the ⌧, ⌫⌧ , W -boson, and fmfn sectors of the Hilbert space.
To this end write the initial and final states as

|⌧�i = |⌧�i⌧ ⌦ |0iW ⌦ |0if
|⌫⌧ ; fm; fni = |⌫⌧ i⌧ ⌦ |0iW ⌦ |fm; fnif (5.10)

The utility of writing this dependence out explicitly is that the desired ma-
trix element, Eq. (5.2), then factorizes into three parts, which may be dealt
with separately:

�iM =
(�i)2
2!

Z
d4xh⌫⌧ (l); fm(q); fn(p)|T [Hcc(x)Hcc(0)]|⌧(k)i

= 2
(�i)2
2!

(�e2
W
U⇤
mn)

Z
d4x Aµ(k, l;x)Gµ⌫(x)B

⌫(q,p) (5.11)

in which the factors Aµ, B⌫ , and Gµ⌫ are defined by

Aµ(k, l;x) = ⌧ h⌫⌧ (l)| [⌫⌧�µ(1 + �5)⌧ ](x) |⌧(k)i⌧
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B⌫(q,p) = f hfm(q); fn(p)|
h
fn�

⌫(1+�5)fm
i
(0)|0if

Gµ⌫(x) = W h0|T
h
W+

µ (x)W�
⌫ (0)

i
|0iW (5.12)

The first factor of 2 in the last line of Eq. (5.11) is the factor of discussed in
the opening paragraph of this section, which corresponds to the two ways
in which the interaction terms can destroy the ⌧ : the ⌧ can be destroyed by
the interaction at spacetime point x, or by the one at 0.
These matrix elements are evaluated by expanding each field in terms of its

creation and annihilation operators and then evaluating the resulting matrix
elements of these operators. The evaluation of matrix elements Aµ and B⌫

only involves initial or final states and so closely parallels the evaluation of
those matrix elements performed in previous chapters. They give

Aµ(k, l;x) = u⌫(l)�
µ(1+�5)u⌧ (k) e

i(k�l)x

B⌫(q,p) = un(p)�
⌫(1+�5)vm(q) (5.13)

5.2.1 The W propagator

The matrix element Gµ⌫(x) of the W field operators that arises in Eq. (5.12)
is called the W propagator. It is determined completely by the properties
of the W bosons that contribute to it as intermediate states. Its evaluation
requires a little more care and is the topic of the present aside.
Gµ⌫(x) may be evaluated by inserting a complete set of one-particle W -

states. (For notational simplicity we drop the ubiquitous subscript “W” on
the Hilbert-space state vectors in this section but it is implicit in all for-
mulae.) Recalling the definition, Eq. (3.17), of the time-ordering operation,
T , and inserting a complete set of 1-particle W -boson states between the
operators, gives

Gµ⌫(x) = h0|T
h
W+

µ (x)W�
⌫ (0)

i
|0i

=
1X

�=�1

Z
d3r

2Er(2⇡)3

h
h0|W+

µ (x)|W+(r,�)ihW+(r,�)|W�
⌫ (0)|0i✓(x0)

+ h0|W�
⌫ (0)|W�(r,�)ihW�(r,�)|W+

µ (x)|0i✓(�x0)
i

=
1X

�=�1

Z
d3r

2Er(2⇡)3

h
✏µ✏

⇤
⌫(r,�) e

ir0x✓(x0) + ✏⌫✏
⇤
µ(r,�) e

�ir0x✓(�x0)
i

(5.14)

Here r is the momentum of the inserted state, and Er =
p
r2 +M2

W
is its
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energy. The four-vector, r0µ, that appears in the phase e±ir0x is defined with

timelike component given by r00 ⌘ Er.
✓(x) is the step function that is unity when its argument is positive and is

zero when its argument is negative. For the present purposes the following
integral representation proves convenient:

✓(x) =
1

2⇡i

Z 1

�1

eix!

! � i✏0
d! (5.15)

✏0 here denotes a positive infinitesimal that is to be taken to zero at the end
of the calculation.
The spin sum may be evaluated using Eq. (1.119):

⇧µ⌫(r, Er) ⌘
1X

�=�1

✏µ(r,�)✏
⇤
⌫(r,�)

= ⌘µ⌫ + r0µr
0
⌫/M

2
W

(5.16)

Putting this spin sum, and Eq. (5.15), into Eq. (5.14) gives the desired
expression for the propagator. After performing a change of integration
variables in this result in order to put the coe�cient of both of the step
functions, ✓(x0) and ✓(�x0), into a common form, the result becomes

Gµ⌫(x) = �i
Z

d3r

(2⇡)3
d!

2⇡
⇧µ⌫(r, Er) e

ir·x�i!x0

⇥ 1

2Er


1

Er � ! � i✏0
+

1

Er + ! � i✏0

�

= �i
Z

d4r

(2⇡)4
⇧µ⌫(r, Er)

r2 +M2
W
� i✏

eirx (5.17)

The four-vector rµ (as opposed to r0µ of Eq. (5.14)) that appears in the last
equality is defined with time component r0 equal to the integration variable,
! (as opposed to Er). The infinitesimal, ✏, appearing here has been rescaled
from the original infinitesimal, ✏0, of Eq. (5.15) by ✏ ⌘ 2Er ✏0 > 0.

5.2.1.1 Lorentz covariance: an aside

This last expression is almost, but not quite, covariant with respect to
Lorentz transformations. The qualification comes because the polarization
“tensor,” ⇧µ⌫(r, Er), depends on the variable Er rather than the time com-
ponent of rµ: r0 = !. This is something of an embarrassment since it would
seem to imply a loss of Lorentz invariance for the S-matrix element that is
being computed! Happily enough this particular failure of Lorentz invariance
is just what is required to cancel another source that has been glossed over
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up until this point. (See, however, the discussion in Section 4.1.) This other
source of Lorentz non-invariance would have arisen in Eq. (5.3) if the inter-
action Hamiltonian had been properly identified. The result that is implicit
in this equation is that the charged-current interaction Hamiltonian, Hcc, is
related to the interaction Lagrangian, Lcc, by Hcc = �Lcc as would usually
be the case for a non-derivative interaction. This relation does not hold for
the couplings of gauge potentials, however, as is perhaps more familiar in
quantum electrodynamics where the non-derivative coupling, LI = AµJµ,
produces a non-covariant Coulomb contact interaction in the Hamiltonian.
It is beyond the scope of this book to detail how these two sources of

Lorentz non-invariance cancel one another out (see, however, Problem 5.3
for an illustration of what is involved). The final result is simple to state,
however. The full calculation is equivalent to neglecting the di↵erence be-
tween HI and �LI and replacing the naively time-ordered W propagator
of Eq. (5.14) through Eq. (5.17) by the covariant expression obtained by
replacing ⇧µ⌫(r, Er) in Eq. (5.17) by ⇧µ⌫(r) ⌘ ⇧µ⌫(r, r0):

G̃µ⌫(x) = h0|T ⇤
h
W+

µ (x)W�
⌫ (0)

i
|0i

= �i
Z

d4r

(2⇡)4
⇧µ⌫(r)

eirx

r2 +M2
W
� i✏

(5.18)

The upshot of this aside is that G̃µ⌫(x) of Eq. (5.18) must be used in the
amplitude of Eq. (5.11) rather than Gµ⌫(x).

5.3 The large-mass expansion

The results for Aµ, B⌫ , and G̃µ⌫ accumulated above, in Eq. (5.13) and
Eq. (5.18), may now be combined in Eq. (5.11) for the matrix element
M(⌧� ! ⌫⌧fmfn). The x integral may be performed and gives a mo-
mentum conserving delta function,

R
d4x ei(k�l+r)x = (2⇡)4�4(k � l + r),

giving the following result for M:

M(⌧ ! ⌫⌧fmfn) = e2
W
U⇤
mn[u⌫(l)�

µ(1+ �5)u⌧ (k)][un(p)�
⌫(1+ �5)vm(q)]

⇥
"
⌘µ⌫ + (k � l)µ(k � l)⌫/M2

W

(k � l)2 +M2
W
� i✏

#

(5.19)

All of the techniques of the previous sections may be brought to bear
on this expression to evaluate the corresponding ⌧� decay rate. A great
simplification is possible at this point, however, if it is agreed to neglect any
contributions that are suppressed relative to the dominant one by powers of
the small quantity m2

⌧/M
2
W
⇡ 5⇥ 10�4. (The approximation is even better
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for the muon where this ratio is 300 times smaller.) In this case the entire
W -boson propagator, as represented by the last square bracket in Eq. (5.19),
may be expanded in inverse powers of M2

W
:

⌘µ⌫ + (k � l)µ(k � l)⌫/M2
W

(k � l)2 +M2
W
� i✏

⇡ ⌘µ⌫
M2

W

(5.20)

since in the rest frame of the tau meson all of the components of the four-
momentum, k � l, are at most equal to m⌧ .
Within this approximation, the matrix element simplifies to

M(⌧ ! ⌫⌧fmfn) =
e2
W
U⇤
mn

M2
W

[u⌫(l)�
µ(1+ �5)u⌧ (k)][un(p)�µ(1+ �5)vm(q)]

(5.21)
It is conventional to denote the coupling combination e2

W
/M2

W
, that ap-

pears in this expression, by GF/
p
2. i.e.

GFp
2
=

e2
W

M2
W

=
g22

8M2
W

=
1

2v2
(5.22)

The constant GF = 1.1664 ⇥ 10�5 (GeV)�2 obtained in this way is for
historical reasons called the Fermi coupling constant. Indeed, it is the mea-
surement of GF through comparison of the predicted and measured muon
lifetimes that fixes the value of the Higgs v.e.v., v, that is quoted in Ap-
pendix A.
Returning to the matrix element, Eq. (5.21), averaging over the two initial

spin states of the ⌧ and summing over spins of the final fermions gives

M2 =
1

2

X

spins

|M(⌧ ! ⌫⌧fmfn)|2

=
G2

F

4
|Umn|2Mµ⌫(k, l)Nµ⌫(p, q) (5.23)

in which the quantities Mµ⌫ and Nµ⌫ denote traces over Dirac matrices:

Mµ⌫(k, l) ⌘ tr[�µ(1 + �5)u⌧u⌧�
⌫(1 + �5)u⌫u⌫ ]

= tr[�µ(1 + �5)(m⌧ � i/k)�⌫(1 + �5)(�i/l)]
= 8

h
(⌘µ⌫k · l � kµl⌫ � k⌫ lµ)� i✏µ⌫�⇢k�l⇢

i
(5.24)

and

Nµ⌫(p, q) ⌘ tr[�µ(1 + �5)vmvm�⌫(1 + �5)unun]

= � tr [�µ(1 + �5)(mm + i/q)�⌫(1 + �5)(mn � i/p)]

= 8
h
(⌘µ⌫p · q � pµq⌫ � p⌫qµ)� i✏µ⌫�⇢q�p⇢

i
(5.25)
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Contracting Mµ⌫ with Nµ⌫ (using the identity ✏µ⌫↵�✏µ⌫�⇢ = 2(�↵⇢ �
�
���↵���⇢ ))

finally gives the simple result,

Mµ⌫(k, l)Nµ⌫(q, p) = 256(l · p)(k · q) (5.26)

Combining all of the above formulae gives the following di↵erential decay
rate:

d�(⌧ ! ⌫⌧fmfn)=
64G2

F
|Umn|2
2k0

(l·p)(k·q)(2⇡)4�4(p+ q+ l� k)
d3l d3p d3q

8l0p0q0(2⇡)9

(5.27)
This expression must now be integrated over phase space to produce the
desired di↵erential or total decay rate. We will perform the integration
assuming that both the ⌫⌧ and one of the other leptons is massless. This
treatment is relevant for ⌧� ! µ�⌫µ⌫⌧ and for µ� ! e�⌫e⌫µ, and is not too
bad for decays of ⌫⌧ into quarks (where g23 e↵ects which we will not compute
are anyway more important than the up quark mass).
Consider for concreteness the case of a purely leptonic ⌧ decay: ⌧� !

µ�⌫µ⌫⌧ . We now compute this di↵erential decay rate as a function of the
final muon’s energy and mass.
Since we do not observe the neutrino momenta l and q, it is convenient to

integrate over them first. Moving everything else outside the q, l integrations
leaves the integral,

Iµ⌫(k, p) ⌘
Z

lµq⌫(2⇡)
4�4(l + p+ q � k)

d3l d3q

4l0q0(2⇡)6
(5.28)

which we must evaluate. Iµ⌫(k, p) as defined is a second-rank tensor that is
a function of kµ and pµ only through the combination wµ ⌘ (k � p)µ. The
most general possible form for such a tensor is

Iµ⌫(w) = Aw2⌘µ⌫ +Bwµw⌫ (5.29)

in which A and B can a priori be arbitrary functions of the Lorentz-invariant
variable w2 = wµwµ. The scalar variables A and B are much more conve-
nient to deal with than is the full tensor Iµ⌫ , since they are Lorentz-invariant
(as opposed to being covariant), and so may be simply evaluated in the most
convenient reference frame.
A and B turn out to be both determined in terms of a single scalar integral

I(w) ⌘
Z
(2⇡)4�4(l + q � w)

d3l d3q

4l0q0(2⇡)6
(5.30)

To see this, note first that

⌘µ⌫Iµ⌫(w) = Aw2⌘µ⌫⌘µ⌫ +B⌘µ⌫wµw⌫ = (4A+B)w2
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=
Z

l · q (2⇡)4�4(l + q � w)
d3l d3q

4l0q0(2⇡)6

=
w2

2
I(w) (5.31)

In the last equality the identity w2 = (l+ q)2 = 2l · q is used, which relies on
four-momentum conservation as well as the masslessness of the neutrinos,
l2 = q2 = 0. Similarly,

wµw⌫Iµ⌫(w) = Aw2wµw⌫⌘µ⌫ +Bwµw⌫wµw⌫ = (A+B)(w2)2

=
Z
(w · q)(w · l)(2⇡)4�4(l + q � w)

d3l d3q

4l0q0(2⇡)6

=
Z
(l · q)2(2⇡)4�4(l + q � w)

d3l d3q

4l0q0(2⇡)6

=
(w2)2

4
I(w) (5.32)

which uses w · l = (l + q) · l = l · q = w · q. These equations may be solved
for A and B, giving B = 2A = I/6.
It remains to evaluate I(w). It is first convenient to perform the l inte-

gration using the following identity, which holds for any Lorentz-invariant
integrand:

Z
d3l

2l0(2⇡)3
=
Z

d4l

(2⇡)4
2⇡�(l2 +m2)✓(l0) (5.33)

for our case, m2 = 0. Then

I(w) =
Z
(2⇡)4�4(l + q � w)2⇡�(l2)✓(l0)

d4l

(2⇡)4
d3q

2q0(2⇡)3

=
Z

2⇡�[(w�q)2]✓[w0�q0] d3q

2q0(2⇡)3
(5.34)

Notice that the four-vector, wµ, is timelike, since

w2 = (k � p)2 = (l + q)2 = 2l · q = �2|q||l|(1� cos ✓)  0 (5.35)

✓ here represents the angle between the three-vectors l and q. There must
therefore be a reference frame in which the three-vector components of w
vanish, w = 0. Define w0 = E in this frame. Then, also in the same frame,
w2 = �E2 and (w � q)2 = w2 � 2w · q = �E2 + 2Eq0. The last integral is
most conveniently evaluated in this frame:

I(w) =
1

2⇡

Z
�[E2 � 2Eq0]✓[E � q0]q0 dq0
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Fig. 5.1. Di↵erential ⌧ ! µ decay rate, as function of the muon energy

=
1

8⇡
✓(�w2) (5.36)

where the ✓ function is because the integration only has support provided
w is timelike. Clearly, then, B = 2A = ✓(�w2)/(48⇡), and

Iµ⌫(w) =
1

96⇡

h
⌘µ⌫w

2 + 2wµw⌫
i
✓(�w2) (5.37)

Inserting this integral into the decay rate, Eq. (5.27), finally gives the
di↵erential decay rate as a function of the muon energy and mass (normalized
to the tau mass so that " ⌘ p0/m⌧ and µ ⌘ mµ/m⌧ ):

d�

d"
(⌧� ! µ�⌫µ⌫⌧ ) =

G2
F
m5
⌧

4⇡3

 

"� 4"2

3
+ "µ2 � 2µ2

3

!q
"2 � µ2

⇡ G2
F
m5
⌧

4⇡3
"2
✓
1� 4"

3

◆
for µ⌧ 1 (5.38)

The shape of this curve as a function of " is plotted in Figure 5.1.
The kinematically allowed range for the muon energy is 0 < p0 < (m2

⌧ +
m2

µ)/(2m⌧ ). This may be seen from the condition that k � p be timelike
as seen in the tau rest frame: (k � p)2 = k2 � 2k · p + p2 = �m2

⌧ +
2m⌧p0 � m2

µ < 0. Integrating p0 over this range then gives the total rate
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for ⌧� decays into this channel (neglecting all fermion masses):

�(⌧� ! ⌫⌧fmfn) =
G2

F
m5
⌧

192⇡3
|Umn|2 (5.39)

Some final comments about this result.

