
Advances in Intelligent Systems and Computing 717

Paolo Ciancarini
Stanislav Litvinov
Angelo Messina
Alberto Sillitti
Giancarlo Succi Editors

Proceedings of
5th International
Conference in
Software Engineering
for Defence
Applications
SEDA 2016

Advances in Intelligent Systems and Computing

Volume 717

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Paolo Ciancarini • Stanislav Litvinov
Angelo Messina • Alberto Sillitti
Giancarlo Succi
Editors

Proceedings of 5th
International Conference
in Software Engineering
for Defence Applications
SEDA 2016

123

Editors
Paolo Ciancarini
University of Bologna
Bologna
Italy

Stanislav Litvinov
Innopolis University
Innopolis
Russia

Angelo Messina
Innopolis University
Innopolis
Russia

and

Defense & Security Software
Engineers Association

Rome
Italy

Alberto Sillitti
Innopolis University
Innopolis
Russia

Giancarlo Succi
Innopolis University
Innopolis
Russia

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-70577-4 ISBN 978-3-319-70578-1 (eBook)
https://doi.org/10.1007/978-3-319-70578-1

Library of Congress Control Number: 2017959172

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The military world has always shown great interest in the evolution of software and
in the way it has been produced through the years. The first standard for software
quality was originated by the US DOD (2167A and 498) to demonstrate the need
for this particular user to implement repeatable and controllable processes to pro-
duce software to be used in high-reliability applications. Military systems rely more
and more on software than older systems did. For example, the percentage of
avionics specification requirements involving software control has risen from
approximately 8% of the F-4 in 1960 to 45% of the F-16 in 1982, 80% of the F-22
in 2000, and 90% of the F-35 in 2006. This reliance on software and its reliability is
now the most important aspect of military systems. The area of application includes
mission data systems, radars/sensors, flight/engine controls, communications,
mission planning/execution, weapons deployment, test infrastructure, program
lifecycle management systems, software integration laboratories, battle laboratories,
and centers of excellence. Even if it is slightly less significant, the same scenario
applies to the land component of the armed forces. Software is now embedded in all
the platforms used in operations, starting from the wearable computers of the
dismounted soldier up to various levels of command and control, and every detail of
modern operations relies on the correct behavior of some software product. Many
of the mentioned criticalities are shared with other public security sectors such as
the police, the firefighters, and the public health system. The rising awareness of the
critical aspects of the described software diffusion convinced the Italian Army
General Staff that a moment of reflection and discussion was needed and with the
help of the universities, the SEDA conference cycle was started. For the third
conference SEDA 2014, it was decided to shift the focus of the event slightly away
from the traditional approach to look at innovative software engineering.
Considering the title: software engineering for defense application, this time, the
emphasis was deliberately put on the “defense application” part. For the first time,
papers not strictly connected to the “pure” concept of software engineering, were
accepted together with others that went deep into the heart of this science. The
reasons for this change were first of all the need for this event to evolve and widen
its horizon and secondly the need to find more opportunities for the evolution of

v

military capabilities. In a moment of economic difficulty, it is of paramount
importance to find new ways to acquire capabilities at a lower level of funding using
innovation as a facilitator. It was deemed very important, in a period of scarce
resources to look ahead and leverage from dual use and commercial technologies.
Software is, as said, a very pervasive entity and is almost everywhere, even in those
areas where it is not explicitly quoted. A mention was made to the changes in the
area of software engineering experienced in the Italian Army and the starting of a
new methodology which would then become “Italian Army Agile” and then
DSSEA® iAgile.

SEDA 2015 pointed out that in the commercial world “Agile” software pro-
duction methods have emerged as the industry’s preferred choice for innovative
software manufacturing as pointed out in the Chaos Report 2015–2016 by the
Standish Group. Agile practices in the mission critical and military arena seem to
have received a strong motivation to be adopted in line with the objectives the USA
DoD is trying to achieve with the reforms directed by Congress and DoD
Acquisition Executives. DoD Instruction 5000.02 (December 2013) heavily
emphasizes tailoring program structures and acquisition processes to the program
characteristics. At the same time, in May 2013, the Italian Army started an effort to
solve the problem of the volatility of the user requirement that is at the base of the
software development process with the project LC2Evo.

The results and outcome of the SEDA 2015 conference are very well presented
in the post proceedings.

The LC2Evo results and analysis marked the pace of the 5th SEDA 2016
conference, the first one under coordination of DSSEA.

The acronym stands for Land Command and Control Evolution and this is a
successful effort the Italian Army General Staff made to device a features and
technology demonstrator that could help identifying a way ahead for the future
of the Command and Control support software.

The main scope, related to the software engineering paradigm change in the effort,
was to demonstrate that a credible, innovative and effective software development
methodology could be applied to complex user domains even in the case of rapidly
changing user requirements. The software project was embedded in a more ambitious
and global effort in the frame of the Italian Defence procurement innovations process
aimed at implementing the Concept Development & Experimentation (NATO
CD&E) which was initially started by the Centro Innovazione Difesa (CID).

The Military operations in Iraq and Afghanistan had clearly demonstrated the
operating scenario was changing an a few months cycle and the most required
characteristic for a C2 system by the user was flexibility. The possibility of adapting
the software functions to an asymmetric dynamically changing environment seemed
to be largely incompatible with the linear development lifecycle normally used for
mission critical software in the Defence and Security area. The major features
needed for a rapid deployment software prototype are:

vi Preface

• Responding rapidly to changes in operations, technology, and budgets;
• Actively involving users throughout development to ensure high operational

value;
• Focusing on small, frequent capability releases;
• Valuing working software over comprehensive documentation.

Agile practices such as SCRUM include: planning, design, development, and
testing into an iterative production cycle (Sprint) able to deliver working software at
short intervals (3–4 weeks). The development teams can deliver interim capabilities
(at demo level) to users and stakeholders monthly. These fast iterations with user
community give a tangible and effective measure of product progress meanwhile
reducing technical and programmatic risk. Response to feedback and changes
stimulated by users is far quicker than using traditional methods. The
User/stakeholder community in the Army is very articulated, including Operational
Units, Main Area Commands, and Schools. The first step we had to take was the
establishment of a governance body which could effectively and univocally define
the “Mission Threads” from which the support functions are derived.

The first LC2Evo Scrum team (including members from Industry) was estab-
lished in March 2014.

In the framework of a paramount coordination effort led by The Italian
Army COFORDOT (three star level Command in charge, among other things of the
Army Operational Doctrine) the Army General Staff Logistic Department got full
delegation to lead, with the help of Finmeccanica (now Leonardo), a software
development project using agile methodology (initially Scrum, then ITA Army
Agile and finally DSSEA iAgile) aimed at the production of a technology
demonstrator capable of implementing some of the Functional Area Services of a
typical C2 Software.

Strictly speaking software engineering, one of the key issues was providing the
users with a common graphical interface on any available device in garrison (static
office operation) in national operations (i.e. Strade sicure) or international opera-
tions. The device type could vary from desk top computers to mobile phones.

The development was supposed to last from 6 to 8 months at the Army premises
to facilitate the build-up of a user community network and to maximize the
availability of user domain experts, both key features of the new agile approach. In
the second phase the initial team was supposed to move to the contractor premises
and serve as an incubator to generate more teams to work in parallel.

The first team outcome was so surprisingly good and the contractor software
analysts and engineers developed such an excellent mix with the army ones that,
both parts agreed to continue phase two (multiple teams) still at the Army premises.

The effort reached the peak activity after 18 months from start when 5 teams
were active at the same time operating in parallel (The first synchronized “scrum of
scrum like” reported in the mission critical software area).

As per the results presented at SEDA 2016 more than 30 Basic production cycles
(Sprints of 4–5 weeks) were performed, all of them delivered a working software
increment valuable for the user. The delivered FAS Software tested in real exercises

Preface vii

and some components deployed in operations. One of the initial tests was per-
formed during a NATO CWIX exercises and concerned cyber security. The pro-
duct, still in a very initial status, was able to resist more than 48 hours to the
penetration attempt by a very good team of “NATO hackers.”

More than a million equivalent line of software were developed at a unit cost of
less than 10 Euros, with an overall cost reduction of 90%, exceeding 90% in
customer satisfaction. One of developed FAS is still deployed in Afghanistan at the
multinational Command.

The preparatory work for SEDA 2016 made clear that the delivered working
software and the impressive cost reduction were not the most important achieve-
ments of the Italian Army experiment. The most important result was the under-
standing of what is needed to set up a software development environment which is
effective for a very complex and articulated set of user requirements and involves
relevant mission critical and high risk components.

After a year into the experience, the LC2Evo project and the collateral
methodological building efforts had already substantially involved a community
much wider than the Italian Army and the Italian MoD, including experts from
universities, defence Industry and Small Enterprises, making it clear that there was
an urgent need to preserve the just born improved agile culture oriented to the
mission critical and high reliability applications. The Community of interests build
around this efforts, identified four key areas called “Pillars” (explained through the
conference sessions) on which any innovative agile software development process
for mission critical applications should invest and build. Surprisingly (may be not)
the collected indications mostly concern the human component and the organization
of the work, even if there are clear issues on the technical elements as well.

To act as a “custodian” of the new born methodology the no-profit Association
DSSEA took the lead of the methodology development, now DSSEA iAgile, and
of the SEDA conference cycle organization. As a result the methodology and the
conference are available to developers and researchers for free.

In the area of innovation and towards building a new Software Engineering
Paradigm DSSEA iAgile constitutes a real breakthrough and for this NCI Agency
(NATO Communication and Information Agency) organized two different work-
shops aimed at devising a strategy to introduce this methodology into the NATO
procurement cycle.

The DSSEA coordination in the preparation and execution of SEDA 2016 has
initiated a series of collateral discussion and elaboration processes which resulted in
many continuous methodological and technical efforts mainly at the Italian
Directorate of Armaments Agency: DAT, at NATO NCI and at some universities:
Innopolis University (Russian Federation) being the most active, University of
Bologna (Italy), University of Regina (Canada) and University of Roma 1 Sapienza
(Italy). It appears that this DSSEA coordination activity is capable of generating a
year-round production of technical papers as a spin-off of any SEDA event. For this
reason it was decided to decouple the post-proceedings publication date and the
conference date keeping as the only requirement to publish before the date of the
next conference.

viii Preface

Another important effect of the DSSEA coordination was the institution of the
“DSSEA Innovative Software Engineering Prize” reserved to young software
engineers MD Thesis (5 years course of study). The prize, consisting in 1000 Euro
and the publication of a summary of the thesis has been awarded to Vincenzo
Pomona graduates from University of Catania. The announcement was made during
SEDA 2016 by Lt. General Castrataro Co-Chair of the Conference and Prof. Paolo
Ciancarini, DSSEA Vice President, while the delivery was made at the DAT pre-
mises on the 13th of June 2016.

The first edition of the “DSSEA Innovative Software Engineering Prize” was
reserved (as experimentation) to Italian candidates only, but DSSEA plans to
enlarge the competition to a wider international participation.

A special thank goes to Innopolis University, and in particular the Chairman
of the Board of Trustee, Min. Nikolay Nikiforov, and the CEO, Mr. Kirill
Semenikhin, for generously supporting the fruitful and rich research and discussion
that have permeated the whole conference.

Bologna, Italy Paolo Ciancarini
Innopolis, Russia Stanislav Litvinov
Innopolis, Russia/Rome, Italy Angelo Messina
Innopolis, Russia Alberto Sillitti
Innopolis, Russia Giancarlo Succi

Preface ix

Contents

Self-adaptive Node-Based PCA Encodings . 1
Leonard Johard, Victor Rivera, Manuel Mazzara and Joo Young Lee

Microservices Science and Engineering . 11
Manuel Mazzara, Kevin Khanda, Ruslan Mustafin, Victor Rivera,
Larisa Safina and Alberto Sillitti

Evolving In-service Support Models for Secure Weapon Systems 21
Patrizio Boschi, Emiliano De Paoli, Lorenzo Forzini and Andrea Onofrii

Initial Steps Towards Assessing the Usability
of a Verification Tool . 31
Mansur Khazeev, Victor Rivera, Manuel Mazzara and Leonard Johard

The Agile Coordination Processes . 41
Manuel Mazzara and Alberto Sillitti

A Blockchain-Based Solution for Enabling Log-Based
Resolution of Disputes in Multi-party Transactions 53
Leonardo Aniello, Roberto Baldoni and Federico Lombardi

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 59
Michele De Donno, Nicola Dragoni, Alberto Giaretta and
Manuel Mazzara

An Initial Investigation of Concurrency Bugs in Open
Source Systems . 73
Paolo Ciancarini, Francesco Poggi, Davide Rossi and Alberto Sillitti

Contracting Agile Developments for the Public Sector:
The Italian Case . 85
Daniel Russo, Gerolamo Taccogna and Paolo Ciancarini

xi

Domain Objects and Microservices for Systems Development:
A Roadmap . 97
Kizilov Mikhail, Antonio Bucchiarone, Manuel Mazzara,
Larisa Safina and Victor Rivera

A Machine Learning Approach for Continuous Development 109
Daniel Russo, Vincenzo Lomonaco and Paolo Ciancarini

Toward a Model of Emotion and Its Contagion Influences
on Agile Development for Defense Applications 121
Abdulaziz Alhubaishy and Luigi Benedicenti

The Internet of Hackable Things . 129
Nicola Dragoni, Alberto Giaretta and Manuel Mazzara

Avoiding Sensitive Data Disclosure: Android System
Design and Development Data Leaks Detection Thesis
Master Degree Computer Engineering . 141
Vincenzo Pomona

Towards Non-invasive Software Measurement System:
Architecture and Implementation . 149
Anton Bykov, Vladimir Ivanov, Marat Mingazov, Alan Rogers,
Alexandr Shunevich, Alberto Sillitti, Giancarlo Succi,
Alexander Tormasov, Jooyong Yi, Albert Zabirov
and Denis Zaplatnikov

Joining Jolie to Docker . 167
Alberto Giaretta, Nicola Dragoni and Manuel Mazzara

Crisis Management in Software Engineering: Behavioral Aspects 177
Stanislav Litvinov and Vladimir Ivanov

Using the “Agile” Paradigm to Support Innovation
in Large Organizations . 191
Angelo Messina and Alan Rogers

xii Contents

Self-adaptive Node-Based PCA Encodings

Leonard Johard, Victor Rivera, Manuel Mazzara and Joo Young Lee

Abstract In this paper we propose an algorithm, Simple Hebbian PCA, and prove

that it is able to calculate the principal component analysis (PCA) in a distributed

fashion across nodes. It simplifies existing network structures by removing intralayer

weights, essentially cutting the number of weights that need to be trained in half.

1 Introduction

Innovative engineering always looks for smart solutions that can be deployed on the

territory for both civil and military applications and, at the same time, aims at cre-

ating adequate instruments to support developers all along the development process

so that correct software can be deployed. Modern technological solutions imply a

vast use of sensors to monitor an equipped area and collect data, which will be then

mined and analyzed for specific purposes. Classic examples are smart buildings and

smart cities [1, 2].

Sensor integration across multiple platforms can generate vast amounts of data

that need to be analyzed in real-time both by algorithmic means and by human oper-

ators. The nature of this information is unpredictable a priori, given that sensors are

likely to encounter both naturally variable conditions in the field and disinformation

attempts targeting the network protocols.

L. Johard ⋅ V. Rivera ⋅ M. Mazzara (✉) ⋅ J. Y. Lee

Innopolis University, 1, Universitetskaya Str., Innopolis 420500, Russia

e-mail: m.mazzara@innopolis.ru

L. Johard

e-mail: l.johard@innopolis.ru

URL: https://www.university.innopolis.ru

V. Rivera

e-mail: v.rivera@innopolis.ru

J. Y. Lee

e-mail: j.lee@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_1

1

2 L. Johard et al.

This information needs to be transmitted through a distributed combat cloud with

variable but limited bandwidth available at each node. Furthermore, the protocol has

to be resistant to multiple node failures.

The scaling of the information distribution also benefits from a pure feedforward

nature, since the need for bidirectional communication scales poorly with the likely

network latency and information loss, both of which are considerable in practical

scenarios [3, 4]. This requirement puts our desired adaptive system into the wider

framework of recent highly scalable feedforward algorithms that have been inspired

by biology [5].

2 Linear Sensor Encodings

Linear encoding of sensor information has a disadvantage in that it cannot make

certain optimizations, such as highly efficient Hoffman-like encodings on the bit

level. On the other hand, it is very robust when it encodes continuous data, since it

is isometric. This means that we will not see large disruptions in the sample distance

and makes linear encodings highly suitable for later machine learning analysis and

human observation. This isometry also makes the encoding resistant to noisy data

transfers, which is essential in order to achieve efficient network scaling of real-time

data.

The advantage of a possible non-linear encoding is further diminished if we con-

sider uncertainty in our data distribution estimate. A small error in our knowledge

can cause a large inefficiency in the encoding and large losses for lossy compression.

For linear encodings all these aspects are limited, especially considering the easy use

of regularization methods.

The advantage of linear encodings is that they possess a particular set of series of

useful properties. To start with, if our hidden layer Y forms an orthonormal basis of

the input layer we can represent the encoding as:

Itot = I1 + I2 … + In + e2 (1)

Here Itot is the variance
∑

i(X2
i) in the input space, In is the variance of each com-

ponent of Y and e2 is the squared error of the encoding. This is obvious if we add

the excluded variables yn+1 … ym and consider a single data point:

x2i = y21 + y22 … + y2n + y2n+1 … + y2m (2)

and

yn+1 … + ym = e2i (3)

Self-adaptive Node-Based PCA Encodings 3

where ei is the error for data point I. Summing both sides and dividing by number of

data points and we get:

var(I) = var(y1) +… + var(yn) + e2 (4)

3 PCA in Networks

The problem of encoding in node networks is usually considered from the perspec-

tive of neural networks. We will keep this terminology to retain the vocabulary pre-

dominant in literature. A recent review of current algorithms for performing princi-

pal component analysis (PCA) in a node network or neural network is [6]. We will

proceed here with deriving PCA in linear neural networks using a new simple nota-

tion, that we will later use to illustrate the new algorithms.

Assume inputs are normalized so that they have zero mean. In this case, each

output yi can be described as yi = XTw, where x is the input vector and w is the

weights of the neuron and i is the index of the input in the training data. The outputs

form a basis of the input space and if ‖‖wi
‖
‖ = 1 and wT

i wj = 0 for all i, j, then the

basis is orthonormal.

Let us first consider the simple case of a single neuron. We would like to maximize

the variance on training data E
[
y2

2

]
, where we define y = XTw, given an input matrix

formed by placing column wise listing of all the presented inputs X = [x1, x2 …]with

the constraint ‖w‖ = 1. Expanding:

E
[
y2

2

]

= (XTw)T (XTw) = wTXXTw = wTCw (5)

where C is the correlation matrix of our data, using the assumption that inputs have

zero mean. The derivative
𝜕

𝜕w
E
[
y2

2

]
is given by

𝜕

𝜕w
wTCw
2

= XXTw = Xy (6)

Note that the vector above describes the gradient of the variance in weight space.

Taking a step of fixed length along the positive direction of this gradient derives the

Hebb rule:

w = w + 𝛥w (7)

𝛥w = 𝜂Xy (8)

Since we have no restrictions on the length of our weight vector, this will always

have a component in the positive direction of w. This unlimited growth of the weigth

vector is easily limited by normalizing the weight vectorw after each step by dividing

4 L. Johard et al.

by length, wnorm = w
‖w‖

. If we thus restrict our weight vector to unit length and note

that C is a positive semidefinite matrix we end up with a semi-definite programming

problem:

max wTCw (9)

subject to

wTw = 1 (10)

It is thus guaranteed, except if we start at an eigenvector, that gradient ascent

converges to the global maximum, i.e. the largest principal component. Alternatives

to weight normalization is to subtract the ew component of the gradient explicitly,

where ew is the unit vector in the direction of w. In this case we would calculate:

𝜕

𝜕w

(
y2

2

)

−
(

𝜕

𝜕w

(
y2

2

)

⋅ ew

)

ew (11)

For a step-based gradient ascent we can not assume ‖‖wi
‖
‖ will be kept constant in

the step direction. We can instead use the closely related

𝜕

𝜕w

(
y2

2

)

− wTw
(

𝜕

𝜕w

(
y2

2

)

⋅ ew

)

ew (12)

The difference is that the w overcompensates for the ew component if wTw > 1
and vice versa. This essentially means that ‖‖wi

‖
‖ will converge towards 1.

𝛥w = 𝜂(XywyTy) = 𝜂(XXTw − wTXXTww) (13)

= 𝜂(Cw − wTCww) (14)

The derivative orthogonal to the constraint can be calculated as follows:

𝛥w ⋅ ew = 𝜂wT (Cw − wTCww) = 𝜂(wTCw − wTwTCww) (15)

This means that we have an optimum if

((wTCw) − wwT (wTCw)) = 0 (16)

Since wTCw is a scalar, w is an eigenvector of C with eigenvalue wTCw. Equa-

tion 16 gives that wTw = 1
This is learning algorithm is equivalent to Oja’s rule [7].

Self-adaptive Node-Based PCA Encodings 5

3.1 Generalized Hebbian Algorithm

The idea behind the generalized Hebbian algorithm (GHA) [8] is as follows:

1. Use Oja’s rule to get wi
2. Use deflation to remove variance along ewi
3. i := i +1

4. Go to step 1.

Subtraction of the w-dimension projects the space into the subspace spanned by

the remaining principal components. The target function
y(vi)2

2
for all eigenvectors

vi not eliminated by this projection, while
y(w)2

2
= 0 in the eliminated direction w.

Repeating the algorithm after this step guarantees that we will get the largest remain-

ing component at each step. The GHA requires several steps to calculate the smaller

components and uses a specialized architecture. The signal needs to pass through

2(n − 1) neurons in order to calculate the n-th principal component and uses two

different types of neurons to achieve this.

We define information as the square variance of the transmitted signal and seek

encodings that will attempt to maximize the transmitted information. In other words,

the total transmitted variance by a linear transform is equal to the variance of data

projected onto a subspace of the original input space. The variance in this subspace

plus the square error of our reconstruction is equal to the variance of the input.

Summarizing, minimizing the reconstruction error of our encoding is equivalent

to maximizing the variance of the output. This is complementary and not antagonistic

to the concept of sparse encodings disentangling the factors of variation [9].

3.2 Distributed PCA

Principal component analysis is the optimal linear encoding minimizing the recon-

struction error, but still leaves room open for improvement. Can we do better? In

PCA, as much as information as possible is put in each consecutive component. This

leaves the encoding vulnerable to the loss of a node or neuron, potentially losing a

majority of the information as a result.

The PCA subspace remains the optimal subspace in this sense regardless the vec-

tors chosen to span it. Thus, any rotation the orthonormal basis is also an optimal

linear encoding.

Theorem 1 There exists an encoding of the PCA space such that the information
along each component is equivalent, In = Im,∀n,m. This encoding minimizes the
maximum possible error of any combination n − 1 components.

Proof Starting from the eigenvectors vi, we can rotate any pair of vectors in the

plane spanned by these vectors. As long as orthogonality is preserved, the sum of

6 L. Johard et al.

the variance in the dimensions spanned by these vectors is constant. Expressed as an

average: ∑

i
Ii =

∑

i
k (17)

Now for this to be true and if not all variances Ii are identical there has to exist a

pair of indices i and j such that Ii < k < Ij. We can then find a rotation in the plane

spanned by these vectors such that Ii = k.

This simple algorithm can be repeated until ∀i ∶ Ii = k.

In matrix form this can be formulated as:

diag(WCWT) = kI (18)

Orthonormal basis:

WWT = I (19)

This seems like a promising candidate for a robust linear encoding and future work

will further explore the possibility for calculating these using Hebbian algorithms.

For the moment, we will instead focus on the eigenvectors to the correlation matrix

used in regular PCA.

3.3 Simple Hebbian PCA

We propose a new method for calculating the PCA encoding X → Y in a single time

step and using a single weight matrix W.

For use in distributed transmission systems an ideal algorithm should process

only local and explicitly transmitted information in terms of X and Y from its neigh-

bors. In other words, each node possesses knowledge about its neighbors’ transmis-

sion signal, but not their weights or other information. The Simple Hebbian PCA is

described in pseudocode in Algorithm 1.

3.3.1 Convergence Property

The first principal component can be calculated as 𝛥w = Xy. This step is equivalent

to Oja’s algorithm. Let n be the index of the largest eigenvector calculated so far.

The known eigenvectors v1, v2 … vn of the correlation matrix C have corresponding

eigenvalues 𝜆1, 𝜆2 … 𝜆n. We can now calculate component vn+1.

Lemma 1

fn(w) =
y2

2
−

n∑

i=1

yTyiyTyi
2𝜆2i

(20)

Self-adaptive Node-Based PCA Encodings 7

Algorithm 1 ASHP
Require: Initialized weight vector wi
Require: Input matrix X
Require: Number of iterations T
Require: Number of nodes N
Require: Step size 𝜂

for t ← 1 to T do
for i ← 1 to N do

yi ← Xwi

for i ← 1 to N do

wi ← wi + 𝜂(Xyi −
i∑

j=1

XyjyTi yj
yTj yj

)

wi ←
wi

wT
i wi

has for wTw = 1 a maximum at w = vn + 1, where y = wTX and yn = vTnX

Proof We have an optimum if the gradient lies in the direction of the constraint

wTw = 1, i.e.

𝜕

𝜕w
fn = kw (21)

for some constant k.

𝜕

𝜕w
fn = Cw −

n∑

i=1

CviwTCvi
𝜆

2
i

(22)

Which further simplifies to

(

C −
n∑

i=1

CvivTi C

𝜆

2
i

)

w = Cnw (23)

where we define Cn as the resulting matrix of the above parenthesis.

To reach an optimum we seek

wTCn = cw (24)

where c is some scalar.

Our optimal solution has the following properties:

1. Assume w = vi, i ≤ n:

Substituting w = vi in 23 we get

𝜕

𝜕w
fn(vi) = 𝜆ivi − 𝜆ivi = 0 ⋅ vi (25)

8 L. Johard et al.

then vi is an eigenvector of
𝜕

𝜕w
fn with eigenvalue 0.

2. Assume w = vi of C, i > n:

Substituting w = vi in 23 we get

𝜕

𝜕w
f (vi) = Cw = 𝜆iw (26)

then vi is an eigenvector of
𝜕

𝜕w
fn with eigenvalue 𝜆i.

C is symmetric and real. Hence, the eigenvectors v1 … vn span the space ℝn
. Cn is

a sum of symmetric matrices. Consequently Cn is symmetric with the same number

of orthogonal eigenvectors. As we see in Eqs. 25 and 26, every eigenvector vi of C
is an eigenvector of Cn, with eigenvalue 𝜆n,i = 0 if i ≤ n and 𝜆n,i = 𝜆i if i > n. Since

𝜆n are ordered by definition, 𝜆n+1 is the largest eigenvalue of Cn + 1.

Cn is symmetric with positive eigenvalues. As a resultCn is positive semi-definite.

For this reason the maximization problem

sup(wTCnw) (27)

wTw = 1 (28)

forms another convex optimization problem and gradient ascent will reach the global

optimum, except if we start our ascent at an eigenvector where
𝜕

𝜕w
fn(vi) = 0. For

random starting vectors the probability of this is zero.

The projection of the gradient onto the surface wTw = 1 created by weight nor-

malization follows 𝛿w ⋅ 𝛿w
wTw

> 0, i.e. even for steps not in the actual direction of the

unconstrained gradient the step lies in a direction of positive gradient.

This algorithm has some degree of similarity to several existing algorithms,

namely the Rubner-Tavan PCA algorithm [10], the APEX-algorithm [11] and their

symmetric relatives [12]. In contrast to these, we only require learning of a single set

of weights w per node and avoid the weight set L for connections within each layer.

4 Conclusions

We have proposed algorithm, Simple Hebbian PCA, and proof that it is able to cal-

culate the PCA in a distributed fashion across nodes. It simplifies existing network

structures by removing intralayer weights, essentially cutting the number of weights

that need to be trained in half.

This means that the proposed algorithm has an architecture that can be used

to organize information flow with a minimum of communication overhead in dis-

tributed networks. It automatically adjusts itself in real-time so that the transmitted

data covers the optimal subspace for reconstructing the original sensory data and is

reasonably resistant to data corruption.

Self-adaptive Node-Based PCA Encodings 9

In future work we will provide empirical results of the convergence properties.

We also seek to derive symmetric versions of our algorithm that uses the same learn-

ing algorithm for each node, or in an alternative formulation, that uses symmetric

intralayer connections.

Eventually we also strive toward arguing for biological analogies of the proposed

communication protocol as way of transmitting information in biological and neural

networks.

References

1. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based iot for

smart buildings, in 31st International Conference on Advanced Information Networking and
Applications Workshops, AINA 2017 Workshops, Taipei, Taiwan, 27–29 March 2017, pp. 302–

308

2. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: Inter-

net of things for smart building infrastructure supporting concurrent apps utilizing distributed

microservices, in Selected Papers of the First International Scientific Conference Convergent
Cognitive Information Technologies (Convergent 2016), pp. 48–53

3. T. Soyata, R. Muraleedharan, J. Langdon, C. Funai, S. Ames, M. Kwon, W. Heinzelman, Com-

bat: mobile-cloud-based compute/communications infrastructure for battlefield applications,

vol. 8403 (2012), pp. 84030K–84030K–13

4. C. Kruger, G.P. Hancke, Implementing the internet of things vision in industrial wireless sen-

sor networks, in 2014 12th IEEE International Conference on Industrial Informatics (INDIN)
(IEEE, 2014), pp. 627–632

5. L. Johard, E. Ruffaldi, A connectionist actor-critic algorithm for faster learning and biological

plausibility, in 2014 IEEE International Conference on Robotics and Automation, ICRA 2014,

Hong Kong, China, 31 May–7 June 2014 (IEEE, 2014), pp. 3903–3909

6. J. Qiu, H. Wang, J. Lu, B. Zhang, K.-L. Du, Neural network implementations for pca and its

extensions. ISRN Artif. Intell. 2012 (2012)

7. E. Oja, Simplified neuron model as a principal component analyzer. J. Math. Biol. 15(3), 267–

273 (1982)

8. T.D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural net-

work. Neural Netw. 2(6), 459–473 (1989)

9. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives.

IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

10. J. Rubner, P. Tavan, A self-organizing network for principal-component analysis. EPL Euro-

phys. Lett. 10(7), 693 (1989)

11. S. Kung, K. Diamantaras, A neural network learning algorithm for adaptive principal compo-

nent extraction (apex), in International Conference on Acoustics, Speech, and Signal Process-
ing (IEEE, 1990), pp. 861–864

12. C. Pehlevan, T. Hu, D.B. Chklovskii, A hebbian/anti-hebbian neural network for linear sub-

space learning: a derivation from multidimensional scaling of streaming data, Neural compu-
tation (2015)

Microservices Science and Engineering

Manuel Mazzara, Kevin Khanda, Ruslan Mustafin, Victor Rivera, Larisa
Safina and Alberto Sillitti

Abstract In this paper we offer an overview on the topic of Microservices Science

and Engineering (MSE) and we provide a collection of bibliographic references and

links relevant to understand an emerging field. We try to clarify some misunder-

standings related to microservices and Service-Oriented Architectures, and we also

describe projects and applications our team have been working on in the recent past,

both regarding programming languages construction and intelligent buildings.

1 Introduction

Innovative engineering is always looking for adequate instruments to design software

systems and support developers all along the development process to deploy correct

software. Microservices [1] recently demonstrated to be an effective architectural

paradigm to cope with software complexity, and in particular scalability [2]. The

success of the paradigm has been demonstrated in a number of domains, including

mission-critical systems [3].

Around the concept of microservice a number of activities emerged, both of

scientific or purely engineering interest. The field of Microservices Science and

M. Mazzara (✉) ⋅ K. Khanda ⋅ R. Mustafin ⋅ V. Rivera ⋅ L. Safina ⋅ A. Sillitti

Innopolis University, Russian Federation, Innopolis, Russia

e-mail: m.mazzara@innopolis.ru

K. Khanda

e-mail: k.khanda@innopolis.ru

R. Mustafin

e-mail: r.mustafin@innopolis.ru

V. Rivera

e-mail: v.rivera@innopolis.ru

L. Safina

e-mail: l.safina@innopolis.ru

A. Sillitti

e-mail: a.sillitti@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_2

11

12 M. Mazzara et al.

Engineering (MSE) is not completely established at the moment, and neither it is

clearly defined. In this paper, we offer an overview intended as a collection of bibli-

ographic references and links to the field, focusing mostly on recent applications we

have been working and on the activities of our team. We aim at focusing on three

major aspects: (1) the emerging of the Microservice architectural style and its pecu-

liarities (2) a language-based approach to support Microservice (3) applications, for

example in programming languages and intelligent buildings.

The paper is structured as follows. After this short introduction, in Sect. 2 we

will discuss the main concepts of Microservice literature. In Sect. 3 we will intro-

duce the Jolie programming language, an open source project aimed at supporting

microservice development from a linguistic point of view. In Sect. 4 we will discuss

the contribution of our research team to the development of the Jolie programming

language and in the field of Smart Building. Section 5 will finally draw some con-

clusive remarks.

2 What Is a Microservice?

Microservices [1] are not just small services, which means little by itself. It is

an architectural style that originated from Service-Oriented Architectures (SOAs)

[4, 5], that we will try to emphasize here. The main idea is to move in the small
(within an application) some of the concepts that worked in the large, i.e. for

cross-organization business-to-business workflow which makes use of orchestration

engines such as WS-BPEL (in turn inheriting some of the functional principles from

concurrency theory [6]).

When following the microservice paradigm, a system is structured by composing

small independent building blocks communicating exclusively via message passing.

These components are called microservices. The characteristic differentiating the

new style from monolithic architectures and classic Service-Oriented is the emphasis

on scalability, independence, and semantic cohesiveness of each unit constituting

the system.

Indeed, mainstream languages for development of server-side applications

(e.g. Java, C/C++, Python) still provide abstractions to break down the complex-

ity of programs into modules or components [7–9], but these languages are designed

for the creation of single executable artifacts. In monolithic architecture the modular-

ization abstractions rely on the sharing of resources of the same machine (memory,

databases, files) and the components are therefore not independently executable. In

Fig. 1, the classic monolithic organization is pictorially described: here the different

layers of the system, from presentation to access to persistence tools, and including

the business logic, are split in terms of responsibilities between different modules

(here indicated by the vertical split with numbers from 1 to 4). In fact, each mod-

ule may take part in the implementation of functionalities related to each layer, the

database is common, and so the access to other resources such as memory.

Microservices Science and Engineering 13

Fig. 1 Monolith architecture

Fig. 2 Microservices architecture

A notable problem of monoliths is maintainability and evolvability, all issues

related to change. In [1] a detailed description of these aspects is given, together

with our own definition of microservice which tries to shed some light in the cur-

rently intricate and young literature. Figure 2 shows how the componentization is

done in a microservice architecture: each own service has a dedicated persistence

tool and communication is via message passing. In this kind of organization there is

no vertical split through all the system layers and the deployment is independent. The

complexity is moved to the level of coordination of services (often called orchestra-

tion [10]). Moreover, a number of additional problems need to be addressed due to

the distributed nature of this kind of approach (e.g., trust and certification [11]).

14 M. Mazzara et al.

The first set of question asked in this context typically is: how small? Is a

Microservice a very small service? What does it mean? How do we measure size

(Line of codes, size of executable, number of classes or modules, size of API, size

of team)?

A Microservice is not just a very small service. There is not a predefined size

limit that defines whether a service is a microservice or not. Indeed microservice is

a somehow misleading definition. Each microservice is expected to implement a sin-

gle business capability, in fact a very limited system functionality, bringing benefits

in terms of service maintainability and extendability. Since each microservice rep-

resents a single business capability, which is delivered and updated independently,

discovering bugs or adding minor improvements do not have any impact on other

services and on their releases. In common practice, it is also expected that a single

service can be developed and managed by a single team [1].

The idea to have a team working on a single microservice is rather appealing: to

build a system with a modular and loosely coupled design, one should pay atten-

tion to the organization structure and its communication patterns as they, according

to Conway’s Law [12], directly impact the produced design. So if one creates an

organization with each team working on a single service, such structure will make

the communication more efficient not only on the team level, but within the whole

organization, improving the resulting design in terms of modularity. Microservices’

approach is to keep teams small and communications efficient by creating small

cross-functional (DevOps) teams that are able to continuously work on the same ser-

vice and to be fully responsible for it (the “you build it, you run it” principle [13]).

The teams are organized around services, which in turn are organized around busi-

ness capabilities [14] The optimal team size for microservices is best described by

Jeff Bezos famous “two pizza team” rule, which suggests that the size of a team

should be no larger than what two pizzas can feed. The rule itself does not give an

exact number, however it is possible to estimate it to be around 6–8 people. The

drawback of such approach is that it is not always practical from the financial point

of view to maintain a dedicated team of developers for a single service as it may lead

to high development/maintenance costs [15]. Furthermore, one should be careful

when designing the high level structure of the organization using microservices—

increasing the number of services will negatively impact on the overall organization

efficiency, if no actions are taken.

The second set of questions that often arises is instead: is this the same story than
SOA? What are the differences? Indeed there are some notable differences. In SOA,

services are not required to be self-contained with data and User Interface, and their

own persistence tools, e.g. database. SOA has no focus on independent deployment

units and related consequences, it is simply an approach for business-to-business

intercommunication. The idea of SOA was to enable business-level programming

through business processing engines and languages such as WS-BPEL and BPMN

that were built on top of the vast literature on business modelling [16]. Furthermore,

the emphasis was all on service orchestration more than service development and

deployment.

Microservices Science and Engineering 15

Microservices have seen their popularity blossoming with an explosion of con-

crete applications seen in real-life software [17]. Several companies are involved in a

major refactoring of their back-end systems in order to improve scalability [2]. In [3]

a real world case study, concerning the migration of a mission critical system from

an existing monolithic architecture to microservices, has been presented. This case

study shows the will of major companies to cope with scalability issues.

3 Jolie: A Language-Based Approach

The notable success of the approach gave rise to both academic and commercial

interest, and ad-hoc programming languages arose to address the new architectural

style [18]. In principle, any general-purpose language could be used to program

microservices. However, some of them are more oriented towards scalable appli-

cations and concurrency [19]. The Jolie (Java Orchestration Language Interpreter

Engine) [18] programming language, for example, is based on the new paradigm

and it allows describing computation from a data-driven instead of process-driven

perspective [20]. As another advantage, Jolie has already a large community of users

and developers [21].

Jolie is a functional programming language that combines a multiplicity of aspects

that are destined to revolution the way in which software is conceived, designed and

understood. Originated from a major formalization effort [22] for workflow and ser-

vice composition [23], the language does not integrate a notion of correctness; it is

simply built on it. The intuitiveness of the message-passing paradigm supports the

design phase and avoids side effects that are not trivial to test. Four important con-

cepts are identified to be first class entities in the programming language in order to

address the microservice architecture:

1. Interfaces: to support modular programming, services has to be deployed as black
boxes. In order to compose services in larger systems, interfaces have to describe

the provided functionalities and those required from the environment.

2. Ports: since a microservice interacts with other services, a communication port

describes how its functionalities are made available to the network (interface,

communication technology, and data protocol). Ports should be specified sepa-

rately from the implementation of a service. Input ports describe the functionali-

ties that the service provides to the rest of the system, while output ports describe

the functionalities that the service requires from the rest of the system.

3. Workflows: structured protocols appear repeatedly in microservices and they are

not natively supported by mainstream languages. All possible operations are

always enabled (for example in Object-Oriented programming). Causal depen-

dencies are programmed by using a book-keeping variable, which is error-prone,

and it does not scale when the number of causality links increases. A microservice

language should provide abstractions for programming workflows.

16 M. Mazzara et al.

4. Processes: workflows define the blueprint of the behavior of a service. At runtime

a service may interact with multiple clients and other external services, therefore

there is need to support multiple concurrent executions of its workflow. A process

is a running instance of a workflow, and a service may include many processes

executing concurrently. Each process runs independently of the others, to avoid

interference, and has its own private state.

Let us illustrate the Jolie syntax with a simple example of the service printing

anything it receives. First we need to define the interface that other services will use

and list all available functions inside (as depicted in Fig. 3).

This interface declares the one-way function PrintInterface, meaning

that any service using this interface will be able to call or provide this function with-

out receiving or, correspondingly, providing the response. Then we define the print-

ing service itself, listing the service entry point’s name (PrintService), location,

protocol and interfaces it uses (see Fig. 4). The behavior is described in the main
part of the service. The behavior is composed of the one function print, printing

the line it receives (Fig. 5).

Finally, we define the client’s service, including the information needed for calling

the printing service and call to the printing function (print@PrintService).

After invoking both services, PrintService will print our “Hello, world!”

greetings.

interface PrintInterface {
OneWay: print (string)

}

Fig. 3 Interface code

include ‘‘console.iol’’

include ‘‘printInterface.iol’’

outputPort PrintService {
Location: ‘‘socket://localhost:8000’’
Protocol: json
Interfaces: printInterface

}

main {
print(line){

print@Console(line)()
}

Fig. 4 Server’s code

Microservices Science and Engineering 17

include ‘‘printInterface.iol’’

outputPort PrintService {
Location: ‘‘socket://localhost:8000’’
Protocol: json
Interfaces: printInterface

}

main {
print@PrintService(‘‘Hello, world!’’)

}

Fig. 5 Client’s code

Jolie is an open source project with an active community of developers. Our team

has been working on an extension of the type system [20] and the development

of static type checking with refinement types [24], as well as development of the

IDE [21]. One of the current projects relates to the augmenting of user experience.

We are trying to make the language easy to use, adding the inline documentation,

value scaffolding, autocompletion and other ergonomics improving features.

However, there are more ongoing projects aimed on ensuring Jolie type safety.

The approach is to implement the type checker from [25] follows the formal specifi-

cation rules defined in [26]. The rules then are encoded on the Jolie interpreter level

and checked by means of Z3 SMT solver [27]. Akentev et al. [28] follows a slightly

different approach, it is built on top of a proof assistant instead of a SMT solver,

which helps to ascertain the correctness of the specification. The type checker is

written as well-typed program by means of dependent types in Agda [29] program-

ming language.

From the architectural point of view, Jolie has the potential to lead to a paradigm

shift. Component-wise each building block is built as a microservice [30] embed-

ding business capabilities in isolation. Every microservice can be reused, orches-

trated, and aggregated with others [31]. This approach brings simplicity in compo-

nents management, reducing development and maintenance costs, and supporting

distributed deployments [32].

4 Applications in Smart Buildings

The ideal application scenario where scalability, minimality and cohesiveness

demonstrate their effectiveness is Smart Buildings. There are several different devices

on the market that have been used in the Internet of Things and smart

18 M. Mazzara et al.

Fig. 6 Sensors infrastructure architecture

buildings-related projects. None of these projects, however, was so far developed

using the Jolie programming language.

Our team at Innopolis has developed an infrastructure of sensors in the University

building [33, 34]. This solution allows to monitor an equipped area and therefore col-

lect data that can be mined and analyzed for specific purposes. The system is taking

advantage of the Jolie programming language to coordinate nodes and user inter-

face. The nodes used in this system consist of Raspberry Pi micro-computers [35],

Texas Instruments Sensor Tags [36], door sensor and a web camera. Currently, this

system is able to collect and analyze room temperature, pressure and illumination

level. It is also able to distinguish and count people, which are located in the cov-

ered area. Figure 6 shows the general project infrastructure where each sensor has

a related service to transmit data, the Raspberry Pi micro-computer is running ser-

vices responsible to receive and transmit data to the server, and the server presents

the data.

The future plan is to design and realize an automatic Personal Assistant which

is capable to observe the data, learn about different users preferences, and adapt the

room conditions accordingly for the different phases of his/her work. To develop this,

it will be necessary to operate speech and visual recognition via machine learning,

and connect these functionalities to the existing system.

5 Conclusions

There is no free lunch someone said. Indeed, a Microservice architecture is, in gen-

eral, more complex than one based on monolith. This is the cost of growing and scal-

ing easily. Despite of this, companies of considerable size are migrating their mission

critical systems (of considerable size) into the new architectural style demonstrating

an early understanding of how critical scalability is, and how costs would differently

grow later [3].

In this paper, we presented the basic principles of Service Science and Engineer-

ing (SSE), with the applications developed by our research team. We also supported

Microservices Science and Engineering 19

the idea that a language-based approach seems the best choice to cope with microser-

vice development. Summarizing, the following are the significant advantages of

microservices: (1) Smaller code base therefore simpler to develop, test, deploy,

scale (2) easier for new developers and it allows fast start (3) Polyglot architecture

(each service may use individual technology) (4) Evolutionary design (remove, add,

replace services).

We are actively collaborating with both the scientific world (to develop solid the-

ories and methodologies in order to improve software quality) and with companies

interested to migrate their systems. The next decade will see a growing attention to

the SSE field, and the development of further programming languages intended to

address the paradigm. Changes to scene should be expected, and these may be com-

parable to what Object-Oriented programming brought in the last two decades of the

previous century.

References

1. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,

Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, 2017)

2. N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices: How

to make your application scale, in A.P. Ershov Informatics Conference (the PSI Conference
Series, 11th edition) (Springer, 2017)

3. N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, Microservices: Migration of a mission crit-

ical system, https://arXiv.org/abs/1704.04173

4. M. MacKenzie et al., Reference model for service oriented architecture 1.0, inOASIS Standard,

vol. 12 (2006)

5. A. Sillitti, T. Vernazza, G. Succi, Service oriented programming: a new paradigm of software

reuse, in 7th International Conference on Software Reuse, Lecture Notes in Computer Science

2319 (Springer, Berlin, Heidelberg, 2002), pp. 269–280

6. R. Lucchi, M. Mazzara, A pi-calculus based semantics for WS-BPEL. J. Log. Algebr. Program.

70(1), 96–118 (2007)

7. P. Predonzani, A. Sillitti, T. Vernazza, Components and data-flow applied to the integration

of web services, in The 27th Annual Conference of the IEEE Industrial Electronics Society
(IECON01) (2001)

8. J. Clark, C. Clarke, S. De Panfilis, S. De Panfilis, A. Sillitti, G. Succi, T. Vernazza, Selecting

components in large COTS repositories. J. Syst. Softw. 323–331 (2004)

9. H.G. Gross, M. Melideo, A. Sillitti, Self certification and trust in component procurement. J.

Sci. Comput. Program. 141–156 (2005)

10. M. Mazzara, S. Govoni, A Case Study of Web Services Orchestration (Springer, Berlin Heidel-

berg, 2005), pp. 1–16

11. E. Damiani, N. El Ioini, A. Sillitti, G. Succi, WS-certificate, in 2009 IEEE International Work-
shop on Web Services Security Management (IEEE, 2009)

12. M.E. Conway, How do committees invent. Datamation 14(4), 28–31 (1968)

13. J. Gray, A conversation with werner vogels. ACM Queue 4(4), 14–22 (2006)

14. M. Fowler, J. Lewis, Microservices, ThoughtWorks (2014), http://martinfowler.com/articles/

microservices.html. Accessed 17 Feb 2015

15. S. Jones, Microservices is soa, for those who know what soa is (2014), http://service-

architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html

https://arXiv.org/abs/1704.04173
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://service-architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html
http://service-architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html

20 M. Mazzara et al.

16. Z. Yan, M. Mazzara, E. Cimpian, A. Urbanec, Business process modeling: Classifications and

perspectives, in Business Process and Services Computing: 1st International Working Confer-
ence on Business Process and Services Computing, BPSC 2007, 25–26 Sept 2007, Leipzig,

Germany (2007), p. 222

17. S. Newman, Building Microservices. O’Reilly Media, Inc. (2015)

18. F. Montesi, C. Guidi, G. Zavattaro, Service-Oriented Programming with Jolie, in Web Services
Foundations (Springer, 2014), pp. 81–107

19. C. Guidi, I. Lanese, M. Mazzara, F. Montesi, Microservices: a language-based approach, in

Present and Ulterior Software Engineering (Springer, 2017)

20. L. Safina, M. Mazzara, F. Montesi, V. Rivera, Data-driven workflows for microservices (gener-

icity in jolie), in Proceedings of The 30th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA) (2016)

21. A. Bandura, N. Kurilenko, M. Mazzara, V. Rivera, L. Safina, A. Tchitchigin, Jolie community

on the rise, in SOCA (IEEE Computer Society, 2016), pp. 40–43

22. EU Project SENSORIA, http://www.sensoria-ist.eu/. Accessed April 2016

23. M. Mazzara, F. Abouzaid, N. Dragoni, A. Bhattacharyya, Toward design, modelling and anal-

ysis of dynamic workflow reconfigurations—A process algebra perspective, in Web Services
and Formal Methods—8th International Workshop, WS-FM (2011), pp. 64–78

24. A. Tchitchigin, L. Safina, M. Mazzara, M. Elwakil, F. Montesi, V. Rivera, Refinement types in

jolie, in Spring/Summer Young Researchers Colloquium on Software Engineering, SYRCoSE
(2016)

25. B. Mingela, N. Troshkov, M. Mazzara, L. Safina, A. Tchitchigin, Towards static type-checking

for jolie, https://arXiv.org/pdf/1702.07146.pdf

26. J.M. Nielsen, A Type System for the Jolie Language, Master’s thesis, Technical University of

Denmark (2013)

27. L. de Moura, N. Bjrner, Z3: An efficient smt solver, in Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, 29 March–6 April 2008, vol. 4963 of Lecture Notes in Computer Science

(Springer, 2008), pp. 337–340

28. E. Akentev, A. Tchitchigin, L. Safina, M. Mazzara, Verified type-checker for jolie, https://

arXiv.org/pdf/1703.05186.pdf

29. C. U. of Technology. Agda, http://wiki.portal.chalmers.se/agda/pmwiki.php. Accessed Dec

2016

30. F. Montesi, Process-aware web programming with Jolie. Sci. Comput. Program. 130, 69–96

(2016)

31. F. Montesi, JOLIE: a Service-oriented Programming Language, Master’s thesis, University of

Bologna (2010)

32. M. Fowler, Microservice Trade-Offs (2015), http://martinfowler.com/articles/microservice-

trade-offs.html

33. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: Inter-

net of things for smart building infrastructure supporting concurrent apps utilizing distributed

microservices, in CCIT (2016), pp. 48–53

34. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based iot for

smart buildings, in WAINA (2017)

35. Raspberri pi official site, https://www.raspberrypi.org/. Accessed June 2017

36. Texas instruments sensor tag official site, http://www.ti.com/ww/en/wireless_connectivity/

sensortag/gettingStarted.html. Accessed June 2017

http://www.sensoria-ist.eu/
https://arXiv.org/pdf/1702.07146.pdf
https://arXiv.org/pdf/1703.05186.pdf
https://arXiv.org/pdf/1703.05186.pdf
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://martinfowler.com/articles/microservice-trade-offs.html
http://martinfowler.com/articles/microservice-trade-offs.html
https://www.raspberrypi.org/
http://www.ti.com/ww/en/wireless_connectivity/sensortag/gettingStarted.html
http://www.ti.com/ww/en/wireless_connectivity/sensortag/gettingStarted.html

Evolving In-service Support Models
for Secure Weapon Systems

Patrizio Boschi, Emiliano De Paoli, Lorenzo Forzini
and Andrea Onofrii

Abstract This paper briefly illustrates the past, the present and the expected future
of in-service support models for typical Weapon Systems, and relates them to the
growing cyber security threats. In particular, various security aspects are identified
about the increased Commercial Off-The-Shelf hardware and software usage, along
with the threats deriving from the higher systems interconnection level achieved on
newer systems. Such menaces impact the products themselves, but also drive
radical changes for their in-service support model, which may need to shift from the
historically established “mid-life update” to more IT-like models, like those based
on continuous update and product-as-a-service paradigms. To reach such goals,
new processes and new technical solutions have to be introduced in the entire
product life cycle; as an example, some evolutionary and revolutionary improve-
ments to the product or to the in-service support model are provided.

