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Abstract. This paper is motivated by the need for a formal specification method for real-time systems. In these 
systems quantitative temporal properties play a dominant role. We first characterize real-time systems by giving 
a classification of such quantitative temporal properties. Next, we extend the usual models for temporal logic 
by including a distance function to measure time and analyze what restrictions should be imposed on such a 
function. Then we introduce appropriate temporal operators to reason about such models by turning qualitative 
temporal operators into (quantitative) metric temporal operators and show how the usual quantitative temporal 
properties of real-time systems can be expressed in this metric temporal logic. After we illustrate the application 
of metric temporal logic to real-time systems by several examples, we end this paper with some conclusions. 

I. Introduct ion 

This paper is motivated by the need for a formal specification method for real-time systems. 
The need for such a method is becoming acute since more and more vital applications 
such as nuclear power stations, computer controlled chemical plants, flight control software 
for airplanes, etc., contain real-time features. Real-time systems are characterized by quan- 
titative timing properties relating occurrences of events. Typical examples are: 

1. Maximal distance between an event and its reaction, for example, every A is followed 
by a B within 3 time units (a typical promptness requirement). 

2. Exact distance between events, for example, every A is followed by a B in exactly 7 
time units (as with the setting of a timer and its time-out). 

3. Minimal distance between events, for example, two consecutive As are at least 5 time 
units apart (assumption about the rate of input from the environment). 

4. Periodicity, for example, event E occurs regularly with a period of 4 time units. 
5. Bounded response time, for example, there is a maximal number of time units so that 

each occurrence of an event E is responded to within this bound. 

We investigate the possibilities of temporal logic for specifying such real-time properties. 
Because they only involve qualitative temporal operators, it is obvious that standard temporal 
logics cannot deal with quantitative temporal requirements. Therefore, we extend the usual 
temporal models by including a distance function to measure time and analyze what restric- 
tions should be imposed on such a function. This distance function maps two points in 
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time to a value in a metric domain on which addition and a zero are defined. The specification 
method we propose, called metric temporal logic, is based on an extension of the classical 
temporal logic as studied in philosophy for decades (see for example, (Prior 1967)): our 
metric operators are obtained by indexing temporal operators by parameters taken from 
the metric domain. Our philosophy is to extend the pure qualitative view of time of stan- 
dard temporal logics in a faithful way in order to reason both about quantitative and quali- 
tative properties in a convenient way. We succeed in doing this by including also the prece- 
dence relation between points in time and showing how the metric parameters of operators 
can be quantified away to obtain the corresponding qualitative versions. We show how the 
five quantitative timing properties above can be expressed in metric temporal logic. 

We illustrate metric temporal logic by means of several examples involving real-time 
features amongst which are common real-time constructs such as a time-out and the wait/ 
delay statement of some concurrent programming languages. 

This paper is organized as follows. In Section 2 we describe certain characteristics of 
real-time systems. After a short recapitulation of the basics of temporal logic in Section 
3, Section 4 introduces metric temporal logic which is illustrated by means of a series of 
specification examples of real-time systems in Section 5. At last we present some conclu- 
sions in Section 6. 

2. What are real-time systems? 

The most important characteristic of a real-time system is the demand to keep abreast with 
an autonomous environment by reacting properly and timely to events occurring in the 
environment asynchronously from the operation of the system. Therefore, the environment- 
system interaction (the reaction of the system on the external stimuli from the environment 
giving rise to a so-called stimulus-response mechanism) is subject to quantitative temporal 
requirements. These temporal requirements state a relation between occurrences of events 
and can be classified as follows: 

1. Response time: this relates the timing of the occurrence of an event and the resulting 
response. The most usual cases are 
a. maximal distance between an event and the resulting response (e.g., time-out) 
b. exact distance (e.g., delay) 

2. Frequency: this relates occurrences of the same event. The most usual cases are 
a. minimal distance between two occurrences (assumption about the rate of stimuli from 

the environment) 
b. exact distance, also called periodicity (e.g., clocks and samplers) 

The first four of the five examples in the Introduction correspond directly to the classifica- 
tion above (examples 1 and 2 concern maximal respectively exact response time and exam- 
ples 3 and 4 concern minimal respectively exact frequency). All these temporal requirements 
have a quantitative nature and the quantitative elements involved are constants expressed 
as a certain number of time units. The fifth example in the Introduction is in fact the quan- 
tified equivalence of the first example. The other examples 2, 3 and 4 have also quantified 
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equivalents, but example 5 is the most common one. The quantitative nature of these tem- 
poral requirements is typical for real-time systems (qualitative temporal requirements occur 
already in any concurrent system, think of fairness, and even sequential systems, e.g., 
termination). 

Another classification of quantitative temporal requirements relates to the distinction be- 
tween relative and absolute temporal requirements. Absolute temporal requirements calibrate 
all occurrences of events to a fixed reference point (the start of the system or the first occur- 
rence of a particular event) while relative temporal properties have no fixed reference point 
but depend on occurrences of events. In the above four cases, periodicity is an absolute 
temporal requirement (e.g., all later samples can be related to the first sample by means 
of the sample rate), the other three being relative (the occurrence of an event triggers its 
response, so the timing of that response can only be related to that occurrence of the event). 
As will be clear from the above, events play a very important role in real-time systems. 

Since quantitative temporal requirements state a relation between an event in the environ- 
ment and an event in the system (or between events in different components of a system), 
these requirements necessarily refer to a global notion of time. This global notion of time 
should not be identified with the introduction of a clock: the difference between time and 
clocks is that clocks always drift (in other words: time can be considered as a perfect, 
idealized clock). 

In the theory of concurrency the interleaving model plays an important role. One can 
question the suitability of this model in case real-time and concurrency are combined. Model- 
ing parallel computation by interleaving is a sufficient idealization if only qualitative tem- 
poral requirements are involved. As soon as quantitative temporal requirements come into 
play, however, as in the case of real-time systems, such an execution model is usually not 
adequate any more. For example, ensuring maximal distance between events is impossible 
if some processes can take an arbitrary number of steps while other processes are inactive. 
In such a case either all processes have their own processor (the maximal parallelism model 
as in (Koymans, Shyamasundar, de Roever, Gerth and Arun-Kumar 1985)) or some proc- 
esses share one processor and they are scheduled in such a way that each process gets 
its turn within bounded time. Furthermore, in some applications, data can appear at dif- 
ferent places in a truly concurrent way. With respect to the temporal requirements above, 
an arbitrary sequentialization is not appropriate any more. Even stronger, it becomes more 
and more practice today to incorporate local (co)processors with dedicated tasks (e.g., 
sampling) into the system so that truly parallel computation is the only realistic model in 
such a distributed configuration. 

In process control systems often continuous physical entities are involved such as tempera- 
ture and volume. When such a system contains, for example, an analog circuit for monitor- 
ing the temperature, this has a time-continuous nature together with a continuous range 
of values (e.g., between 4 and 20 milliampere). In modeling such systems, the usual discrete 
view of time as taken for digital systems is, therefore, not appropriate any more. Hence, 
apart from viewing time as discrete, one should also allow a view of time as continuous 
(or at least dense) as in Newtonian physics. This has also its repercussion on the descrip- 
tion of the execution of such a system (or rather how it develops) and how it can be observed. 
For discrete systems, execution consists of a number of observable state changes or transi- 
tions leading to a state-transition sequence. In the case of time-continuous systems, however, 
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variables can change arbitrarily fast (think, e.g., of pressure) and sequences cannot be used 
any more. A particular execution can only be described by recording at each moment the 
state of the system (so, such a generalized execution model considers functions from time 
to states). If one would maintain that observations can be made only at discrete moments, 
each observation contains only partial information. Only the whole set of possible obser- 
vations of a particular execution can restore all information on that execution. 

Summarizing, for real-time systems quantitative temporal requirements play a dominant 
role. Furthermore, a discrete view of time and familiar execution models such as interleav- 
ing are not sufficient any more to handle all cases. Consequently, time-continuous models, 
respectively real parallelism or scheduling information should be incorporated. 

We devote the rest of this section to the subject of requirements for a specification language 
for real-time properties. First, we want our specifications to be free of any implementation 
bias whatsoever. This means that a specification is phrased only in terms of the elements 
of the interface (between the specified entity and its environment) that are considered to 
be observable. This leads to the requirement of syntactical abstractness (see (Koymans 1989)). 
In case of the specification of real-time properties syntactical abstractness requires that 
the specification of temporal properties is stated only in terms of the events involved and 
the relevant quantity of time units. 

As a second requirement, we want the specification language to be formal in order to 
ensure rigorous analysis and verification of desired properties. Further advantages of a 
formal approach include: 

�9 in the process of formalization ambiguities, omissions and contradictions in the informal 
requirements can be detected, 

�9 a formally verified part can be embedded with more confidence that it will function cor- 
rectly (the formal model leads to enhanced reliability), 

�9 the formal model can be a foundation for (partly) automated design methods and tools 
such as simulators, 

�9 several designs can be compared. 

The introduction of formal methods for real-time systems has lagged behind that for other 
application areas. Most specification methods do not include constructs to express timing 
in a quantitative way and the few syntactical formalisms that include timing, lack formal 
semantics. It is thus not surprising that only a minority of suitable formal methods for 
real-time systems have been developed. In fact, most of them were developed during the 
last few years. Some of these methods do not tackle all problems of real-time systems but 
concentrate for example, on discrete event systems. Several reasons can be given for the 
fact that formal methods for real-time systems lag behind that for other application areas: 

1. Because the timing requirements are much stricter for real-time systems than for other 
systems, they impose more demands on the implementation technology; therefore, imple- 
mentation concerns (e.g., processor speed) were dominant in the era before the explosive 
growth of computing power for microprocessors that started about ten years ago, 

2. The intrinsic complexity of typical real-time systems makes it much more difficult to 
develop adequate formal methods, 
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3. Most researchers in theoretical computer science have considered real-time either as 
a special (though admittedly harder) case of concurrent systems, or as a topic whose 
study should be postponed until we understand basic concurrency better. 

3. Classical temporal logic 

In this section we first recapitulate the basics of the propositional temporal logic used in 
philosophy since decades (see e.g., (Prior 1967)). We start out from a propositional language 
containing proposition letters (p, p~, P2 . . . . .  q . . . .  ), two propositional constants • (falsum) 
and T (verum), and the boolean operators -~ (not), A (and), V (or), --, ( i f . . .  then . . . )  
and ~ (if and only if). From these proposition letters, propositional constants and boolean 
operators, formulas ~, ~ . . . . .  r r . . . .  are built in the usual way. 

To this propositional language temporal operators can be added. The temporal logic (in 
philosophy also known as tense logic) of (Prior 1967) adds four operators: G (it is always 
going to be the case), F (at least once in the future), H (it has al_ ways been the case) and 
P (at least once in the past). For a unary operator O its dual O is defined by 

O ~ : =  ~ 0 ~ .  

