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1. Preliminaries 

1.1. Preface 

We will not deal here with the historical background of transformation groups. It suffices 
to say that they occupy a central role in mathematics due to their fundamental importance 
and ubiquitous nature. Rather we will go straight to the basic objects and examples in the 
subject and from there describe their development in modem mathematics, emphasizing 
connections to other areas of algebraic and geometric topology. Our goal is to describe 
some of the fundamental examples and techniques which make transformation groups an 
important topic, with the expectation that the interested reader will consult the listed refer­
ences for a deeper understanding. We feel that the area of transformation groups continues 
to be a testing ground for new techniques in algebraic and geometric topology, as well 
as a source of accessible problems for mathematical research. We thus list some of the 
basic conjectures still open in the subject, although the interested researchers will be left 
to find the accessible problems on their own. Although aspects of the subject can now 
be regarded as "classical", our knowledge of group actions on arbitrary compact mani­
folds is far from complete, even in the case of finite groups. Furthermore it should be said 
that research on actions and topological invariants of infinite discrete groups is a topic of 
great current interest, involving diverse techniques from group theory, topology and analy­
sis. 

Our presentation is organized as follows: in Section 1 we deal with basic notions and 
examples, with the conviction that examples are the best approach for introducing trans­
formation groups; in Section 2 we describe the cohomological aspects associated to group 
actions which are most relevant in algebraic topology; finally in Section 3 we discuss the 
more geometric aspects of this area. Lists of problems are provided in Sections 2 and 3. 
Finally we would like to make clear that in this text we present a view of transformation 
groups which reflects our personal interests, omitting such topics as actions of connected 
Lie groups, and group actions and low-dimensional topology. In no way do we pretend 
that this is a comprehensive survey of the subject. Points of view on the contents of such 
a survey will differ; hopefully our list of references will at least point the reader towards 
other material that may fail to appear in this brief synopsis. 

1.2. Basic definitions 

A topological group is a group which is a Hausdorff topological space, with continuous 
group multiplication and inversion. Any group can be given the structure of a topologi­
cal group by equipping the group with the discrete topology. We shall concern ourselves 
mostly with discrete groups. 

A left action of a topological group G ona Hausdorff space Z is a continuous map 

G X X ^ X, 

{g,x))^ gx, 
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so that {gh)x = g(hx) and ex = x for all g, h e G and x eX, where e e G is the identity. 
One says that X is a G-space. A G-map (or equivariant map) is a map f :X -^ Y between 
G-spaces which commutes with the G-action, that is, f{gx) = gf{x). 

A group action defines a homomorphism 

6>:G ^Homeo(X), 

g\-> (x\-> gx), 

where Homeo(Z) is the group of homeomorphisms of X; conversely if G is discrete then 
any such homomorphism defines a group action. An action is effective if ker^ = {̂ }, that 
is, for every g there is an x so that gx ^x. 

Given a point x e X, define the orbit Gx = {gx | ^ G G} C X. The orbit space X/G 
is the set of all orbits, given the quotient topology under the obvious surjection X ^• 
X/G, X \-^ Gx. A group action is transitive if X consists of a single orbit Gx. A typi­
cal example of a transitive G-space is a homogeneous space X = G/H. 

Given a point x e X, the isotropy subgroup is Gx = {g ^ G \ gx = x} < G. Two points 
in the same orbit have conjugate isotropy groups 

Ggjc=gGxg~^-

A group action is free if for every point x G X, the isotropy group is trivial, that is, gx ^x 
for all X G X and all g G G — {̂ }. A typical example of a free action is the action of 
the fundamental group n\{X, xo) of a connected CW complex on its universal cover X. 
The fixed-point set of the G-action on X is defined as the subset X^ = {x e X \ gx = x 
Vg G G}. 

An action of a locally compact Hausdorff group G on a space X is proper (also termed 
properly discontinuous when G is discrete) if for every x, y e X, there are neighborhoods 
U of X and V of y so that {g e G \ gU D V ^^ (p) has compact closure in G. If a discrete 
group acts freely and properly on X, then X -^ X/G is a. covering space. Conversely if 
Y is path-connected and has a universal cover Y and if / / is a normal subgroup of TT = 
7T\(Y,yo), then G = 7t/H acts freely and properly via deck transformations on X = Y/H 
with orbit space Y. 

1.3. Examples 

The subject of transformation groups is motivated by examples. In this section we give 
various natural examples of group actions on manifolds arising from representation theory 
and geometry. In later sections we will discuss classification results, regularity results (i.e., 
to what extent do arbitrary actions resemble naturally occurring ones), and the construction 
of exotic actions. 

By a representation of a topological group G, we mean a continuous homomorphism 
from G to an orthogonal group 0{n). Since 0(n) acts on a wide variety of spaces, such as 
R", D", S^^-^ RP"-^ and G^(R''), one obtains a multitude of G-actions from a represen­
tation. Likewise a complex representation G -> U(n) gives actions on CP"~^ Gk(C^), 
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etc. A group action "arising" from a continuous homomorphism G -^ GLn(R) will be 
called a linear action, however, we won't make that precise. We also remark that any 
smooth action of a compact Lie group G on a smooth manifold M is locally linear: every 
X e M has a neighborhood which is Gjc-diffeomorphic to a linear G^-action on R'̂ . 

Here are some examples of linear actions. Let Z/k = {T) be a cyclic group of order k, 
let / i , . . . , in be integers relatively prime to k, and let ^k be a primitive /:th root of unity. 
Then Z/k acts on S^^"^ C C" via 

T(Z\, . . ., Zn) = {^k Z\, . . . , ^l""Zn)' 

The quotient space S^^~^/(Z/k) is the lens space L(k;i\,.. .Jn)- The quaternion eight 
group 08 = {=tl, i ^ i y , =t^} is a subgroup of the multiplicative group of unit quaternions 

§^ = {a -^ bi -^ cj -\- dk em\ a^ -^ b^ + c^ ^ d^ = 1} 

and S^ /Qs is called the quatemionic space form. These are examples of linear spherical 
space forms S^~^ /G, which arise from representations p:G^^ 0(n) so that for every g e 
G — {e}, p(g) has no +1 eigenvalues. The quotient S^~^ /G is then a complete Riemannian 
manifold with constant sectional curvature equal to + 1 , conversely every such manifold 
is a linear spherical space form. More generally, complete Riemannian manifolds with 
constant sectional curvature are called space forms, they are quotients of S", M", or H" by 
a discrete group of isometrics acting freely and properly. An excellent discussion is found 
in Wolf [174]. 

For a Riemannian manifold M of dimension n, the group of isometrics is a Lie group, 
whose dimension is less than or equal to n(n-\-1)/2; equality is realized only when M is the 
sphere S", real projective space MP", Euclidean space W, or hyperbolic space H". These 
results are classical, see [103]. If M is compact, so is the isometry group Isom(M). Con­
versely if a compact Lie group G acts effectively and smoothly on a compact manifold M, 
then by averaging one can put a Riemannian metric on M so that G acts by isometrics. For 
a closed, smooth manifold M, the degree of symmetry of M is the maximal dimension of 
a compact Lie group which acts effectively and smoothly on M. A systematic study of the 
degree of symmetry of exotic spheres is found in [85]. 

Proper actions of infinite discrete groups have been widely studied, especially proper ac­
tions on Euclidean space. For example, a crystallographic group /^ is a discrete subgroup 
of the rigid motions of Euclidean space Isom(R'') so that r \ \som(W)/0{n) = T \W 
is compact. More generally, a proper action of a discrete group on Euclidean space is de­
termined by a discrete subgroup /" of a Lie group G, where G has a finite number of 
components. Then Iwasawa decomposition theory shows that there is a maximal compact 
subgroup K, unique up to conjugacy, with G/K diffeomorphic to R". Given a locally com­
pact group G, subgroups F and K with F discrete and K compact, then F acts properly on 
the homogeneous space X = G/K. Suppose F and F' are two subgroups of a Lie group G, 
abstractly isomorphic as groups. The question of rigidity [126] asks if they are conjugate 
subgroups of G. The Bieberbach rigidity theorem asserts that crystallographic groups are 
rigid, in the weaker sense that two isomorphic crystallographic groups are conjugate by an 
affine map of EucHdean space. For many examples of proper actions see [144]. 
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Group actions also play an important part in basic constructions for homotopy theory. 
Let X denote a topological space with a basepoint: using this point we can obtain natural 
inclusions X" -^ X"+^ where the symmetric groups act by permutation of coordinates 
so that these maps are equivariant. The w-fold symmetric product on X is defined to be 
the quotient space SP^(X) = X^/En, and the infinite symmetric product is defined to be 
the hmit SP^(Z) = lim^^oo SP" (X). A remarkable theorem due to Dold and Thom [64] 
asserts that 7Ti(SP^(X)) = Hi(X,Z). A related construction is the configuration space 
on n unordered points in X, defined by C« (X) = (X" — D)/En, where D consists of all n-
tuples {x\, ...,Xn) such that xi = Xj for some / ^ j (note that the i7„-action is free). These 
spaces arise in many situations in geometry, topology and physics. In particular if Z = C, 
then n\ (C«(Z)) = 5„, Artin's braid group on n strings. More sophisticated constructions 
involving the symmetric groups give rise to models for infinite loop spaces (see [117]). 

Covering spaces give natural examples of group actions; we illustrate this with knot 
theory. If ^ is a knot (= embedded circle) in §^, and « is a positive integer, there is a 
unique epimorphism 7T\ (S^ — K) -> Ij/n. The corresponding /i-fold cyclic cover can be 
completed to a cyclic branched cover Xn -^ §^, that is, Z/« acts on a closed 3-manifold 
Xn so that (X„/(Z/«), X^'^'/iZ/n)) is (S^ K). The homology group //i(X„) was the 
first systematic knot invariant [9,148,51]. 

Exotic (yet naturally occurring) examples of group actions are given by symmetries of 
Brieskom varieties [25, Part V, §9]. For a non-zero integer d, let V = Vj" be the complex 
variety in C^+^ given as the zero set of 

4+^ 1 + • • •+^^=0-

The orthogonal group 0(n) acts on V fixing the first coordinate and acting on the last n 
coordinates via matrix multiplication. The variety V has a singularity only at the origin, so 

is a smooth (2n — 1)-dimensional submanifold of S^"~^^ and U is 0(n)-invariant. 
Brieskom investigated the algebraic topology of F and found that when n and d are both 
odd, E^"~^ is homeomorphic to the sphere, but may have an exotic differential structure. 
For even n, Hn-iiE) = Z/d, and Hi(I!) = 0 for / ^̂  0, n - 1, 2n - 1. Also T J is the Lens 
space L(J; 1, 1). In particular, using the matrix 

/ I 0 OX 
0 1 0 € 0(3), 

\ 0 0 - 1 / 

there is a Z/2-action on r j with fixed set i j j = L(^; 1, 1). Since there is no exotic differ­
ential structure on S^, this gives a non-linear Z/2-action on i j j = Ŝ  for odd d > 2. One 
can also construct non-linear actions on S^. This stands in contrast to lower dimensions. 
It is not difficult to show that all smooth actions of finite groups on Ŝ  and §^ are home­
omorphic to linear actions, and this is conjectured for S^. It has been shown [124] that all 
smooth actions of a finite cyclic group on §^ with fixed set a knot are homeomorphic to a 
linear action; this was conjectured by RA. Smith. 
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1.4. Smooth actions on manifolds 

A Lie group is a topological group which is a smooth (= C^) manifold where group 
multiplication and inversion are smooth maps. A smooth action of a Lie group G on a 
smooth manifold M is an action so that G x M -» M is a smooth map. For a discrete 
group G, there is the corresponding notion of a PL-action on a PL-manifold. 

The following proposition is clear for discrete G, and requires a bit of elementary dif­
ferential topology [63, II, 5.2] for the general case. 

PROPOSITION 1.1. For a smooth, proper, free action of a Lie group G on a manifold M, 
the orbit space M/ G admits a smooth structure so that the quotient map M -^ M/ G is a 
submersion. 

To make further progress we restrict ourselves to compact Lie groups. To obtain infor­
mation about M/G we have a theorem of Gleason [73]. 

THEOREM 1.1. Suppose a compact Lie group G acts freely on a completely regular 
space X. Then X ^> X/ G is a principal G-bundle. 

We will give a nice local description (the Slice theorem) of a smooth action of a com­
pact Lie group. The key results needed are that G-invariant submanifolds have G-tubular 
neighborhoods and that orbits Gx are G-invariant submanifolds. We will only sketch the 
theory; for full proofs the reader is referred to Bredon [25] and Kawakubo [100]. 

THEOREM 1.2. Suppose a compact Lie group G acts smoothly on M. Any G-invariant 
submanifold A has a G-invariant tubular neighborhood. 

SKETCH OF PROOF. A G-invariant tubular neighborhood is a smooth G-vector bundle r] 
over A and a smooth G-embedding 

f'.E(r))^M 

onto a open neighborhood of A in M such that the restriction of / to the zero section is 
the inclusion of A in M. 

We first claim that M admits a Riemannian metric so that G acts by isometrics. By 
using a partition of unity, one can put an inner product ((,)) on the tangent bundle T(M). 
To obtain a G-invariant metric, one averages using the Haar measure on G 

{v,w)= / {{gv,gw))dg. 
JG 

Then the exponential map 

exp :W -^ M 
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is defined on some open neighborhood W of the zero-section of T(M) by the prop­
erty that exp(X) = y(\) where X e Tp(M) and y is the geodesic so that y(0) = p and 
y\0) = X. The exponential map is equivariant in the sense that if Z, gX e W, then 
exp(gZ) = g exp(X). Let t] be the orthogonal complement of T(A) in T{M), i.e., r] is 
the normal bundle of A in M. Then one can find a smooth function 

6::A->R>o 

(constant if A is compact) so that 

o 

is a smooth embedding onto a open neighborhood of A in M. The tubular neighborhood is 
o 

then obtained using a fiber- and zero-section preserving diffeomorphism E{r]) = Dgiji). D 

Applying this to the submanifolds [x] where x G M^, one gets 

COROLLARY 1.1. For a smooth action of a compact Lie group G on a manifold M, the 
fixed-point set M^ is a smooth submanifold. 

Let X e M. The isotropy group Gx is closed in G, so is in fact a Lie subgroup. There 
is a canonical smooth structure on G/ Gx so that TT : G ^ G/Gjc is a submersion. It is not 
difficult to show: 

LEMMA 1.1. Suppose a compact Lie group G acts smoothly on M. Let x e M. Then the 
map G/Gx -^ M, g \-^ gx is a smooth embedding. Hence the orbit Gx is a G-invariant 
submanifold of M. 

As a corollary of Theorem 1.2 and Lemma 1.1 one obtains: 

THEOREM 1.3 (Slice theorem). Suppose a compact Lie group G acts smoothly on a 
manifold M. Let x e M. Then there is vector space Vx on which the isotropy group Gx 
acts linearly and a G-embedding 

GxG, Vx^M 

onto an open set which sends [g, 0] to gx. 

For a right G-set A and a left G-set B, let A XG ^ denote the quotient of A x 5 by 
the diagonal G-action. The image of {e} x V̂  in M is called a slice at x. Here the rep­
resentation Vx = Tx(Gx)^ C Tx(M), where G acts via isometrics of M. Then G XG, V 
is diffeomorphic to T(Gx)^ and the map in the slice theorem is a G-invariant tubular 
neighborhood of the orbit Gx. 

