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Superconductivity 
 
Superconductivity was first observed by HK 
Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1). 
 
The temperature at which the resistivity falls to 
zero is the critical temperature, Tc. 
 
Superconductivity occurs in many metallic 
elements (highest Tc in Nb at 9.5 K), alloys (e.g. 
Nb3Ge with Tc = 23 K) and perovskite cuperates 
(e.g. La2-xBaxCuO4 with Tc ~30 K, YBa2Cu3O7 
with Tc = 90 K, and Bi2Sr2CaCu2O8 with Tc = 95 
K) The perovskite superconductors are termed 
high-Tc superconductors because their Tc is > 30 
K, which exceeds the upper limit for Tc 
according to the theory by Bardeen, Cooper and Schrieffer (Nobel 1972).  Müller and 
Bednorz won the Nobel Prize in Physics in 1987 for discovering the La2-xBaxCuO4 
material that had stimulated a surge in the research of high-Tc superconductors. The 
highest Tc is currently found in HgBa2Ca2Cu3Ox (Tc = 133 K). 
 
 
 
1. Meissner Effect 
 
Another signature of superconductivity is the Meissner Effect. In observing this effect, 
as a superconductor is cooled in a constant applied magnetic field, magnetic flux is 
completely expulsed from the superconductor (so B=0 inside the superconductor) when 
the Tc is reached. In other words, 
superconductors exhibit perfect 
diagmagnetism. Note that the Meissner 
Effect is not expected for perfect 
conductors. It is because according to the 
Faraday Law, a perpetual current will 
flow to maintain the magnetic field 
inside the conductor, not to expulse it. 
 
Superconductivity can be destroyed by 
applying a magnetic field above Hc, the 
critical field, Hc, which decreases with 
increasing T (see Fig. 2 at right).  
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2. Type I and II Superconductors 
 
There are two types of superconductors, I and II, characterized by the behavior in an 
applied magnetic field (see Fig. 3 below). 

 
 
In type I superconductors, there is always perfect diagmagnetism. Pure specimens of 
many materials exhibit this behavior. 
 
In type II superconductors, when the applied field exceeds a value called Hc1, magnetic 
field lines start to penetrate the superconductor. Superconductivity persists until Hc2 is 
reached. Between Hc1 and Hc2, the superconductor is in the vortex state. A field Hc2 of 41 
T has been attained in an alloy of Nb, Al and Ge at 4.2K. Type II superconductors tend to 
be alloys or transition metals, which has high resistivity in the normal state (i.e., mean 
free path in the normal state is short). Commercial solenoids wound with a type II 
superconductor can produce magnetic fields of up to 16 to 30 T at 4.2 K depending on the 
material used. 
 
 
3. Heat Capacity 
 
The electronic part of the heat capacity of superconductor is found to be ~exp(-Eg/2kT), 
where Eg is a constant. This is characteristic of the presence of an energy gap. Eg is the 
energy gap of the superconductor. 
 
In insulators, the gap is caused by the periodic potential produced by the ions in the 
lattice. In superconductors, the gap has a different origin. The interactions between 
electrons (mediated by the lattice) causes the formation of Cooper pairs that together 
form a superconducting condensate that has a free energy lower than that of the normal 
state. 
 
The superconductivity transition is second order. That is, there is a discontinuity in 
d2F/dT2 ~ heat capacity at the transition.  (dF = – PdV – SdT. S = -dF/dT. So, C = dQ/dT 
= TdS/dT is proportional to the second derivative of F.)  
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4. Isotope Effect 
 
The Tc varies with the isotopic mass, M. When M is decreased, Tc is increased.  
 
MTc = constant, where = 0.32 to 0.5. 
 
This shows that electron-lattice interactions are deeply involved in the phenomenon of 
superconductivity. The original BCS theory gave Tc ~ Debye ~ M-1/2, so  = 0.5. With 
inclusion of coulomb interactions between electrons changes the relation. 
 
 
 
5. London Equation 
 
In 1935, Fritz and Heinz London postulated the following relation between the current 
and vector potential in and around a superconductor:  
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where L = (0mc2/nq2)1/2.  By selecting the Coulomb gauge: A = 0, and taking the curl 
of (1), one gets: 
 

.
1

2
0

Bj
L




                                                          (2) 

 
We shall later derive the London equation. First, we examine how it leads to the Meissner 
effect.  
 
Consider the Maxwell’s equation: 
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Sub. (2) in this, one gets: 
 

2B = B/L
2.                                                           (3) 

 
The solution is: 

B(x) = B(0)exp(-x/L).                                                 (4) 
 
It shows that the magnetic field decays exponentially into the superconductor over a 
penetration depth of L = [0mc2/(nq2)]1/2 = [m/(0nq2)]1/2  By substituting typical values 
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for the parameters, one finds that L is on the order of 10-7 m. Such a small value of the 
penetration depth explains the Meissner effect. 
 