(i) Equation (5.39), applied to muon decay, may be compared to the esti-
mate of Section 5.1 to see if the discrepancy of this estimate with the
experimental value persists or is instead an artifact of the inaccuracy
of the earlier estimate. The full and approximate results are

�calc(µ
� ! e�⌫e⌫µ) =

G2
F
m5

µ

192⇡3

=
g42

3 · 29 · (2⇡)3
m5

µ

M4
W

and �est(µ
� ! e�⌫e⌫µ) ⇠

g42
(2⇡)3

m5
µ

M4
W

(5.40)

The approximate estimate has missed the numerical factor of 2�9 ·
3�1 = 1/1536, which provides the missing three orders of magnitude.
This illustrates a general caveat for the order-of-magnitude estimates:
they are useful for judging the rough size of a rate but are not a sub-
stitute for a real calculation. The source of this large number in
the full calculation is in the integration of the squared amplitude
over phase space. The estimate of this integration using simple di-
mensional analysis and counting of 2⇡s is the weakest part of the
arguments of Section 5.1. Although it furnishes reasonable accuracy
for the two-body decays of the previous sections, it can be potentially
more of a problem in decays which involve more final-state particles,
since the rates for these processes involve a multidimensional integra-
tion over phase space.
The full result, Eq. (5.39), gives the following µ� and ⌧� decay

rates into leptons:

�tot(µ
�) = �(µ� ! e�⌫e⌫µ)

=
G2

F
m5

µ

192⇡3

= 3.009⇥ 10�19 GeV

so ⌧(µ�) = 2.187⇥ 10�6 s (5.41)

and

�tot(⌧
�) =

h
2 + 3(|Vud|2 + |Vus|2)

i
�(⌧� ! e�⌫e⌫µ)
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= 5 · G
2
F
m5
⌧

192⇡3

= 2.025⇥ 10�12 GeV

so ⌧(⌧�) = 3.25⇥ 10�13 s (5.42)

Corrections to the muon lifetime should be smaller than a percent
or so since they are purely electromagnetic. The corrections to the
⌧ lifetime might be somewhat larger since they can include strong-
interaction corrections for the hadronic final states. For comparison,
the measured lifetimes are

⌧exp(µ
�) = (2.196 981 1± 0.000 002 2)⇥ 10�6 s

⌧exp(⌧
�) = (2.906± 0.010)⇥ 10�13 s (5.43)

The comparison for the µ� is not really fair, since the value of GF

is determined from this width. However, with GF so determined, the
⌧� width is fair game. Again we emphasize that the ⌧� width is
not that close to the prediction (10% discrepancy); this is because of
strong interaction physics. The partial widths to leptons are in very
good agreement with the predictions of our formulae.

(ii) The shape of the di↵erential decay probability, d�/dE, for decays
into leptons as a function of the charged-lepton energy, E, is given
in Figure 5.1. It vanishes like E2 as E ! 0 and rises monotoni-
cally to a maximum at the endpoint, i.e. the maximum energy that
is kinematically available to the charged-lepton (roughly half of the
mass of the decaying particle in the present case). The most proba-
ble energy for the outgoing charged-lepton is therefore its endpoint
value. The E2-dependence for small E is also easily understood. It
arises partly from the phase space measure for relativistic fermions,
d3p/p0 ⇡ E dE, and partly from the proportionality to E of the
squared matrix element, M2 of Eq. (5.27).

5.4 Feynman rules

The general pattern for the perturbative evaluation of general scattering
amplitudes and decay rates is similar to the examples that have been en-
countered up to this point. In each case the desired matrix element is found
by expressing it in terms of the fields of the theory which are then themselves
expressed in terms of the corresponding creation and annihilation operators.
The resulting matrix elements of these operators may then be evaluated by
applying the rules of Section 1.1.
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In each case we pick up standard factors corresponding to the polarization
vectors or spinors in the expansions of the fields, and to the coupling con-
stants and Dirac matrices of the interaction Lagrangians. These rules may
be very graphically summarized in a way that allows the corresponding am-
plitude to be straightforwardly written down. The procedure is to associate
a line to the propagation of every particle in a particular matrix element.
These lines end whenever the corresponding particle is created or destroyed
by one of the creation or annihilation operators of the matrix element of
interest. The lines drawn in this way form a Feynman graph (or Feynman
diagram) that is associated with the given matrix element.

Explicitly, the relation between the procedure we have followed so far,
and the drawing of a Feynman graph, is as follows. First, one chooses the
initial and final states under consideration. For the case of µ� decay, this
consisted of a µ� in the initial state, |µ�i, and e�, ⌫̄e, ⌫µ in the final state,
he�⌫̄e⌫µ|. These are represented graphically by putting the end of a line on
the left-hand side of the graph for each initial state particle and the end of
a line on the right-hand side for each final state particle, labeled with the
particle type:

-

HHj

�

H

�*

HY

µ

⌫µ

e

⌫̄e

Fermions are given arrows pointing right for particles and left for antipar-
ticles. Some people let time flow from the bottom to the top of the figure
rather than from the left to the right.

Next, one must determine what insertions of the interaction Hamiltonian
are involved. Each HI insertion is represented by a dot (vertex) with the
stubs of lines coming out, labeled as dictated by the fields appearing in HI .
Fermion fields are given an arrow entering the vertex if the field operator
e, µ, ⌫ is involved and an arrow leaving the vertex if the antifield operator
ē, µ̄, ⌫̄ is involved. For the case of µ� decay, the graph is now
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- u-
Hjµ ⌫µ

W

HHj

⇧⌥
⇧⌥uW

e

⌫e

�*
HY

�

H

�*

HY

µ

⌫µ

e

⌫̄e

The locations on the page of the vertices in the graph are arbitrary, and
are usually chosen so that the final graph will look nice.

Finally, each field in an HI insertion provides either a creation or an
annihilation operator. These must be contracted either with initial or final
state particles, or with each other. When an annihilation operator destroys
an initial-state particle, a line is drawn between the incoming line end and
the line stub on that vertex; similarly with creation operators and final
state particles. These lines are called incoming lines and outgoing lines,
respectively. Two fields inHI insertions which combine to form a propagator
are represented in the graph by attaching the line stubs on the vertices with
an internal line. In all cases the line ends connected by a line must be of
the same particle type, and for fermions they must have compatible arrow
directions. By convention fermions are drawn with solid lines, electroweak
gauge bosons are wiggly lines, and gluons are curly lines. We will draw
scalars with dashed lines – conventions here are less uniform. The result is
that the diagram corresponding to the µ� decay process we have analyzed
is

- u
H
H
H
H
Hj

H
H
H
H
H
H
H
H
H

⇧⇧⇧
⇧⇧⌥⌥⌥
⌥⌥u���

�
�
�

H
H
H
H
H
H

�
�
�*

H
H

HY

µ

⌫µ

e

⌫̄e

W�

We emphasize again that the exact location on the page of the vertices and
lines is arbitrary and is usually chosen to make the picture easy to draw.
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Feynman graphs with a given initial and final state, and sets of HI inser-
tions and creation- and annihilation-operator pairings which can induce the
transition from the initial and final state, are in one-to-one correspondence.
Drawing Feynman graphs represents a particularly e�cient and visual way
of finding the possible ways in which an initial state can become a final
state. Therefore, the possible processes contributing to a matrix element
M for a process involving a given initial and final state may be found by
drawing all possible Feynman graphs which have external lines appropriate
to the initial and final states, and involving the vertices corresponding to the
interactions of the theory of interest. Furthermore, M itself can be found
from the graphs; it is the sum over each graph of an expression which can
be determined by replacing each element (line and vertex) of the graph with
an expression determined by the Feynman rules of the theory. Each graph
must also be multiplied by a symmetry factor, which is precisely the graph
theoretic symmetry factor of the Feynman graph.
We first present a table of the Feynman rules of the standard model. That

is, we present a list of the proper factors that should be associated with each
internal line, external line, and vertex in order for a graph to reproduce the
corresponding standard-model amplitude. We then consider two examples
for which the operator calculation has been done in earlier sections in order
to illustrate how the graphical method correctly reproduces matrix elements.

5.4.1 External lines

This section lists the factors that are associated with the external lines of a
Feynman graph – and so the initial or final particles of an amplitude.

5.4.1.1 Incoming lines (initial states)

The following factors give the (momentum-space) Feynman rules appropri-
ate to an incoming spin-zero, spin-half, or spin-one particle. The arrows
on the fermion lines indicate the direction of fermion-number flow, the dot
indicates where the line attaches to an interaction vertex.

Spin-zero s
1 (5.44)

Spin-half fermion

- s
ui(p,�) (5.45)
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Spin-half antifermion

� s
vi(p,�) (5.46)

Spin-one ⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s ✏µ(p,�) (5.47)

5.4.1.2 Outgoing lines (final states)

The momentum-space Feynman rules for an outgoing spin-zero, spin-half,
or spin-one particle are similarly

Spin-zero s
1 (5.48)

Spin-half fermion

-s
ui(p,�) (5.49)

Spin-half antifermion

�s
vi(p,�) (5.50)

Spin-one ⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s
✏⇤µ(p,�) (5.51)

These are the factors needed to compute the matrix element M. When in-
tegratingM2 over final state momenta one must use the phase space measure
d3p/(2p0[2⇡]3), and there is a factor of 1/(2p0) from the state normalization
of each incoming particle.

5.4.2 Internal lines

The momentum space description for an internal line is given by the propaga-
tor for the corresponding particle. The propagators for the three lowest-spin
particles of interest are listed here.
Notice that the Dirac indices on the spin-half propagator are such that

Dirac matrix multiplication orders propagators and vertices oppositely to
the order they would have if they are ordered consecutively along a fermion
line in the direction of fermion-number flow. Here and in the expressions for
vertices, when some index (color, for instance) is not explicitly displayed, it
is contracted with a � function between the lines which carry that index.
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The spin-one propagator given here depends on whether the spin-one par-
ticle has a mass or not. For massive spin-one particles unitary gauge is pre-
sented as was used for the W and Z bosons in the text. This propagator is
less useful for massless particles like the photon or gluons, however, since it
has a singular limit as the particle mass tends to zero. For massless particles
we use instead the propagator in what is called the renormalizable ⇠ gauge.
We are free to choose a gauge that is di↵erent from unitary gauge for the
photon and gluons because the unitary gauge condition, Eq. (2.29), does not
fix the electromagnetic or SUc(3) gauge invariance. Notice that the ⇠-gauge
propagator tends to the unitary gauge result as ⇠ tends to infinity. The
special cases ⇠ = 1 and ⇠ = 0 carry the special names of Feynman gauge
and Landau gauge respectively.
⇠ gauge is also useful for massive spin-one particles in higher-loop calcu-

lations because of its better behavior as p2 ! 1. In this case there are
extra Feynman rules involving “unphysical scalars” and “ghosts” that must
also be included. As these are not necessary for the tree-level computations
that are encountered in this book, a description of the full ⇠-gauge Feynman
rules are reserved for Appendix D.

Spin-zero

s s � i
Z

d4p

(2⇡)4
1

p2 +m2 � i✏
(5.52)

Spin-half

-s sj i � i
Z

d4p

(2⇡)4

 �i/p+m

p2 +m2 � i✏

�

ij
(5.53)

Spin-one (unitary gauge)⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s sµ ⌫ � i
Z

d4p

(2⇡)4
⌘µ⌫ +

pµp⌫
m2

p2 +m2 � i✏
(5.54)

Spin-one (⇠ gauge)

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s sµ ⌫ � i
Z

d4p

(2⇡)4
⌘µ⌫ + (⇠ � 1) pµp⌫

p2+⇠m2

p2 +m2 � i✏
(5.55)

5.4.3 Vertices

The Feynman rules that di↵erentiate the standard model from any other
theory of interacting spin-one, spin-half, and spin-zero particles are those
that describe the vertices or interactions of the theory. There is a separate
vertex for each type of interaction that is given in Section 2.4.
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They are all tabulated here for completeness. All momenta are taken as
being directed into the vertex. We do not include labels whenever they are
connected by a delta function in an obvious way (for instance, color indices
in the Hff̄ coupling), or for momentum assignments when the Feynman
rule does not depend on them in a complicated way.
Some numerical coe�cients in denominators in the following expressions

are printed in boldface. We do this for diagrams where there are always
multiple ways to attach the external lines to the vertex; in practice, these
factors are almost always canceled by the combinatorics of the number of
ways to form a graph. Many other references absorb these factors into the
computation of the combinatorial factor for the diagram.

5.4.3.1 Higgs self-couplings

H
3 coupling

@

@

�

�

s  

�3im
2
H

6v

!

(2⇡)4�4(k + l + p) (5.56)

H
4 coupling

�

�

@

@

@

@

�

�

s  

�3i m
2
H

24v2

!

(2⇡)4�4(k + l + p+ q)

(5.57)

5.4.3.2 Higgs–gauge boson couplings

HW
+
W

� coupling

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s
µ ⌫

 

�2iM
2
W

v

!

⌘µ⌫(2⇡)
4�4(k + l + p)

(5.58)

H
2
W

+
W

� coupling

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧�

�

@

@

s
µ ⌫

 

�2iM
2
W

2v2

!

⌘µ⌫(2⇡)
4�4(k + l + p+ q)

(5.59)
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HZ
2 coupling

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s
µ ⌫

 

�2iM
2
Z

2v

!

⌘µ⌫(2⇡)
4�4(k + l + p)

(5.60)
H

2
Z

2 coupling

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧�

�

@

@

s
µ ⌫

 

�2iM
2
Z

4v2

!

⌘µ⌫(2⇡)
4�4(k + l + p+ q)

(5.61)

5.4.3.3 Higgs–fermion couplings

Hff coupling

- -sj i
✓
�imf

v

◆
�ij(2⇡)

4�4(k + l + p) (5.62)

5.4.3.4 Gluon self-couplings

G
3 coupling

↵�↵�↵�↵�↵�↵�↵�↵�↵�↵�↵�↵�↵�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�s� 
� 
� 
� 
� 
⇤⇥⇤⇥
⇤⇥⇤⇥

↵, µ; k �,�; p

�, ⌫; l

+
g3
6
f↵�� [(k � p)⌫⌘µ� + (l � k)�⌘µ⌫

+ (p�l)µ⌘⌫�] (2⇡)4�4(k + l + p)

(5.63)

G
4 coupling

↵�↵�↵�↵�↵�⌦ ⌦ ⌦ ⌦ ⌦ ↵⌦
↵⌦
↵⌦
↵⌦
↵⌦
� � � � � 
⇥�⇥�⇥�⇥�⇤�⇤�⇤�⇤� ����
����
⇤⇥⇤⇥⇤⇥⇤⇥
s↵, µ

�, ⌫

�,�

�, ⇢

�i g
2
3

24

h
f⇠↵�f⇠�� (⌘µ�⌘⌫⇢ � ⌘µ⇢⌘⌫�)

+ f⇠↵�f⇠�� (⌘µ⌫⌘�⇢ � ⌘µ⇢⌘⌫�)

+ f⇠↵�f⇠�� (⌘µ⌫⌘�⇢ � ⌘⌫⇢⌘µ�)
i

⇥(2⇡)4�4(k + l + p+ q) (5.64)
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5.4.3.5 Gluon–fermion couplings

Gff coupling

↵⌦
↵⌦
↵⌦
↵⌦
↵⌦
����
����
s- -

↵, µ

b, j a, i �
g3
2
(�↵)ab(�

µ)ij(2⇡)
4�4(k+ l+ p) (5.65)

5.4.3.6 Electroweak boson self-couplings

W
+
W

�
� coupling

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s⌥⌃
⌥⌃
⌥⌃⌅⇧
⌅⇧

µ; k

⌫; l

�; p

�

W+!  W� ie [(k�p)⌫⌘µ� + (l�k)�⌘µ⌫ + (p�l)µ⌘⌫�]
⇥(2⇡)4�4(k + l + p) (5.66)

W
+
W

�
Z coupling

⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧s⌥⌃
⌥⌃
⌥⌃⌅⇧
⌅⇧

µ; k

⌫; l

�; p

Z

W+!  W�
ie cot ✓W

h
(k�p)⌫⌘µ� + (l�k)�⌘µ⌫

+(p�l)µ⌘⌫�
i
(2⇡)4�4(k + l + p)

(5.67)

W
+
W

�
W

+
W

� coupling

s⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧
⌥⌃
⌥⌃
⌥⌃
⌥⌃
⌥⌃

⌅⇧
⌅⇧
⌅⇧
⌅⇧
⌅⇧

W+: µ

W�: ⌫

W+: �

W�: ⇢

ig22
4

[2⌘µ�⌘⌫⇢ � ⌘µ⇢⌘⌫� � ⌘µ⌫⌘�⇢]

⇥(2⇡)4�4(k + l + p+ q) (5.68)

W
+
W

�
Z

2 coupling

s⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧
⌥⌃
⌥⌃
⌥⌃
⌥⌃
⌥⌃

⌅⇧
⌅⇧
⌅⇧
⌅⇧
⌅⇧

W+: µ

W�: ⌫

Z: �

Z: ⇢

� ie2 cot2 ✓W
2

[2⌘µ⌫⌘�⇢ � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢]

⇥(2⇡)4�4(k + l + p+ q) (5.69)
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W
+
W

�
�
2 coupling

s⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧
⌥⌃
⌥⌃
⌥⌃
⌥⌃
⌥⌃

⌅⇧
⌅⇧
⌅⇧
⌅⇧
⌅⇧

W+: µ

W�: ⌫

�: �

�: ⇢

� ie2

2
[2⌘µ⌫⌘�⇢ � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢]

⇥(2⇡)4�4(k + l + p+ q) (5.70)

W
+
W

�
Z� coupling

s⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌥⌅⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧⌃⇧
⌥⌃
⌥⌃
⌥⌃
⌥⌃
⌥⌃

⌅⇧
⌅⇧
⌅⇧
⌅⇧
⌅⇧

W+: µ

W�: ⌫

Z: �

�: ⇢

�ie2 cot ✓W [2⌘µ⌫⌘�⇢ � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢]
⇥(2⇡)4�4(k + l + p+ q) (5.71)

5.4.3.7 Fermion electroweak couplings

The coupling combinations eW and eZ used here are the same as those

used elsewhere in the text: eZ = e/(sin ✓W cos ✓W) =
q
g21 + g22 and eW =

e/(2
p
2 sin ✓W) = g2/(2

p
2). gV and gA are the quantum number combina-

tions gV = 1
2T3 �Q sin2 ✓W and gA = 1

2T3, listed explicitly in Table 2.1 and
Table 4.1. The matrix Umn is the unit matrix �mn when “m” and “n” are
leptons and is the Kobayashi–Maskawa matrix, Vmn, when they are quarks.