1 Introduction

In order to describe and justify the necessity of an evolution of the in-service
support model of Weapon Systems, different arguments need to be analyzed.
Section 2 then describes some architectural and structural changes incurred in the
Weapon Systems which have impact on the security aspects to be covered during
in-service support. Section 3 describes the added cyber threats menacing such

P. Boschi (✉) ⋅ E. De Paoli ⋅ L. Forzini
MBDA Italia, Rome, Italy
e-mail: patrizio.boschi@mbda.it

E. De Paoli
e-mail: emiliano.de-paoli@mbda.it

L. Forzini
e-mail: lorenzo.forzini@mbda.it

A. Onofrii
Capgemini, Rome, Italy
e-mail: andrea.onofrii@capgemini.com

© Springer International Publishing AG 2018
P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems
and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_3

21

systems. Section 4 describes different in-service support models, either adopted or
expected on Weapon Systems. Finally, Sect. 5 gives hints on possible evolutions of
the in-service support, both evolutionary and revolutionary.

2 Weapon Systems Evolution

From the in-service support and security point of views, the following elements are
strongly characterizing on a Weapon System:

• systems, subsystems and peers’ interconnection level;
• hardware supply chain;
• software supply chain;
• adopted security-related processes and technical solutions.

Different approaches and solutions were adopted during time to address issues
on such areas, summarized in following sections.

2.1 The Past

The past Weapon Systems, developed until about the 2000 period, were primarily
designed as stand-alone, autonomous or detached systems, with very light inter-
connection level to peers or upper level centers.

Hardware was hardly related to consumer products, ranging from industrial
VME SBCs, to in-house developed boards with very specific I/O functions. Soft-
ware, both at operating system and middleware levels, was then strictly correlated
to the hardware, if not completely in-house developed. It was not rare to incur in
slightly modified “standard” protocols, such as low level network protocols
specifically tailored or modified to operate on uncommon environments or over
proprietary mediums.

The scarceness of proper “standardization” in both hardware and software
components, and their low interconnection level, usually led to weak
security-related requirements specifications, both for lack of discipline and for a
greater commitment of customers over the “guns, gates and guards” approach—
which is undoubtedly well suited for stand-alone military platforms and disciplined
personnel. Interestingly enough, nowadays standard penetration testing methods
may have some difficulties to succeed on such older systems, due to their incidental
“security by obfuscation” nature and physical access limitations.

22 P. Boschi et al.

2.2 The Present

Present Weapon Systems are required to operate on higher level integration sce-
narios, and are usually named as “partially connected systems”, being them
deployed across proprietary and protected MAN type networks or interconnected to
peer systems through satellite or long fiber optic cables.

Hardware is often inherited from the past systems, but the legacy is usually
limited to the form factor; whenever possible, more powerful computing nodes and
network equipment are introduced, which increasingly include components derived
from the consumer market (e.g., Intel CPUs, USB ports). Standard hardware
components unlock the ability to have standard (COTS) operating systems and
middleware choices, or their derivatives which are able to operate at military-grade
level of service, at least regarding their safety, security, environmental and real-time
performance.

From an InfoSec point of view, an increasing interest from customers is evident,
introducing requirements about confidentiality, identification, authentication,
auditing, and different security certifications (such as Common Criteria, up to level
4)—or at least evidences of “certifiability”. Still, the large majority of the threats are
thwarted by the “guns, gates and guards” approach, and not always solutions which
are not completely physical or technological, but bring process and procedural
impacts, are foreseen as feasible or applicable.

2.3 The Future

The future Weapon Systems, expected to operate from the 2020 period onward,
foresee an high level of interconnection, eventually aiming at public or unprotected
WANs—or Internet itself.

Consumer hardware platforms and portable gadgets will undoubtedly found their
way on the military market, and so COTS operating systems, middleware and
libraries, which will differentiate from consumers’ solutions for their added certi-
fication level.

It would be naïve, at this point, to ignore eventual revolutionary steps on the
architecture of Weapon Systems (or their parts); such changes may concern the
subtle morph from products to services, as happened to the products of many other
markets, or the introduction of break-through technologies, such as cloud com-
puting, augmented reality, and so on.

Evolving In-service Support Models for Secure … 23

3 Cyber Threats on Weapon Systems

Evolving security requirements from Weapon Systems derive both from the evo-
lution of external cyber threats and, as specified in the previous sections, from the
inherent evolution of the systems themselves, which increase their attack surface.

3.1 Increasing Interconnection Scope Threats

The increase of the interconnection scope of Weapon Systems leads to an increase of
their cyber-attack surface, and therefore exposes such systems to new threat sources.
The systems will then be subject to the typical threats of highly interconnected
systems, like Man in theMiddle attacks, Masquerading/Identity spoofing, and Denial
of Service, maybe the most dangerous for a mission critical system. Scaling from
LAN to WAN, the increase of the systems boundary makes the “guns, gates and
guards” approach more and more difficult to apply, and less effective in any case.

It has to be noted that, on a cyber-warfare scenario, the network infrastructure
over which highly interconnected systems are deployed may become a much higher
priority military target than the Weapon Systems themselves.

3.2 Increasing COTS Hardware Usage Threats

The increased Commercial Off-The-Shelf hardware usage raises new threats related
to the security management process of the supply chain, or even to the potentially
malicious nature of COTS developers. This is especially true in a world where
design activities and manufacturing are performed on different countries, with
different wealth, economics or imposing governments.

3.3 Increasing COTS Software Usage Threats

In the last 5 years, the worldwide vulnerability databases have recorded about 5800
vulnerabilities per year (about 16 per day), with an increasing growth rate [1], for
widespread and COTS software. In depth analysis and studies [2] disclose the scope
and weight of software threats, and their continuously evolving nature. The inte-
gration of COTS software in Weapon Systems introduce then the problems of
software exploits, 0-days, forever-days, etc. Indeed, to take advantage of an existing
vulnerability using an already known exploit is the most easy way to break a
system, and requires a very low attack potential; to defend from it, however, it’s
another story.

24 P. Boschi et al.

Particular emphasis is on the conflicting nature of Open Source software [3].
When software sources are available to the public, anyone can review the source
code, but the process would be benefited by this peer review only when enough
qualified people participate in this process, discovering vulnerabilities for the good
of society. Despite that, several vulnerabilities in open source may remain undis-
covered, or worse, sold to black markets or to Cyber-Crime As A Service providers,
therefore it’s not to be assumed that the open source code is always reviewed and
certified by security experts, because the complexity of modern products, their
limited documentation and the sole presence of a market may make few experts.

On the opposite side of Open Source, there is the “security by obfuscation”
concept, based on the secrecy of the system, where vendors don’t disclose their
products’ implementations (and then their vulnerabilities). This shouldn’t really
make any sense, because it’s obviously better to understand and properly manage
the risks in your design or system.

Therefore every press release and security bulletin about new security issue is
positive for the whole society—but deployment of patches and fixes has then to be
properly managed.

4 Impacts of Security on the In-service Support Model

Information security will increasingly have more and more weight on the military
products lifecycle. The current assumption anyway is that a Weapon System will
continue to have an operative life span of at least ten years, and possibly more.

On such preconditions, the in-service support period dramatically changes its
scope, importance, and cost.

4.1 Mid-life Update

On the large majority of the past Weapon Systems, and also in some of the present,
only “mid-life updates” were negotiated or provided. These updates were aimed at
programmed or expected feature revamps, or added integration requirements (e.g.,
extended range revamps, additional platforms integration). Mid-life update will
surely continue to exist for such reasons.

Hardly there was any concern about information security on these occurrences,
and it isn’t expected to help on it, if not for the possibility to introduce newer
architectural decisions or adhere to changing legislative requirements. One example
could be the introduction of users identification and authorization on terminals
residing on otherwise completely guns, gates and guards protected systems, to at
least achieve imputability of security events to specific personnel instead of the site
responsible or commander.

Evolving In-service Support Models for Secure … 25

4.2 Continuous Update

Continuous, or at least periodic, update is what anyone living in the modern era
expects from their information technology devices. Operating systems on personal
computers and smartphones have automatic and scheduled updates; but also house
appliances are now living on the Internet, and get their updates. Key factor here is
“Internet”: continuous updates are driven by the continuous connection of the
device, being it structural or optional to its actual function. There is a strong
continuous update policy on controlled and detached networks, such as on many IT
and enterprise environments of work areas and laboratories.

The security update rate needed is somewhat directly proportional to the inter-
connection level of the system: a worm exploiting an existing flaw can infect all
vulnerable system in some days up to few minutes in the Internet case. Continuous
update is therefore fundamental for security, and a key requirement on any security
related certification (e.g., ISO/IEC 27001, Common Criteria).

Various mechanisms shall be adopted with regard to flaw remediation, but also
to determine the exact current software inventory and state of a system.

4.3 Product as a Service

Continuous updates, as intended in the previous section, are for products which are
still delivered to the user; i.e., the product is transferred to the customer’s property,
and then needs to be updated in order to maintain its original performance level (or
to surpass it).

The alternative is to give a service instead of the product, and then keep the
product in-house. Concepts such as “pay for service” and “pay for byte” are
nowadays widespread, and they even apply to Cyber Attack services, which can be
easily “bought” with cheap hourly fares [4].

When accessing a service, the final user is not in the loop of the updates any-
more, and there is no update logistic anymore; this achieves a substantial reduction
of the attack surface of the product and of its lifecycle.

Platform as a service (PaaS) are an example of that, where users can use cloud
computing services without the need and duty to set up and maintain the entire
system.

5 Future of In-service Support

In-service support in the military context is all about getting value, long life,
reliability and availability. Therefore, in a cutting edge field, the true value is given
by the ability to evolve own components/systems and to face the technology

26 P. Boschi et al.

change. Cyber security adds the necessity to provide the most vulnerability-free
system; both evolutionary and revolutionary solutions can be adopted, with ranging
costs and applicability. Main problems here are:

• conflicting requirements; security related solutions may bring heavy technical
and procedural impacts on systems, and not all customers may be ready for
them;

• insufficient budget; poor risk analysis activities, or the lack thereof, lead to
underestimation of cyber-security risks, and a subsequent reduction of budget to
manage them;

• general un-awareness of security-related arguments, which lead to conservative
architecture development of Weapon Systems;

• contracts and agreements not always formally suitable for the increased support
requirements that Infosec brings.

5.1 Evolutionary Solutions

Some evolutionary steps can be undertaken in order to achieve more secure systems
which will be able to face the increasing security threats. Ideas can be widely taken
from current hardware and software consumer world; the product is still a classical
software delivery, but the update and support mechanism becomes a key factor.

5.1.1 Antivirus Update Example

To counter some of the discussed threats, introduced by the increase of system
interconnection level, Anti-malware programs can be used, as already happen in
consumer world. In that case, the effectiveness of such programs is granted by the
timely diffusion of malware definitions, made possible by the continuous Internet
connection. It is possible to apply a similar solution to the weapon systems case
with some adjustments, depending on the support model type:

• the developer publishes the updates and the customer itself applies them to the
isolated or low interconnected system;

• the developer provides the updates through a private connection with the
customer;

• the developer provides the updates through a protected connection over a public
infrastructure;

• consumer gets updates directly from specific anti-malware vendor.

As can be seen, the introduction of this technology suggests the adoption of a
continuous update mechanism or product-as-a-service paradigm.

Evolving In-service Support Models for Secure … 27

5.1.2 OS Flaw Remediation Example

In the Common Criteria security certification field, the Evaluation Assurance Level
4 augmented by the ALC_FLR Security Assurance Requirement is established as
the standard evaluation assurance package for general purples OS certification. The
ALC_FLR Security Assurance Requirement requires that the developer have in
place policies and procedures to track and correct flaws and to distribute the cor-
rections. This is the case of MBDA Italia’s FINX-RTOS Security Enhanced
operating system, a COTS derived system customized to make it suitable for the
industry and military usage. The flaw remediation process implemented to satisfy
the ALC_FLR assurance requirement has allowed a fast response to some
well-known vulnerabilities like the world wide famous Heartbleed.

In general, for every organization that uses COTS products, the worldwide
vulnerability databases should be an input to the flaw remediation process. This
allows to properly manage the inherited flaws in a timely manner, applying the
security updates and, if COTS developer correction time is not suitable for the
customer security needs, to make up for this.

Also in this case, the timing and the need to institute a dedicated process suggest
the adoption of a continuous update or product-as-a-service paradigm.

5.2 Revolutionary Solutions

With the diffusion of new services and needs, new solutions, and companies pro-
viding them, are inherently born. Such solutions and companies depend on
service-based contracts not only for the support, but for the product itself; this
usually leads to completely different business thinking, and the fading from product
to service; the support mechanisms may change again, with reduced consumer
involvement in the process.

5.2.1 Cloud Deployment Example

Cloud storage, cloud applications and cloud workspaces are classic examples;
actually, one of the main focus target in the software industry is the development of
products and services related to remote applications and remote desktop
virtualization.

Various vendors are then providing products based on a “cloud deployment
format”, via paradigms like “Software as a Service” (SaaS), where software is
licensed on a subscription and accessed remotely.

Such solution could also be achieved on highly interconnected military systems,
completely removing the classic software package from the formal product deliv-
ery, and keeping it as a remotely accessed service. This could also be extended to

28 P. Boschi et al.

the extreme, with mixed BYOD (Bring Your Own Device) solutions on some
non-critical Weapon System’s parts (e.g., diagnostic laptops).

5.2.2 Service Thinking Example

A service needs to be formally defined, and therefore a service-level agreement
(SLA) is the usual definition of a service contract. In particular the most important
aspects are based on scope, quality and responsibilities. Common features of a SLA
are the contracted delivery time, mean time between failures (MTBF), mean time to
recovery (MTTR), uptime, performance, etc. As an example, within the terms of
Internet Service Provider’s contract, is included a SLA.

Such contracts specifications would become more and more important an a
Weapon System product with some of its components shifting to Weapon System
services.

6 Conclusions

This paper describes the increasing necessity of a paradigm shift on the in-service
support model of Weapon Systems. Architectural, structural and interconnection
level changes on such systems drive the necessity, for the inherent security-related
problems such changes bring.

A fits-all solution can’t be defined at the moment, due to conflicting require-
ments, insufficient budget, lack of Cyber Security awareness and insufficient con-
tract power.

Some hints of solutions are given, both evolutionary and revolutionary; future
work, from both industry and customer, is expected in order to reduce the gap of the
evolving security and support scenarios between military products and mainstream
market offerings.

References

1. NIST, National Vulnerability Database, https://nvd.nist.gov/
2. ENISA, ENISA Threat Landscape 2015, https://www.enisa.europa.eu/publications/etl2015
3. C. Cowan, Software Security for Open-Source Systems, WireX Communications. IEEE

1540-7993/03
4. R. Samani, F. Paget, Cybercrime exposed, McAfee White Paper

Evolving In-service Support Models for Secure … 29

https://nvd.nist.gov/
https://www.enisa.europa.eu/publications/etl2015

Initial Steps Towards Assessing the Usability
of a Verification Tool

Mansur Khazeev, Victor Rivera, Manuel Mazzara and Leonard Johard

Abstract In this paper we report the experience of using AutoProof for static

verification of a small object oriented program. We identify the problems that e-

merge by this activity and classify them according to their nature. In particular, we

distinguish between tool-related and methodology-related issues, and propose nec-

essary changes to simplify both the tool and the method.

Keywords Static verification ⋅ AutoProof ⋅ Verification issues

1 Introduction

Formal proof of correctness of software is still not commonly accepted in practice,

even though both hardware and software technologies for verification have signif-

icantly improved since it was first mentioned in the context of “verifying compil-

er”
1
. In ideal world verifying software would need only “pushing a button”, though

this kind of provers exist, but they are limited to verification of simple or implicit

properties such as absence of invalid pointer dereference [3]. In order to verify a

software, a formal specification should be provided against which it will be verified.

Given a specification, like contracts in Design-by-Contract (DbC) methodology, it is

1
A cipher for an integrated set of tools checking correctness in a broad sense [1, 2].

M. Khazeev (✉) ⋅ V. Rivera ⋅ M. Mazzara ⋅ L. Johard

Institute of Technologies and Software Development, Innopolis University,

1, Universitetskaya Street, Innopolis, Russia 420500

e-mail: m.khazeev@innopolis.ru

URL: https://www.university.innopolis.ru

V. Rivera

e-mail: v.rivera@innopolis.ru

M. Mazzara

e-mail: m.mazzara@innopolis.ru

L. Johard

e-mail: l.johard@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_4

31

32 M. Khazeev et al.

possible to verify specific implementations with respect to this specification. The

term Design-by-Contract was originally introduced in connection with the design

of the Eiffel programming language, but is nowadays also adopted in many other

languages. For example, in C# the methodology is supported through an additional

library [4]. Java has JML add-on [5], while Kotlin has preconditions (require and

requireNotNull clauses) implemented at the language level. Contracts are fully sup-

ported in Eiffel.

Eiffel has a prover for functional correctness called AutoProof [6]. This prover

comes with a powerful methodology for framing and class invariants and it fully

supports advanced object-oriented features [7]. We here present a series of case s-

tudies in order to test the usability of the tool and its applicability in general practice.

The tool was used for verification of three exercises of different size and complexity:

a simple class, a set of related classes and small size industrial project. This paper

describes the results of the first exercise—verification of the class SET, that imple-

ments classic sets from set theory: properties and classical operations.

The challenge of this exercise is mainly related to difficulties that a new user can

encounter while using the tool for the first time. There is no explicit documentation

available: only the website and several papers from the authors of the tool as the main

source of information. However the notation has been evolving and in some of these

papers it is no longer relevant. Verification with AutoProof often requires additional

annotation that helps the tool to derive the more complex properties from the trivial

ones. However, for someone who does not know how the tool works and what is

going on under the hood, the feedback from the tool can be useless or even confusing.

Naturally, this might be excusable if the tool is meant to be used by a limited group of

scientists, but complete documentation needs to be developed, thereby minimizing

the need of additional assertions, in order to make a verification tool applicable in

industrial practice. This is essential, because the tool still requires a knowledge of

the underlying mechanisms and a number of additional annotations.

2 Eiffel and Autoproof

Eiffel is an object oriented programming language that natively supports the Design-

by-Contract methodology [6]. All features in Eiffel should be specified through e-

quipping them with contracts, namely pre- and post-conditions; as well as properties

of classes through invariants. AutoProof is a static verifier for programs written in

Eiffel. It follows the auto-active paradigm [6] where verification is done completely

automated, similar to model checking [3], but where users are expected to feed the

classes providing additional information in the form of annotations to help the proof.

The tool is capable of identifying software issues without executing the code, there-

by opening a new frontier for “static debugging”, software verification and reliability

in addition to general improvements to software quality.

AutoProof verifies the functional correctness of a code written in Eiffel language

equipped with contracts. The tool checks that routines satisfy pre- and

Initial Steps Towards Assessing the Usability . . . 33

post-conditions, maintenance of class invariants, loops and recursive calls termina-

tion, integer overflow and non Void (i.e. null in many other programming languages)

references calls. For that purpose, AutoProof uses a verification language called Boo-

gie [8]: AutoProof translates Eiffel code into Boogie programs as an intermediary

step. The Boogie tool generates verification conditions (logic formulas whose va-

lidity entails the correctness of the input programs) that are then passed to an SMT

solver Z3. Finally, the verification output is returned to Eiffel.

AutoProof supports most of the Eiffel language constructs: in-lined

assertions such as check (assert in many other programming languages), types,

multi-inheritance, polymorphism. By default AutoProof only verifies user-written

classes when a program is verified, while referenced libraries should be verified

separately or should be based on pre-verified libraries, e.g. EiffelBase2 [9].

This pre-verified library offers many different data structures with all features fully

verified.

3 Case Study Experience

The first stage in series of case studies was verification of simple example—the

implementation of an ordinary class for a generic implementation of sets, MY_SET,

using lists (V_LINKED_LIST from the EiffelBase2 library) and equipping it

with contracts. Corresponding annotations were added to help AutoProof to prove

the class.

Set properties were expressed as invariants, namely:

∙ No duplicate elements.

∙ Order of elements in the set is not important.

∙ Cardinality is always greater or equal to 0.

The class implements some basic set operations:

∙ is_empty—a query that states whether the set contain no elements.

∙ cardinality—number of elements in the set.

∙ has—a query that states whether the set contains a given element.

∙ is_strict_subset, is_subset—queries that state whether the set is a strict subset,

a subset of a set provided as an argument.

∙ union, intersection, difference—functions returning new set with the union, inter-

section or difference with a given set, respectively.

During the verification process, it turned out, that working with V_ classes was

too complicated for non-expert users. Therefore the decision was done to simplify

the example replacing V_LINKED_LIST with SIMPLE_LIST.

34 M. Khazeev et al.

4 Problems Taxonomy

Despite the simplicity of the class, various problems arose due to lack of user

experience with the AutoProof tool, ranging from issues with the tool installation

all the way to issues with checking the verified class with tests. In our analysis, these

problems have been divided into two main categories: problems with the tool and

problems with the approaches or methodologies used in the tool.

1. Problems with the tool

(a) Lack of documentation (f) Limitations of the tool

(b) Poor tool feedback (g) User Interface (UI) bug

(c) Redundancy in notations (h) Difficulties with installation/compilation from the sources

(d) Misleading notations

(e) Order of assertions

2. Problems with methodologies

(a) Semantic collaboration

(b) Framing

The first category includes rather minor problems and bugs, mostly related to the

particular implementation in the tool and means that those require local fixes. How-

ever, the second category require improving the methodology or replacing them with

the alternative ones.

4.1 Problems with the Tool

The challenge of this exercise was mainly related to the fact that it had to be done by a

person who had no previous experience with AutoProof, nor any other similar tools.

The difficulty is not in some sophisticated user interface (UI), quite the opposite, it is

rather simple (see Fig. 1)—a “Verify” button and a table, where the results are being

displayed. The main obstacle is in the fact that, the tool expects an input in terms of

assertions, and it is not always clear what the real effect of each input is.

Lack of documentation As we previously described, the tool requires additional

annotations that assist the verification and help to derive one property from another.

Although AutoProof exploits the syntax of the Eiffel language, additional annota-

tions have been introduced by the developers of the tool. Most of them are briefly

described in the online manual, which is available on the EVE website
2
. In addi-

tion, there is an online tutorial which is useful for quick acquaintance with the tool.

However, this is clearly an insufficient reference material for working with the tool.

2
EVE (Eiffel Verification Environment). EVE is a development environment integrating formal

verification with the standard tools.

Initial Steps Towards Assessing the Usability . . . 35

Fig. 1 UI of AutoProof

Overall, there is not much of documentation available online: the website, and

several papers from the authors of the AutoProof tool. Moreover, the notation has

been evolving and in some of these papers it is no longer relevant. Naturally, this

might be excusable if the tool is meant to be used by a limited group of scientists.

On the other hand, if the idea is to apply verification in industrial practices, then

documentation is essential. The tool still requires documentation that explains the

annotations needed and the knowledge of the different mechanisms.

Poor tool feedback The process verification (or static debugging) starts with push-

ing a “Verify” button. The tool then returns some feedback in the form of success,

error and failure messages. A failure message is a message that shows the proper-

ty that cannot be proven. An error message consists of information on some issue

with the input. In both cases, whether it is error or failure messages, users need to

fix them by adding missing assertions. This process repeats until the class is fully

verified. AutoProof implements a collection of heuristics known as “two-step veri-

fication” that helps discern between failed verification due to real errors and failures

due to insufficiently detailed annotations [6]. These failure messages are usually in-

formative: they describe the property and sometimes the reason of the failure. On the

other hand, error messages usually do not tell more than that the tool cannot proceed

with the input it has received.

If there is an error during the translation to Boogie the verification process stops

and AutoProof returns an error message about “internal failure” in some cases with

no additional information. Usually, this errors are caused by newly entered asser-

tions, which makes the process of correcting them easier. However, if this is not the

case, then it is difficult to understand what exactly causes the error. This may be-

come an issue when verifying the whole class, with all its features implemented and

contracts stated, because it is not possible to determine the source of the error. The

solution might be to comment out the features and iteratively verify them one by one

by decommenting them.

Redundancy in annotations AutoProof supports most of the Eiffel language as used

in practice [6]. It also introduces some new notations that support the methodolo-

gies used for verification. These notations are useful for manipulating the defaults of

semantic collaboration in features and classes (this will be discussed in Sect. 4.2).

36 M. Khazeev et al.

create make
feature
make
note

status: creator
do . . . end

Fig. 2 Accepted creation procedure by Autoproof

However, some of these additional notations introduce redundancy. For example

all creation procedures in Eiffel must be listed under the key word create. Autoproof

does not make use of this and instead expects the user to explicitly declare the cre-

ation procedure as depicted in Fig. 2. Even though the procedure make is defined

as a creation procedure in Eiffel, the verifier expects an additional note clause with

status: creator in order to treat it as creation procedure.

Another example is the possible inconsistencies on the given annotations. In

Autoproof, one can declare a procedure as pure, specifying that it will not change the

state of the object, or impure specifying that the procedure might change the state.

This can also be achieved by listing the locations that the procedure might change.

This is done by using the annotation modify. If the clause is empty it means that the

function is pure, impure otherwise. For Autoproof to be able to prove the procedure

union in Fig. 4, it has to be defined with the impure annotation. This means that it

does modify the state of the object. The empty clause modify then needs to specify

that the function is pure. This is done in order to be able to use wrap and unwrap
in the function (as explained later on).

Misleading notations AutoProof support inline assertions and assumptions, which

can be expressed using the check clause supported by Eiffel. Checks are intermedi-

ate assertions that are used during the debugging process in order to check whether

the user has the same understanding of the state at a program point as the verifi-

er [10]. However, removing an intermediate check clause from successfully veri-

fied feature might make the verification process fail. This, more than being there for

the user, is due to check assertions guide the verifier towards a successful verifica-

tion. Probably this is a design solution: not to introduce another clause but to use an

existing one from the language. However, this might confuse users.

Order of assertions A check clause is useful because the verifier does not just check

the property enclosed, but also uses it for further derivations in case the property

was proved correct. The same applies to class invariants, and that makes the order

of properties substantial for the tool. This means that properties are joint not by

the and operator, but by and then, which may lead to verification failures even if

all needed properties are stated (although in improper order). For example, there are

two assertions depicted in Fig. 3: the first for setting up the relation between elements

(the model) and data (the implementation); the second, for defining owned object by

Initial Steps Towards Assessing the Usability . . . 37

invariant
model def : elements = data.sequence.range
owns def : owns = [data]

. . .

Fig. 3 The order of invariant assertions

Current3
. However, in this order the verification will fail, while it will succeed if

owns_def is stated first.

Limitations of the tool Null pointer dereferencing is a well-known issue in object-

oriented programming. In Eiffel, this can be avoided by letting the compiler check

for call consistency [11]: the object source making the call cannot be a Void object.

Currently, Autoproof does not make use of this property of Eiffel. For instance the

verified library EiffelBase2 can only be used when the void-safety property of

Eiffel is disabled. There is a coming version of the tool to support these two Eiffel

environments, but the version is not available yet.

User Interface (UI) bug The tool lacks support which can be observed in some rare

bugs. For example, it can skip some of the features of the class or verify only one of

the features instead of the whole class. Even though, the tool never returned improper

successful verification results, these kinds of bugs might be disrupting to the user.

Difficulties with installation/compilation from sources There are two ways to get

the tool working on a local computer: by installing the build (available online) or

compiling the tool from the source code. For the latter option, the repository requires

a clean-up for compiling. Therefore, is better to use the former method.

In addition, there are several manipulation has to be done while creating a new

project in AutoProof, such as disabling some options and reopening the project in

order to clean it.

4.2 Problems with Methodology: Semantic Collaboration and
Framing

AutoProof supports advanced object-oriented features through a powerful method-

ology to specify and reason about class invariants of sequential programs [7]. But

this power comes at the price of simplicity—the tool requires users to understand

all the underlying methodologies. This limits the tool to expert users by exceedingly

complicating the verification of even such simple classes.

Semantic collaboration AutoProof supports semantic collaboration, i.e. the full-

fledged framing methodology that was designed to reason about class invariants of

structures made of collaborating objects [7]. This methodology introduces its own

3
Denoting the current object in Eiffel.

38 M. Khazeev et al.

annotations which do not exist in the Eiffel language. Annotations are used to equip

features and entire classes with additional information which are used by the verifier.

These include ghost attributes—class members used only in specifications—which

are useful when maintenance of global consistency is required as in subject/observer

or iterator pattern examples [7]. These ghost attributes and default assertions that are

added into pre- and post-conditions often result in over-complicating the verification

process of rather simple classes.

During initial steps of the verification process of the case study presented in this

paper, time was spent trying to understand the failure message: “default_is_closed
may be violated on calling some feature” for some private attribute. Basically, the

tool was expecting owns = [data] in the invariants of the class which is not ob-

vious without understanding the methodology. Moreover, for this specific example

the property could have been derived from exportation status of the attribute. Eiffel

language supports the notion of “selective export”, which exports the features that

follow to the specific classes and their descendants [12]. The verifier ignores this

useful information and requires the properties to be stated explicitly. Considering

selective export might decrease the need for using semantic collaboration [13].

Framing The framing model is used in AutoProof in order to help reason about

objects that are allowed/not allowed to be updated. There are different ways to specify

this, for instance by adding modifies clauses in pre-conditions. One can specify one

or more model fields, attributes of the class or list of objects which may be updated.

This is rather intuitive and straightforward, though it seems to be more relevant to

post-condition clauses. Another alternative is to make use of default clauses included

into each routine, so the framing model should be used only if the behavior of the

routines differ from default. For example, in MY_SET class, all routines are pure (no

side effects), hence all routines were equipped with an empty modify clause. Even

in a function that is defined as pure using the modify clause, that function needs to

be specified as impure in order to use is_wrapped clause, even though it does not

modify the state of any object (see Fig. 4). This might confuse the user.

5 Related Work

Formal notations to specify and verify software systems have existed for a long time,

in particular in some specific domain such as process modeling [14]. A survey of

the major approaches can be found in [15], while [16] discusses the most common

methodological issues of such approaches. Another approach, as in [17, 18], is to use

the formal notation of a modeling language to specify and verify software systems

to then translate it to a programming language.

In [19] the authors present an extensive survey of algorithms for automatic static

analysis of software. The discussed techniques (static analysis with abstract domains,

model checking, and bounded model checking) are different, but complementary, to

Initial Steps Towards Assessing the Usability . . . 39

feature −− Queries
union(other : like Current) : like Current
−− New set of values contained in ‘Current’ or ‘other’

note status : impure
require
modify nothing : modify([])
. . .

end

Fig. 4 Pure function (empty modify clause) specified as impure (note clause status: impure)

the one discussed in this paper, and they are also able to detect programming errors

or prove their absence.

The importance of focusing on usability requirements for verification tools has

been identified in [20]. The authors have classified usability properties into three

main categories: Interface, Utility and Resources management. Since the interface

of AutoProof tool consists of a button and a table, the interface category was omitted.

Only utility (in term of clearness of error/failure messages) and Resources manage-

ment (in term of properties such as installation, documentation) were considered.

The results of testing the usability of AutoProof, in particular, by non-expert users

has been studied in [21], where programmers with little formal methods experience

were exposed to the tool.

6 Conclusion

AutoProof is not trivial in its usage and needs detailed knowledge of what is going

on behind the scenes. The tool requires a number of additional assertions in pre- and

post-conditions, as well as in invariants for successful verification, while ignoring

some information that has been already provided. To be used in practice the usability

of the tools needs to be be significantly improved to the level where verification is

simple enough to be used by ordinary programmers. By simple we mean, that it

should:

∙ require less additional annotations by automatically deriving properties from in-

formation which is currently being neglected and by removing redundant clauses

and reworking some of ghost class members;

∙ provide clearer feedback in case some property can not be satisfied, offering hints

and possible solutions;

In addition, it is important to:

∙ develop a documentation describing all used methodologies, including detailed

information about notations with examples

∙ clean up and rebuild the tool from latest sourced that are available in the EVE

repository and fix all the bugs that we identified;

40 M. Khazeev et al.

As a further work, AutoProof will be tested through verification of a set of related

classes and a small size industrial project, the Tokeneer project
4
.

References

1. J. King, A program verifier. Ph.D. thesis, School of Computer Science, Carnegie Mellon Uni-

versity, 1969

2. J. Woodcock, E.G. Aydal, R. Chapman, The Tokeneer Experiments (2010), pp. 405–430

3. E.M. Clarke Jr., O. Grumberg, D.A. Peled, Model Checking (MIT Press, Cambridge, MA,

USA, 1999)

4. M. Documentation, Code contracts, https://msdn.microsoft.com/en-us/library/dd264808,

Accessed in May 2017

5. G.T. Leavens, Y. Cheon, Design by contract with jml, 2003

6. J. Tschannen, C.A. Furia, M. Nordio, N. Polikarpova, Autoproof: auto-active functional veri-

fication of object-oriented programs, in Proceedings of 21st International Conference, TACAS
2015 (London, UK, 11–18 April 2015), pp. 566–580

7. N. Polikarpova, J. Tschannen, C.A. Furia, B. Meyer, Flexible invariants through semantic col-

laboration. In: Proceedings of the 19th International Symposium on Formal Methods, FM 2014
(Springer International Publishing, Singapore, 12–16 May 2014), pp. 514–530

8. K.R.M. Leino, This is boogie 2, Technical Report (June 2008)

9. N. Polikarpova, J. Tschannen, C.A. Furia, A fully verified container library, in FM 2015: For-
mal Methods, Lecture Notes in Computer Science (Springer, 2015)

10. E.Z. Chair of Software Engineering. Autoproof tutorial

11. A. Kogtenkov, Void safety. Ph.D. thesis, ETH Zurich, 2017

12. B. Meyer, Touch of Class: Learning to Program Well with Objects and Contracts, 1st edn.

(Springer Publishing Company, 2009)

13. D. de Carvalho, Modularly reasoning in object-oriented programming using export status (un-

published, 2017)

14. Z. Yan, M. Mazzara, E. Cimpian, A. Urbanec, Business process modeling: classifications and

perspectives, in Business Process and Services Computing: 1st International Working Con-
ference on Business Process and Services Computing, BPSC 2007 (Leipzig, Germany, 25–26

September 2007), p. 222

15. M. Mazzara, A. Bhattacharyya, On modelling and analysis of dynamic reconfiguration of

dependable real-time systems, in 2010 Third International Conference on Dependability (July

2010), pp. 173–181

16. M. Mazzara, Deriving specifications of dependable systems: toward a method, in Proceedings
of the 12th European Workshop on Dependable Computing, EWDC (2009)

17. V. Rivera, N. Cataño, Translating Event-B to JML-Specified Java programs, in 29th ACM SAC,

(Gyeongju, South Korea, 24–28 March 2014)

18. V. Rivera, N. Cataño, T. Wahls, C. Rueda, Code generation for event-b. Int. J. Softw. Tools

Technol. Transf. 19, 31–52 (2017)

19. V. D’Silva, D. Kroening, G. Weissenbacher, A survey of automated techniques for formal soft-

ware verification. IEEE Trans. CAD Integr. Circ. Syst. 27(7), 1165–1178 (2008)

20. R. Razali, P. Garratt, Usability requirements of formal verification tools: a survey, J. Comput.

Sci. 10(6), 1189–1198 (2010)

21. C.A. Furia, C.M. Poskitt, J. Tschannen, The AutoProof verifier: usability by non-experts and

on standard code, in Proceedings of the 2nd Workshop on Formal Integrated Development
Environment (F-IDE), ed. by C. Dubois, P. Masci, D. Mery, vol. 187 (EPTCS, June 2015),

pp. 42–55

4
http://www.adacore.com/sparkpro/tokeneer/download.

https://msdn.microsoft.com/en-us/library/dd264808
http://www.adacore.com/sparkpro/tokeneer/download

The Agile Coordination Processes

Manuel Mazzara and Alberto Sillitti

Abstract Software development is a very complex activity in which the human fac-

tor has a paramount importance. Moreover, since this activity requires the collabo-

ration among different stakeholders, coordination problems arise. Different devel-

opment methodologies address these problems in different ways. Agile Methods

address them embedding coordination mechanisms inside the process itself rather

than defining the development process on one side and then superimposing coordi-

nation through additional practices or tools.

Keywords Agile methods ⋅ Coordination ⋅ Processes

1 Introduction

A critical problem in software development is the coordination of all the people

involved: developers, managers, users, and so on. Usually, all these people share

a genuine interest in getting the software done. However, they have different and

even conflicting perceptions of what is going on, what their responsibilities are, what

they should reasonably expect from the other parties. Such different views may have

dramatic effects on the software being produced [13].

Traditional software engineering methods often approach the coordination of

such people by superimposing a process. Not surprisingly, the first software processes

came especially from the US Army,
1

where discipline and adherence to orders are

kept in highest regard. Such processes have evolved from the original waterfall model

to more modern structures, which take more into account the human nature of the

1
See the two NATO Software Engineering conferences held in 1968 and 1969 at

http://homepages.cs.ncl.ac.uk/brian.randell/NATO.

M. Mazzara (✉) ⋅ A. Sillitti

Innopolis University, Russian Federation, Innopolis, Russia

e-mail: m.mazzara@innopolis.ru

A. Sillitti

e-mail: a.sillitti@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_5

41

http://homepages.cs.ncl.ac.uk/brian.randell/NATO

42 M. Mazzara and A. Sillitti

stakeholders, their natural tendencies, the time they can wait to get something done,

and the possible conflicts. Still, the central mechanism for coordination is the adher-

ence to the process.

Agile Methods (AMs) take a different approach in coordinating stakeholders.

The Agile Manifesto,
2

the reference point of all AMs, clearly states “Individuals

and interactions [should go] over processes and tools” and “Responding to change

[should go] over following a plan”. Such statements express a desire to identify other

mechanisms to coordinate development than the traditional plan [17].

Too often such statements have been considered a naïve desire to be good and

compassionate, more an aim than a real prescription. In this paper we argue that: (a)

the approach followed by the AMs are backed by emergent theories of management,

such as the theory of coordination of Malone and Crowston [14, 15] or Ouchi [16];

(b) a thorough understanding of such theories may improve the overall management

of Agile projects.

Knowing the coordination mechanisms in place is extremely important in AMs, as

their implementation in a production environment requires specific customizations

to the organization. Their simplistic application would be a violation of the Agile

Manifesto—as already mentioned above “Individuals and interactions [should go]

over processes and tools”. Therefore, understanding the mechanisms behind AMs is

of paramount importance to customize and implement them correctly.

To this end, there are several empirical studies analyzing the behavior of software

developers focus on agile practices and identifying how they work and collaborate

inside the development team [8, 9, 11, 12, 19, 20, 23] using non-invasive tools that

have the ability of collecting data without interfering with the work of the developers

[4–7, 12, 18].

This paper is organized as follows. In Sect. 2 and subsections, we review works on

and principles of the theory of coordination and we relate them to AMs. In Sect. 3,

we consider how these principles are implemented in a real AM; we use the first

version of Extreme Programming (XP) [1] as the reference for our discussion as it is

the most widely known AM. In Sect. 4, we summarize how AMs take advantage of

the principles of the theory of coordination, also outlining how they are applied in

other, widely widespread AMs, and then we discuss how future customizations can

be done. Finally, in Sect. 5, we draw the conclusions.

2 Understanding Coordination in the Software Process

According to the Merriam-Webster, coordination is “the harmonious functioning of

parts for effective results”. In the development of any commercial software endeavor

there are always at least two parties (stakeholders): the producer (the developer)

and the consumer (the customer). Usually, the number of stakeholders is much

higher.|break A significant part of project management is devoted in managing their

2
See http://www.agilemanifesto.org/.

http://www.agilemanifesto.org/

The Agile Coordination Processes 43

coordination, as an effective coordination of stakeholders is a prerequisite for a suc-

cessful project.

Malone and Crowston [15] suggested a structural taxonomy of dependencies and

associated coordination mechanisms based on all the possible relationships between

tasks and resources. For simplicity, he considered tasks both the goals to be achieved

and the activities to be performed. With the term resources he included everything

used or affected by activities, both material things and effort/time of actors. Accord-

ing to this framework, there are three main kinds of dependencies between tasks and

resources:

1. Task-resource dependencies

2. Task-task dependencies

3. Resource-resource dependencies.

2.1 Dependences

Task-resource dependencies. This dependency occurs when a task requires some

resource to be performed. If there is only one appropriate resource known, then that

resource must be the one used. However, in many situations there are many possi-

bly appropriate resources, creating the problem of resource assignment. A general

resources allocation process encompasses the following steps:

∙ Identification of the resource required by the task

∙ Identification of the resources available

∙ Choice of a particular resource

∙ Assignment of the resource to the task

One very important special case of resource allocation is task assignment, that is,

allocating the scarce time of actors (resource) to the tasks they will perform [15].

Task-task dependencies. The works of Thomson [22] and of Malone and Crowston

[15] has defined three prototypical dependencies among tasks and the connected

archetypes of coordination mechanisms of the stakeholders carrying out such tasks:

∙ Producer-consumer: when a task creates a resource (output) that another task

requires as an input.

∙ Shared resource: multiple tasks are coordinated by the access of shared, mutually

exclusive resources.

∙ Common output: when multiple tasks contribute concurrently to create the same

output.

Resource-resource dependencies. It is possible for different resources to be inter-

dependent, for example, by being connected together in some kind of assembly [15].

In this case, changes to a resource could affect the state of another resources and

it is not always easy to identify the relationships among resources. A critical step

to manage these dependencies is to identify all the potential relationships among

resources.

44 M. Mazzara and A. Sillitti

2.2 Coordination

In traditional software engineering, the most widely used coordination mechanism

is produced-consumer. The waterfall model is all based on the concept of connecting

different phases by deliverables produced upstream and consumed downstream. For

example, the phase of analysis takes as input the requirement document (produced

during the requirement elicitation phase) and produces as output the analysis docu-

ment; then the phase of design takes as input the analysis document and produces as

output the design document.

Even more recent plan based software processes are based on a producer-

consumer dependency. For instance, in the iterative model there a producer-consumer

dependency both (a) among phases of an iteration and (b) among interfaces across

iterations.

Clearly, such strict producer-consumer dependencies do not capture entirely the

essence of agile processes, which require the ability to handle variations, uncer-

tainty etc. This results in a use of also the shared resources and the common output

archetypes.

Thompson [22], and Kraut and Streeter [13] link the dependencies presented

above to concrete classes of mechanisms for coordinating:

∙ From task-resource dependencies, authority or market: the tasks to be performed

are assigned by an organizational authority responsible for executing the work or

by the needs of the market/customer. In this way, priorities are defined and tasks

are executed accordingly.

∙ Task-task dependencies:

– From the producer-consumer dependency, plans and authority: coordination by

plans involves addressing a particular interdependence problem by developing

schedules and formal rules for action. Coordination by plan often requires an orga-

nizational authority responsible for implementing the correct plan.

– From the shared resource and the common output dependencies, focal points,

precedents, and standardization: when it is difficult or impossible to communi-

cate via a plan how to solve a coordination problem, it can be useful to provide

everyone a common goal (called focal point). The common goals help identifying

equilibriums in the behavior of the stakeholders that implicitly define plans. Such

equilibriums can emerge spontaneously, for example as result of past interactions

(precedents), or they can be “recommended” by an authority after analyzing the

behavior (standardization).

– From the common output dependency, mutual adjustment, repeated interactions,

and communication: repeated interactions result in information and common

knowledge that help the different stakeholders to mutually adjust their expecta-

tions and actions. Communication is a powerful coordination mechanism: it cre-

ates common knowledge and shared expectations thus enabling mutual adjust-

ment.

The Agile Coordination Processes 45

∙ From resource-resource dependencies, standardization and communication: com-

plex systems requires different components to cooperate, therefore the definition

of standard (and stable interfaces) is required. Moreover, the sharing of the infor-

mation about them is needed.

As mentioned, AMs include also shared resources and common output depen-

dencies. This implies that stakeholders are coordinated also via focal points, mutual

adjustments, repeated interactions, and communication. These coordination mecha-

nisms are implemented through practices integrated in the development process, not

added on the top of it. Needless to say, this reflects the adaptive and human-centric

approach of AMs.

Exogenous and endogenous control. Coordination mechanisms define how the dif-

ferent tasks of a process contribute to the goal. Process control enacts coordination

mechanisms. The control can be exogenous or endogenous [21].

Exogenous control defines rules added to the development process. This means

that the process itself does not include such rules but they are added later to imple-

ment an extensive control mechanism. Exogenous control relates to the coordination

via plans and authority. Endogenous control defines the control rules as part of the

development process. This means that the process has been designed so that control

mechanisms are embedded in the process and it is not possible to separate them.

Endogenous control is based on focal points, mutual adjustments, repeated interac-

tions, and communication.

Traditional methods use mostly exogenous control. AMs take advantage also of

endogenous control. This means that several AM practices are designed to force

developers to coordinate without asking them to do it explicitly, limiting the not

directly productive activities needed only for coordination. Therefore, all the stake-

holders can concentrate on their core business while problems are resolved when

they arise: the endogenous control prevents going ahead if a problem is not solved.

Needless to say, this is a clear driver for quality: anything that does not match the

specified quality control cannot proceed.

People oversighting. In parallel to the control of processes, there is the problem of

oversighting the different stakeholders. This is particularly important for managers

of AMs projects.

Ouchi [16] has identified three major mechanisms for oversighting people, which

depend on the ability to measure the output and the knowledge available on the target

processes (Fig. 1):

∙ Behavioral: used when it is clear and transparent the operations needed to produce

the specified output. This is typical of clerical work.

∙ Outcome: used when it is possible to measure the amount and/or the quality of the

output. This is typical in simple professional or technological tasks, which might

also be outsourced.

∙ Clan: used when neither the process is clear nor the output is easy to measure.

This is the typical situation in the most complex knowledge-based works, where

the final evaluation of outcome of the work can be done only after a while.

46 M. Mazzara and A. Sillitti

Behavioral
or Output

Behavioral

Output

Clan

Understanding of the
development process

Ability to
measure the

output

Fig. 1 Organization and control types

The understanding of the expected development process is higher in traditional,

plan-based development techniques where there are formal definitions of tasks, pro-

cedures, and roles. For instance, in the waterfall model every phase of development

has a very clear output and procedure to go from its input to its output (it is a dif-

ferent issue in which circumstances such approach is effective). AMs acknowledge

the difficulty in understanding the software development process and in measuring

its output. Therefore, they prefer to oversight resources with a clan approach. This

is clear in the Agile Manifesto, where collaboration is considered more important

than negotiation and interaction more than processes.3

3 Coordinating XP Projects

This section discusses how the various coordination and control techniques discussed

so far are applied in a specific AM to provide a concrete example of how in a specific

case the ideas become get into practice.

We consider the first version Extreme Programming (XP) [1] since it is probably

the most widely used AM. XP is organized in three layers: founding values, drivers,
and practices. Founding values define the framework in which XP developers oper-

ate. The drivers are the mechanisms by which the values translate into the practices,

which in turn define the specific project activities.

Defining a software process in terms of values is aligned with the overall idea

of AMs to focus on people; it takes advantage of clan over sighting. The values are

the founding element of the team/clan. Joining the team/clan requires a complete

sharing of the values, and from values the manager with the team derives the drivers

and the practices.

The specific values adopted by XP are simplicity, courage, feedback, and commu-

nication. They shape the approach people have in the development process. These

four values already reflect the third kind of coordination mechanisms that we have

discussed: “mutual adjustment, repeated interactions, and communication”.

3
See http://www.agilemanifesto.org/.

http://www.agilemanifesto.org/

The Agile Coordination Processes 47

The three drivers of XP are (a) a focus on value and on what generates the

value for the customer, (b) to proceed with a constant flow of activities driven by

customer’s desire, and (c) an aim at eliminating defects without any trade-off deci-

sion. These three drivers call for an endogenous process control. The value should be

generated by the process itself and what is not aligned with the value should be sim-

ply banned. The activities should proceed at a constant pace, and the constant pace

would be the primary indicator of the wealth of the process. Defect should never be

present, so that a later (exogenous) quality control would become useless.

The twelve XP practices take advantage of a variety of control and coordination

mechanisms. We now review the most relevant of them.

XP adopts an incremental and iterative development process with frequent

releases. Releases are built via short iterations. Developers work in pairs. Altogether,

in these practices stakeholders operate not only using the input they receive but also

taking into account the feedback coming from the output they produce. The depen-

dencies are common output, with a fast feedback from the customer. This approach is

the application of the mutual adjustment, repeated interactions, and communications

coordination mechanisms.

Like the other AMs, XP requires less formal documentation than typical plan-

based development processes. Therefore, there is a need of informal communication

mechanisms that balance the reduction of documentation and allow developers, man-

agers, and customers to keep synchronized during the project [10, 13]. Altogether,

the key of knowledge sharing in XP is the interactions among stakeholders. Pair

programming, on-site customer, planning game, continuous integration, test-driven

development, collective code ownership, and metaphors are practices that enable

such interaction. Moreover, the limited size of the co-located XP teams allows devel-

opers to communicate frequently and directly.

Pair programming encourages the sharing of tacit knowledge such as system

knowledge, coding convention, design practices, and tool usage tricks. Furthermore,

the practice of changing the couples frequently improves communication, mutual

trust, and informal training [2].

On-site customer allows a continuous exchange of information between the devel-

opment team and the customer through very short and repeated interactions. This

close collaboration helps to create focal points and to coordinate the activities

through mutual adjustments.

The planning game is a meeting where developers and customers discuss the

work done and what to do next. Such information exchange allows team mem-

bers to receive feedback and understand the priorities of the customer. During these

meetings developers and customers define a plan for a single iteration that will be

changed/adapted in the following one. These meetings also create focal points, pro-

viding common and very concrete goals to developers.

Coding is driven by tests and the code is continuously integrated. Test-drive devel-

opment is based on the communication of the requirements. Tests pass only if the

code is correct and only after that it is possible to go ahead with the development

(endogenous control).

48 M. Mazzara and A. Sillitti

Table 1 Coordination and control mechanisms in XP

Practice Coordination Control

Planning game Plans, focal points,

communication

Endogenous

Short releases Mutual adjustment, repeated

interactions

Endogenous

Metaphor Focal points, communication Exogenous

Simple design Communication Exogenous

Test-driven development Communication Endogenous

Refactoring Mutual adjustment Endogenous

Pair programming Communication Endogenous

Collective code ownership Standardization Endogenous

Continuous integration Mutual adjustment Endogenous

40 hours week Plan Exogenous

On-site customer Mutual adjustment, repeated

interaction, market

Exogenous

Coding standards Standardization Exogenous

Continuous integration avoids diverging or fragmented development efforts ensur-

ing that the all the code developed in a single day provide a meaningful micro

functionality and the code is able to work correctly with the already existing code.