The Meissner effect is intimately tied to the fact that the electrons (forming pairs) in the 
superconducting state behave as bosons and so tend to be locked down at the lowest 
energy in exactly the same state. (There is more amplitude to go into the same state than 
into an unoccupied state by the factor N1/2, where N is the occupancy of the lowest state.)  
This fact may itself account for why there is no resistance. In ordinary flow of current, 
electrons get knocked out of the regular flow leading to deterioration of the general 
momentum. But in superconductors, to get one electron away from what all the others are 
in is very hard because of the tendency of all Bose particles to go in the same state. A 
current once started, tends to keep on going forever. 
 
Since all the electrons in a superconducting condensate are in the same state and there are 
many of them (~1022 per cm3), it is reasonable to suppose that the number density of 
electrons, n(r) is  |(r)|2, where (r) is the electron wave function. So, we may write  
 

(r) = n(r)1/2ei(r)                                                     (5) 
 
where (r) is a phase factor.  Recall that the particle current density J particle in the 
presence of a vector potential A is: 
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Substitute eqn. (5) in this equation and multiply the RHS by q to turn the equation into 
one for the charge current density, J, one gets: 
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This equation says that J has two pieces. One comes from the gradient of the phase. The 
other comes from the vector potential A. With the Coulomb gauge, i.e., A = 0, eqn. (6) 
gives 
 

(ħq/m)2Jddt = 0, 
 
where   qn is the charge density.  This means that the phase of the wave function is a 
constant everywhere in the superconductor and so cannot contribute to J.  Equation (6) 
becomes: 
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This is the same equation postulated by London and London. 
 
 
 
6. Coherence Length 
 
Another fundamental length that characterizes a superconductor is the coherence length . 
It is a measure of the distance within which the superconducting electron concentration 
cannot change drastically in a spatially-varying B field. 
 
Consider a wave function with a strong modulation: 
 

(x) = 2-1/2[exp(i(k+q)x)+exp(ikx)]. 
 
The probability density in space is 
 

* = 1 + cos qx 
 
For plane wave wave-function, (x) = exp(ikx)  (where a normalization condition of * 
= 1 is adopted). 
 
The kinetic energy (KE) of (x) is ħ2k2/2m. For the modulate w.f., the KE is 
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given q << k. 
 
The increase of energy required to modulate is ħ2kq/2m. If this exceeds Eg, 
superconductivity will be destroyed. This sets the critical value for q0: 
 

ħ2kq/2m = Eg 

 
Define an intrinsic coherence length 0 to be 1/q0. 
 
So,                                              0 = ħ2kF/2mEg  = ħvF/2Eg 

  
BCS theory predicts that: 

0 = 2ħvF/Eg 

 
0 is typically 380 to 16,000 Å and L is 340 to 1,100 Å. 
 
In impure materials and in alloys,  < 0 since the wave function is already wiggled to 
begin with. In these materials, the mean free path is also shorter than the intrinsic value. 
It has been shown that 

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 = (0l)
1/2.      and     = L(0/l)

1/2, 
 

where l is a constant less than 0. 
 
So,                                                     / = L / l. 
 
If  / < 1, the formation of vortex is not feasible so the superconductor is type I. 
 
Conversely, if  / <1, the superconductor is type II. 
 
 
 
 
7. Flux Quantization 
 
London made another interesting prediction about the phenomenon of superconductivity. 
Consider a ring made of a superconductor with thickness larger than .  Suppose we start 
with a magnetic field through the ring then cool it to the superconducting state, and 
afterward turn the magnetic field off. The sequence of events is sketched below.  
 
 
 
 
 
 
 
 
 
 
  
 
In the normal state, there will be a field in the body of the ring as sketched in part (a). 
When the ring is superconducting, the field is forced outside the ring. But there is still 
some flux through the hole of the ring as shown in part (b). Upon turning the magnetic 
field off, the lines of field going through the hole are trapped as shown in part (c). The 
flux  through the hole cannot decrease because d/dt must be equal to the line integral 
of E around the ring, which is zero in a superconductor. As the external field is removed, 
a super current (essentially an eddy current) starts to flow around the ring to keep the flux 
through the ring a constant. But pertinent to the Meissner effect, it only persists over a 
penetration depth near the surface of the ring.  
 