W
+
fnfm coupling

⌥⌃
⌥⌃
⌥⌃⌅⇧
⌅⇧
s- -j, n i,m � eWUmn[�

µ(1+�5)]ij(2⇡)
4�4(k+ l+p)

(5.72)
W

�
fnfm coupling

⌥⌃
⌥⌃
⌥⌃⌅⇧
⌅⇧
s- -j, n i,m � eWU⇤

nm[�µ(1+�5)]ij(2⇡)
4�4(k+ l+p)

(5.73)
Zff coupling

⌥⌃
⌥⌃
⌥⌃⌅⇧
⌅⇧
s- -j i � eZ [�

µ(gV + gA�5)]ij(2⇡)
4�4(k + l + p)

(5.74)
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�ff coupling

⌥⌃
⌥⌃
⌥⌃⌅⇧
⌅⇧
s- -j i � eQf [�

µ]ij(2⇡)
4�4(k + l + p) (5.75)

5.4.4 The rules

These rules allow a Feynman graph to be converted into an S-matrix element
by the following steps.

(i) Draw all graphs that can connect the desired initial and final states
using only those vertices that can contribute to the order of pertur-
bation theory that is desired – recall that each vertex is proportional
to the coupling constant of the corresponding interaction so each ad-
ditional vertex costs extra powers of the couplings.

(ii) For each graph, replace each internal line, external line, and vertex
by the expression given above.

(iii) Integrate the result over the four-momentum flowing through all of
the internal lines (corresponding to summing over all virtual inter-
mediate states), and sum over all Dirac and Lorentz indices.

(iv) If the graph contains n vertices then divide its contribution by n! (c.f.
the denominator of Eq. (3.22).) If there are p distinct ways of forming
the given graph using the same set of interactions and initial and final
states, then multiply the contribution of the graph by p. The product
of these factors is called the symmetry factor of the graph.

(v) Multiply the result by a factor of �1 for each closed fermion (or ghost,
see Appendix D) loop in the graph.

(vi) When comparing di↵erent matrix elements for the same process, there
can be a relative minus sign if the fermion lines connect together
di↵erently (see Section 6.6).

(vii) To convert the resulting S-matrix element to a matrix element M,
multiply by i and remove the overall energy-momentum conserving
delta function (2⇡)4�4(p↵ � p�) (with p↵ and p� the sums over all
incoming and outgoing momenta, respectively).

A few of these items demand some clarification. To clarify item (iv): if a
graph contains, say, two vertices and they are of distinct types, for instance,
a W+⌫̄µµ vertex and a W�ē⌫e vertex, then there is a factor of 1/2! from the
multiple vertices and a factor of 2 from the di↵erent choices of which vertex
generates the W+⌫̄µµ interaction and which is the W�ē⌫e interaction. An
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alternate way of expressing item (iv) is to say that, for each time the same
type of vertex appears n times, there is a factor of 1/n!; and the result
is multiplied by the number of ways of constructing the graph out of the
required types of vertices. Also, when a vertex has several of the same field
operator, there are generally multiple ways that the graph can be formed,
corresponding to di↵erent choices for which field operator does each job.
For a simple (though hardly physically realizable!) example, consider the
scattering process HH ! HH. The HHHH vertex mediates this process,
but any of the four H operators can annihilate the first H incoming state,
any of the remaining three H operators can annihilate the other, and either
of the two remaining H operators can create the first H final state, leading
to 4⇥3⇥2⇥1 = 24 ways to build the graph, canceling the 1/24 denominator
in the Feynman rule for the vertex. Therefore, we would get M = 3m2

H
/v2

(plus the contribution of other diagrams).

To clarify item (vi): a relative minus sign arises whenever the pairing o↵
of the creation and annihilation operators for fermions requires an odd num-
ber of anti-commutations of those operators. This is also the origin of the
rule, item (v). The sure-fire way to determine whether the matrix element
contributions associated with two diagrams have a relative minus sign, due
to such fermionic operator anticommutation, is to draw one diagram next
to the mirror image of the other, and connect the lines corresponding to the
same external particles. Then count the number of fermionic loops in this
picture. Next, do the same with either of the original diagrams and itself.
If the number of fermion loops di↵ers by an odd number, there is a relative
�1 in the original diagrams’ contribution to the matrix element. To give
an example, consider the following two diagrams for the scattering process,
e�e+ ! e�e+:

�

�✓

�

�

�
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⌅⇧
⌅⇧s
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H
H
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HY
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�
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�⇡
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e+

e�
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�

(5.76)

Is there a relative sign? To find out, we mirror-image the second element,
and connect the lines for the final-state e+ particles, the final-state e� par-
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Fig. 5.2. The Feynman graph for Z0 ! ff .

ticles, the initial-state e+ particles, and the initial-state e� particles:
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Then we count how many fermionic loops there are. The fermion lines form
one big loop. Squaring either of the original diagrams gives two separate
loops. Therefore, there is a (�1) relative factor between the diagrams, and
when we compute the interference between these diagrams, we will have to
include an extra factor of (�1) beyond what the Feynman rules otherwise
provide.

5.4.4.1 Example: Z0 decay

As an illustration of the application of these rules, we wish to recompute the
matrix element for the Z0 to decay into a fermion–antifermion pair. The
corresponding graphs start with a single Z0 boson external line and end
with a fermion and antifermion external line.
The simplest set of vertices and internal lines that can connect these initial

and final states is a single neutral current vertex, Eq. (5.74). The required
graph therefore is as in Figure 5.2.
Using the above rules the S-matrix for this process becomes

hff |S|Z0i =
1

1!

h
✏µ(k,�)

ih
u(p,�)

i
(5.78)

⇥
h
�eZ�µ(gV+gA�5)(2⇡)

4�4(p+ q � k)
ih
v(q, ⇣)

i

The number of independent ways of forming this graph with these vertices is
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Fig. 5.3. The Feynman graph for the decay µ! e⌫⌫.

in this case p = 1, and the denominator 1! corresponds to the graph having
only a single vertex.
The matrix element M is obtained by stripping o↵ the energy-momentum

conserving delta function (2⇡)4�4(p+ q� k) from this expression and multi-
plying by i. The result obtained in this way is identical to Eq. (4.8) derived
by directly evaluating the matrix element.

5.4.4.2 Example: µ� decay

Perhaps a less trivial example is the amplitude for µ� decay into e�⌫e⌫µ.
In this case the relevant graph has a single-fermion initial external line for
the µ� and has two fermion and one antifermion final external lines. Two
charged-current vertices are also required. The graph therefore is as in
Figure 5.3.
The S-matrix associated with this graph is

he⌫⌫|S|µi =
2

2!

Z
d4r

(2⇡)4
u(l)

h
�eW�µ(1+�5)(2⇡)4�4(l + r � k)

i
u(k)

⇥u(p)
h
�eW�⌫(1+�5)(2⇡)4�4(p+ q � r)

i
v(q)

⇥
 �i
r2 +M2

W
� i✏

✓
⌘µ⌫ +

rµr⌫
M2

W

◆�
(5.79)

Since this graph contains two vertices, the denominator in the first line of
Eq. (5.79) is 2!. The numerator of the same term is 2, corresponding to
the two equal contributions depending on which charged-current interaction
vertex destroys the muon and which creates the electron–antineutrino pair.
Grouping terms and identifying the matrix element, M(µ ! e⌫⌫), from
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this S-matrix element then gives the same result as is found in Eq. (5.19)
by operator methods.

5.5 Problems

[5.1] Neutron lifetime
Compute the lifetime of the neutron, in the approximation where the

vertex between the W boson, the neutron, and the proton, is the same as
the vertex between the W boson, a down quark (in the neutron), and an
up quark (in the proton), except that the �5 factor is rescaled by a factor
gA.

[5.1.1] Making the approximations MW � mp,mn � Q ⌘ mn�mp ⇠ me,
show that the neutron �-decay rate is given in the neutron rest-frame
by

d�

dEe
=

G2
F
|Vud|2

2⇡3 16m2
n
[F + G]Ee

q
E2

e �m2
e(Q� Ee)

q
(Q� Ee)2 �m2

⌫

Here m⌫ is a hypothetical neutrino mass and the Fermi and Gamow–
Teller terms F and G are defined by

F = |ūp(p)�0(gV + gA�5)un(p
0)|2

and

G = |ūp(p)~�(gV + gA�5)un(p
0)|2

Assume that only the outgoing electron energy, Ee, is measured.
[5.1.2] Evaluate F and G in the approximation that the nucleon does not

recoil; i.e., pp = 0 (or is ⌧mn) in the neutron rest frame.
[5.1.3] Plot the quantity

y =

"
d�/dEe

Ee
p
E2

e �m2
e

#1/2

as a function of the electron energy, Ee , for the two cases m⌫ = 0 and
m⌫ = 10 eV. This is known as a Curie plot. How do the two graphs
di↵er?

[5.1.4] Evaluate numerically the total life time of the neutron, neglect-
ing m⌫ and using the numerical values gV = 1, gA = 1.2701, mp =
938.272 00 MeV, mn = 939.565 MeV, me = 0.511 00 MeV; (1 fm)�1 =
197.326 96 MeV, 1 s = 2.9979⇥1023 fm.
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[5.2] Higgs decay to Wff̄
The Higgs boson is too heavy to decay to two (on-shell) W bosons,

because mH < 2MW . However, it can decay to one W boson and the decay
products of another W boson, via an intermediate state (o↵-shell) W
boson similar to the one involved in the muon decay process. This decay
process is important because the decay width we found in Section 4.3,
H ! bb̄, has a very small width due to the very small b quark mass.
(Furthermore, to date the only accelerators with enough energy to produce
large Higgs samples have been hadron machines (p � p at the Tevatron
and pp at the LHC). As we shall see, such collisions produce very large
numbers of q � q pairs, so bb is not a very distinctive final state and is
di�cult to separate from the much larger rate of bb production from other
processes.)

The process

H !Wff̄ 0

occurs via the diagram

s⌥⌥
⌥⌥⌥
⌥

⇧⇧⇧
⇧⇧

⌃⌃⌃⌃⌃
⌅⌅⌅⌅s���

H
H
H

�*

HY

W±

f̄ 0

f
W⌥

H

where f and f̄ 0 are a pair of fermions which could result from the decay
of a W⌥ (that is, for W� they are e�⌫̄e, µ�⌫̄µ, ⌧�⌫̄⌧ , dū, sc̄). For this
problem, you should systematically ignore the fermion masses (except
mt, which is so heavy that the top quark does not participate anyway).
However, you cannot neglect the W -boson mass MW . Label the initial
momentum p, the final W -boson momentum as q, the momentum on the
virtual W -boson propagator as r, and the final fermion and antifermion
momenta as k and l (so r = k + l).

[5.2.1] Matrix element
Argue that exactly half the width, via this process, will be from the case
with aW+ in the final state, and half from the case with aW�. (Is there
a symmetry at play here?) Having made this argument, concentrate on
the width when it is a W+ appearing in the final state. Remember to
multiply by 2 at the end of the problem.
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Write down the matrix element for this process, before summing on the
external state spins and polarizations.

[5.2.2] Squared matrix element

Evaluate the squared matrix element, summing over final state spins
and polarizations. Carry out all Dirac traces to get an expression which
is an algebraic function of the relevant particle four-momenta. It will
turn out to be convenient not to contract all the Lorentz indices, how-
ever; leave the factors of the form (⌘µ⌫ + rµr⌫/M2

W
), from the W�

propagator, in this form.

[5.2.3] Integration on fermionic momenta

Write down the width as an integral over final-state momenta, of the
squared matrix element.

Holding r fixed, carry out the integration over the final-state fermionic
momenta. That is, perform the integrals over k, l. The integration is
similar to the one we encountered for Iµ⌫(r) in the text. The resulting
expression should be proportional to (r2⌘µ⌫ � rµr⌫). It should now be
straightforward to perform the rest of the Lorentz index contractions.

[5.2.4] Total width

Express the total width as a single integral. Re-write your answer by
factoring all dimensionful quantities out of the integral, so it depends
only on the dimensionless parameter mH/MW and the integration vari-
able, which might for instance be p0

W
/MW . If you cannot do the integral

by hand, you will have to find some way of evaluating it numerically.

Compute the partial width �(H !Wff̄) for the values mH = 126 GeV
and mW = 80.4 GeV, and compare it to the partial width �(H ! bb̄).

[5.2.5] Z-pairs and experimental issues

Repeat the calculation for the case H ! Zff̄ with ff̄ a pair of fermions
which can be produced by an o↵-shell Z. What is the partial width to
Z bosons?

List common final states for the Wff̄ and Zff̄ decays, considering that
the W or Z also decays. What is the partial width of a Higgs boson to
4 leptons (electron and muon only), where one lepton pair reconstructs
to the Z mass and the four leptons reconstruct to the Higgs mass?
Can you explain why this is a particularly clean final state for study in
hadron colliders?

[5.3] The miracle of Lorentz invariance Consider the following Lagran-
gian density for a real scalar field, �(x), that is coupled to a classical
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background current, Jµ(x):

L = �1

2
@µ�@

µ�� 1

2
m2�2 � gJµ@µ� (5.80)

[5.3.1] Construct the canonical Hamiltonian density for this problem and
show that it is given by

H = H0 +Hint

with

H0 =
1

2

h
⇡2 + (r�)2 +m2�2

i
(5.81)

Hint = gJ0⇡ +
g2

2
J0J0 + gJ ·r� = +gJµ@µ��

g2

2
J0J0(5.82)

Here ⇡ = �̇�gJ0 is the canonical momentum. Notice in particular how
the interaction Hamiltonian is not Lorentz-invariant.

[5.3.2] Find the propagator

Gµ⌫(x, x
0) ⌘ h0|T

⇥
@µ�(x)@⌫�(x

0)
⇤
|0i

and show that it can be written in the following way:

Gµ⌫ = �i@µ@0⌫
Z

d4p

(2⇡)4
eip·(x�x0)

p2 + µ2 � i✏
+�µ⌫(x, x

0) (5.83)

Explicitly compute the function �µ⌫(x, x0) in this equation, and show
that it is not Lorentz-covariant.

[5.3.3] Compute the vacuum transition-matrix element, h0|S|0i, to second
order in the current, Jµ(x), and show that the above two sources of
Lorentz-non-covariance cancel one another. This shows that the final
Lorentz-invariant result is equivalent to what would have been obtained
if we had simply used the naive expression Hint = �Lint and used the
naive propagator G̃µ⌫ = Gµ⌫ � �µ⌫ . Modified time ordering which
produces this propagator is often called the “T⇤-ordering,” and denoted
G̃µ⌫(x, x0) ⌘ h0|T ⇤[@µ�(x)@⌫�(x0)]|0i.
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Leptonic weak interactions: collisions

The only applications of the standard model discussed up to this point
have been calculations of the decay rates for the unstable weakly interacting
elementary particles of the model. These are important applications since
much of what is known about the fundamental interactions of nature comes
from the basic properties of the particles involved, including their decay
products and lifetimes. As we have seen, the standard model is able to do a
good job of accounting for these properties to within the accuracy of current
measurements, at least within the leptonic sector.
There are other applications which the model must also describe, however.

Prominent among these are reactions that are observed within particle ac-
celerators. This is, after all, how these unstable particles are produced.
This chapter is meant to present some of the standard model predictions for
the results of elementary-particle collisions among leptons and electroweak
bosons. We focus here on these particles since their collisions are under-
standable with the fewest complications. Hadronic collisions are the topic
of Chapter 9.
e+e�–annihilation processes are the lepton collisions that have been of

particular interest since these have been studied in great detail near and
beyond the Z0 resonance. The precision of these measurements has been
used to test the model with exquisite precision. For this reason the reaction
e+e� ! ff is examined in some detail.
Neutrino–electron scattering is another purely leptonic process of exper-

imental interest. Beams of electron-type neutrinos (produced for instance
in a nuclear reactor or the Sun), or muon-type neutrinos (produced by pion
decay downstream of a target area within an accelerator), can be collided
with electrons and the resulting collision rates compared with the predictions
of the theory. Neutrino collisions with electrons also take place within the
large neutrino observatories and must be understood in order to understand

186



6.1 The Mandelstam variables 187

neutrino oscillations in solar, reactor, atmospheric, and beam experiments,
and to understand neutrinos from supernovae, such as those observed from
Supernova 1987A (and any more that are yet to come).