This practice implements endogenous control since it is not possible to continue the

development if the integration is not carried out successfully.

Collective code ownership implies that everyone one in the team is individually

responsible for all the code produced by the team: s/he can create, delete and mod-

ify portion of the code provided that s/he works in pairs with a test-first approach.

Collective code ownership establishes a shared-resource dependency—the shared

resource is the code. It forces developers to write the code in a clear way to allow

the others to understand and modify it when required. This means that they have to

follow coding standards and write comments when the code is hard to understand to

communicate important information to other team members.

The usage of metaphors is another way to create focal points. A metaphor is a

lingua franca shared by developers, managers, and customers that promotes a com-

prehensive understanding of the project by all the stakeholders.

Table 1 summarizes the 12 XP practices identifying the related coordination and

control mechanisms.

Altogether, the success of XP projects does not rely (only) on the heroic effort of

a group of talented people. It is strongly grounded in very effective coordination and

control mechanisms, with solid theoretic foundations, even if not widely known.

Such mechanisms may be also quite onerous for people, as they often require a

personal involvement that is much higher than usual—for instance, pair program-

ming, collective code ownership, and test driven development may require devel-

The Agile Coordination Processes 49

opers to change dramatically their habits. Managers and customers need to exercise

trust in developers and be largely available to them. People factors are reported to

be critical for XP. Even the first XP project, the C3 project [1], was terminated by

managers without a real motivation even if it has been a major technical success.

Moreover, such mechanisms might not be applicable to any context—large or

not co-located teams might have a hard time to use focal points, mutual adjustment,

repeated interactions, and informal coordination. This could explain the current lack

of evidence that XP can be adopted in large and/or non co-located teams.

4 Comments on Coordination in Agile Methods

From the discussion above, it is evident that AMs do not simply rely on the good will

of the stakeholders. They extend the variety of coordination and control mechanisms

in use, using also:

∙ Informal coordination through direct and face-to-face interactions

∙ Focal points

∙ Standardization

∙ Mutual adjustment

∙ Repeated interactions

∙ Communication

Every AM then decides on the specific mix to adopt. In SCRUM, the coordination

through plans is stronger than in XP since it forces developers to define assignments

to be carried out by each team. DSDM focuses on the development of a large number

of prototypes that are refined through repeated interactions and the communication

with the customer. In the Crystal family, the importance of the control through plans

increases with the size of the development team since the management of large teams

require more planning. Moreover, the emphasis on communication changes as well.

If the team is small the communication is performed through informal and through

face-to-face meetings, while if size of the team increases more emphasis is given to

formal communication through written documentation.

Altogether, an effective implementation of an AM requires tailoring them for the

specific context and according to the specific structure of the company in which

they are used. In turn, such tailoring requires a comprehensive understanding of the

underlying coordination and control mechanisms, which are intrinsically different

than those of a traditional, plan-based method.

It is worth noticing that such coordination mechanisms are usually difficult to

implement, as they require a direct involvement of the stakeholders, not just them

following a plan. This should not surprise: the problem of people not willing to join

flexible teams is fully described in the literature [24], and it is discussed also for

AMs [3].

Additional difficulties are related to the size of the team and their co-localization.

Many practices used in AMs do not scale well. For instance, direct communication is

50 M. Mazzara and A. Sillitti

possible only if the number of people involved is small. For this reason, the Crystal

methods modifies the approach to development according to the size of the team.

Furthermore, the coordination mechanisms implemented in the AMs are strongly

based on co-localization of the team. Focal points, repeated interactions, mutual

adjustments, etc. are all implemented through practices that require the physical pres-

ence in a single place.

5 Conclusions

This paper has analyzed the coordination mechanisms used in XP through the imple-

mentation of several practices. This approach is different from the coordination

mechanisms used in the traditional development methods. Traditional methods use

detailed process specifications that developers have to follow. AMs use a few simple

practices that have the result to force the coordination among the different activities

without forcing developers explicitly. The application of such practices has strong

basis in the coordination theory.

References

1. K. Beck, Extreme Programming Explained (Addison-Wesley, 1999)

2. T. Chau, F. Maurer, G. Melnik, Knowledge sharing: agile methods vs. tayloristic methods,

in 12th International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Austria, June 2003

3. A. Cockburn, Agile Software Development, (Addison-Wesley, 2001)

4. I. Coman, A. Sillitti, An empirical exploratory study on inferring developers? activities from

low-level data, in 19th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2007), Boston, MA, USA, 9–11 July 2007

5. I. Coman, A. Sillitti, Automated segmentation of development sessions into task-related sub-

sections. Int. J. Comput. Appl. ACTA Press, 31(3) (2009)

6. I. Coman, P.N. Robillard, A. Sillitti, G. Succi, Cooperation, collaboration and pair-

programming: field studies on back-up behavior, J. Syst. Softw. Elsevier, 91(5) 124–134 (2014)

7. L. Corral, A. Sillitti, G. Succi, J. Strumpflohner, J. Vlasenko, DroidSense: a mobile tool to

analyze software development processes by measuring team proximity, in 50th International
Conference on Objects, Models, Components, Patterns (TOOLS Europe 2012), Prague, Czech

Republic, 29–31 May 2012

8. L. Corral, A. Sillitti, G. Succi, Mobile multiplatform development: an experiment for perfor-

mance analysis, in 9th International Conference on Mobile Web Information Systems (Mobi-
WIS 2012), Niagara Falls, ON, Canada, 27–29 August 2012

9. L. Corral, A. Sillitti, G. Succi, Software development processes for mobile systems: is agile

really taking over the business?, in 1st International Workshop on Mobile-Enabled Systems
(MOBS 2013) at ICSE 2013, San Francisco, CA, USA, 25 May 2013

10. Curtis, W., Krasner, H., Iscoe, N.: A field study of the software design process for large systems.

Commun. ACM 31(11) (1988)

11. I. Fronza, A. Sillitti, G. Succi, Modeling spontaneous pair programming when new developers

join a team, in 3rd International Symposium on Empirical Software Engineering andMeasure-
ment (ESEM 2009), Lake Buena Vista, FL, USA, 15–16 October 2009

The Agile Coordination Processes 51

12. I. Fronza, A. Sillitti, G. Succi, J. Vlasenko, M. Terho, Failure prediction based on log files

using random indexing and support vector machines. J. Syst. Soft. Elsevier, 86(1) 2–11 (2013)

13. R. Kraut, L. Streeter, Coordination in Software Development. Commun. ACM 38(3) (1995)

14. T.W. Malone, K. Crowston, What is coordination theory and how can it help design cooperative

work systems, in ACM Conference on Computer-supported Cooperative Work, (Los Angeles,

CA, USA 1990)

15. T.W. Malone, K. Crowston, The interdisciplinary theory of coordination. ACM Comput. Surv.

15(1) (1994)

16. W.G Ouchi, Markets, bureaucracies and clans. Adm. Sci. Q. 25(1) (1980)

17. M. Poppendieck, T. Poppendieck, Lean Software Development: an agile toolkit, (Addison-

Wesley 2003)

18. A. Rezaei, B. Rossi, A. Sillitti, G. Succim, Knowledge extraction from events flows, inMethod-
ologies and Technologies for Networked Enterprises, eds. G. Anastasi, E. Bellini E. Di Nitto

C. Ghezzi L. Tanca E. Zimeo (Springer 2012)

19. M. Scotto, A. Sillitti, G. Succi, Open source development process: a Review. Int. J. Softw. Eng.

Knowl. Eng. World Sci. 17(2) 231–248 (2007)

20. A. Sillitti, G. Succi, J. Vlasenko, Understanding the impact of pair programming on developers

attention: a case study on a large industrial experimentation, in 34th International Conference
on Software Engineering (ICSE 2012), Zurich, Switzerland, 2–9 June 2012

21. G. Succi, Managing eXtreme Projects, EUROMICRO 2003 (Belek-Antalya, Turkey, Septem-

ber, 2003)

22. J.D. Thompson, Organizations in Action: social science bases of administrative theory,

(McGraw-Hill 1967)

23. R. Tumyrkin, M. Mazzara, M. Kassab, G. Succi, J. Lee, Quality attributes in practice: contem-

porary data, in 10th KES International Conference, Puerto de la Cruz, Tenerife, Spain, June

15–17 2016

24. J.P. Womack, D.T. Jones, Lean Thinking: banish waste and create wealth in your corporation,

(Free Press, 2003)

A Blockchain-Based Solution for Enabling
Log-Based Resolution of Disputes in
Multi-party Transactions

Leonardo Aniello, Roberto Baldoni and Federico Lombardi

Abstract We are witnessing an ongoing global trend towards the automation of

almost any transaction through the employment of some Internet-based mean. Fur-

thermore, the large spread of cloud computing and the massive emergence of the

software as a service (Saas) paradigm have unveiled many opportunities to combine

distinct services, provided by different parties, to establish higher level and more

advanced services, that can be offered to end users and enterprises. Business-to-

business (B2B) integration and third-party authorization (i.e. using standards like

OAuth) are examples of processes requiring more parties to interact with each other

to deliver some desired functionality. These kinds of interactions mostly consist of

transactions and are usually regulated by some agreement which defines the obliga-

tions that involved parties have to comply with. In case one of the parties claims a

violation of some clause of such agreement, disputes can occur if the party accused

of the infraction refuses to recognize its fault. Moreover, in case of auditing, for con-

venience reasons a party may deny to have taken part in a given transaction, or may

forge historical records related to that transaction. Solutions based on a trusted third

party (TTP) have drawbacks: high overhead due to the involvement of an additional

party, possible fees to pay for each transaction, and the risks stemming from having

to blindly trust another party. If it were possible to only base on transaction logs to

sort disputes out, then it would be feasible to get rid of any TTP and related short-

comings. In this paper we propose SLAVE, a blockchain-based solution which does

not require any TTP. Storing transactions in a public blockchain like Bitcoin’s or

Ethereum’s provides strong guarantees on transactions’ integrity, hence they can be

L. Aniello (✉) ⋅ R. Baldoni ⋅ F. Lombardi

Research Center of Cyber Intelligence and Information Security Department

of Computer Control, and Management Engineering “Antonio Ruberti”,

“La Sapienza” University of Rome, Rome, Italy

e-mail: aniello@dis.uniroma1.it

R. Baldoni

e-mail: baldoni@dis.uniroma1.it

F. Lombardi

e-mail: lombardi@dis.uniroma1.it

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_6

53

54 L. Aniello et al.

actually used as proofs when controversies arise. The solution we propose defines

how to embed transaction logs in a public blockchain, so that each involved party can

verify the identity of the others while keeping confident the content of transactions.

Keywords Blockchain ⋅ Log certification ⋅ Trustworthiness

Multi-party transactions

1 Introduction

As Internet-based services are evolving, companies need to integrate their IT infras-

tructures. Business-to-Business (B2B) integration aims to connect key business pro-

cesses in an automated and optimized way, so as to deliver sustainable competitive

advantage to customers and suppliers. A relevant example regards cloud federations,

where multiple private/public IaaS providers share their own resources [2, 8, 10] to

cope with load peaks without over-provisioning, by renting out resources otherwise

unused. IaaS providers supply these resources temporarily, upon explicit requests by

parties in need. Such integrations require multi-party transactions that need to be

regulated through some Service Level Agreement (SLA) so that, in case one party

claims an SLA violation, she can prove it. Indeed, each party may keep logs of sent

requests and received responses, but the other party may ignore requests/responses

or deny logs validity.

Current solutions employ a trusted-third party (TTP) [3, 7] which is in charge of

checking SLA compliance and solve possible disputes. In this way, parties cannot

drop or deny any sent request or received response, because the TTP is involved in

and logs every interaction (see Fig. 1). The main drawbacks of TTP-based solutions

are mainly related to: (i) performance overhead, as required interactions are routed

through the TTP, which can be a single point of failure and a performance bottleneck;

(ii) additional fees, as the TTP intermediation does not usually come for free and may

ask for an initial fee or for per-transaction fees; (iii) the TTP must be trusted and if

Fig. 1 TTP-based solution

A Blockchain-Based Solution for Enabling Log-Based . . . 55

it behaves dishonestly or colludes with the other parties, there is no chance to prove

the injustice.

In this paper we propose SLAVE (Service Level Agreement VErified), a solu-

tion to replace a non-totally trustworthy TTP with an intermediary based on a pub-

lic blockchain like Bitcoin’s [6] or Ethereum [11], such that data sent to a public

blockchain cannot be falsified, hence no risk of dishonest behaviour or collusion.

Since data in a public blockchain can be seen by everyone, pseudonyms and asym-

metric cryptography is used to mask sensitive information.

Paper structure. Section 2 introduces an overview of blockchain technology and it-

s properties, Sect. 3 presents the proposed solution, finally Sect. 4 concludes dis-

cussing future work.

2 Background on Blockchain

The blockchain is a technology initially conceived to manage in a secure fashion the

transactions of Bitcoin [6] in a trustless p2p network. It is a public ledger replicated

among all nodes participating the network. It is composed by consecutive chained

blocks, each one containing a set of transactions, a hash referencing the previous

block, and a special number called proof-of-work (PoW), i.e. a number such that the

hash of the entire block is lower than a target number. This target is tuned so that par-

ticipating nodes will find a solution (i.e. the PoW) within a certain time with high

probability. For Bitcoin’s blockchain this time is 10 min, while for Ethereum’s is

about 15 s. Computing the PoW requires high computational power, and it is consid-

ered nearly impossible for a single node to find a solution for a block in a reasonable

time [5]. Nodes responsible to collect transactions and creating the chain by comput-

ing the PoW are called miners. Miner’s incentive consists in a reward for each mined

block. Once a block has been solved (i.e. mined), the miner broadcasts it to the net-

work. Each node controls the block validity before chaining it to the previous block.

Forks are possible as multiple miners may mine a different block and propose them

in the same time to the network. Usually forks are solved during time by employ-

ing the rule of always accepting the longest chain, hence after some mined blocks

the network will converge to a unique chain. The blockchain is indeed considered

an eventual consistent database. Branches cannot be precomputed off-line as min-

ing each block needs the hash of the previous one. This gives to public blockchains

strong data integrity guarantees. Indeed, an attacker willing to tamper with data s-

tored in the blockchain should have the majority of the computational power of the

entire network. Indeed, to forge a value in a block she should compute again the

PoW of every following blocks faster than the rest of the network, so as to propose

a longer chain. Assuming a majority of hash power controlled by honest miners, the

probability of a fork of depth n is (2−n) [1]. This gives users high confidence that

simply waiting for a small number of nodes to be added (e.g. 6 blocks in Bitcoin)

will ensure their transactions become tamper-proof. Because of its decentralisation

and data integrity properties, blockchain has been investigated for different purpos-

56 L. Aniello et al.

es, e.g. for smart contracts with Ethereum [11], as an alternative to typical Remote

Data Auditing solutions [9], and to ensure integrity of cloud storage [4].

3 Proposed Solution

In this section we present SLAVE, a solution to enable log-based resolution of dis-

putes in multi-party transactions. SLAVE employs a public blockchain to store re-

quests/responses. Both provider and consumer participate in the mining process to

detect requests and responses directed to them (see Fig. 2). Storing requests and re-

sponses in a public blockchain provides strong integrity guarantees, thus they cam

be then used in case of disputes. As data in a public blockchain can be accessed by

everyone, there is the need to mask sensitive information, which in this case are the

identities of involved parties and the content of transactions.

Identities are masked through the usage of pseudonyms. Each party has as many

disjoint sets of pseudonyms as the parties it has to interact with, so that each

pseudonym is used only to interact with a specific party, which is the only party to

know the real identity behind such pseudonym. Each pseudonym is a public key, and

the corresponding private key is kept secret by the party itself. We use the notation

pk and sk to indicate public and private (i.e. secret) keys, respectively, and the nota-

tion {m}k to indicate the encryption of m with a key k. For each pair of parties A and

B that want to interact through SLAVE, a preliminary handshake phase is required,

where A generates a set {⟨pkA,Bi , skA,Bi ⟩} of public/private key pairs to communicate

with B, and sends the set {pkA,Bi } of generated public keys (i.e. the pseudonyms) to

B through a secure channel. Vice versa, B generates a set {⟨pkB,Ai , skB,Ai ⟩} of pub-

lic/private key pairs to communicate with A, and sends the set {pkB,Ai } of generated

public keys (i.e. the pseudonyms) to A through a secure channel.

Once the handshake phase is completed,A andB can start exchanging transactions

using the SLAVE solution. Let T be a transaction fromA toB. LetNT be a nonce com-

puted by A for T to prevent replay attacks. Let sign(m, sk) be the signature computed

Fig. 2 Interaction between a service consumer and a service provider in SLAVE. Requests and

responses are stored in the blockchain, they are the logs to be used for dispute resolution

A Blockchain-Based Solution for Enabling Log-Based . . . 57

on (a digest of) message m using the private key sk, used in this case by A to prove the

authenticity of its transaction T . The information to be stored in the blockchain also

have to include what pseudonyms pkA,Bi and pkB,Aj have been used by A. The former

is put in encrypted form, while the latter is kept in clear to let B recognising that the

transaction is directed to her and understanding what private key to use to decipher

all the data of the transaction. Overall, the tuple to be stored in the blockchain has

the following format: ⟨{⟨T ,NT⟩}pkA,Bi
, sign(⟨T ,NT⟩, sk

A,B
i), {pkA,Bi }pkB,Ai

, pkB,Ai ⟩.

4 Conclusion

In this paper we propose SLAVE, a solution to enable log-based resolution of dis-

putes in multi-party transactions, which replaces the usage of a TTP with a pubic

blockchain. SLAVE allows to overcome the limitations of possible malicious be-

haviours of a TTP, including the risk of collusion with other parties. SLAVE also

improves service availability with respect to TTP-based solutions, as thousands of

miners supports the blockchain functioning. As the blockchain provides high laten-

cy, the performance bottleneck is still a problem and a possible solution to investigate

can be to batch messages to increase the throughput or adopt different architectural

solution, as proposed in [4]. As an interesting future, we plan to investigate the real

fees of adopting such a blockchain-based solution, and compare these costs to those

of current TTP-based settings.

Acknowledgements This work has been supported by the European Commission’s H2020 Pro-

gramme under the SUNFISH project, grant N. 644666.

References

1. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, E.W. Felten, Sok: research perspec-

tives and challenges for bitcoin and cryptocurrencies, in IEEE Symposium on Security and
Privacy (2015)

2. ENISA. Security Framework for Governmental Clouds (2015)

3. A.M. Froomkin, The essential role of trusted third parties in electronic commerce. Or. L. Rev.

75, 49 (1996)

4. E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, V. Sassone, Blockchain-based

database to ensure data integrity in cloud computing environments, in Proceedings of the 1st
Italian Conference on Cybersecurity (2017)

5. J. Garay, A. Kiayias, N. Leonardos, The Bitcoin Backbone Protocol: analysis and applications
(Springer, Berlin Heidelberg, 2015)

6. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system (2008)

7. J.W. Palmer, J.P. Bailey, S. Faraj, The role of intermediaries in the development of trust on

the www: The use and prominence of trusted third parties and privacy statements. J. Comput.-

Mediat. Commun. 5(3) (2000)

8. F.P. Schiavo, V. Sassone, L. Nicoletti, A. Margheri (eds.), FaaS: federation-as-a-service (2016).

Available at https://arXiv.org/abs/1612.03937

https://arXiv.org/abs/1612.03937

58 L. Aniello et al.

9. M. Sookhak, A. Gani, H. Talebian, A. Akhunzada, S.U. Khan, R. Buyya, A.Y. Zomaya, Remote

data auditing in cloud computing environments: a survey, taxonomy, and open issues. ACM

Comput. Surv. 47(4) (2015)

10. B. Suzic, B. Prünster, D. Ziegler, A. Marsalek, A. Reiter, Balancing utility and security: secur-

ing cloud federations of public entities, in C and TC, volume 10033 of LNCS, (Springer, 2016),

pp. 943–961

11. G. Wood, Ethereum: a secure decentralised generalised transaction ledger. Ethereum project

yellow paper (2014)

AntibIoTic: Protecting IoT Devices
Against DDoS Attacks

Michele De Donno, Nicola Dragoni, Alberto Giaretta
and Manuel Mazzara

Abstract The 2016 is remembered as the year that showed to the world how dan-

gerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of

DDoS attacks is the number of bots involved: the bigger the botnet, the more power-

ful the attack. This character, along with the increasing availability of connected and

insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry.

In this paper we present the main idea behind AntibIoTic, a palliative solution to

prevent DDoS attacks perpetrated through IoT devices.

1 The AntibIoTic Against DDoS Attacks

Today, it is a matter of fact that IoT devices are extremely poorly secured and many

different IoT malwares are exploiting this insecurity trend to spread globally in the

IoT world and build large-scale botnets later used for extremely powerful cyber-

attacks [1, 2], especially Distributed Denial of Service (DDoS) [3]. Therefore, the

main problem that has to be solved is the low security level of the IoT cosmos, and

that is where AntibIoTic comes in.

M. De Donno (✉) ⋅ N. Dragoni

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

e-mail: mido@dtu.dk

N. Dragoni

e-mail: nicola.dragoni@oru.se; ndra@dtu.dk

N. Dragoni ⋅ A. Giaretta

Centre for Applied Autonomous Sensor Systems, Örebro University, Örebro, Sweden

e-mail: alberto.giaretta@oru.se

M. Mazzara

Innopolis University, Innopolis, Russian Federation

e-mail: m.mazzara@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_7

59

60 M. De Donno et al.

What drove us in the design of AntibIoTic is the belief that the intrinsic weakness

of IoT devices might be seen as the solution of the problem instead of as the problem

itself. In fact, the idea is to use the vulnerability of IoT units as a means to grant

their security: like an antibiotic that enters in the bloodstream and travels through

human body killing bacteria without damaging human cells, AntibIoTic is a worm

that infects vulnerable devices and creates a white botnet of safe systems, removing

them from the clutches of other potential dangerous malwares. Basically, it exploits

the most efficient spreading capabilities of existing IoT malwares (such as Mirai)

in order to compete with them in exploiting and infecting weak IoT hosts but, once

control is gained, instead of taking advantage of them, it performs several operations

aimed to notify the owner about the security threats of his device and potentially act-

ing on his behalf to fix them. In our plans, AntibIoTic will raise the IoT environment

to a safer level, making the life way harsher for DDoS capable IoT malwares that

should eventually slowly disappear. Moreover, the whole solution has been designed

including some functionalities aimed at creating a bridge between security experts,

devices manufacturers and users, in order to increase the awareness about the IoT

security problem and potentially pushing all of them to do their duties for a more

secure global Internet.

Similar approaches have been tried so far [4–6] but, to the best of our knowledge,

they have mostly been rudimentary and not documented pieces of code referable to

crackers (or, as wrongly but commonly named, hackers) that want to solve the IoT

security problem by taking the law into their own hands, thus poorness or even lack

of preventive design and documentation are the common traits. Nevertheless, these

attempts are the proof that the proposed solution is feasible and parts of their source

code have been published under OpenGL license [7], which makes them reusable

for the implementation of AntibIoTic.

The paper continues presenting a high level overview of the AntibIoTic func-

tionalities and infrastructure, respectively in Sects. 2–3. Then, a comparison with

existing similar approaches is given in Sect. 4, and legal and ethical implications are

discussed in Sect. 5.

2 AntibIoTic Functionalities

Looking from a high level perspective, the AntibIoTic functionalities include, but

are not limited to:

∙ Publish useful data and statistics—Thanks to the infrastructure behind the AntibI-

oTic worm, IoT security best practises and botnet statistics computed from the

data collected by the worm, can be published online and made available to anyone

interested (not only experts);

∙ Expose interactive interfaces—Interactive interfaces with different privileges are

also publicly exposed in order to let anyone join and improve the AntibIoTic solu-

tion;

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 61

∙ Sanitize infected devices—Once the control of a weak device is gained, the AntibI-

oTic worm cleans it up from other possibly running malicious malwares and secure

its perimeter avoiding further intrusions;

∙ Notify device owners—After making sure the device has been sanitized, the

AntibIoTic worm tries to notify the device owner pointing out the device vulnera-

bilities. The notification aim is to make the owner aware of the security threats of

his device and give him some advices to solve them;

∙ Secure vulnerable devices—Once notified the device owner, if the security threats

have not been fixed yet, the AntibIoTic worm starts to apply all the possible secu-

rity best practises aimed to secure the device. For instance, it may change the

admin credentials and update the firmware;

∙ Resistance to reboot—AntibIoTic incorporates a basic mechanism that let it keep

track of all spotted vulnerable devices and, if a target device reboot occurs, it is able

to reinfect them as soon as they are up and running. Moreover, in order to avoid

the worm to be wiped off from device memory by a simple reboot, the AntibIoTic

worm may also use an advanced mechanism to persistently settle into the target

system by modifying its startup settings.

Please consider that the functionalities presented above are only a high level sum-

mary of the AntibIoTic set of functions, aimed to give the reader a first conception

of the solution. A more clear explanation of the AntibIoTic modus operandi is given

in Sect. 3.

2.1 Real World Scenarios

Given the basic idea behind AntibIoTic, in this subsection we will get through some

different working scenarios that the AntibIoTic worm could face during its propa-

gation and in which a subset of the aforementioned functionalities are used. Each

scenario will be presented using a high level graphical workflow and a brief textual

explanation.

2.1.1 Scenario 1—Awareness Notification

The first scenario is the one shown in Fig. 1. It is the ideal situation in which as

soon as the device owner sees the AntibIoTic notification, he performs some of the

suggested operations in order to secure the device.

First of all, AntibIoTic scans the Internet looking for IoT weak devices. As soon

as a vulnerable device is found, it is infected and sanitized in order to secure its

perimeter and ensure that no other malwares are in execution on the same device.

Subsequently, the awareness notification is sent to the owner pointing out the secu-

rity threats of the device and some possible countermeasures to solve them. Then, the

scrupulous device owner looks at the notification and secures its device following

62 M. De Donno et al.

Fig. 1 Device owner

secures its device after

receiving the AntibIoTic

notification

the guidelines given by AntibIoTic. At this point, the IoT device is not vulnerable

anymore, thus, the AntibIoTic intent has been reached and it can terminate its exe-

cution freeing the device. More elaborate (and, probably, real) cases, in which the

owner does not perform any action to increase the security level of its device, are

presented in the following scenarios.

2.1.2 Scenario 2—Credentials Change on a Rebooted Device

The second scenario is depicted in Fig. 2. In this case, the device owner is impas-

sive to the AntibIoTic notification and a device reboot occurs while AntibIoTic is

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 63

Fig. 2 Credentials change after persistent installation

performing its security tasks. However, thanks to the persistent installation and the

credentials change functionalities, AntibIoTic is able to secure the device as well.

As seen in the first scenario, at first AntibIoTic looks for a vulnerable device,

infects and sanitizes it, and notifies its owner. Nevertheless, in this case, the device

owner either ignore or does not see the AntibIoTic notification, thus, he performs

no actions. Whereby, AntibIoTic starts to secure the device by checking if it is pos-

sible to settle down on the hosting device in order to resist to potential reboots. In

this scenario, we are hypothesizing that the persistent installation is possible hence

the AntibIoTic worm persistently settles down on the vulnerable device. Now, let’s

suppose a device reboot occurs. However, since AntibIoTic has been persistently

installed on the device, after the reboot it starts again and quietly picks its tasks

up where it left off. It checks if a credentials change is possible. In this scenario,

we are supposing that it is allowed, thus the AntibIoTic worm changes the admin

credentials. Now, thanks to the security actions performed, the target device is not

vulnerable anymore, hence the AntibIoTic worm terminates its execution and frees

the device.

64 M. De Donno et al.

2.1.3 Scenario 3—Firmware Update of a Reinfected Device

The third scenario is shown in Fig. 3. It is a harsh environment for AntibIoTic, since

persistent installation and credentials change are not possible and a device reboot

occurs while it is performing its duties. Nevertheless, thanks to its reboot-resistant

design, it is able to reinfect the device and secure it through a firmware update.

The first part of the workflow moves along same lines as the aforementioned

scenarios: AntibIoTic finds a vulnerable device, infects and sanitizes it, notifies the

owner. Also in this case the owner does not perform any action, so the AntibIoTic

worm checks if the persistent installation is possible. In this case, we are hypothe-

sizing that it is not allowed and that a device reboot occurs before AntibIoTic can

perform any other operation. So, the hosting device is rebooted and our worm is

wiped off from its memory. Nevertheless, the AntibIoTic infrastructure detects the

reboot and monitors the target device to reveal whenever it is up and running again.

As soon as again available, the vulnerable device is reinfected and resanitized by the

AntibIoTic worm. Now, it continues to perform its actions checking if credentials

Fig. 3 Firmware update after reinfection

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 65

change is possible. We are supposing that it is not, so AntibIoTic looks if a firmware

update is feasible. Let’s suppose that it is and our worm downloads and installs an

up-to-date firmware on the hosting device. Now, the target device is safe and the

AntibIoTic worm can stop its execution freeing the device.

3 Overview of AntibIoTic Infrastructure

The overall architecture of AntibIoTic (Fig. 4) is mostly arisen from the Mirai infras-

tructure. This choice has been driven by the strong evidence of robustness and effi-

ciency that Mirai gave to the world the last year as well as by the ascertainment

that, despite its efficiency, the Mirai architecture is relatively simple and most of

the source code needed for its implementation is already available online [8], which

makes it easily reusable.

At a macroscopic level, the AntibIoTic infrastructure is made of several compo-

nents and actors interacting with each other.

Fig. 4 AntibIoTic infrastructure

66 M. De Donno et al.

3.1 Command-and-Control (CNC) Server

It is the central component of the infrastructure. It is in charge of performing sev-

eral tasks, interacting with other actors and components. It is composed of different

modules:

∙ Web Server—It is the module that exposes the botnet human interface with human

actors. It shows some useful data and live statistics and supports the interac-

tion with two types of actors, each allowed to perform different operations: user,

admin;

∙ Reporter—It is the module in charge of receiving and processing vulnerability

results and relevant notifications sent by AntibIoTic Bots;

∙ Spotter—It is the module that handles the keep-alive messages continuously sent

from AntibIoTic Bot Sentinel modules, ensuring a working connectivity with

each infected device. If for some reason (e.g., device reboot) the communication

between the Spotter and the device is lost, the former immediately notifies the

Loader to periodically try to gain the control of the insecure device again;

∙ Loader—It is the module that uses the received vulnerability results to remotely

infect and gain control of insecure devices. It is also in charge of loading up-to-date

modules on and sending commands to AntibIoTic Bots;

∙ Data Manager—It is the module which exposes the API to access all data saved

on the Storage. Each module of the CNC Server interacts with Data Manager to

perform any operation to local data.

All data and files relevant for the whole infrastructure are saved in the Storage. It is

accessible by all the modules of the CNC Server through the Data Manager.

3.2 AntibIoTic Bot

It is the component running on vulnerable devices with the aim of securing them. It

is composed of distinct modules in order to perform different tasks:

∙ Stub—It is the main module of the worm. It is in charge of starting most of the

other modules and listening for further commands or module updates received

from the Loader module of the CNC Server;

∙ Sentinel—It is the module in charge of continuously communicating with the

Spotter module of the CNC Server. It mainly sends keep-alive messages or local

reboot notifications to the Spotter;

∙ Scanner—It is the module that scans for new vulnerable IoT devices using a list

of well-know credentials. Once a weak device is found, its information are sent

back to the Reporter module of the CNC Server. This module corresponds to the

Mirai Bot Scanner module;

∙ Sanitizer—It is the module that cleans up the target device by both eradicat-

ing other potential running malwares and performing safety operations aimed to

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 67

secure the device from further intrusions. This module is alike the Mirai Bot Killer

module;

∙ Vaccine—It is the module that performs several operations directed to increase

the security level of the target device. The number and type of performed actions

depend on the nature of the hosting device and some of them can involve human

interaction.

3.3 Users and Admin

Users are human actors involved in the AntibIoTic infrastructure. A user can interact

with the Web Server module of the CNC Server just to get known about relevant

data and live statistics or it can actively contribute to the project by submitting new

information about additional security threats affecting IoT devices.

Finally, Admin is the human actor in charge of supervising the AntibIoTic

infrastructure. It can perform operations on data saved in the Storage as well as

send control commands to the botnet (further details and consideration about this

last option will follow). It is also in charge of reviewing information submitted by

users in order to discard them or accept them and accordingly update the involved

AntibIoTic modules.

4 AntibIoTic and Its “Twins”

As previously mentioned, there are already some so-called “vigilantes” [4–6] out

there which have been built with an aim similar to the AntibIoTic one, thus it is more

than legitimate to wonder: “why is AntibIoTic better than its twins?”. We will not

directly answer to the question, but we want to address it by providing a comparison

between AntibIoTic and the other existing solutions (also referred as “twins”), which

is summarized in Table 1.

First of all, we do not claim that our solution is absolutely better than the others,

basically because we have not enough data to assert it. Indeed, to the best of our

knowledge, the existent solutions are not documented at all and the only sources of

information that we can use to make a comparison are some security analyses and

reverse engineering works found online, which try to point out the main traits of

each white worm. The closest thing to a documentation that we saw in the wild is

the Linux.Wifatch GitHub repository [7] which provides a rough explanation of the

source code folders hierarchy and some general comments about the authors’ pur-

pose. Nevertheless, it does not give a clear presentation of the whole infrastructure

and it does not explain how each component interacts with the others, thus we will

not consider it as an actual documentation. That is, for us, the first plus point for

AntibIoTic, since with this work we are providing a presentation as clear as possible

68 M. De Donno et al.

Table 1 Comparison between AntibIoTic and similar solutions

Twins AntibIoTic

BrickerBot Hajime Linux.Wifatch

Publicly

documented

– – – ✓

Create awareness

and encourage

synergy

– – ✓ ✓

Notify infected

device owners

- ✓ ✓ ✓

Temporary

security

operations

✓ ✓ ✓ ✓

Permanent

security

operations

– – – ✓

of our solution that can be intended as documentation. Let’s now proceed toward a

high level functional analysis in order to continue the comparison.

Starting the functionalities review from the AntibIoTic infrastructure, it soon

becomes evident the bridge that the CNC Server wants to create between AntibI-

oTic and the people. Indeed, our solution wishes to interact with experts, devices

manufacturers, and common users in order to show them how critique and danger-

ous the current IoT security situation is and potentially pushing them to do their best

(e.g., put into practice the basic security recommendation) to improve it. Moreover,

AntibIoTic gives them the chance of interacting with the whole infrastructure by sub-

mitting useful information that could be used by the white worm to be more powerful

and effective. That is because our aim is not to build a sneaky worm that stabs the

device owners in the back and which the people should be scared of, but we want to

build a white worm that owners are happy to see on their devices since it helps them

by giving some advices or by securing the devices in their behalf. Apparently, no

one of the AntibIoTic twins tries to create the same empathy with the common peo-

ple but Linux.Wifatch, whose authors published the source code and explained their

purpose encouraging people to take part in the project. Therefore, even if the way

in which it is performed is different from the AntibIoTic approach, we can say that

also Linux.Wifatch is aimed to both create awareness about the IoT security problem

and encourage the collaboration of people to implement a white worm that tries to

improve the current situation.

Talking about the actual worm functionalities, that is where most of the similari-

ties are. First of all, almost all the twins notify the infected IoT device owner telling

him that his device is insecure and some security operations are needed. That is,

more or less, the same behaviour of AntibIoTic. Secondly, all the twins try to perform

some operations aimed to secure the target device. The type of performed operations

differs from solution to solution and from hosting device to hosting device but the

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 69

high level result is almost always the same: keep the device safe until the memory

is wiped off. The same goal is reached by AntibIoTic but, unlike its twins, it goes

ahead and tries to permanently secure the hosting device. The only twin that tries to

accomplish the same goal is BrickerBot. However, relevant is to point out the way in

which BrickerBot achieves its aim. BrickerBot usually tries to permanently secure

the hosting unit without damaging it but, if that is not possible, BrickerBot writes

random bits on the device storage often bricking it and requiring the owner to replace

it. This kind of malicious behaviour has been classified as a Permanent Denial of Ser-
vice (PDoS) attack [9] and we strongly disapprove of it, because it does not fit the

“white” purpose of this class of worms. So, even if the aim of BrickerBot author is to

permanently secure IoT devices [10], and somehow he actually achieves it (insecure

devices are irredeemably damaged, thus put offline), in our comparison we will not

consider BrickerBot as a white worm that permanently secure IoT devices because

the way in which it is done can not be treated as legitimate and thus accepted.

To sum up, from the Table 1 the main threads of the comparison between AntibI-

oTic and the other similar solutions can be extrapolated. All the existing solutions

basically lack of a solid documentation that clarifies their aim and structure. More-

over, even if most of them notify the owner of the infected device and push him to

secure it, they do not try to create a connection with all people in order to increase

the global awareness about the IoT security problem and stimulate a profitable inter-

action with them to improve the situation. Furthermore, as widely said by several

security experts, the main problem of all the AntibIoTic twins is that they usually

have a short lifespan on the target device since their actions are only temporary and,

as soon as the hosting device is rebooted, they are wiped off from memory and the

unit goes back to its unsafe state. That is not applicable to AntibIoTic, since it is pro-

vided with some unique and smart functionalities, such as resistance to reboot and

firmware update, that allow it to resist to reboot and permanently secure infected

devices.

Basically, AntibIoTic can be considered an evolution of the current white worms

which picks the best from them and also adds some new functionalities to both fix

their mistakes and propose a new idea of joint participation to the IoT security pro-

cess.

5 Ethical and Legal Implications

It is undeniable that the proposed solution drags on some ethical and legal implica-

tions, mainly arisen by the intent of gaining control of unaware vulnerable devices,

even if it is done for security purposes.

Sometimes the line between ethical and unethical behaviour is a fine one and,

whenever we try to design a possible solution to a malicious conduct, we can not be

exempt from asking ourselves if our proposal goes too far. Even though AntibIoTic

is motivated by the desire of fixing a harsh situation created by firms unforgivable

negligence, it requires to break-in third-party devices without the owners’ explicit

70 M. De Donno et al.

consent, which is an illegal and prosecutable practice in several countries. Neverthe-

less, we can not ignore that, accordingly to various legislations, also the very action

of failing to protect your own device and unwillingly participating to a malicious

action could be considered illegal. This entails that our solution could be warmly

welcomed and tolerated by the less knowledgeable users worried to incur in possible

prosecution, but unable to apply themselves a more adequate and stronger security

policy.

Somehow, we can think about AntibIoTic as a scapegoat that secures IoT devices

and impedes them to cause any harm. A scapegoat that accepts the risk to be accused

for the hosts infection, but both increases the IoT security and keeps safe the users

avoiding them to incur into tough prosecutions.

Therefore, what we are indirectly asking to the users is to blindly trust that both

AntibIoTic and its maintainers are well-meaning. We known that it is a greedy claim,

but we also believe that it can be achieved through the power of a large community

that supports and trusts the project, and which is willing to work in order to improve

it. Accordingly, what we are basically thinking of, is a single word: open-source. We

strongly feel, to such an extent that we would define it mandatory, that AntibIoTic,

as well as other similar approaches, should be released as open-source projects in

order to fulfil two main benefits.

The first one is to build trust between the project and IoT users, because only a

strong trust into the project solidity and well-meaning can ensure the people col-

laboration. Furthermore, we highlight that the more discretion is left to AntibIoTic

admins, the more concerns will be risen into the device owners when it is asked them

to trust a stranger to fully control their device. That is why, even if the AntibIoTic

capabilities are completely transparent, the discretion power granted to the admins

should be as limited as possible, ideally giving them only the option to shut down

the whole botnet or release a single device, if required.

However, supposing for a moment that a high level of trust can be reached, we

do not pretend to be considered better than others, hence we know that the resulting

white botnet could always being hacked and used for malicious purposes. That is

where the second open-source benefit comes in: an open-source project would attract

other white-hat volunteers and companies that share our willingness to fight the IoT

security threats, which would ensure a more updated, efficient, and reliable software.

Truth be told, we are very concerned about users’ privacy and we feel that the

path traced by AntibIoTic should not be taken by anyone, because it could unexpect-

edly backfire and expose the vulnerabilities to malicious users, no matter if criminal

organisations or intelligence agencies, that could exfiltrate highly-sensitive personal

data. The only reason why we suggest this solution, continuously stressing about the

transparency requirements, is that the current situation is beyond any control and

something has to be done before it gets even worse.

We are basically in front of the eternal dispute between freedom and security, and

we are aware that the very right answer does not exist. However, to conclude, since

we strongly believe that “my freedom ends where yours begins”, we would like to

leave the reader with a final question: what should we do when your freedom affects
our security?

AntibIoTic: Protecting IoT Devices Against DDoS Attacks 71

6 Conclusion

In this paper we have presented the main idea behind AntibIoTic, a system to prevent

DDoS attacks perpetrated through IoT devices. The functionalities of the system have

been listed and some scenarios discussed. Comparison with similar approaches pro-

vides evidence that AntibIoTic represents a promising solution to the DDoS attacks

problem in the IoT context.

The key task of future work consists in the full implementation and evaluation

of the system. In particular, architectural design has to be considered (or reconsid-

ered) thoroughly. The architecture described in Fig. 4 shows a number of interacting

components that need to scale up as the number of devices also scale up. It has been

shown that scalability issues can naturally be solved by use of microservice architec-

ture [11, 12], and that large-size companies have already implemented migrations

to this architectural style [13]. Furthermore, specific programming languages are

available to support microservice architecture [14, 15]. Full deployment of the sys-

tem should consider a migration to microservice, possibly making use of a suitable

language and relying on the expertise of our team on the matter. Finally, a project

on microservice-based IoT for smart buildings is currently running [16, 17], and it

certainly represents a solid case study for experimentation and validation.

References

1. K. York, Dyn statement on 10/21/2016 DDoS attack. Dyn Blog, Oct 2016, http://dyn.com/

blog/dyn-statement-on-10212016-ddos-attack/. Accessed May 2017

2. S. Hilton, Dyn Analysis Summary Of Friday October 21 Attack. Dyn Blog, Oct 2016, http://

dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack. Accessed May 2017

3. M. De Donno, N. Dragoni, A. Giaretta, A. Spognardi, Analysis of DDoS-capable IoT malwares,

in Proceedings of the 1st International Conference on Security, Privacy, and Trust (INSERT)
(IEEE, 2017)

4. M. Ballano, Is there an Internet-of-Things vigilante out there?. Symantec Blog, Oct

2015, https://www.symantec.com/connect/blogs/there-internet-things-vigilante-out-there.

Accessed May 2017

5. W. Grange, Hajime worm battles Mirai for control of the Internet of Things. Syman-

tec Blog, Apr 2017, https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-

control-internet-things. Accessed May 2017

6. C. Cimpanu, New malware intentionally bricks IoT devices. Bleeping Computer, Apr

2017, https://www.bleepingcomputer.com/news/security/new-malware-intentionally-bricks-

iot-devices/. Accessed May 2017

7. The White Team. Linux.Wifatch Source Code on GitHub (2015), https://gitlab.com/rav7teif/

linux.wifatch.git. Accessed May 2017

8. Anna-Senpai. Mirai Source Code on GitHub, Sept 2016, https://github.com/jgamblin/Mirai-

Source-Code. Accessed May 2017

9. Radware’s Emergency Response Team (ERT). BrickerBot results in PDoS attack. Rad-

ware Blog, Apr 2017, https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-

permanent-denial-of-service/. Accessed May 2017

http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack
https://www.symantec.com/connect/blogs/there-internet-things-vigilante-out-there
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.bleepingcomputer.com/news/security/new-malware-intentionally-bricks-iot-devices/
https://www.bleepingcomputer.com/news/security/new-malware-intentionally-bricks-iot-devices/
https://gitlab.com/rav7teif/linux.wifatch.git
https://gitlab.com/rav7teif/linux.wifatch.git
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/

72 M. De Donno et al.

10. C. Cimpanu, BrickerBot author claims he bricked two million devices. Bleeping Computer,

Apr 2017, https://www.bleepingcomputer.com/news/security/brickerbot-author-claims-he-

bricked-two-million-devices/. Accessed May 2017

11. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,

Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, 2017)

12. N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices: how

to make your application scale, in A.P. Ershov Informatics Conference (the PSI Conference
Series, 11th edition) (Springer, 2017)

13. N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, Microservices: migration of a mission critical

system, http://arXiv.org/abs/1704.04173

14. C. Guidi, I. Lanese, M. Mazzara, F. Montesi, Microservices: a language-based approach, in

Present and Ulterior Software Engineering (Springer, 2017)

15. L. Safina, M. Mazzara, F. Montesi, V. Rivera, Data-driven workflows for microservices (gener-

icity in jolie), in Proceedings of the 30th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA), 2016

16. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based iot for

smart buildings, in WAINA, 2017

17. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: Inter-

net of things for smart building infrastructure supporting concurrent apps utilizing distributed

microservices, in CCIT, pp. 48–53, 2016

https://www.bleepingcomputer.com/news/security/brickerbot-author-claims-he-bricked-two-million-devices/
https://www.bleepingcomputer.com/news/security/brickerbot-author-claims-he-bricked-two-million-devices/
http://arXiv.org/abs/1704.04173

An Initial Investigation of Concurrency
Bugs in Open Source Systems

Paolo Ciancarini, Francesco Poggi, Davide Rossi
and Alberto Sillitti

Abstract In the last 10 years CPUs have evolved focusing on performance improve-

ments based on the introduction of multi-core architectures forcing developers to

build software in a completely different way. Concurrent programming is now the

main approach to improve performances in any software product. Unfortunately, this

paradigm is prone to bugs which are particularly hard to fix, since their occurrence

depends on specific thread interleaving. The paper investigates bugs related to con-

currency analyzing their characteristics with machine learning methods to automat-

ically distinguish them from other kinds of bugs based on the data available in the

issue tracking systems and in the code repositories. The best model we developed for

Apache HTTP Server has a precision of 0.97 and a recall of 0.843 when considering

linked bugs (bug reports information in bug repository and the corresponding fix in

the version control system).

1 Introduction

To reduce the energy consumption of new devices and increase the battery life of the

mobile ones, hardware manufacturers have changed deeply how they develop CPUs.

In the last 10 years, to improve energy efficiency, the clock frequency of the CPUs

P. Ciancarini (✉) ⋅ F. Poggi ⋅ D. Rossi

DISI, Department of Computer Science and Engineering, University of Bologna,

Bologna, Italy

e-mail: paolo.ciancarini@unibo.it

F. Poggi

e-mail: francesco.poggi5@unibo.it

D. Rossi

e-mail: daviderossi@unibo.it

P. Ciancarini

Consorzio Interuniversitario Nazionale per l’Informatica, Rome, Italy

A. Sillitti

Innopolis University, Innopolis, Russian Federation

e-mail: a.sillitti@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_8

73

74 P. Ciancarini et al.

has not increased significantly (even reduced in some cases) but the number of com-

putational cores embedded in the CPUs has increased including both general purpose

and special purpose ones (e.g., GPUs, DSPs, etc.). This change of architecture has a

deep impact on software developers. In the single-core era, in most of the use cases,

developers did not focus on performances while developing relying on the Moore’s

Law. Developers had just to wait some time and their software could run faster and

faster on new CPUs without any modification. However, in the multi-core era, this

is not true anymore. Software performances are not increasing anymore without an

explicit support of the multi-core architectures that require a completely different

approach to software development.

Such different approach is not completely new since it derives from the paral-

lel programming approaches. However, only a small percentage of developers were

skilled in that since it was popular only in the fields where massive computation

was needed (e.g., scientific computation, signal processing, computer graphics, etc.).

Multi-core architectures have forced any kind of developers to deal with concurrent

programming in almost any kind of software.

Concurrent programming is difficult since it is often affected by non-determinism

due to the independent execution of the different threads and the related synchro-

nization problems. Therefore, debugging this kind of software is often more difficult

than single-thread code, also because detecting and replicating such defects is quite

difficult. Moreover, most of the existing bug analysis and prediction approaches are

not effective in the concurrent domain since they have been designed with sequential

programs in mind. As discussed in [3], new approaches and new metrics are required

in order to consider the specificities of the concurrent domain.

From some preliminary investigations focused on the Apache HTTP Server con-

ducted by the authors [5], we have also found out that concurrency-related defects

require the involvement of more developers and much longer discussions to get

fixed compared to non-concurrency-related defects. For these reasons, characteriz-

ing concurrency-related defects and developing approaches to help developers dur-

ing the bug triage phase to automatically identify the concurrency-related ones can

improve how such defects are managed and the efficiency of the overall process.

The paper is organized as follows: Sect. 2 presents an overview of the related work

in the area of the analysis and the prediction of concurrency-related defects; Sect. 3

introduces in detail our approach; Sect. 4 discusses the results achieved; Sect. 5

presents the limitations and the threats to validity of the study; finally, Sect. 6 draws

the conclusions and presents future work.

2 Related Work

In the last few years, researchers have put a lot of effort in the analysis of soft-

ware projects to identify and predict some relevant properties—e.g., where defects

are, how to fix them and the associated costs. A common trend in current research

is investigating and trying to understand the processes by which software ages.

An Initial Investigation of Concurrency Bugs in Open Source Systems 75

During the years, researchers investigated the relations of various process artifacts

(e.g., change history of source files, changes in the team structure, testing effort),

technologies, and other human factors with software defects for bug prediction [6,

8, 24, 25, 34]. In fact, it is well-known that process metrics are more efficient fault

predictors than product metrics [21]. For instance, Nagappan et al. [22] in a study

performed on the defect density in Windows Server 2003 used software change his-

tory (in particular, code churn measures such as changed-LOC/LOC together with

dependency metrics) for predicting the bug density of each software module.

Another example is the study performed by Graves et al. [11] on a system contain-

ing 1.5 million lines of code. This work highlights that module size and other stan-

dard software complexity metrics are generally poor predictors of fault likelihood.

Process metrics extracted from software change history have been used to build a

weighted time damp model that considerably improved the bug prediction accuracy,

if compared to previous approaches. Similar results are presented in [16], where a

bug cache algorithms is used to predict future bugs at the function, method, and file

level mining the related version control system and bug repository.

An interesting technique for predicting latent software bugs is called change clas-

sification. It was initially introduced in [17], where a machine learning classifier

based on Support Vector Machines (SVMs) is used to determine whether a new soft-

ware change is more similar to prior buggy changes or clean changes. Their classifier

is trained using features (e.g., terms in the added delta source code and terms in the

change log) extracted from a version archive, showing an accuracy of 78% in iden-

tifying if a file is buggy or not.

Two other interesting works focus on the impact of the software process on the

defectiveness of software [32] and on the estimation of efficacy of information re-

trieval models for the purpose of locating bugs [27]. The latter paper also provides

a comparison of five models and predicts the probability of a file to contain bugs

based on its similarity with known buggy files.