So far everything works the same way as discussed above, but there is an essential 
difference. The argument made above that  must be a constant in a solid piece of 
superconductor does not apply to all regions of a ring. Well inside the body of the ring, 
the current density J is zero. So, eqn. (6) gives 
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ħ = qA                                                       (7) 
 
Now, consider a line integral of A taken along a path that goes around the ring near the 
center of its cross-section where the current density is zero.  From eqn. (7), 
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But the RHS is just q, where  is the flux B (A) through the hole. So, we have 
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The LHS is the change in phase, , of the wave function upon going around the ring, 
along the aforementioned path. Because the start and end points of this path are the same, 
the value of the wave function, (r) = n(r)1/2ei(r),  must not change.  This is possible only 
if  = integer  2, where n is an integer.  Substitute this in (9), ones gets 
 

 = integer  2ħ/q = integer  h/q.                                           (10) 
 
This result shows that the flux trapped in the hole must be quantized, equal to an integer 
times h/q. The independent experiments of Deaver and Fairbank and Doll and Nabauer 
(1961) showed that the units of flux quantum was h/(2e), a half of what London expected 
when he derived eqn. (10). But now it is understood that q should be 2e because of the 
pairing of electrons according to the BCS theory.  
 
 
 
8. The Josephson Junction 
 
Consider two superconductors that are connected by a thin 
layer of insulating material as show at right.  Such an 
arrangement is called a Josephson junction. The insulating 
layer is thin enough that electrons from one side of the 
junction can tunnel through the layer to the other side.  We 
denote the amplitude (i.e., the wave function) to find an 
electron on one side, 1, and that on the other, 2.  We further 
simplify the problem by assuming that the superconducting 
materials on the two sides are the same, and there is no magnetic field.  The two 
amplitudes should be related in the following way: 
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The constant K is a characteristic of the junction. If K were zero, these equations would 
describe the lowest energy state – with energy U – of each superconductor.  When K is 
nonzero, there is coupling between the two sides and electrons can leak from one side to 
the other.  By the assumption that the two superconductors are the same, U1 should be 
equal to U2. But suppose now we connect the two superconducting regions to the two 
terminals of a battery so that there is a potential difference V across the junction. Then U1 
- U2 = qV. For convenience, we define the zero of energy to be halfway between, then the 
above two equations are 
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We write the wave functions on the two sides to be of the form given in eqn. (5): 
 

 = n
1/2ei1                  

 
 = n

1/2ei2 
 
where n1  n2 are the electron density on the two sides.  Substituting these in the two 
equations (11), one gets four equations by equating the real and imaginary parts in each 
case. Writing 2 – 1 = , the result is 
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The first two equations say that 1n = 2n . They describe how, due to an imbalance 
between the collection of electrons and positive ion background, the densities would start 
to change and therefore describe the current that would begin to flow. The current from 
side 1 to side 2 would be 1n  (or 2n ) or  
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Because the two sides are connected by wires to a battery, the current that flows will not 
charge up region 2 or discharge region 1. When this factor is taken into account, n1 and n2 
actually do not change. On the other hand, the current across the junction is still given by 
(14). 
 
Since n1 and n2 remain constant and let’s say it’s equal to n0, we may write eqn. (14) as 
 

J = J0sin,                                                       (15) 
 
where J0 = 2Kn0/ħ is a characteristic of the junction. 
 
The other pair of equations (13) tells us about 1 and 2. By taking the difference, we get: 
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That means we can write 
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where 0 is the value of  at t = 0.  We consider the cases when the voltage is DC and AC, 
respectively. 
 
 
(i) DC Josephson effect 
 
This corresponds to the case when V = 0. Equation (15) predicts that a spontaneous 
tunneling current can flow through the junction if the phase difference between the wave 
functions on the two sides is not zero. This surprising prediction has been observed in 
experiment. 
 
  
       
Figure at right:  I vs. V characteristic of a Josephson 
junction. The current fluctuation seen at V = 0 is due 
to the DC Josephson effect. The vertical span of the 
fluctuation is  J0. The rise in current at V =  2.8 mV 
is due to the superconductor bandgap. Each horizontal 
unit is 1 mV. Each vertical unit is 50 A. (Wikipedia) 
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(ii) AC Josephson effect 
 
Suppose V = V0, a DC voltage. Equations (17) and (15) give: 
 

J = J0sin(qV0t/ħ)                                                (15) 
 
This predicts that there will be an AC current with amplitude J0 and frequency 2eV0/ħ. 
Because ħ is small, the frequency is rather high. For example, if V0 = 1 V, the oscillation 
frequency is ~1015 Hz.  
 
 
 
(iii) Inverse AC Josephson effect 
  
Suppose the applied voltage is V = V0 + vcost, where v << V. Then 
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For small dx, sin(x + dx)  sinx + dx cosx. 
 
Using this approximation for sin, one gets: 
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The first term is zero on average, but the second term is not if  
 

 = qV0/ħ. 
 

There would be a DC current if the AC voltage has this frequency.  