(Then O 1 0 2  equals O1 O2 and O equals O.) The pairs G, F and H,  P are duals of each 
others. 

The semantics of temporal logic is based on frames and models: 

DEFINITION 3.1. A frame (also called point structure) is a pair (T, < ) where Tis a nonempty 
set of 'moments '  (points in time) and < is a binary relation on T ( 'precedence' or 'earlier'  
relation). 

A model is a triple (T, < ,  V) where (T, < )  is a frame and V is a valuation on T, i.e., 
it maps proposition letters onto subsets of T (giving the set of moments where this proposi- 
tion holds). 

DEFINITION 3.2. A temporal formula ,p holds in BqZ = (T, < ,  V) at t E T, notation 
9E, t ~ ~p, is defined by recursion: 

~Yg, t = p 

9E, t ~ _l_ 

~ E , t  ~ G~o 

9g,  t ~ H~p 

iff t E V(p)  (for any proposition letter p) 

for no 9E and t 

iff ~ , t  ~ ~o = 9E, t ~ ~ 

iff u  E T [t < t '  = 9E, t '  ~ ~o] 

iff Vt'  E T [t'  < t = ~E, t '  = ~]. 

From this definition two further important notions of validity (validity in a model, respec- 
tively universal validity) can be derived as follows: 
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9E ~ ~ if u  E T ~E, t ~ ~ 

r if for all models 9E ~ ~ ~. 

Next we study temporal logics with until and since operators. We first define the syntax 
of propositional temporal logic with until and since operators. 

DEFINITION 3.3. L(until, since) is the language with 

vocabulary: 

formulas: 

atomic propositions Po, P~ . . . .  
logical operators -~, A, until,  s ince 

Pi(i E IN) 
" 7  ~D1, ~1 A ~2, ~1 until  ~2 and ~ since ~2 (~1, ~P2 formulas). 

To give the semantics of L(until, since) we can use the notions of frames, valuations 
and models introduced before (see Definition 3.1). For languages with until and since we 
will suppose the temporal frames to be strict partial orders, that is, < is transitive and 
irreflexive. In the definition of ~)'E, t ~ ~ we have only to include the following clauses 
for the operators until and since: 

9E, t = r until r 

9T~, t ~ ~ since ~2 

iff 3t' E T[t < t '  and fiE, t '  = ~2 and 
Vt" E T[t < t" < t '  = ~)E, t" ~ ~p~]] 

iff 3t' E T[t '  < t and 9E, t '  ~ ~P2 and 
u  E T[t '  < t" < t = ~E, t" = ~1]]. 

Because of irreflexivity of < the operators until and since will also be irreflexive, that 
is, they do not include the present as part of the future. 

The temporal operators F, G, P, H can be defined easily in terms of until and since: 

F ~  :=  T until 

P~ := T since ,r 

where still G = F and H = P, of course. 
Similarly to the extension of propositional logic with the temporal operators until and 

since one can extend predicate logic with these operators to get a first-order temporal logic. 
In first-order temporal logics, problems arise because of the interplay between quantifica- 
tion and time (see e.g. (Garson 1984; Cocchiarella 1984)). One of these problems is the 
possibility that the quantified variables (and possibly even their value domains) change 
over time. We avoid this problem by only allowing quantification over variables that do 
not change over time (often called global variables in contrast with local variables). Even 
in this restricted case most first-order temporal logics are incomplete (usually shown by 
proving that Peano Arithmetic can be encoded into them). 

We end this recapitulation of temporal logic by a brief sketch of some issues involving 
the application of temporal logic in computer science. Since the seminal paper of Pnueli 
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(1977) the use of temporal logic for reasoning about many types of computerized systems 
and programs has been steadily increasing. This can be explained by the fact that the underly- 
ing semantics of temporal logic fits well with the notion of computation as used in computer 
science as we will show now. Temporal logic is intended for reasoning about situations 
changing in time. Its semantics makes a clear distinction between the static aspect of a 
situation, represented by a state, and the dynamic aspect, the relation (in time) between 
states. This distinction is also reflected in the syntax: a state is described by the classical 
part of temporal logic while the temporal operators are used for the description of the evolu- 
tion of the situation over time. In this way states and time need not be introduced explicitly 
in the logic itself. The connection with the notion of computation is that a computation 
can be seen as a sequence of states where each transition from one state to the next state 
in the sequence (each step of the computation) can be thought of as a tick of some compu- 
tation clock. In this view computer systems are described as generators of computations 
(also called execution sequences). Therefore, the applications of temporal logic in computer 
science are usually restricted to the class of discrete systems where an execution of a system 
can be viewed indeed as a sequence of state transitions. For that reason the temporal frames 
considered are also discrete. 

The two most common types of temporal frames used in computer science are the natural 
numbers with their usual ordering and tree-like structures where branching is allowed only 
towards the future, giving rise, respectively, to what is commonly called linear (time) tem- 
poral logic and branching time temporal logic. For a comparison between linear and branch- 
ing time temporal logic, see for example, (Stirling 1987). Apart from linear and branching 
time temporal logic, there are temporal logics in use in computer science that are based 
on other types of temporal frames, for example, the partial order temporal logic of (Pinter 
and Wolper 1984), the temporal logic for event structures of (Penczek 1988) and the inter- 
leaving set temporal logic (using a mixture of branching time and partial order elements) 
of (Katz and Peled 1987), but these form only a minority. Another approach is where tem- 
poral frames are not based on points but on intervals instead. This approach is also repre- 
sented in computer science (for an excellent overview of the interval-based approach versus 
the point-based approach in philosophy see (Benthem 1983)), for example, Interval Tem- 
poral Logic with its executable subset Tempura of Moszkowski (see (Moszkowski 1983; 
Moszkowski and Manna 1984; Moszkowski 1986)) and the interval logic of Schwartz et al. 
(Schwartz, Melliar-Smith and Vogt 1983). 

In this paper we restrict our attention to temporal logics based on temporal frames with 
a precedence relation that is linear, in other words we look only at linear time-like temporal 
logics. (Pnueli 1977) contains some deviations from classical temporal logic (as treated 
before), in particular: 

1. the present is considered as part of the future and correspondingly the basic temporal 
operators are reflexive, 

2. only future temporal operators are used. 

In the sequel we will denote the reflexive counterparts of the temporal operators F and 
G by their usual representation in computer science (~, respectively []. In general, irreflex- 
ive temporal operators have more expressive power than the corresponding reflexive ones. 
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Although not done in (Pnueli 1977) several later papers have included the operators X (next) 
and Y (previous) for indicating the next, respectively previous, element in the precedence 
relation (remember that now this relation is supposed to be a discrete ordering). Over the 
natural numbers the irreflexive operators can then be expressed, for example, F~r = XO~o. 
The operators X and Y also have their deficiencies, however. For example, these operators 
lack the abstractness needed to achieve a fully abstract semantics (i.e., on a level of abstrac- 
tion equalling that of a semantics formalizing the chosen notion of observable behavior) 
of concurrent programs (see (Lamport 1983a; Barringer, Kuiper and Pnueli 1986)). 

Concerning the second deviation above, it can be shown that the temporal operator until 
already suffices for expressive completeness over the natural numbers. Therefore, from 
the viewpoint'of expressive power there is no need to introduce past operators when work- 
ing over the natural numbers. However, (Koymans, Vytopil and de Roever 1983) showed 
the advantages of such operators for the elegant specification of message passing systems 
and (Lichtenstein, Pnueli and Zuck 1985) contains many theoretical results about the use- 
fulness of past operators. 

We now come back on the topic of temporal logic as a specification language for com- 
puterized systems and programs. As we have seen above, a computation of a computer 
system can be described as a (linear) sequence of states and associated events (state transi- 
tions). In linear temporal logic the approach is taken that the behavior of a system S is 
given by the set of its computations, say E. A temporal formula ~o is then defined to be 
valid for S (~o is a valid property of S) if each a ~ E satisfies ~, that is, a ~ ~ in the 
sense of Definition 3.2 above (remember that the underlying time domain of linear temporal 
logic is the set of natural numbers so that the sequence a can function as a model). 

Data elements (e.g., those exchanged between a system and its environment) can be parti- 
tioned into state variables and events. For the description of data elements we need a first- 
order variant of linear temporal logic. This variant partitions the set of variables into so-called 
global and local variables where quantification is only allowed over global variables (so 
the local variables always occur as free variables). Global variables range over fixed data 
domains and serve to denote elements thereof while local variables model the state variables 
(such as variables occurring in a program). Events are modeled as predicates (where the 
parameters of the event become the arguments of the predicate). 

When using temporal logic for the specification of programs, a fundamental classifica- 
tion of program properties differentiates between safety- and liveness-properties. For a syn- 
tactical classification of temporal properties into a hierarchy refining this safety-liveness 
classification, see (Manna and Pnueli 1987). Characterizations and decidability of safety- 
and liveness-properties using connections with model theory, formal language theory and 
semigroup theory are contained in (Thomas 1986). 

To end our account of the application of temporal logic as a specification language in 
computer science, we can test temporal logic against the requirements for a specification 
language for real-time properties in Section 2. Syntactical abstractness can be achieved 
by restricting the local variables and predicates to the externally observable state variables 
and events, respectively. This section witnesses the formality of temporal logic. In fact, 
temporal logic is a simple and elegant extension of propositional logic (predicate logic in 
case of first-order temporal logic), yet powerful enough to express interesting properties 
of programs such as safety- and liveness-properties. Furthermore, papers such as (Lamport 
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1983b; Barringer, Kuiper and Pnueli 1984; Barringer and Kuiper 1985a, b) show that tem- 
poral logic can be used for hierarchical development in a compositional and modular style. 

4. Metric temporal logic 

In this section we look at ways of reasoning with temporal logic about quantitative timing 
properties such as those mentioned in the Introduction. The standard models for temporal 
logic based on point structures involve a pure qualitative view of time by considering only 
a set of moments Ttogether with the precedence relation < (see Definition 3.1). The ques- 
tion now is: What should be added to such point structures (T, < )  to be able to handle 
also quantitative temporal properties? Because the evaluation of formulas is dependent on 
a particular point in time (representing the present), we suggest that apart from the prece- 
dence relation between the present and other points in time also the distance between points 
in time is needed. Therefore we add a distance function d with the idea that d(t ,  t ' )  gives 
a measure as to how far t and t '  are apart in time. The next question is: What conditions 
should be put on < and d?  Because quantitative temporal properties relating different com- 
ponents of a system must necessarily refer to a global conception of time, we assume that 
the set of time points can be ordered in a global way. So, we suppose that the precedence 
relation < is total (i.e., transitive, irreflexive and comparable). For the distance function 
d we suppose the usual topological conditions apart from the replacement of the triangular 
inequality by a conditional equality: 

(dl) d(t ,  t ' )  = 0 r t = t '  

(d2) d(t ,  t ' )  = d ( t ' ,  t) 

(d3) if t < t '  < t" then d(t ,  t " )  = d( t ,  t ' )  + d ( t ' ,  t " )  and d ( t " ,  t) = d ( t " ,  t ' )  + d ( t ' ,  t) .  