We now consider generalizations of the fact that M^ is a smooth submanifold. For a 
subgroup H < G, M^ need not be a manifold. However: 
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THEOREM 1.4 (Orbit theorem). Suppose a compact Lie group acts smoothly on M. 
(i) For any subgroup H < G, 

M(H) = {x e M \ H is conjugate to Gx) 

is a smooth submanifold ofG. The quotient map n : M(//) —>• Mi^u)! G ^^ ^ smooth 
fiber bundle which can be identified with the bundle 

G/H XwiH) (M^H))''-^(M^H)f/W{H), 

where W{H) = N(H)/H and N(H) is the normalizer of H in G. 
(ii) Suppose M/ G is connected, then there is an isotropy group H so that for all x e M, 

H is conjugate to a subgroup of Gx- Moreover M(H) i^ open and dense in M and 
the quotient M(H)/G is connected. 

Since G-invariant submanifolds (e.g., Gx, M^, M{H)) have G-tubular neighborhoods,it 
behooves us to examine G-vector bundles. Recall that a finite-dimensional real representa­
tion £" of a compact Lie group decomposes into a direct sum of irreducible representations. 
This decomposition is not canonical, but if one sums all isomorphic irreducible submod-
ules of E, then one gets a canonical decomposition. The same thing works on the level of 
vector bundles. 

Let Irr(G, M) be the set of isomorphism classes of finite-dimensional irreducible RG-
modules. For [V] G Irr(G, M), let D{V) = HomuGiV, V). Then D(V) equals R, C, or H. 

PROPOSITION 1.2. Let E be a G-vector bundle where G is a compact Lie group. Then 

0 HomMG(V, E) ^D{V) V = E, 
[V]Glrr(GM) 

where the map is (/, v) h^ / ( f ) . If D(V) = C (or H) then the sub-bundle HomMG(^, E) 
(8) V admits a complex (or symplectic) structure. 

COROLLARY 1.2. Suppose Z//? acts smoothly on M with p prime. 
(i) Ifp is odd, the normal bundle to the fixed set M^/^ C M admits a complex structure. 

(ii) If p = 2 and the action is orientation-preserving on an orientable manifold M, then 
dimM-dimM^/2 IS even. 

For homotopy theoretic information concerning a G-space, it is helpful to have the struc­
ture of a G-CW-complex. 

DEFINITION 1.1. A G-CW complex is a G-space X together with a filtration 

0 = x_i c Xo c Xi c X2 c • • • c x̂  c • • • c X = y Xn 
n>0 
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such that X = coUm„^oo X„ and for any n > 0 there is a pushout diagram 

LI,-^,„G/H/x§"-i^X„_i 

i I 
UielnG/HiXD" -X„ 

where {/f/}/G/„ is a collection of subgroups of G. 

Another point of view follows. A discrete group G acts cellularly on an ordinary CW 
complex X if for every g e G and for every open cell c of X, gc is an open cell of X 
and gc = c implies that g\c = Id. Any cellular action on a CW complex X gives a G-CW-
complex and conversely. From this point of view it is clear that if Z is a G-CW-complex, 
so are X/G and X^ for all subgroups H < G. 

Much of the elementary homotopy theory of CW-complexes remains valid for G-CW-
complexes when G is discrete. For example, there is equivariant obstruction theory [26]. 
Note that specifying a G-map G/H x E>^~^ —^ X„_i is equivalent to specifying a map 
gn-\ ^^ X ^ i . Using this observation, it is easy to show: 

PROPOSITION 1.3 (Whitehead theorem). Let f:X -^ Y be a G-map between G-CW-
complexes. Then f is a G-homotopy equivalence {i.e., there is a G-map g:Y ^^ X so that 
fog and go f are G-homotopic to the identity) if and only if f^ : X^ -^ Y^ induces an 
isomorphism on homotopy groups, for all subgroups H ofG. 

A smooth G-manifold for G a finite group admits an equivariant triangulation, and hence 
the structure of a G-CW-complex [90]. The corresponding result for a smooth, proper 
action of a Lie group on a manifold appears in [93]. 

For a smooth G-manifold for a finite group G, much of the theory of differential topol­
ogy goes through. For example, there are equivariant Morse functions and equivariant 
handle decompositions [168]. This leads to equivariant versions of the ^--cobordism the­
orem, see [108, Section 1.4.C] and the references therein. On the other hand, transversality 
fails equivariantly: consider the constant Z/2-map M ^- R from a manifold with a trivial 
Z/2-action to the reals with the action x \-^ —x; there is no homotopy to a map which is 
simultaneously equivariant and transverse. 

1.5. Change of category 

The subject of actions of groups on PL or topological manifolds differs from that of smooth 
actions on smooth manifolds. An action of a finite group on a topological manifold satisfies 
none of the regularity theorems of the previous section, and hence has been little studied. 
For example, one can suspend the involution on §^ with fixed set L(d; I, I) to get an 
involution on S^ so that the fixed set (the suspension of the lens space) is not a manifold. 
Bing [22] constructed an involution on S^ with fixed set an Alexander homed sphere. 

More typically studied are topologically locally linear actions of a compact Lie group 
on a topological manifold or PL locally linear actions of a finite group on a PL manifold. 
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By definition, these are manifolds with actions which satisfy the conclusion of the SHce 
Theorem 1.3. Such actions were called locally smooth in the older literature. For such ac­
tions the Orbit Theorem 1.4 remains valid; in particular the fixed set M^ is a submanifold. 
However, equivariant tubular neighborhoods and equivariant handlebodies need not exist. 
In fact, a locally linear action of a finite group on a closed manifold need not have the G-
homotopy type of a finite G-CW-complex [142]. This makes the equivariant ^-cobordism 
theorem [160,142] in this setting much more subtle; it requires methods from controlled 
topology. On the other hand, the theory of free actions of finite groups on closed mani­
folds parallels the smooth theory [102]. For general information on locally Unear actions 
see [25,170]. 

1.6. Remarks 

In this first section we have introduced basic objects, examples and questions associated 
to a topological transformation group. In the next section we will apply methods from 
algebraic topology to the study of group actions. As we shall see, these methods provide 
plenty of interesting invariants and techniques. After describing the main results obtained 
from this algebraic perspective, in Section 3 we will return to geometric questions. Having 
dealt with basic cohomological and homotopy-theoretic issues allows one to focus on the 
essential geometric problems by using methods such as surgery theory. Important examples 
such as the spherical space form problem will illustrate the success of this approach. 

2. Cohomological methods in transformation groups 

2.1. Introduction 

In this section we will outline the important role played by cohomological methods in finite 
transformation groups. These ideas connect the geometry of group actions to accessible al­
gebraic invariants of finite groups, hence propitiating a fruitful exchange of techniques 
and concepts, and expanding the relevance of finite transformation groups in other areas 
of mathematics. After outlining the basic tools in the subject, we will describe the most 
important results and then provide a selection of topics where these ideas and closely re­
lated notions can be applied. Although many results here apply equally well to compact 
Lie groups, for concreteness we will assume throughout that we are dealing with finite 
groups, unless stated otherwise. The texts by AUday and Puppe [10], Bredon [25] and tom 
Dieck [63] are recommended as background references. 

To begin we recall a classical result due to Lefschetz: let X be a finite polyhe­
dron and / : X ^- X a continuous mapping. The Lefschetz number L ( / ) is defined as 
L( / ) = E f i ' o^ ( - l ) ' Tr / / / ( / ) , where i / / ( / ) : H/(X; Q) -^ Hi{X\ Q) is the map induced 
in rational homology. Lefschetz' fundamental fixed-point theorem asserts that if L ( / ) ^ 0, 
then / has a fixed point, i.e., an x G X such that f{x)=x.\x\ particular this implies that 
if G = Z/n acts on an acyclic finite polyhedron X, then X^ ^ 0. This result depends on 
the geometry of X as well as on the simple group-theoretic nature ofZ/n. How does this 
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basic result generalize to more complicated groups? In the special case when G is a finite 
/7-group (p a prime), P. Smith (see [25]) developed algebraic methods for producing fun­
damental fixed-point theorems of the type mentioned above. Rather than describe Smith 
Theory in its original form, we will outline the modem version as introduced by A. Borel 
in [23,24]. 

2.2. Universal G-spaces and the Borel construction 

Denote a contractible free G-space by EG\ such an object can be constructed functorially 
using joins, as was first done by Milnor in [118]. This space is often called a universal 
G-space and has the property that its singular chains are a free resolution of the trivial 
module over ZG. A cellular model of EG can easily be constructed and from now on 
we will assume this condition. Now the quotient BG = EG/G is a K{G, 1), hence its 
cohomology coincides with the group cohomology H*(G, Z) = Ext^^(Z, Z). The space 
BG is also called the classifying space of G due to the fact that homotopy classes of maps 
into BG from a compact space Y will classify principal G-bundles over Y (a result due to 
Steenrod [159]). If Z is a G-space, recall the Borel construction on Z, defined as 

XXGEG=(XXEG)/G 

where G acts diagonally (and freely) on the product X x EG. If X is a point, we simply 
recover BG. If G is any non-trivial finite group, then EG is infinite-dimensional; hence if X 
is a G-CW complex, X XG EG will be an infinite-dimensional CW complex. However, 
if G acts freely on Z, then the Borel construction is homotopy equivalent to the orbit space 
X/G. The cohomology //* (X XG EG, Z) is often called the equivariant cohomology of the 
G-space X. In homological terms, this cohomology can be identified with the G-hyper-
cohomology of the cellular cochains on X (see [41] or [33] for more on this). Let us 
assume from now on that X is a finite dimensional G-CW complex; although in many 
instances this condition is unnecessary, it does simplify many arguments without being too 
restrictive. The key fact associated to the object above is that the projection 

XXGEG^BG 

is a fibration with fiber Z, and hence we have a spectral sequence with 

^^q ^ HP[BG, HHX; A)) ^ H^^HX XG EG; A), 

where A are the (possibly twisted) coefficients. Note that in addition G may act non-
trivially on the cohomology of X. We are now in a position to explain the key results from 
Smith theory. Let G = Z/p; then the inclusion of the fixed-point set Z ^ ^- X induces a 
map 

iG'.X^ XBG^XXGEG 
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with the following property: 

/J : H'(X XG EG; ¥p) -^ H'{X^ x BG; ¥p) 

is an isomorphism if r > dimX, where F^ denotes the field with p elements. To prove 
this, we consider the G-pair (X, X^) and the relative Borel construction (X, X^) x G EG = 
(X XGEG, X^ X BG). The statement above is equivalent to showing that H'((X, X^)XG 

EG; F^) = 0 for r sufficiently large. However, this follows from the fact that the relative 
co-chain complex C*(X, X^) is G-free, and hence the relative equivariant cohomology 
can be identified with the cohomology of the subcomplex of invariants, which vanishes 
above the dimension of X. 

Now if X is mod p homologous to a point, then the spectral sequence collapses and 
looking at high dimensions we infer that Z ^ is mod p homologous to a point. If G is any 
finite p-group, it will always have a central subgroup of order p, hence using induction 
one can easily show 

THEOREM 2.1 (Smith). If a finite p-group G acts on a finite-dimensional complex X 
mod p homologous to a point, then X^ is non-empty and is also mod p homologous to a 
point. 

In contrast, it is possible to construct fixed-point free actions of Z/pq (where p,q are 
distinct primes) on R^ (see [25]). This indicates that /7-groups play a distinguished part in 
the theory of group actions, analogous to the situation in group cohomology or representa­
tion theory. 

If G = Z//7 acts on X = §" with a fixed point, the corresponding spectral sequence will 
also collapse. The key observation is that the existence of a fixed-point leads to a cross 
section for the bundle X XG EG -^ BG, and hence no non-zero differentials can hit the 
cohomology of the base; as there are only two lines the spectral sequence must collapse. 
Using induction this yields 

THEOREM 2.2 (Smith). If a finite p-group G acts on a finite-dimensional complex X 
mod p homologous to a sphere with a fixed point, then X^ is also mod p homologous to a 
sphere. 

Much later, Lowell Jones (see [99]) proved a converse to Smith's theorem for actions on 
disks which goes as follows. 

THEOREM 2.3 (Jones). Any finite ¥p-acyclic complex is the fixed-point set of a Z/p-
action and thus of any finite p-group on some finite contractible complex. 

The spectral sequence used above can also be applied to prove the following basic result 
(see [24]). 
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THEOREM 2.4. IfG, a finite p-gwup, acts on a finite-dimensional complex Y, then 

dimY dimY^ 

^ d im/ /^(F;F^)^ ^ dimH'{Y^;¥p). 
i=0 i=0 

Obvious examples such as actions on projective spaces can be analyzed using these tech­
niques; for detailed applications we refer to [25, Chapter VII], which remains unsurpassed 
as a source of information on this topic. To give a flavour of the results there, we describe 
an important theorem due to Bredon. Let P^ (n) denote a space such that its mod p coho-
mology is isomorphic to the ring ¥p[a]/a^^\ where a is an element of dimension n. 

THEOREM 2.5 (Bredon). Suppose that p is prime and that G = Z//? acts on a finite-
dimensional complex X with the mod p cohomology of P^(n). Then either X^ =& or 
it is the disjoint union of components F\,..., Fk such that Fi is mod p cohomologous 
to P^' (ni), where h -\- I = ^i=\ (hi + 1) and nt ^ n. The number of components k is at 
most p. For p odd and h ^ 2, n and the ni are all even. Moreover, if nt = n for some i, 
then the restriction H^{X\ ¥p) -^ H^{Fi\ ¥p) is an isomorphism, 

2.3. Free group actions on spheres 

Next we consider applications to the spherical space form problem, namely what finite 
groups can act freely on a sphere? Let us assume that G does act freely on S", then ex­
amining the spectral sequence as before we note that it must abut to the cohomology of an 
n-dimensional orbit space, hence the differential 

dn+\: H\G, H^{S^; ¥p)) -^ //^+"+^(G; F^) 

must be an isomorphism for k positive, and hence the mod p cohomology of G must be 
periodic. From the Kunneth formula, it follows that G ^ C^/pT with n > I; applying this 
to all the subgroups in G, we deduce that every abelian subgroup in G is cyclic, hence 
obtaining another classical result due to P. Smith. 

THEOREM 2.6 (Smith). IfG acts freely on §", then every abelian subgroup ofG is cyclic. 

A finite group has all abelian subgroups cyclic if and only if its mod p cohomology is 
periodic for all p (see [41]). Groups which satisfy this condition have been classified and 
their cohomologies have been computed (see [6]). In this context, a natural question arises: 
does every periodic group act freely on a sphere? The answer is negative, as a consequence 
of a result due to Milnor [119]: 

THEOREM 2.7 (Milnor). IfG acts freely on S^, then every element of order 2 in G must 
be central. 



Topics in transformation groups 15 

Hence in particular the dihedral group D2p cannot act freely on any sphere. Note that 
this result depends on the fact that the sphere is a manifold. However, such restrictions do 
not matter in the homotopy-theoretic context, as the following result due to Swan [161] 
shows: 

THEOREM 2.8 (Swan). Let G be a finite group with periodic cohomology; then it acts 
freely on a finite complex homotopy equivalent to a sphere. 

At this point the serious problem of realizing a geometric action must be addressed; 
this will be discussed at length in Section 3. As a preview we mention the theorem that a 
group G will act freely on some sphere if and only if every subgroup of order p^ or 2p 
(p a prime) is cyclic; these are precisely the conditions found by Smith and Milnor. 