A closely related research activity concerns the contextual factors influencing the

transferability of bug prediction models. Nagappan et al. [23] investigated how dif-

ferent subsets of complexity metrics relate to bugs in different projects, concluding

that models have good predictive performance only when trained on the same or

homogeneous systems.

Good performance between releases of the same system are reported in [7, 33],

while Shatnawi and Li [28] report that model performances degrade when applied to

later releases of a system. Although findings from individual studies on bug predic-

tion model transferability are varied, most studies report that models perform poorly

when transferred [12].

Another important finding in this context is the effectiveness of the linked bugs

technique in giving useful information for developing accurate defect predictive

models. In [20], Moin et al. used bug reports information in a bug repository and

the corresponding log files of the version control system (i.e., the so-called linked

bugs) to train a SVM classifier. Textual information in the summary and description

of bugs are used to enrich machine learning features. Experimental results prove that,

76 P. Ciancarini et al.

given a bug report, the resulting model is able predict with a good accuracy which

part of the software project is more likely to be related to the issue.

All the previous described works focus on the analysis of sequential software

projects. Unfortunately, only a few studies about bug identification and prediction in

the concurrent domain have been performed. Given the complex nature of the prob-

lem and the difficulties arising from the complexity of concurrent thread interleaving

analysis, most of the works focused only on studying and classifying concurrent bugs

characteristics.

A comprehensive study of real world concurrency bugs is presented in [19]. By

examining the bug reports and patches, corresponding source code, and program-

mers’ discussion of four open source projects (i.e., MySQL, Apache, Mozilla, and

OpenOffice), this work provides a classification of the concurrency bug patterns,

occurrence conditions, fix strategies, and diagnosis processes. Another interesting

work introduces a concurrent bug taxonomy aimed at identify the most common

concurrent bug patterns [9].

In [10], instead of focusing on the causes of concurrency bugs, Fonseca et al.

focus on analyzing their effects. The objective of this research is providing a new

point of view that can help detecting, handling, or tolerating such defects at runtime.

The two main results of the study performed on an open source project (MySQL)

are the identification of latent concurrency bugs and some useful indications for the

design of reliable concurrent software systems.

A study of the applicability of sequential approaches for bug prediction model

development is presented in [35]. The objective of this work is the identification

of four classes of concurrency defects (i.e., Atomicity, Order, Data, and Deadlock)

and the prediction of the bug quantity, type, and location from patches, bug reports,

and bug-fix metrics. Two predictive models are presented and evaluated over three

popular projects (i.e., Mozilla, KDE, and Apache) with encouraging results.

3 Our Investigation

We decided to focus our study on freely available open source projects with open

bug tracking software and revision management system. The project we selected is

the Apache HTTP Server version 2 (HTTPD) since it is used in many works in the

bug mining research field. We plan to include further projects in our study as a future

work.

The aim of our investigation was to understand if machine learning techniques can

be used to effectively distinguish between concurrent-related and non concurrency-

related bugs. We were also interested in understanding the relevance of various bug-

related information when applying these techniques.

Linked bugs [29] are those solved issues contained in a bug tracking system for

which it is possible to also have access to the code modifications that led to their

solution. The modifications are usually managed by a revision system. A linked bug

is then a defect for which one or more links (hence the name) exist between an issue

An Initial Investigation of Concurrency Bugs in Open Source Systems 77

originally signaling the failure of the software system due to the bug and one or more

revisions in which fixes for the bug are committed to the code base.

For a linked bug, a number of information elements can be extracted with repos-

itory mining techniques:

∙ From the bug tracking system:

– Bug name and description;

– Bug metadata such as the status (solved, not a bug, etc.), the user that created

the issue, the date of the initial report, etc.;

– Discussion between users, testers and developers trying to isolate the defect.

∙ From the code versioning system:

– Commit comment;

– Revision metadata such as developer, date, etc.;

– Modified source code.

In our machine learning perspective this mean that our instances are tuples repre-

senting linked bugs, with the following attributes: bug id, bug name, bug description,

bug metadata, bug discussion, revision id, revision commit comment, revision meta-

data, and code diffs.

In our experiments linked bugs with no one-to-one bug-to-revision match (for

example a bug that is incrementally solved in three revisions) are split in several one-

to-one instances. In the aforementioned example, we would create three instances

with the same bug linked to the three different revisions. We also experimented other

approaches (as merging all the information in a single instance) and we obtained very

similar results.

In order to implement a supervised learning approach, we needed to create a train-

ing set in which the ground truth had to be determined by experts analysis.

Early sampling-based investigations showed that the percentage of concurrency-

related bugs is extremely low (less than 7%). This leads to two problems:

1. a very large number of linked bugs has to be examined in order to create a train-

ing set with a reasonable number of instances of the concurrency-related class;

2. the resulting training set presented a very large imbalancement (leading to well-

known problems [13])

To avoid these problems, we decided not to use all the extracted linked bugs as

our dataset, but we restricted to those linked bugs filtered by a plain keyword-based

approach based on concurrency-related terms (such as thread, synchronization, con-

currency, mutex, atomic, etc.) applied to the bug title, description, and discussion.

This approach is similar to the one adopted in previous research in this area [10, 19,

35].

We randomly sampled a large number of issues not containing the aforementioned

keywords and found no concurrency-related bug. We are then confident that our

keyword-based method is a good starting point to identify all the bugs of this kind.

78 P. Ciancarini et al.

On the other hand, the precision of the method is less than 1% (as suggested by the

manual analysis described later). This left us with 3,336 linked bugs.

We served as experts to manually categorize the resulting linked bugs. In this

categorization we followed the same guidelines used in [35]. Each bug has been

analyzed by two experts, a third opinion has been used as tie-breaker when needed.

This resulted in 153 concurrency-related bugs.

The dataset is obviously still imbalanced but to an extent that does not prevent its

use (directly, or after some specific processing) with most learners.

However, as discussed above, the keyword-based method has a very high recall.

As such it does not introduce any concurrent class bias, the instances of the non-

concurrent class are biased since they only include those elements that do present

the concurrency-related keywords somewhere in the issue report (title, description,

discussion). It may be argued that we are only making the task more difficult for a

machine learning algorithm that is now called to discriminate between a concurrency

bug and a non-concurrency bug that has some potentially concurrency-related term

in it. Further investigation on the relevance of this bias will be performed as future

work.

The keyword-relevant linked bugs with the concurrent class feature added manu-

ally is our starting point to investigate the performances of different machine learning

approaches. We decided not to explicitly split the dataset in training and test sets and

systematically rely on cross-fold validation instead.

The instances we created so far have attributes that are mostly textual (such as

titles, descriptions, comments). When using machine learning for textual data it is

usual to perform some pre-processing that can improve the performances of the cate-

gorization algorithms. This includes case transformation, stemming, and stop-words

removal. After some experiments, we decided to perform case transformation, stem-

ming, and stop-words removal for texts associated to issues title, description, discus-

sion, and revisions description. No processing has been applied to the source code.

As a result our dataset is now mainly composed by (processed) string data. While

some machine learning algorithm (or learner as we will often refer to them in the rest

of the paper) can directly cope with this type of data, most do not. We then decided

to move to a representation that is more easily processable by most known learners:

the bag of words. With this approach, all text is translated into a tuple of numerical

values with each position in the tuple refers to a different word in the corpus (in our

case, it is composed by all the text appearing in all linked bugs of the dataset).

The entries in each tuple represent the presence (variously weighted) of the corre-

sponding word in the analyzed text. Usual weighting method are frequency, tf (term

frequency, logarithmic in our case), and tfidf (term frequency-inverse document fre-

quency) [30]. We experimented with these variants and we found out that, for our

datasets, very similar performances are usually obtained with tf and tfidf, while sim-

ple frequency usually led to worst results.

Direct application of this method can easily result in a very large number of at-

tributes (in our case in the order of tens of thousands) most of which related to words

appearing only once or twice in the corpus. Pruning is a common option in these

cases; after some experiments we limited the number of words processed to the 5,000

An Initial Investigation of Concurrency Bugs in Open Source Systems 79

more frequent ones for general text (bug reports, discussions, and commit messages)

and to the 100 more frequent ones for the code. Please notice that this does not mean

that this is the exact number of features for each data source since all the features

with the same frequency as the one at the cut-off are included too.

After this processing, the instances are now tuples containing all numerical values

except for one nominal value, the one assigning the related linked bug to one of the

two classes: concurrent and non-concurrent.

Two main aspects characterize the dataset: it is imbalanced and it contains a large

number of attributes. Different learners show different degrees of susceptibility to

these characters. For those that are affected, a few options exist. First of all we tested

a set of learners with this basic dataset with the idea of applying some processing

later and verify how that affects the various algorithms.

The following machine learning algorithms have been tested:

∙ NB: Naïve Bayes [14]

∙ KN: K-nearest neighbors classifier (K chosen using cross validation) [1]

∙ C45: C4.5 decision tree (unpruned) [26]

∙ RF: Random Forest [2]

∙ DFE: a learner based on Bayesian methods specifically designed to perform well

with textual datasets [31]

The rationale behind this choice is to have representatives for the main classifi-

cation methods that have shown effectiveness in past software repositories mining

research and (this is the case for DFE) a recent algorithm known to perform well

with dataset similar to our own.

All learners have been tuned using common best practices. The results we ob-

tained with these learners are summarized in Table 1.

Notice that we test the performances of the learners only with respect to the con-

current class. We do that for two main reasons:

1. We are interested in understanding if we can use machine learning techniques

to identify concurrent bugs.

2. Given the imbalancement of the dataset, even a silly balancer associating any

input to the non-concurrent class will have very high weighted average scores.

We are also reporting a limited amount of analysis data, specifically in this paper

we focus on precision and recall (and the related F-measure). Other aspects of the

Table 1 Performance of the machine learning algorithms investigated

Precision Recall F-measure

NB 0.166 0.614 0.261

KN 0.978 0.856 0.913

C45 0.843 0.771 0.805

RF 1 0.778 0.875

DFE 0.97 0.843 0.902

80 P. Ciancarini et al.

learners (such as the ROC curve) have been analyzed in our tests but they were always

aligned with the results expressed by the three measure we are providing here.

Now we want to understand if introducing mitigating methods for the dataset

imbalancement and the high number of features can improve the performances of

the learners.

For instance, It is well known that simple Bayesian methods assume independence

between all the attributes, which is almost never the case for bag of words, so we

expect that eliminating correlated attributes should be beneficial for these learners.

It is also known that tree-based learners, such as Random Forest, can benefit from

re-balancing approaches [18].

For imbalanced datasets, there are mainly two approaches:

1. Re-balance them (by decimating the majority class or by synthetically creating

new instances of the minority class).

2. Instruct the learner to give different weights to the instances of the two classes

(a lower weight for those of the majority class and a higher one for the minority

ones).

In the case of the large number of attributes, several feature engineering methods

can be applied. The most widely adopted is attribute selection. In this case, the re-

duction of the number of attributes can help learners that do not perform well with

a large number attributes, helping also in reducing the computation time needed to

create the predictive model. However, this last advantage can be limited when using

selection algorithms that are computationally expensive. There are two main classes

of attribute selection algorithms: those who analyze the performance of the learner

in the selection process and those who do not use the learner.

The first class is usually very expensive from a computational point of view, since

the learner runs continuously to check how it performs when changing the attributes

in the dataset. Usually, that leads to computation times that are two or more orders

of magnitude larger compared to the learner itself. For this reason, we did only some

limited experiments with learner-aware attribute selection. In these experiments we

combined attribute selection (AS) with re-balancing approaches either using cost-

aware version of the classifiers (CA) and/or over-sampling using the SMOTE algo-

rithm (SM) [4] and the results obtained were marginally better than those obtained

with processes not using the learner. Consequently, we only used this approach in

our in depth-analysis.

The next experiment we performed is a study on the predictive power of issues-

related data only. We recreated the dataset with only issues titles and description

(using bag of words pruned to 5000 elements); the resulting precision, recall and

F-measure we obtained are: 0.967, 0.758 and 0.85 respectively. This results is ob-

tained with the DFE learner which significantly outperformed the other learners.

This shows that prediction based only on information available at the time a bug

report is submit is indeed feasible.

An Initial Investigation of Concurrency Bugs in Open Source Systems 81

4 Discussion of the Results

Our results show that is indeed possible to use machine learning techniques to effec-

tively identify concurrency-related bugs.

The best overall learner has been DFE, which does not benefit from re-balancing

and feature engineering techniques. This is a relevant result: DFE can construct cat-

egorization models with limited computational effort and the fact that no further

dataset processing is needed also eliminates costly processing. In practical terms

this means that, using an Intel i5 processor with two cores running at the base fre-

quency of 1.8 GHz a DFE-based model can be created in less than 0.1 seconds. This

model can easily classify more than 1,000 instances per second on the same hard-

ware, allowing easy online processing.

Our tests also show that classification on the basis of a simple bug report can

be performed with decent performances; this result combined with the possibility

of easy online processing makes on-the-fly concurrency-related bug identification a

concrete possibility.

5 Threats to Validity

The design, the data collection, and the analysis of the presented research has been

conducted under a number of assumptions that can limit the validity of the study. In

particular, the main limitations are the following:

∙ The study includes only one project (Apache HTTP Server).

∙ We deal with a small number of issues, therefore the statistical significance of

some of the analysis can be limited.

∙ The identification of the concurrency-related defects has been performed manu-

ally, therefore there could be some interpretation errors. However, to mitigate the

risk, the manual check was performed by at least two authors independently.

∙ The software analyzers we have developed to perform the data collection and the

analysis may include some bugs that prevent the identification of some relevant

defects. In particular, the code analyzer considers the code as text without taking

into consideration the language structure.

∙ There is a lack of cross-validity of the developed models since we have not verified

if the model can be easily adapted to a different context.

∙ There could be some biases due to: the selection of the project to analyze (Apache

HTTP Server), the programming language used (C/C++), the lack of complete

data about the defects and the related fixes, the selection of the non-concurrent

defects only from the ones that do not include the identified keywords, the use of

issues-only datasets that are extracted considering only linked bugs.

82 P. Ciancarini et al.

6 Conclusion and Future Work

The paper has presented an analysis of the concurrency-related defects in a popular

open source project developing also a prediction model that is able to help developers

in the triage phase of the reported issues.

This result combined with the possibility of easy online processing makes on-the-

fly concurrency-related bug identification a concrete possibility. This will be able to

help developers of large and popular projects in the triage phase when they have to

deal with a continuous flow of a large number of reported issues.

Moreover, the approach can be used to perform retrospectives using all the data

available after the fix of the defect slightly improving the overall performance of our

models compared to the ons that we have developed based only on the information

available at reporting time, as described in this paper.

We have tested the performances of several algorithms and we have obtained

that one of the best ones is the DFE that allowed us to achieve a precision of 0.97

and a recall of 0.843 when considering linked bugs (bug reports information in bug

repository and the corresponding fix in the version control system) and a precision of

0.967 and a recall of 0.758 when considering only the information from bug reports.

The next step will be the application of the same procedure to other project and test

the cross-validity of the models to investigate if the approach can be easily extended.

Acknowledgements The research presented in this paper has been partially funded by the

ARTEMIS project EMC2 (621429).

References

1. D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning algorithms. Mach. Learn. 6(1),

1991 (1991)

2. L. Breiman, Random forests. Mach. Learn. 45(1), 2001 (2001)

3. P. Ciancarini, F. Poggi, D. Rossi, A. Sillitti, Improving bug predictions in multicore cyber-

physical systems, in Proceedings of 4th International Conference in Software Engineering for
Defense Applications (Springer International Publishing), pp. 287–295, 2016

4. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-

sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

5. P. Ciancarini, F. Poggi, D. Rossi, A. Sillitti, Mining concurrency bugs, in Embedded Multi-
Core Systems for Mixed Criticality Summit 2016 at CPS Week 2016, Vienna, Austria, 11 Apr

2016

6. I. Coman, A. Sillitti, An empirical exploratory study on inferring developers activities from

low-level data, in 19th International Conference on Software Engineering and Knowledge En-
gineering (SEKE 2007), Boston, MA, USA, 9–11 July 2007

7. G. Denaro, M. Pezzé, An empirical evaluation of fault proneness models, in 24th International
Conference on Software Engineering (ICSE 2002) (ACM, May 2002)

8. E. Di Bella, A. Sillitti, G. Succi, A multivariate classification of open source developers. Inf.

Sci. 221 (2013)

9. E. Farchi, Y. Nir, S. Ur, Concurrent bug patterns and how to test them, in International Parallel
and Distributed Processing Symposium (IPDPS) (IEEE, 2003)

An Initial Investigation of Concurrency Bugs in Open Source Systems 83

10. P. Fonseca, C. Li, R. Rodrigues (2011). Finding complex concurrency bugs in large multi-

threaded applications, in 6th Conference on Computer Systems (ACM, Apr 2011)

11. T.L. Graves, A.F. Karr, J.S. Marron, H. Siy, Predicting fault incidence using software change

history. IEEE Trans. Softw. Eng. 26(7), 2000 (2000)

12. T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic literature review on fault

prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 2012 (2012)

13. H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),

2009 (2009)

14. G.H. John, P. Langley, Estimating continuous distributions in bayesian classifiers, in 11th Con-
ference on Uncertainty in Artificial Intelligence (Morgan Kaufmann Publishers Inc., 1995), pp.

338–345

15. S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, Improvements to Platt’s SMO

algorithm for SVM classifier design. Neural Comput. 13(3), 2001 (2001)

16. S. Kim, T. Zimmermann, E.J. Whitehead Jr, A. Zeller (2007). Predicting faults from cached

history, in 29th International Conference on Software Engineering (ICSE 2007) (ACM, May

2007)

17. S. Kim, E.J. Whitehead Jr., Y. Zhang, Classifying software changes: clean or buggy? IEEE

Trans. Softw. Eng. 34(2), 2008 (2008)

18. T.M. Khoshgoftaar, M. Golawala, J. Van Hulse, An empirical study of learning from imbal-

anced data using random forest, in 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2007) (IEEE, 2007), pp. 310–317

19. S. Lu, S. Park, E. Seo, Y. Zhou, Learning from mistakes: a comprehensive study on real world

concurrency bug characteristics. ACM SIGPLAN Not. 43(3), 2008 (2008)

20. A.H. Moin, M. Khansari, Bug localization using revision log analysis and open bug repository

text categorization, in International Conference on Open Source Systems (OSS 2010) (Springer

Berlin Heidelberg, May 2010), pp. 188–199

21. R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of change metrics

and static code attributes for defect prediction, in 30th International Conference on Software
Engineering (ICSE 2008) (ACM, May 2008), pp. 181–190

22. N. Nagappan, T. Ball, Use of relative code churn measures to predict system defect density, in

27th International Conference on Software Engineering (ICSE 2005) (IEEE, May 2005), pp.

284–292

23. N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component failures, in 28th Inter-
national Conference on Software Engineering (ICSE 2006) (ACM, May 2006), pp. 452–461

24. W. Pedrycz, G. Succi, A. Sillitti, J. Iljazi, Data description: a general framework of information

granules. Knowledge-Based Systems, Elsevier 80, 2015 (2015)

25. E. Petrinja, A. Sillitti, G. Succi (2010). Comparing OpenBRR, QSOS, and OMM assessment

models, in 6th International Conference on Open Source Systems (OSS 2010), Notre Dame,

IN, USA, 30 May–2 June 2010

26. J. Quinlan, C 4.5: Programs for Machine Learning (Elsevier, 2014)

27. S. Rao, A. Kak, Retrieval from software libraries for bug localization: a comparative study of

generic and composite text models, in 8th Working Conference on Mining Software Reposito-
ries (MSR 2011) (ACM, May 2011), pp. 43–52

28. R. Shatnawi, W. Li, The Effectiveness of software metrics in identifying error-prone classes in

post-release software evolution process. J. Syst. Softw. 81(11), 1868–1882 (2008)

29. J. Śliwerski, T. Zimmermann, A. Zeller, When do changes induce fixes? ACM SIGSOFT Soft.

Eng. Notes 30(4), 2005 (2005)

30. K. Sparck Jones, A statistical interpretation of term specificity and its application in retrieval.

J. Doc. 28(1) (1972)

31. J. Su, H. Zhang, C.X. Ling, S. Matwin, Discriminative parameter learning for Bayesian net-

works, in 25th International Conference on Machine Learning (ACM, 2008), pp. 1016–1023

32. E. Weyuker, T. Ostrand, R. Bell, Using developer information as a factor for fault prediction,

in International Workshop on Predictor Models in Software Engineering (IEEE, May 2007)

84 P. Ciancarini et al.

33. E. Weyuker, T. Ostrand, R. Bell, Do Roo Many Cooks Spoil the Broth? Using the number of

developers to enhance defect prediction models. Empir. Softw. Eng. 13(5), 2008 (2008)

34. K. Youil, L. Jooyong, H. Hwansoo, C. Kwang-Moo, Filtering false alarms of buffer overflow

analysis using SMT solvers. Inf. Softw. Technol. 52(2), 2010 (2010)

35. B. Zhou, I. Neamtiu, R. Gupta, Predicting concurrency bugs: how many, what kind and where

are they?, in 19th International Conference on Evaluation and Assessment in Software Engi-
neering (ACM, 2015)

Contracting Agile Developments for the
Public Sector: The Italian Case

Daniel Russo, Gerolamo Taccogna and Paolo Ciancarini

Abstract Even if Agile is a well established software development paradigm, major

concerns rise when it comes to contracting issues. How to contractualize the Agile

production of software, especially for security and mission critical public organiza-

tions, is a major concern. In literature, little has been done, from a foundational point

of view regarding the formalization of such contracts. Especially when the develop-

ment is outsourced to a different organization, the management of the contractual

life is difficult. This happens because the interests of the two parties are not aligned.

Software houses strive for the minimization of the effort, while the customer expects

high quality artifacts. This structural asymmetry can hardly be overcome with tra-

ditional “Waterfall” contracts. We propose a foundational approach to the law and

economics of Agile contracts. Moreover, we explore the key elements of the Italian

procurement law and outline a suitable solution to merge some basic legal constraints

with Agile requirements. This is a first framework to start building Agile contracts

for the Italian public sector.

Keywords Software engineering ⋅ Agile ⋅ Agile contracts

Contracting Public sector

D. Russo ⋅ P. Ciancarini (✉)

Department of Computer Science & Engineering, University of Bologna,

Mura Anteo Zamboni 7, 40126 Bologna, Italy

e-mail: paolo.ciancarini@unibo.it

D. Russo

e-mail: daniel.russo@unibo.it

G. Taccogna

Department of Law, University of Genoa, Genoa, Italy

e-mail: g.taccogna@unige.it

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_9

85

86 D. Russo et al.

1 Introduction

Agile developments have proven effective in a number of commercial domains to

provide new software functions rapidly and with reduced costs. We study the enact-

ment of Agile software development methods within mission and security critical

public organizations, especially military [8, 14, 23].

Apparently, a Waterfall process model responds to some fundamental needs in

such organizations, like (i) fixed costs, (ii) requirement definition, (iii) defined sched-

ule, and (iv) clear liability if something goes wrong. However, when costs rise expo-

nentially during maintenance due to poor software quality of the deliverables or the

loose requirement implementation, Waterfall shows all his limits. Agile methods

tackle those issues, trying to align the interests of the development team and the cus-

tomer. However, it is still difficult to formalize a contract ruling agile developments

of mission critical products. From a scholarly point of view few similar works have

been carried out, especially in the mission critical domain for the public sector.

In the last years some papers have discussed the problem of Agile contracting

in a commercial context, see for instance [3, 5, 18]. A recent book [6] discussed

a contractual model called adVANTAGE for Agile Developments. In this book an

interesting discussion concerns the contractor’s willingness to assume development

risks. A. Cockburn has published an intriguing case by case discussion of typical

contracts in this site.
1

Similar cases are also discussed in the thesis [20].

The US government devoted a lot of attention to the problem of contracts for

agile developments of software. The Software Engineering Institute (SEI) published

in the last five years several reports concerning agile for producing software products

in particular for the military [11, 12, 16, 17, 19, 27].

SEI has also published some guidelines for agile contracts for software acquired

by the US DoD [13, 26]. These guidelines compare traditional developments with

agile developments for critical military systems. The major recommendation con-

sists of post-award documenting contractor’s performance throughout each sprint

and release, e.g. using metrics like technical debt in terms of bug defect rates, length

of throughput time compared to contractor estimates, speed of time to value, etc.

The rationale of the present paper is to bind contract theory with Agile practices,

which special care for the Italian context. The foundational approach highlights the

key issues of Agile contracting which need to be developed.

The paper has the following structure. In Sect. 2 Law and Economics of contract

theory is briefly explained to understand the underling logic of software contracts.

This interdisciplinary approach is crucial to understand the economics of contracts

i.e., alignment of interests, which is the most tricky part of Agile contracting. In

Sect. 3 we deepen the Italian case, defining the key elements of the procurement

law. After gaining a short understanding about the basic legal boundaries for Agile

public contracting, we illustrate two approaches. The first one in Sect. 4 is based on

Function Point Analysis; the second one in Sect. 5 is based on the contractualization

1
http://alistair.cockburn.us/Agile+contracts.

http://alistair.cockburn.us/Agile+contracts

Contracting Agile Developments for the Public Sector . . . 87

of Scrum sprints. Finally, in Sect. 6 we sum up our main proposal and envision some

further work.

2 The Law and Economics of Agile Contracts

Contracts are agreements between two parties, with different interests, written down

to fix such interests, alongside with some results compensation. Generally speaking,

for a free-market economy, the ability of two parties to enter into voluntary agree-

ments, namely contracts, is the key element for the market equilibrium [10]. Contract

law and law enforcement procedures are fundamental for the efficiency of any eco-

nomic system. Thus, contract law has to be intended as a set of rules for exchanging

individual claims to entitlements (i.e., interests). In this way, it enforces the extent to

which society gains from this agreement due to an efficient economic system.

When one party is unsure about the other party’s behavior, contracts may miti-

gate this asymmetry, In our case, contracts are helpful when advance commitment

enhances the value of an artifact by enabling reliance by the beneficiary [21].

From a Law and Economics viewpoint, there are several issues regarding the

importance of contracting [10].

∙ Coordination. The most common reason to engage in a contract is to coordinate

independent actions in a situation of multiple equilibria. The most straightforward

example is the well known Prisoner’s dilemma. Two parties with different and

independent interests will choose the scenario where both are worse off (i.e., both

confess their crime and accuse the other party, in order to get the benefit of a

reduction of imprisonment time). While, with coordination, both would get the

better payoff, not admitting the crime, gambling the law system, escaping a long

imprisonment time. If the parties are well coordinated by a contract, they will get

both the best trade-off, not going to jail at all. A contract to play this efficient equi-

librium guarantees a positive outcome. This is also known as Nash equilibrium,

where modern contracting theories get most of their inspiration. The coordination

scenarios based on contracts are excellent models to understand institutions [15].

∙ Exchange implementation. Especially in situations of hidden informations (i.e.,

information asymmetry), contracts may mitigate such asymmetry [1]. To avoid

adverse selection (i.e., when one party has an information which the other party

does not have), which impedes market efficiency, contracts may provide war-

ranties, to assuring the high quality of the product. This is very typical in software,

where the vendors know the details of the product, while the customer is totally

unaware of the code (usually obfuscated, if it is a license product) but only aware

about its functionalities told by the vendor. Thus, alongside with software, there is

usually a warranty about the product. In this way the customer potential downsize

(bugs) will be fixed by the vendor and no special code awareness is needed before

buying the software.

88 D. Russo et al.

However, there are also some major drawbacks of contracting [10]. The most

important from our point of view are:

∙ Specification cost—ex post. Writing down all possible contingencies which could

arise within the future contractual relationship is extremely expensive. Potential

contingencies of contractual obligations are usually very broad. Therefore, con-

tracts are often left open and incomplete. In such cases there are two main sce-

narios. It could happen that the contract just fails to provide information for con-

tingencies, since nothing was agreed upfront. In this case, parties have to decide

what happens after a contingency. In the second case the contract could cover a

broad number of contingencies but not fine-tuning them. In such way, parties still

have to decide what to do, since contingencies are not defined precisely enough.

Anyway, in both scenarios, contracts fail to assure the commitment of the parties.

∙ Dynamic inconsistency—ex ante. This is the classic investment problem. One

party may be willing to bargain and to modify the contracts when it has pursued

investments. A software vendor will try to sell its solution to a higher cost, if it

realizes that the value added brought to the customer is higher than expected. In

such case, vendors do not have any incentives to do investments i.e., spend money

to develop high quality code, since the price has been fixed.

∙ Unverifiable actions. Even after entering into a contractual commitment, one party

may be unable to determine whatever the agreement has been kept or broken. This

is the typical case of intangible goods, like software. It is a not trivial task to assess

with objectivity if what promised has been carried out according to the contract.

In the study of Agile contracting we should not overlook normative and incen-

tive aspects, typical of any contractual relationship. The economics of contracting

has both upsides (i.e., coordination and exchange implementation) and downsizes

(i.e., specification cost, dynamic inconsistency, and unverifiable actions). What we

learn from the Law and Economics theories of contracts is that any contract has its

loopholes, thus also Waterfall ones. Both specification costs and unverifiable actions

have a big impact on the cost of contracting. Traditional software contracts are very

expensive; alongside with high specification costs due to very detailed requirements,

there is also the difficulty to assess with objectivity the artifact to build. Such barriers

have a direct impact on both the contract cost and market efficiency. Even in Water-

fall contracts there are “hidden” costs that indirectly increase the cost of software

products. The perceived “reliability” of Waterfall has apparently scarce evidence

in practice. What we do know is that Waterfall usually increases the maintenance

Table 1 Divergent interests

Organization Contractor

Requirement interpretation Broad Narrow

Time to market As soon as possible Depending on several issues

Quality and Security Best Good enough to get paid

Cost As low as possible As high as possible

Contracting Agile Developments for the Public Sector . . . 89

costs, which are hidden costs belonging to the software’s life cycle [22]. However,

while there are established routines concerning how to carry out a Waterfall contract,

instead there are very few guidelines about Agile.

First of all we will depict the divergent interests of a software contract, represented

in Table 1. As seen before, contracts facilitate market equilibrium through coordina-

tion and exchange implementation. In software this means that the two parties which

suffer from an information asymmetry reach an agreement through a legal binding

paper (the contract). A generic organization does not always have the expertise or

the man-power to carry out the software, while contractors do.

There is asymmetry in the sense that both parties are not aware of the same rele-

vant information, i.e., the (i) price willing to pay, (ii) technological complexity and

feasibility, (iii) code reuse, (iv) implicit needs of the customer which may not corre-

spond to requirements. Such problems are overcome with a binding agreement.

However, some latent interests are not aligned by any contract, due to specification

costs, unverifiable actions, and dynamic inconsistency. If time and cost are fixed,

requirements have a degree of interpretation but they are easily quantifiable; it is

quality and security which belong to an arbitrary or “subjective” dimension which

are the most difficult parts to fix in any software contract.

Loose quality and security software means unsustainable raising maintenance

cost in the long run. Especially mission critical organizations may loose operational

capability due to the complexity and low quality of their multi-party systems.

Therefore, there is a stringent need in any field to align organizations and con-

tractors interests, in terms of customer needs, quality and security, costs, and time.

Our idea is to develop a bonus-malus reward system. In such a model, the price

is fixed and represents the maximum awardable amount. According to the develop-

ment process and product quality obtained the contractor is paid according to what

is delivered and measured. To do so, there must be a quantifiable measure of some

kind of software size dimension.

With all their limitations, we do believe that Function Points [2, 24], or some

related variants like Simple Function Points (SFP) [9], represent a fair and quite

effective metric. To avoid specification costs, contracts should have a loose—in

some way open—requirements list, but a fixed, predetermined SFP estimate. More-

over, a bonus-malus mechanism should be added alongside within the pricing. After

each iteration, i.e., implementation of user stories, SFP are consumed and paid. The

amount paid follows the bonus-malus pricing mechanism. With a high quality code,

contractors get a bonus, up to the maximum (fixed) amount.

As any metrics, both FP and SFP have some limitations. For this reason we do

not claim that they are the ultimate solution to solve the problem. However, SFP is

an easy measurable metric for business functionalities, which are very close to the

Agile definition of user story.

Code quality control is still necessary, to avoid the malicious use of low quality

functions, just to increase pricing. Therefore, it is of greatest importance to fix such

test and metrics within the contract, even if not implemented. Based on our experi-

ence, we suggest that security and code quality should be defined as non-functional

requirements in the development process. Especially in mission critical organiza-

90 D. Russo et al.

tions we see how some redundancy of competences within the process improves

code quality and security [14]. Thus, a TDD (Test Driven Development) approach

set in the contract seems quite suitable for Agile contracting. Within each iteration,

the Product Owner (PO) and the contracting development team start with a test ori-

ented development, which has to correspond to the user story development.

Our main idea is that continuous “tensions” and new equilibria between the two

parties are the best mitigation driver, which underlies to any contract. Continuous

discussions, bargaining, and agreement do motivate both parties to carry on their

respective tasks. In such way we do not have specification costs, since Agile con-

tracts do only specify the very general task and any detail user story development is

agreed in any iteration; it is a sort of overarching or framework contract. Dynamic

inconsistency is mitigated through a reward based payment. Contractors will have

the economic interest to get the “bonus”, which is awarded according to their per-

formances. Unverifiable actions are mitigated by a TDD approach, since “quality

metrics” i.e., tests, are agreed by the parties within the iterative development process.

Such an approach is particularly effective for public administrations which by our

law must use a bidding base. With such an approach, it is possible to define a budget

a priori. At the same time, contractors will work for better quality software, trying to

gain the whole amount. Organizations and POs gain from velocity and requirement

satisfaction. From an operational point of view, this solution tackles each critical

point that Waterfall does not structurally solve.

Finally, from a contractual perspective, i.e., the economics of the contract, this

solution gets all the benefits of contracting, namely coordination and exchange

implementation. At the same time some major problems of Waterfall contracts

(specification cost, dynamic inconsistency and unverifiable actions) are solved by

a methodological approach.

3 The Italian Case

The structure of the procurement law follows usually six constitutionals principles:

free competition, equal treatment, non-discrimination, transparency, proportionality,

and publicity. These are substantial issues which are always reflected in the procure-

ment law.

According to those principles, the object of the contract, the competition, the

economic value, the verification, and the variations are the five pillars on which the

procurement law is built.

Although we are now referring specifically to the Italian case, these consider-

ations are of use also for other countries based on European public procurement

rules. In fact, regulation may slightly change, but the constitutional assumptions and

procurement characteristic are basically the same or, at least, comparable. For this

reason we believe that this research is of good use also beyond Italian borders.

In the following subsections we will try to explain how to structure an Agile con-

tract, according to those pillars.

Contracting Agile Developments for the Public Sector . . . 91

3.1 The Object of the Contract

The contractual object has to be determinated or determinable, according to art.

1346 of the Italian civil code (cc). So, the object of the contract needs to be clearly

identifiable without further free decisions. This means that a collaboration program

can not be just agreed upfront, if it is not sufficiently determined. At least, some

characteristics of the future software product have to be defined.

According to the procurement law (D.Lgs. nr 50/2016, art. 23.15) the public bid

should include a technical annex, composed by:

1. Calculation of the alleged cost;

2. Financial statement of total charges;

3. Specific descriptive and performance specifications;

4. Minimum bid requirements;

5. Possible variations;

6. The possible circumstances of (non substantial) change of the negotiating condi-

tions.

The technical annex is of pivotal importance for Agile contracting, since it is

the framework where the public customer describes the required system and pre-

scribes the methodology. Interestingly, although the procurement law applies easily

to Waterfall-like contracts it does not hinder per se Agile contracting. However, for

these new kinds of contracts the object (the software system which has do be devel-

oped) needs to be defined at least in functional terms ex ante, with the possibility

to refine requirements along the way. This does not appear unreasonable, consider-

ing that systems and context requirements are set by regulations or internal policy

guidelines. For instance, communication protocols, stakeholders, security standards,

interoperability routines, and so on are easily known a priori.

3.2 The Competition

The competition is a key element for public procurements since it guarantees con-

stitutional rights, such as open concurrency, impartiality, and accountability. It is

basically a trade-off between such rights and the utility of the contract. In other

words, although it would be more effective to deregulate the competition and do

it customized and tailor made case by case, constitutional rights needs to be uphold.

Thus, the competition should ideally be a Pareto-optimal solution between these con-

trasting forces.

So, it is not rigid per se, if it is effectively accountable. The law guarantees certain

degrees of flexibility, in order to find the best partner. Therefore, the customer may

specify flexible collaboration provisions which meet the Agile philosophy.

92 D. Russo et al.

3.3 Provision of Accountable Variations

Variations are of great interest for Agile contracts, since they introduce the neces-

sary flexibility along the contract life. However, although they are possible, they still

need to be accountable. Those provisions should be clear precise and unequivocal.

Moreover, any variation should be forbidden if one of these cases occur:

1. if the variation causes a modification such that a competitor could had won

the competition, or if other competitors could had participated to the selection

process;

2. if the economic equilibrium changes significantly;

3. if the object of the contract is heavily extended.

These are the most important framework boundaries to elaborate an Agile con-

tract.

3.4 The Economic Value

Also the determination of the economic value has to be clear and effective. Since

the economic evaluation is a complex issue, the law admits the idea of flexibility

but only with objective and fixed parameters. Once these are set, the price derives

from the estimation of the cost of the produced software and the related economic

calculation.

Interestingly, the law does not state how to perform it. This introduces the oppor-

tune flexibility to develop some proper evaluation techniques for Agile contracts.

This is also a key issue for the reasons explained in Sect. 2.

The most important issue to preserve in an Agile relationship is the alignment of

interests. Since most of possible discussions may be around the effective value of

the software, identifying an accountable and clear way to define the value, motivates

both parties to work together to get the best possible outcome.

3.5 The Verification

Finally, also the verification needs to fulfill some legal requirements. Once built, or

even during its development, the software should be inspected to see if it fulfills

the requirements. Such inspection should be accountable and the techniques defined

upfront.

This complies very well with the Agile philosophy. Since the verification process

is transparent, interests alignment is facilitated. The implementation of non-invasive

tools is considered an effective way to enhance accountability along all the develop-

ment process.

Contracting Agile Developments for the Public Sector . . . 93

4 Contractualization of Function Points

Function Point Analysis (FPA) [2, 25] provides enough objectivity in the evaluation

process, independently from the used technology. This is the reason why FPA is a

suitable option to guarantee the proper flexibility of the Agile methodology within

the Italian constitutional framework discussed before. For the sake of simplification,

also novel estimation techniques based on FPA, like Simple Function Points (SFP)

[9], may represent a suitable and easy measurable metric, as already discussed in

Sect. 2.

Another strong point in favor of Function Points is that these are known and

already used within the Italian public sector.
2

This means that it would be rather

efficient to write an Agile contract, based on the already acquired experience.

FPA provides the right tension between interests in order to let align them, since it

is an accountable process. Moreover, a bonus-malus effect would also help towards

this direction.

This mechanism should induce the provider to deliver not just average quality

functionalities but high-value ones. We remark that although the delivered function-

ality can be first estimated and then assessed by FPA, there is no guarantee for quality.

In fact, FPA does not assess quality per se but only if the software computes a cer-

tain numbers of functionalities. Exceptional delivered quality has to be economically

recognized, beyond the delivery of functionalities. Similarly, also low quality should

be discouraged.

For this reason the use of a non-invasive quality tool to assess ongoing quality

of software products is of greatest importance. It does not represent a legal issue,

since the customer can easily include this methodological requirement in the com-

petition call. Such a tool may compute not only the number of developed functional-

ities but also judge their quality, according to industrial benchmarks (i.e., ISO/IEC

25010:2011). An example of such a tool is SonarCube [7].

So, also the development methodology becomes of importance, since it is com-

plementary to the non-invasive tool. The Test Driven Development (TDD) method

[4] provides a useful approach to develop mission critical software with the highest

attention to quality and security.

For this reason we now sum up the three keystones of an Agile contract with FPA.

In our proposal law and economics aspects of contracts are maximized, upholding

constitutional duties of the contracting authority.

1. Specification costs are minimized by the methodology. After several iterations

fine-granular functionalities are negotiated.

2. Dynamic inconsistency is is mitigated by a bonus-malus mechanism.

3. Non verifiable actions are mitigated by a Test Driven Development and the imple-

mentation of non invasive metrics.

2
http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_

di_gara.pdf.

http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_di_gara.pdf
http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_di_gara.pdf

94 D. Russo et al.

These are the main characteristics for a transparent relationship which maximize

the contract utility.

5 Contractualization of Scrum Sprints

Another suitable way to write public Agile contracts are sprint-based ones. In this

case not Function Points but Scrum sprints are contractualized. So, as in the other

case, functionalities are described at a high level in the object of the contract but the

economic value is not determined by the FPA but by the development iterations. It

is a sort of body rental contract, where man-hours are organized in sprints. Thus, for

a team with 5 people, a sprint of 5 weeks and considering a 40 h week, each sprint

will account for 5000 h/person. The requirements refinement (through User Stories

and continuous iterations) is part of the contract life.

Both parties should be aware of the methodology, not only to avoid misunder-

standing but also to prevent miscalculation of the effort. The hope is to build a win-

win relationship, where parties are aligned to the goal and are treated fairly. A win-

lose solution would be rather suboptimal, since there is no guarantee for a long-term

engagement.

1. Sprint definition has to be clear in terms of duration and people. In such contracts

people play the greatest role. The level of expertise, seniority, and skill should be

taken into consideration while designing Scrum teams.

2. The chosen Agile methodology has to be clear to both customer and provider to

organize and setup the development. User Stories estimation is a sensible issue

here. An overestimation, as also a underestimation may lead to misinterpretations

between the parties as also frustration.

3. The bonus-malus mechanism described in the previous section should be clear.

4. The use of monitoring and non-invasive tools is also an important issue for the

interests alignment and accountability, as explained in the last section.

6 Conclusions

This paper is an attempt to carry out a foundational work about Agile contracts. We

pointed out how, through the alignment of interests, reduction of asymmetry and

flexibility Agile could be wider use in today’s software engineering environment,

especially within the Public Sector. Moreover we highlighted the keystone for Agile

contracting within the Italian public administration. This has a direct impact on all

civil law countries, since they face similar procurement law principles.

However, still future work is required and will go in two main directions. Firstly,

wider studies about implications and implementation of Agile in legal contracts has

to be carried out. Secondly, practical validation of such contracts needs to be studied.

Contracting Agile Developments for the Public Sector . . . 95

Acknowledgements The authors would like to thank Col. Franco Cotugno—SEGREDIFESA/

DNA, for the initial idea at the basis of this paper. We also thank for their partial support: the

Italian Ministry of Defense with the PNRM AMINSEP (Agile Methodology Implementation for a

New Software Engineering Paradigm definition) project; the Italian Interuniversity Consortium for

Informatics (CINI), and the Institute of Cognitive Sciences and Technologies of the Italian National

Research Council.

References

1. G. Akerlof, The market for “lemons”: quality uncertainty and the market mechanism. Q. J.

Econ. 488–500 (1970)

2. A. Albrecht, J. Gaffney, Software function, source lines of code, and development effort pre-

diction: a software science validation. IEEE Trans. Softw. Eng. 9(6), 639–648 (1983)

3. S. Atkinson, G. Benefield, Software development: why the traditional contract model is not

fit for purpose, in Proceedings of HICSS46, Software Track (IEEE Computer Society Press,

Hawaii, 2013), pp. 330–339

4. K. Beck, Test Driven Development By Example (Addison-Wesley, Boston, 2003)

5. M. Book, V. Gruhn, R. Striemer, adVANTAGE: A fair pricing model for agile software devel-

opment contracting, in Agile Processes in Software Engineering and Extreme Programming,

ed. by C. Wohlin (Springer, Malmo, Sweden, 2012), pp. 193–200

6. M. Book, V. Gruhn, R. Striemer, Tamed Agility (Springer, 2016)

7. G. Campbell, P. Papapetrou, SonarQube in Action (Manning Publications, 2013)

8. P. Ciancarini, A. Messina, F. Poggi, D. Russo, Agile knowledge engineering for mission critical

software requirements, in Synergies Between Knowledge Engineering and Software Engineer-
ing (Springer, 2018), pp. 151–171

9. F. Ferrucci, C. Gravino, L. Lavazza, Simple function points for effort estimation: a further

assessment, in Proceedings of 31st ACM Symposium on Applied Computing (2016), pp. 1428–

1433

10. B. Hermalin, A. Katz, R. Craswell, The law and economics of contracts, in Handbook of Law
and Economics, ed. by M. Polinsky, S. Shavell (Elsevier, 2007), pp. 3–138

11. M. Lapham, M. Bandor, E. Wrubel, Agile methods and request for change (RFC): observations

from DoD acquisition programs. Technical Report CMU-SEI-13-TN-31 (Software Engineer-

ing Institute, Carnegie Mellon University, 2014)

12. M. Lapham et al., Agile methods: selected DoD management and acquisition concerns. Tech-

nical Report CMU-SEI-11-TN-2 (Software Engineering Institute, Carnegie Mellon University,

2011)

13. M. Lapham et al., RFP patterns and techniques for successful agile contracting. Technical

Report CMU-SEI-13-SR-25 (Software Engineering Institute, Carnegie Mellon University,

2016)

14. A. Messina, F. Fiore, M. Ruggiero, P. Ciancarini, D. Russo, A new agile paradigm for mission

critical software development. Crosstalk—J. Def. Softw. Eng. 29(6), 25–30 (2016)

15. R. Myerson, Justice, institutions, and multiple equilibria. Chic. J. Int. Law 5, 91 (2004)

16. K. Nidiffer, S. Miller, D. Carney, Agile methods in air force sustainment: status and outlook.

Technical Report CMU-SEI-14-TN-9 (Software Engineering Institute, Carnegie Mellon Uni-

versity, 2014)

17. K. Nidiffer, S. Miller, D. Carney, Potential use of agile methods in selected DoD acquisitions:

requirements development and management. Technical Report CMU-SEI-13-TN-6 (Software

Engineering Institute, Carnegie Mellon University, 2014)

18. A. Opelt, B. Gloger, W. Pfarl, R. Mittermayr, Agile Contracts (Wiley, 2013)

19. S. Palmquist, M. Lapham, S. Garcia-Miller, T. Chick, I. Ozkaya, Parallel worlds: agile and

waterfall differences and similarities. Technical Report CMU-SEI-13-TN-21 (Software Engi-

neering Institute, Carnegie Mellon University, 2014)

96 D. Russo et al.

20. E. Pilios, Contracting Practices in Traditional and Agile Software Development (2015)

21. R. Posner, Gratuitous promises in economics and law. J. Legal Stud. 6(2), 411–426 (1977)

22. R. Pressman, Software Engineering: A Practictioner’s Approach (McGraw-Hill, 2014)

23. D. Russo, Benefits of open source software in defense environments, in Proceedings of 4th
International Conference on Software Engineering for Defence Applications, volume 422 of

Advances in Intelligent Systems and Computing (Springer, Berlin, 2016), pp. 123–131

24. C. Santana, F. Leoneo, A. Vasconcelos, C. Gusmao, Using function points in agile projects,

in Agile Processes in Software Engineering and Extreme Programming, volume 77 of Lecture

Notes in Business Information Processing (Springer, 2011), pp. 176–191

25. C. Symons, Function point analysis: difficulties and improvements. IEEE Trans. Softw. Eng.

14(1), 2–11 (1988)

26. E. Wrubel, J. Gross, Contracting for agile software development in the department of

defense: an introduction. Technical Report CMU-SEI-15-TN-06 (Software Engineering Insti-

tute, Carnegie Mellon University, 2015)

27. E. Wrubel, S. Miller, M. Lapham, T. Chick, Agile software teams: how they engage with sys-

tems engineering on DoD acquisition programs. Technical Report CMU-SEI-14-TN-13 (Soft-

ware Engineering Institute, Carnegie Mellon University, 2014)

Domain Objects and Microservices
for Systems Development: A Roadmap

Kizilov Mikhail, Antonio Bucchiarone, Manuel Mazzara, Larisa Safina
and Victor Rivera

Abstract This paper discusses a roadmap to investigate Domain Objects being an

adequate formalism to capture the peculiarity of microservice architecture, and to

support Software development since the early stages. It provides a survey of both

Microservices and Domain Objects, and it discusses plans and reflections on how to

investigate whether a modeling approach suited to adaptable service-based compo-

nents can also be applied with success to the microservice scenario.

Keywords Microservices ⋅ Domain objects ⋅ Software modeling

1 Introduction

The increasing complexity of modern software, which requires to be flexible and

rapidly deployable, demands for new approaches to architectural design and system

modeling. These approaches have to support developers from early stages and be

able to produce quality software.

Innovative engineering is always looking for adequate instruments to model and

verify software systems and support developers all along the development process in

K. Mikhail ⋅ M. Mazzara (✉) ⋅ L. Safina ⋅ V. Rivera

Innopolis University, Universitetskaya Str., Innopolis 420500, Russia

e-mail: m.mazzara@innopolis.ru

URL: https://www.university.innopolis.ru

K. Mikhail

e-mail: m.kizilov@innopolis.ru

L. Safina

e-mail: l.safina@innopolis.ru

V. Rivera

e-mail: v.rivera@innopolis.ru

A. Bucchiarone

Fondazione Bruno Kessler (FBK), Via Sommarive, 18, Trento, Italy

e-mail: bucchiarone@fbk.eu

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_10

97

98 K. Mikhail et al.

order to deploy correct software. Microservices [1] recently demonstrated to be an

effective architectural paradigm to cope with scalability in a number of domain [2],

including mission-critical systems [3]. However, the paradigm still misses a concep-

tual model able to support engineers starting from the early phases of development.

At the same time, Domain Objects (DO) [4, 5] have been successfully used to

model several case studies showing to be very effective in a service-based scenario

and for composition of complex workflows of autonomous, heterogeneous and dis-

tributed services. Literature about service-workflow modeling is vast, in particular

for B2B [6]. However, Domain Objects are appearing in recent years as reference in

the field. In this paper, we start an exploration of how development of microservice-

based systems could be based on such approach.

The paper is structured as follows. After this introduction, in Sects. 2 and 3 we

will discuss the main concepts of Microservice and DO literature. In Sect. 4 we will

discuss the main research question and the need for a diagrammatic notation, before

finally presenting the roadmap.

2 Microservices

Microservices [1] is an architectural style originating from Service-Oriented Archi-

tectures (SOAs) [7]. It was proposed to cope with the problems monolith applications

have introduced, such as:

∙ complexity of monolith applications which complicates their maintainability;

∙ impact of any part of the system changing have on the execution or redeployment

of the whole system (any upgrade will call for system reboot);

∙ limitations for system scalability (scaling the whole system instead of scaling only

the parts experiencing the load);

∙ constraints of using one technology or programming language.

The main idea is to structure systems by composing small independent build-

ing blocks communicating exclusively via message passing. These components are

called microservices, the term was first introduced at an architectural workshop in

2011 as a participants proposal of naming the new architectural pattern they have

explored. Before the term was coined, microservices were called differently, e.g.

Netflix named them “Fine grained SOA”, showing that the microservices architec-

ture is the nearest successor of SOA. However, microservices architecture can be

distinct from SOA by some key characteristics, such as service size (relatively small

with respect to services in SOA), service independence and bounded context.