Next we should determine the range of d. There is no reason to choose the standard 
reals (in fact, the example below shows the usefulness of nonarchimedean ranges for d). 
As is apparent from the conditions (dl)-(d3) above we need a structure with addition and 
zero element. So, we suppose as range for d a structure (A, + ,  0) where addition + and 
constant 0 are restricted by: 

(A1) t5 + tS' = 6'  + t5 

(A2) (~5 + c5') + 6" = 6 + (tS' + 6") 

(A3) t5 + 0 = t5 = 0 + t5 

(A4) t5 + tS' = t5 + tS" = c5' = tS" 
and 

~ + c 5 " = ~ ' + c 5 " ~ 5  =c5 '  

(A5) t5 + 6 '  = 0 = t5 = 0 a n d t S '  = 0 

(A6) 3t5" [t5 = tS' + t5" or ~5' = t5 + t5 "] 

(commutativity) 

(associativity) 

(unit 0) 

(+  injective in both arguments) 

(no negative elements) 

(existence o f  absolute difference). 
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In these conditions the free variables should be universally quantified (we left this out for 
the sake of concise presentation). One can easily check the independence of  these restric- 
tions on (/1, + ,  0), that is, that none of these restrictions follows from the others, by means 
of appropriate examples in which five of these restrictions hold and the sixth fails. An ex- 
ample is/1 = IN U {e} where we take over the standard addition for natural numbers 
supplemented by the following rules for the extra element e (which resembles 1): 

e + e = 2, e + 0 = 0 + e = e a n d e  + n = n + e = n + 1 f o r n  fi IN \ {0}. 

This structure (A, +,  0) obeys all restrictions (/11)-(/16) above except (/14): 

e + e = e + 1, b u t e  ~ 1. 

In spite of their independence, these restrictions nevertheless contain some redundancy 
(e.g., the second equality in/13 is added although this already follows from A1) in order 
to state the intended restriction fully also in the case when some of the other restrictions 
have been dropped. These conditions are motivated as follows. (/11) is enforced by (d2) 
and (d3). One also needs to order/1 to compare different distances (think, e.g., of the 
expression of maximal distance, see point 1 in the Introduction). To this end, first define 

(5 ,~ 6 ' : =  36" [6'  = ~5 + 6"] .  

Such a di" is unique because of (//4). Furthermore, /12 (transitivity) and/13 (reflexivity) 
make __~ a preorder. The corresponding irreflexive relation defined by 

5 ,~ 6 '  : =  36"[6" ~ 0 and 6" = 6 + 5"] 

is in fact a total order (comparable by/16) with 0 as its least element (by A5). 
This leads to the following notion. 

DEFINITION 4.1. A metric point structure is a two-sorted structure (T,/1, < ,  d, + ,  0) with 
signature < c_ T x T, d :  T x T - '  /1, + �9 A x A -* /1 ,0  fi /1 such that 

(i) < is total 
(ii) d is surjective and satisfies (dl)-(d3) 

(iii) (A, +,  0) satisfies (A1)-(A6). 

A and d are called the metric domain and the temporal distance function, respectively. 
In (ii) surjectivity of d is demanded to get a nice correspondence between T and/1. All 

these conditions on < and d were motivated either by practical reasons (having a certain 
application area in mind) or by our wish to obtain a nice mathematical theory. Nevertheless, 
in some cases these conditions could be relaxed, for example it may be beneficial to allow 
a cluster of points having distance 0 to each other (deleting the only if case of condition 
dl). For the time being, we consider the above conditions as the most natural ones. 
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Example 4.1. Consider the following metric point structure. 

T : =  IN x IN 

A : =  {0} x IN U IN + x ZZ  

where IN, IN + and ZZ represent the natural numbers, the positive natural numbers, re- 
spectively the integers. 

Define furthermore 

( n , n ' )  < ( m , m ' )  :=  n < m o r  (n = m a n d n '  < m ' )  

( - (0 ,  In '  - m ' l )  i f n  = m 
d ( ( n , n ' ) ,  ( m , m ' ) )  :=  -~ (m - n, m '  - n ' )  i f n  < m 

[~(n  - m, n '  - m ' )  i f n  > m 

(n, z) + (n',  z ' )  : =  (n + n ' ,  z + z ' )  

0 : =  (0, 0) 

Figure 1 represents T together with its ordering < (to be read from left to right). The 
idea is that the first component of  T represents a kind of macro-time while the second 
component represents micro-time. It is easy to check that this example satisfies all condi- 
tions for a metric point structure and that the given A is nonarchimedean. 

Having determined what the new temporal models should be, we now must find appropri- 
ate temporal operators for reasoning about metric point structures. This is done by transform- 
ing the temporal operators G, F, H,  P from Section 3 into metric operators as follows (here 
and in the sequel 91Z denotes a metric model, that is, a metric point structure together with 
a valuation analogous to the notion of a model for classical temporal logic as defined in 
Definition 3.1): 

~ ,  t ~ G6 ,p : =  u  fi T[(t < t '  and d(t ,  t ' )  = 5) = OR,, t '  ~ ~p] 

9E, t ~ F~ ~o :=  3t' ~ T[t < t '  and d(t ,  t ' )  = 6 and fflZ, t '  ~ ~o] 

fflZ, t m H~ ~o :=  u  fi T[(t '  < t and d(t ,  t ' )  = 5) = fiR,, t '  ~ ~o] 

9E, t ~ P~ ~o :=  3t' E T[t '  < t and d(t ,  t ' )  = 5 and 91~, t '  ~ ~o]. 

Again F 6 -- G~ and P6 ---- H~. Formally, we use the standard first-order language (includ- 
ing identity =)  over (A, +,  0) whose terms t are used to form the metric operators Gt, 
Ft, Ht and Pt. 

I I I . . -  I I - - -  I I I . . .  

( 0 , 0 )  ( 0 , 1 )  ( 0 , 2 )  ( 1 , 0 )  ( 1 , 1 )  ( 1 , 2 )  ( 2 , 0 )  ( 2 , 1 )  ( 2 , 2 )  

Figure 1. Example of a metric point structure: micro-macro time. 
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The metric operators F6 and G6 (and similarly for the pair P~ and H~) are strongly 
related. If  we assume (dl)-(d3) and comparability of < (both are true for metric point 
structures) it is easy to see that F6 can indicate at most one point (i.e., Vt -~ 3t ' t"  [t < t '  

and t < t" and t '  ;~ t" and d(t ,  t ' )  = d(t ,  t " )  = 6]). Because G6 is the dual of F6 it 
must indicate the same point (if it exists). In fact, the existence of this point is exactly the 
difference between F~ and G~ (F6 asserts its existence while G6 does not) as is expressed 
by the syntactical equivalence 

F ~ o  =- F~T A G u e .  

From the operators F6 and P6 several more metric operators can be derived: 

F<~ r :=  36'[0 < 6 '  .~ 6 A F~, r 

P<~ r :=  3~'[0 ,~ 6'  ,~ ~ A P~, ~o] 

until~ ~ := F~ ~b A G<6 

since~ ~b := P~ ~b A H<6 

where G< ,  and H<~ are the duals of F<~ and P<~, respectively: 

G<~ ,p := -~ F<~ -~ 

H<~ ~o := -~ P<~ "~ ~. 

Using these metric operators the five quantitative temporal properties of the Introduction 
can be expressed in the following way: 

1. maximal distance: G(p ~ F<,  q) 
2. exact distance: G(p ~ F~ q) 
3. minimal distance: G(p ~ -~F<~ p) 
4. periodicity (with period 6): Fp ^ G(p --" (-~p until~ p)) 
5. bounded response time: 36 G(p --' F<~ q). 

The one but last of these five properties gives periodicity towards the future (the Fp is needed 
to start the sequence off). Periodicity both towards past and future can be expressed by 

Fp A G(p --, ( ( ~ p  until~ p) A ( ~ p  since~ p))). 

Note that the definition of F<~ above uses quantification over A but this is also already 
essentially needed for the expression of bounded response time (see 5). As stated above, 
besides constants from A (the 6 in 1, 2, 3 and 4 above) we incorporate the full first-order 
language over (A, +, 0). Later on we will also consider a fragment of metric temporal 
logic in which only constants from A are allowed. The formula expressing maximal distance 
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is strictly stronger than the formula for bounded response time which on its turn is strictly 
stronger than the formula G ( p  --* Fq) expressing temporal implication in qualitative tem- 
poral logic. The latter fact can be illustrated by the following example. Take T :=  IN with 
the standard ordering < on IN and the standard distance function (A = IN, d(m,  n) = 

Im - nl). L e t p  be true precisely in elements of  {n(n + 1)/2 - 1 I n > 0} and q precisely 
in elements of {n(n + 1)/2 + n - 1 I n > 0}. This choice of valuation ensures that the 
distance between the n-th occurrence o fp  and the n-th occurrence of q will be n. Therefore, 
in this metric model bounded response time will fail but qualitative temporal implication 
still holds. 

The ability to quantify over A gives metric temporal logic considerable expressive power 
(see also Theorem 4.1 below). For example, from the metric version of an operator the 
corresponding qualitative operator can easily be derived by quantifying 6 away as we will 
show below. Furthermore, for qualitative temporal logic the operators until and since add 
expressive power (see Section 3) but as just shown their metric versions (and hence by 
quantifying 6 away also their qualitative versions) are expressible in metric temporal logic. 
Because quantification over A contributes significantly to the expressive power of  metric 
temporal logic, we now study the interplay between metric operators and quantification 
over A. We start with the simple case of two existential quantifications 

9]~, t ~ 36 F~ ~o --- 3t '  E T 36[t < t '  and d(t ,  t ' )  = 6 and 9E, t '  ~ ~o] 
- 3t '  E T[t < t '  and 91~, t '  ~ ~p] = 9E, t ~ F ~p, 

so ]~ F~ - E By duality also V6 G~ - G. In a similar way 36 P~ - P and v6 H~ - H. 
The presence of two identical (either existential or universal) quantifiers is in itself not 
a sufficient explanation for these equivalences. For example, for classical temporal logic 
HG~o - GH~o is not valid because of the shifting of the reference point (consider, e.g., 
IN in the point 0). In the present case, however, identical quantifications over the metric 
domain and over the set of moments do not influence each other and hence can be 
interchanged. 

More interesting are the cases of alternating quantifiers: 

fiE, t ~ V6 F~ ~o - u  3t '  E T[t  < t '  and d( t ,  t ' )  = 6 and 9E, t '  ~ ~o]. 