6.1 The Mandelstam variables

Before launching into a detailed calculation of the collision rates in various
accelerators, some notational points must first be made. In any two-body
scattering process in which only the momenta and energies of the scattering
particles are observed (as opposed to their spins etc.) there are precisely two
relativistically invariant variables on which Lorentz-invariant observables
like cross sections can depend. There is a conventional choice for these
variables that is outlined in this section.
Consider, then, a two-body process of the form a + b ! c + d in which

particles a, b, c, and d have four-momenta pµk and masses m2
k = �p2k, with

k = a, b, c, d. These four-momenta are arbitrary future-directed timelike
(or possibly null) vectors that are subject only to the condition of four-
momentum conservation:

pa + pb = pc + pd (6.1)

If only momenta and energies are measured in this reaction then the cross
section must depend only on the four four-momenta of the problem: pa
through pd. Being Lorentz-invariant, the cross section d�(a+b! c+d) can
only depend on the independent Lorentz-invariant combinations that can
be constructed from these momenta. Since the square of each of these four-
vectors is a constant – being equal to the mass of the corresponding particle
– the Lorentz-invariant combinations that contain the kinematic information
(such as the directions traveled by each particle) are the six inner products:
pk ·pl with k and l running over particle types a to d with k 6= l. Since four-
momentum conservation, Eq. (6.1), allows any one of the pk to be eliminated
in terms of the others only three of these inner products need a priori be
considered as being distinct. If, for example, four-momentum conservation
is chosen to eliminate pd then the three inner products could be chosen to
be pa · pb, pa · pc and pb · pc.
Instead of directly using these inner products, it is conventional to use the

following equivalent three combinations, known as Mandelstam variables or
Mandelstam invariants:

s ⌘ �(pa + pb)
2

= �2pa · pb +m2
a +m2

b
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t ⌘ �(pa � pc)
2

= 2pa · pc +m2
a +m2

c

u ⌘ �(pa � pd)
2

= 2pa · pd +m2
a +m2

d (6.2)

These invariants may also be re-expressed in terms of the other four-
momenta using four-momentum conservation:

s = �(pc + pd)
2

= �2pc · pd +m2
c +m2

d

t = �(pd � pb)
2

= 2pb · pd +m2
b +m2

d

u = �(pc � pb)
2

= 2pb · pc +m2
b +m2

c (6.3)

Now, given the masses of all of the particles involved, a two-body collision
should be completely described in terms of two invariant parameters. These
could be chosen to be the collision energy and scattering angle as seen in the
center-of-mass frame, for example. There must therefore be a relationship
amongst the three Mandelstam invariants. This relationship is easily derived
if the definitions for s, t, and u in Eq. (6.2) are added to one another:

s+ t+ u = �2pa · (pb � pc � pd) + 3m2
a +m2

b +m2
c +m2

d

= +2p2a + 3m2
a +m2

b +m2
c +m2

d

= m2
a +m2

b +m2
c +m2

d (6.4)

These variables can be related to the basic kinematic quantities in any
given reference frame, such as the overall energy of the collision and the
scattering angles, etc.There are two frames that are of the most practical
interest. These are the center-of-mass frame – or CM frame for short – de-
fined as the rest frame of the timelike four-vector pa+pb, and the lab frame,
defined as the rest frame of particle “a.” The lab frame terminology is
appropriate for “fixed target” experiments in which a beam of high-energy
particles impinge on a target at rest. Center-of-mass variables are useful
both because they are frequently simpler, and because many modern ex-
periments are beam-on-beam experiments where the center-of-mass frame
is the same as the frame of the particle detector.

Lab frame: The lab frame is defined as the rest frame of particle “a”:

Ea ⌘ p0a = ma; and pa = 0 (6.5)
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In this frame inner products of four-vectors with pa have a very
simple form: pa · pb = �maEb. s, t, and u are therefore directly
related to the energies of particles “b”, “c” and “d” in this frame:

s = +2maEb +m2
a +m2

b , lab frame

t = �2maEc +m2
a +m2

c , lab frame

u = �2maEd +m2
a +m2

d, lab frame (6.6)

Once the energies E, and hence the magnitudes of the three-
momenta, |p| =

p
E2�m2, are determined from these relations, the

angular information may next be obtained from these same variables.
Denote the angle between the direction of the incoming particle, pb,
and the directions of the outgoing particles, pc and pd, by ✓⇤c and
✓⇤d. Then the angular information is obtained from t and u as ex-
pressed in Eq. (6.3). To see this use pb · pc = �EbEc + pb · pc =
�EbEc + pbpc cos ✓⇤c . (The notation used here has pb ⌘ |pb| with the
understanding that the context will keep pb defined in this way from
being confused with the four-vector pb.) The Mandelstam invariants
t and u therefore become

t = �2EbEd + 2pbpd cos ✓
⇤
d +m2

b +m2
d, lab frame

⇡ �2EbEd(1� cos ✓⇤d) (ultra-relativistic)

u = �2EbEc + 2pbpc cos ✓
⇤
c +m2

b +m2
c , lab frame

⇡ �2EbEc(1� cos ✓⇤c ) (ultra-relativistic) (6.7)

CM frame: The CM frame is defined as the frame in which the three-
momenta of the initial particles (and so also of the final particles)
are equal and opposite:

pa + pb = 0 and so E2
a �m2

a = E2
b �m2

b (6.8)

In this frame the invariant s is simply the square of the total energy
of the collision:

s = (Ea + Eb)
2; CM frame

= (Ec + Ed)
2; CM frame (6.9)

Clearly knowledge of s therefore completely determines the energies
and the magnitudes of the three-momenta of all particles in this
frame.

The directional information lies in t and u. Defining the angle ✓
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as the angle between the direction of the initial particle “a” and the
direction of the outgoing particle “c” in the CM frame, we have

t = �2EaEc + 2papc cos ✓ +m2
a +m2

c ; CM frame

⇡ �2EaEc(1� cos ✓); (ultra-relativistic)

u = �2EaEd + 2papd cos(⇡ � ✓) +m2
a +m2

d

= �2EaEd � 2papd cos ✓ +m2
a +m2

d; CM frame

⇡ �2EaEd(1 + cos ✓); (ultra-relativistic) (6.10)

These expressions also indicate the range of values over which s, t, and u
may run. Inspection of Eq. (6.6) and Eq. (6.9) shows that s, t, and u must
lie within the following kinematically allowed ranges:

s � max[m2
a +m2

b ;m
2
c +m2

d]

t  min[m2
a +m2

c ;m
2
b +m2

d]

u  min[m2
a +m2

d;m
2
b +m2

c ] (6.11)

6.2 e
+
e
� annihilation: calculation

Consider now the collision process e+e� ! ff . The cross section for this
process is computed in this section for unpolarized initial electrons and with
the spin of the final-state fermions unmeasured. This calculation is meant to
provide an explicit illustration of how such cross sections are determined, as
well as to derive formulae for the cross section that have applications in later
sections and are of interest in themselves. Since most applications involve
energies well in excess of 1 GeV – and the most interesting application is for
s ' MZ ' 90 GeV – the masses of the fermion final states are neglected to
good approximation in this section.
Provided that the final state particles are not electrons or electron neutri-

nos, the standard model scattering amplitude is dominated by two Feynman
diagrams, shown in Figure 6.1.
Should the final state particles be e+e� or ⌫e⌫e then there are additional

graphs such as those in Figure 6.2 that must also be included. Therefore,
we postpone treatment of these final states to Section 6.5.
Using the Feynman rules of the previous chapter, the Z0-exchange graph

of Figure 6.1 has the following matrix element:

Me+e�!ff̄ =
2(�eZ)2

2!

⇥
ve(p

0)�µ�Zeue(p)
⇤⇥
uf (k)�

⌫�Zfvf (k
0)
⇤

⇥


1

(p+ p0)2 +M2
Z
� i✏

✓
⌘µ⌫ +

(p+ p0)µ(p+ p0)⌫
M2

Z

◆�
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Fig. 6.1. The Feynman graphs for the process e+e� ! ff .
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Fig. 6.2. Additional graphs for e+e� ! e+e� and e+e� ! ⌫e⌫e.

(6.12)

In this equation, �Zf denotes the Dirac matrix that specifies the Z-boson’s
neutral-current couplings to fermion type “f”:

�Zf = gV + gA�5

= gLPL + gRPR (6.13)

PL and PR are the projection matrices onto left- and right-handed helicity
as defined in Eq. (1.76) and Eq. (1.77). The coupling constants gL and gR

are the more convenient combinations to use if the fermions involved are
ultra-relativistic, since in this limit helicity is a conserved quantum number.
They are given in terms of gA and gV by

gL = gV + gA = T3 �Q sin2 ✓W (6.14)

gR = gV � gA = �Q sin2 ✓W (6.15)

The contribution of the photon-exchange graph is also easily obtained
from Eq. (6.12) by making a few substitutions. First, the unitary-gauge Z0

propagator must be replaced with the ⇠-gauge photon propagator appro-
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priate for a massless particle, M� = 0. Next the gauge coupling constant,
eZ , must be replaced by the electromagnetic one, e� = e. Also �Zf must
be replaced by ��f , which has the same form as in Eq. (6.13) with the
numerical constants gV and gA of the neutral current replaced by the values
qV = qL = qR = Q and qA = 0 relevant for the electromagnetic current.

An immediate simplification of this amplitude is possible if the fermion
masses are neglected relative to MZ , as is the case here. This is because
the (p + p0)µ(p + p0)⌫ term in the Z-propagator may be dropped, since it
contributes to the S-matrix an amount that is proportional to g2

A
m2

f /M
2
Z
.

The same terms in the photon propagator may also be dropped for any
fermion masses, since the axial couplings to the photon vanish, qA = 0, for
all fermion types.

The total matrix element, M(e+e� ! ff), is the sum of the photon- and
Z-exchange contributions and therefore becomes:

M(e+e� ! ff) = �
X

V=Z,�

e2
V

⇥
ve(p

0)�µ�V eue(p)
⇤⇥
uf (k)�µ�V fvf (k

0)
⇤

⇥


1

(p+ p0)2 +M2
V
� i✏

�
(6.16)

Averaging the square of this matrix element over the four initial spin
states (two each for each incoming particle) and summing over the final
spins (and, if necessary, colors) gives the following result:

M2 =
1

4

X

spins

X

colors

|M(e+e� ! ff)|2

=
Nc

4

X

V=Z,�

X

V 0=Z,�

e2
V
e2
V

Kµ⌫(k, k0)Pµ⌫(p, p0)

(s�M2
V
)(s�M2

V
0)

(6.17)

in which s = �(p + p0)2 has been used, the “i✏” terms have been dropped,
and Nc is as usual Nc = 1 if “f” is a lepton and Nc = 3 if “f” is a quark.
Kµ⌫ and Pµ⌫ represent the following Dirac traces:

Pµ⌫ ⌘
X

spins

tr
⇥
�µ�V eueue(p)�

⌫�V
0eveve(p

0)
⇤

= � tr
h
�µ�V e/p�

⌫�V
0e/p

0
i

= �2
⇥
(geLg

0
eL + geRg

0
eR)(p

µp0⌫ + p⌫p0µ � p · p0⌘µ⌫)

+i(geLg
0
eL � geRg

0
eR)✏

µ⌫�⇢p�p
0
⇢

i
(6.18)



6.2 e+e� annihilation: calculation 193

and

Kµ⌫ ⌘
X

spins

tr
⇥
�µ�V fvfvf (k

0)�⌫�V
0fufuf (k)

⇤

= � tr
h
�µ�V f/k

0�⌫�V
0f/k
i

= �2
h
(gfLg

0
fL

+ gfRg
0
fR
)(kµk0⌫ + k⌫k0µ � k · k0⌘µ⌫)

�i(gfLg
0
fL
� gfRg

0
fR
)✏µ⌫�⇢k�k

0
⇢

i
(6.19)

The prime on the coupling constants gL and gR indicates it is the coupling
appropriate to gauge boson V 0.
Because the denominators involve the Mandelstam variable s, this process

is conventionally referred to as an s-channel process.
Contracting these last results with one another gives the intermediate

result

Kµ⌫Pµ⌫ = 16
h
(gfLg

0
fL
geLg

0
eL + gfRg

0
fR
geRg

0
eR)(p · k0)(p0 · k)

+(gfLg
0
fL
geRg

0
eR + gfRg

0
fR
geLg

0
eL)(p · k)(p0 · k0)

i

= 4
h
(gfLg

0
fL
geLg

0
eL + gfRg

0
fR
geRg

0
eR)u

2

+(gfLg
0
fL
geRg

0
eR + gfRg

0
fR
geLg

0
eL)t

2
i

(6.20)

The last equality uses the ultra-relativistic approximation to Eq. (6.2) and
Eq. (6.3) for the Mandelstam invariants as applied to this reaction: s =
�2p · p0 = �2k · k0, t = 2p · k = 2p0 · k0, and u = 2p · k0 = 2p0 · k.

Combining these results gives the spin-averaged squared matrix element

M2 = Nc

0

B@

������

X

V=Z,�

e2
V

geLgfL

s�M2
V

������

2

u2 +

������

X

V=Z,�

e2
V

geRgfR

s�M2
V

������

2

u2

+

������

X

V=Z,�

e2
V

geLgfR

s�M2
V

������

2

t2 +

������

X

V=Z,�

e2
V

geRgfL

s�M2
V

������

2

t2

1

CA (6.21)

This last formula has a simple physical interpretation that might have
been expected for massless – i.e. ultra-relativistic – fermions. Eq. (6.21)
gives the rate for the collision process as the sum of the incoherent scattering
rates in which the initial and final fermions have definite helicity.
Also, as is easily seen from Eq. (6.10), the limits where u ! 0 or t ! 0

correspond for ultra-relativistic fermions to the cases where the scattering
angle, ✓, between the directions of the incoming electron, e�, and the outgo-
ing fermion, f , in the CM frame approach zero (t! 0) or ⇡(u! 0). In this
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case the direction of motion of both the incident and final particles are par-
allel or antiparallel. An argument identical to that given in Subsection 4.1.5
then implies that the conservation of angular momentum along this common
direction of motion is only consistent with conservation of helicity for spe-
cific choices for the relative helicities of the initial and final fermions. This
is seen in the squared matrix element, Eq. (6.21), by the way that each of
the terms for definite helicities vanishes either for t = 0 or for u = 0.
With Eq. (6.21) in hand, the cross section for e+e� ! ff is easily com-

puted. From the definition, Eq. (3.41), of the di↵erential cross section, we
have

d�(e+e� ! ff) =
1

2p02p00f
M2 (2⇡)4�4(p+ p0 � k � k0)

d3k d3k0

(2⇡)62k02k00

with f ⌘ �p · p0

p0p00
vrel

⇡ s

2p0p00
(ultra-relativistic) (6.22)

so combining all of the above results gives

d�(e+e� ! ff) =
8⇡2↵2

s
Nc

⇣
[|ALL(s)|2 + |ARR(s)|2]u2

+[|ALR(s)|2 + |ARL(s)|2]t2
⌘
d� (6.23)

in which the helicity amplitudes Aij(s), with i, j =L, R, are given by

Aij =
1

sin2 ✓W cos2 ✓W

✓
geigfj
s�M2

Z

◆
+

QeQf

s
(6.24)

with gfi the coupling strengths of left- and right-handed particles to the Z0,
and with d� denoting the Lorentz-invariant measure on phase-space,

d� ⌘ (2⇡)4�4(p+ p0 � k � k0)
d3k d3k0

(2⇡)62k02k00

= (2⇡)4�4(p+ p0 � k � k0)
d3k

(2⇡)32k0
2⇡�(k02)✓(k00)

d4k0

(2⇡)4

= 2⇡�[(p+ p0 � k)2]✓(p0 + p00 � k0)
d3k

(2⇡)32k0

= � 1

8⇡s
�(s+ t+ u�m2

a �m2
b �m2

c �m2
d) du dt (6.25)

This gives the final form for the invariant cross section:

d�

du dt
(e+e� ! ff) = �⇡↵

2

s2
Nc

⇣
[|ALL(s)|2 + |ARR(s)|2]u2
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+[|ALR(s)|2 + |ARL(s)|2]t2
⌘
�(s+ t+ u)

(6.26)

Evaluating this in the CM frame gives the di↵erential cross section as
a function of the angle between e� and f directions, which is called the
scattering angle ✓:

d�

sin ✓ d✓
(e+e� ! ff) =

⇡↵2sNc

8

n
[|ALL(s)|2 + |ARR(s)|2](1+ cos ✓)2

+[|ALR(s)|2 + |ARL(s)|2](1� cos ✓)2
o

(6.27)

This last result uses the relations s = 4E2, t = �2E2(1 � cos ✓), and u =
�2E2(1 + cos ✓) that connect the Mandelstam variables to ✓. Integrating ✓
over its range 0 < ✓ < ⇡ using

R ⇡
0 (1 ± cos ✓)2 sin ✓ d✓ = 8

3 gives the total
rate:

�(e+e� ! ff) =
⇡↵2sNc

3

⇣
|ALL(s)|2 + |ARR(s)|2

+|ALR(s)|2 + |ARL(s)|2
⌘

(6.28)

6.3 e
+
e
� annihilation: applications

The energy dependence of this cross section for electron–positron annihi-
lation is largely governed by the s dependence of the polarized amplitudes
Aij(s). There are naturally three regions to consider depending on the rel-
ative size of contributions due to photon- and Z0-exchange. We consider
each region successively in this section.