Each microservice is expected to implement a single business capability, bringing

benefits in terms of service maintainability and extendability. Since each microser-

vice represents a single business capability, which is delivered and updated indepen-

dently, discovering bugs or adding a minor improvements do not have any impact on

other services and on their releases.

Domain Objects and Microservices for Systems Development . . . 99

One of the characteristic differentiating the new style from monolithic architec-

tures and SOA is the emphasis on scalability. As microservices are implemented by

independent instances, possible to be deployed on different hosts, natural distribution

of the workload arises, making the system significantly more efficient and boosting

the system availability. It can be also easily located which components of the system

is affected by high load which makes possible to scale them independently and with

fine granularity without affecting the availability of other components. Microser-

vices and their supporting environment (databases, libraries, etc.) can be packaged

in containers and deployed on any platform supporting the chosen container tech-

nology, they also can be easily replicated and dynamically scaled according to the

current load. The ease of replication affects such quality as availability and robust-

ness, since fault tolerance is ensured by using of possible redundant services. That

all makes microservice architectures a good choice a system horizontally scaling is

required.

Microservices have seen their popularity blossoming with an explosion of con-

crete applications seen in real-life software [8]. Several companies are involved in a

major refactoring of their backend systems in order to improve scalability [2]. In [3]

a real world case study, concerning the migration of a mission critical system from

an existing monolithic architecture to microservices, has been presented.

Such a notable success gave rise to academic and commercial interest, and ad-hoc

programming languages arose to address the new architectural style [9]. In princi-

ple, any general-purpose language could be used to program microservices. How-

ever, some of them are more oriented towards scalable applications and concurrency

[10]. The Jolie programming language, for example, is based on the new paradigm

and it allows to describe computation from a data-driven instead of process-driven

perspective [11]. As another advantage, Jolie has already a large community of users

and developers [12].

3 Domain Objects

Internet of Services is the future of Internet focusing on real services rather than on

software services. The main idea is to compose the available services on the Internet

in value-added real services. The composition of such Service-based systems (SBSs)

is not a trivial task, due to dynamic, context-aware, user-centric, and asset-based

environments where they operate. Thus, new methodologies, techniques and tools

are needed for this novel service composition [13]. In addition, such SBSs should

provide mechanisms and tools for the enactment, monitoring, adaptation, manage-

ment of the delivered services [14].

Design of such systems tends to have a lot of issues and requirements [15]. The

SBS requires at the design time novel life-cycle that considers design for adaptation
as the first class concern of SBS and adds new iteration cycle at run-time to address

adaptation needs on-the-fly. Also, to design such applications different alternatives

100 K. Mikhail et al.

to support service adaptation should be identified, such as adaptation mechanisms
and adaptation strategies [16].

The main concept and design model of overall system based on Domain Objects
has been presented in [5] and exploited in the development of various applications

as Smart Mobility [17], Smart Logistics [18], and Mobile Multi-robot Systems [19].

The proposed approach based on the following main components of the system:

Wrapping component encapsulates the independent and heterogeneous services

and present them as open, uniform and reliable services. In this context, a domain
object (DO) has been thought of as a uniform way to model autonomous and hetero-

geneous services at a level of abstraction that also allow for their easy interconnection

through dynamic relations. Each DO has a partial view on the surrounding opera-

tional environment that is described by a set of concepts representing its domain
knowledge.

The detailed structure of the DO has been presented in [4, 5]. The DO is modeled

through two layers, namely, core layer and fragments layer. The core layer defines

the internal behavior of a DO. The fragments layer is represented through frag-

ments [20] which are exposed to the system and used by other DO to refine abstract

activities (i.e., place holders) at run-time through incremental composition of differ-

ent fragments. The incremental service composition realized by exploiting existing

dynamic composition techniques such as presented in [13].

Execution Component takes in charge the Orchestration and Choreography of

services realized as DO. Orchestration represents control of the overall process flow,

using appropriate DOs and determine what steps to complete (i.e., abstract activi-

ties). In contrast, choreography used to compose higher-level services from exist-

ing orchestrated processes to track messages between these parties. In [21] these

two concepts illustrated by using two main standardized languages developed for

web services orchestration and choreography, namely BPEL and WSDL. However,

there are number of limitations associated with composition of services related to

the assumption that designer knows the service to be composed during the design

time. Moreover, such approach leads to strongly linked to particular service imple-

mentations. Therefore, proposed solutions are not adequate to dynamic service based

environments. In conclusion, an adaptive system is realized as a dynamic network of

domain objects connected through a set of dependencies established through their

runtime interactions by means of their offered/required functionalities. In such a sys-

tem, each DO can self-adapt its behaviour according to the available services in the

specific execution context and to the changes affecting its execution.

Monitoring An important feature of DO is the possibility of leaving the han-

dling of extraordinary/improbable situations (e.g., context changes, availability of

functionalities, improbable events) to run-time instead of analyzing all the extraordi-

nary situations at design-time and embedding the corresponding recovery activities

at execution time. These dynamic features rely on a shared domain model, describing

the operational environment of the system. The domain is defined through a set of

Domain Objects and Microservices for Systems Development . . . 101

domain properties, each describing a particular aspect of the system domain (e.g.,

current location of a person, availability of a specific service or resource). A domain

property may evolve as an effect of the execution of a fragment activity, which cor-

responds to the normal behavior of the domain (e.g., current location of a passenger

is at the pickup point), but also as a result of exogenous changes (e.g., road blocked).

Process and fragments of a DO are modeled as Adaptable Pervasive Flows (APFs)

[22], an extension of traditional workflow languages (e.g., BPEL) which makes them

suitable for adaptation and execution in dynamic pervasive environments. In addition

to classical workflow language constructs (e.g., input, output, data manipulation,

complex control flow constructs), APFs allows to relate the process execution to the

system domain by annotating activities with preconditions and effects. Preconditions
constrain the activity execution to specific domain configurations, and are used to

catch violations in the expected behavior and trigger run-time adaptation. Effects
model the expected impact of the activity execution on the system domain, and are

used to automatically reason on the consequences of fragment/process execution.

Activities can also be annotated with a compensation goal that has to be fulfilled

any time adaptation requires to roll-back the process instance and they have already

been successfully executed.

Adaptation component allows both for effectively dealing with domain changes

and for reducing the degree of services coupling, since the interconnection among

DOs is postponed from the design phase of the system to its execution. In order to

resolve an adaptation need the framework offers a set of adaptation mechanisms:

refinement, local adaptation, and compensation. These mechanisms can be com-

bined to form more complex mechanisms and strategies.

The refinement mechanism is triggered whenever an abstract activity in a process

instance needs to be refined. The aim of this mechanism is to automatically compose

available fragments taking into account the goal associated to the abstract activity

and the current domain configuration. The result of the refinement is an executable

process that composes a set of fragments provided by other DOs in the system and,

if executed, fulfills the goal of the abstract activity. Composed fragments may also

contain abstract activities which requires further refinements during the process exe-

cution. This results in a multi-layer process execution model, where the top layer is

the initial process of the entity and intermediate layers correspond to incremental

refinements.

Local adaptation aims at identifying a solution that allows re-starting the execu-

tion of a faulted process from a specific activity. To achieve this, a composition of

fragments is generated and its execution brings the system to a domain configuration

satisfying the activity precondition.

The compensation mechanism is used to dynamically compute a compensation

process for a specific activity. The compensation process is a composition of frag-

ments whose execution fulfills the compensation goal. The advantage of specifying

activity compensation as a goal on the domain, rather than explicitly declaring the

102 K. Mikhail et al.

activities to be executed (e.g., as in BPEL), is in the possibility to dynamically com-

pute the compensation process taking into account the specific execution domain.

Secondly, the mechanism automatically generates different compensation processes

depending on the status of the execution progress of the process.

Different adaptation mechanisms can be combined to obtain more complex mech-

anisms. For instance, re-refinement can be applied whenever a faulted activity

belongs to the refinement of an abstract activity. The aim of this mechanism is to

compensate all executed activities of the refinement (through compensation mecha-

nism) and to compute a new refinement (through refinement mechanism) that satis-

fies the goal of the abstract activity.

Another example of mechanisms composition is backward adaptation. This mech-

anism aims at bringing the process instance back to a previous activity in the process

that, given the new domain configuration, may allow for different execution deci-

sions. This mechanism requires the compensation of all the activities that need to be

rolled-back, and of bringing the system to a configuration where the precondition of

the activity to be executed is satisfied (local adaptation).

Adaptation strategies are defined by associating an ordered set of adaptation

mechanisms to adaptation triggers. To give an example, a possible strategy could

be the following: whenever an activity precondition is violated (adaptation trigger)

search for a local adaptation, and, in case no solution is found, try backward adapta-

tion within the same fragment composition, if this does not succeed, then apply the

re-refinement mechanism.

3.1 Adaptive Service-Based Systems with Domain Objects

The SBS designed using DOs has capabilities to automatically adapt at runtime,

through the monitoring of the execution environment and to solve the adapta-

tion problems by combining fragments exposed in the system. The DO approach,

offers a lightweight-model, with respect to the existing languages for service com-

position. It can be implemented in any object-oriented language (i.e., Java) and

define both orchestration and choreography thanks to hierarchical organization of

DO. For instance, several implementation in Java language have been presented:

partial implementation of core concepts of DO [4] and Urban Mobility System

Demonstrator—overall system with planning engine, where services modeled with

DO [23].

Unlike traditional systems where the behavior expected at run-time is specialized

at design time, the approach based on DO allows the system to define dynamic behav-

ior through partial definition of processes. This task is accomplished with abstract

activities, which are refined when the context is known or discovered. The proposed

design method for adaptive by design SBSs represents the effectiveness both to the

Domain Objects and Microservices for Systems Development . . . 103

Fig. 1 Excerpt of the Adaptive System metamodel

wide range of changes that may occur in the system [4] and in terms of efficiency of

refinement abstract activities and solve the AI planning problems [13].

An excerpt of the Adaptive System model,
1

based on DO is shown in Fig. 1. An

AdaptiveSystem is a composition of DomainObjects, each of which includ-

ing a CoreProcess, Fragments, and DomainPropertys. It is worth not-

ing that the multiplicity boundaries put constraints on the well-formedness of an

Adaptive System model. Notably, there must be at least a DomainObject, and

each DomainObject must contain one unique CoreProcess. The relationships

between domain objects and domain properties establish that a domain property rep-

resents internaldomainknowledge if defined within the DomainObject
(composition relation), whereas it represents externaldomainknowledge if

referred to by a simple association.

Both processes and domain properties can be reduced to state transition systems

[4]. From a modelling point-of-view, the only difference between the two is that for

processes (both core and fragments) there is no notion of initial state, or better, it is

possible to set multiple states as initial through a Boolean attribute (seeisInitial
in State). On the contrary, a DomainPropertymust have a LInitialState,

as constrained by the multiplicity boundaries of the linitialstate relationship.

1
For the sake of space, the metamodels are not presented completely. The reader is referred to

https://github.com/das-fbk/CAS-DSL for the complete metamodels.

https://github.com/das-fbk/CAS-DSL

104 K. Mikhail et al.

4 Research Objectives

In this section we will describe the key research objectives towards the utilization

of DO as model of the microservice architecture and we will identify step towards

reaching the objectives.

4.1 Research Question

The DO approach demonstrated to be suitable to describe adaptable service-based

components. How can we extend its applicability to Microservices? The research

question can be formulated as follow: is the DO formalism suited to describe software
system to be built according to the microservice architecture? In other words, is the

formalism over-expressive or under-expressive? Are the features of the microservice

architecture well represented by the formalism or, to the contrary, the modeling tool

is overcomplex for a relatively simple architectural style?

In general, how is it possible to answer this research question, and how is it pos-

sible to provide sufficient evidence in order to support any claim in this area? Our

strategy is evidence-based via a case study. The roadmap includes the choice of an

applicative scenario on which to experiment with modeling. We identified this sce-

nario as coming from Internet of Things (IoT), in particular the one described in [24,

25].

While some of the scenario previously modeled by DO may be described as over-

complex, the one we have chosen is simple and it has been implemented by ourself

in the university building. This provides a control over implementation and deploy-

ment, and an immediate feedback between modeling and development. In fact, we

can adapt the implementation as needed in the same way we can adapt the model,

in order to see how they can fit each other. The realization of the case study, both

in terms of modeling and deployment will represent an opportunity to discuss and

answer to the aforementioned research question.

4.2 Diagrammatic Notation

A second objective in our roadmap is the development of a diagrammatic repre-

sentation of DO which is consistent with the mathematical formulation. This dia-

grammatic representation will be experimented again via the case study that can test

its suitability to the microservice architecture. As demonstrated by the long experi-

ence of UML and ER diagrams, for example, valid theory and mathematical mod-

eling tools have reached widespread adoption when coupled with visual tools (and

software able to support creation and drawing). Visual tools are fundamental in the

Domain Objects and Microservices for Systems Development . . . 105

(1)

(2)

(3)

(4)

(5)

Milestone
Full definition and
implementation of
a tool for diagram-
matic notation of
the DO framework
extended with MS.

Milestone
Initial model

Milestone
Extension of the
DO framework with
MS

Milestone
* Full model of the
DO Framework ex-
tended with MS.
* Model and graph-
ical representation
of (1)

Fig. 2 Roadmap plan and milestones

requirements engineering phase and in the interaction with customers, allowing early

mutual understanding of the system under construction.

4.3 Roadmap

Our future work is planned as follows (Fig. 2 depicts our plan with specific mile-

stones):

1. Identify a case study in the IoT area on which we have control over deployment;

2. Analyzing the case study and experimenting with modeling;

3. Answering the aforementioned research question, therefore identifying how to

extend the DO framework to be used with Microservices;

4. During modeling identify needs for a diagrammatic notation and fine tune it;

5. Coming out with a full modeling of the case study and its corresponding visual

representation.

Docker is a popular technology these days [26]. This success makes it impossi-

ble to investigate microservice architecture and tools to model it without taking this

technology into account. A further development of the research will have to inves-

tigate a mapping between DO and Docker containers. In the future it will also be

necessary to test the suitability of the diagrammatic notation and to develop tools in

order to support software architects in the modeling.

References

1. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,

Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering

106 K. Mikhail et al.

(Springer, 2017)

2. N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices: how

to make your application scale, in A.P. Ershov Informatics Conference (the PSI Conference
Series, 11th edn.) (Springer, 2017)

3. N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, Microservices: migration of a mission critical

system, http://arXiv.org/abs/1704.04173

4. A. Bucchiarone, M.D. Sanctis, A. Marconi, M. Pistore, P. Traverso, Design for adaptation of

distributed service-based systems, in Service-Oriented Computing—13th International Con-
ference, ICSOC 2015, Proceedings, Goa, India, 16–19 Nov 2015 (2015), pp. 383–393

5. A. Bucchiarone, M.D. Sanctis, A. Marconi, M. Pistore, P. Traverso, Incremental composition

for adaptive by-design service based systems, in IEEE International Conference on Web Ser-
vices, ICWS 2016, San Francisco, CA, USA, 27 June–2 July 2016 (2016), pp. 236–243

6. Z. Yan, M. Mazzara, E. Cimpian, A. Urbanec, Business process modeling: classifications and

perspectives, in Business Process and Services Computing: 1st International Working Confer-
ence on Business Process and Services Computing, BPSC 2007, 25–26 Sept 2007, Leipzig,

Germany (2007), p. 222

7. M. MacKenzie et al., Reference model for service oriented architecture 1.0, in OASIS Standard,

vol. 12 (2006)

8. S. Newman, Building Microservices (O’Reilly Media, Inc., 2015)

9. F. Montesi, C. Guidi, G. Zavattaro, Service-oriented programming with Jolie, in Web Services
Foundations (Springer, 2014), pp. 81–107

10. C. Guidi, I. Lanese, M. Mazzara, F. Montesi, Microservices: a language-based approach, in

Present and Ulterior Software Engineering (Springer, 2017)

11. L. Safina, M. Mazzara, F. Montesi, V. Rivera, Data-driven workflows for microservices (gener-

icity in Jolie), in Proceedings of The 30th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA) (2016)

12. A. Bandura, N. Kurilenko, M. Mazzara, V. Rivera, L. Safina, A. Tchitchigin, Jolie community

on the rise, in SOCA (IEEE Computer Society, 2016), pp. 40–43

13. A. Bucchiarone, A. Marconi, M. Pistore, H. Raik, A context-aware framework for dynamic

composition of process fragments in the internet of services. J. Internet Serv. Appl. 8(1), 6:1–

6:23 (2017)

14. M. Pistore, P. Traverso, M. Paolucci, M. Wagner, From Software Services to a Future Internet
of Services (2009), pp. 183–192

15. A. Marconi, A. Bucchiarone, K. Bratanis, A. Brogi, J. Cámara, D. Dranidis, H. Giese,

R. Kazhamiakin, R. de Lemos, C.C. Marquezan, A. Metzger, Research challenges on multi-

layer and mixed-initiative monitoring and adaptation for service-based systems, in Proceedings
of the First International Workshop on European Software Services and Systems Research:
Results and Challenges, S-Cube ’12, Piscataway, NJ, USA (IEEE Press, 2012), pp. 40–46

16. A. Bucchiarone, C. Cappiello, E. Di Nitto, R. Kazhamiakin, V. Mazza, M. Pistore, Design for
Adaptation of Service-Based Applications: Main Issues and Requirements (Springer, Berlin,

Heidelberg, 2010), pp. 467–476

17. A. Bucchiarone, M.D. Sanctis, A. Marconi, ATLAS: a world-wide travel assistant exploit-

ing service-based adaptive technologies, in Service-Oriented Computing—15th International
Conference, ICSOC 2017, Mlaga, Spain, 13–16 Nov 2017 (To Appear, 2017)

18. H. Raik, A. Bucchiarone, N. Khurshid, A. Marconi, M. Pistore, Astro-captevo: dynamic

context-aware adaptation for service-based systems, in Eighth IEEE World Congress on Ser-
vices, SERVICES 2012, Honolulu, HI, USA, 24–29 June 2012 (2012), pp. 385–392

19. A. Bucchiarone, M.D. Sanctis, A. Marconi, Decentralized dynamic adaptation for service-

based collective adaptive systems, in Service-Oriented Computing—15th International Con-
ference, ASOCA Workshop at ICSOC 2016, 10–13 Oct, Banff, Alberta, Canada (To Appear,

2016)

20. A. Bucchiarone, A. Marconi, M. Pistore, H. Raik, Dynamic adaptation of fragment-based and

context-aware business processes, in Proceedings—2012 IEEE 19th International Conference
on Web Services, ICWS 2012, June 2012, pp. 33–41

http://arXiv.org/abs/1704.04173

Domain Objects and Microservices for Systems Development . . . 107

21. C. Peltz, Web services orchestration and composition. Computer 36(10), 46–52 (2003)

22. A. Bucchiarone, A. Lluch-Lafuente, A. Marconi, M. Pistore, A formalisation of adaptable per-

vasive flows, in Web Services and Formal Methods, 6th International Workshop, WS-FM 2009,

Bologna, Italy, 4–5 Sept 2009, Revised Selected Papers (2009), pp. 61–75

23. A. Bucchiarone, M.D. Sanctis, A. Marconi, A. Martinelli, DeMOCAS: domain objects for

service-based collective adaptive systems, in Service-Oriented Computing—15th International
Conference, Demo paper at ICSOC 2016, 10–13 Oct, Banff, Alberta, Canada (To Appear,

2016)

24. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based IoT for

smart buildings, in WAINA (2017)

25. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: inter-

net of things for smart building infrastructure supporting concurrent apps utilizing distributed

microservices, in CCIT (2016), pp. 48–53

26. A. Giaretta, N. Dragoni, M. Mazzara, Joining Jolie to Docker—orchestration of microservices

on a containers-as-a-service layer, http://arXiv.org/abs/1709.05635

http://arXiv.org/abs/1709.05635

AMachine Learning Approach
for Continuous Development

Daniel Russo, Vincenzo Lomonaco and Paolo Ciancarini

Abstract Complex and ephemeral software requirements, short time-to-market plans

and fast changing information technologies have a deep impact on the design of

software architectures, especially in Agile/DevOps projects where micro-services

are integrated rapidly and incrementally. In this context, the ability to analyze new

software requirements and understand very quickly and effectively their impact on

the software architecture design becomes quite crucial. In this work we propose

a novel and flexible approach for applying machine learning techniques to assist

and speed-up the continuous development process, specifically within the mission-

critical domain, where requirements are quite difficult to manage. More specifically,

we introduce an Intelligent Software Assistant, designed as an open and plug-in

based architecture powered by Machine Learning techniques and present a possi-

ble instantiation of this architecture in order to prove the viability of our solution.

1 Introduction

Software design can be partially considered as a decision making process, where the

architect translates the requirements into an architecture [4]. Therefore, the elicita-

tion and formulation of the “User Requirements” is well known to be one of the most

critical phases in an engineered software system. Before design, indeed, we need to

fully understand the users’ point of view, aiming at satisfying their needs and the

expected quality of user experience (UX). At the end, software design is not as much

about building a system which is technically perfect as one which is fully compli-

ant with the customer’s expectations [25]. Even though, during the past, automated

D. Russo (✉) ⋅ V. Lomonaco ⋅ P. Ciancarini

Department of Computer Science & Engineering,

University of Bologna, Mura Anteo Zamboni, 7, 40126 Bologna, Italy

e-mail: daniel.russo@unibo.it

V. Lomonaco

e-mail: vincenzo.lomonaco@unibo.it

P. Ciancarini

e-mail: paolo.ciancarini@unibo.it

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_11

109

110 D. Russo et al.

frameworks which allow architectural languages [19] and decision-centric architec-

ture design methods [10] have been extensively studied, very little has been done

for practically assisting the continuous development and design processes. Gener-

ally speaking, we support epistemological innovation to pursue research goals in

software engineering, like [8, 9].

In this work we propose novel approach for assisting the continuous development

process through algorithmic methods which are able to learn from experience, that

is according to previous Agile/DevOps iterations as described in [21]. At the best of

our knowledge we are not aware of any relevant research in this direction. Indeed,

even if previous scholars already explored assistance frameworks (like [2]), none of

them employed Machine Learning techniques aimed to automatize them. Other task-

focused approaches (e.g., requirements prioritization) have been carried out [1, 23]

but without a comprehensive approach with respect to the continuous development

process or considering third party integration [6] and their data quality [7]. Our goal

instead, is to improve developers’ productivity, and increase software artifacts value

(in terms of how much functionality they deliver) by automatizing the requirements

analysis and assisting the continuous development process in a comprehensive way.

Velocity is also a key issue for the mission–critical domain which has the urgency

to deliver fast safety–critical functionalities. The use of Machine Learning techniques

for predicting and summarizing useful information regarding the architectural design

and the impact of new requirements on the software code base is here essential to

accelerate the entire process and allowing the Agile/DevOps team to rapidly trans-

form the model into code.

Software architecture in the Digital Age and the role of the architect is undergo-

ing a deep rethinking [11, 15]. The evolution and challenges of software architecture

opened the door to Agile/DevOps methodologies as crucial asset to leverage contin-

uous development and architecting [20]. In fact, the urgency to continuously modify

systems designs leads to new approaches. The aim of this article is to show how a

new Machine Learning approaches in Agile/DevOps development can also support

the continuous development (providing useful hints to the Developer Team) along

with the analysis of systems requirements.

In this paper, we present the approach developed in a real working case study

within a governmental Agency (from now on “Agency”) which develops mission-

critical applications, where an intelligent software assistant has been designed for

(i) the requirements comprehension and analysis; (ii) providing useful information

with respect to the software design; (iii) predicting the impact of new requirements

on the development process and the code-base within an Agile/DevOps customized

methodology.

A Machine Learning Approach for Continuous Development 111

The paper is structured as follows. In Sect. 2 we explain the context in which we

are developing our approach and motivate why solving this issue is crucial. More-

over, the problem and the solutions are outlined along with an abstract representation

of our working solution. In Sect. 3 the formal model is presented: the architecture is

designed to be open and incremental, in order to add new machine learning mod-

els and refine their interactions. To convince the reader about the viability of our

approach, we show a possible instantiation in Sect. 4. Finally, in Sect. 5 we summa-

rize our work and discuss some extensions we plan to add in the near future.

2 Problem Definition

Continuous software engineering is more than adopting continuous delivery and con-

tinuous deployment: the goal is to take an holistic view of a software production

entity [12]. Empowering developers with an Intelligent Assistant is considered by

the Agency as a viable solution to manage the fast-changing scenario of its daily

operations. The Agency has strict constraints to develop and deploy mission-critical

software in a fast way, since the operational scenarios it has to face change rapidly.

Security and resilience is also a great issue, this is the reason why they are exper-

imenting new antifragile frameworks [24, 27]. Satisfying changing users’ needs is

one of the top priorities of the IT department, and optimizing the continuous develop-

ment processes is vital for the fulfillment of its mission. A major problem repeatedly

observed during this phase is the inability of the development team (DT) to under-

stand the language and the context in which some requirements are described by the

user and to follow good architectural patterns along with the fast system evolution.

A lot of effort and a number of different approaches have emerged in order to deal

with RE within the Scrum process. At the beginning, an effective technique to under-

stand requirements was to to write down user stories in order to fix the scope of the

requirements. One of the most important devices supporting agile developments has

been achieved by persuading the users to define their requirements by a number of

“user stories” which become a sort of domain specific jargon that can be understood

by both parties. However, users (Product Owners) tend to use the same “jargon”,

due to organizational routines [22]. The Agency refined the traditional user story

structure into a customized one: As <role> I want to <functionality
description> in order to <goal to pursue>.

Nevertheless, misunderstandings are still very common during Agile/DevOps and

mission critical development, especially during the first cycles, where developers are

usually unaware of the application context [24].

During the last years Knowledge Management Systems (KMS) and Data Mining

techniques have made their appearance in this context in order to extract and relate

semantic knowledge from user stories, hence facilitating the requirements engineer-

ing phase through disambiguation [28]. However, we argue that these techniques are

112 D. Russo et al.

Fig. 1 CDIA: the

continuous development

intelligent assistant

still very unripe and uncorrelated, without a clear understanding of their improve-

ment directions and future applicability. Furthermore, we remark that requirements

disambiguation is just a single aspect of the continuous development process, which

we try to improve with a uniform but flexible solution.

We envision a single software system that can take part in the continuous devel-

opment process acting as a proficient assistant and interpreter who speaks the lan-

guages of both the users and the developers (see Fig. 1). The disruptive idea is that

this complex piece of software would not be a simple tool to analyse and correlate

user stories, but it would offer useful predictions learning continuously from previ-

ous interaction cycles as shown to be fruitful in many other application contexts [14,

16, 17].

The key factor here is the ability to learn from the past, exactly like a human

software engineer would do and offers great insights during the continuous devel-

opment processes that are specific of the software which has been developing. A

software envisioned in this way, not only offers direct insights on what and how

disambiguate some requirements, but can also make faithful predictions about the

design and development processes (e.g., micro-services dependences, work/hours to

commit, the price to pay, the number of code lines to change). Indeed, if we assume

that there is an recognizable pattern among some requirements topics or typologies

and the amount of work or services dependencies which can satisfy these require-

ments, then a statistical model would probably be able to capture it and such informa-

tion would result in an extremely valuable asset for planning the development cycle

ahead.

3 Model Formalization

In this section we provide a formal model architecture which defines the structural

properties and the operational modalities of a Continuous Development Intelligent

Assistant (CDIA). We propose an open model extensible in a plug-in fashion along

with a possible instantiation.

First of all, let us define the time factor as a variable T where we indicate a spe-

cific point in time as ti with i ∈ [0,…∞) (zero stands for the starting time of the

development).

A Machine Learning Approach for Continuous Development 113

Then, let us denote a user story as s and a set of user stories as S. In our model we

assume for simplicity that the requirements are defined by user stories and at each

development iteration they came together as single set (or batch) of arbitrary size.

More formally, we can enumerate the set using Sj with j ∈ [0,… ,∞), where 0 is the

first batch of requirements commissioned by the user. Note that each set can be of

different size. For simplicity, as often performed discrete-event simulation models

(DES), we represent time as a discrete variable which varies only when a new batch

of user stories arrives i.e., i = j.
For each story that has been proposed by the user s ∈ S we should also keep track

of the final and agreed user story that has been refined after a few feedback from

the software assistant or external consultations. We will refer to them as sr where r
stands for refined. Note that we have a one to one connection for each s and sr even

if the story hasn’t been changed or has been dismissed (in this case s = sr).
Each story s is defined by a series of attributes: let us use a function named attr()

that given a story s return its attribute. Note that |attr(s)| = k with k ∈ ℕ, and k is the

same for each s. We need also a number of attribute which can describe the state of

the software at each development iteration (let us name it Dj). We can use the same

function attr() defined before but in this case it accept as input the software state Dj
at time j, where |attr(Dj)| = z with z ∈ ℕ. Note that the more attributes attr(s) and

attr(D) we insert in the model the more accurate may be the prediction.

As for the last essential step we can not bypass in our CDIA formalization, we

need to keep track of the inter-dependences among services and micro-services

which constitutes the functionalities of the developed software. We define the set

of services Vi with i varying with the development iterations. Let us also use a func-

tion named dep() that given a set of services Vi return the dependences among them.

Now that we have all formal environment in place we can formulate the main

CDIA system as a series of plugins whose results combination can produce two dif-

ferent evaluation feedbacks, one for the Product Owner (PO) and one for the Devel-

oper Team (DT) in order to assist the continuous development process as depicted

in Fig. 2. In this work, we describe three main plugins (defined as Machine Learning

models):

∙ Services Dependences Tracking Plugin (SDTP): This machine learning model

learns the relationships between services and requirements (in this case the user

stories and services {(S0,… , Si−1), (V0,… ,Vi−1)}). Then, at iteration i (i.e. time

ti), given a new batch Si returns a feedback to the development team (DT) regard-

ing the suggested changes among the services inter-dependences or the eventual

insertion of new services, actually guiding the continuous development process.

More formally, we would like to learn a set of parameters 𝜃 of a function d, such

that:

n, dep(Vi) = d(𝜃, attr(Si)) (1)

114 D. Russo et al.

That is predicting all the new dependences among the services after the imple-

mentation of the requirements Si and eventually suggesting the introduction of a

number of n new services. Note that in this case we apply the function attr to the

entire batch of user stories Si meaning that we compute attr(s) for each s and then

we aggregate the results.

∙ Development Changes Impact Plugin (DCIP): This machine learning model at

iteration i (i.e. time ti) learns the impact on the development phase of accepted

user stories {(S0,… , Si−1), (D0,… ,Di−1)} and, given a new batch Si returns a

feedback to the development team (DT) regarding the predicted changes impact

on the software (a more general introduction to this approach can be found in [3,

18, 29]). More formally, we would like to learn a set of parameters 𝜃 of a function

c, such that:

attr(Di) = c(𝜃, attr(Si)) (2)

That is predicting all the attributes that we expect the software to have after the

implementation of the requirements Si. Note that even in this case we apply the

function attr to the entire batch of user stories Si.
∙ User Stories Disambiguation Plugin (USDP): This machine learning model

at the development iteration i (i.e. time ti) learns from previous proposed and

accepted user stories {(S0,… , Si−1), (Sr0,… , Sri−1)} and, given a new proposed set

Si, returns a feedback to the customer (Product Owner or PO) regarding the pos-

sible changes to apply it in order to minimize its ambiguity (for this plugin we

took inspiration from [13]). The more development iterations the software goes,

the more accurate the software assistant becomes. So, more formally, we want to

learn a set of parameters 𝜃 of a function f , such that:

sr = f (𝜃, s) (3)

In this way we can then predict the corresponding sr given a new s which may have

never been seen before. Another possibility, more naive but still powerful would

be to learn a set of parameters 𝜃 of a function g, such that:

p(A|s) = g(𝜃, attr(s)) (4)

that is returning the acceptance probability p(A) given the submitted user story,

along with some hints about the motivation (hidden in the structure of f).

The USDP and DCIP plugins are instrumental to the SDTP pluging, which

can suggest useful insights regarding the architectural changes (in terms of micro-

services) based on a new set of requirements committed by the Product Owner.

Indeed, even though the SDTP pluging, seems to be the most valuable in terms of

A Machine Learning Approach for Continuous Development 115

Fig. 2 The continuous

development intelligent

assistant design

assistance to the continuous development process, a good prediction can not came

without a profound understanding about the actual requirements and how they effect

the code which run these micro-services.

4 Instantiation

In order to convince the reader about the feasibility of this approach, let us now

formulate a possible instantiation of the formal model.

For the user story attribute we can define attr(s) as:

∙ target user class

∙ length of the story (number of characters)

∙ number of atypical words

Then, for the STDP plugin we can choose to represent the services in Vi and

their relationships as a directed graph in which the nodes constitutes the services

and the directed edges the dependencies of one service to another. So that, if node

(i.e. service) a as a directed edge towards b we can say that the service a depends

from b. With this formulation the function dep(Vi) can be instantiated simply as the

connection matrix (also called adjacency matrix) of the directed graph. Then, we

can instantiate d as a multivariate regression function, using a two layers (or more)

artificial neural network (ANN), where the output nodes are n2 + 1 with |Vi| = n,

meaning that we are trying to predict the value of each edge in the current connec-

tion matrix, plus one real number which is the expected number of new services to

be introduced at time i. However, we are aware that a larger number of (possibly

semantic) attributes may be needed especially in the case of more complex projects.

116 D. Russo et al.

Fig. 3 Artificial neural

network for the DCIP plugin 1

2

3

4

1

2

3

1

2

3

cardinality

num different
user class

avg. length

avg. num
atypical words

num code
lines

num new
code classes

num man-hours

of i
x

x

x

x

h

h

h

o

o

o

s

s

S

For the DCIP plugin we need first to define a set of aggregate attribute with can

best represent an entire batch of user stories. For simplicity, based on the only three

attribute we have defined for each user story, a possible instantiation for attr(S) could

be:

∙ Number of user stories

∙ Number of different User Classes

∙ Average length of the user stories

∙ Average number of atypical words

Regarding the instantiation of attr(D) (which defines the impact on the develop-

ment phase of the new batch of submitted user stories), we may define three main

attributes:

∙ number of new code lines to write

∙ number of new classes to implement in the code

∙ person-hours to allocate

Also in case of the function c an Artificial Neural Network can be employed.

Using neural networks for predicting future changes in the software is not new and,

if the architecture is properly tuned, this approach can lead to substantially improved

results [3, 18]. In Fig. 3, the ANN architecture designed for our problem instantiation

is illustrated. It is a common two-layers neural network (also called Multi-Layer

Perceptron) where the xi neurons represent the input units and the hi the hidden
ones (which are the non-visible computational units, indispensable for learning an

high-level representation of the input data). Lastly, the output units oi, constitute the

variables we would like to predict.

Finally, let us consider for the USDP plug-in the strategy defined in Eq. 4, where

g could be a classification tree. After the training we can obtain the acceptance prob-

ability as described in [5] and understand why the user story has been classified in a

certain way by looking a the structure of the classification tree. Indeed, despite their

simplicity, classification trees are still one of the most used algorithms in machine

learning due to their efficiency and interpretability. An example of such learnable

classification tree can be found in Fig. 4.

A Machine Learning Approach for Continuous Development 117

is the user
a gov. official?

length story
245?

num. atypical
words 12?

no yes

Accept

Accept Refuse

no yes

Refuse

yes no

Fig. 4 Learned classification tree for the USDP plugin

5 Conclusions and Future Works

In this paper we proposed a novel machine learning approach for automatically

assisting the continuous development. Along with the CDIA Intelligent Assistant

formalization we detailed a possible instantiation of the same in order to show the

viability and potential of our approach.

Even though the use of Machine Learning techniques is not novel in this field, we

believe this is the first study which proposes a theoretical framework and a system-

atic approach for the deployment of an automated tool specifically designed for the

continuous development context.

We plan to extend this work releasing the extensive experimental evaluation we

are currently undergoing in order to show the potential of such a system in a real-

world mission-critical application.

Another interesting research direction we are planning to follow in the near future,

is to further extend our design infrastructure. The first step would be adding more

plugins (like explicit requisites prioritization as in [1, 23]) to the system.

The ideal development of CDIA would then proceed towards a fully compre-

hensive and refined architecture in charge of the requirements automation and the

entire continuous development process: understanding relations and dependences of

old functionalities and new ones and help planning their interactions based on past

118 D. Russo et al.

Agile/DevOps iterations or previous developed software which are similar to the one

being developed.

Acknowledgements The Authors wish to thank the Consorzio Interuniversitario Nazionale per

l’Informatica (CINI) and the Italian National Research Council (ISTC–CNR) for the partial finan-

cial support.

References

1. P. Avesani, C. Bazzanella, A. Perini, A. Susi, Facing scalability issues in requirements priori-

tization with machine learning techniques, in 13th IEEE International Conference on Require-
ments Engineering (RE’05) (2005), pp. 297–305

2. F. Bachmann, L. Bass, M. Klein, Preliminary design of ArchE: a software architecture design

assistant CMU/SEI Technical Report 21 (2003)

3. G. Boetticher, Using machine learning to predict project effort: empirical case studies in data-

starved domains, in 1st International Workshop on Model-Based Requirements Engineering
(2001)

4. J. Bosch, Software architecture: the next step, in European Workshop on Software Architecture
(2004)

5. W. Buntine, Learning classification trees. Stat. Comput. 2(2), 63–73 (1992)

6. P. Ciancarini, A. Messina, F. Poggi, D. Russo, Agile knowledge engineering for mission critical

software requirements, in Synergies Between Knowledge Engineering and Software Engineer-
ing (Springer, 2018), pp. 151–171

7. P. Ciancarini, F. Poggi, D. Russo, Big data quality: a roadmap for open data, in Proceedings
of the 2nd IEEE International Conference on Big Data Service (BigDataService ’16) (2016),

pp. 210–215

8. P. Ciancarini, D. Russo, A. Sillitti, G. Succi, A guided tour of the legal implications of software

cloning, in 38th International Conference on Software Engineering (ICSE ’16) (2016), pp.

563–572

9. P. Ciancarini, D. Russo, A. Sillitti, G. Succi, Reverse engineering: a legal perspective, in 31st
Annual ACM Symposium on Applied Computing (SAC ’16) (2016), pp. 1498–1503

10. X. Cui, Y. Sun, H. Mei, Towards automated solution synthesis and rationale capture in decision-

centric architecture design, in 7th IEEE/IFIP Working conference on software architecture
(WICSA’08) (2008), pp. 221–230

11. H. Erdogmus, Architecture meets agility. IEEE Softw. 26(5), 2–4 (2009)

12. B. Fitzgerald, K.-J. Stol, Continuous software engineering: a roadmap and agenda. J. Syst.

Softw. 123, 176–189 (2017)

13. S. Gazzerro, R. Marsura, A. Messina, S. Rizzo, Capturing user needs for agile software devel-

opment, in 4th International Conference in Software Engineering for Defence Applications
(2016), pp. 307–319

14. C. Giraud–Carrier, A note on the utility of incremental learning. AI Commun. 13(4), 215–223

(2000)

15. G. Hohpe, I. Ozkaya, U. Zdun, O. Zimmermann, The software architect role in the digital age.

IEEE Softw. 33(6), 30–39 (2016)

16. V. Lomonaco, D. Maltoni, Comparing incremental learning strategies for convolutional neural

networks, in IAPR Workshop on Artificial Neural Networks in Pattern Recognition (2016), pp.

175–184

17. V. Lomonaco, D. Maltoni, CORe50: a new dataset and benchmark for continuous object recog-

nition (2017), http://arXiv.org/abs/1705.03550

18. C. Mair et al., An investigation of machine learning based prediction systems. J. Syst. Softw.

53(1), 23–29 (2000)

http://arXiv.org/abs/1705.03550

A Machine Learning Approach for Continuous Development 119

19. I. Malavolta, H. Muccini, P. Pelliccione, D. Tamburri, Providing architectural languages and

tools interoperability through model transformation technologies. IEEE Trans. Softw. Eng.

36(1), 119–140 (2010)

20. A. Martini, J. Bosch, A multiple case study of continuous architecting in large agile companies:

current gaps and the CAFFEA framework, in 13th IEEE/IFIP Working conference on software
architecture (WICSA’16) (2016), pp. 1–10

21. A. Messina, F. Fiore, M. Ruggiero, P. Ciancarini, D. Russo, A new agile paradigm for mission

critical software development. J. Def. Softw. Eng. (CrossTalk) 29(6), 25–30 (2016)

22. R. Nelson, S. Winter, An Evolutionary Theory of Economic Change (Harvard University Press,

1982)

23. A. Perini, A. Susi, P. Avesani, A machine learning approach to software requirements prioriti-

zation. IEEE Trans. Softw. Eng. 39(4), 445–461 (2013)

24. D. Russo, Benefits of open source software in defense environments, in 4th International Con-
ference in Software Engineering for Defence Applications (SEDA ’15) (2016), pp. 123–131

25. D. Russo, P. Ciancarini, T. Falasconi, M. Tomasi, Software quality concerns in the Italian

bank sector: the emergence of a meta-quality dimension, in 39th International Conference on
Software Engineering (ICSE ’17) (2017), pp. 63–72

26. D. Russo, P. Ciancarini, A proposal for an antifragile software manifesto. Proc. Comput. Sci.

83(1), 982–987 (2016)

27. D. Russo, P. Ciancarini, Towards antifragile software architectures. Proc. Comput. Sci. 109,

929–934 (2017)

28. E.S. Yu, Towards modelling and reasoning support for early-phase requirements engineering,

in 3rd IEEE International Symposium on Requirements Engineering (WICSA’16) (IEEE), pp.

226–235

29. D. Zhang, J.P. Tsai, Machine learning and software engineering. Softw. Qual. J. 11(2), 87–119

(2003)

Toward a Model of Emotion
and Its Contagion Influences on Agile
Development for Defense Applications

Abdulaziz Alhubaishy and Luigi Benedicenti

Abstract This position paper describes an approach to create a framework for

modeling emotion role and its contagion influence between agile teams at various

activities for producing defense software, and a procedure to test the model by intro-

ducing Multi Criteria Decision Methods to the defense sector. Emotions influence

and its contagions between developers can significantly influence underlying people-

centred processes such as agile methods. Based on current observations, negative

emotions and its contagion between teams can be reduced by applying the Multi

Criteria Decision Methods which enable the involvement of larger actors pool in

different activities, such as decision making, which ultimately help agile teams to

acquire higher quality of defense software products and lower development time.

Keywords Emotions ⋅ Emotional contagions ⋅ Agile methods

Emotions in defense software ⋅ Multi criteria decision methods

1 Introduction

Resent case studies and investigations have been conducted to adopt some agile

methods in defense domain, as one of mission system domains, to overcome chal-

lenges related to this domain. Some of these challenges include budget, effort, sys-

tem reliability, and development cycles. Examples of these investigations and case

studies can be found in [1–4].

Within applying agile methods for producing defense software, most of the case

studies and investigations have neglected some of the human aspects that can influ-

ence the success or failure of the adoption of these methods. One of neglected aspects

A. Alhubaishy (✉) ⋅ L. Benedicenti

Software Systems Engineering, University of Regina, Regina, Canada

e-mail: alhubaia@uregina.ca

L. Benedicenti

e-mail: luigi.benedicenti@uregina.ca

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_12

121

122 A. Alhubaishy and L. Benedicenti

includes the role developer’s emotion and its contagion influence on individuals and

teams in mission critical systems such as defense sector.

Many engineering and psychological studies have investigated emotions as an

influencing factor in different activities, for example, making decision. Within def-

ense domain, as mission critical system, there is no tested model that reflects the

influence of emotions of developers, nor the the influence of emotional contagion on

teams’ behaviour when agile methods are adopted in these systems. Therefore, this

proposed work intends to theorize the role of emotions and emotional contagions in

agile methods when they are adopted for producing defense applications.

2 Literature Review

2.1 Emotions Role in the Software Industry

In people-oriented methods such as agile methods, human aspects play the main role

on the process outcome. For example, behaviour has been found the most influen-

tial factors on agile decisions [5]; while other study has found dissatisfaction with

management, lack of involvement, boredom, and time pressure as main influential

factors when adopting agile method [6]. These factors can be related to developer’s

emotion and its contagion influence between team of developers.

The relationship between emotion and developers skills that influence their per-

formance and productivity has been investigated by Graziotin et al. [7–9]. The

authors have concluded that positive emotions have positive influence on developer

performance; while a number of studies provided empirical evidence of agile pro-

cesses being influenced by developers’ emotion, for example [10]. Emotional conta-

gion has been proved in other industries; however, no study investigated the role of

emotional contagion in software industries which is one the goals of this paper.

2.2 Human Factors Influence Using Agile in Developing
Defense Software

In addition to some factors, such as long development time and the sophisticated

test, the influential factors on using agile methods when successful attempts to adopt

them within the defense and other critical systems are the same; however, the degree

of influence may differ in these systems. The successful attempts and investigations

of adapting some agile methods have showen the need to customize the agile method

[11] and considering changes of human factors role when integrating them with the

critical systems because of the moving from plan-driven processes [12].

Enhancing collaboration and communication between teams when adapting agile

with defense software have been reported by Martello and Labonia [13]. Moreover,

Toward a Model of Emotion and Its Contagion Influences . . . 123

the authors reported a positive influence of the method on teams decisions, user

feedbacks; hence, risks minimization. More recently, Benedicenti et al. have reported

their experience and excellent results of applying customized Scrum in managing and

developmenting defense software [2]; while another study has reported an enhance-

ment of relation between users and development teams which ultimately led to more

user satisfaction and cost reduction [14].

2.3 The Influence of Multi Criteria Decision Making
Methods on Agile Methods and Teams

Multi Criteria Decision Making (MCDM), as an important branch in decision theory,

are divided into two main classes based on whether the problem is discrete or contin-

uous; namely: multi-objective decision-making (MODM) methods for the continous

problems and multi-attribute decision-making (MADM) methods for the discrete

problems [15]. However, the literature refers to MADM as MCDM which will be

used in this paper as well.

Many successfully MCDM methods have been proposed during the last decades

such as Analytic Hierarchy Process (AHP) [16], Analytic Network Process (ANP)

[17], Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

[18], and others. The comparisons between these methods can be foun in [19]. Of

the many MCDM methods, the AHP and ANP are the most used methods in many

disciplines.

The AHP is the most used method in almost all disciplines. Within the software

engineering field, the use of the AHP and ANP increased during the last decades.

However, the apply of the MCDM methods were still limited to more general uses

in making decisions, selections, rankings, and other themes. Perhaps, Alshehri and

Benedicenti are the first authors who investigated almost all possible ways of the

application of the AHP to the an agile process; more precisely, the Extreme Pro-

gramming (XP) [20–23]. However, the notion of introducing the AHP to the XP

has been done earlier by the study in [24] which; however, have looked to apply the

AHP to the XP practices in an organization in order to find out which is the most

appropriate practice that the organization can apply. On the other hand, Alshehri

and Benedicenti have integrated the AHP into most of the XP practices regardless of

whether the practice is suitable for a specific domain or not such as using agile prac-

tices for producing mission critical systems. Beside the advantages of applying the

AHP to the XP practices, our observations finds a relation between the application of

the MCDM methods in agile and the reduction of negative emotions and its conta-

gion influences on developers and their behaviour, which encourage us to investigate

this observation in a domain that newly apply agile methods such as defense sector.

124 A. Alhubaishy and L. Benedicenti

3 Proposed Model

Within applying agile methods for producing defense software, we need to theorize

the role of emotion and its influence on individuals and teams, and theorize the emo-

tional contagion influence on team behaviour. We propose to study these influences

in this mission critical system because of the need to highlight all potential risks

and triggers that can influence developer’s productivity and team’s behaviour during

process iterations.

This investigation will take place over the course of two main phases. During the

phase one, we will investigate the influence of emotion on agile teams for producing

defense software. Further, we will re-investigate all potential influence of emotion

and its contagion that have been highlighted during studies in other industries such

as the the influence on productivity, performance, problem solving, and behaviour.

During the phase two, we will test the model against the introduction of MCDM

method called Best-Worst Method (BWM) which allow all team members to struc-

ture the problems and decide on best solutions. Our observations on applying MCDM

methods, such as the Analytical Hierarchy Process (AHP) [16], for structuring prob-

lems has shown positive influence on emotion while reducing negative influence

of emotional contagion between agile methods. Therefore, we hypothesize that

MCDM methods can reduce the negative influences of emotion, when highlighted

by the phase one, and avoid negative influence of emotional contagion on agile team

behaviour for producing defense software (Fig. 1).

Based on the studies reviewed from different areas such as software engineering,

psychology, and industrial-organizational perspectives, our hypotheses to test the

two phases are:

Phase One Hypotheses:

H1: Positive emotion and positive emotional contagion leads to greater cooperation

between agile teams when producing defense software.

H2: Negative emotion and negative emotional contagion leads to weaken coopera-

tion between agile teams when producing defense software.

H3: When using agile method for producing defense software, positive emotion and

positive emotional contagion leads to less conflict between team members.

H4: When using agile method for producing defense software, negative emotion and

negative emotional contagion leads to more conflict between team members.

H5: Positive emotion and positive emotional contagion leads managers to make more

accurate decisions in defense domain.

H6: Negative emotion and negative emotional contagion leads managers to make

less accurate decisions in defense domain.

Phase Two Hypotheses:

H1: The introducing of BWM into agile method for producing defense software can

reduce negative emotion and its contagion on agile team.

H2: The introducing of BWM into agile method for producing defense software can

lead to avoid the weaken cooperation caused by negative emotion and its contagion.

Toward a Model of Emotion and Its Contagion Influences . . . 125

Fig. 1 Emotion and emotional contagion model with the application of MCDM

H3: The introducing of BWM into agile method for producing defense software can

lead to avoid the increase of conflicts between team members caused by negative

emotion and its contagion.

H4: The introducing of BWM into agile method for producing defense software can

lead managers to avoid making less accurate decisions caused by negative emotion

and its contagion.

4 Research Methodology

To test the phase one hypotheses, both quantitative and qualitative methods will be

adopted during the course of two steps. First, the quantitative method will be adopted

in the form of survey research. The survey will seek to find the link between emotion

and its contagion and the agile team’s cooperation and behaviour. The data will be

gathered from developers worked in producing defense applications using any agile

method.

126 A. Alhubaishy and L. Benedicenti

Second, qualitative research will be adopted to test whether positive or negative

emotion and its contagion influence the agile team dynamics through observations.

The observations will capture the negative emotion and contagion influence on teams

conflict, cooperation, and accuracy of decisions.

To test the phase two hypotheses, we will adopt a qualitative research strategy

in the form of case study. Wohlin et al. explained that case study is suitable for

investigating new methods, tools, or processes in software engineering [25]. We will

use a case study to benefit from developed theory in phase one and investigate how

BWM tool can avoid negative influences of emotions and its contagions on agile

teams’ cooperation, conflict, and decisions when producing defense software. We

also choose the case study to collect data in real situation without interventions that

might influence developers’ emotions. This is why it is fundamental to choose an

industrial development environment, so that the results will be useful and applicable

to the software industry.