For metric point structures < is comparable and (dl) and (d3) hold. As we have seen above 
this implies that F~ and G~ are related by 

F~,? - F 6 T A  G~ ~o. 

So, when universally quantifying over t5 (excluding/~ = 0 because Fo ~o - • for all ~o) we get 

v6[0 ,~ 6 ~ F~ ~o] - V6[0 ,~ 6 --, F~ T] A G ~o 

(since vS[0 .~ 6 --, Ga ,?] - G ~o). Dually we have 

36[0 .~ ~ A G ~ p ]  - 36[0 ~ 6 A G~ _L] v F ~ p .  
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Note that v6[0 < 6 = 9T~, t ~ F~ T] expresses the requirement that there exists for each 
6 ~ 0 a point in the future with distance 6 from t which is like surjectivity of d but now 
demanded locally (for t). 

Apart from the metric operators Gt, Ft, Ht, and Pt defined above, we need two addi- 
tional operators for the proof system to be introduced below. The semantics of these two 
operators Dt and E t is given by 

fiE, t ~ D~ ~o : =  3t '  fi T [t' r t and d(t,  t ' )  = 6 and OTL, t '  ~ ~o] 

9]'L, t ~ E~ ~ : =  I t '  E T [d(t, t ' )  = 6 and 93"L, t '  ~ r 

For metric point structures these two operators can be expressed in Ft and Pt, for example 
Dt : =  Pt  V F t. Nevertheless these new operators are useful by their ability to express the 
requirements on the distance function d in an independent fashion. To show this we first 
introduce also the qualitative versions D and E of the new metric operators D t and E t in 
the same way as was done above for the temporal operators F and P with respect to F t 

and Pt: 

D~;  : =  3(5Dar  a n d E ~  : =  3 6 E ~ .  

Now all conditions in the definition of a metric point structure can easily be expressed 
as follows: 

(i) totality of < is already expressible in temporal logic with only the qualitative operators 
E P and D: 
(a) transitivity of < ,  i.e., Yxyz(x < y < z --' x < z), is definable by the formula 

FF~p - ,  F~p, 
(b) irreflexivity of < ,  i.e., Yx -, x < x, is definable by the formula F~p ~ D~p, 
(c) comparability of < ,  i.e., Yxy(x < y v x = y V y < x), is definable by the for- 

mula D~o --, (P~ v F~o) 
(For irreflexivity and comparability the additional operator D next to F and P of classical 
temporal logic is essential because it can be shown that these two operators alone can 
express neither of these two conditions. The interested reader may consult Chapter 
4 of (Koymans 1989) for more information about the powerful extension of classical 
temporal logic with the D-operator.) 

(ii) d surjective: v6 E E~ T 
(dl): sr '-* Eo ~o 
(d2): V6[(~p A E~ ~b) -* E~(~b A E~ ~p)] 
(d3): u u  a F a, ~ ~ Ea+ a, ~o) A (Pa Pa' ~o --* Ea+a, ~o)] 

(iii) (A1)-(A6) can be directly formulated in terms of + ,  0 and quantification over A. 

To give an example of the four equivalences in (ii) we prove the first one. 

First suppose d is surjective. This means that for all (5 E A there exist t, t '  fi Tsuch 
that d(t, t ' )  = 6. Hence t verifies Ea T. Thus, V6 E Ea T is true. 



SPECIFYING REAL-TIME PROPERTIES WITH METRIC TEMPORAL LOGIC 269 

Conversely, suppose v6 E E~ T is true. Then for all t5 E A there exists a t E T such 
that E~ Y is true in t, implying the existence of a t '  E T at distance 6 from t. Thus, 
d( t ,  t ' )  = tS, so d is surjective. 

Above we showed how the powerful qualitative temporal operators until  and since can 
be defined in metric temporal logic. The great expressive power of metric temporal logic 
is perhaps most clearly illustrated by the following theorem. 

THEOREM 4.1. All first-order sentences over linear orders are definable in metric temporal 
logic. 

P r o o f  The main problem in translating first-order conditions on < into equivalent temporal 
formulas is caused by the possibility to compare in the first-order condition a new variable 
(corresponding to a more recent reference point in time) with much older variables such 
as the comparisons between z and x and between u and y in the example 

v x 3 y  > x 3 z  < x v u ( z  < u < y - *  u = x ) .  

Qualitative temporal logics only allow a comparison between a new reference point in time 
and the most recent reference point before that. Our remedy against this difficulty works 
as follows. Let o~(x~ . . . . .  xn) be the first-order sentence (containing the bound variables 
x~ . . . . .  xn) to be defined by a formula from metric temporal logic. First rewrite o~ in such 
a way that it only contains the atomic formulas xi < Xj and x i = xj  (for 1 < i, j < n) 
and operators -~, ^ and 3. Furthermore, take care that each atomic formula in the scope 
of ax i indeed contains xi (otherwise get the atomic formula outside this scope). The transla- 
tion of the resulting first-order sentence into a formula from metric temporal logic is based 
on the following idea. For metric point structures, the comparison of different reference 
points in time can be accomplished by using the distance function as follows. All points 
in time are compared with a fixed reference point in time which is characterized by the 
fact that this point is the only point at which a certain proposition p holds (see below how 
this can be achieved). The first-order variables x~ . . . . .  x,  are translated into variables 
61 . . . .  , ~, which represent the distance to the fixed reference point (where p holds) taking 
into account comparisons with other variables using < and > by the appropriate future 
and past metric operators. The translation of a into a formula from metric temporal logic 
is given by 

A((p A -~ Dp) ~ #(o ..... o)(a)) 

where A is the dual of E (A~o := -~ E "~ ~o) and the procedure #o ...... s,) is defined below. 
The prefix A((p A -~ Dp) -~ fixes the only point where p holds, the fixed reference point. 
To indicate the comparisons with the fixed reference point the procedure t~ uses additional 
variables s~ . . . . .  sn E { - ,  0, +} ( -  indicates the past, 0 the present and + the future). 
Initially s, . . . . .  sn are all 0. # is defined recursively as follows: 
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~ - ( ~ o 0  :=  ~ - ( a )  

~-(c~ A ~) :=  ~-(o0 A ~-(~) 

#7(3x i  or) :=  36 i E[(tSi = 0 A p A #-~[O/si](ot)) 
V (0 ,~ t5 i A Fai p A /zZ[_/$i](c0 ) 
V (0 ,~ t5 i A Pap A #~-[+/s~](t~)) 

[,,t'~(X i < Xi) :~-- ..L 

ll,-~(Xi = Xi) : =  T 

~ Fp  i f  sj = 0 

/z-;(x i < x j )  :=  FFajp if sj = - 

t FP~jp i fs j  = + 

~ Pp i f  sj = 0 

# z ( x j  < xi) :=  P F a p  i fs j  = - 

L P P a J p  i f s j =  + 

p if sj = 0 

#-;(x i = x j )  :=  Fajp if sj = - 

[ Pajp if sj = + 

where xi in the last five cases (from xi < xi onwards) is the bound variable belonging to 
the smallest enclosing existential quantification. 

Finally, we look at axiomatizations for metric temporal logic. Completeness may be unat- 
tainable because of the very powerful quantification over A. By assuming an oracle for 
A relative completeness results might be obtained, however. Instead of attempting to axiom- 
atize metric temporal logic completely we can at least provide a sound axiomatization: 

DEFINITION 4.2. The metric temporal logic proof system M consists of 

0. the definitions 

~a ,a(6) :=  - i  v6 --i ,p(a), 

Gt ~P :=  ~ Ft ~ ~ ,  

H/(p :=  ~ Pt ~ (p, 
F(p  :=  3t5 Fa ,p, 
G ~  :=  v 6 G a ~ ,  
P ,~ :=  35 Pa (p, 
H ,p :=  v(5 Ha (p, 

1. A complete axiomatization of predicate logic including MP (Modus Ponens) and the 
following two rules (v-elimination, respectively v-introduction): 
a. to infer (p(t) from vt5 ,p(tS), where ,p(t) is the result of substituting the term t from 

the first-order structure (A, + ,  0) properly (i.e., avoiding that any free variable of 
t becomes bound) for all occurrences of fi in ,p((5), 
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b. to infer ~ ~ u r from ~ ~ ~b(t), where t is a term from the first-order structure 
(A, +,  0) that does not appear in ~p --, u ~b(5), 

2. The distribution axiom schemas and temporalization rules of the standard proof system 
for classical temporal logic (see (Benthem 1983)), but now for Gt and Ht instead of 
G and H: 
a. Gt(,p -* ~k) --' (Gt ~P -*  Gt  ,~) and 

H t ( ~  --* ~b) --, (Hi ~ -* H, ~b), 
b. to infer Gt ,p from ~, and to infer Ht ~o from ~,, 

3. the characterizations (i)-(iii) of the properties of a metric point structure above, 
4. the already mentioned additional relationships between metric operators: 

F t ~  " F t T A  G t ~ ,  
P t ~  '-" P iT  A H t ~ ,  

5. Axiom schemas relating to arithmetic over the metric domain: 
a.  F o ~  ,-. x '-" P o ~  

b. Ft, Ft2 tp *.-, Ft, T A Ft,+t ~ tp, 
Pt, Pt2 ~. '-" Pt~. Y A Pt~+t2 ~,  
where F t and Pt are the reflexive closure of F t and Pt, respectively: 

1~ t,p :=  (t = 0 A ~ )  V F  t ~ a n d l i t ~  := (t = 0A~p)  VPt ,p .  

c. Ftt Ptl+t2 ~P ~ Ft, T A et2 ~,  
Pt, Ft, +.re ~P '-' Pt, T A Ft~ .~, 
Ft,+t~ P..t, ~ "-' Ft,+t2 T A Ft~ ~p, 
Pt~+t2 Ft, ~ "' Pt,+t~ Y A Pt~ ~ .  

From this proof system several interesting properties can be derived such as 

(1) V(5 G ~p(tS) .-. Gu ~p(5) and Fu ~,(5) ---, v5 F ,p(5) (these follow from predicate logic 
and the definitions G~ - vtS' Gv ~ and F~ = 35'  Fv r 

(2) v5 F~ ~, .-. u F~ T A G ~p by predicate logic and clause 4 in the definition of M above, 
(3) F t Pt ~P " Ft T A tp by taking t2 = 0 in the first axiom schema of clause 5c in the 

definition of M above 

and similarly for the mirror images (obtained by exchanging G with H and F with P). 
The next properties are important enough to derive them as theorems of M. In these 

derivations MP abbreviates Modus Ponens and M followed by a number indicates the cor- 
responding clause in the definition of M above. 

PROPOSITION 4.1. }-"M Gt(~ A ~b) '-" Gt ~ A G t 1~ 

Proof. This theorem of M can be derived as follows. 