Clearly the methods used for spheres can be adapted to look at general free actions, 
given some information on the cohomology of the group. The following example illus­
trates this: let G denote the semidirect product Z/p xj 'Z/p — 1, where the generator of 
Z/p — 1 acts via the generator in the units of Z/p. From this it is not hard to show that 
H'^iG; Z(p)) = Z(p)[u]/pu, where u e H^^P~^\G\ Z^p)), and Z(p) denotes the integers 
localized at p. Now assume that G acts freely on a connected complex X, such that the 
action is trivial on homology. From the spectral sequence associated to this action we can 
infer the following: the dimension of X must be at least 2(p — 1) — 1. If it were less, then 
no differential in the spectral sequence could hit the generator from the base; and hence 
H^ip-^)(^X/G; Z(p)) 7̂  0, a contradiction. 

2.4. Actions of elementary abelian groups and the localization theorem 

Let us now assume that G = (Z/pY, an elementary abelian p-group. Cohomological 
methods are extremely effective for studying actions of these groups. Perhaps the most 
important result is the celebrated "Localization Theorem" due to Borel and Quillen [140]. 
To state it we first recall that if jc G H^(G; ¥p) is non-zero, then its Bockstein P(x) is a 
two-dimensional polynomial class. Let O^e e H^^^' ~^\G\ ¥p) denote the product of all 
the fi{y), as y ranges over non-zero elements in //^ (G; F^). 

THEOREM 2.9 (Borel and Quillen). Let G = (Z/pY act on a finite-dimensional com­
plex X. Then, if S is the multiplicative system of powers ofe, the localized map induced by 
inclusions 

S-^HHXxG EG; ¥p) -^ S'^H%X^ x BG; ¥p) 

is an isomorphism. 

This result has substantial applications to the theory of finite transformation groups. 
Detailed results about fixed-point sets of actions on spheres, projective spaces, varieties, 
etc. follow from this, where in particular information about the ring structure of the fixed-
point set can be provided. An excellent source of information on this is the text by Allday 
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and Puppe [10]. An important element to note is that the action of the Steenrod algebra 
is an essential additional factor which can be used to understand the fixed-point set (see 
also [67]). Also one should keep in mind the obvious interplay between the E2 term of 
the spectral sequence described previously and the information about the £"00 term the 
localization theorem provides. Important results which should be mentioned are due to 
Hsiang [82] and Chang and Skelbred [42]. In particular we have the following fundamental 
result. 

THEOREM 2.10 (Chang and Skelbred). If G = (Z/pY and X is a finite-dimensional 
G-CW complex which is also a mod p Poincare duality space, then each component Fi of 
X^ is also a mod p Poincare duality space. 

For the case of actions of compact Lie groups, Atiyah and Bott [15] describe a De Rham 
version of the localization theorem, which is quite useful for studying questions in differen­
tial geometry and physics (see also [65]). There are also recent applications of localization 
techniques to problems in symplectic geometry, for example in [98]. 

2.5. The structure of equivariant cohomology 

We now turn to describing qualitative aspects of equivariant cohomology which follow 
from isotropy and fixed point data. This was originally motivated by attempts to under­
stand the asymptotic growth rate (KruU dimension) of the mod p cohomology of a finite 
group G. Atiyah and Swan conjectured that it should be precisely the the rank of G at /? 
(i.e., the dimension of its largest p-elementary abelian subgroup). This result was in fact 
proved by Quillen [140] in his landmark work on cohomology of groups. First we need 
some notation. Denote by AG the family of all elementary abelian /7-subgroups in G, and 
by AG{X) the ring of families {/A : X^ -^ H*(A; ¥p)}j[^j\^^ of locally constant func­
tions compatible with respect to inclusion and conjugation. Consider the homomorphism 
H*(X XGEG; ¥p) -^ AG(X) which associates to a class u the family (UA), where (UA) is 
the locally constant function whose value at x is the image of u under the map in equivari­
ant cohomology associated to the inclusion A c G and the map from a point to X with 
image {x}. 

THEOREM 2.11 (Quillen). If X is compact, then the homomorphism above is an F-iso­
morphism of rings, i.e., its kernel and cokernel are both nilpotent. 

The following two results follow from Quillen's work 

PROPOSITION 2.1. Let G act on a finite complex X and denote by p{t) the Poincare series 
for the mod p equivariant cohomology ofX. Then p{t) is a rational function of the form 
z{t)l YXi^x (1 — t^^), where z(t) G Z[r], and the order of the pole of p(t) at t = I is equal 
to the maximal rank of an isotropy subgroup ofG. 
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PROPOSITION 2.2. IfGis a finite group, then the map induced by restrictions 

H*(G;¥p)^ lim i/*(A;Fn) 
AEAG 

is an F-isomorphism. 

For example, if G = Sn, the finite symmetric group, then the map above is actually an 
isomorphism for /? = 2. We refer the reader to the original paper for complete details; it 
suffices to say that the proof requires a careful consideration of the Leray spectral sequence 
associated to the projection X XG EG -^ X/G. 

This result has many interesting consequences; here we shall mention that it was the 
starting point to the extensive current knowledge we have in the cohomology of finite 
groups (see [6]). An analogous theorem for modules has led to the theory of complexity and 
many connections with modular representations have been uncovered (see [37] and [19]). 

EXAMPLE 2.1. The following simple example ties in many of the results we have dis­
cussed. Let G = Q^, the quaternion group of order 8. Its mod 2 cohomology is given by 
(see [6,41]) 

/ /* (G;F2)=F2[xi ,y i ,W4]A?+xiy i+yf ,xfy i+xi3 ;^ 

Note that the asymptotic growth rate of this cohomology is precisely one, which corre­
sponds to the fact that it is periodic. In addition every element of order 2 is central; in fact 
Qs C Ŝ  and hence acts freely on it by translation. The class W4 is polynomial, transgress­
ing from the top-dimensional class in S^. In fact one can see that 

//*(G; F2)/(W4) = / / * ( S V G 8 ; F2) 

which means that the classes l,x\,y\,x\y\,x'^,x\y^ represent a cohomology basis for the 
mod 2 cohomology of the 3-manifold S^/Qs- The unique elementary abehan subgroup is 
the central Z/2, and the four-dimensional class W4 restricts to ^^ e //^(Z/2; F2), where e\ 
is the one-dimensional polynomial generator. The other cohomology generators are nilpo-
tent. 

Another interesting group which acts freely on Ŝ  is the binary icosahedral group B of 
order 120 (it is a double cover of the alternating group ^45). In this case we have 

//*(5;F2) = A(X3)(8)F2[W4], 

where as before in the spectral sequence for the group action the top class in the sphere 
transgresses to W4. From this we obtain H*(§^/B; F2) = ^(^3). This orbit space is the 
Poincare sphere. 

These examples illustrate how geometric information is encoded in the cohomology of 
a finite group, a notion which has interesting algebraic extensions (see [21]). 
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2.6. Tate cohomology, exponents and group actions 

The cohomology of a finite group can always be computed using a free resolution of the 
trivial ZG module Z. It is possible to splice such a resolution with its dual to obtain a 
complete resolution (see [6]), say T^, indexed over Z, with the following properties: 

(1) each^/ is free, 
(2) T^ is acyclic and 
(3) ^*, * ^ 0, is a free resolution of Z in the usual sense. 
Now let X be a finite-dimensional G-CW complex; in [162] Swan introduced the notion 

of equivariant Tate cohomology, defined as 

H^(X) = //^(HomG(^*; C*(X))). 

An important aspect of the theory is the existence of two spectral sequences abutting to the 
Tate cohomology, with respective E\ and £"2 terms 

£f'^ = ^^(G;C^(X)) 

and 

E^'"^ = HP{G;HHX;Z)) 

which arise from filtering the associated double complex in the two obvious ways. Using 
the fact that free modules are Tate-acyclic, the first spectral sequence can be used to show 
that HQ{X) = 0 if and only if the G-action is free. More generally one can show that 
equivariant Tate cohomology depends only on the singular set of the action. In addition it 
is not hard to see that H^(X) = H*(X XG EG; Z) for * > dimX. Recent work has con­
centrated on giving a homotopy-theoretic definition of this concept and defining analogues 
in other theories (see [5,75]). This involves using a geometric construction of the transfer. 
Another important ingredient is the 'homotopy fixed point set' defined as MapG(£'G, X); 
in fact an analysis of the natural map X^ = Map(^(*, X) -^ X^^ is central to many im­
portant results in equivariant stable homotopy. 

Let A be a finite abelian group; we define its exponent exp(A) as the smallest integer 
n > 0 such that n.a = 0 for dill a e A. Using the transfer, it is elementary to verify that 
\G\ annihilates HQ{X)\ hence exponents play a natural role in this theory. Assume that X 
is a connected, free G-CW complex. Now consider the E/ terms in the second spectral 
sequence described above; the possible differentials involving it are of the form 

^ r + 1 ~^ ^ r + 1 ~^ ^ r + 2 

with r = 1,2,..,, N, N = dimX. From these sequences we obtain that expE^]^^ divides 

the product of exp E~^^ '̂  and exp E/_^2 ^^^ hence as £"00 = 0, and E2 = //^(G; Z) = 
Z/|G|, we obtain the following condition, first proved by Browder (see [28,1]): \G\ di­
vides the product Y[f=\^ ^^P H~'~\G; H'(X\ Z ) ) . We note the following important con­
sequence of this fact. 
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THEOREM 2.12 (Browder). If X is a connected, free {X/pY-CW complex, and if the 
action is trivial in homology, then the total number of dimensions i > 0 such that 
/f' (Z; Z(p)) :^ 0 must be at least r. 

COROLLARY 2.1 (Carlsson). If (Z/pY acts freely and cellularly on (S"")^ with trivial 
action in homology, then r ^k. 

This corollary, was proved by Carlsson [38] using different methods. In [4] the hypoth­
esis of homological triviality was removed for odd primes and hence we have the general­
ization of Smith's result, namely 

THEOREM 2.13 (Adem-Browder). If p is an odd prime and (Z/pY acts freely on (§^)^, 
then r ^k. 

For p = 2 the same result will hold provided n ^ 3,7. This is a Hopf invariant one 
restriction. The case n = lis due to Yalcin [175]. 

Another consequence of Browder's result concerns the exponents carried by the Chem 
classes of a faithful unitary representation of G. 

COROLLARY 2.2. Let p:G ^ U(n) denote a faithful unitary representation of a finite 
group G. Then \G\ must divide the product YYi=\ ^^P(<^/(P))-

Using methods from representation theory, one can in fact show [2] that for G = (Z/pY, 

exp^5(X)=expHg(Z) = max{|G^|, x e X} 

hence in particular we obtain for any G 

THEOREM 2.14. The Krull dimension of H*{X XG EG; ¥p) is equal to the maximum 
value of log^{exp H^{X)} as E ranges over all elementary abelian p subgroups ofG. 

This shows the usefulness of equivariant Tate cohomology, as it will determine asymp­
totic cohomological information for ordinary equivariant cohomology from a single expo­
nent. 

In [29], Browder defined the degree of an action as follows. Let G act on a closed 
oriented manifold M" preserving orientation, and let 7 : M -^ M x G EG denote the fiber 
inclusion. Then 

degG{M) = \H\M;Z)/imj% 

This was independently defined by Gottlieb in [74]; they both show that if G = {Z/pY, 
then log^ deg^CM) is equal to the co-rank of the largest isotropy subgroup in G. Note in 
particular that the action will have a fixed-point if and only if deg^ (M) = 1. Using duality 
it is possible to prove their result from the previous theorem, we refer the reader to [2] for 
details. 
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2.7. Acyclic complexes and the Conner conjecture 

If Z is a G space and / / C G is a subgroup then a basic construction is the transfer map 
C* {X/ G) -> C* (X/H). By averaging on cochains it is elementary to construct such a map 
(see [33]) with the property that composed with the projection X/H -^ X/G the resulting 
map is multipHcation by [G : / / ] on H'^iX/G, A), where A is any coefficient group. Note 
in particular that if P = Syl^(G), we have an embedding //*(X/G; F^) -> H*(X/P; ¥p). 
A basic result is 

THEOREM 2.15. IfXis a finite-dimensional acyclic G-complex, then X/G is acyclic. 

From the above, to show that X/G is acyclic it suffices to show (for any prime p) 
that if X is mod p acyclic and Z/p acts on X, then X/Z/p is mod p acyclic. Con­
sider the the mod p equivariant cohomology of the relative cochain complex for the 
pair (X,X^/'0; as it is free, we can identify it with the mod p cohomology of the quo­
tient pair, (X/Z/p, X^^P). NOW the E2 term of the spectral sequence converging to this 
is of the form HP(G, H^^iX, X^^P; ¥p)); using the fact that the fixed-point set must be 
mod p acyclic (by Smith's theorem) we conclude that it must be identically zero and hence 
H*(X/Z/p,¥p) = H''{X^/P,¥p) and so X/Z/p is mod p acyclic. Less obvious is the 
fact that if X is contractible, then so is X/G (see [63, p. 222]). The most general results 
along these lines are due to Oliver [129] who in particular settled a fundamental conjecture 
due to Conner for compact Lie groups. 

THEOREM 2.16 (Oliver). Any action of a compact Lie group on a Euclidean space has 
contractible orbit space. 

The main elements in the proof are geometric transfers and a careful analysis of the 
map X XG EG -^ X/G which we discussed previously. Oliver also proved some results 
about fixed-point sets of smooth actions on discs [128], extending a basic example due to 
Floyd-Richardson (see [25] for details) in a remarkable way. 

We introduce a few group-theoretic concepts. Let Q^p be the class of finite groups G with 
normal subgroups P < H <G such that P is of p-power order, G/H is of ^-power order 
and H/P is cyclic. Let 

Gp = [jgl G = \jGp. 
q p 

We can now state 

THEOREM 2.17 (Oliver). A finite group G has a smooth fixed-point free action on a disk 
if and only if G ^Q. In particular, any non-solvable group has a smooth fixed-point free 
action on a disk, and an abelian group has such an action if and only if it has three or more 
non-cyclic Sylow subgroups. 
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COROLLARY 2.3. The smallest abelian group with a smooth fixed-point free action on a 
disk is Z/30 0 Z/30, of order 900. The smallest group with such an action is the alternating 
group As of order 60. 

Note that ^5 is precisely the group occurring in the Floyd-Richardson example. Oliver 
proved a more general version. 

THEOREM 2.18. For any finite group G not of prime power order, there is an integer no 
{the Oliver number) so that a finite CW-complex K is the fixed-point set of a G-action 
on some finite contractible complex if and only if x(K) = 1 (mod no)- Furthermore, if 
X(K) = I (mod no) there is a smooth G-action on a disk with fixed-point set homotopy 
equivalent to K. 

Recently, Oliver [135] has returned to this problem and by analyzing G-vector bundles, 
has determined the possible fixed-point sets of smooth G-actions on some disk when G is 
not a /7-group. 

We now include a small selection of topics in finite transformation groups to illustrate 
the scope and diversity of the subject, as well as the significance of its applications. This 
is by no means a complete listing, but hopefully it will provide the reader with interesting 
examples and ideas. 