5 Conclusion

The adoption of agile methods with defense sector is increasing while some problems

related with team conflicts, team cooperation, team decisions and the cost related to

inaccurate decisions in agile methods are still not resolved. This research seeks for

theorizing the role of emotion and its contagion influences, as undiscovered influ-

ential factors on agile teams, when using agile as underline process for producing

defense software.

The result of conducting these research activities is that it will open up the pos-

sibility of solving related issues. First, theorizing the possible negative influences of

emotions and thir contagion influences will enable managers and developers to intel-

ligently consider these influences and act accordingly. Second, considering positive

influences can reinforce the communication between team members and provide an

excellent environment for cooperation and accurate decisions. Third, considering the

risks related to each decision could also allow managers to respond to this intelli-

gently. An anticipated result is that this research could demonstrate that emotions

are influential on a more strategic level; in this case, quick procedures have to be fol-

lowed in order to prevent or mitigate the negative influences of emotions. Finally, the

framework will represent how emotion and emotional contagion relate to agile team

cooperativeness, conflict, and accurate decisions with producing defense software.

This framework within defense sector that adopts the agile method for producing

defense software will be tested.

Acknowledgements This work has been funded by the Saudi Electronic University with the sup-

port of the Saudi Cultural Bureau in Canada. The authors appreciate and acknowledge the assistance

provided by these organizations.

Toward a Model of Emotion and Its Contagion Influences . . . 127

References

1. F. R. Cotugno, A. Messina, Adapting scrum to the italian army: methods and (open) tools, in

IFIP International Conference on Open Source Systems (Springer, 2014), pp. 61–69

2. L. Benedicenti, P. Ciancarini, F. Cotugno, A. Messina, A. Sillitti, G. Succi, Improved agile: a

customized scrum process for project management in defense and security, in Software Project
Management for Distributed Computing (Springer, 2017), pp. 289–314

3. A. Messina, F. Fiore, The Italian army c2 evolution: from the current siaccon2 land command

and control system to the lc2evo using agile software development methodology, in 2016 Inter-
national Conference on, Military Communications and Information Systems (ICMCIS) (IEEE,

2016), pp. 1–8

4. A. Messina, P. Modigliani, S. Chang, How agile development can transform defense it acquisi-

tion, in Proceedings of the 4th International Conference on Software Engineering in Defence
Application (SEDA 2015) (Roma, Italy, May, 2015)

5. C. Briggs, P. Little, Impacts of organizational culture and personality traits on decision-making

in technical organizations. Syst. Eng. 11(1), 15–26 (2008)

6. A. Deak, T. Stlhane, G. Sindre, Challenges and strategies for motivating software testing

personnel, in Information and Software Technology, vol. 73, (2016), pp. 1–15, http://www.

sciencedirect.com/science/article/pii/S0950584916000045

7. D. Graziotin, X. Wang, P. Abrahamsson, How do you feel, developer? an explanatory theory

of the impact of affects on programming performance. PeerJ. Comput. Sci. 1, e18 (2015)

8. D. Graziotin, X. Wang, P. Abrahamsson, Happy software developers solve problems better:

psychological measurements in empirical software engineering. PeerJ 2, e289 (2014)

9. D. Graziotin, X. Wang, P. Abrahamsson, Are happy developers more productive?, in Interna-
tional Conference on Product Focused Software Process Improvement (Springer, 2013), pp.

50–64

10. M. Omar, S.L.S. Abdullah, The impact of agile methodology on software teams work-related

well-being (2015)

11. L. Benedicenti, F. Cotugno, P. Ciancarini, A. Messina, W. Pedrycz, A. Sillitti, G. Succi, Apply-

ing scrum to the army: a case study, in Proceedings of the 38th International Conference on
Software Engineering Companion (ACM, 2016), pp. 725–727

12. W. E. Hefley, E. A. Buie, G. F. Lynch, M. J. Muller, D. G. Hoecker, J. Carter, J. T. Roth,

Integrating human factors with software engineering practices, in Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 38, no. 4 (SAGE Publications Sage, Los

Angeles, CA, 1994), pp. 315–319

13. M. Martello, S. Labonia, Social aspects in implementing scrum agile in a multidisciplinary

teams, in Proceedings of 4th International Conference in Software Engineering for Defence
Applications (Springer, 2016)

14. D. Dettori, S. Salomoni, V. Sanzari, D. Trenta, C. Ventrelli, Ita army agile software imple-

mentation of the lc2evo army infrastructure strategic management tool, in Proceedings of 4th
International Conference in Software Engineering for Defence Applications (Springer, 2016),

pp. 35–50

15. J. Rezaei, Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

16. T. L. Saaty, How to make a decision: the analytic hierarchy process. Eur. J. Op. Res. 48(1),

9–26 (1990), http://www.sciencedirect.com/science/article/pii/037722179090057I

17. T. L. Saaty, Decision making with dependence and feedback: the analytic network process, vol.

4922 (RWS publications Pittsburgh, 1996)

18. C.-L. Hwang, Y.-J. Lai, T.-Y. Liu, A new approach for multiple objective decision mak-

ing. Comput. Op. Res. 20(8), 889 (1993), http://www.sciencedirect.com/science/article/pii/

030505489390109V

19. S. H. Zanakis, A. Solomon, N. Wishart, S. Dublish, Multi-attribute decision making: a sim-

ulation comparison of select methods, Eur. J. Op. Res. 107(3), 507–529 (1998), http://www.

sciencedirect.com/science/article/pii/S0377221797001471

http://www.sciencedirect.com/science/article/pii/S0950584916000045
http://www.sciencedirect.com/science/article/pii/S0950584916000045
http://www.sciencedirect.com/science/article/pii/037722179090057I
http://www.sciencedirect.com/science/article/pii/030505489390109V
http://www.sciencedirect.com/science/article/pii/030505489390109V
http://www.sciencedirect.com/science/article/pii/S0377221797001471
http://www.sciencedirect.com/science/article/pii/S0377221797001471

128 A. Alhubaishy and L. Benedicenti

20. S. Alshehri, L. Benedicenti, Ranking approach for the user story prioritization methods. J.

Commun. Comput. 10, 1465–1474 (2013)

21. S. Alshehri, L. Benedicenti, Ranking the refactoring techniques based on the internal quality

attributes. Int. J. Softw. Eng. Appl. 5(1), 9 (2014)

22. S. Alshehri, L. Benedicenti, Ranking and rules for selecting two persons in pair programming.

JSW 9(9), 2467–2473 (2014)

23. S. Alshehri, L. Benedicenti, Prioritizing CRC cards as a simple design tool in extreme pro-

gramming, in 2013 26th Annual IEEE Canadian Conference on, Electrical and Computer
Engineering (CCECE) (IEEE, 2013), pp. 1–4

24. D. Karlström, P. Runeson, Decision support for extreme programming introduction and prac-

tice selection, in Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering (ACM, 2002), pp. 835–841

25. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in
Software Engineering (Springer Science & Business Media, 2012)

The Internet of Hackable Things

Nicola Dragoni, Alberto Giaretta and Manuel Mazzara

Abstract The Internet of Things makes possible to connect each everyday object

to the Internet, making computing pervasive like never before. From a security and

privacy perspective, this tsunami of connectivity represents a disaster, which makes

each object remotely hackable. We claim that, in order to tackle this issue, we need

to address a new challenge in security: education.

1 The IoT Tsunami

In the last decade, we all have witnessed a turmoil of interest around the Internet

of Things (IoT) paradigm. It has been claimed that such a paradigm may revolution

our daily lives and pervasive applications are behind the corner both in the civil and

military complex. Such a strong hype on pervasive technologies requires a step back

to consider the potential threat on security and privacy. First of all, What exactly

is the IoT? Accordingly to the Online Oxford Dictionary it is the “interconnection

via the Internet of computing devices embedded in everyday objects, enabling them

to send and receiving data”. To get a grasp of the dimension of this phenomenon,

according to Evans Data Corporation the estimated population of IoT devices in June

2016 was 6.2 billion [1], number that according to several predictions will grow as up

as 20 billion in 2020 [2]. Projections and data are not so straightforward to analyse

since some firms take into account devices like smartphones, while others do not

count them, therefore it is quite hard to make comparisons. Nonetheless, the growing

N. Dragoni (✉)

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

e-mail: ndra@dtu.dk; nicola.dragoni@oru.se

N. Dragoni ⋅ A. Giaretta

Centre for Applied Autonomous Sensor Systems, Örebro University, Örebro, Sweden

e-mail: alberto.giaretta@oru.se

M. Mazzara

Innopolis University, Innopolis, Russian Federation

e-mail: m.mazzara@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_13

129

130 N. Dragoni et al.

Fig. 1 Overview of a generic IoT architecture

trend is confirmed by every analyst, to the point that by 2025 the IoT market could be

worth $3.9 trillion to $11 trillion per year [3]. On the academic front, this ongoing

excitement and interest in all the IoT world has given rise to an increasing number of

related conferences, research projects and research centres (like the recently formed

IoT Center in Denmark, http://iotcenter.dk).

As a matter of fact, even though IoT refers to an ample variety of different devices,

these devices all share a common architecture. First of all, any IoT device usually

connects to the Internet through a more powerful gateway, which could be a smart-

phone or a tablet. Then data flow is elaborated by (and eventually hosted into) the

cloud, enabling the end user to remotely connect to the device and control it. Figure 1

shows how this IoT architecture looks like in a generic scenario.

IoT applications span from industrial automation to home area networks and per-

sonal (body) area networks. In particular, Smart homes will heavily rely upon IoT

devices to monitor the house temperature, eventual gas leakages, malicious intru-

sions and several other parameters concerning the house and its inhabitants. Another

growing area of interest is represented by pervasive healthcare applications, which

use IoT devices to perform continuous biological monitoring, drug administration,

elderly monitoring and so on. Last, but not least, in the recent years wearable devices

gained a huge popularity (e.g., fitness trackers), to the point that in the span of just a

year sales grew 18.4% in 2016 [4].

http://iotcenter.dk

The Internet of Hackable Things 131

1.1 A Security and Privacy Disaster

From a security perspective, this ongoing excitement for IoT is having tremendous

consequences, so that it’s not an exaggeration to talk about a security and privacy

disaster. Indeed, if the fundamental IoT axiom states that “everything can be con-

nected to the Internet (becoming, in this way, an IoT device)”, its security corollary

is somehow catastrophic “everything that can be connected to the Internet can be

hacked” [5]. This is particularly critical if we consider that, by means of the vari-

ous kinds of devices connected to the Internet, people are sharing more and more

information about themselves, often without being aware of that. This means that

the amount of data available online is going to increase unrelentingly, literally given

away to cybercriminal eager to take control of our devices, and thus of our life. In

the early days of the “IoT shift”, researchers highlighted how much critical security

would be in a real IoT context [6] and gave some hints about what should be done to

defend our devices and our privacy. This message has clearly not been listened.

To put things in perspective, in July 2014 HP Security Research [7] analysed 10 of

the most popular IoT devices on the market revealing a generally alarming situation:

∙ 90% of devices collected at least some information via the device;

∙ 80% of devices, along with their cloud and mobile components, did non require a

password complex enough;

∙ 70% of devices, along with their cloud and mobile components, enabled an

attacker to identify valid user accounts through enumeration;

∙ 70% of devices used unencrypted network services;

∙ 6 out of 10 devices that provided user interfaces were vulnerable to a range of

weaknesses, such as persistent XSS
1

and weak credentials.

To make matters worse, security in a IoT scenario is even harder than expected for a

number of reasons [8], such as:

∙ It implies complex and distributed systems, with a huge variety of different oper-

ating systems, programming languages and hardware;

∙ Even developing a simple application for a IoT device can be non-trivial;

∙ Securing the applications is even less easy, because the attack surface is enor-

mous (any device could be a possible entry point) and defining beforehand all the

potential threats is extremely challenging;

∙ The contained data are sensitive and highly valuable for the market, nowadays,

which entails huge potential gains for any successful attacker and high attractive-

ness.

Given that providing security for the IoT is still a really hard thing to do, the

atavistic problem with exciting new technologies is that companies are in a hurry

and most of them ignore quite at all any kind of security issues, postponing the mat-

ter as much as possible. Just to give some numbers, Capgemini Consulting in 2015

highlighted some critical aspects [9], such as:

1
Cross site scripting (XSS) is an attack that injects malicious code into a Web application.

132 N. Dragoni et al.

∙ Only 48% of organizations focus on security of their devices from the beginning

of the development phase;

∙ Only 49% of organizations provide remote updates for their devices;

∙ Only 20% hire IoT security experts;

∙ Only 35% invite third parties (like hackers) to identify vulnerabilities in their

devices.

As a rule of thumb, we could depict the prevalent approach of manufacturers to

IoT security with the following “insecurity practice” rule [8]:

Development Rush + Hard to Develop
⇒ Skip (or Postpone) Security

(1)

At this point it should be quite easy to detect the reasons why hackers actually

love the on-going IoT outburst. In the following Sections, we will show plenty of

examples about this vast attention, with focus on two of the most promising IoT

contexts: smart homes (Sect. 2) and pervasive healthcare (Sect. 3).

2 Smart Home . . . of Horror!

Smart homes and, in general, smart buildings are one of the current trends for IoT

devices, and probably the most active one. Our team is also currently engaged in

a project on microservice-based IoT for smart buildings [10, 11]. Everyday things

are being transformed into much more powerful and smart objects, in order to meet

customers’ increasing needs. But availability of connected things could come with

a high price in terms of privacy and security issues, in light of the fact that at the

present moment too many things are too easily hackable.

Few years ago some irons imported from China included a wireless chip that

was able to spread viruses by connecting to unprotected Wi-Fi networks, while

some other hidden chips were able to use companies networks to spread spam on

the Internet. Researchers achieved to hack the remote firmware update of a Canon

Pixma printer, which makes possible to do funny things, like installing an old-school

videogame such as Doom, and not so funny other ones, like installing a crippling

malware that could even force the device to destroy itself.

Smart light bulbs, which enable the owners to remotely control and adjust their

home light through an app or a web interface, are another fitting example of IoT

devices. Some of these bulbs, such as the popular Philips Hues, have been compro-

mised and researchers showed how easy is to set up a car, or even a drone, that drives

in a residential area aiming to infect as much bulbs as possible with a crippling mal-

ware. This malware is able to shut them down or even force them to flicker on and

off at desired speed [12].

Smart TVs sales are constantly growing all over the world. Smart TVs pro-

vide a combination of a traditional TV and a Internet-connected personal computer,

The Internet of Hackable Things 133

blending the two worlds into a single device. Usually these devices are equipped

with various components, such as microphones and webcams, aiming to give the

user the fullest experience possible. Clearly enough, if security is badly managed in

these kind of devices, hackers could easily eavesdrop and peek at our lives without

us even noticing that. An attack that could likely be struck is a HTML5 browser-

based attack, therefore the devices resilience should always be assessed by using

some penetration testing frameworks, such as BeEF [13].

Talking about spying, there are other devices that have been hacked with the spe-

cific intent to gather information about us. For instance, baby monitors are very

unsafe devices, since that manufacturers generally equip them with default pass-

words easily guessable by attackers, passwords that usually are never changed by

the customers. New York’s Department of Consumer Affairs (DCA) issued a public

statement [14] to inform people about the issue, even reporting that some parents

walked in their child’s room and heard some stranger speaking to them down the

monitor.

Another perfect candidate to become a common IoT device in our smart home is

the thermostat. Being able to remotely choose and monitor our house temperature

can greatly benefit our wellness and comfort. Nonetheless, issues can arise too as

shown by researchers at Black Hat USA, which demonstrated that a Nest thermo-

stat (a popular device in the USA) could be hacked in less than 15 s if physically

accessible by a hacker. The violated thermostat could be used to spy the residents,

steal credentials and even infect other appliances. Recently, other researchers made

a proof-of-concept ransomware that could remotely infect the aforementioned ther-

mostat and shut down the heating, until the victim gives in to blackmail [15]. Similar

vulnerabilities have been found in many other smart home devices, where connectiv-

ity has been “embedded” in the device without considering any security protection.

Even more serious is the threat posed by the lack of security in top-selling home

alarm systems, which unveiled weaknesses are critical to such an extent that a mali-

cious attacker could easily control the whole system, suppressing the alarms or cre-

ating multiple false alarms. In fact, some of these systems do not encrypt nor authen-

ticate the signals sent from the sensors to the control panel, easily enabling a third

party to manipulate the data flow.

Life-threatening vulnerabilities have been found even in smart cars. Security

researchers at Keen Security Lab were able to hack a Tesla Model S, achieving to

disrupt from a distance of 12 miles various electronically controlled features of the

car, such as the brakes, the door locks and the dashboard computer screen [16].

Last but not least, we have seen a proliferation of wearable health trackers in

the last couple of years. In order to provide the user its monitoring features, a fit-

ness tracker is an embedded system which collects sensitive data about the wearer

and communicates it to a mobile application by means of a Bluetooth Low Energy

(BLE) protocol, hence enabling the user to access the gathered information. More-

over, nowadays most of the mobile applications sync the collected data to a cloud

service, whenever an Internet connection is available (see Fig. 1). Researchers con-

ducted some deeper investigations about this whole system [17], evaluating the secu-

rity of the implemented protocols in two of the most popular fitness trackers on the

134 N. Dragoni et al.

market. The research highlighted how vulnerable these devices are to several kinds

of attacks, from Denial of Service (DoS) attacks that can prevent the devices from

correctly working, to Man-In-The-Middle (MITM) attacks based on two fake certifi-

cates [18] resulting in a disclosure of sensitive data. Worryingly, the implemented

attacks can be struck by any consumer-level device equipped with just bluetooth and

Wi-Fi capabilities (no advanced hacking tools have been required).

If you think that escaping from a hacked smart home to find some peace in a hotel

room is a temporary solution, well you might be wrong. Recently, guests of a top-

level hotel in Austria were locked in or out of their rooms because of a ransomware

that hit the hotel’s IT system. The hotel had no choice left except paying the attackers.

3 Pervasive Healthcare

If the so-far depicted Smart Home scenario is already scary, things can even get

worse when we look at the pervasive healthcare context, for example the the

infrastructure to support elderlies developed by our team [19]. Indeed, when we talk

about security in healthcare we inherently talk about safety, since malfunctioning,

attacks and lack of service could endanger many lives, as we will show in the fol-

lowing.

3.1 eHealth: How to Remotely Get Big Data

Duo Security highlighted how security is badly managed in healthcare corporations,

showing that the density of Windows XP computers is 4 times greater than the den-

sity of machines running the same OS found, for instance, in finance. Given that

Microsoft ended the support to Windows XP since 2014, this means that an enor-

mous quantity of devices has not been updated for 2 years, at least. Not only obso-

lete operating systems, even additional (and most of the times, useless) software can

become a problem: many healthcare endpoints and healthcare customers’ terminals

have Flash and Java installed, entailing a huge risk of vulnerabilities exploitation.

To get an idea of how much valuable eHealth data is, and consequently how criti-

cal the related security is, the global information service Experian estimated that on

the black market health records are worth up to 10 times more than credit card num-

bers. Particularly, a single eHealth record (which comprises social security number,

address, kids, jobs and so on) can be priced as high as $500.

For the sake of clarity, we are definitely talking about risks which are far from

theoretical: healthcare industry suffers estimated costs of $5.6 billion per single year

because of data thefts and systems malfunctioning. According to [20], in Febru-

ary 2015 78.8 million of Anthem customers were hacked. In the same year, accord-

ing to the Office of Civil Rights (OCR), more than 113 million medical records

were compromised. Earlier last year Melbourne Health’s networks got infected with

The Internet of Hackable Things 135

a malware capable of keylogging and stealing passwords. In February 2016

Hollywood Presbyterian Medical Centre was struck with a devastating ransomware,

conveyed by simple Word document in an email attachment. The most recent demon-

stration of hackers interest about eHealth data is a massive sale of patients records

on the dark web, where more than 650.000 tags were auctioned off to the highest

bidder.

What strikes the most is that we are dealing with a huge amount of data weakly

defended, easily accessible and highly valuable to malicious third parties. People

tend to link security to tangible money stored in bank accounts, but we’ve witnessed

a radical shift about what’s valuable in the black market, in the last decade. Hackers

do not just want our credit cards, they want the patterns of our life.

3.2 IoT Medical Devices: How to Remotely Kill You

The IoT revolution is particularly relevant for a number of healthcare fields of appli-

cation, since networked devices make possible to monitor and deliver necessary

treatments to any remote patient, meaning that day-to-day and even life-saving pro-

cedures can be promptly performed. Nowadays, devices like insulin pumps, cochlear

implants and cardiac defibrillators are used on a daily basis to deliver remote assis-

tance to a lot of patients. Furthermore, in the last years bigger devices like blood

refrigeration units, CT scan systems and X-ray systems are connected to the Inter-

net, in order to check remotely their operational state and make whatever adjustment

is needed (e.g., lower the blood unit inside temperature).

Keeping in mind that, as we stated in Sect. 1, when something is connected to the

Internet it is inherently not secure, the other side of the coin is that the IoT-based

healthcare exposes the aforementioned life-saving procedures to the public domain.

Therefore, this exposure entails that “if it isn’t secure, it isn’t safe” [21]. For the sake

of clarity, Capgemini Consulting conducted an investigation in February 2015 [9]

where firms executives were asked about the resilience of IoT products in general, in

their own opinion. Results shown in Fig. 2 show that medical devices are critically at

the bottom of the survey, with only a 10% of executives that believe that IoT devices

are highly resilient to cybercriminals. Indeed, various life-threatening vulnerabilities

have been found in a number of IoT devices. At least 5 models of intravenous drug

pumps manufactured by Hospira, an Illinois firm that administers more than 400.000

devices all over the world, recently showed critical vulnerabilities that could allow a

malicious attacker to alter the amount of drugs delivery to patients. Medtronic, one

of the world’s largest standalone medical technology development company, manu-

factures an insulin pump that enables patients to autonomously manage their blood

glucose levels; sadly, the system does not encrypt the commands sent to the pumps

by patients, nor do authenticate the legitimacy of the user. Such an uncontrolled

system means that unauthorized third parties could intercept a legitimate command

and replace it, delivering a deadly insulin dose to the patient. Some companies

that produce Implantable Cardioverter Defibrillators (ICDs), used to deliver shocks

136 N. Dragoni et al.

Fig. 2 Percentage of firms executives that rate the IoT products, in their own industry, highly

resilient to cyber attacks [9]

to patients going into cardiac arrest, use a Bluetooth stack to test their devices after

the first implantation, but they use default and weak passwords which makes their

product easily hackable.

Similar problems have been found in blood refrigeration units, protected only by

a hardcoded password that could be deciphered by malicious attackers and used to

alter the refrigeration unit temperature, consequently wrecking the blood provision.

Another attack could be struck by targeting CT scanning equipments and altering

the radiation exposure limits, killing a patient by administering a huge amount of

radiation. Even some X-ray systems have been proved to be vulnerable, as they do not

provide any kind of authentication when patients’ X-rays are backed up in centralized

storage units, nor log who views the images.

Bad security can be as dangerous as lack of security, as seen in May 2016 when

Merge Hemo, a medical equipment used to supervise hearth catheterization proce-

dures, crashed due to a scan triggered by the antivirus software installed: installing

antivirus e antimalware software is not only insufficient, sometimes it can even be

hazardous if superficially done.

4 On the Need of Developing a Security Culture

Today technology is so sophisticated that counteracting outside threats requires a

high level of knowledge and a vast set of skills. This becomes even more challeng-

ing if security is mostly unheeded as it happens today, treated as a postponable aspect

of a product instead than a inherent and essential trait. And while firms struggle to

The Internet of Hackable Things 137

keep on track, hackers keep on gaining competence and resources: as an example,

ransomware victims receive easy and detailed instructions on how to unlock their

devices, and sometimes hackers themselves provide 24/7 call centres, in case their

targets should run into any kind of technical difficulty. Shockingly, the support vic-

tims get from hackers is better than the support they get from their own Internet

Service Provider.

So, what are the recommendations that should be followed in designing more

secure IoT devices? How can we mitigate, if not solving, this security and privacy

disaster?

We believe that, to provide an answer, we first need to step back to the basic

question: what is the nature of the problem? Is it technological? Rephrasing, do we

have a lack of proper technology to protect IoT systems? Do we need new security

solutions?

Our (probably provocative) answer is no, we do not need technological innova-

tion. Or better, of course we do need that, as we do need government regulation,

but these are not the priority. The priority is instead education. Indeed, what we

actually miss is to develop an effective security culture, raising the levels of aware-

ness and understanding of the cyber risk and embedding “security-aware” values and

behaviours in our everyday life.

Security and trust are indeed also matter of education and method. For example, in

social networks algorithm to compute users trust exist [22], still people need to rely

on their own experience and understanding and should not blindly follow computer

suggestions. It is the integration of human understanding and algorithms that always

offer the best solutions.

To support the above argument, consider all the examples of IoT devices men-

tioned in this paper (a summary is given in Table 1). It is noteworthy to highlight

that all the described vulnerabilities have the common characteristic of being possi-

ble thanks to the naive approach that manufactures adopted in the design phase of

their products, approach that clearly shows how security is merely sketched out or

even neglected at all. Following basic and well known security practices, it would

have been possible to protect these devices against all those cyber-attacks. This is

something extremely important to understand. For instance, just to provide another

example supporting our argument, let us consider the Mirai malware that operated

in October 2016, achieving the largest Distributed Denial of Service (DDoS) attack

ever, approximately hitting the targets with 1.2 Tbps of requests [23]. Mirai sim-

ply scans the Internet, looking for vulnerable IoT devices to attack with a simple

dictionary approach and, once that access is gained, the device becomes a bot of

a huge network ready to strike a massive DDoS attack. Noticeably, the dictionary

used by Mirai is filled with a tiny number of entries, around 50 combinations of user-

name/password, which gives an idea of how little effort is put by firms into designing

security for their IoT devices, at the present moment. Again, what was the key issue

making this huge cyber attack possible? Was it a lack of technological innovation,

for instance a stronger authentication mechanism? Or a lack of a basic security cul-

ture, so that we do not apply the technology we already have and that could actually

solve most of nowadays security vulnerabilities?

138 N. Dragoni et al.

Table 1 Examples of hacked IoT devices. “Weak security” means that the device was easily break-

able because of a lack of basic security protection mechanisms (details in the paper)

IoT device Why hacked

Tea kettles No security

Irons No security

Kitchen appliances No security

Printers Weak security

Networked light bulbs Weak security

Smart TVs Weak security

Baby monitors Weak security

Webcams Weak security

Thermostats No security

VoIP phones Weak security

Home alarm systems No security

Smart toilets No security

Smart cars Weak security

Drug infusion pumps Weak security

Insulin pumps No security

Implantable cardioverter defibrillators Weak security

X-Ray systems No security

Blood refrigeration units Weak security

CT scanning equipment No security

Heart surgery monitoring device Weak security

Fitness trackers Weak security

Hotel room doors Weak security

Security best practices recommend that a detailed risk analysis should be done,

in order to have a clear view of what are the actual cyber threats and consequently

choose the right approach to secure the devices. Moreover, device security should be

designed as an essential part of the product lifecycle and not as a one-time issue. Once

that the right path has been chosen for the new products, already existing devices

should be thoroughly tested, following a fairly simple schedule like: automated scan-

ning of web interfaces, reviewing of network traffic, reviewing the need of physi-

cal ports (e.g., USB ports), reviewing authentication and authorization processes,

reviewing the interaction of devices with cloud and mobile application counterparts

(an example for health trackers is given in [17]).

In the end, what we have learned by this excursus is that the main problem and

concern with IoT security is that a security culture is nearly non-existent in our soci-

ety. It should sound obvious that the more the technology develops and becomes

pervasive in our lives, the more the security awareness should be growing. But this

is not happening, or it is happening at a too slow pace. Indeed, while the concept of

The Internet of Hackable Things 139

“computing” has rapidly and significantly evolved in the last decades (from main-

frames to personal computing to mobile and then pervasive computing), the develop-

ment of security has not followed the same evolution. Nowadays, kids are able to use

almost any mobile device like smart phones, laptops, tablets, wearable devices and

so on. On the other hand, they have no concept of “security” or “privacy”. With the

explosion of IoT, computing has become pervasive like never before. It’s time that

also security becomes so pervasive, starting from the development of a new secu-

rity culture. This is surely a long term goal that has several dimensions: developers

must be educated to adopt the best practices for securing their IoT devices within the

particular application domain; the general public must be educated to take security

seriously, too, which among other things will fix the problem of not changing default

password. This education effort, however, will surely need the support of both inno-

vation and government regulations, in order to enforce security when education is

not enough.

We are strongly convinced that education is the key to tackle a significant number

of today IoT security flaws. Therefore, if we raise the levels of cyber risks understand-

ing, both in the corporations and in the general end-users, maybe what future holds

would not look as daunting as it looks today. We call the research community to this

new exciting challenge.

References

1. Press Releasem, Thirty-Four Percent Rise in IoT Development 22 June (2016), https://

evansdata.com/press/viewRelease.php?pressID=237

2. Press Release, Gartner 10 Nov (2015), http://www.gartner.com/newsroom/id/3165317

3. J. Manyika et al., Unlocking the Potential of the Internet of Things (McKinsey & Company,

2015)

4. Press Release, Gartner 2 Feb (2016), http://www.gartner.com/newsroom/id/3198018

5. S. Poremba, The Internet of Things Has a Growing Number of Cybersecurity Problems, http://

www.forbes.com/sites/sungardas/2015/01/29/the-internet-of-things-has-a-growing-number-

of-cyber-security-problems

6. R. Roman, P. Najera, J. Lopez, Securing the Internet of Things. Computer 44(9), 51–58 Sept

(2011)

7. Security Analysis of IoT Devices (HP report, 2015), http://fortifyprotect.com/HP_IoT_

Research_Study.pdf

8. Secure Internet of Things Project (SITP), http://iot.stanford.edu/workshop14/SITP-8-11-14-

Levis.pdf

9. Securing the Internet of Things Opportunity: Putting Cybersecurity at the Heart of the

IoT, Capgemini Consulting, Feb (2015), https://www.capgemini-consulting.com/resource-

file-access/resource/pdf/iot_security_pov_10-1-15_v6_.pdf

10. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based IoT for

smart buildings, in Proceedings of the 31st International Conference on Advanced Information
Networking and Applications Workshops (WAINA ’17)

11. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: inter-

net of things for smart building infrastructure supporting concurrent apps utilizing distributed

microservices, in Proceedings the First International Scientific Conference on Convergent
Cognitive Information Technologies (Convergent 2016)

https://evansdata.com/press/viewRelease.php?pressID=237
https://evansdata.com/press/viewRelease.php?pressID=237
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3198018
http://www.forbes.com/sites/sungardas/2015/01/29/the-internet-of-things-has-a-growing-number-of-cyber-security-problems
http://www.forbes.com/sites/sungardas/2015/01/29/the-internet-of-things-has-a-growing-number-of-cyber-security-problems
http://www.forbes.com/sites/sungardas/2015/01/29/the-internet-of-things-has-a-growing-number-of-cyber-security-problems
http://fortifyprotect.com/HP_IoT_Research_Study.pdf
http://fortifyprotect.com/HP_IoT_Research_Study.pdf
http://iot.stanford.edu/workshop14/SITP-8-11-14-Levis.pdf
http://iot.stanford.edu/workshop14/SITP-8-11-14-Levis.pdf
https://www.capgemini-consulting.com/resource-file-access/resource/pdf/iot_security_pov_10-1-15_v6_.pdf
https://www.capgemini-consulting.com/resource-file-access/resource/pdf/iot_security_pov_10-1-15_v6_.pdf

140 N. Dragoni et al.

12. E. Ronen, C. O’Flynn, A. Shamir, A. Weingarten, IoT Goes Nuclear: Creating a ZigBee Chain
Reaction (2016), http://iotworm.eyalro.net/iotworm.pdf

13. BeEF, The Browser Exploitation Framework, http://beefproject.com/

14. Consumer Alert: Consumer Affairs Warns Parents to Secure Video Baby Monitors, Jan (2016),

http://www1.nyc.gov/site/dca/media/pr012716.page

15. Thermostat Ransomware: A Lesson in IoT Security, https://www.pentestpartners.com/blog/

thermostat-ransomware-a-lesson-in-iot-security/

16. Keen Security Lab of Tencent, Car Hacking Research: Remote Attack Tesla Motors, http://

keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-

Remote-Attack-to-Tesla-Cars/

17. R. Goyal, N. Dragoni, A. Spognardi, Mind the tracker you wear: a security analysis of wearable

health trackers, in Proceedings of the 31st Annual ACM Symposium on Applied Computing
(SAC ’16) (ACM, New York, NY, USA, 2016), pp. 131–136

18. M. Conti, N. Dragoni, S. Gottardo, MITHYS: Mind the hand you shake—protecting mobile

devices from SSL usage vulnerabilities, in Security and Trust Management (Springer, New

York, NY, USA, 2013)

19. M. Nalin, I. Baroni, M. Mazzara, A holistic infrastructure to support elderlies’ independent

living, inEncyclopedia of E-Health and Telemedicine, ed. by M.M. Cruz-Cunha, I.M. Miranda,

R. Martinho, R. Rijo (Chap. 46, IGI-Global), pp. 591–605

20. A.W. Mathews, Anthem: hacked database included 78.8 million people, Wall Street J. 24

Feb (2015), https://www.wsj.com/articles/anthem-hacked-database-included-78-8-million-

people-1424807364

21. K. Netkachova, R.E. Bloomfield, Security-informed safety. IEEE Computer 49(6), 98–102

June (2016)

22. M. Mazzara, L. Biselli, P.P. Greco, N. Dragoni, A. Marraffa, N. Qamar, S. de Nicola, Social

networks and collective intelligence: a return to the agora, in Social Network Engineering for
Secure Web Data and Services, ed. by L. Caviglione, M. Coccoli, A. Merlo (IGI-Global, 2013)

23. M. De Donno, N. Dragoni, A. Giaretta, A. Spognardi, Analysis of DDoS-capable IoT malwares,

in Proceedings of 1st International Conference on Security, Privacy, and Trust (INSERT)
(IEEE, 2017)

http://iotworm.eyalro.net/iotworm.pdf
http://beefproject.com/
http://www1.nyc.gov/site/dca/media/pr012716.page
https://www.pentestpartners.com/blog/thermostat-ransomware-a-lesson-in-iot-security/
https://www.pentestpartners.com/blog/thermostat-ransomware-a-lesson-in-iot-security/
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
https://www.wsj.com/articles/anthem-hacked-database-included-78-8-million-people-1424807364
https://www.wsj.com/articles/anthem-hacked-database-included-78-8-million-people-1424807364

Avoiding Sensitive Data Disclosure:
Android System Design and Development
Data Leaks Detection Thesis Master
Degree Computer Engineering

Vincenzo Pomona

Abstract The data leaks problem is a security key issue in the worldwide con-
nection, communication and interoperability functions among the huge number of
mobile devices, especially for apps where sensitive data are exchanged. In order to
tackle this dangerous problem, an innovative and powerful tool, named
Android JADAL (JAva DAta Leak), has been developed based on hybrid approach
which combines both static and dynamic code analysis techniques. This tool has
been validated successfully by means of significant tests carried out on sensitive
data leak applications. During the test, the user receives notification when sensible
data is caught during the execution of apps. The design and testing activities have
been conducted in cooperation with the Mathematics and Computer Science
Department of Catania University.

Keywords Android ⋅ Android JADAL ⋅ Android Logcat ⋅ Android Marsh-
mallow ⋅ Apk ⋅ App Permission ⋅ Data leaks ⋅ Dex file ⋅ Jar
Java ⋅ Play store ⋅ Privacy ⋅ Reverse engineering ⋅ Security
Source code analysis ⋅ Source and sink

1 Introduction and Aim of the Work

The use of mobile devices has grown quickly in the last years, playing a key role in
the worldwide electronic market, thanks to the Android Operating System (OS),
nowadays used in more than one billion of devices.

Since the beginning of its use, Android was competitive with other players, like
Apple and BlackBerry, adding more useful features and reducing cost in mobile
devices.

In 2013 Android was the first OS with more than one billion applications in the
marketplace, with respect to the other major competitor (Apple).

V. Pomona (✉)
Catania University, Piazza Università, 2, 95124 Catania, CT, Italy
e-mail: vincenzo.pomona@gmail.com

© Springer International Publishing AG 2018
P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems
and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_14

141

Thanks to numerous and useful Apps, it is possible to manage a lot of services
such as contacts, sms, calls, internet browsing and other features.

During the installation of each Android App, the user is notified for all per-
missions required to the right App execution.

This is the phase when starts the process of data leakage with the authorization to
access in sensitive data.

We have to consider that Android OS exploits Google Play Store App which
contains huge number of applications, where it is difficult to distinguish between
malicious or legal App.

In this way the user can get the real risk of using malicious Apps unknowingly,
allowing the data leaks phenomena.

The aim of this work is to design and develop a suitable tool which tackles this
dangerous phenomena.

Within the activity of the Mathematics and Computer Science Department of
Catania University, has been developed an innovative software named
Android JADAL (JAva DAta Leak) able to improve and extend existing tools to
detect data leaks in Android applications.

2 Overview of Data Leaks Problem

Two techniques have been used as to detect failure and vulnerability in both simple
and complex systems: static analysis and dynamic analysis. By means of these
techniques it is possible to detect dependences among source code instructions.

The innovative aspect is due to the use of both techniques with respect to the
previous tools which used only one of them (e.g. FlowDroid makes use of static
analysis whereas TaintDroid utilizes the dynamic analysis), with no satisfactory
results.

As to overcome the limitation due to the single technique use, in this work has
been adopted the hybrid technique, which combines the advantages of static and
dynamic analyses.

In fact with the static method is possible to inspect the application source code
only, which means to get false positive and false negative in the final results.

False positives are the notification of unreal suspicious paths, which are caused
by the missing of external library source code.

False negatives represent the missing notification of suspicious paths, with the
same cause of the False positives.

Actually, the static analysis is mandatory for a first overview of a possible
suspicious paths inside source code application, even though this process is often
onerous in terms of time computation and complexity.

The dynamic analysis allows the collection of data about suspicious paths,
coming from inspection of a specific application bytecode. In this case, it is possible
to notify the presence of real suspicious paths which refer to a specific execution,
reducing the lot of false negatives produced by the static analysis.

142 V. Pomona

The dynamic analysis appears to be more efficient than the static one, however it
exhibits, as main drawback, its dependence on the particular input configuration.

For this reason each result should be evaluated in the relationship with the
specific set of input.

The best result is achieved by using an innovative approach, called hybrid
analysis, based on the combination of both techniques as to obtain the best trade-off
between accuracy and complexity.

In the last years, several Android OS versions have been released, having each
one particular features with associated limitations, especially in the security field.

Only in the most recent period (exactly from JellyBean release), Google focused
its attention on the privacy and security aspects. For this reason, in Marshmallow
release, we found an application permission handler (App Permission) which allows
to manage each permission required from the running applications, changing totally
the permission policy from the initially all or nothing approach.

The Fig. 1 explains how it works the above mentioned App Permission.
App Permission acts as a normal application inside Android setting menu. The

aim of this App is to show and control all required permissions for each application.
For example, the Chrome Dev App have no access to the location information

first. When user runs Chrome Dev and needs to use the location information, the
application will ask the permission, which it is managed by App permission
application.

The introduction of this very important feature mitigates the data leaks problem,
without solving it completely.

For this reason, in cooperation with Mathematics and Computer Science
Department of Catania University, has been elaborate a new tool named
Android JADAL, based on JADAL existing software, improved with feature to be
used in Android.

Fig. 1 How to work App Permission

Avoiding Sensitive Data Disclosure … 143

3 Android JADAL

JAva DAta Leaks is a suitable software developed in Mathematics and Computer
Science Department of Catania University, having the aim to detect data leaks in
Java applications.

In order to improve this tool as to be applied successfully in the Android OS, a
new solution based on the hybrid approach has been studied.

With reference to the Workflow of Fig. 2, Android JADAL starts by receiving
the App under investigation as input and produces, as output, a new App modified
with the notifications of data leakage, if any.

In the JavaPDG block the hybrid analysis is carried out. During a first static
analysis, it is created the system dependence graph which is composed by the union
of the call flow graph and the data dependence graph. The result consists of a first

Fig. 2 Android Jadal workflow

144 V. Pomona

Fig. 3 Screenshots application under test

Avoiding Sensitive Data Disclosure … 145

overview of all suspicious paths, which will be addressed to the dynamic analysis as
to select the real suspicious paths only. This is the output of JavaPDG component,
which is produced as derby database or json, addressed to the FindPointcuts
module.

This block needs two kind of information as input: the file with a set of method
signature (Sources and Sinks file) and the result produced by JavaPDG module. The
set of signature represents the potential data leak points to be inspected, which have
to be compared with the first overview produced by JavaPDG.

FindPointcuts module provides a file with the Pointcut screened during the
execution of the new application. Each Pointcut represents a possible data leaks.

Then PointcutInjector, using these Pointcuts, modifies the bytecode of the
Application under test, injecting a proper code as to notify the threat of data leaks.
At the end of this process, a jar file is ready to be sent to the last phase of JADAL.

In this way, the jar file will be converted into a new apk file, which will be
signed and validated.

At this time, the starting Application, has been modified with data leaks sensitive
information and it is available for the user.

It should be pointed out that the proposed solution needs source code of the
Application under test.

The new Android JADAL tool has been validated by creating a suitable Android
Application having data leaks problem.

As shown in Fig. 3, the application under test is composed of two buttons and a
text area.

The load number button permits the access to the sensitive data; in this case we
used MSISDN of SIM card device as sensible data.

After pressing send number button, we send sensible data to the text area, which
simulate data leaks phenomena.

It is important to note that the data leaks detection happens before printing
sensible data to the text area. As shown in Fig. 4, it is possible to see that data leak
detected is logged before the instructions of system.out, used to print out the
sensible data.

This fact proves the powerful of the new developed Android JADAL tool.

Fig. 4 LeakingDetectionApp log

146 V. Pomona

4 Conclusion and Ongoing Activities

Android JADAL tool, object of this work, is able to detect data leaks in Android
applications. It is based on a powerful process which considers a hybrid analysis
taking into account the advantages of both static and dynamic analyses.

This tool has been validated successfully, using proper application exhibiting
data leaks phenomena.

It is possible to expand the use of Android JADAL taking into account more
complex data leaks scenarios.

In the future it could be useful separate the logic of data leaks code injection
from the core of JADAL, creating a proper component used only for this handling.

Avoiding Sensitive Data Disclosure … 147

Towards Non-invasive Software
Measurement System: Architecture and
Implementation

Anton Bykov, Vladimir Ivanov, Marat Mingazov, Alan Rogers,
Alexandr Shunevich, Alberto Sillitti, Giancarlo Succi,
Alexander Tormasov, Jooyong Yi, Albert Zabirov
and Denis Zaplatnikov

Abstract Despite that non-invasive software measurement tools have proven their

usefulness in software production, their adoption in software industry is still lim-

ited. Reasons for the limited distributions have been studied and analyzed in works

like (Coman et al, Proceedings of 476 the 31st International Conference on Software

Engineering (ICSE 2009), Vancouver 89–99, 2009) [1]. In this paper, we propose a

new architecture for non-invasive software measurement systems that address the

A. Bykov (✉) ⋅ V. Ivanov ⋅ M. Mingazov ⋅ A. Rogers ⋅ A. Shunevich

A. Sillitti ⋅ G. Succi ⋅ A. Tormasov ⋅ J. Yi ⋅ A. Zabirov ⋅ D. Zaplatnikov

Innopolis University, 1, Universitetskaya Str., Innopolis 420500, Russia

e-mail: a.bykov@innopolis.ru

V. Ivanov

e-mail: v.ivanov@innopolis.ru

M. Mingazov

e-mail: m.mingazov@innopolis.ru

A. Rogers

e-mail: a.rogers@innopolis.ru

A. Shunevich

e-mail: a.shunevich@innopolis.ru

A. Sillitti

e-mail: a.silitti@innopolis.ru

G. Succi

e-mail: g.succi@innopolis.ru

A. Tormasov

e-mail: a.tormasov@innopolis.ru

J. Yi

e-mail: j.yi@innopolis.ru

A. Zabirov

e-mail: a.zabirov@innopolis.ru

D. Zaplatnikov

e-mail: d.zaplatnikov@innopolis.ru

URL: https://www.university.innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_15

149

150 A. Bykov et al.

problems of the existing systems. The outcome of our early experimentation is quite

promising and gives us the desired additional confidence on its successful distribu-

tion.

1 Introduction

Measurement of software processes and products is a well-known way to increasing

quality, control and predictability of resulting software [2]. Collecting process and

product metrics facilitates reconstructing software development process and may

produce insights on how to improve the productivity of software development and

the quality of software.

However, collecting metrics is also a difficult task [3–5]. In particular, collecting

metrics from the developers successfully depends, by and large, on how much sup-

port the developers provide for metrics collection, as witnessed in [1, 6–8]. Devel-

opers would not welcome being disturbed for the sake of metrics collection. Thus,

a non-invasive collection of software metrics—where metrics are collected auto-

matically, without requiring the personal involvement of the developers—has been

affirmed as one of the most promising approaches for metrics collection [9–11]. By

using a non-invasive software measurement system, data about software products

and software development processes can be collected from developers’ machines,

smartphones, smart things, product repositories, and task/defect tracking tools, with-

out disturbing the developers [12–15].

Adoption of non-invasive metrics collection systems in software industry is still

limited, despite its promising potentials. The case study of Coman et al. [1] sheds

light on why this is the case. According to them, the existing non-invasive metrics

collection systems need the following for wider adoption: increasing the level of data

privacy, letting the developers see/modify the information stored about them, allow-

ing the developers to turn off the system partially or totally when needed, providing

an effective user interface to access the data (e.g., a hierarchical view of the data),

providing the ability to integrate data from a variety of other systems, and making

the system fault tolerant.

We have developed a non-invasive software measurement system that addresses

the aforementioned functionalities missing in the existing systems. In this paper,

we describe the novel architecture and implementation strategy of our measurement

system. The main contribution of the work is focused on the analysis and justification

of architectural decisions behind development of a system for non-invasive software

measurement [16].

This paper is organized as follows. Section 2 describes the current state of the art.

Section 3 outlines the new proposed architecture. Section 4 presents the implemen-

tation details. Section 5 summarizes the data from the early implementation of the

system. Section 6 discusses the early results of the adoption of the system. Section 7

draws some conclusions and outlines the main directions of future research.

Towards Non-invasive Software Measurement System . . . 151

2 Survey of the State of the Art

Understanding and controlling software development process is, despite its impor-

tance, quite difficult due to the high complexity of software and the high degree of

uncertainty software developers experience. To understand and control software pro-

cess better, measuring software metrics—a collective term used to describe the wide

range of activities concerned with measurement in software engineering [17]—can

be a good starting point.

The history of software metrics collection can be divided into two generations

[18]. The first generation applies the Personal Software Process (PSP)—a self-

improvement process that helps developers to control, manage, and improve the way

they work [19]. PSP can also be called an “invasive” method of metrics collection

since it requires the direct involvement of participants in the data collection pro-

cess. Users of the PSP create and print forms in which they log their effort, size

and defect information. One obvious downside of this invasive approach is the high

overhead cost it entails. The developers should often switch between development

tasks and metrics collection tasks, which imposes a high cognitive burden to the

developers [20].

To reduce metrics collection cost, the more recent second-generation approach

collects metrics from the users in a “non-invasive” way where software metrics

are collected automatically, without requiring the personal involvement of the users

in the data collection process. Table 1, which is an adapted version of a table

that appeared in [18], illustrates distinguishing characteristics of invasive and non-

invasive approaches. It becomes clear that the non-invasive approach reduces costs

of collection and analysis process as well as context switching problem (when the

developer should switch from working process to filling PSP forms).

Ways of implementing non-invasive measurement are discussed in [21–23]. Non-

invasive collecting systems should focus on the following aspects to satisfy charac-

teristics shown above [24–26]:

∙ automatic collection of product metrics;

∙ support of the tools that are used by the developers;

∙ support of the programming language used by the developers;

∙ automatic installation and update of the tools for data collection.

Table 1 Characteristics of invasive and non-invasive measurement

Characteristic Invasive approach Non-invasive approach

Collection overhead High None

Analysis overhead High None

Context switching Yes No

Metrics changes Simple Tool dependent

Adoption barriers Overhead, Context-switching Privacy, Sensor availability

152 A. Bykov et al.

To accomplish these objectives, measurements should be provided through mea-

surement probes or sensors. These probes are put into the software development

process, then report events to a central repository where the data can be analyzed

and shown. There are two common ways to extract data:

∙ batch mode—the data are extracted on a regular basis;

∙ background mode—the data are extracted continuously.

Batch mode is useful when it is not necessary to track and collect an ongoing process

or if the collecting process requires a lot of computer resources and will be costly

in terms of performance. Background mode works in the opposite way and collects

data as soon as it become available.

And two ways to submit data to central repository:

∙ online—the collected data are immediately submitted to the server;

∙ cached—the collected data are saved locally and then submitted later.

Cached approach is useful for devices that do not have a constant connection to the

network, so it will be useful to store data locally and send it when a connection

become available. If the bandwidth is low—a cached approach can collect, compress

and send data later. It is also possible to allow manual input of data. In this case it is

just needed to implement the mechanism that will collect manual input and send it

to the server in the same format as non-invasive measurements.

The description of common approaches is provided in [22]. But concrete imple-

mentation of the measurement process depends on the customer’s requirements. A

measurement system for a small team will have different infrastructure than a system

for a big company. Even if team sizes are nearly the same they may have different

goals and make measurements in different ways. For now, PRO Metrics (PROM)

and Hackystat are the most widely known collection systems.

PRO Metrics, described in [25, 27] is a distributed architecture for collecting

different kinds of software data: software metrics and PSP data. PROM is based on

Package-Oriented Programming development technique.

PROM includes four main components:

∙ PROM plug-ins for IDE that track application-generated data, collect and send all

these data to PROM Transfer with timestamp and user authentication features.

These authentication feature are different from traditional ones, so they allow

multi-user logins to ‘Agile’ practices such as pair programming [28–32].

∙ PROM Trace plug-in allows to track interesting operating system calls and user

interaction with the system. It can track the name of the current window in focus,

browser tab, etc.

∙ PROM Transfer gets data from all plug-ins and makes pre-processing of collected

data to remove redundancy. It sends processed data to PROM Server and stores it

in database. PROM transfer can also work offline—it collects data in local storage

and sends it when the PROM Server is available.

∙ PROM Server provides an interface to the PROM Database through Web Services.

PROM Database stores all information about users and projects.

Towards Non-invasive Software Measurement System . . . 153

Johnson et al. in [18, 33, 34] described the Hackystat system. This system auto-

matically collects development metrics from sensors (attached to development tools)

and sends them to the server where this data can be analyzed.

In the first version of Hackystat, its sensors were able to collect:

∙ activity data (e.g., which file is under modification of developer at 30 s interval);

∙ size data (e.g., lines of code);

∙ defect data (e.g., number of pass/fail status of unit tests).

Developers should install one or more sensors to begin using Hackystat and then

register with its server. After that they can start working and metrics will be sent to

the server:

∙ automatically in some intervals (if connection to the network is available);

∙ or cached locally for later sending.