6.3.1 Low energies: e
+
e
� ! hadrons

For CM-frame energies that are very small compared to MZ = 90 GeV –
yet still large compared to the fermion masses, me and mf – the amplitudes
Aij(s) are well approximated by the contribution due to photon exchange:

ALL ⇡ ALR ⇡ ARL ⇡ ARR ⇡
QeQf

s
(6.29)

In this limit the electron–positron annihilation rate reduces to the form
found in quantum electrodynamics,

d�

du dt
(e+e� ! ff)

����
�-exchange

= �2⇡↵2

s2
Q2

eQ
2
fNc

 
u2 + t2

s2

!

�(s+ t+ u)

(6.30)
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which becomes, in the CM frame,

d�

sin ✓ d✓
(e+e� ! ff)

����
�-exchange

=
⇡↵2

2s
Q2

eQ
2
fNc(1 + cos2 ✓) (6.31)

The total rate similarly reduces to the result familiar from QED,

�(e+e� ! ff)|�-exchange =
4⇡↵2

3s
Q2

eQ
2
fNc (6.32)

6.3.1.1 µ+µ� production

To get a feeling for the size of these numbers, consider µ+µ� production at
energies

p
s = 1 GeV. At these energies the ratio s/M2

Z
is s/M2

Z
⇡ 10�4

and m2
µ/s ⇡ 10�2, so Eq. (6.32) provides a perfectly adequate description.

In this case, using ↵ = 1/137 and Q2
e = Q2

µ = Nc = 1 gives

�(e+e� ! µ+µ�) =
4⇡↵2

3s
= 2.23⇥ 10�4 (GeV)�2

= 87 nb (6.33)

The units of the final line are nanobarns with a barn defined to be
10�24cm2. Now, an accelerator luminosity is defined as the rate at which
the accelerator can deliver incident particles per unit area of beam. This
is useful because the product of the cross section and luminosity gives the
number of events which can be expected per unit time. Luminosity is usu-
ally quoted in inverse cm2 s; for instance, the LEP I experiment achieved
2.4 ⇥ 1031/cm2 s, but at a much higher energy than 1 GeV. A machine de-
signed to study the 1 GeV energy range in detail, the VEPP-2000, has a
luminosity of 1032/cm2 s = 0.1/nb.s, enough to produce about 9 µ+µ� pairs
per second.
For the purposes of comparison, a strong interaction cross section is

roughly a typical strong interaction scale raised to the power that is dic-
tated by dimensional analysis: �str ⇠ ⇤�2

QCD
⇠ 40 (GeV)�2 ⇠ 20 mbarn. We

take the strong scale ⇤QCD ⇡ 150 MeV in this estimate.

6.3.1.2 Hadron production

There is an immediate application of these low-energy results that takes
advantage of the fact that in this energy range the energy dependence of
the cross section is the same for all particle types in the final state. To
use this fact it is convenient to compute the cross section for producing
hadrons in low-energy e+e� annihilations, normalized by the muon pair-
production rate. The complication is that quarks and gluons interact very
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strongly with each other at low energies, as we discuss in Part III. In fact,
the interactions are so strong that quarks and gluons are not valid external
states for a reaction; instead they stick together into bound states called
hadrons. However, at suitably high energies,

p
s > 1 GeV or so, the strong

coupling is weaker and perturbation theory begins to be useful. At these
energies the process of producing quarks and gluons and the process of
their combining into hadronic bound states are approximately independent.
Rather than summing over a complete set of hadronic final states, one can
sum over color-neutral quark and gluon final states and ignore the question
of how these project onto the hadronic states. For energies large enough
to justify perturbation theory the dominant terms in the final-state sum
are then the quark–antiquark pairs. The cross section for this process may
therefore be computed by summing Eq. (6.32) over all quark flavors with
masses small enough to allow pair production at the given CM energy,

p
s.

This gives the following expression for the ratio

RH ⌘ �(e+e� ! hadrons)

�(e+e� ! µ+µ�)

⇡ 3s

4⇡↵2

X

q,2mq<
p
s

�(e+e� ! qq̄)

= 3
X

q,2mq<
p
s

Q2
q (6.34)

The overall factor of 3 here is due to the number of colors available to each
quark type. The approximation that is used in the second line is the low-
energy expression, Eq. (6.32), for the cross section in which fermion masses
are neglected relative to

p
s. The neglect of fermion masses implies that

Eq. (6.34) should not be expected to hold in the immediate vicinity of a
threshold,

p
s ⇡ 2mq.

Clearly RH(s) is independent of energy between mass thresholds to the
extent that photon exchange dominates the production cross section. Mea-
surement of its value gives an indication of the number of quark degrees of
freedom that are available at the given energy. It gives, in particular, an
experimental indication of the number of colors, Nc.
A plot of the experimental value for this ratio is given in Figure 6.3 (from

data compiled and made freely available by the Particle Data Group). The
solid lines in the figure represent Eq. (6.34) evaluated using u, d, s (three
quarks), u, d, s, c (four quarks), and u, d, s, c, b (five quarks). At low energies,
the hadronic character of the final state is important and the cross section
has a number of peaks and troughs. Above this region, the cross section is
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Fig. 6.3. The measured pair-production ratio, RH.

reasonably well approximated by Eq. (6.34) (provided Nc = 3), including
steplike features at s ' 2mc and s ' 2mb. (The figure does not show very
high but, rather, narrow spikes at these points, which arise because of cc
and bb bound states.)

6.3.2 Intermediate energies: asymmetries

The range of CM interaction energies in the neighborhood of 10 GeV or so
is an intermediate range within which the neutral current contribution to
the cross section is still small, but is large enough to be detectable. In this
energy range we must keep the subdominant term in the expansion of the
helicity amplitudes, Aij(s), in powers of s/M2

Z
:

Aij(s) ⇡
QeQf

s
� 1

sin2 ✓W cos2 ✓W

geigfj
M2

Z

(6.35)

Since the small M�2
Z

e↵ect of the neutral-current interaction must be
picked out of a background of electromagnetic events it helps to focus on
some sort of observable to which the electromagnetic interactions do not
contribute at all. A natural choice for such an observable would be anything
which measures either C or P violation, since this is a symmetry of the
electromagnetic, but not of the neutral-current, interaction.
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6.3.2.1 Left–right asymmetry

An example of this type of an observable is given by the comparison of cross
sections as the helicity of the initial electron–positron pair is varied, since
the amplitude only develops a dependence on helicity through the neutral-
current couplings. A candidate example might be to take the di↵erence
between the cross section measured for left- and right-handed electrons col-
liding with unpolarized positrons:

ALR =
�(eL)� �(eR)
�(eL) + �(eR)

(6.36)

This is known as the left–right asymmetry and may be computed using
Eq. (6.28) and Eq. (6.35). The leading contribution arises from the interfer-
ence of the neutral-current and electromagnetic amplitudes:

ALR(e
+e� ! ff) =

[|ALL|2 + |ALR|2]� [|ARL|2 + |ARR|2]
[|ARL|2 + |ARR|2] + [|ARL|2 + |ARR|2]

' �
✓

s

M2
Z

◆"(g2eL � g2eR)(g
2
fL

+ g2fR
)

2QeQf sin
2 ✓W cos2 ✓W

#

(6.37)

For
p
s = 25 GeV the ratio s/M2

Z
= 0.08, so this asymmetry can be in the

neighborhood of an 8% e↵ect at these energies.

6.3.2.2 Forward–backward asymmetry

A similar kind of asymmetry that is also sensitive to C-violating interactions
is the forward–backward asymmetry, AFB. This is defined in the following
way. Suppose the particle detector is imagined to be enclosed within a
sphere which is centered at the collision point. If the direction of motion
of the initial electron is taken to define the north pole of this sphere, then
AFB is given by the di↵erence in cross sections, call them �±, between those
collisions for which the final fermion, f , emerges in the northern – 0 < ✓ < ⇡

2
– and southern – ⇡

2 < ✓ < ⇡ – hemispheres of this sphere, normalized by the
total cross section. That is to say, for

�± ⌘ ±
Z ±1

0

d�

d cos ✓
d cos ✓ (6.38)

we have

AFB =
�+ � ��
�+ + ��

=
3

4

 
[|ALL(s)|2 + |ARR(s)|2]� [|ALR(s)|2 + |ARL(s)|2]
[|ALL(s)|2 + |ARR(s)|2] + [|ALR(s)|2 + |ARL(s)|2]

!
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⇡ �
✓

s

M2
Z

◆"3(g2eL � g2eR)(g
2
fL
� g2fR

)

8QeQf sin
2 ✓W cos2 ✓W

#

(6.39)

The approximation used in the third line here is the use of the approximate
form, Eq. (6.35), for the helicity amplitudes, Aij(s).
Notice that although ALR and AFB are proportional at low energies to

the squared di↵erence of the left- and right-handed electron couplings, they
each sample a di↵erent combination of the couplings of the pair-produced
fermions. It was measurements of these asymmetries which first gave con-
vincing evidence of the existence of the Z0 boson, before any accelerator
had su�cient energy to create one directly.

6.3.3 High energies: asymptotic forms

The next simplest limit takes s � M2
Z
, so the helicity amplitudes may be

approximated by

Aij(s) ⇡

QeQf +

geigfj
sin2 ✓W cos2 ✓W

�
1

s
(6.40)

In this limit the energy dependence of the cross section is precisely as it is in
the photon-dominated case, but with the electromagnetic coupling constants
QeQf replaced by the combination in the square bracket of Eq. (6.40) above.
At these energies the photon and Z0 exchange graphs di↵er only in the

strength of their couplings. This is the signature of electroweak unification;
at high energies the weak and electromagnetic interactions are indeed very
similar in form.

6.4 The Z boson resonance

Even a superficial inspection of Eq. (6.26), Eq. (6.27), or Eq. (6.28) indi-
cates that there is a problem in the regime where the exchange momentum,
r ⌘ (p + p0), approaches the Z boson mass shell, r2 = �M2

Z
, where the

intermediate Z boson has the right four-momentum to be a real (as opposed
to virtual) particle. As s = �r2 approaches M2

Z
, the cross section appar-

ently diverges. This indicates a failure of the perturbative expansion for
the S-matrix. After all, the S-matrix elements are bounded by the general
requirement of unitarity, so their perturbative approximations must also be
bounded, or must be bad approximations. For this reason, in this section
we will have to make a digression into the topic of higher-order perturbative
corrections. We will find that these corrections are essential to resolving this
puzzle.
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Fig. 6.4. Important corrections near s = M2
Z .

There is a large body of knowledge concerning the higher-order pertur-
bative corrections to the lowest-order expressions described up to this point
throughout this book. As has already been seen, these corrections are an
important part of the agreement of the standard model with experiment,
particularly for the properties of the Z0 boson, due to the accuracy of the
experimental results that are now available. This is doubly true in the reso-
nance regime, s 'M2

Z
, where the radiative corrections are already essential

at leading order, and where exquisitely precise measurements, conducted by
the LEP I experiment at CERN and the SLC experiment at SLAC, have
thoroughly explored the physics and provided some of the highest-precision
experiments, and tightest tests, of the standard model.

6.4.1 Corrections near resonance

From the fact that the perturbative S-matrix near the Z0-mass shell di-
verges, it follows that there must be additional, supposedly higher-order,
graphs that nevertheless contribute in an important way, when s ' M2

Z
. It

is the purpose of this subsection to identify these contributions and to find
their size, in order to have a good approximation to the lowest-order cross
section near the pole.
The graphs that are the source of the di�culty are graphs of the form of

Figure 6.4, which can be thought of as modifying the Z0-boson propagator.
Although these graphs are superficially suppressed relative to Figs. 6.2 by
additional powers of the small electroweak coupling constants, they can
be of comparable size for Z0-boson four-momenta, rµ, that lie within the
immediate neighborhood (i.e. within O(↵M2

Z
)) of r2 = �M2

Z
.

The reason that corrections are needed here, is because of a cancellation
in the denominator of the propagator, r2 + M2

Z
' 0, which renders the

propagator much larger than the usual size ⇠1/M2
Z
. Each “loop” of the

form shown in Figure 6.4 (the loop is the pair of fermionic propagators
going in a circle, including the loop-momentum integration and the vertex
factors) gives a contribution which is of the order ↵M2

Z
(as can be argued
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on dimensional grounds). Each loop also leads to one more appearance
of the gauge-boson propagator, introducing a factor of 1/(r2+M2

Z
). When

r2+M2
Z
⇠ ↵M2

Z
, the addition of a loop is not a suppressed correction. While

there are other ways of adding loops, they do not lead to a new factor of
1/(s�M2

Z
) per loop, and we can therefore continue to neglect them.

Denote the contribution of one of these loops, after all polarization sums
have been performed, as M2

Z
↵(x+iy), with x and y pure numbers of order 1.

We know on dimensional grounds that this is the right general form for the
correction. It is easy to see that the inclusion of these graphs does remove the
divergence of the S-matrix near the Z0-mass shell. The whole set of graphs
with 0, 1, 2, . . . “loops” inserted can be summed as a geometric series, and
appears as a correction in the denominator of the Z0-boson propagator:

(0 loop) + (1 loop) + · · · / 1

r2+M2
Z

+
M2

Z
↵(x+iy)

(r2+M2
Z
)2

+
[M2

Z
↵(x+iy)]2

(r2+M2
Z
)3

+ · · ·

=
1

r2 +M2
Z
(1� ↵(x+ iy))

(6.41)

A radiative (loop) correction which can be understood as a correction of a
propagator in this way is called a self-energy correction, because it represents
a correction to the propagating particle’s energy due to its interaction with
the vacuum (with its own field).
The correction to the propagator is complex, and in particular it moves

the singular point of the propagator away from the real point r2 +M2
Z
= 0

and out to a complex point:

r2 = �M2
Z
[1� ↵(x+ iy)] (6.42)

However, since the Z0 boson four-momentum, rµ, must necessarily be real,
it can never satisfy Eq. (6.42), and so the corresponding source of the di-
vergence of the S-matrix does not arise. Since these corrections are only
significant for s within O(↵M2

Z
) of s = M2

Z
, none of the discussions of the

previous sections need be modified.
From the above considerations it is clearly the imaginary part of the con-

tribution from diagrams like Figure 6.4 that is the most important. A real
shift, e.g., ↵x in Eq. (6.42), can be re-interpreted as a shift in the Z0 boson
mass squared, M2

Z
(physical) = M2

Z
(1 � ↵x). In fact, it is the combination

M2
Z
(1� ↵x) which we “measure” as the true mass of the Z boson – a point

we will return to in Subsection 7.4.1. An imaginary shift cannot be similarly
absorbed. The next step is to determine how to compute the size of this
shift reliably. The main conclusion to be argued is that the imaginary part
of the shift in the position of the pole of the propagator is simply related
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to the mass and total decay width of the Z0. Once this is established, the
results of Chapter 4 may be used immediately to compute the size of the
shift.
For these purposes we take advantage of the small range of momenta for

which these corrections are appreciable. It is therefore a good approximation
to take the corrections to the Z0 propagator near the mass shell, due to
Figure 6.4, to be independent of momentum. That is, we are neglecting the
r2 dependence of y above. It will be convenient to redefine y as �iM2

Z
↵y ⌘

�iMZ�. That is to say

1

r2 +M2
Z
� i✏

! 1

r2 +M2
Z
� iMZ�

(6.43)

where � is a constant with the dimensions of mass that is much smaller than
the Z0 mass itself: � ⇠ O(↵MZ). The infinitesimal, ✏, has been dropped
since its role is to indicate how to avoid the singularity at r2 = �M2

Z
in the

integration over the component r0. This is no longer necessary since the
additional term, �iMZ�, shifts the singularity o↵ of the (real) integration
axis.
The remainder of the argument is to relate the parameter � to the prop-

erties of the particles “going around in the loop.” The main observation is
that the last two terms in the denominator of Eq. (6.43) may be written to
lowest order in ↵ as a perfect square:

M2
Z
� iMZ� =

✓
MZ �

i�

2

◆2
+O(↵2) (6.44)

which is completely equivalent to a shift of the Z0 mass by a small imaginary
part. If the arguments used to derive the propagator from the sum over
virtual particle states in Subsection 5.2.1 are now run backwards, the shift
of the pole of the propagator implies that the intermediate Z0 states evolve
in time with a small negative imaginary part for their mass.
Since the time dependence of these particle states, in the Z rest frame, is

|Z(t)i = e�iMZt|Z(0)i
! e�iMZ t� 1

2
�t|Z(0)i (6.45)

the probability that the Z0 particle survives as a function of time therefore
becomes

p(t) = |hZ(t)|Z(0)i|2

= e��tp(0) (6.46)

This implies that � should be identified with the full decay width for the
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Z0 particle as computed in Section 4.1 (c.f. Eq. (4.38) and Eq. (4.39)):

� = �Z

=
e2
Z

12⇡
MZ

X

f

(g2
V
+ g2

A
)Nc (6.47)

In a nutshell, then, the net e↵ect of all of the higher-order graphs such as
those of Figure 6.4 for the results of Section 6.2 is to replace the denominator
(s�M2

Z
) by

1

s�M2
Z

! 1

s�M2
Z
� iMZ�Z

(6.48)

Two comments concerning this replacement are in order.

(i) Notice that, as advertised, because �Z is O(↵MZ), the di↵erence
between the corrected propagator and the original one is completely
negligible except when s�M2

Z
= O(↵M2

Z
). This implies that none of

the results of the previous sections are a↵ected by this change (except
at an order where there are other corrections anyway).