2.8. Subgroup complexes and homotopy approximations to classifying spaces 

Let G denote a finite group and consider Sp(G), the partially ordered set of all non-trivial 
/7-subgroups in G. G acts on this object via conjugation and hence on its geometric realiza­
tion \Sp(G)\, which is obtained by associating an n-simplex to a chain of n + 1 subgroups 
under inclusion. Hence we obtain a finite G-CW complex inherently associated to any 
finite group G. Similarly if Ap(G) denotes the poset of non-trivial p-elementary abelian 
subgroups, \Ap(G) \ will also be a finite G-CW complex. These complexes were introduced 
by K. Brown and then studied by Quillen [141] in his foundational paper. He showed that 
these complexes have properties analogous to those of Tits Buildings for finite groups of 
Lie type. Moreover, these geometric objects associated to finite groups are of substantial 
interest to group theorists, as they seem to encode interesting properties of the group. 

We now summarize basic properties of these G-spaces. 
(1) \Sp(G)\is G equivariantly homotopic to |A^(G)|. 
(2) For all p-subgroups P cG, the fixed point set \Sp(G)\^ is contractible. 
(3) There is an isomorphism 

HHG;¥p)^H^{\Sp(G)\;Fp) 

(due to Brown [33]). 
(4) In the mod p Leray spectral sequence for the map \Ap(G)\ XG EG -^ \Ap(G)\/G 

we have that £f^ = 0 for /? > 0 and £3'^ = HHG;¥p). This means that 
H'^iG; Fp) can be computed from the cohomology of the normalizers of elementary 
abelian subgroups and their intersections (this is due to R Webb, see [169] and [6]). 
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The following example illustrates the usefulness of these poset spaces. 

EXAMPLE 2.2. Let G = Mn, the first Mathieu group. We have that |A2(G)| is a finite 
graph, with an action of G on it such that the quotient space is a single edge, with vertex 
stabilizers U4 and GL2(F3) and edge stabilizer Dg (dihedral group of order 8). From this 
information the cohomology of G can be computed (at p = 2), and we have (see [6]) 

/f *(G; F2) = F2[i;3, U4](w5)/wj + vju4. 

Moreover, from the theory of trees we have a surjection 

i:4*D8GL2(F3)^G 

which is in fact a mod 2 cohomology equivalence. Hence the poset space provides an 
interesting action which in turns leads to a 2-local model for the classifying space of a 
complicated (sporadic) simple group. More generally this technique can be used to show 
that if ^ is a finite group containing (Z/p)^ but not (Z/p)^, then at p the classifying 
space BK can be modelled by using a virtually free group arising from the geometry of the 
subgroup complex, which is a graph. We refer to [6] for more complicated instances of this 
phenomenon. 

In a parallel development, important recent work in homotopy theory has focused 
on constructing 'homotopy models' for classifying spaces of compact Lie groups 
(see [94,95]). In particular the classifying spaces of centralizers of elementary abelian sub­
groups can be used to obtain such a model (again p-locally). This is related to cohomolog-
ical results but has a deeper homotopy-theoretic content which we will not discuss here. 
We suggest the recent paper by Dwyer [66] for a thorough exposition of the homotopy 
decompositions of classifying spaces. Equivariant methods play an important part in the 
proofs. 

We should also mention that if G is a perfect group, then the homotopy groups TZn (BG^) 
contain substantial geometric information, often related to group actions. Here BG^ de­
notes Quillen's plus construction which is obtained from BG by attaching two and three 
dimensional cells and has the property of being simply connected, yet having the same 
homology as BG. We refer the interested reader to [6, Chapter IX], for details. 

2.9. Group actions and discrete groups 

An important application of finite transformation groups is to the cohomology of discrete 
groups of finite virtual cohomological dimension, as first suggested by Quillen in [140]. 
These are groups F which contain a finite index subgroup F' of finite cohomological 
dimension (i.e., with a finite-dimensional classifying space). Examples will include groups 
such as amalgamated products of finite groups, arithmetic groups, mapping class groups, 
etc. If for example F C GL^(R) is a discrete subgroup, then F will act on the symmetric 
space GLn (M)/^ ( ^ a maximal compact subgroup) with finite isotropy. Analogous models 
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and their compactifications are the basic building blocks for approaching the cohomology 
of discrete groups. 

More abstractly, using a simple coinduction construction due to Serre (see [33]), one can 
always build a finite dimensional F-CW complex X such that 

(1) X^ 7̂  0 if and only if / / c T is finite, 
(2) X^ is contractible for all H finite. 
Now we can choose F' to be a normal subgroup of finite cohomological dimension and 

finite index in F. Hence the finite group G = F jF' will act on the finite-dimensional space 
X/F\ with isotropy subgroups corresponding to the finite subgroups in F. Moreover, it is 
not hard to see that for a finite subgroup H C F, 

(X/FY-]jB{Nr(J)nF'), 
(J) 

where J runs over all F^-conjugacy classes of finite subgroups of F mapping onto H via 
the projection F -> G and Nr(J) is the normalizer of 7 in T (see [33]). 

We are therefore in an ideal situation to apply Smith theory to obtain a lower bound 
on the size of the cohomology of these discrete groups. To make it quite general, we as­
sume given F of finite cohomological dimension and P SL finite p-group of automorphisms 
for F. Let F = F XT P, the semi-direct product; now 7̂  is a normal subgroup of finite 
index in this group. If we choose J c F SL finite subgroup mapping onto P, let Cr{J) 
denote its centralizer in F. Let H\P, F) denote the usual non-abelian cohomology and 
finally denote by dimp ,̂ H*(Y) the total dimension of the homology J2 ^ ' ( ^5 ^p) foi" ^ 
finite-dimensional complex Y. We can now state (see [3]): 

THEOREM 2.19. If F is a discrete group of finite cohomological dimension, then for every 
finite p-group of automorphisms P of F we have 

dimF, / /*(r) > Yl ^™F. H%Cr(J)) 
JeHHP.n 

and in particular 

dimF,//*(r)>dimF,//*(r^), 

where F^ C F is is the fixed subgroup under the automorphism group P. 

As an application of this, we have that if Fn(q) C SLn(L) denotes a level q (q prime) 
congruence subgroup, and if p is another prime, then 

dimF, H%F(q)) > 2^(/^-3)/2 . diniF, / /*(r , (^)) , 

where n = k(p — 1)-|-^ 0 ^t < p — I. 
The summands in the general formula will represent 'topological special cycles' which 

in more geometric situation intersect to produce cohomology (see [150]). A result such 
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as the above should be a basic tool for constructing non-trivial cohomology for discrete 
groups with symmetries; in fact groups such as the congruence subgroups will have many 
finite automorphisms and hence plentiful cohomology. Equivariant techniques should con­
tinue to be quite useful in producing non-trivial cohomology. 

We should also mention that Brown [33] used equivariant methods to prove very striking 
results about Euler characteristics of discrete groups. The following is one of them. The 
group theoretic Euler characteristic of F (situation as in the beginning of this section) can 
be defined as x ( ^ ) = x ( ^ 0 / l ^ l ; one checks that it is indeed well-defined. Now let n{r) 
denote the least common multiple of the orders of all finite subgroups in F. Serre conjec­
tured and K. Brown proved that in fact n(F) • x (^) ^ ^- This beautiful result furnishes in­
formation about the size of the finite subgroups in F, provided the Euler characteristic can 
be computed. In many instances this is the case; for example, x iSp^(Z)) = —1/1440, from 
which we deduce that Sp^(L) has subgroups of order 32, 9 and 5. From a more elementary 
point of view, this result is simply a consequence of the basic fact that the least common 
multiple of the orders of the isotropy subgroups of a finite-dimensional G-complex Y (with 
homology of finite type) must yield an integer when multiplied by x (^)/1G |. 

2.10. Equivariant K-theory 

After the usual cohomology of CW complexes was axiomatized by Eilenberg and Steen-
rod, the introduction of 'extraordinary' theories led to many important results in topology; 
specifically ^-theory was an invaluable tool in solving a number of problems. Atiyah [13] 
introduced an equivariant version of A^-theory whose main properties were developed by 
Segal [155] and Atiyah and Segal in [16]. We will provide the essential definitions and the 
main properties which make this a very useful device for studying finite group actions. 

Equivariant complex A^-theory is a cohomology theory constructed by considering 
equivariant vector bundles on G-spaces. Let X denote a finite G-CW complex, a G-vector 
bundle on X is a G-space E together with a G-map p.E^^X such that 

(i) p'.E -^ X '\s2i complex vector bundle on X, 
(ii) for any g e G and x G X, the group action g: Ex -> Egx is a homomorphism of 

vector spaces. 
Assuming that G is a compact Lie group and X is a compact G-CW complex then 

the isomorphism classes of such bundles give rise to an associated Grothendieck group 
K^(X), which as in the non-equivariant case can be extended to a Z/2 graded theory 
KQ (X), the equivariant complex A'-theory of X. An analogous theory exists for real vector 
bundles. We now summarize the basic properties of this theory: 

(1) If X and Y are G-homotopy equivalent, then ^^ (X) = K^(Y). However, in con­
trast to ordinary equivariant cohomology, an equivariant map X -> F inducing a 
homology equivalence does not necessarily induce an equivalence in equivariant 
/^-theory (see [16]). 

(2) KQ ({XQ}) = R{G), the complex representation ring of G. 
(3) Let V C R(G) denote a prime ideal with support a subgroup 5 C G (in fact S is 

characterized as minimal among subgroups of G such that V is the inverse image of 
a prime of R(S)', if V is the ideal of characters vanishing at g e G, then S = (g)). 
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denote by X^^^ the set of elements x e X such that S is conjugate to a subgroup 
of Gx\ then we have the following localization theorem due to Segal: 

K*a{X)r^Kl{X^'%. 

(4) If G is a finite group, then (see [62]) 

/^S(X)0Q = 0/^*(X^^VCGte))0Q, 
ig) 

where g varies over all conjugacy classes of elements in G. Using this it is possible 
to identify the Euler characteristic of KQ {X) (g) Q with the so-called 'orbifold Euler 
characteristic' [78]. 

(5) (Completion theorem, [16]) 

K'^iXxcEO^K^^iXr, 

where completion on the right is with respect to the augmentation ideal / C R{G) 
and the module structure arises from the map induced by projection to a point. This 
is an important result, even for the case when X is a point; it implies that the K-
theory of a classifying space can be computed from the completion of the complex 
representation ring. 

We should mention that there is a spectral sequence for equivariant ^-theory similar to 
the Leray spectral sequence discussed before for the projection from the Borel construction 
onto the orbit space, but which will involve the representation rings of the isotropy sub­
groups. These basic properties make equivariant A^-theory a very useful tool for studying 
group actions, we refer to [16,25,63] for specific applications. The localization theorem 
ensures that it is particularly effective for actions of cyclic groups. Of course /T-theory is 
also important in index theory [17]. 

2.11. Equivariant stable homotopy theory 

Just as in the case of cohomology and A^-theory, there is an equivariant version of ho­
motopy theory. In its simplest setting, if G is a finite group and X, Y are finite G-CW 
complexes, then we consider G-homotopy classes of equivariant maps f: X -^ 7, de­
noted [X, Y]^. Such objects and the natural analogues of classical homotopy theoretic 
results have been studied by Bredon [26] and others, and there is a fairly comprehensive 
theory. In many instances results are reduced to ordinary homotopy theoretic questions on 
fixed-point sets, etc. Rather than dwell on this fairly well-understood topic, we will instead 
describe the basic notions and results in equivariant stable homotopy theory, which have 
had substantial impact in algebraic topology. 

Let V denote a finite-dimensional real G-module and S^ its 1-point compactification. 
If X is a finite G-CW complex and Y an arbitrary one (both with fixed base points), we 
can define 

{Z, Yf = lim r§^ A X, S^ A y ] ^ , 
UeUc 
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where UG is a countable direct sum of finite-dimensional RG-modules so that every irre­
ducible appears infinitely often and the limit is taken over the ordered set of all finite-
dimensional G-subspaces of UG under inclusion; and the maps in the directed system 
are induced by smashing with S î̂ ^^2 and identifying S^2 ^jth S î̂ ^^^ ^ §f/i ^ where 
U\ c [/2- One checks that this is independent of UG and identifications using the fact that 
the limit is attained, by an equivariant suspension theorem. 

We can define 7T^(X) = {§^ X}^ and 7T^(X) = {X, S"}^, where X is required to be 
finite in the definition of n^. The following summarizes the basic properties of these ob­
jects. 

(1) (tom Dieck [63]) 

Trf (X) = 0 7 r : ( £ W / / + AwH X^), 
(H) 

where WH = NH/H and the sum runs over all conjugacy classes of subgroups in G. 
(2) 7t^(X) and 7r^(F) are finitely generated for each value of *, if X is an arbitrary 

G-complex and F is a finite G-complex. 
(3) n^(S^) = A{G) as rings, where A{G) is the Bumside ring of G (see [39]). Note 

that 7r~*(S^) = 7rf (S^) is a module over AiG). 
Given the known facts about group cohomology and the complex A'-theory of a finite 

group, it became apparent that the stable cohomotopy of BG+ would be an object of cen­
tral interest in algebraic topology. Segal conjectured that in dimension zero it should be 
isomorphic to the /-adic completion of the Bumside ring, an analogue of the completion 
theorem in A'-theory (/ the augmentation ideal in A{G)). This was eventually proved by 
G. Carlsson in his landmark 1984 paper (see [39]). 

THEOREM 2.20 (Carlsson). For G a finite group, the natural map 7r^(S^) -^ n^(BG^) 
is an isomorphism, where 7r^(S^) denotes the completion 6>/7r^(§^) at the augmentation 
ideal in A{G). 

A key ingredient in the proof is an application of Quillen's work on posets of sub­
groups to construct a G-homotopy equivalent model of the singular set of a G-complex X 
which admits a manageable filtration. The consequences of this theorem have permeated 
stable homotopy theory over the last decade and in particular provide an effective method 
for understanding the stable homotopy type (at p) for classifying spaces of finite groups 
(see [115]). For more information we recommend the survey by Carlsson [40] on equivari­
ant stable homotopy theory. 

This concludes the selected topics we have chosen to include to illustrate the relevance 
of methods from algebraic topology to finite transformation groups. Next we provide a 
short list of problems which are relevant to the material discussed in this section. 

2.12. Miscellaneous problems 

(1) Let G denote a finite group of rank n. Show that G acts freely on a finite-
dimensional CW-complex homotopy equivalent to a product of n spheres S^' x 
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(2) Prove that if G = (L/pY acts freely on X = S'̂ i x • • • x S'̂ " then r ^n. 
(3) Show that if {IJ/PY acts freely on a connected CW complex X, then 

dimX 

^ d i m F , / / ' ( ^ ; F p ) > 2 ^ 

(4) Find a fixed integer Â  such that if G is any finite group with ///(G; Z) = 0 for 
/ = l , . . . ,A^,thenG = {l}. 

(5) Calculate KQ{\SP{G)\) in representation-theoretic terms. 
(6) Show that \Ap{G)\ is contractible if and only if G has a non-trivial normal p-

subgroup. 