2. Gt(~ A r --, ~p) 
3. G,(~ A ~b) --, Gt~ 

(propositional logic) 
(1, M2b) 
(2, MP, M2a) 
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4. Gt(~p A ~b) ~ Gt~ (analogous to 1-3) 
5. G,(r  A ~b) ~ Gt~o A Gt~ (3, 4) 
6. ~, ~ (~ ~ ~o A ~) (propositional logic) 

7. Gt(,p ~ (ff --+ (p A if)) (6, M2b) 
8. Gt ,p ~ Gt(~b --" r A ~b) (7, ME M2a) 
9. Gt ,p ~ ( G t  ~ ~ Gt(,p A r (8, ME m2a) 

10. G t (p A G t ~b --* Gt(( p A ~) (9, propositional logic) 
11. Gt(,p A r ,-. Gt (p A Gt ff (5, 10) 

This was not very surprising since this holds also for the nonmetric case: G(~o A ~b) .-. 
G,p A G~b (and indeed the derivation above uses only clause 2 of M which stems from 
the standard proof system for classical temporal logic). However, in contrast with the non- 
metric case we have also the following: 

PROPOSITION 4.2. I--" M Ft(( p A ,~) "-* F t (p A F t 

Proof This theorem of M can be derived as follows. 

1. Ft(~o A ~b) .-. F t T A Gt(~o A ~b) (M4) 
2. Gt(~o A r .-. Gt ,P A Gt 4, (Proposition 4.1) 
3. Ft(~p A ~) .-. F t T A G t ~p A G t ~ (1, 2) 
4. F t T A Gt ~ '--' Ft ~o (M4) 
5. F t T A G t ~ .-. Ft ~b (M4) 
6. F,(~ A ~b) ,--, Ft ~, A Ft ff (3, 4, 5) 

The only part of the standard proof system for classical temporal logic that we did not 
take over concerns the tense mixing axiom schemas ~ --+ GP~p and ~ ~ HFg. These are 
however theorems of M, for example, the first one: 

PROPOSITION 4.3. v- m ~o --+ GP,r 

Proof This theorem of M can be derived as follows. 

1. F t T V -n F t T (propositional logic) 
2. Ft T A (p ~ Ft Pt ~o (M5c) 
3. F t Pt ~o .-. F t T A Gt Pt  (P (M4) 
4. F t T A  ~o ~ G t P t ~  (2, 3) 
5. ~ Ft -1 P t ~  "-' ~ (FtT A Gt -1 P t ~ )  (M4) 
6. --1 F t T ~ -1 Ft -1 Pt ~o (5) 
7. -1 Ft 7 - '  Gt PI ~ (6, M0) 
8. ,p -" Gt Pt ~ (1, 4 ,  7) 
9. ~ --' W6 G~ P~ <p (8, Mlb) 

10. ~ -* W6 G~ ]6 '  P~, ,p (9, 6' = 6) 
11. ,p ~ G P ~  (10, M0) 
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Another possibility is to eliminate the quantification over A by only allowing constants 
from A. Such a fragment of metric temporal logic could be based on the following eight 
temporal operators: until<~, until~, until>~, until, since<~, sinc%, since>~, since where 
6 may be any constant from A. Notice that we now included the qualitative operators until 
and since because these can no longer be obtained by quantification over their metric equiv- 
alents. An alternative way to look at these qualitative operators is to see them as special 
metric operators until<~ and since<oo as is done in (Hooman and Widom 1989). In this 
view oo is not an element of A but it is added to ,~ as its greatest element. (Hooman and 
Widom 1989) is also interesting for another reason: it shows how metric temporal logic 
can be embedded as an assertion language into a compositional proof system. 

Another look at the constants 6 from A is to consider them as programs from a kind 
of dynamic logic (see (Harel 1984)) by defining 

[81 := {(t, t ' )  I d(t, t ' )  = 6} 

with the following additional program structure 

0: the 'skip' program 
+: sequential composition; 

and the property that all programs are deterministic: 

F ~  A F ~ b  ~ F~(~ A~b) 

(cf. Proposition 4.2). This connection with dynamic logic deserves further investigation. 
In the same way as indicated in Section 3 for L(until, since) we can introduce global 

variables and quantification over them in order to reason about (possibly infinite) data 
domains. This will be illustrated in the next section. 

5. Specification examples 

In this section we illustrate the application of metric temporal logic to real-time systems 
by a series of examples. The first three examples treat some simple, but characteristic, 
pure real-time phenomena: pure time-out, a watchdog timer monitoring a processor and 
the wait/delay statement. The next four examples combine features of message passing and 
real-time systems. Example four concerns a terminal adaptor where the speed of the incom- 
ing data is higher than the speed of the outgoing data. In example five, a synchronous and 
an asynchronous input are mixed into one synchronous output. Example six treats an abstract 
transmission medium. Real-time communication constructs like send and receive with time- 
out are the subject of example seven. The last example deals with process control systems 
in which continuously changing entities play an important role. 

The priority of operators in the specification examples is as follows: unary operators 
have the highest priority followed by until and since-like operators (including the unless- 
operator defined below), then come A (conjunction) and V (disjunction) and the least priority 
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is given to --, (implication) and ,-* (equivalence). With respect to priority, universal and 
existential quantification are treated as unary operators. 

In our specifications we assume not only linearity of the ordering but also that the order- 
ing is unbounded towards the future in order to reason about infinite behavior. This involves 
the qualitative part of metric temporal logic. For the quantitative part we assume local sur- 
jectivity of the temporal distance function d, that is, we assume u [0 ,~ 8 --, F6 T]. An 
important consequence of this is F 6 - G6 for all 8 g 0 since F6 ~ - F6 T A G6 ~p (see 
Section 4). The standard metric point structures that we have in mind use respectively the 
natural numbers, the integers, the (non-negative) rational numbers and the (non-negative) 
real numbers for the time domain T and the non-negative part of T for A where < ,  + 
and 0 have the standard interpretation for these number systems and d is the absolute dif- 
ference. For example, one of the standard metric point structures is 

(ZZ, IN, < ,  d, + ,  0) 

where < is the standard ordering on ZZ, + the standard addition on IN, 0 the standard 
constant from IN and d is defined by 

d ( z ,  z ' )  : :  Iz - z ' l ,  

In the specifications, we leave out universal quantifications over the data domains (so 
all free variables ranging over a data domain should be universally quantified by a series 
of universal quantifiers in front of the given axiom). 

For the specification examples in this section we need several additional qualitative tem- 
poral operators. First we need the reflexive counterparts of P and F: 

l i ~ p : =  ~ V P r  

and 

F ~ : = ~ v F ~ .  

Instead of 17 we will use the more usual representation in computer science O (see Section 
3). Next we need a reflexive version of since which we will denote by since. Semantically 
it corresponds to replacing every < in the definition of since by <. Syntactically this can 
be achieved by the definition 

~1 since ~2 : =  (r ^ r v (~1 ^ r since (r  ^ r 

Finally we also need a unary operator denoted by J representing that its argument has just 
become true: 

J~  : =  ~ ^ (P~ - ,  -~ ~ since "~ ~). 

(We thank Job Zwiers for the discussion leading to this more concise representation of 
this operator than the one contained in (Koymans 1989).) This definition can be explained 
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as follows. Apart from the obvious first part demanding that ~0 holds at the current moment, 
this formula describes that there was a period immediately before (how small it may be) 
such that ~o was false in that period. Note that for a formula ~o that is true on the rationals 
and false on the irrational numbers J~o is never true (this corresponds to our intuition that 
~o changes its truth value infinitely fast and hence cannot have become just true). 

In our examples we will encounter periodicity requirements. Unconditional periodicity 
of  an event e with period 6 can be formulated by 

periodic(e, 6) : =  e - ~  ~ e u n t i i ~  e .  

Furthermore, conditional periodicity can be defined by adding a condition c to the antecedent: 

periodic(e, 6, c) : =  e A c ~ ~ e u n t i l ~ e .  

In applying metric temporal logic to practical examples the metric domain A should be 
associated with a time unit relevant for that application, usually second or a derivative 
thereof. However, in principle other time units, such as number of shaft rotations, are allowed 
too. Connected with this is the translation of elements of data domains that represent time 
units into elements of  A. We will represent this translation by a function tS. For example, 
when the data domain represents milliseconds and A counts in seconds then we can take 

t 
6(0 - 1000" 

In case the data domain has more structure, one may want to impose additional conditions 
on 6, for example, when the data domain is ordered monotonicity of t5 with respect to this 
ordering and when the data domain incorporates addition distributivity of  6 with respect 
to this addition. The most simple case occurs when the data domain can be embedded 
in the metric domain. In such a case it suffices to take for 6 simply the embedding mapping. 

Since we will combine message passing and real-time features in the last four examples, 
we now briefly indicate how message passing systems can be specified with temporal logic 
(see Chapter 5 of (Koymans 1989) for more details and examples). In the following we 
are only interested in describing the external behavior of message passing systems. Therefore, 
we view such a system as a black box. A message passing system, then, is a system that 
gets messages and passes these messages on to their destination. If  we denote the input 
of a message m by in(m) and the delivery of a message m by out(m), Figure 2 represents 
a message passing system as a black box. Here, the source and destination of a message 
are left implicit, that is, in(m) means that there is a source that gives m to the message 

i (m) t out(m) 
M e s s a g e  P a s s i n g  S y s t e m  

Figure 2. Message passing system as a black box. 
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passing system and out(m) means that the message passing system delivers m to its destina- 
tion (note the asymmetry: the destination of a message must always be known, while this 
is not necessarily the case for the source). When sources and destinations are explicitly 
represented we get in(s, m) and for symmetry reasons out(d, m) where, however, always 
d = destination(m). 

The external behavior of a message passing system is characterized by its input sequence, 
its output sequence and their relation in time. Hence, only input, output and their relation 
determine the observable difference between several types of message passing systems. 
This means that quite different message passing systems such as a simple buffer (or transmis- 
sion medium) and a complex communication network should be considered the same as 
long as they exhibit the same observable (external) behavior, that is, the same relation in 
time between input and output. 

The following basic assumption about in, out and their relation in time is characteristic 
for all message passing systems: 

NC the message passing system does not create messages by itself neither 

NC1 

NC2 

by creating new messages (a message is new when it has not been given to the 
message passing system before), nor 
by delivering duplicates of messages given to the message passing system. 

In other words: the bag of delivered messages is always some part of the bag of messages 
that have been given to the message passing system. NC is an abbreviation for No Creation. 
All message passing systems are required to satisfy this assumption because they are in- 
tended to pass messages and not to modify/create or replicate messages. Although it is 
known that neither NC1 nor NC2 can be guaranteed completely in practice, it makes sense 
to make such slightly idealized assumptions. Anyway one always has the option of dropping 
one or both of them (although in case of dropping NC1 this would allow the system to 
exhibit almost any behavior). NC is the basic safety assumption for message passing systems 
in the sense that the system does not commit a bad thing (see, e.g., (Lamport 1983a) for 
this characterization of safety) by creating messages. Concerning liveness, the basic assump- 
tion is that at least some messages that have been given to the system will be delivered 
at their destination, as formulated in the following liveness assumption: 

LA if an infinite number of messages will be given to the message passing system, an 
infinite number of these will be delivered at their destination. 