(ii) Although the S-matrix elements for e+e� ! ff no longer diverge
after this substitution, they do become very large. In fact, for s
precisely equal to M2

Z
, the Z0-exchange contributions to the helicity

amplitudes, Aij(s), are larger than those due to photon decay by a
factor of 1/↵ ⇠ 100. This implies that there is an enormous enhance-
ment of the Z0-exchange amplitude for s in the immediate vicinity
of M2

Z
, and so photon exchange may be neglected for these energies.

The s-dependence of the squared helicity amplitudes then acquires
the classic Lorentzian, or Breit–Wigner lineshape of a resonance:

d�(e+e� ! Z0 ! ff) /
����

1

s�M2
Z
� iMZ�Z

����
2

=
1

(s�M2
Z
)2 +M2

Z
�2

Z

(6.49)

6.4.2 Application: e
+
e
� ! ff near resonance

Using this replacement in Eq. (6.24) and neglecting photon exchange gives
the following approximation for the helicity amplitudes, Aij(s), that holds
near resonance (“near resonance” here means for |

p
s�MZ |  O(

p
↵M2

Z
) ⇡

10 GeV):

|Aij(s)|2 ⇡
����

geigfj
sin2 ✓W cos2 ✓W

1

s�M2
Z
� iMZ�Z

����
2
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=
g2eig

2
fj

sin4 ✓W cos4 ✓W

1

(s�M2
Z
)2 +M2

Z
�2

Z

(6.50)

The resulting expressions for the di↵erential and integrated cross sections
in the CM frame are

d�

sin ✓ d✓
(e+e� ! Z0 ! ff)

����
res

=
⇡↵2

8 sin4 ✓W cos4 ✓W
Nc

s

(s�M2
Z
)2 +M2

Z
�2

Z

⇥
⇣
[g2eLg

2
fL

+ g2eRg
2
fR
](1 + cos ✓)2

+[g2eLg
2
fR

+ g2eRg
2
fL
](1� cos ✓)2

⌘
(6.51)

and

�res(e
+e� ! Z0 ! ff) =

⇡↵2

3 sin4 ✓W cos4 ✓W
Nc

s

(s�M2
Z
)2 +M2

Z
�2

Z

⇥(g2eL + g2eR)(g
2
fL

+ g2fR
) (6.52)

A particularly clean prediction on resonance is possible for the asymme-
tries, ALR and AFB, respectively defined by Eq. (6.36) and Eq. (6.38), since
the common resonant energy dependence drops out of these cross section
ratios:

ALR|res =
g2eL � g2eR
g2eL + g2eR

=
1
4 � sin2 ✓W

1
4 � sin2 ✓W + 2 sin4 ✓W

,

AFB|res =
(g2eL � g2eR)(g

2
fL
� g2fR

)

(g2eL + g2eR)(g
2
fL

+ g2fR
)

=
(g2fL

� g2fR
)

(g2fL
+ g2fR

)
ALR|res (6.53)

6.4.2.1 Factorization

Resonant amplitudes and cross sections have a particularly simple form when
evaluated right on the central point of the resonance, s = M2

Z
. On resonance

the Z0 propagator may be simplified using the spin-sum identity, Eq. (1.119):

1

r2 +M2
Z
� iMZ�Z

✓
⌘µ⌫ +

rµr⌫
M2

Z

◆
! i

MZ�Z

1X

�=�1

✏(r,�)✏⇤(r,�) (6.54)
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The scattering matrix element of Eq. (6.12) may be written as (c.f. Eq. (4.8)
for the Z0 decay matrix element)

M(e+e� ! ff)
���
res

= � ie2
Z

MZ�Z

1X

�=�1

⇥
ve(p

0)�µ�Zeue(p)✏
⇤(p+ p0,�)

⇤

⇥
⇥
uf (k)�

⌫�Zfvf (k
0)✏(p+ p0,�)

⇤

= � i

MZ�Z

1X

�=�1

⇥
ieZve(p

0)�µ�Zeue(p)✏
⇤(p+ p0,�)

⇤

⇥
⇥
�ieZuf (k)�⌫�Zfvf (k

0)✏(p+ p0,�)
⇤

= +
i

MZ�Z

1X

�=�1

[M(Z0 ! e+e�)]⇤[M(Z0 ! ff)]

(6.55)

That is, on resonance the cross section for e+e� ! ff factorizes into the
product of the amplitude for the process e+e� ! Z0 and the decay Z0 ! ff
for a Z0 particle at rest, EZ = MZ . This is as would be expected if a real
Z0 is produced and then decays. The Z0 so produced does not appear with
its spin in a pure state but instead is prepared in a state that is described
by a density matrix which has each of the three possible spin states equally
weighted. Since this is indeed how real Z0s are produced this justifies the
choice made in Eq. (4.10) for the spin state of an unpolarized Z0 sample.
The cross section for this process has a similar factorized form:

�(e+e� ! Z0 ! ff) =
e4
Z

48⇡
Nc

1

�2
Z

(g2eL + g2eR)(g
2
fL

+ g2fR
)

=
12⇡

M2
Z

�(Z ! e+e�)

�Z

�(Z ! ff)

�Z

(6.56)

Here we used g2
L
+ g2

R
= 2(g2

V
+ g2

A
). Note that this result is precisely

the Breit-Wigner result for (ultra-relativistic) scattering through a p-wave
(spin-one) resonance,

� =
16⇡

s

(2sZ + 1)

(2se + 1)(2sē + 1)

�(Z ! e+e�)

�Z

�(Z ! ff)

�Z

(6.57)

where (2sZ + 1) = 3 is the number of spin states of the Z boson, and
(2se + 1) = (2sē + 1) = 2 are the number of spin states of the incoming
particles. This latter factor appears because we are computing the spin-
averaged cross section; had we computed the cross section for a specific spin
state of the e+ and e�, no such factor would appear.
Equation (6.56) has a natural physical interpretation. In order to bring
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this interpretation out, rewrite Eq. (6.56) in terms of the total cross section
for Z0 production on resonance, defined by summing the above result over all
possible fermion–antifermion final states. Then, using

P
f �(Z ! ff) = �Z ,

we find

�(e+e� ! Z0 ! ff) = �totB(Z ! ff) (6.58)

Here B(Z ! ff) = �(Z ! ff)/�Z is the Z0 branching fraction into the
final fermion–antifermion pairs of flavor “f .” The total cross section, �tot,
is itself given explicitly by

�tot(e
+e� ! Z0) =

12⇡

M2
Z

B(Z ! e+e�)

= 1.52⇥ 10�4 (GeV)�2

= 59.4 nb (6.59)

where we used the experimental values for the width and branching fraction.
Now both the total cross section, �tot, and the cross section �(e+e� ! Z0 !
ff) give the rate per unit incident flux per unit time for the corresponding
reactions. Also, the branching fraction, B(Z0 ! ff), gives the probability
that any given Z0, once produced, decays into an f–f pair. Equation (6.58)
therefore declares that the probability for ff production is given on reso-
nance by the product of the probability of creating a Z0 with the probability
of this Z0 decaying into ff .
Notice that the total cross section given by Eq. (6.59) translates into

roughly one Z0 produced per second using the luminosity of the LEP-I
collider at CERN: 17 ⇥ 1030 cm�2 s�1 = 1.7 ⇥ 10�2/nb.s. We will see in
Subsection 6.7.2 that Eq. (6.59) turns out to be missing a rather substantial
correction, which brings the actual cross section down by about 28% from
the one we have computed.

6.5 t-channel processes: crossing symmetry

Next, consider the process e�f ! e�f , with f any fermion other than e+,
e�, ⌫̄e, or ⌫e. This type of scattering is dominantly mediated by the exchange
of a virtual Z boson or by photon-exchange as in Figure 6.5.
There are a great many practical situations for which this cross-section

is of interest. Some of these are: (i) elastic scattering of electrons and
muons: e�µ� ! e�µ�; (ii) elastic muon–neutrino collisions with electrons,
e�⌫µ ! e�⌫µ; or (iii) various hadronic processes considered in more detail
in Chapter 9. Inelastic processes such as e�⌫µ ! µ�⌫e may also be de-
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Fig. 6.5. The Feynman graph for e�f ! e�f .

scribed by the result derived below provided that all fermion masses may be
neglected.
Consider therefore the evaluation of Figure 6.5 for the contribution of a

vector boson V to the reaction e�(p)f(p0) ! e�(k)f(k0). Inspection of
the Feynman rules of the previous chapter gives a matrix element for this
process of

M(e�f ! e�f) = �
X

V=Z,�

e2
V
[ue(k)�

µ�V eue(p)]
⇥
uf (k

0)�µ�V fuf (p
0)
⇤

⇥


1

(p� k)2 +M2
V
� i✏

�
(6.60)

This expression is very similar to Eq. (6.16). In fact, Eq. (6.60) may be
obtained from Eq. (6.16) by the simple substitution of ue(k) for ve(p0) and
uf (p0) for vf (k0), as well as with the replacements p0µ ! �kµ, k ! k0,
and k0µ ! �p0µ. The signs of the four-momenta are reversed whenever an
incoming particle becomes an outgoing particle or vice versa.
This correspondence allows the results of Section 6.2 to be used directly

to give the spin-summed, squared matrix element for the present process.
If we take the Mandelstam variables for elastic e�f scattering (in the ultra-
relativistic limit) as

s = �(p+ p0)2 ⇡ �2p · p0

t = �(p� k)2 ⇡ +2p · k
u = �(p� k0)2 ⇡ +2p · k0 (6.61)

then the desired result is obtained from Eq. (6.21) with the following sub-
stitution:

s = �2p · p0 ! +2p · k = t

t = +2p · k ! +2p · k0 = u
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u = +2p · k0 ! �2p · p0 = s (6.62)

The result therefore becomes

M2 =

0

B@

������

X

V=Z,�

e2
V

geLgfL

t�M2
V

������

2

s2 +

������

X

V=Z,�

e2
V

geRgfR

t�M2
V

������

2

s2

+

������

X

V=Z,�

e2
V

geLgfR

t�M2
V

������

2

u2 +

������

X

V=Z,�

e2
V

geRgfL

t�M2
V

������

2

u2

1

CA (6.63)

This expression admits the same simple interpretation in terms of polariza-
tion amplitudes as did Eq. (6.21).
Also in analogy with the earlier treatment, the di↵erential cross section

becomes

d�

du dt
(e�f ! e�f) = �⇡↵2

 

[|ALL(t)|2+ |ARR(t)|2]

+ [|ALR(t)|2 + |ARL(t)|2]
u2

s2

!

�(s+ t+ u) (6.64)

Here the helicity amplitudes are

Aij(t) =
X

V

e2
V

e2

✓
geigfj
t�M2

V

◆
(6.65)

Because the Mandelstam variable t appears in the denominator, the process
considered here is generally referred to as a t-channel process, as opposed
to the s-channel process of the previous sections.
This cross section does not encounter problems when t�M2

V
goes to zero,

because the kinematically allowed range for t is �s < t ⌘ �Q2  0 for ultra-
relativistic fermions. On the other hand, the cross-section does diverge as
t ! 0. This is the familiar Coulomb divergence of the cross section, which
again expresses a breakdown of an approximation we have made in deriving
d�/dt. Very small t corresponds to very small scattering angles, which
classically would occur for large impact parameters. In principle, the long
range of the Coulomb interaction ensures that multiple scatterings must be
included to obtain an accurate determination of very-small-angle scattering
amplitudes. These higher-order complications are typically not important
when discussing the di↵erential cross section as a function of angle, since it
is typically true that the experiment of interest cannot distinguish scattering
at su�ciently small angles from no scattering occurring at all.
In deriving the matrix element for this process, we were able to learn
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almost everything by recycling the results of the s-channel calculation of
e+e� ! ff̄ . This recycling was possible because of a symmetry, called
crossing symmetry, between processes with the same species, but where
species move between initial and final states.
Suppose that we have computed the spin sum of |M|2 for some process.

Form another process by making a series of exchanges, where an incoming
particle/antiparticle is replaced with an outgoing antiparticle/particle or
vice versa. Each external (incoming or outgoing) state in the original process
is assigned to the corresponding external state in the new process. The new
process is called a “crossing” of the old process, and its matrix element
squared |M|2 is related to the old process’s value by making the following
substitutions:

(i) replace the momentum of each particle in the first process with the
corresponding momentum of the analog particle in the second, with a
minus sign if a particle has switched between incoming and outgoing;

(ii) multiply by (�1) for each fermion which switches between incoming
and outgoing.

The origin of the minus sign is the following. When a fermion in the initial
state is replaced with an anti-fermion in the final state, the squared matrix
element goes from containing ū(p)u(p) = �i/p+m to containing v̄(k)v(k) =
�(i/k+m). This is not the same as we would get by the substitution p! �k,
it has in addition an overall minus sign. In the case we just considered, there
were two such minus signs, so this rule did not matter.
We can quickly see that these rules give us the relation we already found

between the matrix elements for e+(p)e�(p0)! f(k)f̄(k0) and e�(p)f(p0)!
e�(k)f(k0). The rule says we must multiply by (�1)2 = 1 and make the
substitutions, p ! p, p0 ! �k, k ! k0, k0 ! �p0 in the expression for M2

for the former process. Similarly, we can quickly find the matrix element
for the process e�(p)f̄(p0) ! e�(k)f̄(k0); we must multiply by (�1)2 = 1
and make the substitutions, p! p, p0 ! �k, k ! �p0, and k0 ! k0. In the
ultra-relativistic limit, this changes the Mandelstam variables via

s = �2p · p0 ! 2p · k = t

t = 2p · k ! �2p · p0 = s

u = 2p · k0 ! 2p · k0 = u (6.66)

Applying these substitutions to Eq. (6.21) gives the di↵erential cross section
for e�f̄ ! e�f̄ .
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Fig. 6.6. The “uncrossed” and “crossed” graphs for e�e� scattering.

6.6 Interference: Møller scattering

Crossing symmetry makes it possible to recycle a small number of calcu-
lations into a complete list of desired matrix elements. However, not all
matrix elements are as simple as e�e+ ! ff̄ . Two additional complica-
tions are possible; interference e↵ects and bosons in external states. We will
handle them in turn.
Consider the process e�e� ! e�e�, called Møller scattering. The new

complication is that, because the initial and final particles are identical,
there are two ways that the electron fields can create the final electrons,
which must be summed over. This is equivalent to including both Feyn-
man diagrams of Figure 6.6 – the uncrossed and crossed graphs – in the
amplitude.
There are also two mutually compensating factors of two that arise. One

is a factor of 1
2 in the amplitude relative to the e�f scattering result that

arises because there are no longer two equivalent ways of evaluating the
graph depending on whether the f -type vertex appears in the interaction at
the spacetime point “x” or at the point x = 0. The other factor is a factor
of 2 in the amplitude relative to the e�f result that corresponds to the
two di↵erent interaction operators that can now destroy each of the initial
electrons.
The result is to simply add the contribution of the crossed graph to

Eq. (6.60). The matrix element associated with the crossed graph is obtained
from the matrix element found earlier for e�f scattering by multiplying by
an overall factor of �1 – due to the antisymmetry of fermi statistics for
electrons – and then interchanging the four-momenta of the final particles:
k $ k0. The easiest way to understand the factor of (�1) is to remember
that a final state with two fermions in it is antisymmetric under exchange
of the fermion labels, |k,k0i = �|k0,ki, see Eq. (1.4).
This prescription may be equivalently formulated in terms of the helicity
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amplitudes, Aij , that appear in the cross section of Eq. (6.65). For scattering
between particles of identical helicity, the required substitution is given by
ALL(t)! ALL(t) +ALL(u) and ARR(t)! ARR(t) +ARR(u). Since the ampli-
tudes with mixed helicities, ALR = ARL, cannot interfere with one another,
the correct replacement for them is

u2
���ALR(t)

���
2
+
���ARL(t)

���
2
�

= 2u2
���ALR(t)

���
2

! 2
���uALR(t)

���
2
+
���tALR(u)

���
2
�

(6.67)

The di↵erential cross section therefore is

d�

du dt
(e�e�! e�e�) = �⇡↵

2

s2

⇣
|ALL(t)+ALL(u)|2s2 + |ARR(t)+ARR(u)|2s2

+|uALR(t)|2 + |tALR(u)|2
⌘
�(s+ t+ u) (6.68)

In the low-energy limit this expression simplifies to the QED result for
ultra-relativistic Møller scattering:

d�

du dt
(e�e� ! e�e�) = �2⇡↵2

s2

 ����
s

t
+

s

u

����
2

+

����
u

t

����
2

+

����
t

u

����
2
!

�(s+ t+ u)

= �2⇡↵2

s2

 
s2 + u2

t2
+

s2 + t2

u2
+

2s2

ut

!

�(s+ t+ u)

(6.69)

which becomes, in the CM frame,

d�

sin ✓ d✓
(e�e� ! e�e�) =

⇡↵2

s

2

4
1 + cos4

⇣
✓
2

⌘

sin4
⇣
✓
2

⌘ +
1 + sin4

⇣
✓
2

⌘

cos4
⇣
✓
2

⌘

+
2

sin2
⇣
✓
2

⌘
cos2

⇣
✓
2

⌘

3

5 (6.70)

Note however that, to determine the total cross section, one should either
integrate over only half of available outgoing angles, or integrate over all
angles and divide by two, to eliminate a double counting – the final state
when an electron emerges (in the CM frame) with angle ✓ also has an electron
emerging with angle ⇡� ✓, and is therefore identical to the final state where
the electron emerges with angle ⇡ � ✓.
We can easily use this result, together with crossing, to find the cross

section for Bhabha scattering, e�e+ ! e�e+, see Problem 6.1.
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Fig. 6.7. Feynman graphs for Compton scattering.