REMARK 2.1. We have listed only a few, very specific problems which seem directly 
relevant to a number of questions in transformation groups. Problem (1) would be a gen­
eralization of Swan's result, and seems rather difficult. In [20], a solution was provided 
in the realm of projective kG chain complexes. Problem (2) has been around for a long 
time and again seems hard to approach. Problem (3) is a conjecture due to G. Carlsson; 
implies (2) and has an analogue for free chain complexes of finite type. Problem (4) has a 
direct bearing (via the methods in 2.9) on the problem of (given G) determining the min­
imal dimension of a finite, connected CW complex with a free and homologically trivial 
action of G. Problem (5) is a general formulation of a conjecture due to Alperin in repre­
sentation theory, as described by Thevenaz [163]. Finally, Problem (6) is a conjecture due 
to Quillen [141] which has been of some interest in finite group theory (see [11]). 

In this section we have attempted to summarize some of the basic techniques and results 
on the algebraic side of the theory of finite transformation groups. Our emphasis has been 
to make available the necessary definitions and ideas; additional details can be found in 
the references. It should however be clear that cohomological methods are a fundamen­
tally useful device for studying transformation groups. In the next section we will consider 
the more geometric problem of actually constructing group actions when all algebraic re­
strictions are satisfied; as we will see, the combined approach can be quite effective but 
unfortunately also rather complicated. 

3. Geometric methods in transformation groups 

The subject of group actions on manifolds is diverse, and the techniques needed for future 
research seem quite unpredictable, hence we reverse our order of exposition in this section, 
and start with a discussion of five open problems, the solutions of which would lead to clear 
advances. 

3.1. Five conjectures 

(i) Borel conjecture: If a discrete group F acts freely and properly on contractible 
manifolds M and Â  with compact quotients, then the quotients are homeomorphic. 
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(ii) Group actions on S^ are linear: Any smooth action of a finite group on S-̂  is equiv­
alent to a linear action. 

(iii) Hilbert-Smith Conjecture: Any locally compact topological group acting effec­
tively on a connected manifold is a Lie group. 

(iv) Actions on products of spheres: If {1J/pY acts freely on S'^' x • • • x S^", then 
r ^n. More generally, what finite groups G act freely on a product of n spheres? 

(v) Asymmetrical manifolds: There is a closed, simply-connected manifold which does 
not admit an effective action of a finite group. 

3.1.1. The Borel conjecture. It may be a stretch to call the Borel conjecture a conjecture 
in transformation groups, but once one has done this, it has to be listed first, as it is one of 
the main principles of geometric topology. As such, it exerts its influence on transformation 
groups. 

A space is aspherical if its universal cover is contractible. The Borel conjecture as stated 
is equivalent to the conjecture that any two closed, aspherical manifolds with isomorphic 
fundamental groups are homeomorphic. An aspherical manifold might arise in nature as 
a complete Riemannian manifold with non-positive sectional curvature or as F \ G/K 
where F is a discrete, co-compact, subgroup of a Lie group G with a finite number of 
components and A' is a maximal compact subgroup of G, however, the Borel conjecture 
is a general conjecture about topological manifolds. This is a very strong conjecture; in 
dimension 3 it implies the Poincare conjecture, since if U^ is a homotopy 3-sphere, the 
conclusion of the Borel conjecture applied to T^ tt ̂ ^ and 7-̂  JJS^ implies that U^ = S^ 
by Milnor's prime decomposition of 3-manifolds [121]. Nonetheless, the conjecture has 
been proven in many cases: where one manifold is the «-torus T", n ^ 4 [71,89,102,166], 
or if one of the manifolds has dimension ^ 5 and admits a Riemannian metric of sec­
tional curvature K ^0 [70]. In the study of the Borel conjecture in dimension 3, it is 
traditional to assume that both manifolds are irreducible, which means that any embed­
ded 2-sphere bounds an embedded 3-ball. This assumption is made to avoid connected 
sum with a homotopy 3-sphere, and we will call the conjecture that homotopy equivalent, 
closed, irreducible, aspherical 3-manifolds are homeomorphic the irreducible Borel con­
jecture. The irreducible Borel conjecture has been proven when one of the manifolds is a 
torus [127], sufficiently large [164], Seifert fibered [154], and work continues in the hyper­
bolic case [72]. The irreducible Borel conjecture for general hyperbolic 3-manifolds and 
the Borel conjecture for hyperbolic 4-manifolds remains open. 

What is the motivation for the Borel conjecture? First, from homotopy theory - any 
two aspherical complexes with isomorphic fundamental groups are homotopy equivalent. 
But the real motivation for BoreFs conjecture (made by A. Borel in a coffee room con­
versation in 1953) was rigidity theory for discrete, co-compact subgroups of Lie groups, in 
particular the then recent results of Malcev [112] on nilpotent groups and Mostow [125] on 
solvable groups. Mostow showed that if F] and F2 are discrete, co-compact subgroups of 
simply-connected solvable Lie groups G \ and G2 (necessarily homeomorphic to Euclidean 
space), and if F\ = F2, then the aspherical manifolds G\/F\ and G2IF2 are diffeomorphic. 
In the nilpotent case Malcev showed the stronger statement that there is an isomorphism 
G\ ^^ G2 which restricts to the given isomorphism F\ -^ F2. Borel then speculated that 
while group theoretic rigidity sometimes failed, topological rigidity might always hold. Of 
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course, such phenomena were known prior to the work of Malcev and Mostow. Bieber-
bach showed rigidity for crystallographic groups. On the other hand, failure of group theo­
retic rigidity was apparent from the existence of compact Riemann surfaces with the same 
genus and different conformal structures, i.e., there are discrete, co-compact subgroups of 
SL2(R) which are abstractly isomorphic, but there is no automorphism of 5L2(M) which 
carries one to the other. The theory of group theoretic rigidity was investigated further by 
Mostow [126] and Margulis [113]. The subject of topological rigidity of group theoretic 
actions (as in Mostow's work on solvable groups) was pursued further by Raymond [147] 
and his collaborators. 

We now discuss variants of the Borel conjecture. The Borel conjecture is not true in the 
smooth category: smoothing theory shows that T^ and T^ tiZ^.n > 6, are not diffeomor-
phic when U^ is an exotic sphere. The Borel conjecture is not true for open manifolds; 
there are contractible manifolds not homeomorphic to Euclidean space. This is shown by 
using the "fundamental group at infinity". In fact, Davis [57] constructed closed, aspherical 
manifolds which are not covered by Euclidean space. There are sharper forms of the Borel 
conjecture: a homotopy equivalence between closed, aspherical manifolds is homotopic 
to a homeomorphism. There is a reasonable version of the Borel conjecture for manifolds 
with boundary: a homotopy equivalence between between compact, aspherical manifolds 
which is a homeomorphism on the boundary is homotopic, relative to the boundary, to a 
homeomorphism. 

What should be said for non-free actions? One might call the equivariant Borel conjec­
ture the conjecture that if a discrete group F acts co-compactly on contractible manifolds X 
and Y so that the fixed point sets are empty for infinite subgroups of F and are contractible 
for finite subgroups of F, then X and Y are /"-homeomorphic. This is motivated by the 
fact that they have the same 7"-homotopy type. Unfortunately, the equivariant Borel con­
jecture is not true, however, one can follow the philosophy of Weinberger [172] and take 
the success and failure of the equivariant Borel conjecture in particular cases as a guiding 
light for deeper investigation. 

3.1.2. Group actions on S'̂  are linear. This is an old question, whose study breaks up into 
the cases of free and non-free actions. It seems likely that any solution requires geometric 
input. As is often the case in transformation groups on manifolds, the non-free actions 
are better understood. In particular, a key case is resolved. RA. Smith showed that for a 
prime /?, if Z//7 acts smoothly, preserving orientation on §'̂  with a non-empty fixed point 
set, then the fixed set is an embedded circle. He conjectured that the fixed set is always 
unknotted. In [124], it was proven that such an action is equivariantly diffeomorphic to a 
linear action, giving the Smith conjecture. The proof, building on the work of Thurston, 
was the joint work of many mathematicians: Bass, Gordon, Litherland, Meeks, Morgan, 
Shalen, and Yau. The linearization question for general non-free actions is yet unresolved, 
waiting for a solution for the free case, but linearization results for many non-free actions 
are given in [124], and it has been shown that any smooth action of a finite group on R^ is 
equivalent to a linear action [105]. 

The case of free actions is still open, although there has been recent progress. The con­
jecture may be generalized: a closed 3-manifold with finite fundamental group is diffeo-
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morphic to a linear spherical space form S^/G. For the trivial group, this is the Poincare 
conjecture! 

We note that it is not difficult to Hst the free, linear actions on S^; the fixed-point free 
subgroups of 50(4) are given by Hopf [80], and then it is easy to give all free representa­
tions [174]. Work of Cartan and Eilenberg [41], Milnor [119], Lee [107], Milgram [116], 
and Madsen [109] gave restrictions on the possible finite fundamental groups of closed 3-
manifolds. Hamilton [77] showed that a closed 3-manifold with a metric of positive Ricci 
curvature is diffeomorphic to a linear spherical space form. 

Actions of finite groups on S", n ^ 4, are reasonably well understood and need not be 
equivalent to linear actions. For surveys of non-free actions on S", see [124] and [153]. For 
a survey of free actions on S", see [52]. 

3.1.3. Hilbert-Smith conjecture. We take our discussion of the problem from the surveys 
of Raymond [146] and Yang [176]. We note at the outset that virtually no progress has been 
made on this conjecture during the last thirty years, so it may be the time for a fresh look. 

The conjecture states that a locally compact topological group G acting effectively on a 
connected manifold M must be a Lie group. This is known in the following cases: 

(i) G = M and the group action is by multiplication. This is the famous result of 
Montgomery and Zippen which states that a manifold which admits a continuous 
group structure must be a Lie group. 

(ii) M is a differentiable manifold and for all g G G, multiplication by g gives a smooth 
map M -> M. In this case not only is G a Lie group, but the action is also smooth. 

(iii) G is compact and every element of G is of finite order. The only such Lie groups 
are the finite groups. 

An inverse limit of finite groups is totally disconnected, hence if the inverse limit is 
infinite, this gives an example of a compact group which is not a Lie group. The two most 
obvious examples of such are the infinite p-torus Y[^/P for a prime p and the additive 
group Zp of the /7-adic integers. The infinite p-torus cannot act effectively on a manifold 
by result (iii) above. It is still an open question as to whether the p-adic integers can 
act. In fact, Yamabe has shown that every locally compact group has an open subgroup 
which is an inverse limit of Lie groups. Using this and (iii) above, one can shown if there 
is a counterexample to the Hilbert-Smith conjecture, then for some prime p, the p-adic 
integers act effectively on a manifold. Such an action would be strange indeed. If Zp acts 
effectively on an n- dimensional manifold M, then //"+^(M/Zp; Z) ^ 0. 

3.1.4. Actions on a product of spheres. This problem has been solved when the number 
of spheres is one; there is the result of Madsen, Thomas and Wall [111] which states that 
a finite group G acts freely on some sphere if and only if G has no non-cyclic abelian 
subgroups and no dihedral subgroups. When the number of spheres is greater than one, 
we discussed algebraic work in Section 2, but little geometric work has been done on 
this problem (but see [79,132], and [53]). It is evident that any finite group will act freely 
on a product of spheres. Simply take an element g e G, make it act by rotation on an 
odd sphere and then induce up this action to an action of G on a product of spheres on 
which {g) still acts freely. Taking products over all elements g eG provides a product of 
spheres with a free G-action. The main problem which remains unsettled is to show that 
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the number of spheres with any given free G-action will bound the rank of the elementary 
abelian subgroups in the group (see 2.12). On the constructive side, the following questions 
remain unanswered except in some special cases: if G is a finite group of rank k> \ (rank 
is defined in terms of the maximal r^, taken over all subgroups (IJ/PYP), does G act freely 
on a finite dimensional CW-complex homotopy equivalent to a product of k spheres? If 
so, does G act freely on a product of k spheres? In recent work Adem and Smith (see [7]) 
showed that a finite p-group P acts freely on a finite complex X :^ S" x S'̂  if and only if 
P does not contain a subgroup isomorphic to (Z//?)^ and constructed actions of rank two 
simple groups (such as A5 and 5L3(F2)) on homotopy products of two spheres. 

We should mention that certain group-theoretic conditions can be used to produce the re­
quired free group actions. For example, if G is a finite 2-group of rank k satisfying Milnor's 
condition (i.e., every element of order 2 is central) then it will act freely on (§(l^l/2)-i)^. 
The action is built by inducing up sign representations on k elements of order 2 which span 
the unique central elementary abelian subgroup in G and then taking their product. More 
generally it is possible to use this approach to construct actions of arbitrary 2-groups on 
products of spheres with maximal isotropy of rank equal to the co-rank in G of the largest 
central elementary abelian subgroup. How to build a free action on a larger product from 
this object is still unknown. In the context of representation theory the work of U. Ray 
(see [145]) is also relevant here. She proves that if G is a finite group acting freely on 
a product of spheres arising from G-representations, then the only possible non-abelian 
composition factors of G are the alternating groups A5 and A(y. 

3.1.5. Asymmetrical manifolds. This problem is not as central as the other problems, but 
it does point out how little we know about group actions on manifolds not having "obvious" 
symmetries or manifolds closely resembling such. Presumably the asymmetrical manifold 
is the generic case (but don't ask what is precisely meant by that!) In the non-simply-
connected case, asymmetrical manifolds were first constructed in [48]. 

3.2. Examples and techniques 

3.2.1. Non-linear similarity. A fascinating chapter in the study of transformation groups 
is topological versus linear similarity. Two linear transformations T ,T' :V ^^ V of a finite-
dimensional real vector space are topologically similar if T' = hTh~^ for some homeo-
morphism /?: V -^ V. Elementary arguments (see [104]) show that if T and T' are topo­
logically similar, then there are decompositions 

invariant under T and T\ respectively, such that T\yr and T'\y' have finite (and equal) 

orders and are topologically similar, while T\y^ and T^\Y^ are linearly similar. Thus one 
may as well assume that T and T^ have finite order. It was conjectured that topologically 
similar implies linearly similar, but this was disproved by Cappell and Shaneson [34] in 
1981 using techniques from surgery theory. For V =R^ and for every q > I, they con­
structed topologically similar T and T^ of order 4q which are not linearly similar. 
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This problem is connected to many others in transformation groups. One first general­
izes the problem; two finitely generated RG-modules V and V for a finite group G are 
topologically similar if there is an equivariant homeomorphism h\V —> V } (Note that if 
h is differentiable at the origin, then the differential J/ZQ '.V -^ V gives a linear similar­
ity.) The modules V and V are isomorphic to ones where G acts orthogonally; we assume 
the actions are orthogonal hereafter. Hence the actions restrict to the unit spheres. The 
G-spaces S{V) and S{V') are topologically similar if they are equivariantly homeomor-
phic. If S{V) and S{V') are topologically similar then so are V and V^ (radially extend the 
homeomorphism) and conversely, if V and V are topologically similar then 5( V 0 R) and 
^(y^ 0 R) are topologically similar (one-point compactify). Thus Cappell and Shaneson 
also constructed examples of non-linearly similar actions on spheres. If the actions on the 
spheres are free, then Whitehead-Reidemeister-De Rham torsion considerations (see the 
references in [44]), show that topologically similar actions on S{V) and S{V') are linearly 
similar. De Rham showed for general linear actions that if the spheres S{V) and SiV') are 
equivariantly smooth or PL-homeomorphic, then the representations are linearly similar, 
once again by torsion considerations (see the references in [108]). The fact that non-linear 
similarities exist implies that equivariant simple homotopy type is not a homeomorphism 
invariant. 

Much of the analysis of the non-linear similarity problem stems from the following 
observation [35]. 