Stated informally, the system may lose an arbitrary number of messages in a row, but even- 
tually it should deliver at least one message (and since time extends to infinity repeating 
this we get the delivery of a second message, a third message et cetera). 

In the above representation of message passing systems we assume that both in(m) and 
out(m) cause no blocking, that is, the message passing system can never refuse a message 
that is given to it (it always accepts the message) and it is always able to deliver a message 
to its destination. In practice, this is usually achieved by associating input and output queues 
at both ends of the message passing system (if we do not make the unrealistic assumption 
of infinite queues, this implies that in(m) leads to the loss of m when the input queue is 
full and similarly for out(m) and the output queue). 
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Because of the physical limitations in the real world it makes sense to make also the 
following assumption of finite speed: 

FS the speed of the message passing system is finite, that is, there is a positive (infinite 
in case the message gets lost) delay between the acceptance of a message and its 
delivery. 

As is apparent from the picture above, the interface between the message passing system 
and its environment consists of in and out. Sometimes more information about the inter- 
face is available, for example that there is only a single input line or a single output line 
(a line is called single when at any time there can be at most one message present on the 
line) leading to the following assumptions no simultaneous input and no simultaneous ouptut: 

SI at any moment of time, at most one message can be given to the system, 
SO at any moment of time, at most one message can be delivered to its destination. 

These assumptions apply in particular to the case of a single source and a single destina- 
tion or in case of explicit representation of sources and destinations for each source and 
destination separately. Although there cannot be two messages at the same time given to 
the system nor delivered by the system, it is perfectly possible that there is a message given 
to the system simultaneously with the delivery of a (different) message by the system. Apart 
from the assumptions SI and SO being enforced by the interface it is also possible that 
the environment, respectively the system, will ensure that no simultaneous inputs, respec- 
tively outputs, occur (in spite of the presence of several input, respectively output, lines). 
This is the reason that the nomenclature single input and single output would be misleading 
for the above assumptions SI and SO; therefore we call them no simultaneous input and 
no simultaneous output, respectively. 

In the above description it is not stated whether in(m) and out(m) are considered to be 
instantaneous or to have a certain duration. Anyway, for message passing systems it can 
be assumed that they are instantaneous, because it is always possible to identify a unique 
moment of time at which a message can be said to be accepted, respectively delivered: 
Take for example the case where a message consists of bytes, then one can let in(m) and 
out(m) correspond to the input (respectively output) of the last byte of m (since we assumed 
that bytes are not observable but only messages, in(m) can be seen as instantaneous, although 
on a finer level of granularity the different bytes can be seen). 

An example of a message passing sytem often occurring in practice that is subject to 
the above restrictions (NC, LA, FS, SI, SO) is a transmission medium with a probability 
between zero and one of a successful transmission. Such a message passing system exhibits 
only external behaviors that are allowed by these restrictions although the probability of 
the occurrence of certain behaviors may vary. 

Apart from the above restrictions, message passing systems can be distinguished by requir- 
ing additional properties. As we saw above the basic liveness requirement for a message 
passing system is that at least some of the accepted messages will be delivered. Sometimes 
we need the stronger requirement that all accepted messages will eventually be delivered 
in which case we will call the system perfect. In case messages may get lost (an imperfect 
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system) this notion of a lost message must again be considered as a purely external one, 
that is, whenever an accepted message is never delivered it is considered as being lost, 
although it may remain forever in the message passing system (and is not lost in the inter- 
nal view of that system; an example is a network with a routing algorithm that does not 
guarantee that each message will eventually reach its destination). 

Another distinction can be made by requiring a certain order in which accepted messages 
are delivered (if at all). In the above we imposed no order at all (this corresponds to a 
bag-like behavior). As an additional requirement one can pose FIFO ordering (first-in first- 
out, like queues) or LIFO ordering (last-in first-out, like stacks). It should be noted, however, 
that the pure data structure view of queues and stacks is complicated by the fact that these 
can be operated upon in parallel in case of message passing systems by the input and out- 
put of messages (for a stack a simultaneous pop and push, for example). An example of 
a FIFO message passing is an ordinary buffer. An example of an unordered (that is, in 
no order at all) message passing system is a communication network in which each message 
is sent on to an intermediate node depending on some routing algorithm. Due to, for exam- 
ple, congestion on the chosen route, later messages may arrive earlier when sent via alter- 
native routes. 

It can be proved that a large number of natural classes of message passing systems cannot 
be specified with strong temporal logic (see Section 5.4 of (Koymans 1989)). The reason 
for this problem is assumption NC2 above: In case of duplicated messages it becomes im- 
possible to couple each message that is delivered by a message passing system to a unique 

message accepted by that system. This result seems to necessitate the enrichment of tem- 
poral logic for the specification of message passing systems, for example, with auxiliary 
data structures or history variables. In Section 5.5 of (Koymans 1989) it is shown that no 
such enrichment is logically required by introducing an additional axiom within temporal 
logic which formalizes the assumption that messages accepted by the system can be uniquely 
identified, for example, by means of conceptual time stamps. This assumption can be justified 
by the notion of data-independence of (Wolper 1986). Informally, a system is called data- 
independent when the values of the supplied data do not influence the functional behavior 
of the system. Since message passing systems are intended to pass data, they can be viewed 
as being data-independent. One of the results of (Wolper 1986) implies that the correctness 
of a data-independent system does not depend on the uniqueness of the incoming data. 
Hence, this assumption of unique identification is not really a restrictive one. 

We now show how pure message passing systems can be specified with the temporal 
logic of Section 3. Because in and out can be considered to be instantaneous we can model 
in and out by (unary) predicates. 

First we formulate our assumption about the uniqueness of incoming messages (the Unique 
Identification assumption): 

MP1 in(m) -o --1 p in(m). 

Here and in the sequel, MP is an abbreviation for message passing. Under this Unique 
Identification assumption the most important basic assumption of message passing systems, 
No Creation can be specified by: 
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MP2a out(m) ~ P in(m) 

MP2b out(m) ~ ", P out(m). 

The first of these two axioms represents the demand that a message passing system does 
not create new messages, while the second axiom represents the absence of duplicate mes- 
sages (since the input consists of unique messages by the Unique Identification assumption, 
the output must also consist of unique messages because no messages may be created by 
the message passing system). Of course these two axioms can be combined into one: 

MP2 out(m) ~ P in(m) A ~ P out(m). 

Notice that the axioms MP2a and MP1 taken together imply that in(m) ~ -~ P out(m). 

In general, when perfectness of the message passing system is not assumed, the basic 
liveness assumption LA above is essential to ensure that at least some messages arrive (other- 
wise the system that throws all messages away would satisfy all conditions for a message 
passing system): 

MP3 G F 3 m in(m) ~ F 3 m out(m). 

Above also the assumption FS of finite speed is mentioned for realistic purposes. Finite 
speed can be enforced by replacing the P-operator in axiom MP2a above by its strict (i.e., 
irreflexive) version P and similarly for axiom MP2: 

MP2a ' 
MP2'  

out(m) ~ P in(m) 

out(m) --* P in(m) A ~ P out(m). 

No simultaneous input and no simultaneous output can be specified respectively by 

MP4a 
MP4b 

in(m) A in(m') --* m'  = m 

out(m) A out(m') ~ m'  = m. 

This concludes the survey of the first set of assumptions for message passing systems. We 
now turn to the additional assumptions about perfectness and ordering. The perfectness 
of a message passing system (which implies the basic liveness assumption above) can be 
expressed by 

MP3'  in(m) ~ 0 out(m). 

When finite speed is assumed, the O in the axiom above can be replaced by its strict ver- 
sion F. What remains is the specification of special orderings of the output with respect 
to the input. We look at the cases of FIFO (queue-like) and LIFO (stack-like). First-in 
first-out requires the same ordering in the output as in the input: 

MP5 out(m) A P out(m') ~ P (in(m) A P in(m')). 
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The above axiom suffices when no simultaneous output is assumed. Otherwise also the 
case when two messages are output at the same time should be considered. This is reflected 
in the following axiom: 

MPSx out(m) /x out(m') ~ P (in(m)/x in(m')). 

This exception is caused by the following asymmetry between input and output when requir- 
ing FIFO-behavior: 

in(m ') 
in(m) out(m) out(m ') 

I I 

is allowed (when m and m '  are input at the same time none of these messages can be said 
to have come in first, so they may be output in an arbitrary order), but 

out(m ') 
in(m) in(m ') out(m) 

I I I 

is not (when m is input before m', it should also come out first in the output). 
For last-in first-out we get similar specifications (although a bit more complicated) because 

stack-like behavior allows apart from the reversal of the ordering from output and that from 
input also the possibility that a message has already been output by the system in the mean- 
time, whence a comparison with a message that has been input after that is not needed 
any more: 

MP6 out(m) A P out(m') ~ P (in(m') A P in(m)) V P (out(m') A ~ P in(m)). 

Here we consider 

out(m ') 
in(m ') in(m) out(m) 

I I I 

as correct LIFO-behavior (otherwise the last P in the axiom above should be replaced by 
its reflexive version li). This is comparable with a simultaneous pop and push (recall that 
input and output on both sides of our queues and stacks can operate in parallel, for exam- 
ple, the case in(m) ^ out(m') is always possible, also when assuming no simultaneous input 
and no simultaneous output). Just as in the FIFO-case, when no simultaneous output is 
not assumed, an additional axiom is needed, in this case: 

MP6x out(m) A out(m') --* (-~(in(m) V in(m')) ~ P (in(m) A in(m'))). 
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Again there is a little complication, this time because of the correct LIFO-behavior (unless 
we suppose finite speed): 

out(m ') 
out(m) 

in(m) in(m ') 

I 

(although m'  comes in last, m can be considered to have been already output). This con- 
cludes our sketch of the application of temporal logic to message passing systems. 

In examples three and seven we look at statements from concurrent programming lan- 
guages such as CHILL (Chill 1980) or Ada (Programming Language Ada 1983). For expres- 
sing the semantics of programming languages we use location variables I and location predi- 
cates at and after. The first assumption on locations is that being simultaneously at and 
after the same location is impossible (being simultaneously at different locations in different 
processes or tasks is of course possible): 

L1 -~ (at(l) A after(l)). 

Locations are special data elements and as such we can impose on them the Unique Iden- 
tification assumption. However, being present at a certain location is not instantaneous, 
but has some duration, so the uniqueness of locations is expressed by 

L2 at(l) -~ at(l) unless (after(1) ^ G -~ at(l)) 

where unless is the weak version of the until  which does not require that its second argu- 
ment will become true eventually: 

~o~ unless  ~2 :=  G ~ v ~ until  ~2. 