Hackystat also has one interesting mechanism—the ability to define alerts, which

are periodically analyzed based on developer’s data. If some sort of threshold value is

exceeded the system will send an email (obtained from registration) to the developer

that will alert her and will contain a link to the more complete data observations.

A system that will have the following properties will combine characteristics of

profitable non-invasive metrics collection written above and use best practices of

existing systems:

∙ has client-server architecture;

∙ has client-side application as simple as possible;

∙ uses sensor-based approach (a sensor should be integrated into OS environment);

∙ sends metrics collection data to the server in JSON format since it is very exten-

sible for new types of data.

3 An Architecture for Non-invasive Software Measurement

3.1 Main Novelties of Our Approach

A critical prerequisite for the successful use of a non-invasive measurement system

is the support from the developers in the company. Without their cooperation, met-

rics cannot be collected, despite the availability of a non-invasiveness of a metrics

collection system. However, it is a common concern that the developers often fear

that their data might be misused by the “Big Brother” and refuse to use a metrics

collection system. We address this concern by:

1. Ensuring data privacy—every developer has his own account which can be

accessible only by him, so his data is safe from unauthorized access;

154 A. Bykov et al.

2. Giving full control over the developer’s own data—the developer can choose

which data she would like to send to the server for further analysis. Such selec-

tivity is achieved by applying filters on the collected data (by time interval, key-

words or name of the activity) or by manually removing unwanted records.

Our solution, while seemingly simple, is solidly based on the results of the case

study conducted by Coman et al. [1]. To the best of our knowledge, we for the first

time report in the literature the use of the aforementioned approach in a non-invasive

software measurement system.

Another important issue we consider is that our software measurement system

should collect metrics from various sources (e.g., web browsers and editors). Our

system architecture should allow to collect different metrics from different sources.

To meet this need, we split the client side application into the following two parts:

collector and manger. First, the collector part collects metrics from its source appli-

cation, and store them in a local database, which is shared between all collector

instances running in the client system. Meanwhile, the manager part transfers the

data in the local database to the server side. It also enables the developers to review

the data collected from collector instances, before the developers allow all or part of

the data to be transferred to the server.

Furthermore, the system should be self monitoring and self healing [1, 35, 36].

If the operating system has crashed and restarted, the measurement system will be

restarted without any user interaction with help of the auto-start feature.

Moreover, the client-side system can be used not only with our server side ana-

lytic, but can be integrated with any external server which will implement processing

of the corresponding format. This will give the ability to include new ways of col-

lecting data into companies’ existing systems (if they have any). The systems can

be extended and improved since they are open-source. Such extensions will help

companies to spend less effort to develop their systems to collect domain specific

metrics.

3.2 Client Side

One of the primary problems which we solved with the client side system is to col-

lect the data in a non-invasive way, while also giving the programmer the ability to

control the process. The client side was implemented as a service or status bar appli-

cation so that a user need not be concerned while the system collects the data. The

user can still control the collection process and pause or even stop the collection at

any time she wants.

The second problem which had not been solved previously is that the user should

be able to filter or remove data after it has been collected. This system provides the

ability to filter records; filtering means that records are retained in local storage but

removed from the set that will be sent to the server based on:

Towards Non-invasive Software Measurement System . . . 155

1. period of time;

2. application name;

3. keywords.

Finally, the client application also allows the user to permanently remove any record

from local storage which she doesn’t want to send.

The client side system is split into two main parts:

1. The collector application which is responsible for collecting user activities.

2. The manager application which is responsible for authorization, managing col-

lected data (filtering and deleting) and sending the data to the server.

Implementing such an approach gives the system modifiability and separates pas-

sive data collection, which requires no user interaction, from the management of col-

lected data, which the user should be able to review (if she wants to modify some

records) before sending the data to the server.

It was decided to use a shared database for Collector and Manager applications,

since there is large overlap between the data they use. Both applications operate

within the same domain models and use the same data entities. This approach also

reduces space overhead because everything is stored in one place, and avoids the

need to spend extra time copying duplicated data from Collector to Manager.

The client side system gives the developer full control over collecting the data and

allows her to choose what records she wants to send to the external side. The system

can be easily extended to include additional types of data by simply implementing a

collection mechanism for the new data.

3.3 Server Side

The main problem the server side is supposed to solve was the absence of an archi-

tecture for flexible metrics storage. The system should have an ability to store all

possible data structures and an ability to handle runtime errors or input errors with-

out data loss.

Such an effect was achieved through architectural solutions. All known data struc-

tures were designed in order to meet 3rd normal form, and unanticipated ones can

be stored as additional entities with properties “name”, “type” and “value”.

4 Implementation Details

4.1 Server Side

Back-end data structure can be described with the entity-relationship diagram (see

Fig. 1)

156 A. Bykov et al.

Fig. 1 Back-end database

schema

Users. Users is a model for collecting information about users: name, online con-

tact information, join date, etc. This model is needed to group activities by user and

to look through personal metrics of each user.

Activities. Activities is a model which stores information about users’ activity:

name of the activity and an extra field “comments” if the activity has some extra

information.

Users-Activities relationship. One user may be related to many activities, but

activities have only one owner. So, Users-Activities has the one-to-many relation-

ship. From database point of view, table “activities” will store the foreign key to

“users” table.

Measurements. Measurements is a model with the largest amount of tuples. It

contains serialized data about the measurement of an activity. In this model, all the

information about activities can be stored. For example, it can contain information

about the duration of activity, MAC address, and IP-address.

Activities-Measurements relationship. One activity may have many different

measures, but measures relate to only one activity. So, Activities-Measurements has

the one-to-many relationship. From database point of view, table “measurements”

will store the foreign key to “activities” table.

4.2 Client Side for Mac

It was decided to write the system in Swift programming language because it gives

developers an ability to write code that is fast, safe, maintainable, and compatible

with Objective-C.

In order to focus on business logic and create an abstract layer for the database

models, the Core Data framework
1

was used. From the types of data storage provided

by the framework, SQLite was chosen, because this is a lightweight solution that does

not require the installation of an additional environment and uses the full power of

SQL and relational databases. Thus, the collected data can be used outside the system

and analyzed using third-party tools using standard SQL queries. The database stores

the information about user activities which includes application name, bundle name,

bundle path, timestamp when application became the frontmost, timestamp when

focus switched to another application, duration when application was the frontmost

one, and browser tab name and url (only collected for Safari and Chrome). It also

1
https://developer.apple.com/reference/coredata.

https://developer.apple.com/reference/coredata.

Towards Non-invasive Software Measurement System . . . 157

stores data about the user and her computer such as OS version, host name, user

login, IP-address, and MAC-address.

The Metrics Collector application is implemented as a Mac Status Bar

Application-an application that can be seen on the right top of the status bar in

macOS. This kind of application is an excellent choice for tasks that must be per-

formed in the background (collection of activities), and with which the user should

be able to interact. The user can pause or completely stop collecting metrics by click-

ing on the Pause or Stop button, respectively. It also displays information about the

current session and the time spent in the current process. Moreover, the application

supports the startup function, so the user does not need to think about starting the

Collector after rebooting the system, this will be done automatically.

Following the Observer pattern, Apple created an NSNotificationCenter object,

a mechanism that provides the ability to send and receive broadcast messages inside

and outside the application. One of such messages is NSWorkspaceDidActivateAp-

plication, which “is sent when the Finder is about to start the application.”
2

This is

the main mechanism which is used to track switching between applications. Without

it, the Collector would be forced to poll the state of the system every N s, which,

firstly, would load the user’s computer, and, secondly, would require the application

logic to become more complex.

A special case of activities is the browsers-for them it is needed to collect addi-

tional metrics: the name of the tab and its url. There are no standard tools for obtain-

ing this information, so it was decided to use AppleScript, a scripting language which

allows to control applications that support it. Unfortunately, not all browsers support

AppleScript, but Safari and Chrome (the most popular on the macOS platform) sup-

port its use. Thus, using a small script, it is possible to get the required browser

metrics using the following algorithm:

1. When a new application becomes active, Collector checks if it is Safari or

Chrome.

2. If it’s Safari or Chrome, a background task is created that pulls the tab name and

its url from the corresponding browser.

3. Every 5 s, this background task checks if the active application remains with the

browser that it was created at run-time, executes scripts, and writes the collected

metrics to the database.

4. If the new activity is not the browser for which the background thread was cre-

ated, then the thread is terminated.

The five-second polling interval is based on the assumption that if the user does

not spend more than 5 s in one tab, then this activity is not important and it is per-

missible to lose it. This interval allows not to load the system with frequent requests

to the browser state.

To manage the collected data, the desktop application Metrics Manager was

developed. Before the user can manage the collected data, he must be authorized.

2
https://developer.apple.com/reference/foundation/nsnotification.name/1535049-nsworkspacedid

activateapplicatio.

158 A. Bykov et al.

To do this, he enters his login and password, the application sends a POST request

to the server with the appropriate user data. In case of a successful response from the

server, the application saves the authorization token, which will be required later to

send the collected activities, and shows the user the main application screen. If the

authorization was unsuccessful, the user receives a corresponding message asking

him to enter the data again.

4.3 Client Side for Windows

For implementation technology the .NET Framework and C# programming language

were chosen. For convenience of implementation of interaction with a database, it

was decided to use an object-relational mapping (ORM) tool, and LINQ To SQL was

chosen as the most suitable because it is a lightweight and straightforward solution

intended for client side applications.

The whole Windows Agent system consists of 2 Windows Forms applications:

1. Metrics Collector Application-to collect information about users’ activities.

2. Metrics Sender Application-to manage information about users’ activities (pre-

sentation on the client and transmission to the server) and to provide an update

mechanism for the whole system.

The Collector gathers data in response to events (left click and active window

change) and at intervals using a timer running in the background. When triggered,

the Collector gathers data about:

∙ Window instances (name, ID, executable path, text);

∙ System state (user name, IP address in local network, MAC address of WiFi mod-

ule);

∙ url from Google Chrome browser;

Data captured by the Collector is written to the local database. The events to be

collected should be chosen before collection starts. This approach was chosen for

logical and implementation simplicity: first the events to be collected are chosen,

and only then does the Metrics Collector Application begin collection. To perform

any changes the collection process is stopped, then re-initiated to begin collecting

the newly specified data. Data is collected as snapshots of the current system state,

and a snapshot is represented by a Registry class.

On request by the client, the data from the Collector snapshots is transformed into

the format of activities, which record the duration for which a particular window or

page was active. The Metrics Sender Application provides authorization with and

transmission to the Server application as JSON strings.

Storing mechanism is represented by the Writer class. The aims of the class are:

∙ Working with the storage (with the database using MetricsDataContext class,

which provides the database queries interface), in particular:

Towards Non-invasive Software Measurement System . . . 159

– creating the database;

– saving data into the database.

∙ Accumulating the snapshots for future saving.

∙ Performing the saving action iteratively after a given interval (provided with

Guard class)

Metrics Processing library represents all the logic for the transformation of snap-

shots into the format of activities. The aim of it is to take snapshots from storage,

process them and return a list of activities, which is represented by ActivitiesList
class. Processing is performed on a request from a client part, which uses that mech-

anism, and it is an indivisible operation. Notably, the client provides the following

filtering parameters before processing:

∙ Name filter—a list of strings; if a window title contains (as a substring) some string

from the list—that entry will be filtered out.

∙ A parameter which defines, if NULL titles should be filtered out or not.

∙ “From” and “until” time; only registries (snapshots) within the borders will be

considered, all the registries (snapshots) beyond will be filtered out.

Transmission library represents all the logic for sending data (activities) to the

server. Its functionality is the following:

∙ authorization of a user;

∙ sending data in json format.

4.4 Client Side for Linux

The Linux client was implemented in C++, which was chosen as it is an object-

oriented language and provides facilities for low-level memory manipulation. SQLite

was chosen as the database management system, because it is a self-contained,

highly-reliable, full-featured, public-domain, serverless, transactional SQL database

engine.

The Linux Agent system has three parts:

∙ The Measurement Tool-represents all logic for collecting and storing metrics data.

∙ The Sending Tool-responsible for filtering and sending metrics data to the server.

∙ The GUI Application or the interaction tool, which allows a user to start and stop

measurement, observe the collected data, install filters, and configure settings. It

is also responsible for authentication on the server and the sending thread.

Dividing the application into parts this way promotes flexibility and modifiabil-

ity, and provides the possibility of applying dynamic programming. It also allows

different activities like measurement collection, data transmission, GUI actions, etc.

to run together without interfering with each other.

The Measurement Tool collects static measurements such as the names of the

computer and the user, and information about the network. The main function of

160 A. Bykov et al.

this class is to track user activity events such as FocusOut, XIKeyRelease, XIRaw-

ButtonRelease, XIButtonRelease, and XIRawButtonRelease, which are provided by

the X Windows system and allow the Measurement Tool to identify the active appli-

cation. After events are performed, the tool collects information about the active

application: the name, ID, and pid of the application, the title of the active window,

the time, the executable path, and—for browsers—the url. Most of the information

is also collected by the X system. All measurements are immediately stored in the

local database.

The Sending Tool allows the user to filter the data and send the data to the main

server in batch mode in JSON format. This tool also has the ability to delete data

either immediately or after a delay, depending on the configuration. The filtering of

the data is carried out by SQL scripts to the local database. These scripts are designed

through interfaces which provide a means for extension and improvement of the

filtering function. This tool also handles network connections and authorization with

the server. Communication is implemented via the “curl” library. Authorization on

the server is a very important process because it protects the server from receiving

unauthorized data which could crash the server.

The GUI Application allows the user to control the other two modules. A user can

start and stop the measuring process, the sending process, and configure the settings

of these processes. The application provides a convenient way to set up the time and

text filters, and allows the user to observe the data which was collected and sent. The

GUI was implemented with pure X Windows calls, which is very useful for running

the application on different distributions of Linux.

4.5 Dashboard Application

Having a metrics collection tool is important, but the purpose of the system is to

facilitate decision making in software companies. To this end a set of process ana-

lytics and data mining tools could be devised along with the plain visual assessment

of the collected data. A natural way to represent the collected metrics as well as the

results of data analysis is visualization in the form of a dashboard.

Dashboard is an application which supports decision making by simplifying the

data. Effective dashboards hide information irrelevant in certain decision making

scenario. Backend part of a dashboarding application connects to a database. Fron-

tend is rich with graphs, charts, and data visualization. A developer of dashboarding

applications may have more details later, so our system should be ready to adapt to

these changes.

At the moment the system implements a prototype of a flexible dashboard con-

structor that allows the selection of widgets and metrics in order to use them in a

appropriate scenarios. The resulting dashboard is implemented in the form of a web

application that communicates to the data storage, fetches, and visualizes data. In

Towards Non-invasive Software Measurement System . . . 161

Fig. 2 Sample personal dashboard

the current version of a dashboard we implemented a very simple PSP-oriented sce-

nario for time-tracking with respect to applications used by a programmer. A sample

personal dashboard of a student is presented in Fig. 2.

5 Experimentation

In order to test the system in real environment and collect data for future analysis,

it was decided to run the experimentation within a Summer Bootcamp at Innopo-

lis University the authors are affiliated with. In class presentations were provided to

recruit students who want to help us in testing and quality improvement of our sys-

tem. There were two groups of master of science in software engineering students

and a few groups of first year bachelor students. They were asked to go through

the registration process on http://innometrics.guru:3000 portal and download agent

applications corresponding to their operating system (macOS, Windows or Linux).

During the period of the Bootcamp we received more than 800,000 measurements.

After students sent enough data (usually within a day or two), they were able to

see collected activities on a personal web page. Participants were also able to see

statistics based on their activities.
3

The Bootcamp participants were working around

a week and therefore the corresponding dataset contains data coming from several

independent developers. We proposed the same opportunity to the freshmen (first-

year BSc students). However, the outcome was different, due to the process of agent

installation on their machines. In total, we have collected 2,021,098 measurement

records that describe 240,248 activities of the 23 users (12 active users work on

macOS, 4 users on Linux, and 7 users on Windows).

3
http://innometrics.guru:3000/statistics.

http://innometrics.guru:3000
http://innometrics.guru:3000/statistics

162 A. Bykov et al.

Fig. 3 Data collection timeline

Now the measurements collection system is in active usage by the developers of

the system which will produce one more dataset related specifically to development

of the system. In the Fig. 3 the timeline of data collection process is represented. The

first peak correspond to the Bootcamp (in the middle of July, 2017); the second peak

correspond to the start of development of the second version (in late August, 2017).

6 Discussion

The system architecture and implementation presented in this study have several

features that are summarized in this section. First, Innometrics can be adapted to

heterogeneous and fluid environments that are typical in software companies. It has

non-invasive agents for metrics collection on popular operating systems that devel-

opers use. The architecture of the server side is flexible with respect to possible

changes of required activities and their measurements. Second, Innometrics pursues

the growing trend of data privacy; it allows developers to decide which data to trans-

mit. Finally, Innometrics provides tools for data analysis and data visualization in real

time that complies with Lean development ideas on one hand and supports decision

making on the other hand.

The results of our experiments show that this system can be distributed easily in

software companies to facilitate the process of measurement. Also the experiments

show that installation and usage process needs deep understanding of the measure-

ment process. Innometrics is neither a time tracker for developers, nor it can be a

tool for managers to spy on developers and punish them. The primary purpose of

the proposed architecture is to provide a robust tool for continuous improvement in

software companies.

Towards Non-invasive Software Measurement System . . . 163

7 Conclusion and Further Work

In this paper we have described a new approach for non-invasive software measure-

ment systems to address some of the issues that have prevented their widespread

adoption, despite they having been successfully used in localized settings [1, 37,

38]. The novel architecture and implementation for the non-invasive system is pre-

sented and tested in a group of university graduates. Architectural decisions behind

the development of the system were justified by the requirement of high flexibility

and variability of the software engineering process. The next step in our research is

to verify the effectiveness of this new architecture in software companies. Additional

research and development will focus on collection of source code metrics especially

using modern methods for semantic commit and bug report analysis based on nat-

ural language processing [39, 40] and time series analysis of events [41] as well as

application of advanced models for data analysis.

Acknowledgements The authors would like to thank Innopolis University for supporting this

research.

References

1. I.D. Coman, A. Sillitti, G. Succi, A case-study on using an automated in-process software

engineering measurement and analysis system in an industrial environment, in Proceedings of
the 31st International Conference on Software Engineering (ICSE 2009), Vancouver, Canada
IEEE Computer Society, May 2009, pp. 89–99

2. A. Vera-Baquero, R. Colomo-Palacios, O. Molloy, Business process analytics using a big data

approach. IT Professional, 15(6):29–35, 11 (2013)

3. F. Maurer, G. Succi, H. Holz, B. Köw tting, S. Goldmann, B. Dellen, Software Process Support

over the Internet. In Proceedings of the 21st International Conference on Software Engineer-
ing, (ICSE ’99 ACM, May 1999) pp. 642–645

4. M. Scotto, A. Sillitti, G. Succi, T. Vernazza, Dealing with software metrics collection and

analysis: a relational approach. Stud. Inform. Univ. 3(3), 343–366 (2004)

5. M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A relational approach to software metrics, in

Proceedings of the 2004 ACM symposium on Applied computing, ACM, 2004 pp. 1536–1540

6. P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, G. Succi, Effort prediction in iterative soft-

ware development processes-incremental versus global prediction models, in Empirical Soft-

ware Engineering and Measurement, ESEM 2007 (First International Symposium on, IEEE,

2007), pp. 344–353

7. J. Clark, C. Clarke, S. De Panfilis, G. Granatella, P. Predonzani, A. Sillitti, G. Succi, T. Ver-

nazza, Selecting components in large cots repositories. J. Syst. Soft. 73(2), 323–331 (2004)

8. F. Maurer, G. Succi, H. Holz, B. Köwtting, S. Goldmann, B. Dellen, Software process support

over the internet, in Proceedings of the 21st International Conference on Software Engineering,

ACM 1999, pp. 642–645

9. A. Janes, M. Scotto, A. Sillitti, G. Succi, A perspective on non invasive software management,

in Instrumentation and Measurement Technology Conference (IMTC) (2006)

10. M. Scotto, A. Sillitti, G. Succi, T. Vernazza, Non-invasive product metrics collection: an archi-

tecture, in Proceedings of the 2004 Workshop on Quantitative Techniques for Software Agile
Process, QUTE-SWAP ’04, (New York, NY, USA, 2004. ACM) pp. 76–78

164 A. Bykov et al.

11. T. Vernazza, G. Granatella, G. Succi, L. Benedicenti, M. Mintchev, Defining metrics for soft-

ware components, in 5th World Multi-Conference on Systemics, Cybernetics and Informatics,
Florida, vol. 11, pp. 16–23, (2000)

12. L. Corral, A. Sillitti, G. Succi, Mobile multiplatform development: an experiment for perfor-

mance analysis. Procedia Comput. Sci. 10, 736–743 (2012)

13. L. Corral, A. Sillitti, G. Succi, A. Garibbo, P. Ramella, Evolution of mobile software develop-

ment from platform-specific to web-based multiplatform paradigm, in Proceedings of the 10th
SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, pp. 181–183. ACM, 2011

14. W. Pedrycz, G. Succi, Genetic granular classifiers in modeling software quality. J. Syst. Soft.

76(3), 277–285 (2005)

15. A. Sillitti, A. Janes, G. Succi, T. Vernazza, Measures for mobile users: an architecture. J. Syst.

Architect. 50(7), 393–405 (2004)

16. M. Mazzara, L. Biselli, P.P. Greco, N. Dragoni, A. Marraffa, N. Qamar, S. De Nicola, Social
Networks and Collective Intelligence: A Return to the Agora IGI Global (2013)

17. N.E. Fenton, M. Neil, Software metrics: roadmap, in Proceedings of the Conference on the
Future of Software Engineering, ACM, 2000 pp. 357–370

18. P.M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani, S. Zhen, W.E.J. Doane,

Beyond the personal software process: metrics collection and analysis for the differently disci-

plined, in Proceedings of the 25th international Conference on Software Engineering, (IEEE

Computer Society, 2003) pp. 641–646

19. W.S. Humphrey Psp (sm): A Self-Improvement Process for Software Engineers. (Addison-

Wesley Professional, 2005)

20. D. Robert, S. Monsell Rogers, Costs of a predictible switch between simple cognitive tasks. J.

Exp. Psychol. Gen. 124(2), 207 (1995)

21. V. Ivanov, M. Mazzara, W. Pedrycz, A. Sillitti, G. Succi, Assessing the process of an eastern

european software sme using systemic analysis, gqm, and reliability growth models: a case

study, in Proceedings of the 38th International Conference on Software Engineering Compan-
ion, (ACM, 2016) pp. 251–259

22. A. Janes, G. Succi, Lean Software Development in Action, (Springer, 2014) pp. 187–221

23. G. Succi, J. Paulson, A. Eberlein, Preliminary results from an empirical study on the growth

of open source and commercial software products, in EDSER-3 Workshop, pp. 14–15 (2001)

24. I. Fronza, A. Sillitti, G. Succi, An interpretation of the results of the analysis of pair pro-

gramming during novices integration in a team, in Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, (IEEE Computer Society,

2009) pp. 225–235

25. A. Sillitti, G. Succi, S. De Panfilis, Managing non-invasive measurement tools. J. Syst. Archi-

tect. 52(11), 676–683 (2006)

26. G. Succi, L. Benedicenti, T. Vernazza, Analysis of the effects of software reuse on customer

satisfaction in an rpg environment. IEEE Trans. Soft. Eng. 27(5), 473–479 (2001)

27. M. Scotto, A. Sillitti, G. Succi, T. Vernazza, A non-invasive approach to product metrics col-

lection. J. Syst. Architect. 52(11), 668–675 (2006)

28. L. Benedicenti, P. Ciancarini, F. Cotugno, A. Messina, A. Sillitti, G. Succi, Improved agile: a

customized scrum process for project management in defense and security, in Software Project
Management for Distributed Computing (Springer International Publishing, 2017), pp. 289–

314

29. I.D. Coman, A. Sillitti, G. Succi, Investigating the usefulness of pair-programming in a mature

agile team, in International Conference on Agile Processes and Extreme Programming in Soft-
ware Engineering (Springer Berlin Heidelberg, 2008) pp. 127–136

30. A. Janes, G. Succi, The dark side of agile software development, in Proceedings of the ACM
International Symposium on New ideas, New Paradigms, and Reflections on Programming and
Software, ACM, 2012 pp. 215–228

31. A. Sillitti, G. Succi, Requirements engineering for agile methods, in Engineering and Manag-
ing Software Requirements (Springer, Berlin Heidelberg, 2005), pp. 309–326

Towards Non-invasive Software Measurement System . . . 165

32. A. Sillitti, G. Succi, J. Vlasenko, Understanding the impact of pair programming on develop-

ers attention: a case study on a large industrial experimentation, in Proceedings of the 34th
International Conference on Software Engineering, (IEEE Press, 2012) pp. 1094–1101

33. An in-process software engineering measurement and analysis system, P.M. Johnson Require-
ment and design trade-offs in hackystatin ESEM 7, 81–90 (2007)

34. P.M. Johnson, H. Kou, J.M. Agustin, Q. Zhang, A. Kagawa, T. Yamashita, Practical automated

process and product metric collection and analysis in a classroom setting: lessons learned from

hackystat-uh. in Empirical Software Engineering, 2004. ISESE’04. Proceedings. 2004 Inter-
national Symposium on, pp. 136–144

35. A. Jermakovics, A. Sillitti, G. Succi, Mining and visualizing developer networks from version

control systems, in Proceedings of the 4th International Workshop on Cooperative and Human
Aspects of Software Engineering, ACM, 2011 pp. 24–31

36. J. Kivi, D. Haydon, J. Hayes, R. Schneider, G. Succi, Extreme programming: a university team

design experience, in Electrical and Computer Engineering, 2000 Canadian Conference on,

vol. 2, IEEE, 2000 pp. 816–820

37. E. Di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, J. Vlasenko, Pair programming and

software defects-a large, industrial case study. IEEE Trans. Soft. Eng. 39(7), 930–953 (2013)

38. E. Di Bella, A. Sillitti, G. Succi, A multivariate classification of open source developers. Infor-

mat. Sci. 221, 72–83 (2013)

39. V. Solovyev, V. Ivanov, Knowledge-driven event extraction in russian: corpus-based linguistic

resources. Comput. Intelligen. Neurosci. 2016, 16 (2016)

40. V. Solovyev, V. Ivanov, R. Gareev, S. Serebryakov, N. Vassilieva, Methodology for Building
Extraction Templates for Russian Language in Knowledge-Based ie Systems (2012)

41. I. Batyrshin, V. Solovyev, V. Ivanov, Time series shape association measures and local trend

association patterns. Neurocomputing 175, 924–934 (2016)

Joining Jolie to Docker
Orchestration of Microservices
on a Containers-as-a-Service Layer

Alberto Giaretta, Nicola Dragoni and Manuel Mazzara

Abstract Cloud computing is steadily growing and, as IaaS vendors have started to

offer pay-as-you-go billing policies, it is fundamental to achieve as much elasticity as

possible, avoiding over-provisioning that would imply higher costs. In this paper, we

briefly analyse the orchestration characteristics of PaaSSOA, a proposed architecture

already implemented for Jolie microservices, and Kubernetes, one of the various

orchestration plugins for Docker; then, we outline similarities and differences of the

two approaches, with respect to their own domain of application. Furthermore, we

investigate some ideas to achieve a federation of the two technologies, proposing an

architectural composition of Jolie microservices on Docker Container-as-a-Service

layer.

1 Introduction

As the cloud computing paradigm keeps gaining consensus nowadays, a smart and

easy way to provide distributed services is of utmost importance. Furthermore, the

new pay-as-you-go billing policies [1], offered by vendors such as Amazon EC2 [2],

boost the requirement of efficient service orchestration tools, since inefficient man-

agement of resources entails a higher economic burden for business companies.

Before the cloud revolution, Virtual Machines have been the standard envelope for

distributed services, but their conservative approach towards resource management,

A. Giaretta (✉) ⋅ N. Dragoni

Centre for Applied Autonomous Sensor Systems, Örebro University, Örebro, Sweden

e-mail: alberto.giaretta@oru.se

N. Dragoni

e-mail: nicola.dragoni@oru.se; ndra@dtu.dk

N. Dragoni

DTU Compute, Technical University of Denmark, Lyngby, Denmark

M. Mazzara

Innopolis University, Innopolis, Russian Federation

e-mail: m.mazzara@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_16

167

168 A. Giaretta et al.

along with their intrinsic provisioning of a whole-functioning machine, makes them

too much wasteful with respect to their actual necessities. As an example, deploying

a simple web-server instance within a VM implies that a complete machine is given,

with all its own layers, which means over-provisioning by design.

Therefore, a new composition approach is needed in order to achieve a federation

of infrastructures, along with as much elasticity as possible.

2 Service Orchestration

Before cloud computing, software applications have traditionally been monolithic

[3]. Thus, developing a monolithic software implied, by design, that communications

between components were always possible, being all the parts hosted on the same

machine.

In a cloud world some of previous certainties, such as the components reachabil-

ity, do not hold. Components of a complex software could be scattered around the

cloud, meaning that communications problems could arise, like high delays, high jit-

ter or even total lack of network connection [4, 5]. Furthermore, load requirements

are not static and resources need to be managed dynamically, accordingly to the real

necessities: this is where the concept of service orchestration arises. Service orches-

tration [6] could be interpreted as the automatic provision and release of resources,

whether virtual or physical, necessary to deliver the agreed service level.

While old monolithic software required vertical scaling to alleviate resources

bottlenecks (i.e., improvement of the current machine hardware), scaling out, even

known as horizontal scaling, is the most important characteristic of cloud comput-

ing [6, 7]. Instead of scaling vertically (which can be really expensive, if higher-

end hardware is needed), with horizontal scaling additional machines are used, and

the underperforming services are replicated in order to improve the overall services’

performance. Furthermore, if the currently available resources are enough but unbal-

anced, graceful ways to pause, migrate and restart services must be given, to achieve

the capability to rearrange them and optimize the resources. Last, but not least, it is

essential to stop the additional services once they are no longer needed, otherwise

pay-as-you-go billings would become uselessly encumbering.

Therefore, it is easy to see that complex problems come to surface in a cloud

computing architecture. Services need to be movable, among the other things, to

achieve elasticity, and this movability leads to other non-trivial problems. A service

orchestrator, being the component that handles the running services to ensure that

stipulated SLAs are met, should [6]:

∙ Replicate services;

∙ Migrate services;

∙ Start services;

∙ Pause services;

∙ Terminate services.

Joining Jolie to Docker 169

3 Jolie

Two main approaches exist to write distributed software: creating a library (or a

framework) that adds up to an already existing language, or creating a new service-

oriented programming language. Jolie [8], acronym for Java Orchestration Lan-
guage Interpreter Engine, is a completely new microservice programming language

with a large supporting community, both academic and industrial [9]. Based upon a

C-like syntax, it is the attempt to simplify the software development by overcoming

the complexity of other existing languages like BPEL, which are hardly compre-

hensible to humans due to their XML-like syntax [10]. Specifically created to write

microservices, it supports this idea at the level of the foundational primitives [11].

One of the peculiar strengths is the separation between behaviour (what the service

does) and deployment (how the service connects with the outside world).

Jolie is the only language that natively supports the microservice paradigm [11].

Although workflow engines are not a novelty [12], and languages to describe service

orchestration existed before [13], Jolie has been designed with fine-grained proce-

dural constructs in order not only to provide high-level orchestration, but to program

the internal logic of a single microservice.

While microservices are inherently suitable to develop cloud-oriented software,

Jolie in its current version lacks of service orchestration features (e.g., the capability

of scaling out and migrating services), which means that it is far from being appro-

priate for real-life cloud applications. Basic features have been implemented, such

as service discovery, but it is not enough. Ideally, a software developer should be

able to write and deploy microservices having no clue about the network framework

because components displacement it is likely to change many times: as an example,

a developer should not have to specify the IP address of the service discovery server.

To obtain service orchestration, a SOA-based architecture called PaaSSOA has

been proposed and implemented for Jolie [14, 15]. Among the various characteristics

of PaaSSOA, the most important one for our work is SOABoot, which is a sort of

container for Jolie services. The SOABoots altogether form the Service Container

layer, exposed at SaaS and PaaS level.

A SOABoot can receive services implementations, store, activate and deactivate

them. This clearly means that elasticity is obtainable, because the PaaSSOA Sched-

uler is able to request new VMs to the IaaS level [14] (every one with its own SOA-

Boot instance), migrate Jolie services between different VMs and even start/stop

them. The strong point of the PaaSSOA approach is that, except when new VMs are

needed, all the arrangements are strictly done at PaaS level.

Every PaaSSOA VM automatically provisions a SOABoot instance. Therefore,

elasticity is obtained by design, simply increasing or decreasing the number of run-

ning VMs, within which Jolie services are able to execute.

To obtain all these things, PaaSSOA provides a set of functions called Service
Deployer and Monitor (SDM) which delivers: deployment, to migrate or deploy the

services; scheduler, to schedule the needed deployment, accordingly to the avail-

able resources; negotiator, to negotiate resources with the IaaS, compatibly with the

170 A. Giaretta et al.

Service Level Agreement (SLA) stipulated beforehand; monitor, to check the SLA

conformance and take actions in case of unmet SLA. Generally speaking, every PaaS

layer should provide these characteristics.

With regard to the desirable characteristics of a service orchestrator, described in

Sect. 2, it looks crystal clear that Jolie alone is unable to supply service orchestration

in a cloud environment, which is a huge shortcoming for a service-oriented language

that aspires to be suitable for the cloud. Nonetheless, Jolie paired with PaaSSOA fully

satisfies the expressed requirements in Sect. 2.

4 Docker

Docker [16] is an open-source software that deploys software applications within

software containers. Even though, at first sight, this has been done for many years

with virtual machines, VMs aim to deliver to the final user a simulation of a com-

plete machine, and this completeness comes with a price, in form of heaviness and

required resources [17]. The intuition behind the containers concept is to package

only the strictly necessary parts (e.g., not the OS kernel) and enable the guest to

use the underlying layers, lent by the host, instead of simulating them. Investigations

have shown that containers can match, and even outdo, VMs from a performance

point of view [18].

Docker actually achieves container orchestration by using orchestrator plugins,

such as Kubernetes, which can effortlessly and transparently start, stop and move

containers around the cloud [19]. Kubernetes, for instance, can monitor and man-

age containers in many ways. It is able to launch new containers in already-existing

VMs, to migrate containers from a VM to another one and even communicate with

the IaaS, in order to obtain the provisioning of new VMs, within containers can

boot. Furthermore, Kubernetes gives the opportunity to create pods, which are log-

ical sets of containers, and everything can whether be hosted within VMs or bare

metal machines.

The strength of Docker is the implicit promise of delivering PaaS functionali-

ties with an extremely simplified mechanism, becoming a standard that avoids ven-

dor lock-ins and permits easy multi-providers cloud solutions. If Docker imposes

itself, developers could easily load their software on the containers, wherever they are

hosted, eliminating all the struggle with APIs and tools, which are specific for each

IaaS provider [20]. All of this is possible by introducing an additional layer, which

is called Containers-as-a-Service (CaaS), into the cloud computing stack which fits

between the IaaS and the PaaS and that, ideally, should be the same for all the IaaS

providers.

As like as PaaSSOA, Docker equipped with Kubernetes (or a similar orchestrator

plugin) totally satisfies the requirements exposed in Sect. 2, achieving a full-scale

level of service orchestration.

Joining Jolie to Docker 171

5 Comparison Between Jolie and Docker

Sections 3 and 4 show, respectively, the main characteristics of Jolie and Docker

with regards to service orchestration within the cloud. Interestingly, we can draw an

analogy between the duo Jolie/PaaSSOA and Docker/Kubernetes, even though they

exist and operate at different layers.

First of all, both Kubernetes and PaaSSOA are capable of communicating with the

IaaS layer as needed, to ask for new resources. Furthermore, both of them can start,

stop and move services within the cloud. We can even envision a strong similarity

between Kubernetes pods and PaaSSOA Service Container, in their logical wrapping

of services operating on different machines.

The main difference between the two approaches, is that PaaSSOA can move

services from a SOABoot to another one without involving the IaaS layer [14], if the

available resources are enough, whereas Docker is tied to deal with the IaaS every

time that a migration is needed.

6 Federation of Jolie and Docker

Even though the combination of Jolie and PaaSSOA is able to deliver service orches-

tration in a cloud world as Docker and Kubernetes do, it does not mean that one solu-

tion should exclude the other. As a matter of fact, they could cooperate to achieve a

cogent service orchestration spread over their respective layers of application. There-

fore, we expose three main ideas on how containers could be included into a PaaS-

SOA solution:

∙ With respect to the SOABoot original architecture [14], simply substitute VMs

with containers, managing the orchestration at the PaaS layer;

∙ Fix each service into its own container and trust Docker to deal with orchestration

tasks;

∙ Substitute VMs with containers and tweak PaaSSOA to communicate with Docker.

The first approach, shown in Fig. 1, is very simple. Containers are lighter than

VMs, therefore this would result in a decrease of overprovisioned resources. At the

same time, this solution totally relies on service orchestration at the PaaS level, with-

out manipulating containers at the CaaS level.

The second approach slims down the PaaS layer involvement. A predefined set of

services is fixed in its own Docker container, therefore all the elasticity is achieved

at CaaS level and SOABoot is no longer needed. On the one hand, this solution has

the great virtue to manage every service, whether it is a Jolie service or not, in the

same way at the CaaS level, being containers the handling units used. On the other

hand, the PaaS layer is totally deprived of its own service orchestration tasks, and

the whole architecture loses the capability to handle services at a finer detail (i.e.,

services at the PaaS level are no more manipulable). Figure 2 shows our proposal.

172 A. Giaretta et al.

Fig. 1 The first solution

proposed totally relies upon

the PaaS layer, in order to

achieve service

orchestration. Services (e.g.,

S1) are the handling units

Fig. 2 The second solution

proposed totally relies upon

the CaaS layer, in order to

achieve service

orchestration. Containers are

the handling units

The third approach is the most complex and the most flexible of all the three.

The idea is to keep all the characteristics of PaaSSOA and Docker, enabling PaaS-

SOA to communicate with Docker orchestrator, trying to find a trade-off between

the requirements of SaaS and IaaS layers. The CaaS layer, introduced by Docker, fits

between the IaaS and the PaaS and includes the Docker orchestrator, while the PaaS

layer includes PaaSSOA. Our architectural view is shown in Fig. 3.

Using this approach, the federation of orchestrators would have four different

options to attain a balanced set of services:

∙ Ask Docker for a new container, if resources are scarce;

∙ Rearrange services at PaaS level, without involving the underlying CaaS, if

resources are enough but services are unbalanced;

∙ Entrust Docker to reorganize containers at CaaS level, if resources are enough but

services are unbalanced.

In particular, the capability of the PaaS and CaaS layers to dialogue seems funda-

mental to obtain an agreement between PaaSSOA and Docker orchestration require-

ments. Two load balancing components that do not communicate, quite certainly do

not share the same point of view on balance, and this different point of view would

lead to undesirable episodes of two components fighting each other, constantly trying

to achieve their own concept of balance.

Joining Jolie to Docker 173

Fig. 3 The architectural

point of view of PaaSSOA

on the shoulders of Docker,

where service orchestration

is done at both PaaS and

Caas layers. In this scenario,

both services and containers

are handling units

7 Conclusion

In this paper, we have analysed the concept of service orchestration in a cloud com-

puting scenario. Then, we have inspected how service orchestration is done with

Jolie, a microservices programming language, and Docker, an automatic deployer of

applications within containers. Furthermore, we have drawn some analogies between

the two different worlds and, most importantly, we have proposed an architectural

solution to join the best of the two worlds to achieve an elastic and fine grained

constellation of services.

Our research team has worked on the microservice paradigm since the early stages

of its industrial adoption and cooperated with large companies in the process of

migration [21]. Several projects have been conducted relying on the Jolie program-

ming language [22, 23], as well as covering the development of parts of the lan-

guage itself (extension of the type system [24], prototyping of static type checking

[25], addition of more iterative control structures to support programming, and inline

automatic documentation [9]). Often Jolie and Docker have been compared and we

have often been asked why we chose one instead of the other. Therefore, future steps

of the research, and of the adoption of the microservice paradigm, should focus on

the experimentation of the architectural solution proposed in this paper that promises

to combine the best of Jolie and Docker. Other software development projects

with a strong emphasis on distribution and componentization could greatly bene-

fit from a reorganization of the software architecture, for example distributed social

networks [26].

174 A. Giaretta et al.

References

1. S. Ibrahim, B. He, H. Jin, Towards pay-as-you-consume cloud computing. Services Comput-

ing (SCC), in 2011 IEEE International Conference on (Washington, DC, 2011), pp. 370–377.

https://doi.org/10.1109/SCC.2011.38

2. Amazon EC2 Official Website, https://aws.amazon.com/ec2/

3. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,

Microservices: yesterday, today, and tomorrow, Present and Ulterior Software Engineering ed.

by B. Meyer, M. Mazzara (Springer, 2017)

4. G. Wang, T.S.E. Ng, the impact of virtualization on network performance of Amazon EC2 data

center, INFOCOM, in Proceedings IEEE (San Diego, CA, 2010), pp. 1–9. https://doi.org/10.

1109/INFCOM.2010.5461931

5. J. Weinman, Network implications of cloud computing, Telecom World (ITU WT), Technical

Symposium at ITU. Geneva 2011, 75–81 (2011)

6. J. Kirschnick, J.M. Alcaraz Calero, L. Wilcock, N. Edwards, Toward an architecture for the

automated provisioning of cloud services. IEEE Communications Magazine 48(12), 124–131

(December 2010). https://doi.org/10.1109/MCOM.2010.5673082

7. N. Dragoni, I. Lanese, S. Thordal Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices:

how to make your application scale, ed. by A.P. Ershov in Informatics Conference (the PSI
Conference Series, 11th edition), Lecture Notes in Computer Science, (Springer, 2017)

8. Jolie Official Website, https://www.jolie-lang.org/

9. A. Bandura, N. Kurilenko, M. Mazzara, V. Rivera, L. Safina, A. Tchitchigin, Jolie Commu-

nity on the Rise, in 9th IEEE International Conference on Service-Oriented Computing and
Applications, (SOCA, 2016)

10. F. Montesi, C., Guidi, R. Lucchi, Z. Gianluigi Z, JOLIE: a Java Orchestration Language Inter-

preter Engine, Electronic Notes in Theoretical Computer Science, 181, 27 June 2007, 19–33,

ISSN 1571-0661. http://dx.doi.org/10.1016/j.entcs.2007.01.051

11. C. Guidi, I. Lanese, M. Mazzara, F. Montesi, Microservices: a language-based approach,

Present and Ulterior Software Engineering, ed. by B. Meyer, M. Mazzara, (Springer, 2017)

12. F. Maurer, G. Succi, H. Holz, B. Kötting, S. Goldmann, B. Dellen, Software process support

over the Internet, inProceedings of the 21st International Conference on Software Engineering,

(ACM, 1999)

13. Web Services Business Process Execution Language Version 2.0, OASIS, 2007, http://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

14. C. Guidi, P. Anedda, T. Vardanega, Towards a new PaaS architecture generation, in CLOSER
2012–Proceedings of the 2nd International Conference on Cloud Computing and Services Sci-
ence, ScitePress, Ed., (April 2012), pp. 279–282

15. V. Baraldo, A. Zuccato, T. Vardanega, Reconciling Service Orientation with the Cloud,

Service-Oriented System Engineering (SOSE), IEEE Symposium on. San Francisco Bay, CA

2015, 195–202 (2015). https://doi.org/10.1109/SOSE.2015.26

16. Docker Official Website, https://www.docker.com/

17. S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, R. Han, Elastic application container: a lightweight

approach for cloud resource provisioning, in 2012 IEEE 26th International Conference on
Advanced Information Networking and Applications, (Fukuoka, 2012), pp. 15–22. https://doi.

org/10.1109/AINA.2012.74

18. W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance comparison of virtual

machines and Linux containers, in Performance Analysis of Systems and Software (ISPASS),
IEEE International Symposium on. (Philadelphia, PA 2015), 171–172. https://doi.org/10.1109/

ISPASS.2015.7095802

19. D. Bernstein, Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput.

1(3), 81–84 (Sept. 2014). https://doi.org/10.1109/MCC.2014.51

20. R. Dua, A.R. Raja, D. Kakadia, Virtualization vs containerization to support PaaS, Cloud Engi-

neering (IC2E), in 2014 IEEE International Conference on, (Boston, MA, 2014), pp. 610–614.

https://doi.org/10.1109/IC2E.2014.41

https://doi.org/10.1109/SCC.2011.38
https://aws.amazon.com/ec2/
https://doi.org/10.1109/INFCOM.2010.5461931
https://doi.org/10.1109/INFCOM.2010.5461931
https://doi.org/10.1109/MCOM.2010.5673082
https://www.jolie-lang.org/
http://dx.doi.org/10.1016/j.entcs.2007.01.051
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
https://doi.org/10.1109/SOSE.2015.26
https://www.docker.com/
https://doi.org/10.1109/AINA.2012.74
https://doi.org/10.1109/AINA.2012.74
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/IC2E.2014.41

Joining Jolie to Docker 175

21. N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara Microservices: Migration of a Mission Crit-

ical System, https://arXiv.org/abs/1704.04173

22. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based IoT for

smart buildings, in Proceedings of the 31st International Conference on Advanced Information
Networking and Applications Workshops (WAINA), 2017

23. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie Good Buildings: Inter-

net of things for smart building infrastructure supporting concurrent apps utilizing distributed

microservices, in Proceedings of the 1st International conference on Convergent Cognitive
Information Technologies, 2016

24. L. Safina, M. Mazzara, F. Montesi, V. Rivera, Data-driven Workflows for Microservices (gener-

icity in Jolie), in Proceedings of The 30th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA), 2016

25. A. Tchitchigin, L. Safina, M. Mazzara, M. Elwakil, F. Montesi, V. Rivera, Refinement Types in
Jolie (Spring/Summer Young Researchers Colloquium on Software Engineering, SYRCoSE,

2016)

26. M. Mazzara, L. Biselli, P. Paolo Greco, N. Dragoni, A. Marraffa, N. Qamar, S. de Nicola,

Social networks and collective intelligence: a return to the agora (Social Network Engineering

for Secure Web Data and Services, IGI Global, 2013)

https://arXiv.org/abs/1704.04173

Crisis Management in Software
Engineering: Behavioral Aspects

Stanislav Litvinov and Vladimir Ivanov

Abstract Software projects failure rate is still high. It means that many projects

experience crises and the managers have to deal with it. We believe that the human

behavior is one of the main reasons that the projects fall into the crisis and one of

the main drivers in mitigation process. In this paper we are not going to emphasize

importance of a process in prevention and handling crises. Instead, we show that

decisions that people make are at least as much important as process methodologies

and techniques and helping employees make better decisions will benefit a company.

Keywords Software engineering ⋅ Project management ⋅ Crisis management

1 Introduction

Most studies in software engineering (SE) share a common opinion that at least half

of software projects experience difficulties and a significant part of such projects

fails. Whereas software engineering practices evolve, one would expect decrease

in these numbers. In opposite, the research conducted by McKinsey & Company

in conjunction with the University of Oxford (Fig. 1) shows that large IT-projects
1

experience average cost overrun of 45%, schedule overrun of 7% and deliver 56%

less functionality. At the same time, 17% “go so bad that they can threaten the very

existence of the company” [4]. A perfect example of recently failed project is a sys-

tem has being developed for Police department in Surrey, UK. The contractor was

supposed to use Agile methodology, but too many things went wrong, the system

never started and taxpayers lost £15 million [19].

1
Projects with an initial budget more than $15 million.

S. Litvinov (✉) ⋅ V. Ivanov

Innopolis University, 1, Universitetskaya Str., Innopolis 420500, Russia

e-mail: s.litvinov@innopolis.ru

URL: https://www.university.innopolis.ru

V. Ivanov

e-mail: v.ivanov@innopolis.ru

© Springer International Publishing AG 2018

P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_17

177

178 S. Litvinov and V. Ivanov

Fig. 1 Cost and schedule overrun in large IT projects [4]

“. . .But instead of finding ourselves in the state of eternal bliss of all programming

problems solved, we found ourselves up to our necks in the software crisis! How

come?”, said Edsger Dijkstra in 1972 [5].

The reasons for that include the following:

∙ Organizations lack knowledge about risk management (RM) practices;

∙ RM is not being applied properly and consistently;

∙ RM cannot cover all the possible risks [2].

So, when risks become reality, a project may fall into crisis. But how to rescue

a project? Is it possible to recognize signs of crisis early? What can be learnt from

crises? In this study we revisit the area of crisis management and its application in

SE and discuss the reasons of wrong behavior as well as possible solutions.

2 The State of the Art

2.1 Why Software Engineering Is Different?

AGuide to the ProjectManagement Body of Knowledge [1] provides widely accepted

standards for project managers regardless of their specialization, so software engi-

neers basically use the same practices, techniques and tools as their colleagues work-

ing in other areas. However, “if the failure rates experienced in the IT sector were

replicated in civil engineering projects our cities would be littered with abandoned

construction projects, the electrical supply to our homes would work intermittently

and many of our bridges would have gaping holes that would routinely swallow

vehicles brave enough to attempt a crossing”, says Robert Goatham from Calleam

Consulting [9]. So, what is the difference which makes software projects be more

failure-prone than the other types of projects? To recognize and understand it we

need to refer to the structure of a project. Usually, a project is represented as a set

Crisis Management in Software Engineering . . . 179

Fig. 2 Typical percentage of effort by category of work [9]

of connected tasks that need to be completed. Goatham claims that even if the stan-

dard “task view” provides clear understanding of project scope, it is an abstraction

which simplifies the reality. In order to look at projects in different way he offers to

categorize all the efforts in a project by splitting it into four different categories:

∙ physical activity;

∙ information and knowledge collection and analysis;

∙ information and knowledge transfer;

∙ decision making.

As can be seen in Fig. 2, in opposite to other types of projects, technology projects

require huge amount of decision making activities. It means that in a deeper view the

software projects can be imagined as a set of interrelated decisions. Each decision

contributes to the successful outcome of the project (Fig. 3). The reason why we do

not perceive it this way is that decision making is pervasive and even when we are

aware of global decisions we usually do not fully recognize the power of smaller

ones. Here is an example of a simple, but wrong decision which may affect how

successful future development will be:

“A programmer was asked to make a change to a software application used by

an international bank. She performed all the needed tests. After all the tests passed,

she recalls that one more test is required. This test does not pass. Since she does not

have the time for debugging, she submits her work and states that all the tests passed

successfully.” [23].

Considering all the above-mentioned ideas, it is reasonable to suppose that a

project’s outcome is directly related to right decision making abilities. The processes

themselves would work perfectly if software was being developed by predictable

180 S. Litvinov and V. Ivanov

Fig. 3 Task versus decision centric views [9]

machines. But developers and managers are people who choose technology, estab-

lish and control processes, and write code. And all the activities are tightly connected

to the decisions as well as mistakes that people make.