LEMMA 3.1. V and V are topologically similar if and only if S{V) and S{V') are G-h-
cobordant. 

This means that there is a locally linear G-manifold W with boundary SiV) \\S{V') 
so that there are equivariant, orbit-type preserving, strong deformation retracts of W onto 
S{V) and onto S{V'). As part of the definition of G-/i-cobordant, we also require that 
there is an inverse G-/i-cobordism — W so that {—W) y^s{V') ^ ^^^ ^ ^S{V) (—^) are 
G-homeomorphic rel 9 to S{V) x / and S{V') x / , respectively. 

SKETCH OF PROOF. If /i: V ^ VMS a topological similarity, then by re-scaling one may 
assume h{D{V)) C int D(yO. Let W = D(V') - int D(y). 

Conversely if W is a G-/i-cobordism then 

•. • U {(-W) UW)U {(-W) U W) U . • • 

^ . . . U (-W) U{WU (-W)) U (-W) U . • •. 

Thus S(V) X R = S{V^) X R. By adding on a point {+00} to each to compactify one of 
the ends, we obtain our desired topological similarity. • 

^ This notion is connected with foundational issues in study of locally linear actions. If G acts locally linearly on 
a topological manifold M, then every point x € M has a neighborhood of the form GXQ^V. The RGx -module V 
is only determined up to topological similarity. 
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Construction of non-linearity similarities then proceeds using surgery theory and deli­
cate algebraic number theory. Later approaches use the theory of topological equivariant 
/z-cobordisms [35] or bounded methods [76]. 

The clearest positive result is: 

THEOREM 3.1. IfG has odd order, then topologically similar representations are linearly 
similar 

This "Odd Order Theorem" has four different proofs. The result is due independently to 
to Hsiang and Pardon [88] using stratified pseudo-isotopy theory and lower A'-groups and 
to Madsen and Rothenberg [110] using equivariant smoothing theory. Later proofs were 
given by Rothenberg and Weinberger [151] using Lipschitz analysis and by Hambleton 
and Pedersen [76] using bounded methods. 

Finally we would like to mention a related problem discussed by Shaneson in [156]. 
An G-action on a sphere E is said to be of Smith type if for all subgroups H, the fixed set 
E^ of ^ is either discrete or connected. 

Given a smooth G-action on I! of Smith type so that E^ = {x, y], are the representa­
tions of G on the tangent spaces Tx U and Ty U linearly similar? 

This question and the similarity question have the same flavor. Given an action on U 
as above, then U minus invariant open disks surrounding x and y gives a candidate for 
a G-/z-cobordism between G-spheres. Conversely, given a G-/z-cobordism W between 
G-spheres, then a candidate action on a sphere E is the end-point compactification of 

• • • U (-W) UWU (-W) U W U .. •. 

The study of the non-hnear similarity question and the Smith question run parallel; how­
ever with the Smith question there are additional considerations of smoothness. Cappell 
and Shaneson answered Smith's question in the negative, while Sanchez [152] showed that 
the answer is affirmative for actions of groups of odd order. Cappell and Shaneson modify 
Smith's question to the conjecture that the tangent space representations are topologically 
similar. Earlier, Petrie constructed two fixed-point G-actions on spheres, with a 2-point 
fixed set and non-linearly similar tangent space representations, however, which were not 
of Smith type; we discuss these actions in a later section. 

3.2.2. Propagation of group actions. Smith theory gives a connection between a group 
action and homological information at the order of the group. For example, if a group G 
acts semifreely (i.e., freely away from the fixed set) on a disk or a sphere, then Smith theory 
shows that the fixed set is a mod |G|-disk or sphere. Given a manifold with a group action, 
propagation is a systematic method for producing group actions on manifolds homologi-
cally resembling the given one. Three prototypical questions are: 

(i) Given a mod |G|-homology sphere Z and a free G-action on a sphere, does there 
exist a free G-action on i7? 

(ii) What are the fixed sets of semifree actions on disks? 
(iii) What are the fixed sets of semifree actions on spheres? 
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Many mathematicians have worked on related ideas; we refer to [36,55,170], and [56] for 
references to original sources. These ideas were pioneered by Jones [99] and were taken 
farthest by S. Weinberger and his collaborators. 

For the rest of this section, let q denote the order of the finite group G. 

DEFINITION 3.1. A G-action on Y propagates across a map / : X -> y if there exists 
a G-action on X and an equivariant map homotopic to / . 

Similarly given a G-action on X one can talk about propagation across a map / : X ̂ - Y. 

PROPOSITION 3.1. Let f :X -^ Y be a map between simply-connected CW-complexes 
with H^(f\ "L/q) = 0. Suppose G acts freely on F, trivially on //*(F; Z[l/^]). Then there 
is a complex X' and a homotopy equivalence h:X' -> X so that the G-action propagates 
across f oh. Furthermore the homotopy type ofX'jG is uniquely determined. 

We will sketch a proof of the above proposition, to illustrate the homotopy theoretic 
importance of homological triviality. For a set of primes P and a CW-complex X, there 
is a localization map X -> X(p), unique up to homotopy, inducing an isomorphism on 7i\ 
and a localization of the higher homotopy groups. For an integer w, we use the notation 
X\jn and X{n) to mean invert the primes dividing n and not dividing n, respectively. The 
following lemma is due to Weinberger and is accomplished via a plus construction. 

LEMMA 3.2. Let Z be a CW-complex with finite fundamental group G. Then G acts triv­
ially on H^{Z\Ij[\/q\^ if and only if 

Z\/q C:^ Z\/q X BG. 

PROOF OF PROPOSITION 3.1. Let X7 Ĝ  be the homotopy puUback of 

X\/g 

I 
( y / G ) ( ^ ) - ^ X ( 0 ) x 5 G . 

The propagation question can often (in fact, usually) be solved when 

f:X^Y 

is a map between manifolds with / / * ( / ; Z/^) = 0 and when the G-action is trivial on 
H^i; Z[l/^]) . However the general answer [56], phrased in terms of K- and L-theory and 
associated algebraic number theory, is too technical to state here. We give a few exam­
ples. D 

EXAMPLE 1. Let i7 be a closed, oriented manifold of dimension n,n^5,n odd, having 
the Z/^-homology of the sphere. Then any free G-action on S^ can be propagated across 
any map f: U -^ S'^ whose degree is congruent to 1 modulo q. 
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EXAMPLE 2. Let ^ ^ c Z)" be a smoothly, properly embedded mod /7-homology disk 
{p prime) so that there is a Z//7-action on the normal bundle with fixed set Q^. (This 
happens when the normal bundle admits a complex structure.) Let A/̂  be a closed tubular 
neighborhood. Then the action propagates across the inclusion dN ^^ D^ — intN. Thus 
there is a smooth, semifree Z//7-action on D^ with fixed set ^^. 

We next give three theorems giving answers to our three prototypical questions, but note 
there are many other variations of answers in the literature. 

THEOREM 3.2 (Davis-Weinberger [55]). Let G be a finite group. Let T" {n odd, n ^ 5) 
be a closed, simply-connected manifold with H*(i7"; Z/|G|) = //*(§"; Z/|G|). Then G 
acts freely on S" if and only ifG acts freely on Z", trivially on homology. 

This produces free actions on manifolds which have no apparent symmetries, as long as 
they homologically resemble the sphere. 

THEOREM 3.3 (Jones, Assadi-Browder, Weinberger [170]). Let Q^ c D"" be a proper, 
smooth embedding with n — k even and greater than 2. Then Q^ is the fixed set of a 
semifree orientation-preserving G-action on the disk if and only if 

(i) H^{Q^\Z/\G\) = 0, 
(ii) E( - iy [^K^^;Z) ] = OG^o(ZG), 

(iii) the normal bundle of Q^ admits a semifree orientation-preserving G-action with 
fixed set Q^. 

Here Ko(ZG) is the Grothendieck group of finitely generated projective ZG-modules 
modulo the subgroup generated by free modules. For a finitely generated ZG-module M 
of finite homological dimension, [M] e Ko(ZG) denotes the Euler characteristic of a pro­
jective resolution. In the above theorem, the KQ obstruction vanishes for G cyclic. 

THEOREM 3.4 (Weinberger [171]). Let T^ be a PL-locally flat submanifold 6>/S" with 
n — k even and greater than 2. Then E^ is the fixed set of a semifree orientation-
preserving G-action on §" if and only if E^ is a Z/\G\-homology sphere, S"~^~^ admits a 
free linear G-action, and certain purely algebraically describable conditions hold for the 
torsion in the homology of E. 

One condition is condition (ii) from the previous theorem, but there are further condi­
tions involving the Swan subgroup of L-theory. 

Recently Chase [43] has made some progress on propagation in the non-homologically 
trivial case, but with the presence of addition geometric hypotheses. For example, he has 
shown the following. 

THEOREM 3.5. A simply-connected mod 2 homology sphere E^^, 2k ^ 6, has a free in­
volution if and only if there exists an orientation-reversing homeomorphism L.E^^Uso 
that L o L acts unipotently on homology. 
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3.2.3. Equivariant surgery. Surgery theory is the primary tool for classification of man­
ifolds and for the study of transformation groups. It is discussed in more detail in Sec­
tion 3.3. One classically applies surgery theory to transformation groups by doing surgery 
to the free part of a group action. But in this section we briefly mention a more general 
type of surgery theory, equivariant surgery. Its development is beset with difficulties arising 
from a lack of equivariant transversality and embedding theory. The solution to the embed­
ding difficulties is to assume the "gap hypothesis" - that dimM(//) ^ 5 for all / / c G and 
dim M{K) ̂  2 dim M(//) + 1 for all ^ C / / C G, but this assumption is not very appetizing. 

Classical surgery theory studies both the uniqueness problem of classifying manifolds 
up to homeomorphism and the existence problem of determining when a space has the ho-
motopy type of a manifold, however, equivariant surgery theory bifurcates. The equivariant 
uniqueness question is studied through the Browder-Quinn isovariant theory [32], which 
is a special case of Weinberger's theory of surgery on stratified spaces [172]. The equivari­
ant surgery to study the existence question was developed by Petrie [139] and was applied 
and extended by several others, including Dovermann and Dovermann-Schultz. Two of the 
successes of Petrie's theory were one-fixed point actions on spheres and Smith equivalence 
of representations and we will discuss these results. 

A smooth G-action with one fixed point on S" gives a fixed point free action on D" 
(delete an open equivariant neighborhood of the fixed point), and such an action in turn 
gives a fixed point free action on R" (delete the boundary of the disk). So we first dis­
cuss the easier problems of constructing fixed point free actions on Euclidean space and 
the closed disk. The first examples of fixed point free actions of finite groups on Euclid­
ean space and the closed disk were due to Floyd and Floyd-Richardson, respectively, and 
examples are discussed in [25]. The characterization of groups which can so act was ac­
complished by Edmonds and Lee [68] and Oliver [128] in the two cases. The first example 
of a fixed point free action of a finite group on a sphere was due to E. Stein, and the char­
acterization of which groups can act freely without fixed points on some sphere was an 
application of equivariant surgery due to Petrie [138]. 

For a finite group G, two real representations V and W are said to be Smith equivalent 
if there is a smooth G-action on a sphere I! with fixed point set {x,y} so that V = Tx^ 
and W = TyE. The first result is along these lines is the following theorem, proven using 
elliptic differential operators, along with some algebraic number theory. 

THEOREM 3.6 (Atiyah-Bott [14], Milnor [122]). If a compact Lie group G acts smoothly 
and semifreely on a sphere with two fixed points, then the representations at the two fixed 
points are linearly isomorphic. 

Using equivariant surgery, Petrie and others constructed many examples of smooth ac­
tions of finite groups on spheres with two fixed points, but whose representations are not 
isomorphic (see [139] and the articles in [153]). 

3.3. Free actions on spheres 

The techniques we would like to introduce are the theory of the finiteness obstruction 
and ^0, simple homotopy theory and ^ i , and surgery theory. Rather than introduce these 
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topics abstractly, we would like to introduce these through a concrete geometric situation, 
the study of topological spherical space forms, manifolds whose universal cover is a sphere. 

3.3.1. Existence: homotopy theoretic techniques. The existence question is given a finite 
group G, can it act freely on S'̂ , and the uniqueness question is what is the classification of 
manifolds with fundamental group G and universal cover §". We first discuss the existence 
question. We will take n to be odd, since by the Lefschetz fixed point theorem, the only 
group which can act freely on an even-dimensional sphere is the cyclic group of order 2. 

If G acts freely on §", then by considering the spectral sequence of the fibration 
S" -^ SVG -^ BG, it is easy to showjhat //"+^ (G, Z) = Z/ |G| and that for any additive 
generator a e H""^^ (G, Z), that Ua: W(G; M) -^ ^'+«+i (G; M) is an isomorphism for 
all / and for all ZG-modules M. (H is Tate cohomology.) Thus G cannot have a subgroup 
of the form Z/p x Z//7. There is a converse. 

THEOREM 3.7 (Artin-Tate [41, Chapter XII]). Let G be a finite group. The following are 
equivalent: 

(i) All abelian subgroups are cyclic. 
(ii) Every Sylow p-subgroup is cyclic or generalized quatemionic. 

(iii) For somen, / / ' ^ + H G , Z ) = Z/|G|. 
(iv) For some n, there is an element a e H^^\G,Z), SO that Ucx:H^(G; M)—^ 

W+^+^ (G; M)for all i and for all ZG-modules M. 

A group satisfying the above conditions is said to be periodic and if H^^^{G, Z) = 
Z/ |G| then G is said to have period n + 1. The periodic groups have been classified and 
fall into six families (see, e.g., [52]). With regard to (iii) and (iv), for any finite group G 
and for any a € H^^^ (G, Z), one can show that Ua is an isomorphism if and only if a is 
an additive generator of //"+^ (G, Z) and ̂ "+^ (G, Z) = Z/|G|. 

For a group G of period n + 1, does G act freely on S'̂ ? Not in general, but it does up 
to homotopy, as we shall see shortly. More precisely, we will show there exists a Swan 
complex of dimension n, an n-dimensional CW-complex X with TTIX = G and X :^ S'̂ . It 
is polarized if one fixes the identification of the fundamental group with G and fixes the 
orientation, i.e., the homotopy class of the homotopy equivalence Z ^- S'̂ . By 2iperiodic 
projective resolution of period n + 1, we mean an exact sequence of ZG-modules 

0 -^ Z -> P^ ^ > /̂ i -> Po -> Z -> 0, 

where the Z's have trivial G-actions, and the P/'s are projective over ZG. An example of 
such is 0 -> rZ -> C*(X) ^- Z ^^ 0, where X is an n-dimensional Swan complex. By 
spHcing periodic projective resolutions using the composite PQ ^^ Z ^- P„, one can form 
a projective ZG-resolution of Z, or a complete resolution in the sense of Tate cohomology. 
It follows that G has period « -h 1. In fact, by mapping a projective resolution of Z to a 
periodic projective resolution, one defines the /:-invariant k G H^^^ ( G , Z ) of the periodic 
projective resolution. Cup product with k induces periodicity, and hence /: is a generator 
of the cyclic group H^^^ (G, Z). The /:-invariant determines the polarized homotopy type 
of a Swan complex and the chain homotopy type of a projective periodic resolution. The 
following theorem is due to Swan [161]. 
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THEOREM 3.8. The following are equivalent: 
(i) G has period n + 1. 