5.1. Example 1: Pure time-out 

One of the most common and easiest real-time constructs is the time-out. A time-out is 
generated at the end of a period (whose length is determined by the value by which the 
timer was set) in which a certain event (think of the signal resetting the timer) has not 
occurred. Time-outs are widely used in real-time systems to safeguard one part of a system 
against malfunction of another part. Let the event be e and the time-out value 6, then the 
time-out on e after t5 can be defined in metric temporal logic by 

t ime-out(e,  6) :=  -~P<~ e. 

So, a time-out on e after 6 is generated if and only if e has not occurred during the last 6 
time units. Notice that in this representation the setting of the timer is considered irrelevant. 
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If we want to incorporate this, however, let set and reset be the event setting, respectively 
resetting, the timer, then a time-out with period 6 can be described by 

"~ reset since b set. 

5.2. Example 2: Watchdog timer 

This example concerns a pure real-time system, a watchdog timer. A processor is monitored 
by a timer, the watchdog. The processor sets the timer by a signal enable(t) and it should 
reset the timer by a reset signal each time before the timer expires (cf. the previous exam- 
ple). When the processor does not succeed in resetting the timer in time, the processor 
will be stopped by a halt signal from the watchdog. At any time, the processor and the 
watchdog timer can be restarted by an initiate signal from the environment (e.g., an operator 
pushing a button). After an initiate signal a new period of enabling and resetting the timer 
starts. Once the timer is set with enable(t) after an initiate signal, the time-out period can- 
not be changed (and thus every subsequent enable(t') signal is ignored) until the next ini- 
tiate signal. Figure 3 summarizes this state of affairs. 

We assume that two settings of the timer cannot occur simultaneously (otherwise the 
time-out period could be unknown): 

enable(t) A enable(t') ~ t' = t. 

To identify the first enable(t) after an initiate signal we define 

firstenable(t) := enable(t) A (-~ 3 t' enable(t')) since initiate. 

in i t ia te  

1 l 
processor  

enable(t)  

reset  

watchdog  
t imer  

halt I 

Figure 3. Watchdog timer. 
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The only essential thing to be specified is the generation of the halt signal. This is character- 
ized by a period bounded by firstenable(t) (timer set) and a halt signal (timer stopped) 
in which: 

1. no initiate and no halt signal occurred during this whole period (no halt signal since 
we want at most one halt signal to occur between two initiate signals), 

2. no reset occurred during the last t time units of this period. 

The generation of a halt signal can then be specified by a nested since formula: 

halt .-. 3 t[t > 0 A (--1 initiate A -~ halt A ~ reset) since~ 0 
( ( 9  initiate A -~ halt)sincefirstenable(t))] 

where t5 transfers an element from the data domain of enable to an element of the metric 
domain A (see the introduction of this section). 

5.3. Example 3: Wait~delay statement 

This example treats the wait statement or delay statement as occurring in concurrent pro- 
gramming languages such as CHILL (CHILL 1980) or Ada (Programming Language Ada 
1983). See the introduction of this section for the way we use locations to express the seman- 
tics of programming languages. By wait(1) we denote that I is the location of a wait state- 
ment and waitvalue(l) denotes the specified waitvalue of that wait statement. The seman- 
tics of a wait statement is then specified by 

J at(l) A wait(l) --* at(l) until~c~aitvatue<O) after(l). 

Remark 5.1. For the J-operator and the function t5 transferring elements from a data domain 
to elements of the metric domain A, see the introduction of this section. 

Remark 5. 2. Being present at a location takes some time so the wait statement cannot be 
passed in 0 time units. In other words, even if the waitvalue is 0 the function di will take 
care that this is mapped to a positive number to account for the time it takes to transfer 
control (cf. Appendix A in (Koymans, Shyamasundar, de Roever, Gerth and Arun-Kumar 
1985) concerning this problem for the Ada delay statement). 

Remark 5. 3. If  also an infinite waitvalue is allowed we add the following axiom for this 
special case: 

at(l) A wait (l) A waitvalue(l) = oo ~ G at(l). 

5.4. Example 4: Terminal adaptor 

This example is a mixture of message passing and real-time. It concerns a simplified termi- 
nal adaptor. On one side bytes are received from a data link operating on 512 bytes/second. 
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s t a r t  
1 

s top  

in (b )  

buffer  
(N1 places)  out(O) 

Figure 4. Terminal adaptor. 

On the other side bytes are transmitted to a terminal with a rate of 300 bytes/second. The 
adaptor has a buffering capacity of N~ bytes and it prevents buffer overflow through sending 
stop and start signals to the data link as soon as the buffer becomes more than 80% full, 
respectively more than 80% empty. It is assumed that after the sending of a stop signal 
at most N2 bytes are sent by the data link (of course N2 should be small compared to NO. 
The data link may resume sending bytes only after it has received a start signal. Let in(b) 
denote the reception of byte b from the high-speed data link and out(b) the transmission 
of byte b to the terminal. The above is summarized in Figure 4. 

The terminal adaptor is a perfect FIFO message passing system, so we suppose: 

Unique Identification (MP1) for in, 
No Creation and finite speed (MP2 ') for out with respect to in, 
perfectness (MP3') 
no simultaneous input and output (MP4a, b) for in and out, 
FIFO ordering (MP5). 

Additionally, the terminal adaptor obeys some real-time restrictions. First define 

buffered(b) := P in(b) A -1 P out(b) 

to express that byte b is at the moment contained in the buffer of the terminal adaptor. 
We assume that transmission of bytes to the terminal is irregular (i.e., aperiodic), but within 
~oo of a second: 

buffered(b) ~ F< ~oo 3 b '  out(b').  

Because the buffer respects FIFO ordering this can be strengthened to 

buffered(b) A -1 3 b'[buffered(b')  A P(in(b) A P in(b'))] 
-~ 3 b'  out(b') until<%oo out(b) 

where ~ until<6 r is of course defined by 

3~'[0 ~ ~' ~ ~ A ~ until~, r 



SPECIFYING REAL-TIME PROPERTIES WITH METRIC TEMPORAL LOGIC 285 

The strengthened axiom above can be derived as an instance (taking ~o - 3b' out(b') and 
~k ~ ou t (b ) ) f rom 

-~ SO until ~ ^ F<6 SO - '  -~ so until<~ 

(where -~ so until ff stems from the part about the FIFO ordering). 
We now proceed with the other side, the reception of bytes from the data link. Define 

stopped :=  (-~ start) since stop 

start.._stop__interference :=  0 < ~  (stop V start) 

(where 0<~ SO is defined by so v F<~ SO) to indicate that the reception was stopped (a stop 
signal was issued and since then no start signal has been issued), respectively a period 
(of length ~12) in which reception is interfered by issuing a stop or start signal. We can 
now specify the regular reception of bytes from the date link with period ~12, unless reception 
was stopped or interfered by a stop or start signal: 

in(b) A ~ stopped A ~ start_._stop__interference --, ~ 3 b '  in(b')  untii~,~ 3 b '  in(b') .  

Remark 5.4. This axiom represents a conditional periodicity requirement. Therefore, the 
above axiom can also be written as 

1 
periodic(3 b '  in(b') ,  ~]-~, "~ stopped A -, start__stop__interference). 

(Recall from predicate logic that v x[(P(x) A Q) ~ R] is equivalent with (Q A 3x P(x)) --, R 
when Q and R do not contain x free.) 

Remark 5.5. Note that -~ (-~ start since stop) A ~ 0 <~,2 (stop V start) is equivalent with 
F~,~ ( -1 start since stop) A ~ 0 < ~,~ start (the latter formulation was used in (Koymans, 

Kuiper and Zijlstra 1987)). 

After a stop signal the data link need not immediately stop sending bytes (it can still 
send at most N2 bytes). Nevertheless, the reception of bytes remains regular in such a period. 
To enforce this we also demand backward periodicity after the first byte after the last start 
signal: 

in(b) --* --, ~ b '  in(b ')  since start V "~ 3 b '  in(b')  since,/,,~ 3 b '  in(b') .  

After a stop signal at most N2 bytes can be sent by the data link: 

start since>N2/~l 2 stop --* -~ 3 b in(b) 

where so since>~ ff is defined by 

3~'[t5 ~__ tS' A so since~, ~]. 
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At last we should specify the generation of the start and stop signals. For convenience 
we assume that NI is divisible by 5. To indicate the situation that the buffer is at least 80% 
full, respectively at least 80% empty, we define 

f 4/rfi/i + I %N1+1 almostfull "= ] b~ . . .  ] by~v,+l A bi ;~ bj A A buffered(bi) 
i,j=l i=1 
i<j 

almostempty "= ", 3 b~ . . .  3 b,/,N, A bi e bj A A buffered(bi) . 
i,j=l i=1 
i<j 

Remark 5.6 Nt is a fixed (constant) parameter in this specification so that the sequence of 
existential quantifiers in front of these formulas can be replaced by a sequence of fLxed length. 

Remark 5.7. When one allows the use of auxiliary data structures such as a queue, one 
simply could refer to the length of the queue representing the buffer. However, we consider 
the use of auxiliary data structures against the requirement of syntactical abstractness for 
specification languages (see Section 2). When one decides to use only logical and temporal 
operators combined with quantification over and equality in the data domain (in this case 
bytes), a bit more complex definitions like the ones above are unavoidable. 

Now we should specify that the start and stop signals will be generated as soon as the 
buffer becomes (again) almost full, respectively almost empty. To express the as soon as 
aspect, we use the just-operator J (see the introduction of this section): 

start ,-. J almostempty 

stop ,-. J almostfull. 

As one can see from these two axioms the start and stop signals are not essential and, 
using these two axioms, can be consequently replaced in the previous axioms by their equiv- 
alent right-hand sides. In other words, this specification can be given in a more abstract 
way only in terms of in and out without the implementation-oriented signals start and stop! 
This phenomenon occurs because we see systems as black boxes and hence only specify 
the outside, but on the other hand overviewing this outside from all sides (seeing the whole 
environment). In the case of the terminal adaptor, the start and stop signals are essential 
from an implementation viewpoint because the data link cannot see from its position how 
the other side (the terminal) is doing, in particular how fast the terminal adaptor transmits 
bytes at that side. Because the data link does not have this information, it is not able to 
stop in right time and start sending bytes again when necessary by itself. 

5.5. Example 5: Mixing synchronous and asynchronous input 

In this example we specify an object with two inputs and one output. The original informal 
specification is contained in (Denvir, Harwood, Jackson and Ray 1985): 
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The object has two inputs and one output. The output and one of the inputs respec- 
tively send and receive data in packets at regular intervals. The remaining input is asyn- 
chronous, that is, data appears at undetermined times. 