2.2 Crisis Management

Risk management area in software engineering is widely covered by in literature [2,

12]. In contrast, crisis management in software engineering still appears to be Terra

Incognita. Existing studies on organizational crisis management deal substantially

with global events such as natural disasters, accidents, terrorism and scandals [20].

The reasonable question arise: are those concepts applicable to management of soft-

ware projects?

Jonas Söderlund in his research introduces an interesting concept which allows

giving a positive answer to this questions. He says that whereas the project manage-

ment is still being focused on the traditional areas such as planning, scheduling, team

management and quality control, it is possible to treat projects as “temporary orga-

nizations” [22]. This point of view lets us narrow down the scope of organizational

crisis management and apply its basic principles to software project development.

Definition There is no one strict definition of crisis and most of the studies [14, 15,

20] try to compile their own definition from different pieces of other studies. Yet,

most of the researchers agree that a crisis:

∙ Is a low-probability and high-impact event;

∙ Threatens the viability of the organization;

∙ Is characterized by ambiguity of cause, effect, and means of resolution;

∙ Demands swift decisions.

Crisis Management in Software Engineering . . . 181

Stephen Fink binds crisis to a concept of a risk management saying that crisis is

an unexpected risk occurrence that leads to a critical period of difficulties [6]. Using

all the definitions it is possible to say that crisis in software project development is an
unexpected low probability, high-impact risk occurrence that can lead to a project’s
failure and demands immediate actions.

Crisis Management In order to find a crisis management technique for software

development we studied literature on organizational crisis management. Different

studies offer different interpretations, and the most common ones are 4 C concept

and five phase model (Fig. 4) by Mitroff [17]. 4C concept focuses basically on cri-

sis containment activities and states that to understand the problem managers need

to understand 4 Cs: cause, consequences, cautionary measures for prevention, and

coping mechanisms for responding [20].

The five steps model is cyclic and contains the next steps:

∙ Signal detection

∙ Preparation/Resolution

∙ Containment/Damage limitation

∙ Recovery

∙ Learning

The later research [3] extend this model and recognize six steps directly con-

necting crisis management process to a risk management by making first two steps

covered by it. These steps are:

∙ Avoiding the crisis

∙ Preparing to manage the crisis

∙ Recognizing the crisis

∙ Containing the crisis

∙ Resolving the crisis

∙ Profiting from the crisis

Although these concepts are somewhat similar, Mitroff’s model seemed the most

appropriate candidate for being crisis management model in software development

for two reasons. First, in contrast to the 4C model, it includes learning activity which

Fig. 4 The five phase model of organizational crises

182 S. Litvinov and V. Ivanov

is critical for managers in order to develop crisis management skills. Second, it is sep-

arated from risk management and allows to concentrate on impact of people behav-

ior on crisis management activities only. To indicate the role of decision making and

derive behavioral patterns in the following subsection we describe three different

cases, one of which reflects authors’ experience.

2.3 Case Studies: Three Stories

InfoSpace Development A study by Madsen and Platz [15] describes challenges

faced by the Danish company InfoSpace Development.
2

They interviewed five proj-

ect leaders and the manager of development asking them to describe details of crisis

such as early signs, preventive and resolving actions, and what lessons were learned

from it. As the result of their study they defined several behavior patterns, some of

which are described below.
3

The purpose of the project was to deliver a customizable platform which their

client MegaCorp Global could use to provide services to its clients. The project was

divided into 16 subprojects three of which had to be customized to fulfill concrete

MegaCorp’s client’s needs and the others were generic parts of the platform. The

long list of the problems starts with that the team leader was provided with only half

of resources needed to complete the project on time. The other problems include:

∙ Inexperienced consultant responsible for communications at MegaCorp;

∙ Approval of the new features, even when they were contradicting with the initial

requirements;

∙ Conflicts with an other contractor;

∙ Lack of motivation of team members;

∙ Personnel turnover.

The situation stabilized after two new project leaders have been hired and several

steps have been taken. These steps are:

∙ Two team members are replaced and tho new developers are added;

∙ Communications and planning activities are separated from development;

∙ All the problems are discussed at the meeting between responsible executives from

ISD and MegaCorp;

∙ Communication channel is recreated;

∙ Requirements changes are being controlled.

Emirates Bank The third example was described as a success story in a study by

Bent Flyvbjerg and Alexander Budzier [7].

2
Further referred as ISD.

3
Since all the interviewees belong to the one side of the crisis and during the interview they had to

talk about sensitive context, the researches note that the result might be biased. However, they state

that this possible bias does not invalidate the case.

Crisis Management in Software Engineering . . . 183

Emirates Bank decided to replace the main parts of its banking system. The

project started after one year of thorough planning. However, few months later the

bank announced a merger with the National Bank of Dubai which made the project

become twice as large as before. In addition, all the components of both banks would

start working with the new system simultaneously, so the project was expected to be

challenged. In order to not to let the project fail the managers made some crucial

decisions. They decided to:

∙ Stick to the schedule;

∙ Not change the project scope;

∙ Use incremental development process;

∙ Strengthen the team with professionals from both banks, vendors and outside

world;

∙ Prevent personnel turnover;

∙ Choose a single success criteria, which was “readiness to go live”;

∙ Measure every activity against the chosen criteria;

∙ Treat the situation as a business challenge, not technical.

Although the schedule slippage was 7% and the budget overrun was 18%, consider-

ing increased project size it can be treated as success.

XYZ (the story of continuous crisis) XYZ was founded by two experienced soft-

ware developers (not engineers) Robert and Stepan who previously worked for one

of the large banks. They started their business by signing a contract with their ex-

employer. It was not related to software development, but allowed XYZ to gain an

initial capital to begin developing online banking solutions. Stepan decided to con-

tinue working in banking sphere, since it was easier to lobby XYZ’s interests and

Robert became company’s director.

Because of Stepan’s lobbying activities they quickly got a contract and started

forming a team. However, to reduce expenses they hired some unexperienced devel-

opers in hope to pass them their experience during development of a system. Soon it

became clearly understood that the team is not going to deliver a product on time and

Robert also started developing. Since the company left without management and the

project completion took much more time than it was planned, Robert realized that

the company is running out of money, so they had to find the next client immediately.

In the same time Robert made a weird conclusion. He decided to not only lead the

development process, but also be one of the developers on constant basis.

Soon they found the second project and it was worse than the previous one. Robert

decided to reuse the most of components from the previous system and stated that

XYZ doesn’t need much time to complete the project. So, according to contract, XYZ

had only six months for development. However, soon it became clear that because

of poor quality the code base was not reusable at all. Robert started spending up to

18 h per day in the office in hope to deliver something before the deadline. When six

months passed, XYZ couldn’t present anything, because quality was so poor, that

even smallest change in code revealed tons of bugs. Surprisingly, the client didn’t

break the contract, but neither it was prolonged. The point was that even if time

184 S. Litvinov and V. Ivanov

effort was extremely underestimated, the cost of development also wasn’t considered

too high. So, in some extent it was advantageous to the bank. It took two years to

complete the project, and of course, XYZ wasn’t payed for the last 18 months. During

this time almost all the team members found another jobs and new unexperienced

developers were hired. And the third project had to be finished in another six month.

2.4 Organizational Patterns

Miscommunication The study by Madsen and Platz shows that during a crisis the

level of communication decreases, because instead of solving current problems peo-

ple tend either to blame each other aggressively or to defend themselves trying to

prove that they are following the process [15].

Impacts stages: Preparation/Prevention

Importance: proper communication is critical in development of a crisis managing

strategy.

Kakonomics or “LL exchanges” Kakonomics is a concept discussed by Italian

philosopher Gloria Origgi. It describes a situation when both parties “prefer to

receive low-quality goods and services, provided that they too can in exchange

deliver low quality without embarrassment. They develop a set of oblique social

norms to sustain their preferred equilibrium when threatened by the intrusion of

high quality” [8]. In other words, people tend to accept low-quality goods or ser-

vices because it gives them ability to offer goods or services of the same quality in

exchange.

Impacts stages: all

Importance: whereas this phenomenon is explainable and sometimes acceptable

in human society, in crisis management such a behavior would mean that the com-

pany constantly experience crises, however it is treated as a normal situation. So, no

crisis management activities would be ever performed.

Taboo In people’s mind crisis are directly related to inability to handle the situation,

i.e. incompetency. That is why often even when a crises signs are clearly visible,

people prefer not to talk about it and not to perform necessary actions in hope that

the problems will disappear in time. The signs of a taboo often present on all orga-

nizational levels [15].

Impacts stages: Signal detection, Learning

Importance: when managers finally accept the fact that the project is in the critical

state, it might be too late or it would take enormous amount of time and effort to

rescue it.

Crisis Management in Software Engineering . . . 185

2.5 Personal Patterns

Personal stress Being in crisis for a project means people are being stressed.

Although everyday light stress is a part of normal life, experiencing its heavier form

on a day by day basis may cause serious troubles. Such factors as increased workload,

late hours and stakeholders’ dissatisfaction may seriously reduce people’s efficiency

and leader’s ability to make reasonable decisions. In ISD crisis it made project’s lead

take sick-leave and that harmed both him and the process [15].

Impacts stages: Preparation/Prevention, Containment/Damage limitation, Recov-

ery

Importance: an ability to make swift and proper decisions is important on later

stages. If a manager isn’t able to do this, it will lead to a crisis escalation. In addition,

constant stress may lead to a situation when a project manager or team lead will burn

out and won’t be able to recover.

Misconceived professional pride Project manager’s personal attitude may lead to

considering project’s failure as personal failure [15]. In crisis condition such an

approach might play a critical role in saving a project. On the one hand, a manager

will try to mitigate crisis by all means. On the other hand, asking for help would

mean that she would have to admit her powerlessness.

Impacts stages: Signal detection, Learning

Importance: an ability to recognize this pattern will help team leaders detect sig-

nals of a crisis and prepare a mitigation plan on earlier stages, so the damage would

decrease.

Reactive learning When a crisis is over the best one can do is to learn some lessons

and gain additional knowledge and ideas [15]. However, a study by Madsen and Platz

reports that even if people mostly agree with this point, they find such an excuse as

time-pressure appropriate for not reflecting on crisis and gaining zero knowledge.

Impacts stages: Learning

Importance: if a team member doesn’t learn from crisis, probability to make the

same mistake later increases.

Slip hysteriaWhen a software project experiences schedule slippage in order to keep

it on track managers tend to put much pressure on developers [16]. However, this

decision usually has a negative impact on a project, since developers take shortcuts

to meet an overambitious schedule. In addition, when team members have to make

critical decisions, the number of considered options is reduced. It may lead to crisis

escalation.

Impacts stages: Preparation/Prevention, Containment/Damage limitation, Recov-

ery

Importance: this managerial pattern usually leads to a situation when the whole

team experiences constant stresses, but does not help getting a better quality product

or increased performance.

186 S. Litvinov and V. Ivanov

3 Solutions

When it becomes clear that the project’s success or failure, to a large extent, depends

on team member’s decisions, and there are behavioral patterns which influence deci-

sion making process, the next problem is how to help people make the right deci-

sions and avoid the wrong ones. This task can be considered from both manager’s

and developer’s points of view and can be divided on next three subtasks:

∙ To recognize and to avoid bad behavioral patterns [15];

∙ To monitor team’s “healthiness” level constantly [21];

∙ To teach managers how to accept changes and react to them in the best possible

way [13].

We found several tools and techniques that deal with human aspects of project

development and contribute to all of the subtasks. Introducing The Code of Ethics

would help avoid bad behavioral patterns, behavior-based management ideas would

be useful to maintain a high level of people’s involvement and mastering The Change

Diamond framework would allow managers to learn how to rapidly react to changes

and increase project’s survival chances.

3.1 The Code of Ethics of Software Engineer

The Software Engineering Code of Ethics and Professional Practice is de-jure stan-

dard for both teaching and practicing software engineering, since it is recognized by

Association for Computing Machinery (ACM) and Institute of Electrical and Elec-

tronics Engineers (IEEE). It describes professional and ethical responsibilities of

software engineers along with human and professional societies’ expectations. The

full version of the Code is about three pages long and it contains more than 50 state-

ments which can help develop better engineering judgment and make decision mak-

ing process much easier. Although, it does not contain ready solutions to everyday

problems, a person guided by the principles of the Code would easily avoid a wrong

decision provided as an example in Sect. 2.1, since she would understand that the

product quality would not meet the highest professional standards. The full version

of the Code can be obtained from ACM website and the short version is:

∙ “Public. Software engineers shall act consistently with the public interest.”

∙ “Client and employer. Software engineers shall act in a manner that is in the best

interests of their client and employer, consistent with the public interest.”

∙ “Product. Software engineers shall ensure that their products and related modifi-

cations meet the highest professional standards possible.”

∙ “Judgment. Software engineers shall maintain integrity and independence in their

professional judgment.”

Crisis Management in Software Engineering . . . 187

∙ “Management. Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and

maintenance.”

∙ “Profession. Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.”

∙ “Colleagues. Software engineers shall be fair to and supportive of their col-

leagues.”

∙ “Self. Software engineers shall participate in lifelong learning regarding the prac-

tice of their profession and shall promote an ethical approach to the practice of the

profession.” [23].

In many companies the development process is guided by different standards,

such as coding standard. Although there is no such a standard for decision making

process, it seems that the Code could be used as an official guidance inside a company

and it could bring positive results.

3.2 Behavior-Based Project Management

The principle of behavior-based project management described by Benoit Hardy-

Vallee in series of articles and interviews [10, 11] says that existing project manage-

ment practices and techniques overlook the emotional factors of project management.

However, this component plays a huge role in a project’s success. He distinguishes

three basic groups of project’s failure causes which are:

∙ Technical (technology, tools, project management practices)

∙ Individual (leadership, communications, scope)

∙ Stakeholder (objectives clearness, user involvement)

Whereas the standard techniques, such as planning, budgeting, scheduling and qual-

ity assurance can help solve the first type of problems, they have significantly less of

an impact on the problems of the other two types.

According to Hardy-Vallee, there are three types of workers: engaged, not-engaged

and disengaged. Not-engaged workers just do their jobs not putting any attitude or

passion in it. Engaged workers feel that everything they do moves their company for-

ward. They put more effort and achieve better result. In opposite, actively disengaged

workers feel unhappy with their jobs and their actions can jeopardize a project. Keep-

ing high engagement level of a team members would help avoid some of behavioral

patterns described above, such as personal stress and reactive learning. To ensure

that “healthiness” level is still high a project manager must be sure that:

∙ Team members clear about their roles and expectations of them;

∙ Team members are properly motivated and engaged;

∙ Team members sure that they can safely express their thoughts and these thoughts

are heard;

188 S. Litvinov and V. Ivanov

Fig. 5 Scoreboard process [18]

∙ Their achievements are properly recognized;

∙ A team cohesion is high and all the team members have the same level of care

about meeting the project’s goals;

∙ Team members act respectful and trustful to the stakeholders;

∙ Stakeholders trust a team;

∙ Stakeholders are confident about meeting the project’s objectives;

To collect answers to this and the other questions of the same type a manager

can use the Scoreboard method described by Mota [18]. This method allows man-

agers collect anonymous data from team members and stakeholders on a regular

basis using a questionnaire (Fig. 5). Such a questionnaire usually contains questions

starting with “How do you evaluate . . . ” and the answers scale is semantic (very bad,

bad, normal, good, perfect).

3.3 The Change Diamond

A study performed by IBM Global focused on how to close a “Change Gap”—the

difference between expecting a change and readiness to manage it [13]. More than

1,500 project leaders and managers from world’s leading organizations were inter-

viewed in order to understand how sudden changes may impact projects and what is

the best possible way to respond to changes.

On average, respondents stated that only 41% of the projects were successful

in terms of being completed on time, within a budget and meeting quality goals.

However, the small part of practitioners stated that their success rate was about 80%

which made them Change Masters. It is interesting that the greatest challenges were

so-called “soft issues”—problems related to people, not process or technology. 58%

Crisis Management in Software Engineering . . . 189

of respondents experienced troubles with changing minds and attitudes, 49%—with

corporate culture and 35%—with underestimating project complexity. Studying their

practices allowed researches establish a framework for managing project changes

which they called Change Diamond. The framework contains the next four princi-

ples:

∙ “Real Insights, Real Actions. Strive for a full, realistic understanding of the upcom-

ing challenges and complexities, then follow with actions to address them.”

∙ “SolidMethods, Solid Benefits. Use a systematic approach to change that is focused

on outcomes and closely aligned with formal project management methodology.”

∙ “Better Skills, Better Change. Leverage resources appropriately to demonstrate

top management sponsorship, assign dedicated change managers and empower

employees to enact change.”

∙ “Right Investment, Right Impact. Allocate the right amount for change manage-

ment by understanding which types of investments can offer the best returns, in

terms of greater project success.” [13].

The full paper contains a thorough explanation of each principle and addresses

importance of continuous change management development through proper commu-

nication and people involvement. Researchers from IBM Global believe that perfect-

ing the Change Diamond framework is a way to close the Change Gap, prepare for

inevitable changes, solve “soft issues” and handle projects in crisis, thereby increas-

ing global project success rate.

4 Future Research and Conclusion

While conducting this study we discovered many studies on organizational crisis

management, however crisis management in software engineering is poorly stud-

ied. Those small pieces of information are formally not referred as crisis manage-

ment practices. It makes difficult, if not impossible, for managers to make reasonable

decisions when a project starts experiencing difficulties. This paper covers a role of

behavioral patterns in crisis management which is a single aspect of it, and itself can

be researched more thoroughly by collecting the data from different teams. The data

could be categorized and the wide list of standard behavioral patterns could be com-

piled. It would also contribute to risk management discipline, since knowing what

to expect from a team members would reduce its unpredictability, i.e. human factor

impact on probability of possible risk. In addition, there is a need in formal meth-

ods and tools to perform each of five crisis management activities described above.

The third area of research could cover crises classification in order to understand

frequency, severity and standard mitigation strategies.

Acknowledgements Authors would like to thank David B. Root and Eduardo Miranda for teaching

how to learn.

190 S. Litvinov and V. Ivanov

References

1. A Guide to the Project Management Body of Knowledge (PMBOK Guides) (Project Manage-

ment Institute, 2004)

2. C.J. Alberts, A.J. Dorofee, Risk management framework. Technical report, DTIC Document

(2010)

3. N.R. Augustine, Managing the crisis you tried to prevent. Harv. Bus. Rev. 73(6), 147 (1995)

4. M. Bloch, S. Blumberg, J. Laartz, Delivering large-scale it projects on time, on budget, and on

value

5. E.W. Dijkstra, The Humble Programmer. ACM Turing Lecture (1972)

6. S. Fink, Crisis Management: Planning for the Inevitable (American Management Association,

New York, 1986)

7. B. Flyvbjerg, A. Budzier, Why your it project may be riskier than you think. Harv. Bus. Rev.

(2011)

8. D. Gambetta, G. Origgi, The ll game: the curious preference for low quality and its norms.

Polit. Philos. Econ. 12(1), 3–23 (2013)

9. R. Goatham, The Story Behind the High Failure Rates in the IT Sector
10. B. Hardy-Vallee, The cost of bad project management. Bus. J. (2012)

11. B. Hardy-Vallee, How to run a successful project. Bus. J. (2012)

12. C. Jones, Assessment and Control of Software Risks (Yourdon Press, 1994)

13. H.H. Jørgensen, L. Owen, A. Neus, Making change work. Technical report (IBM Global)

14. G. King III, Crisis management and team effectiveness: a closer examination. J. Bus. Ethics

41(3), 235–249 (2002)

15. K.T. Madsen, N.B. Platz, Crisis Management in IT Projects (2006)

16. S. Maguire, Debugging the Development Process (Microsoft Press, 1994)

17. I.I. Mitroff, Crisis management-cutting through the confusion. Sloan Manag. Rev. 29(2), 15–20

(1988)

18. P.J. Mota, Scoreboard: a support for management information needs. MSE Reflection Paper
(2009)

19. M. Murphy, Agile project failure kills 15 m surrey police system, June 2014

20. C.M. Pearson, J.A. Clair, Reframing crisis management. Acad. Manag. Rev. 23(1), 59–76

(1998)

21. S.P. Robbins, T.A. Judge, Organizational Behavior, 15th edn. (Prentice Hall, 2012)

22. J. Söderlund, On the broadening scope of the research on projects: a review and a model for

analysis. Int. J. Proj. Manag. 22(8), 655–667 (2004)

23. J.E. Tomayko, O. Hazzan, Human Aspects of Software Engineering (Firewall Media, 2004)

Using the “Agile” Paradigm to Support
Innovation in Large Organizations

Angelo Messina and Alan Rogers

Abstract The United States Government has created the Open Government
Innovations Gallery (US Government 2009a). President Obama has also launched
the SAVE Award (for ideas to save taxpayer dollars and make government more
effective and efficient) and has released A Strategy for American Innovation,
committing to increasing the innovation capability of the government by: making it
more transparent, participatory and collaborative—promoting open government—
using innovation to improve government programs—committing White House
resources to scaling and promoting community innovations. This Administration is
not the only one worldwide encouraging departments and agencies to experiment
with new technologies that have the potential to increase efficiency and reduce
expenditures, such as cloud computing. The United Kingdom is another example of
a government which has been very active over recent years in seeking to promote
and embed innovation in its civil service. One of the most difficult area to renew is
the procurement area. The case of software acquisition is a special one because the
product development process itself has gradually become “agile” with adaptive
requirement management and continuous delivery. In this framework, the existing
administrative tools are very difficult to use and budget planning cannot be per-
formed in the traditional way. One of the most relevant organizations trying to
introduce innovation is NATO, that under the pressure of the above mentioned
political trends has started a relevant innovation effort starting from the operational
software acquisition. In this paper, the general trends of the innovative acquisition
processes are discussed and a particular refinement is dedicated to the Agile
Software Procurement Process.

Keywords Innovation ⋅ Agile ⋅ Agile procurement ⋅ Software engineering

A. Messina (✉) ⋅ A. Rogers
Innopolis University, Innopolis, Russia
e-mail: a.messina@innopolis.ru; segreteria@dssea.eu

A. Rogers
e-mail: a.rogers@innopolis.ru

© Springer International Publishing AG 2018
P. Ciancarini et al. (eds.), Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Advances in Intelligent Systems
and Computing 717, https://doi.org/10.1007/978-3-319-70578-1_18

191

Innovation is a continuous process that can define new services or service delivery
models, develop new organizational concepts, new acquisition policy and admin-
istrative approaches. The experience developed in the Software Acquisition area
can be used as a reference.

1 Innovation in the Public Sector and in Large
Organizations

People are at the heart of the innovation process. Innovation relies on a skilled work
force, not only for high-technology and research sectors but also for the economy
and civil society. The increase of the number of networked innovation processes
enable broad participation in the innovation process itself, beyond corporate R&D
laboratories to users, suppliers, workers and consumers in the public, business,
academic and non-profit sectors. Non-profit community searching for innovative
approaches in their area can make the difference (e.g., DSSEA) Allowing people
throughout the economy and society to participate in innovation can provide new
ideas, knowledge and capabilities, and increase the influence of market demand on
innovation. Private and public policy makers need to reflect and encourage a
broader engagement of the so called “civil society”.

Public sector innovation is a concern for many governments around the world.
Some of them are establishing specific organizational elements to build innovative
policy options and to collect smart ideas. Strengthening of the innovative capacity
of public sectors and large organizations may also happen through awards, pro-
motion and other mechanisms. Governments around the world are adopting plans
and new structured approaches to building innovative capacity and culture: in
Singapore, for example the PS21 [1] policy initiative places emphasis on continual
engagement, empowerment and individual responsibility as opportunities for
innovation and improvement. “Enterprise Challenge” identifies promising ideas
with the potential of being unique and untried with potential to provide significant
value creation to the public service. Those ideas are scrutinized, selected, and
matched to appropriate area in the public service.

In South Africa, the Centre for Public Sector Innovation [2] is in charge to
identify, support and grow innovation in the public sector to improve service
delivery. Its scope is to unlock innovation in the public sector and create a sup-
portive environment for improved and innovative service delivery (CPSI 2009).
The Centre key ambitions are: research and develop sustainable models for inno-
vative service delivery, facilitate the creation, management and mainstreaming of
innovative solutions, create and sustain a suitable environment which promotes a
culture of innovation in the public sector through innovative platforms and
products.

192 A. Messina and A. Rogers

The United States Government has established the Open Government Innova-
tions Gallery [3] (US Government 2009). President Obama has also launched the
SAVE Award (for ideas to save taxpayer dollars and make government more
effective and efficient) and has published: “A Strategy for American Innovation”
(US Government 2009), committing to increasing the innovation capability of the
government by: making it more transparent, participatory and collaborative, pro-
moting open government, using innovation to improve government programs,
committing White House resources to scaling and promoting community innova-
tions. According to the USA Admin innovation must occur within all levels of
society, including the government and civil society. The Obama Administration
was committed to increasing the ability of government to promote and harness
innovation. The Administration was encouraging departments and agencies to
experiment with new technologies that have the potential to increase efficiency and
reduce expenditures, such as cloud computing. The Federal government should take
advantage of the expertise and insight of people both inside and outside the Federal
government, use high-risk, high-reward policy tools such as prizes and challenges
for the solution of tough problems, the support of the broad adoption of working
community solutions and to form high-impact collaborations with researchers, the
private sector, and civil society.

In the United Kingdom, the government has very actively searched over recent
years to promote and embed innovation in its civil public service. It has taken a
systematic and structured approach to fostering innovation in the public sector.

2 Obstacles to Innovation

There are some common elements concerning the barriers and various impediments
to innovation, although they will not always apply in every organization and in
every innovation, that happens in the public or private sector, however, it is
important to have an agreed starting point of the possible obstacles that may occur
throughout the innovation process. The issues here introduced are mainly derived
from the public area, where one of the specific case studies (LC2Evo) belongs [4, 5]
but it is not wrong to say that some public sector areas do have added complexity
compared to the private sector. It will be noticed that some major impediments
relate to accountability and legislative requirements. Such ‘barriers’ are necessary
and sometimes unavoidable constraints that the innovators must consider rather
than circumvent. It is of paramount importance to identify actions and reforms that
the innovators should consider and propose to mitigate or reconcile the most critical
constraints on innovation, those that could dramatically reduce the value added by
innovation.

Using the “Agile” Paradigm to Support Innovation … 193

2.1 Legal and Administrative Procedures

Bureaucracies, rigidly structured organizations, and formal administrative processes
do not like innovation. They kill it. Public servants in particular, but not only them,
often express frustration with approval processes and the unavoidable delay asso-
ciated to them. Some procedures can be so embedded and usual that they can kill
creativity and flexibility in any workplace. Sometimes the innovative technology
and its disruptive potential are present, but the necessary modern work practices and
the matching work culture are not there. Technology alone in not enough. The lack
of this integrated set of capabilities is generating reduced effectiveness in the way
the Public sector and the large corporations are developing their business. Policies
and rules and/or their interpretation and application, can be used to slow down or
block innovative ideas. A typical example is constituted by concerns about the legal
and operational use of the innovative WEB based platforms and communication
tools. This generation of instruments can really prevent delays and increase agen-
cies potential in terms of service delivery options. These predominantly software
and web-based tools, can dramatically increase innovative possibilities, but the
process for gaining access to them is frequently difficult and time-consuming. The
creation of secure networks and the subsequent control frameworks to ensure the
protection or security around information held by an agency create technical bar-
riers to more open models of interaction with the public. The increase of the
world-wide hacker activity is not contributing to ease this situation. Sometimes the
attention of Information and Communications Technology [ICT] management in
large organizations tends to be on “problem side” rather than on the solution one
focusing on departmental policies to be added in order to prevent malicious use of
the new technologies decreasing or voiding their effect.

The sometimes reluctant to innovation attitude of ICT departments is under-
standable, because of the weight of the potential risks associated with a breach of
security or a leak of confidential information. Nevertheless, inflexible security or
data classification policies can block innovation. The circulation of information, and
the encouragement to exchange and collaborate across an organization are often
inexpensive ways to promote innovation.

2.2 Short-Term Focus and Uncooperating Leadership

The most internationally successful companies such as the web-based ones, ensure
that proper resources are dedicated to identifying, analysing and solving the future
scenarios problems related to the complex and often unexpected changes of the
societies structure, behaviour and needs. A relevant part of their budget is devoted
to researching the solutions that will maintain their competitiveness in years to

194 A. Messina and A. Rogers

come. Some public-sector agencies are engaged in the same effort, but over recent
decades the results are contradictory.

The public sector challenges of long time horizon and diverse stakeholder
communities make visionary leadership and long term commitment to innovation
even more important to a successful process. Innovating in the public service,
particularly in case of innovation components of a substantial or transformative
nature, requires a work environment in which resources are available not only to
tackle the immediate issues but also the longer-term challenges. Resources should
be devoted to build up the intellectual capital (brainware) which is the real substrate
on which inventive new ideas and approaches are started. Focusing on the policy
development process and spending too much time to agree the way ahead can also
make it hard for innovation. In Italy for example a state law (Decreto-legge 18.10.
2012, n. 179) created a break-through in the way the Italian public administration
was operating, but many expectation were disappointed as the application experi-
enced unexpected delays and difficulties [6]. It seems to be a peculiarity of the large
(traditional) organization: the tendency to focus on short-term delivery goals and
urgent tasks while important and longer term issues can be ignored.

Leaders and top managers play one of the most relevant roles in introducing
innovation by expressing willingness to accept the associated risk and to support
and reward innovative ideas and approaches. Often ‘No’ is the default response to a
situation perceived as risky by a supervisor. Innovators work to change this situ-
ation may be significant. Convincing top stakeholders is obviously a priority and
this phase should be part of the basic innovative frame as shown in the area of
software engineering by the DSSEA

®

iAgile development methodology which is
explicitly calling for specific “governance pillar” as a base for the innovative
software production process.

Leaders and top stakeholders through their actions can make clear that inno-
vation is an issue of priority and is pursued and rewarded within an organization. If
leaders and top stakeholders show no interest in innovation a clear negative mes-
sage is sent to staff and all investments in the innovation effort are useless. There is
no doubt that to be more innovative in every sector, it is of paramount importance
for the decision makers to encourage the generation, nurturing and implementation
of new ideas.

This opens the issue of how stakeholders can be approached and somehow
“trained” to innovative strategies such as agile procurement. A short but effective
communication must be presented to the top stakeholders, centred on the most
important values conveyed by innovative change: increase of effectiveness,
reduction of expenditures, and increase of customer satisfaction which in the public
sector involves relevant segment of the population.

Central issues connected to promoting innovation in large organizations include
the correct use of groupthink and obtaining consensus decision making. Large
organizations are often characterized by strong messages running around about their
goals and directions, partly officially stated, partly generated from what various

Using the “Agile” Paradigm to Support Innovation … 195

senior people are looking for. These processes, left unchecked, can degenerate into
biased groupthink. Sometimes large organizations are also characterized by stronger
desire to deliver outcomes that do not disadvantage or upset anybody, and signif-
icant effort is often expended to ensure ‘buy-in’ with a decision regardless of the
quality and the innovation content of that decision. The need for buy-in or con-
sensus can slow down decision making, remove the most challenging content and
make the innovative change introduction incredibly hard. This also known as “the
good old way”.

These are embedded and cross-cutting issues that need strong and innovation
aware leadership to manage. Innovating actions need to encourage debate and
analysis of problems on their merits and ensure that all participants feel they have
been listened to and have been taken into account in decision making Never the
less, innovative leaders must ‘take sides’, make things happen and implement
change even over some resistance when necessary. The innovating process will live
on this dichotomy between the importance of leadership and the presence of a lively
and productive debate.

3 The Case of the Software Engineering and Production
Lifecycle

Even if at first glance the production of software could be considered a particular
sector of the industrial production, as a matter of fact this is the most relevant sector
where radical innovation is being quickly introduced. The economic relevance of
the software production worldwide and the impact it has on the structure of the
human societies due to the disrupting power of this technology makes the sector a
powerful incubator of innovative strategies. If carefully considered most of the
strategies born to introduce innovation in the software acquisition and production
methodology can be regarded as more “general” innovative process, the most rel-
evant one being “agile”.

3.1 Innovation in Mission Critical Software Production
and Procurement

A very significant case in the software production is the so-called mission critical
application area. These particular applications are connected to the operational area
of large organizations such as the Military, the Civil Protection, the Police etc. and
share the top technical criticality in the software manufacturing such as real time,
high reliability, fault recoverability, elevated risk and safety factors. At the same
time, they tend to be not compatible with the traditional production lifecycles any

196 A. Messina and A. Rogers

more [7]. In particular in the military area the impossibility of consolidating a
“Software Requirement Document” as mandated by the traditional Linear Devel-
opment Methods (DOD 2167A and following) has led to development driven by a
“Volatile Requirement” [8]. Under the pressure of relevant decrease of the customer
satisfaction even military software producer had to find innovative ways to cope
with this situation.

The USA DoD has defined a set of rules and procedures encompassing all the
needed practices and artifacts to be used in the implementation of a new “agile”
methodology. The agile movement was a reaction to similar pressures and chal-
lenges in private sector systems development that culminated in Agile Manifesto
[9]. DoD Instruction 5000.02 (Dec 2013) heavily emphasizes tailoring program
structures and acquisition processes to the program characteristics. Agile devel-
opment can achieve these objectives through:

• Focusing on small, frequent capability releases;
• Valuing working software over comprehensive documentation;
• Responding rapidly to changes in operations, technology, and budgets;
• Actively involving users throughout development to ensure high operational

value.

These indications from such an important governmental institution are a clear
encouragement to use “agile” practices together with more traditional and struc-
tured activities such as: planning, design, development, and testing into an iterative
lifecycle to deliver working software at frequent intervals.

The lag between large scale acceptance of Agile in the private sector and its
inclusion in large DoD procurement points to the challenges of both traditional
(“waterfall”) and agile methods [10]. The challenges of the waterfall method (de-
livering appropriate systems before they are obsolete) have led to an opening to
agile but have not overcome concerns about agile, particularly related to manage-
ability, predictability, quality, performance, and maintainability. The DSSEA

®

iAgile approach was designed to address these legitimate concerns and has proven
successful in an extremely complex, demanding context as we will describe.

As stated before, one of the peculiarities of mission critical applications is the
absolute imperative to deliver high quality software. In the area of mission critical
applications, the above aspect is a core mission of a methodology called DSSEA

®

iAgile, developed by a non-profit community of interest. There are two great and
opposite issues involved in delivering software supporting complex functions in a
“volatile” operational scenario: reliability and velocity in delivering working pro-
duct increments. Both are essential and apparently opposite to each other. Relevant
characteristics of iAgile concern the effort’s focus on the development of quality
systems from the very first line of code. In a short time boxed delivery cycle it is not
possible to postpone testing and quality control activities to a later time before
delivery but everything has to be performed in parallel. A good example is the care
for the quality of the source code which is continuously enforced to check if the

Using the “Agile” Paradigm to Support Innovation … 197

coding standard used is the last update or contains any of the identified vulnera-
bilities. Proper length and focus make Scrum-like sprints capable of providing both
velocity, (due to mandatory Time Boxing), and reliability, since developers are
obliged to put most of their attention into developing high quality code, using
reliable and known libraries. In this environment documentation and maintenance
efforts are minimal as in the case of the Command and Control software of the
Italian Army: LC2Evo [5]. Development speed itself is increased by redundancy of
different professional expertise. Pair programming in such a context is useful in an
asymmetric form when one of the component of the pair is a software security
expert or a mission specific application expert and the other a regular software
engineer [11]. Testing in iAgile is a continuous effort often resulting in a TDD (Test
Driven Development). The apparent duplication of resources is not going to impact
the production effectiveness because of the dramatic reduction of the code rework
activity due to errors.

Security is a concern and according to iAgile the code is developed under
continuous supervision by a security expert in a pair programming fashion. This is
supplemented with additional approaches including best practices coding standards,
static analysis, and penetration testing to highlight potential vulnerabilities not fixed
in the development phase.

DSSEA
®

iAgile from a methodological point of view, represents a paradigm
shift from “delivery and maintain” to “continuous development”.

3.2 The NATO Innovation Procurement Process

Before tackling the procurement as whole, NATO and particularly one of the most
important procurement Agencies, NCIA decided to start reforming the software
procurement area absorbing some of the guidelines stated in the already mentioned
DoD 5000.02 directive.

To comply with SIPs (Software Intensive Programs—DoD 5000.02) perfor-
mance principles of NATO two major “agile” principles have to be followed:

• Deliver early and often. This principle is aimed at changing the culture from one
that is focused typically on a single delivery at the end of the development phase
to a new model with multiple deliveries during development, leading to an
ultimate version that supports the full set of requirements, supported by the
DevOps approach [12].

• Develop and test incrementally and iteratively. This principle embraces the
concept that incremental and iterative development and testing, including the
use of prototyping, yield better outcomes than those resulting from trying to
deploy large, complex IT network systems in one “Big Bang”.

198 A. Messina and A. Rogers

National schematics explaining the concept of “Software Intensive Programs” as
outlined in DoD 5000.02

These two principles tell us that the old-fashioned waterfall approach in which
the customer, after months of software development, is faced with a release he may
not be happy with, needs to be replaced by more modern and innovative software
engineering techniques and methodologies.

After two years in the process the Italian Army General Staff, have clearly
demonstrated the effectiveness of the new software development methodology
realizing the LC2Evo Command and Control software. The product is a continuous
development effort which continues to produce new segments every five weeks.
The first FAS of the product, the LC2Evo-infrastructure is online since June 2015
and is serving more than one thousand users daily and has registered customer
satisfaction levels close to 100% [7].

3.3 Evolving Agile into iAgile: The 4 Pillars Based
Innovation Paradigm

The transition to “agile” was not only needed to accommodate quicker adaptation to
dynamic mission needs change, quality and security needs but also mandated by a
drastic reduction of the defence budgets experienced in many NATO countries but
particularly heavy in Italy.

Using the “Agile” Paradigm to Support Innovation … 199

The structure of the iAgile [8] process and the steps followed in its introduction
are suitable for a more general application not just to a software product lifecycle
but may be used as sample of successful innovation strategy. Most of the effort
performed to generate an adequate production structure for the LC2Evo, has been
devolved to the setting of an innovative cultural and technical environment. As seen
in the previous chapter, most of the difficulties found on the way of this innovation
process were “human based”, essentially due to cultural resistance based on con-
solidated practices. A whole brand-new environment had to be build. The four
“pillars” of this “innovative software engineering paradigm” are:

• User Community Governance;
• Innovative Agile training;
• Innovative CASE tools;
• High Reliability Agile doctrine.

Three of these are elaborated below as particularly relevant to broader public
sector innovation.

The “Four Pillars” of innovation

3.4 User Community Governance Pillar

It is of paramount importance and can be considered a prerequisite for the entire
development process. In the area of land command and control, the number and
articulation of the reference stakeholders and users is huge. Functions such as the
“Third Dimension Control” may have multiple stakeholders and users, at the same
time: Artillery is using the 3D space to plan its fire power delivery, but the same
space is used by the Army light Aviation and the Air Force (in joint operations).
This situation makes it necessary to rationalize the “requirements” management.
The Army General Staff has dedicated a huge effort to create the coordination lines
and the permanent structure to allow an orderly fashion collection of user needs and

200 A. Messina and A. Rogers

provide the availability of subject matter experts to be placed in the development
teams. Ad hoc social networks have been designed for this scope.

3.5 Specialized iAgile Training

As stated before, the “agile” training easily available from the market, was not able
not provide the peculiar skills needed to work in the military and industry mixed
multidisciplinary teams and the traditional “roles” described by the Scrum doctrine
such as the “Product Owner” and “Scrum Master” had to be modified to be able to
perform the Italian Army Agile methodology. Within NATO partners, DSSEA is
carrying out new training courses to match such new specific needs.

3.6 Innovative CASE Tools: Changing the Surrounding
Environment

Even in a software peculiar environment which has evolved over time around the
software engineering communities, as a matter of fact any operational or admin-
istrative procedure is nowadays supported by a set of custom or general tools which
are analogous to a software CASE. Most of the Human based tools have been
replaced in time by the ICT based one often defining a hybrid environment. The
lesson learned from the software engineering area is that replacing the traditional
CASE tools and procedures poses a difficult challenge: keeping the momentum of
the Agile innovation while implementing the new concepts for designing the high
reliability related software development environments. The core of the Agile
methods (which could also be shared in a more general innovation process) is the
role of human element which is positioned at the centre of the development process
again, using its brain non-linear capability to overcome the difficulties related to the
user requirement incompleteness, volatility and redundancy.

Agile methods, properly implemented, such as in the iAgile case, can take care
of a significant part of this problem by capturing the user needs in lists of short user
stories, written in natural language and confronting the user with the working
segments of the product ready after few weeks or even days. This way, part of the
non-linearity of the requirement conceptual design is overcome by the interaction
between humans: the software developer is directly assisted by the user and they
basically design together the application. In the process the two different complex
3D representations of the application (run time) imagined by the mind of the user
and the one detailed by the mind of the software developer tend to converge. This
method also reduces the number of translations (in the broad sense) needed to
convert the requirements into coding tasks, significantly decreasing the loss of
relevant information.

Using the “Agile” Paradigm to Support Innovation … 201

4 Conclusions

It is reasonable to think that the strategy used to transform the software production
in the mission critical area and deployed by the Italian Army and DSSEA represents
a paradigm that could be exported to support a more general innovation process in
other areas. The peculiarities which are typical of the software engineering sector
are mitigated by the need to involve the stake holders and the users in a time boxed,
strongly interactive process which leads to the generation of a new shared “common
enterprise” culture.

The step of generating a governance process (a pillar in iAgile) in such a hybrid
environment, involving people whose cultural backgrounds could have very little in
common, may be shared to introduce a paramount change in the structure of many
traditional organizations.

An example of possible implementation is the adoption of a bottom up approach
in the generation of the requirements for public services. The key issues being the
definition of an appropriate user community governance (one of the already
introduced “Pillars” od iAgile) which includes a continuous involvement of the
user/citizen community in the generation of the type and quality of services they
need and in the oversight of their delivery, as opposed to the adaptation of the
currently existing services.

References

1. https://www.centreforpublicimpact.org/case-study/ps21-office-singapore/
2. http://www.cpsi.co.za/knowledge/
3. https://fas.org/sgp/news/2009/05/wh052109.html
4. F. Cotugno, A. Messina, Implementing SCRUM in the army general staff environment, in The

3rd International Conference in Software Engineering for Defence Applications—SEDA
Roma, Italy, 22–23 September 2014

5. C. Ventrelli, D. Trenta, D. Dettori, V. Sanzari, S. Salomoni, ITA army agile software
implementation of the LC2EVO army infrastructure strategic management tool, in Proceed-
ings of 4th International Conference in Software Engineering for Defence Applications,
978-3-319-27894-0

6. http://www.forumpa.it/pa-digitale/documenti-contratti-pubblici-stipula-elettronica-tutti-i-
nodi-irrisolti-della-normativa

7. A. Messina, P. Modigliani, S. Chang, How agile development can transform defense IT
acquisition, in Proceedings of 4th International Conference in Software Engineering for
Defence Applications, 978-3-319-27894-0

8. Messina, Ciancarini, Ruggiero, Russo, A new agile paradigm for mission-critical software
development. CrossTalk 29(6), 25–30 (2016)

9. K. Beck, J. Grenning, R.C. Martin, M. Beedle, J. Highsmith, S. Mellor, A. van
Bennekum, A. Hunt, K. Schwaber, A. Cockburn, R. Jeffries, J. Sutherland, W. Cunningham,
J. Kern, D. Thomas, M. Fowler, B. Marick, Principles Behind the Agile Manifesto. Agile
Alliance. Archived from the original on 14 June 2010

202 A. Messina and A. Rogers

https://www.centreforpublicimpact.org/case-study/ps21-office-singapore/
http://www.cpsi.co.za/knowledge/
https://fas.org/sgp/news/2009/05/wh052109.html
http://www.forumpa.it/pa-digitale/documenti-contratti-pubblici-stipula-elettronica-tutti-i-nodi-irrisolti-della-normativa
http://www.forumpa.it/pa-digitale/documenti-contratti-pubblici-stipula-elettronica-tutti-i-nodi-irrisolti-della-normativa

10. A.A. Janes, G. Succi, The dark side of agile software development, in Proceedings of the
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (ACM, 2012)

11. E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, J. Vlasenko, Pair programming and
software defects–a large, industrial case study. IEEE Trans. Softw. Eng. 39(7), 930–953
(2013)

12. A. Messina, F. Cotugno, Adapting SCRUM to the Italian Army: methods and (open) tools, in
The 10th International Conference on Open Source Systems San Jose, Costa Rica, 6–9 May
2014

Using the “Agile” Paradigm to Support Innovation … 203

	Preface
	Contents
	Self-adaptive Node-Based PCA Encodings
	1 Introduction
	2 Linear Sensor Encodings
	3 PCA in Networks
	3.1 Generalized Hebbian Algorithm
	3.2 Distributed PCA
	3.3 Simple Hebbian PCA

	4 Conclusions
	References

	Microservices Science and Engineering
	1 Introduction
	2 What Is a Microservice?
	3 Jolie: A Language-Based Approach
	4 Applications in Smart Buildings
	5 Conclusions
	References

	3 Evolving In-service Support Models for Secure Weapon Systems
	Abstract
	1 Introduction
	2 Weapon Systems Evolution
	2.1 The Past
	2.2 The Present
	2.3 The Future

	3 Cyber Threats on Weapon Systems
	3.1 Increasing Interconnection Scope Threats
	3.2 Increasing COTS Hardware Usage Threats
	3.3 Increasing COTS Software Usage Threats

	4 Impacts of Security on the In-service Support Model
	4.1 Mid-life Update
	4.2 Continuous Update
	4.3 Product as a Service

	5 Future of In-service Support
	5.1 Evolutionary Solutions
	5.1.1 Antivirus Update Example
	5.1.2 OS Flaw Remediation Example

	5.2 Revolutionary Solutions
	5.2.1 Cloud Deployment Example
	5.2.2 Service Thinking Example

	6 Conclusions
	References

	Initial Steps Towards Assessing the Usability of a Verification Tool
	1 Introduction
	2 Eiffel and Autoproof
	3 Case Study Experience
	4 Problems Taxonomy
	4.1 Problems with the Tool
	4.2 Problems with Methodology: Semantic Collaboration and Framing

	5 Related Work
	6 Conclusion
	References

	The Agile Coordination Processes
	1 Introduction
	2 Understanding Coordination in the Software Process
	2.1 Dependences
	2.2 Coordination

	3 Coordinating XP Projects
	4 Comments on Coordination in Agile Methods
	5 Conclusions
	References

	A Blockchain-Based Solution for Enabling Log-Based Resolution of Disputes in Multi-party Transactions
	1 Introduction
	2 Background on Blockchain
	3 Proposed Solution
	4 Conclusion
	References

	AntibIoTic: Protecting IoT Devices Against DDoS Attacks
	1 The AntibIoTic Against DDoS Attacks
	2 AntibIoTic Functionalities
	2.1 Real World Scenarios

	3 Overview of AntibIoTic Infrastructure
	3.1 Command-and-Control (CNC) Server
	3.2 AntibIoTic Bot
	3.3 Users and Admin

	4 AntibIoTic and Its ``Twins''
	5 Ethical and Legal Implications
	6 Conclusion
	References

	An Initial Investigation of Concurrency Bugs in Open Source Systems
	1 Introduction
	2 Related Work
	3 Our Investigation
	4 Discussion of the Results
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Contracting Agile Developments for the Public Sector: The Italian Case
	1 Introduction
	2 The Law and Economics of Agile Contracts
	3 The Italian Case
	3.1 The Object of the Contract
	3.2 The Competition
	3.3 Provision of Accountable Variations
	3.4 The Economic Value
	3.5 The Verification

	4 Contractualization of Function Points
	5 Contractualization of Scrum Sprints
	6 Conclusions
	References

	Domain Objects and Microservices for Systems Development: A Roadmap
	1 Introduction
	2 Microservices
	3 Domain Objects
	3.1 Adaptive Service-Based Systems with Domain Objects

	4 Research Objectives
	4.1 Research Question
	4.2 Diagrammatic Notation
	4.3 Roadmap

	References

	A Machine Learning Approach for Continuous Development
	1 Introduction
	2 Problem Definition
	3 Model Formalization
	4 Instantiation
	5 Conclusions and Future Works
	References

	Toward a Model of Emotion and Its Contagion Influences on Agile Development for Defense Applications
	1 Introduction
	2 Literature Review
	2.1 Emotions Role in the Software Industry
	2.2 Human Factors Influence Using Agile in Developing Defense Software
	2.3 The Influence of Multi Criteria Decision Making Methods on Agile Methods and Teams

	3 Proposed Model
	4 Research Methodology
	5 Conclusion
	References

	The Internet of Hackable Things
	1 The IoT Tsunami
	1.1 A Security and Privacy Disaster

	2 Smart Home… of Horror!
	3 Pervasive Healthcare
	3.1 eHealth: How to Remotely Get Big Data
	3.2 IoT Medical Devices: How to Remotely Kill You

	4 On the Need of Developing a Security Culture
	References

	14 Avoiding Sensitive Data Disclosure: Android System Design and Development Data Leaks Detection Thesis Master Degree Computer Engineering
	Abstract
	1 Introduction and Aim of the Work
	2 Overview of Data Leaks Problem
	3 Android JADAL
	4 Conclusion and Ongoing Activities

	Towards Non-invasive Software Measurement System: Architecture and Implementation
	1 Introduction
	2 Survey of the State of the Art
	3 An Architecture for Non-invasive Software Measurement
	3.1 Main Novelties of Our Approach
	3.2 Client Side
	3.3 Server Side

	4 Implementation Details
	4.1 Server Side
	4.2 Client Side for Mac
	4.3 Client Side for Windows
	4.4 Client Side for Linux
	4.5 Dashboard Application

	5 Experimentation
	6 Discussion
	7 Conclusion and Further Work
	References

	Joining Jolie to Docker
	1 Introduction
	2 Service Orchestration
	3 Jolie
	4 Docker
	5 Comparison Between Jolie and Docker
	6 Federation of Jolie and Docker
	7 Conclusion
	References

	Crisis Management in Software Engineering: Behavioral Aspects
	1 Introduction
	2 The State of the Art
	2.1 Why Software Engineering Is Different?
	2.2 Crisis Management
	2.3 Case Studies: Three Stories
	2.4 Organizational Patterns
	2.5 Personal Patterns

	3 Solutions
	3.1 The Code of Ethics of Software Engineer
	3.2 Behavior-Based Project Management
	3.3 The Change Diamond

	4 Future Research and Conclusion
	References

	18 Using the “Agile” Paradigm to Support Innovation in Large Organizations
	Abstract
	1 Innovation in the Public Sector and in Large Organizations
	2 Obstacles to Innovation
	2.1 Legal and Administrative Procedures
	2.2 Short-Term Focus and Uncooperating Leadership

	3 The Case of the Software Engineering and Production Lifecycle
	3.1 Innovation in Mission Critical Software Production and Procurement
	3.2 The NATO Innovation Procurement Process
	3.3 Evolving Agile into iAgile: The 4 Pillars Based Innovation Paradigm
	3.4 User Community Governance Pillar
	3.5 Specialized iAgile Training
	3.6 Innovative CASE Tools: Changing the Surrounding Environment

	4 Conclusions
	References