6.7 Processes involving photons

So far we have only considered scattering processes in which all external
lines are fermions. To be complete, we will briefly discuss what happens
when an external line is a massless gauge boson. The reason we concentrate
on a massless gauge boson is that, for the massive case, the polarization
sum, Eq. (1.119),

P
� ✏µ(p)✏

⇤
⌫(p) = ⌘µ⌫ + pµp⌫/m2, is obviously Lorentz-

covariant; but the corresponding massless sum, Eq. (1.132), is not obviously
so. However, it turns out that there is a simple, Lorentz-invariant way to
determine polarization averaged cross sections, thanks to gauge invariance.

6.7.1 Compton scattering, e
�
� ! e

�
�

Consider then the process e�� ! e��. There are two Feynman graphs for
this process, shown in Figure 6.7. Labeling the incoming electron momen-
tum p1, the incoming photon momentum p2, the outgoing electron momen-
tum p3, and the outgoing photon momentum p4, the corresponding matrix
element is

M = e2✏µ(p2,�)✏⌫(p4,�
0)

⇥ū(p3,�
0)
✓
�⌫
�i(/p1 + /p2) +me

(p1 + p2)2 +m2
e
�µ + �µ

�i(/p3�/p2) +me

(p3 � p2)2 +m2
e
�⌫
◆
u(p1,�)

(6.71)

We will eventually sum over polarizations for each photon, using Eq. (1.132),
X

�

✏µ(p2,�)✏
⇤
↵(p2,�) = ⌘µ↵ + pµp↵ + pµp↵ (6.72)

At first sight this is worrying, since pµ is not uniquely defined; it is not ob-
vious that the polarization-summed cross section will be Lorentz-invariant.
In fact, Lorentz invariance follows from the fact that, if we substitute



214 Leptonic weak interactions: collisions

✏µ(p2)! pµ2 in the matrix element, we get zero:

ū(p3,�
0)
✓
✏/0
�i(/p1 + /p2) +me

(p1 + p2)2 +m2
e
/p2 + /p2

�i(/p3 � /p2) +me

(p3 � p2)2 +m2
e
✏/0
◆
u(p1,�)

= ū(p3,�
0)
✓
✏/0
�i(/p1 + /p2) +me

(p1 + p2)2 +m2
e

h
(/p1 + /p2 � ime)� (/p1 � ime)

i◆
u(p1,�)

+ ū(p3,�
0)
✓h

(/p2 � /p3 + ime) + (/p3 � ime)
i�i(/p3 � /p2) +me

(p3�p2)2 +m2
e
✏/0
◆
u(p1,�)

= ū(p3,�
0)

 

✏/0
�i(p1 + p2)2 � im2

e

(p1 + p2)2 +m2
e

+
i(p3� p2)2 + im2

e

(p3 � p2)2 +m2
e
✏/0
!

u(p1,�)

= 0 (6.73)

Here ✏0 ⌘ ✏(p4,�0). In passing from the second to third lines, we have used
the Dirac equation, (/p1 � ime)u(p1) = 0 and ū(p3)(/p3 � ime) = 0.
Because of this relation, when we carry out the summation over spin

states, the p̄µp↵ terms in Eq. (6.72) will not contribute; we are therefore
free to make the substitution

X

�

✏µ(p,�)✏
⇤
↵(p,�)! ⌘µ↵ (6.74)

The same holds for the final state photon, as we can quickly verify by substi-
tuting ✏0µ ! (p4)µ in Eq. (6.71). This not only provides a rather substantial
simplification, but it also makes manifest the Lorentz invariance of the spin
summed cross section.
The cancellation in Eq. (6.73), while at first sight rather remarkable, turns

out to be an absolutely general property of external photon lines; when
summing over all possible diagrams contributing to the matrix element,
replacing ✏µ(p) ! pµ always gives zero, so Eq. (6.74) may always be used.
The physical origin of this property is gauge invariance. To ensure gauge
invariance, it was necessary to ensure that the electromagnetic gauge field
Aµ always couples to a conserved current; Lint =

R
d4xAµJµ with @µJµ =

0 (see Subsection 1.5.2). In Fourier space, current conservation becomes
pµJµ(p) = 0, precisely the relation we need, because the current Jµ is what
the polarization tensor ✏µ is contracted against.
Now we proceed with computing the spin averaged matrix element. To

simplify expressions we will take the ultra-relativistic me ! 0 limit. Squar-
ing Eq. (6.71), performing the spin sums, and using Eq. (6.74) for the po-
larization sums, gives

M2
=

e4

4
tr /p1

✓
�µ

/p1 + /p2
(p1 + p2)2

�⌫ + �⌫
/p3 � /p2

(p3 � p2)2
�µ
◆
⇥
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⇥/p3
✓
�⌫

/p1 + /p2
(p1 + p2)2

�µ + �µ
/p3 � /p2

(p3 � p2)2
�⌫

◆

=
e4

4
tr /p1

✓
�µ

/p1 + /p2
s

�⌫ + �⌫
/p3 � /p2

u
�µ
◆
/p3

✓
�⌫

/p1 + /p2
s

�µ + �µ
/p3 � /p2

u
�⌫

◆

(6.75)

Expanding gives four terms. The first term is

e4

4
tr /p1�

µ /p1 + /p2
s

�⌫/p3�⌫
/p1 + /p2

s
�µ =

e4

s2
tr /p1(/p1 + /p2)/p3(/p1 + /p2) ,

=
e4

s2
tr /p1/p2/p3/p2

=
8e4

s2
(p1 · p2 p2 · p3)

= �2e4

s2
(su) = �2e4u

s
(6.76)

where we use repeatedly the gamma matrix identities of Problem 4.4, and
the approximation p21 = 0. The second term is

tr

/p1�

µ /p1 + /p2
s

�⌫/p3�µ
/p3 � /p2

u
�⌫

�
= �2 tr


/p1/p3�

⌫ /p1 + /p2
s

/p3 � /p2
u

�⌫

�

= 8
(p1 + p2) · (p3 � p2)

su
tr /p1/p3

= 0 , (6.77)

because (p1 + p2) · (p3 � p2) = (t/2 + s/2 + u/2 + 0) = 0. The third term is
the Hermitian conjugate of the second, and also vanishes; the fourth term’s
evaluation is similar to the first. The result is

M2(e�� ! e��) = �2e4
✓
u

s
+

s

u
+ · · ·

◆
(6.78)

This is positive, because u < 0 and s > 0. In this expression the ellipses
indicate terms which vanish as m2 ! 0 with s, t, and u fixed, which are
required in order to properly capture the entire Compton-scattering cross
section even in the ultra-relativistic limit (see Problem 6.6 for details). These
additional terms are required because there are also ms hidden within the
definitions of s, t, and u, and these conspire to ensure that the terms ne-
glected in Eq. (6.78) compete with those that are included. This expression
is more useful once it is used to obtain the cross section for e+e� annihila-
tion, using crossing symmetry.
It is elementary to apply crossing symmetry to determine the annihilation

rate e�e+ ! � �. Labeling the incoming momenta p1 and p2 and the final
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momenta p3 and p4, the momenta are reassigned via p3 ! �p2, p2 ! �p3.
The Mandelstam variables are changed according to

s = �2p1 · p2 ! +2p1 · p3 = t

t = +2p1 · p3 ! �2p1 · p2 = s

u = +2p1 · p4 ! +2p1 · p4 = u (6.79)

Furthermore, there is a factor of (�1)1 because one fermion is reassigned
from the final to the initial state. Therefore, the spin averaged matrix
element squared is

M2(e�e+ ! � �) = +2e4
✓
t

u
+

u

t

◆
(6.80)

Since both t and u are negative, the (�1) ensures that the result is posi-
tive. This result manifestly has the right behavior if we interchange the two
photon states, corresponding to t$ u. Using it to obtain the cross section
leads to the correct ultra-relativistic limit

d�

dt du
= � 2⇡↵2

s2

✓
t

u
+

u

t

◆
�(s+ t+ u) (6.81)

and so

d�

sin ✓ d✓
=

2⇡↵2

s

 
1 + cos2 ✓

sin2 ✓

!

(6.82)

Since the photons are identical particles, to find the total cross section one
must integrate over only half of the space of final-state angles.
The interaction of quarks with gluons is almost the same as the electro-

magnetic processes we have considered here; the main added complication
is the appearance of color factors. However, when the mutual interactions
of gluons via the three or four gluon vertices, Eq. (5.63) and Eq. (5.64),
are involved, then the polarization summation issues are more complicated
and it is not permitted to make the substitution, Eq. (6.74). We postpone
further discussion on this point to Chapter 9.

6.7.2 Radiated photons

Another application where photons appear in the final state is when one
or more photons are radiated from a participating particle (initial or final)
in a scattering process, for instance via the Feynman graph depicted in
Figure 6.8.
Naively, such a process is suppressed by ⇠ e2/(2⇡)2 = ↵/⇡ ⌧ 1 with

respect to the diagram without a photon emission, and should therefore be
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Fig. 6.8. Diagram for scattering with a photon emission.

negligibly small. However, this is not entirely correct. The probability to
emit a photon in a scattering process is enhanced by large logarithms, which
can make it quite important. In particular, at the end of this subsection, we
will see that the on-resonance cross section for e+e� ! Z ! ff̄ is reduced
by about 1/4 due to these processes.

Consider the process shown in Figure 6.8. This is one of four diagrams
which must be summed, and then squared, to find the photon emission rate.
For general angles, when the center-of-mass-frame angle between the photon
and any other particle is large, the naive estimate that the photon emission
rate is suppressed by ↵/⇡, is correct. However this turns out not to be
true in the special kinematic regime in which the photon is approximately
collinear with another particle, for instance, when the angle between p and
l in the CM frame is small.

In this regime, the four possible diagrams (with the photon attached to
any of the four external states) all contribute, but they do not contribute
equally. When the photon emerges from the e�, the denominator of the
intermediate electron propagator is 1/((p � l)2 + m2

e) = 1/(�2p · l) '
1/(2p0l0(1 � cos ✓pl)). Since (1 � cos ✓pl) ' 0, this amplitude is enhanced,
relative to the others. It turns out in this case that it is simplest to work in
terms of the two transverse polarization states, in which case the amplitude
in question is ⇠sin(✓pl)/(1 � cos ✓pl) ⇠ 1/✓pl, while the other amplitudes
are not enhanced at small ✓pl. Therefore, it is permissible to drop the other
amplitudes to determine the leading behavior in this small angle region.

Let us evaluate just the part of the square of the matrix element involving
the photon emission, to compare with the case without photon emission.
Where, without photon emission, we have the quantity

P
� u(p,�)u (p,�) =
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(�i/p+m), we now have the quantity

�e2
X

�

�i/p+ i l/+m

(p� l)2 +m2
✏/⇤(�)(�i/p+m)✏/(�)

�i/p+ i l/+m

(p� l)2 +m2

=
�e2

(2p · l)2
X

�

(�i/p+ i l/+m)
n
✏ · ✏⇤(i/p+m)� 2i✏ · p✏/⇤

o
(�i/p+ i l/+m)

=
�e2

(2p · l)2
X

�

[�2i✏ · ✏⇤l · pl/ � 2i✏ · p (�i/p+ i l/+m)✏/⇤(�i/p+ i l/+m)]

' ie2 l/

p · l +
X

�

e2|✏ · p|2
(p · l)2 (�i/p+ i l/+m) (6.83)

where in the second step we used l2 = 0 and p2 +m2 = 0, and in the last
step we dropped a term / (✏ · p)(p · l)/(p · l)2, which is subleading in ✓pl.
Since

P
� |✏ · p|2 ' (p0)2✓2pl and l · p ' �l0p0✓2pl/2, the remaining two terms

are of the same order. Since l is almost collinear with p, for the rest of the
calculation it is adequate to substitute l/! (l0/p0)/p. Defining l0/p0 ⌘ x, so
x is the fraction of the electron’s energy carried o↵ by the photon, we find
that the matrix element in the collinear limit is approximately given by

(�i/p)! (�i/p)2e
2(1 + (1� x)2)

x2(p0)2✓2pl
(6.84)

Being slightly more careful,

�l · p ' p0l0
 

1� cos ✓pl +
m2

e

2(p0)2

!

' (p0)2x

2

 

✓2pl +
m2

e

(p0)2

!

(6.85)

This correction at very small angles exists in both terms, and is important
in cutting o↵ the otherwise divergent angular integral. We can now do most
of the integral over the photon momentum;

Z
d3l

(2⇡)32l0
=

1

8⇡2

Z 1

�1
d cos ✓pll

0dl0 (6.86)

The integral over the angle is
Z 1

�1
d cos ✓pl

1

1 + m2

2p2 � cos ✓pl
= log

 
4p2

m2
e

!

+O(1) = log
✓

s

m2
e

◆
+O(1)

(6.87)
There is an unknown constant in this expression, because the approxima-
tions we have made break down at large angles. This constant could be
found by making a more careful treatment, which included the interference
between emissions from di↵erent lines at large angles. Nevertheless, our
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simplified treatment is su�cient to show that photon emission is logarith-
mically dominated by small opening angles, with the log cut o↵ by the mass
of the emitting particle; and it is su�cient to find the coe�cient of that log.
The integration over l0 is more delicate, because the emission of the photon

potentially changes the kinematics of the rest of the diagram. One must re-
compute the remainder of the diagram, but changing the momentum carried
by the incoming electron line from p to (1 � x)p. For the case of emission
from a final state line, f or f̄ , this does not matter. For the case of emission
from an incoming line, e+ or e�, this can matter. In general, it matters if
x ⇠ 1, so the kinematics is substantially disturbed. In the case of scattering
through a resonance, such as the Z boson, an energy loss of l0 ⇠ �Z , or
x ⇠ �Z/MZ , is important, as we discuss below. Nevertheless, for the present
purposes we will ignore this complication. The likelihood to emit a photon
with energy larger than ! is

e2

8⇡2
log

s

m2
e

Z 1

!/p

x dx

x2

h
1 + (1� x)2

i
=

↵

2⇡
log

✓
s

m2
e

◆
log

✓
s

4!2

◆
� 3

2

�

(6.88)
This likelihood is not necessarily small, because it is amplified by the product
of two logarithms which may each individually be large. We should also add
the probabilities to emit from each of the other three legs, giving a total
likelihood of

�(!)

�
' ↵

⇡

"

log
✓

s

m2
e

◆
+Q2

f log

 
s

m2
f

!

+O(1)

# 
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✓
s

4!2

◆
� 3

2

�
(6.89)

The likelihood to emit a photon during a scattering can in fact be quite large.
For instance, on the Z pole, for ! = me, and considering only emissions from
the incoming electrons, this evaluates to approximately 1.2.
Once again, we find a higher-order e↵ect (more powers of ↵) which is just

as large as the original e↵ect. In fact, the result presented appears to be
sick; if we ask for the rate to scatter with the emission of an arbitrarily
soft photon, that rate is logarithmically divergent. It also appears that the
total rate for the scattering to occur, after we add the possibility of this
photon emission, is much larger than we had previously computed. The
situation becomes still worse as we consider multiple-photon emission. This
suggests that, as in Section 6.4, there may be some additional, formally
higher order, diagrams which can compete with the lowest-order one and
must be somehow resummed. This proves to be the case.
Consider the diagram of Figure 6.9. When it interferes with the diagram

of Figure 6.1, this modifies the rate of scattering without photon emission.
The interference of those diagrams is structurally very similar to the square
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Fig. 6.9. A radiative correction to e+e� annihilation.

of the diagram of Figure 6.8. In particular, the photon in the loop, in
Figure 6.9, contributes the same collinear and soft divergences as the real,
emitted photon of Figure 6.8. There is one major di↵erence, however; the
sign turns out to be opposite. Therefore, the diagram of Figure 6.9 reduces
the probability for the scattering process, without the photon emission.
Because the soft and collinear singularities are identical, the cross section

to emit an extra photon, and the reduction of the cross section to scatter
without a photon emission, are approximately the same size. Therefore, the
total cross section, with or without photon emission, is unchanged up to
O(↵) correction, except for the correction to the kinematics because of the
energy carried away by the photons.
The correct way to handle the computation of the total cross section, and

the likelihood to emit any number of photons above some energy threshold,
has been solved by Bloch and Nordsieck. One must introduce a cut-o↵
frequency !, below which a photon cannot be detected. (Realistically, all
experiments have such a cut-o↵.) Then, the likelihood not to emit a collinear
photon is given, approximately, by

�(e+e� ! ff̄ + 0�)
P

n �(e
+e� ! ff̄ + n�)

' exp (��) (6.90)

with

� =
↵

⇡

"

log
✓

s

m2
e

◆
+Q2

f log

 
s

m2
f

!

+O(1)

# 
log

✓
s

4!2

◆
� 3

2

�
(6.91)

This is the expression for s channel exchange. In t channel exchange, it is
t, not s, which controls the size of the collinear logarithm.
This phenomenon of photon emission from the initial state is referred to

as initial-state radiation, or ISR. Let us see its e↵ects on scattering pro-
cesses. In a typical s channel scattering process, the kinematics is signifi-
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Fig. 6.10. e+e� hadronic cross section near the Z0 resonance.

cantly changed if one of the initial particles radiates a photon carrying x ⇠ 1
of the energy. In this case, the second bracketed quantity should be replaced
with '1. The change to the cross section can be several percent – not huge,
but important when precision is required.
On the other hand, when the e+e� particles’ energies are tuned to lie on

the Z pole, the radiation of a photon with energy �Z/2, the half-width of
the resonance, is enough to move the scattering o↵ resonance and reduce
the cross section substantially. Therefore, the on-resonance cross section for
e+e� ! ff̄ is reduced by a factor of approximately

�tot(e+e� ! Z0)

Eq. (6.59)
' exp

 
�↵
⇡

log

 
M2

Z

m2
e

!"

log

 
M2

Z

�2
Z

!