(ii) There is a projective periodic resolution G of period n -\- \, where the Pi's are 
finitely generated, 

(iii) There is a projective periodic resolution G of period n + 1, where the Pi's are free. 
(iv) There is an n-dimensional CW-complex X with 7T\X = G and X ~ S'̂ . 

Furthermore given any generator a G H^~^\G, 7J), one can construct the resolutions in 
(ii) and (iii) and the complex in (iv) with k-invariant a. 

DISCUSSION OF PROOF. The implication (i) ^ (ii) is the most difficult, although purely 
homological. We refer the reader to [167]. Here Wall shows that given a generator a e 
H'^~^^(G,Z) and an exact sequence 

with the Pi's projective, one can find a periodic projective resolution 

with a as /:-invariant. 
For (ii) => (iii), given a periodic resolution with the Pi's finitely generated projective, add 

on Qo —> Qo (in degrees 1 and 0) where FQ = flo 0 Qo is free. Continuing inductively, 
one obtains 

0-^Z^ P^-^ Fn-\ -^ > Fo -> Z -> 0 

with the Fi 's finitely generated free. Choose a complement Q'^ so that F^ 0 Q^ = ^n is 
free. Next we use the Eilenberg swindle 

Pn e (Fn^ = P'n® {Qn ^ P'n) 0 ( Q ^ 0 P^) 0 ' • ' 

= {Pn®Q'n)®{Pn®Q'n)®-" = iPnr^ 

Thus we can add on (F^)^ —> (F^)^ (in degrees n and n — 1) to the above periodic 
projective resolution to obtain a periodic free resolution. 

(iii) =1̂  (i) and (iv) ^ (iii) we have already discussed. 
It remains to show ((i), (ii) and (iii)) ^ (iv). Build a K(G, 1) and let Y be its (n — 1)-

skeleton. Then for any generator a e H^^^ (G, Z), we may find a periodic free resolution 

O ^ Z ^ F n - ^ Fn-l^Cn-\(Y)^'"^ Co(Y) ^ Z ^ 0 

with /:-invariant a. Then lei X = Y U (\/ S^~^) U ([J Cn) where there is a sphere for each 
ZG-basis element of Fn-\ and an n-cell for each ZG-basis element of Fn. The «-cells are 
attached by using the Hurewicz isomorphism TZn-xiY v (V S"~^)) = d(Fn). • 
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The natural question now is whether the Pi's in a periodic projective resolution can be 
taken to be simultaneously free and finitely generated, or, equivalently, whether the Swan 
complex can be taken to be finite. The answer to this question is very subtle, and historically 
was one of the motivations for algebraic ^-theory. 

Let use review the construction of the Swan complex X in the proof of Theorem 3.8. 
Starting with Y = K{G, 1)^~^ one can build a periodic projective resolution 

o^z^p,-^F,_iec^_,(r)^.. .^Co(F)^z^o, 

where 7 is a finite CW-complex of dimension « — 1, F^_i is finitely generated free, and 
Pn is finitely generated projective. If Pn were stably free (i.e., the direct sum of P^ and a 
f.g. free module is free), then we don't need the Eilenberg swindle; we could add on the 
free module in dimensions n and n — \ and construct (via the Hurewicz theorem) a finite 
Swan complex. There is a converse. 

LEMMA 3.3. Let [Qn ^^ > Qo} cind {2^ —> • • • —> QQ) ^^ chain homotopy equiva­
lent chain complexes of projective modules over a ring R. Then 

Qn e e^-i e Qn-2 e • • • = e; e Qn-\ e Q'n-i e • • • . 

COROLLARY 3.1. The Swan complex X has the homotopy type of a finite complex if and 
only if Pn is stably free. 

PROOF OF LEMMA 3.3. First prove it when one complex is zero by induction on n. Next 
prove it in general by applying the acyclic case to the algebraic mapping cone of the chain 
homotopy equivalence. D 

This result leads to the notion of the reduced projective class group KQ{R) of a ring R. 
Elements are represented by [P] where P is a finitely generated projective P-module. 
Here [P] = [Q] if and only if P 0 P^ = 2 0 P" for some m and n. This is a classical 
notion; if P is a Dedekind domain, then KQ{R) can be identified with the ideal class group 
of P (see [123]). The above corollary shows that a Swan complex X defines an element 
[X] G Ko(ZG) (represented by P„) which vanishes if and only if X has the homotopy type 
of a finite complex. 

Next we analyze what happens to the finiteness obstruction if the /:-invariant is changed. 
Suppose X^ and X are Swan complexes. Then there is a map X̂  ^- X of degree J, and 
the /:-invariants satisfy k^ = dk, with (d,\G\) = I. Define Pj = ker(£), where s: ZG -^ 
Z/d is defined by s(^ngg) = ^ng. Then Pj is projective (in fact, Pj 0 Pe is free if 
de=l (mod |G|)). The finiteness obstructions satisfy 

[ r ] = [X] + [Pj]. 

Swan [161] defined what is now called the Swan subgroup of Ko(ZG) as T(G) = {[Pj] | 
(d, \G\) = 1}. For a group G having period n + 1, one defines the Swan finiteness ob­
struction an-\-\ (G) G Ko(ZG)/T(G) by setting a^+i (G) = [X] for any Swan complex X 
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of dimension n and fundamental group G. Then a„+i (G) = 0 if and only if there exists a 
finite Swan complex of dimension n and fundamental group G. 

Here are three fascinating examples (see [52] for more details), 
(i) (Swan [161]) There is a finite 3-dimensional Swan complex X for the dihedral 

group of order 6 (so 0^4(^5) = 0). By Milnor [119], X does not have the homotopy 
type of a manifold, 

(i) (Swan [161], Martinet [114]) There is a 3-dimensional Swan complex with funda­
mental group the quaternion group of order 8 which does not have the homotopy 
type of a finite complex, and hence does not have the homotopy type of a closed 
manifold. (There is a 3-dimensional quaternionic space form, thus cr4(Qs) = 0 but 

(iii) (Davis [50], Milgram [116]) Let G = Z/3 xj Q16 be a semidirect product where 
the element of order 8 in the quaternion group of order 16 acts non-trivially on Z/3. 
G has period 4 but there is no finite 3-dimensional Swan complex, and hence no 
closed 3-manifold with fundamental group G (cf. [107]) (and so 0x4(G) 7̂  0). The 
above is the smallest group satisfying this and is due to Davis; Milgram was the 
first to find examples with non-zero finiteness obstruction. 

Given the above one might wonder for which periodic groups there is actually a finite 
Swan complex, and what its dimension is. From the algebraic reduction outlined above 
it follows that if H*(G, Z) has period J, then there exists an integer M such that G acts 
freely on a (kd — l)-dimensional homotopy sphere. However it turns out that it suffices 
to take k = 2 (see [167, Corollary 12.6]). The proof of this fact is computational and goes 
through the list of periodic groups. Hence the minimal group of period four mentioned 
above which does not act freely on a homotopy 3-sphere will indeed act freely on a finite 
homotopy 7-sphere. The work of Swan was generalized by Wall to the theory of the Wall 
finiteness obstruction, which we now describe. 

DEFINITION 3.2. A CW-complex X is finitely dominated if there is a finite CW-complex 
X f and maps i :X -^ X f and r : X / ^> X so that r o / ^ Idx . 

This is similar to saying a module is finitely generated projective if and only if it is the 
retract of a finitely generated free module. 

LEMMA 3.4. A Swan complex X is finitely dominated. 

PROOF. By the proof of Theorem 3.8 we may assume X is homotopy equivalent to Z = 
F U (V S"~') U (IJ ^") where 7 is a finite {n — 1)-dimensional CW-complex. Furthermore 

C^(Z) = F^ ePn^ F^ e Cn^xiY) ^ . . . ^ Co(F), 

where F^ = P« 0 Q^ is a finitely generated free module and 

O^Z-^ Pn-^Cn-\{Y)-^ > Co(?) ^ Z ^ 0 
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is a periodic projective resolution. Then construct Xf = Y\J(\Je^) with 

C*(X/) = P^^QJ-^ Cn-x (7) ^ . . . ^ Co(?), 

using the Hurewicz isomorphism nn-\Y = (9 0 0)(P„ 0 GAZ) to attach the n-cells. There 
are obvious chain maps /* : C^iX) -^ C^(Xf) and r* : C^(Xf) -^ C^(X) so that r̂ c o i^ is 
chain homotopic to the identity. Use the relative Hurewicz theorem to extend the inclusions 
Y ^^ Xf and F ^- X to the desired maps i'.Z ^^ Xf and r'.Xf^^Z. D 

Wall [165] generalized this. 

PROPOSITION 3.2. A connected CW-complex X is finitely dominated if and only ifn\ X is 
finitely presented and C^{X) is chain homotopy equivalent to a complex Pk ^^ - • ^^ PQ 
of finitely generated projective Z[7t\ X]-modules. 

DEFINITION 3.3. For a finitely dominated connected CW-complex X, the Wallfiniteness 
obstruction [X] G Ko{Zir\X) is defined by [X] = i:(-iy[Pi] where C*(X) is chain ho­
motopy equivalent to {P^ —> • • -^ Po}. a chain complex of finitely generated projective 
Z[7riX]-modules. 

By Lemma 3.3, [X] is well-defined. 

THEOREM 3.9 (Wall [165]). Let X be a finitely dominated connected CW-complex. Then 
[X] = 0 if and only if X is homotopy equivalent to a finite CW-complex. 

3.3.2. Uniqueness: homotopy theoretic techniques. We now turn to the uniqueness ques­
tion. The general question is the classification up to homeomorphism of manifolds cov­
ered by a sphere; we consider only a very special case, the classification of classical 
lens spaces L = L(k; i\,.. .Jn)- For references on this material see Cohen [44] or Mil-
nor [122]. Recall that L has fundamental group Z/k, its universal cover is S^"~^ C C , 
and the integers i\,.. .Jn are relatively prime to k; they give the rotations in the com­
plex factors of C^. It is easy to see that the map [z\,..., Zn] ^-^ [z^ , . . . , Zn] gives a map 
L(k', 1 , . . . , 1) ^- L(k; i\,.. .Jn) of degree Yll=\ ^j- The following proposition follows 
from the earlier discussion of /:-invariants. 

PROPOSITION 3.3. Two lens spaces L(k; / i , . . . , /„) and L{k\ / J , . . . , /^) are homotopy 
equivalent if and only ifi\ -- -i^ = :ha^i^^ ' "^n (niod k) for some integer a. 

The plus or minus corresponds with the choice of orientation and the factor of a^ corre­
sponds with the identification of the fundamental group of the lens space with Z/k. 

There are some obvious diffeomorphisms between lens spaces. For example, if 
(i\,.. .,in) considered modulo A: is a permutation of ( / j , . . . , /^), then permuting the com­
plex coordinates gives a diffeomorphism from L(k; i\,.. .Jn) to L(A:; / j , . . . , /^). Sim­
ilarly, mapping [z\,.. .,Zj,... ,Zn] ^-^ [^i, • • •, Zy,.. . , z«] gives a diffeomorphism from 
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L(k; / i , . . . , /y , . . . , in) to L(k; i\,..., —ij,..., in)- Finally, if a is relatively prime to k, 
the map Ui, •. . , z«] i-^ [^^z\,.. •, ^^Zn] gives a diffeomorphism from L(^; / i , . . . , /„) to 
L(k;ai\,.. .,ain)' Lens spaces exhibit rigidity; all diffeomorphisms are generated by the 
above three types. 

THEOREM 3.10. Let L(k; i\,.. .,in) cind L' = L(/:; / j , . . . , /^) be two lens spaces. The 
following are equivalent. 

(i) L and L' are isometric, where they are given the Riemannian metrics coming from 
being covered by the round sphere. 

(ii) L and L' are diffeomorphic. 
(iii) L and V are homeomorphic. 
(iv) L and L' have the same simple homotopy type. 
(v) There are numbers E\, ... ,En ^{^^—^\ cind a number a relatively prime to k, so 

that (i\,... ,in) Is a permutation of(a6\i\,...,a£nin) modulo k. 

The implications (v) => (i), (i) =^ (ii), and (ii) => (iii) are easy, and (iii) =^ (iv) follows 
from a theorem of Chapman which states that homeomorphic finite CW-complexes have 
the same simple homotopy type. To proceed farther, one must introduce the torsion and the 
Whitehead group.For a ring R, embed GLn(R) in GL^+i {R) by A\-> (Q^). Let GL(R) = 
U ^ , G L , ( / ? ) . Define 

Ki (R) = GL(R)/[GL(R), GL(R)] 

and ^1 (R) = K\ (R)/(-l) where (-1) G GL\ (R). If /? is a commutative ring, the deter­
minant gives a split surjection det: K\ (R) —> /?*, and if /? is a field, this is an isomorphism. 

A based R-module is a free /?-module with a specified basis. A chain complex C over 
a ring R is based if each C/ is bsiscd, finite if 0 - C/ is a finitely generated /^-module, and 
acyclic if the its homology is zero. We now assume, for the sake of simplicity of exposition, 
that R has the property that R^ = R^ implies that n =m (e.g., a group ring ZTT has this 
property since it maps epimorphically to Z). An isomorphism f :M -^^ M' between based 
/^-modules determines an element [/] e K\ (R). Given an chain isomorphism f .C ^^ C 
between finite, based chain complexes, define the torsion of f by 

T{f) = WUi'.Ci^C[]^-^^' eK^iR). 

We next indicate the definition of the torsion r(C) of a finite, based, acyclic chain com­
plex C. Implicit in the proof of Lemma 3.3 is an algorithm for computing it. 

PROPOSITION 3.4. Let C be the class of finite, acyclic, based chain complexes over R. 
Then there is a unique map C^- ^ i ( ^ ) , C \-^ f^iC) satisfying the following axioms: 

(i) If f \C ^> C' is a chain isomorphism where C, C' G C, then T(C') = r ( / ) r ( C ) . 
(ii) r ( C e C O = r(C)r(CO. 

(iii) T(0 ^ C n ^ Cn-X ^ 0) = (-1)"-^ [J]. 
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We use this to define the torsion of a homotopy equivalence. If / : C -^ CMs a chain 
homotopy equivalence between finite, based /^-chain complexes, define r ( / ) = r (C( / ) ) 
where C(f) is the algebraic mapping cone off. The reader should check that when / is a 
chain isomorphism, our two definitions of r ( / ) agree. With somewhat more difficulty, the 
reader can verify that axiom 1 above holds for a chain homotopy equivalence f :C ^^ C 
between acyclic, finite, based complexes. 

Let X be a finite, connected CW-complex with fundamental group n. For every cell 
in X, choose a cell in the universal cover X lying above it, and an orientation for that 
cell. Then C(X) is a finite, based ZTT-chain complex. Accounting for the ambiguity in 
the choice of basis, define the Whitehead group Wh{7T) = K\(Ijn)/[-^g]g^n where {±^} 
refers to the image of a one-by-one matrix. For a homotopy equivalence h:X ^^ F, where 
X and Y are finite, connected CW-complexes with fundamental group TZ , define the tor­
sion ofh, r(h) G Wh(7T) by T(h) = r(h: C(X) -^ C(Y)). A homotopy equivalence h is 
a simple homotopy equivalence if TQI) = 0. There is a geometric interpretation: /i is a 
simple homotopy equivalence if and only if X can be obtained from Y via a sequence of 
elementary expansions and collapses; see [44]. A compact manifold has a canonical simple 
homotopy type; for smooth manifolds this follows from triangulating the manifold [122] 
and for topological manifolds this is more difficult [102]. 