� 3

2

#!

' 0.72 (6.92)

where in the numerical evaluation we used ↵ ' 1/133, a compromise between
its value at the scale MZ , where ↵ ' 1/128, and at me, where ↵ ' 1/137.
Combining this with the fact that 30% of Z0 decays are to leptons, the
hadronic cross section on the Z0 pole is expected to be only '30 nb. The
actual hadronic cross section on resonance is 30.5 nb, in agreement with a
more careful calculation.
We illustrate the impact of initial state radiation on the cross section near
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the Z resonance in Figure 6.10. The initial-state-radiation corrected cross
section is an integral over the energy lost to photons, of the probability
for that energy loss due to initial-state radiation times the cross section
at the reduced energy. The correction is very important in the agreement
between theory and data, as shown by the inclusion of the cross section
data from the four LEP experiments. Note that at high energies, the cross
section actually exceeds the uncorrected value. This is because initial state
radiation can lower the e+e� pair’s energy to lie on resonance, enhancing
the cross section.
Initial-state radiation also plays a prominent role in the physics of high-

energy hadronic collisions, which we will discuss in Section 9.2, especially
Subsection 9.2.3.

6.8 Problems

[6.1] Crossing symmetry

Use crossing symmetry to derive the cross section for Bhabha scattering
in the ultra-relativistic limit, but still at s⌧M2

Z
:

d�

du dt
(e�e+ ! e�e+) =

�2⇡↵2

s2

 ����
u

s
+

u

t

����
2

+
t2

s2
+

s2

t2

!

�(s+ t+ u)

[6.2] Electron–neutrino scattering

[6.2.1] The process e�⌫̄e ! fmf̄n (f neither e� nor ⌫e) proceeds via a
single diagram. Draw that diagram and show that, taking all external
states to be massless, it yields a cross section of

d�

du dt
= �G2

F

⇡
Nc|Unm|2u

2

s2

 
M2

W

s�M2
W

!2
�(s+ t+ u)

Use crossing symmetry to find d�/du dt for e�⌫µ ! µ�⌫e from this
result.

[6.2.2] Compute the matrix element squared for e�⌫e ! e�⌫e. Careful:
there are two diagrams, one involving Z exchange and one involving
W exchange. Use crossing symmetry to find the e�⌫̄e ! e�⌫̄e and
e�e+ ! ⌫e⌫̄e matrix elements. Beware; there are two diagrams, and a
relative minus sign between them due to the di↵erent ways the initial-
and final-state fermions connect to each other.
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[6.3] Supernova neutrinos

Neutrinos and antineutrinos were observed in 1987 from the supernova
in the nearby Large Magellanic Cloud. They were detected by observing
their interactions with electrons and nuclei in a large tank of water. The
neutrino energies were ⇠ 10 MeV and in this energy range the relevant
processes are elastic scattering with electrons and “quasi-elastic” (i.e. low
energy) inverse beta decay: ⌫̄e + p! n+ e+ with the hydrogen nuclei.

[6.3.1] Why not consider the interactions with the oxygen nucleus, O16?

e.g. : ⌫̄e +
16
8 O! 16

7 N+ e+

or : ⌫e +
16
8 O! 16

9 F + e�

(Hint: Nucl. Phys. A 166 (1971) page 60.)

[6.3.2] In these reactions the interactions are detected by observing the
Cherenkov radiation of the final charged particles. Given that the index
of refraction of water is n = 1.33, what is the minimum energy that
a particle of mass m must have to radiate Cherenkov light? Why not
consider also elastic scattering of neutrinos by the hydrogen and oxygen
nuclei?

[6.3.3] In the standard model, draw all of the tree level (i.e. no loops)
Feynman graphs that contribute to the following processes:

(i) ⌫µ + e� ! ⌫µ + e�

(ii) ⌫̄µ + e� ! ⌫̄µ + e�

(iii) ⌫e + e� ! ⌫e + e�

(iv) ⌫̄e + e� ! ⌫̄e + e�

[6.3.4] Kinematics

(i) Show that, for a neutrino of energy !, the angle between the
direction of the incident neutrino momentum and the scattered
electron momentum in the lab frame, ✓, is related to the same
angle in the center-of-mass frame, ', by

tan ✓ =
sin'

1 + cos'

p
m2 + 2m!

m+ !

This implies that the electron–neutrino interactions make elec-
trons that tend to move away from the supernova (with an an-
gular spread of �✓ ⇠

p
m/! ⇠ 1/

p
20 for 10 MeV neutrinos)

regardless of the scattering probability d�/d cos' in the center-
of-mass frame.
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(ii) Show that the energy of the final electron in the lab frame, E,
is given in terms of the incident neutrino energy and scattering
angle by

E = m

"
(m+ !)2 + !2 cos2 ✓

(m+ !)2 � !2 cos2 ✓

#

For fixed !, what is the di↵erence between the energy at ✓ = 0
and that when ✓ =

p
(m/!) ⌧ 1? This represents the energy

range of the scattered electrons from this process.

[6.3.5] In the e↵ective Fermi theory of weak interactions (basically, the
limit s, |t|, |u|⌧M2

W
so they can be dropped from the W and Z boson

propagators), the relevant interaction Hamiltonian density is

HI =
GFp
2

(

[⌫̄e�
µ(1 + �5)e][ē�µ(1 + �5)⌫e]

�1

2

X

m=e,µ,⌧

[⌫̄m�
µ(1 + �5)⌫m][ē�µ(⇢+ �5)e]

)

where ⇢ = 1� 4 sin2 ✓W.

The first term can be rewritten, using the Fiertz identities of Problem
1.6, as

[⌫̄�µ(1 + �5)e][ē�µ(1 + �5)⌫] = [⌫̄e�
µ(1 + �5)⌫e][ē�µ(1 + �5)e]

so

HI =
GFp
2

X

m=e,µ,⌧

[⌫̄m�
µ(1 + �5)⌫m][ē�µ(h

(m)
V + �5h

(m)
A )e]

where : h(e)A = 1� 1

2
=

1

2

h(µ,⌧)A = �1

2

and : h(e)V = 1� 1

2
⇢ =

1

2
+ 2 sin2 ✓W

h(µ,⌧)V = �1

2
⇢ = �1

2
+ 2 sin2 ✓W

Use this result to show that the matrix element for neutrino–electron
scattering is

M(⌫e! ⌫e) =
GFp
2

⇥
ū(q0)�µ(1 + �5)u(q)

⇤ h
ū(p0)�µ(h

(m)
V + h(m)

A �5)u(p)
i
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and

M(⌫̄e! ⌫̄e) =
GFp
2

⇥
�̄(q)�µ(1+ �5)�(q

0)
⇤ h
ū(p0)�µ(h

(m)
V + h(m)

A �5)u(p)
i

[6.3.6] Averaging over the initial electron spin and summing over all final
spins, show that

M2
= 16G2

F

n
(hV ± hA)

2(p · q)(p0 · q0)

+(hV ⌥ hA)
2(p · q0)(p0 · q) +m2(h2

V
� h2

A
)(q · q0)

o

in which the upper sign corresponds to ⌫e ! ⌫e and the lower sign to
⌫̄e! ⌫̄e.

[6.3.7] Using

d� =
1

�2p · q �rel
M2

(2⇡)4�4(p+ q � p0 � q0)
d3p0 d3q0

(2⇡)62p002q00

(i) Show that the di↵erential cross-section in the center-of-mass
frame is (neglecting the electron mass)

d�

d(cos')
=

G2
F

2⇡
!2
cm

⇢
(hV ± hA)

2 +
1

4
(hV ⌥ hA)

2(1� cos')2
�

where !cm is the incident neutrino energy, and ' is the angle
between the incident neutrino momentum and the final electron
momentum, as before. What is the most probable center-of-mass
scattering angle?

(ii) Show that the total cross section is (in terms of the lab energy
of the neutrino)

� =
G2

F
!m

2⇡


(hV ± hA)

2 +
1

3
(hV ⌥ hA)

2
�
(1 +O(m/!))

Using the values of the parameters h(m)
V , h(m)

A given earlier and
sin2 ✓W ⇡ 1/4, calculate the ratios

�(⌫ee! ⌫ee) : �(⌫̄ee! ⌫̄ee) : �(⌫µe! ⌫µe) :

�(⌫̄µe! ⌫̄µe) : �(⌫⌧e! ⌫⌧e) : �(⌫̄⌧e! ⌫̄⌧e)

[6.3.8] For nucleon–neutrino scattering (⌫̄e+p+ ! n+e+) at low energies,
the weak current has matrix elements:

hn|Jµ
had|pi = ūn�

µ(gV + gA�5)up



226 Leptonic weak interactions: collisions

with gV = 1 and gA ' 1.270. Using

Hweak =
GFp
2
Vud[⌫̄e�µ(1 + �5)e]J

µ
had

show that

M(p+⌫̄e ! ne+) =
GFp
2
Vud�̄(⌫)(q)�

µ(1 + �5)�(e)(q
0)

⇥ūn(p0)�µ(gV + gA�5)up(p)

where Vud is the relevant Kobayashi–Maskawa matrix element.

[6.3.9] Treat the nucleon mass mp � ! the neutrino energy.

(i) Neglectingmn�mp and the electron mass, what is the lab energy
of the final electron as a function of scattering angle and incident
neutrino energy? (This is almost a trick question.)

(ii) Show that the di↵erential scattering cross section as a function of
the lab-frame scattering angle, ✓, between the incident neutrino
direction and the final positron direction is

d�

d(cos ✓)
⇡ |Vud|2

G2
F
!2

2⇡

n
(g2

V
+ 3g2

A
) + (g2

V
� g2

A
) cos ✓

o

(Neglect !/mN , me/!, and (mn �mp)/!.) Notice the angular
distribution of final electrons is di↵erent than that in the case of
electron–neutrino scattering, and is e↵ectively independent of ✓
(recall (g2

V
+ 3g2

A
)/(g2

V
� g2

A
) ⇡ �10).

(iii) Calculate the total cross section as a function of the lab frame
neutrino energy, !.

[6.3.10] Using the given values for h(m)
A , h(m)

V , and gV , gA, and ! = 10 MeV,
calculate what percentage of observed events are expected to be due to
⌫̄ep, ⌫ee, ⌫̄ee, ⌫µe, ⌫̄µe, ⌫⌧e, and ⌫̄⌧e scattering, assuming the supernova
emits equal numbers of all types of neutrinos.

Don’t forget that only two of the protons in a water molecule are in
hydrogen! That is, there are two protons but ten electrons in a water
molecule.

[6.3.11] ⌫µ-Matter interactions: In accelerator based neutrino–matter scat-
tering experiments, ⌫µ + e and ⌫µ+ nucleon interactions are observed.
In this case the neutrinos come from pion decay and so are much more
energetic than from the supernova. Their energies are governed by the
beam energy and are generally much greater than the nucleon mass in
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the nucleon rest frame. Consider the following four reactions:

⌫µ + e� ! ⌫µ + e�

⌫µ + n! p+ µ�

⌫µ + n! ⌫µ + n

⌫µ + p! ⌫µ + p

in the limit of small momentum transfer. In the approximation that
the nucleon (and lepton) masses can be neglected, what is the total
cross-section for each of these processes in the center-of-mass frame?
For the last two reactions use the neutral current interaction

Hnc = �GFp
2
[⌫̄�µ(1 + �5)⌫]J

µ
nc

and hN |Jµ
nc|Ni =

1

(2⇡)3
ū�µ(kV + kA�5)u

with kV = 1
2�2 sin

2 ✓W, kA = 1
2 if N is a proton and kV = �1

2 , kA = �1
2

if N is a neutron.
[6.3.12] What is the ratio of their cross sections as a function of the

neutrino energy in the lab frame? (Your answer should behave as
�N/�e ⇠ (mN/me) ⇠ 103 which shows why nucleon–neutrino scattering
is so much easier to observe than electron–neutrino scattering.)

[6.4] Higgsstrahlung
At LEP II, the dominant mode used to search for the Higgs boson

was “Higgsstrahlung,” e+e� ! Z⇤ ! HZ, where Z⇤ just means a Z
intermediate state with an energy significantly di↵erent from the resonant
energy MZ . This might be an attractive mode for detailed Higgs studies
at future electron colliders.

Compute the (integrated) cross section for this process as a function
of the center-of-mass energy s, the Z-boson mass MZ , and the Higgs-
boson mass mH. Treat me = 0, but do not treat either MZ or mH as small
compared to

p
s. Compare it to the cross section to go into qq̄ final states.

List the most common final states (the Z and H bosons both subse-
quently decay). What features of the decay, if any, clearly distinguish it
from a scattering e+e� ! qq̄ with q any quark type?

Given the Higgs mass mH = 126 GeV, at what center of mass energyp
s does the cross-section obtain its maximum value? This would be an

ideal energy for an e+e� collider designed to study Higgs bosons via this
production process.
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[6.5] Resonances

The ⌥(4s) is a narrow resonance caused by a bb̄ bound state. Its mass
and width are m⌥(4s) = 10.580 GeV, �⌥(4s) = 14 MeV, with a branching
fraction to electrons of B(⌥(4s) ! e+e�) = 2.8 ⇥ 10�5. It is experi-
mentally useful because the ⌥(4s) decays with almost 100% probability
via ⌥(4s) ! BB̄, with B a meson containing a b̄ quark and B̄ a meson
containing a b quark. This gives a convenient way to produce B meson
pairs approximately at rest, which has been exploited by the B-factories,
BaBar and Belle.

What is the cross section for e+e� ! BB̄ on the ⌥(4s) resonance?
Hint: the spin of the ⌥(4s) is 1. Use Eq. (6.57).

What, approximately, is the correction to this cross section formula due
to the radiation of soft photons from the e+ and e�?

[6.6] Compton scattering

[6.6.1] Repeat the calculation for unpolarized photon–electron scattering
without neglecting the electron mass, to show that the spin-summed
and averaged matrix element generalizes to

M2
= 2e4


p · k0
p · k +

p · k
p · k0 � 2m2

✓
1

p · k �
1

p · k0
◆

+ m4
✓

1

p · k �
1

p · k0
◆2
#

where electron (photon) four-momenta are denoted by p(k) and final-
state quantities carry a prime. Show that even though this naively
approaches the result quoted in the main text, �2e4[(s/u) + (u/s)], if
m2 ! 0 with s, t, and u fixed, the kinematical relation between the
initial and final photon energies and the final photon scattering angle
✓ (in the initial electron’s rest frame) k0/k0

0
= 1 + (k0/m) (1� cos ✓),

implies the nominally sub-dominant combination

m2


1

p · k �
1

p · k0
�
= 1� cos ✓

contributes even when k0 � m. Use this to show that the di↵erential
cross section in the electron rest frame is given by

d�

sin ✓ d✓
=
⇡↵2

m2

✓
E0

E

◆2 E0

E
+

E

E0 � sin2 ✓
�

where E = k0 and E0 = k0
0
.
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[6.6.2] Repeat the calculation for photon–electron scattering, but this
time without averaging (summing) over the initial (final) photon po-
larization. Denoting by "i and "f the polarization vector of the initial
and final photon, show that the polarized cross section is given in the
rest frame of the initial electron by the Klein–Nishina formula:

d�

sin ✓ d✓
=
⇡↵2

2m2

✓
E0

E

◆2 E0

E
+

E

E0 + 4("f · "i)2 � 2
�

Show that the sum over photon polarizations gives
P

if("f · "i)2 =
1+ cos2 ✓, and so reproduces the above result for the unpolarized cross
section. In this form this result can be adapted to describe the impor-
tant process of bremsstrahlung – the radiation of a photon by a charged
fermion as it moves in the Coulomb field of a nucleus. The cross section
for bremsstrahlung can be computed by replacing the initial photon of
the above calculation with the appropriate Fourier component of the
initial Coulomb field.

[6.6.3] Show that regardless of the photon energy, in the limit of small
scattering angles (✓ ! 0) the polarized di↵erential cross section reduces
to the Thompson formula

d�

sin ✓ d✓
=

2⇡↵2

m2
("f · "i)2

This is also the result for all angles in the limit E ⌧ m. The fact that
this varies inversely withm2 resolves a puzzle as to why ultra-relativistic
muons and electrons behave so di↵erently within detectors. After all,
since electrons and muons have exactly the same gauge interactions
within the standard model, any di↵erence between their properties in a
detector can only be due to their di↵erent mass and one might naively
expect that this mass di↵erence should become unimportant for ultra-
relativistic particles. The above result shows that their small-angle
Compton scattering (and bremsstrahlung) cross-sections di↵er dramat-
ically even in the ultra-relativistic limit. Since it is the bremsstrahlung
due to numerous small-angle scattering events which dominates the en-
ergy loss of an ultra-relativistic charged particle passing through matter,
this proportionality of this cross section to 1/m2 ensures that muons
lose their energy much less e�ciently than electrons, and so are much
more penetrating when they pass through a detector.