Given a homotopy equivalence between lens spaces 

h:L = L(k; i\,...,/«) —> L' = L{k\i[,...,/^) 

it is possible to compute its torsion in terms of ( / | , . . . , /^) and (/J,. . . , /^). We will do 
something technically easier, which still leads to a proof of of Theorem 3.10. Let T elj/k 
denote the generator used to define the lens spaces and let i7 = 1 + T + • • • + r^~' G 
Z[Z//:] denote the norm element. There is a decomposition of rings 

Q[Z/^] = Q x A, 

where yl = Q[Z/J^]/i;. 

DEFINITION 3.4. If L is a finite complex with fundamental group Z/k = {T), so that T 
acts trivially on H^{L\ Q), define the Reidemeister torsion 

A(L) = r(C(L; A)) G KX {A)/{±T}. 

Finally, we can outline the proof of (iv) implies (v) in Theorem 3.10. Let h:L ^^ L' he 
a simple homotopy equivalence of lens spaces. Then 

r(C(L; A)) = r(C(L^; A)) e Ki(A)/{±T}. 

We now wish to compute both sides. Implicit in the definition of a lens space is an identifi­
cation of the fundamental group with Z//:. By perhaps replacing V = L{k\i[,.. .,V^) by 
the diffeomorphic space L(k; ai[,.. .,ai^^), wc assume that h induces the identity on the 
fundamental group. 
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For L(k\ i\)) = Ŝ  it is easy to see that 

C(L{k\ /i)) = (Z[Z/J^] '^''~\ ZVL/k-]), 

where i\j\ = 1 (mod A:). The decomposition 

L = §^^"^ = § U . •. * §̂  = L(/:; /i) * • • • * Z(/:; /;,) 

gives L a CW-structure, and 

C(L) = Z[Z/k] '^ ' '"^ Z[Z//:] - ^ • • • 

- ^ ^ Z[Z/)^] - ^ Z[Z/J^] - ^ ^ Z[Z/)t]. 

After tensoring with A the complex is acycHc and • Z is zero, so the other maps must be 
isomorphisms, and 

r(C(L;^)) = []g^^-l. 

To complete the argument, some (not so sophisticated) algebraic number theory comes 
in. A = Y[ci\k Q[f^] where the product is over all divisor of n greater than 1, and ^j is 
a primitive dih root of 1. One then considers the quotient of the torsion of L and the 
torsion of L̂  as units in the corresponding number rings, and the Franz independence 
lemma (whose proof is similar to that of the Dirichlet unit theorem) says that the only 
way these units can be roots of unity is if the conditions of part (v) of Theorem 3.10 are 
satisfied. This gives the classification of classical lens spaces. 

3.3.3. General remarks. The reason why we are spending so much time on spherical 
space forms is that this problem represents a paradigm for the construction and classifi­
cation of finite group actions on manifolds. The existence discussion above moved from 
algebraic information to geometric information at the level of CW-complexes; this pas­
sage is accomplished via the Hurewicz theorem. The finiteness obstruction in KQ measures 
when a finite CW-complex can be obtained. The torsion in ^ i allows the discussion of 
simple homotopy theory and allows the classification of classical lens spaces. It also plays 
a key role in transformation groups via the ^--cobordism theorem. 

What is missing? Two things - at least - the transition to non-free actions and the tran­
sition to manifold theory. The generalization of the homotopy theoretic techniques to the 
non-free equivariant case is in reasonable shape. For example, de Rham used torsion to 
classify linear but non-free, actions of finite groups on spheres. The general theory of the 
equivariant finiteness obstruction, equivariant simple homotopy theory, and the equivariant 
^-cobordism theorem is worked out (see [108]) at least for the PL and smooth cases; these 
issues for locally linear actions on topological manifolds are still active areas of current 
research. The passage from algebraic information to geometric information at the level of 
CW-complexes in the non-free case was studied in [128] and [12]. 
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The second missing ingredient in our discussion of the space form problem is the tran­
sition to manifolds. We have not yet addressed the existence question of when a Swan 
complex has the homotopy type of a manifold or the uniqueness question of classifying 
all manifolds within a homotopy type. Two aspects of these questions have been resolved 
nicely: the Madsen, Thomas and Wall result which gives the class of finite groups which 
arise as fundamental groups of manifolds covered by the sphere and Wall classification of 
fake lens spaces (i.e., manifolds homotopy equivalent to classical lens spaces) of dimen­
sion greater than five. Results on manifolds are usually accomplished via surgery theory 
and we discuss this next. 

The systematic method for classification of manifolds is called surgery. The idea is 
that surgery theory reduces classification questions to a mix of algebraic topology and 
the algebra of quadratic forms. Some of the ingredients necessary for this reduction are 
handlebody theory, bundle theory, transversality, and embedding theorems. The embedding 
theorems make the theory most effective when the dimension of the manifold is ^ 4, where 
there is sufficient room to mimic algebraic manipulations by geometric embeddings. Both 
transversality and embedding theory provide "flies in the ointment" for the development of 
equivariant surgery. Hence, we concentrate on classical surgery theory. 

As far as references for surgery theory, to the great detriment of the subject, there is no 
modem account. The most comprehensive is the book of Wall [166]. We refer the reader 
to the paper of Milnor [ 120] and the book of Browder [27] for geometric background. For 
background on classifying spaces and bundle theory see Milgram and Madsen [117]. For 
information specific to spherical space forms, see Davis and Milgram [52], Wall [166] and 
Madsen, Thomas and Wall [111]. Modern aspects of surgery theory can be found in the 
books of Ranicki [143] and Weinberger [172], however they were not written with classical 
surgery theory as their main focus. 

3.3.4. Existence of space forms. When does a finite group G act freely on §" ? As above, 
one must have H"^\G, Z ) = Z/ |G|. Then there exists a Swan complex, that is, a CW-
complex X with dim X = n, 7t\{X) = G, and X ^ §". In fact, the /:-invariant gives a 
one-to-one correspondence between polarized homotopy types and additive generators of 
//'^^' (G, Z). Any Swan complex is finitely dominated, and the finiteness obstruction [X] e 
KQ(LG) vanishes if and only if X has the homotopy type of a finite CW-complex. This can 
be effectively computed, [167,116,50], although the algebraic number theory can be quite 
involved. One qualitative result is the previously mentioned fact that if G is a group of 
period « -f- 1, there is always a finite Swan complex of dimension 2n -\-1. 

To see when a finite Swan complex has the homotopy type of a manifold, one uses 
surgery theory, which provides necessary and sufficient conditions in dimensions greater 
than 4, and provides necessary conditions in all dimensions. First note that X is a 
Poincare complex, i.e., X is a finite complex and there exists a class [X] G Hn(X) so 
that n t r [ X ] : W(X; ZG) -^ Hn-i(X; ZG) is an isomorphism for all /. 

The first obstruction to a Poincare complex having the homotopy type of a manifold is 
the existence of a lift of the Spivak normal bundle to BTOP. The Spivak normal bundle is 
the homotopy theoretic analogue of the stable normal bundle of a manifold and is defined 
as follows. Embed X in R^ {K large) and let A (̂X) be a closed regular neighborhood. 
Convert the map dN(X) ^- X to a fibration p:E -^ X; then it is a formal consequence 
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of Poincare duality that the fiber has the homotopy type of g^-^-^ (see [27]). Fibrations 
with fibers having the homotopy type of a sphere are called spherical fibrations. Spherical 
fibrations over X are classified by [X, BG] where G = colimitGA: is the stabilization of the 
topological monoid Gk of self-homotopy equivalences of S^~K The map p: E -> X and 
its classifying map X -^ BG are both referred to as the Spivak normal bundle of X. The 
next step is to see whether the Spivak bundle lifts to an honest topological sphere bundle, 
classified by a map X -^ BTOP, and, if so, in how many ways. The obstruction to lifting the 
Spivak bundle to BTOP is an element in [X, B(G/TOP)]. For a general Poincare complex 
this might be non-trivial, but for a finite Swan complex it vanishes. The argument is as fol­
lows. The space B(G/TOP) is an infinite loop space (i.e., the 0-space of an I2-spectrum), 
and hence the abeUan group [X, B(G/TOP)] injects into ©^[X, B(G/TOP)\p) which 
injects into 0 „ [ X / G p , B{G/TOP)\p), where Gp is a p-Sylow subgroup of G and the 
second injection is via the transfer map. Now X/Gp has the homotopy type of a lens space 
or a quatemionic space form, so the Spivak bundle map to B(G/TOP) vanishes. 

If the Spivak bundle v:X ^^ BG of a Poincare complex X lifts to y: X -^ BTOP, then 
one can apply a transversality construction as a first step in the attempt to construct a 
manifold having the homotopy type of X. 

DEFINITION 3.5. A Thorn invariant for X is an element a e 7rn-\-k(T(v)) for some lift 
v:X -> BTOP(k) of the Spivak bundle y, so that h(a)nU = [X] where h is the Hurewicz 
map and U G H^(T(V)) is the Thom class. 

Given any lift y, Thom invariants always exist (see [27]) and are essentially given by 
collapsing out the complement of a regular neighborhood of X in S"+^. Given a Thom 
invariant a : S^^^ -^ T(v), one may take the complement of the 0-section X to obtain a 
degree one map 

/ : M = a - ^ X ) ^ Z , 

where M is a closed manifold. Furthermore, transversality gives a trivialization of /*(y) 0 
TM ' Hence we call the induced map 

( / , / ) : ( M , y M ) - > ( X , y ) 

a degree one normal map, where VM is the stable normal bundle of M (equipped with a 
trivialization of VM © TM)- For such a map, if [p] e ker(7r/ M -^ jti X) is represented by an 
embedding fi'.S^ -^ X one may use the normal data / to thicken fi up to an embedding 
§' X D^~^ -^ M and perform surgery to obtain 

M^ = ( M - S ' xintD'^-^')Ug/^gn-/-i (D '̂+^ xS'^-'"^) 

and a degree one normal map (g, g): (M^ y^O -^ (X, v). (In effect you are killing the 
homotopy class [P], see [120].) The equivalence relation generated by surgery is called 
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normal bordism and the set of equivalence classes is denoted N(X). The main theorem of 
surgery theory is that there is the surgery obstruction map 

0:N(X)^ LniZniX). 

Ln(1j7t\X) is a algebraically defined abeUan group associated to the group ring, closely 
related to quadratic forms over the group ring. If (/, / ) is normally bordant to a homotopy 
equivalence, then 0(f, f) = 0, and conversely, for n > 4, if 0(f, f) = 0, then (/, / ) is 
normally bordant to a homotopy equivalence. 

An application to the spherical space form problem is given by: 

THEOREM 3.11 (Petrie). Let G = Z7 x 7 Z3 Z?̂  the semidirect product where Z3 acts non-
trivially on Z7. Then G acts freely on S ,̂ but does not act freely and linearly. 

PROOF. It is an easy computation to show that G cannot act linearly and freely on S^. 
The Lyndon-Hochschild-Serre spectral sequence shows that H^(G, Z) = Z/21, so G has 
period 6 and there is a Swan complex of dimension 5. Since T(G) = KoiZG) (see [167, 
pp. 545-546]), there is a Swan complex with a zero finiteness obstruction, hence there 
is a finite Swan complex X of dimension 5 and fundamental group G. We have already 
observed that the Spivak bundle of X hfts to BTOP, so there is a degree one normal map 

( / , / ) : ( M , y M ) ^ ( X , $ ) . 

Now since G is odd order and n is odd, L„ (ZG) = 0 (see [18]), one may complete surgery 
to a homotopy equivalence M' ^^ X.By the generalized Poincare conjecture, M^ = S^/G 
for a free G-action of M\ (Note: a similar analysis gives a free smooth action on §^.) D 

REMARK 3.1. Petrie [137] proved his theorem in a much more explicit and elementary 
manner. He noted that there is a free G-action on the Brieskom variety 

U^ = {(ZUZ2,Z3,Z4) eCU z] -^ zl-^ z]-^ zl=0} nS\ 

This is only a rational homology sphere, but Petrie shows how to perform surgery to make 
it into a sphere. Another application of this sort of technique is given in [54]. 

The analysis of the problem of determining when a group G of period n > 5 can act 
freely on a sphere is much more difficult. One must compute surgery obstructions for all 
A:-invariants and normal invariants. We state the beautiful result of Madsen, Thomas and 
Wall. 

DEFINITION 3.6. Let n be a positive integer. A group G satisfies the n-condition if every 
subgroup of order n is cycHc. 

THEOREM 3.12 (Madsen, Thomas and Wall [111]). A finite group G acts freely on some 
sphere if and only ifG satisfies the p^- and Ip-conditions for all primes p. 
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In contrast, Wolf [174] analyzed the free, linear actions on spheres: 

THEOREM 3.13. A finite group G acts freely and linearly on some sphere if and only if 
the following two statements are satisfied. 

(i) G satisfies the pq-condition for all primes p and q. 
(ii) G has no subgroup isomorphic to SL2(¥p) for a prime p > 5. 

3.3.5. Uniqueness of space forms. Surgery theory also attacks the uniqueness question 
- classifying manifolds within a homotopy type. It was motivated by the proof of the 
generalized Poincare conjecture and the Kervaire-Milnor classification of exotic spheres. 
Two great successes of surgery theory are various cases of the Borel conjecture (especially 
that there are no fake tori of dimension greater than 3), and the classification of fake lens 
spaces due to Browder, Petrie, and Wall. 

DEFINITION 3.7. A fake lens space is a space with covered by the sphere with cyclic 
fundamental group. 

Every fake lens space is homotopy equivalent to a lens space. 

THEOREM 3.14 ([166]). Two fake lens spaces with odd order fundamental group and 
dimension greater than 3 are homeomorphic if and only if they have the same Reidemeister 
torsion and p-invariants. 

Furthermore, Wall shows exactly which invariants are realized. Reidemeister torsion was 
defined in Section 3.3.2. The p-invariant is defined as follows. 

DEFINITION 3.8. For a closed, oriented, odd-dimensional manifold M with finite funda­
mental group G, define the p-invariant 

p(M) = - sign(G, W) e Ko(CG) 0 Q, 
s 

where s disjoint copies of the universal cover M bound a compact, oriented, free G-mani­
fold W. 

Given an action of a finite group G on a compact, oriented, even-dimensional man­
ifold X, Atiyah and Singer [17, pp. 273-274], defined the G-signature sign(G, X) e 
Ko(CG). We resist the urge to state the definition and to indicate the many applications in 
transformation groups of the Atiyah-Singer G-signature theorem. 

3.4. Final remarks 

In this paper we have attempted to cover the main ideas and examples which have made the 
subject of transformation groups an important and highly developed subject in topology. 
There are a number of important topics which we have not discussed here, such as actions 
of compact Lie groups, equivariant bordism, group actions on 4-manifolds, group actions 
on knot complements, the Nielsen Realization problem, etc. In the bibliography we have 
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listed a number of references on these topics, so that hopefully the reader can access the 
original sources. 

The background required to work on any remaining questions may require a combination 
of skills in manifold theory, group cohomology, algebraic K- and L-theory, homotopy 
theory and differential geometry. However daunting this may be, it is apparent that much 
remains to be understood about topological symmetries and we hope that the reader of this 
paper will take it upon himself to explore this topic further. 
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