The data packets which arrive at the synchronous input may be full or empty, and 
the object may only output data by forwarding packets from the synchronous input or 
filling an empty packet with data from the asynchronous input. All packets have the 
same size. 

This is represented in Figure 5. The object, like the terminal adaptor of Example 4, has 
a mixture of message passing and real-time features. It seems the intention of the informal 
specification above that the periods of the output and the synchronous input are the same 
(in the picture represented by 3' > 0). If the period of the output would be shorter than 
that of the synchronous input, the output will have to create packets at a certain moment 
and this violates the No Creation assumption for message passing systems. If, on the other 
hand, the period of the output would be longer than that of the synchronous input, the 
output cannot keep pace and packets will be lost eventually. As we interpret the above infor- 
mal specification this seems not intended because that specification suggests that the object 
functions as a perfect message passing system. Furthermore, we assume finite speed for 
the passing of packets. Because of the synchrony of the output and one of the inputs this 
leads to a fixed delay t5 > 0. This delay 5 represents a kind of processing time to pass 
or possibly fill a packet. The message passing aspect of the object is somewhat unusual 
because only one output is coupled to two inputs. The most important input is, however, 
the synchronous one and the asynchronous one only functions in exceptional cases (an empty 
packet on the synchronous input). Therefore, the following message passing properties hold 
between the two inputs and the output: No Creation and finite speed hold between the out- 
put and both inputs, FIFO holds for the output and the synchronous input while perfectness 
only holds for nonempty packets on the synchronous input. These message passing proper- 
ties will be a consequence of stronger real-time properties given below. We do assume 
no simultaneous input and output: 

ins(p) A ins(p') ~ p '  = p 

in~(p) ^ ina(p' ) ~ p '  = p 

out(p) A out(p ' )  ~ p '  = p. 

(period 7) 
in~(p)  

in (p) 

object  
(delay ~) 

(per iod 7) 
o u t ( p )  

Figure 5. Mixing synchronous and asynchronous input. 



288 R. KOYMANS 

Also unique identification is supposed. Because the inputs are not clearly separated, but 
are mixed in this case, we must not only assume unicity for both inputs separately but 
also for the inputs between each other: 

ins(p) v ina(p) ~ --1 P (ins(p) V ina(p) ) 

(ins(p) A ina(p) ). 

Recall from the introduction of this section that the No Creation assumption on message 
passing systems consisted of two parts: no new messages and no duplicates. The no new 
messages part will follow from the real-time requirements below, but the no duplicates 
part is independent from the message passing relation between the output and the two inputs 
described above. So, we demand for the output: 

out(p) ~ -'1 P out(p). 

We can now turn to the real-time requirements of the object. Using the abbreviation peri- 
odic(e, 6) defined in the introduction of this section, regularity of the output, respectively 
synchronous input, is required by 

periodic(3 p '  ins(p'), "y) 

and 

periodic(3 p '  out(p') ,  30. 

The following two real-time requirements concern perfectness with a delay of 6 differen- 
tiating the cases of a nonempty and empty packet on the synchronous input: 

ins(p) A -1 empty(p) --* F~ out(p) 

ins(p) A empty(p) ~ F~ (out(p) V 3 p '  [out(p') A P ina(p')]). 

Remark 5.8. The latter axiom allows that a packet arrives on the asynchronous input at 
the very last moment. This is not quite in accordance with the idea that the delay 6 represents 
a kind of processing time to pass or possibly fill a packet. More tailored towards this idea 
would be the axiom 

ins(p) A empty(p) ~ F 6 out(p) V 3 p '  [P ina(p') A F~ out(p')], 

that is, getting the P-operator out of the scope of the F~. 

Remark 5.9. Both axioms together (with the obvious change in case the alteration suggested 
in the previous remark is taken into account) guarantee that 

ins(p) ~ F~(out(p) v 3 p '  [out(p') A P ina(p')]), 
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so in particular 

ins(p) ~ F6 3 p'  out(p'). 

Remark 5.10. Because of Remark 5.9 and regularity of the output with period 3', the axiom 
for regularity of the synchronous input with period 3' can be weakened to 

ins(p) ~ Fv 3 p '  ins(p'). 

The reason is that ins(p) ^ F<v 3 p' ins(p') implies by Remark 5.9 

F~(3 p'  out(p') ^ F<v 3 p'  out(p')) 

which contradicts the regularity of the output with period 3'- 

Our last axiom ensures that output does not start too early, to be precise only after a 
delay 6 after the first packet on the synchronous input: 

] p P ins(p) --* F~ ~ 3 p '  P out(p'). 

An equivalent formulation of this axiom looks backwards: 

3 p'  P out(p') ~ P~ 3 p P ins(p). 

Now we can show that the remaining message passing properties are implied by the above 
real-time requirements. First, an obvious strengthening of Remark 5.9 gives 

ins(p) -+ F~((out(p) A P~ ins(p) ) v 3p'[out(p') A P ina(p')]). 

So, each packet on the synchronous input leads after a delay 6 to the output of either that 
packet or an earlier packet from the asynchronous input. Since the synchronous input and 
the output have the same period 3' these packets caused by the synchronous input make 
up for all packets on the output from a delay 6 after the first packet on the synchronous 
input (there can be no packets in between since the output is regular and there can be no 
packets simultaneously with those generated by the synchronous input because no simultane- 
ous output is assumed). The last axiom ensures that before a delay 6 after the first packet 
on the synchronous input there can be no packet on the output. Thus, the only packets 
on the output are those generated by a packet on the synchronous input as formulated by 
the above formula. Inspecting this formula we immediately can conclude no creation of 
new packets and finite speed since either out(p) A P~ ins(p) or out(p') ^ P ina(p') holds. 
In fact, we showed that out(p) ~ P~ ins(p) V P ina(p). No duplication of packets was al- 
ready formulated separately and takes care that a packet from the asynchronous input cannot 
be taken twice to fdl an empty packet from the synchronous input. FIFO ordering for packets 
from the synchronous input follows because the above implies that a packet from the syn- 
chronous input will be output after a delay ~5 or not at all as formulated by the formula 
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ins(p) ~ F~ out(p)  V G ~ out(p) .  

Perfectness for nonempty packets of the synchronous input follows already solely from 
the axiom about nonempty packets at the synchronous input. 

5.6 Example  6: Abstract  transmission medium 

A transmission medium can be considered as a message passing system where the input 
and output are called transmit, respectively arrive and the data consists of signals. We assume 
the following aspects of message passing systems: unique identification of signals, no creation 
of signals and finite transmission speed, basic liveness, no simultaneous input and output. 
As given in the introduction of this section these can be formulated respectively by: 

transmit(s)  ~ -1 P transmit(s)  

arrive(s)  ~ P transmit(s)  ^ -~ P arrive(s)  

G F 3 s transmit(s)  ~ F 3 s arrive(s)  

transmit(s)  A t ransmi t (s ' )  ~ s '  = s 

arrive(s)  ^ arr ive(s ' )  ~ s '  = s. 

The characteristic feature of the transmission medium on top of being a particular kind 
of message passing system is the requirement that it is not too lazy, that is, there exists 
a fixed period 3' in which the transmission medium attempts to transmit at least one signal 
(successfully or not). So, when there are no other signals to be transmitted, 3' represents 
the maximum time for which the attempt to transmit a signal can be delayed. Such a require- 
ment is needed to enable higher-level protocols to time-out on signals sent but not yet received 
and start retransmission. This is formulated by 

3 3' G (3 s [I i transmit(s)  ^ -~ P arrive(s)] 
3 s '  [P t ransmi t (s ' )  A ~ P arr ive(s ' )  A G>v ~ arrive(s ' )])  

where G>~ ~p is defined by 

v~'[6 ,~ ~' --, G~, ~]. 

In the axiom above s '  represents one signal which has been attempted to transmit in a par- 
ticular period 3". If this transmission was successful, F sv  arrive(s ') holds (where Fs~ ~o 
is defined by F~ r V F<~ ~o), otherwise A -~ arr ive(s ' )  (see Theorem 4.1 in Section 4 
for the definition of A) holds. To prove this we note the following. Since A -~ ~o is equivalent 
over linear orders with -', 1 i ~o ̂  G --, ~o and "-, 1 i arrive(s ' )  is given, it is sufficient to prove 

G>v ~ arr ive ( s ' )  ~ F<_v arr ive(s ' )  v G -~ arr ive(s ' ) .  



SPECIFYING REAL-TIME PROPERTIES WITH METRIC TEMPORAL LOGIC 291 

Now, this is an instance of G>v  -1 ~b ~ F_< v ~b V G --1 ~b which is a theorem of M as 
is shown by the following derivation: 

1. 36[0 < 6 < g A Fa 7,'] '-" F_< v ~b 

2. ~ v 6 [ 0  < 6 < 3' ---' G~ -~ r .-, F_< v 4, 

3. w513, < ~5 --, G~ ---, 4,] A V~[0 < (5 ~__ 3' - - '  G 6  -1 4 ' ]  

-- .  V6[0 < ~5 --, G~ " ,  i f ]  

4. G o - ~  r  
5. v6 [0  < c5 --, G~ --1 i f ]  .-. w5 G~ ~ r 

6. v6[0 < (5 --, G~ -1 ~b] .-. G --, ~b 

7. v613, < (5 -- ,  G~ --, 4/] A V6[0 < 6 _~ 3' --' G~ -1 ~b] 
- , G  ~ ~b 

8. G>.~ -1 r ~ ", v6[0 < 6 < 3' ~ G~ -1 r V G  ~ 4, 

9. G>~, "-, 4, ~ F <  v ~k v G -,  4' 

(definit ion F s v  ~b) 

(1, predicate logic, M0) 

(predicate logic) 

(M5a) 
(4, predicate logic) 

(5 ,  M 0 )  

(3, 6) 

(7, definition G>~ ~ ~b) 

(2, 8) 

In this example we needed quantification over the metric domain. 

5.7. Example 7: Real-time communication constructs 

In this example we describe asynchronous message passing by means of the send and receive 
constructs. Our specific form of the send and receive constructs is inspired by CHILL (see 
(Chill 1980)). The send construct has an associated signal which represents the data to 
be sent. Each signal has a unique destination and every signal sent will eventually reach 
its destination. The receive construct consists of a selection of signals that it may accept. 
The selection is between signals that have been sent to the process to which this receive 
construct belongs (that must be their destination), that have arrived and that have not been 
selected before. After a choice has been made, control transfers to the corresponding part 
of the receive construct. So, for a receive construct we can differentiate two phases: 

1. wait (possibly forever) for a signal that can be accepted (one of the listed selection 
possibilities), 

2. choose one of the acceptable signals and take the branch of that accepted signal. 

In case of a timed receive construct the possibility of  a time-out is added that restricts 
the time the receiving process is going to wait for a signal matching one of its selection 
possibilities to arrive. For real-time applications the communication constructs of  (asynchro- 
nous) send and timed receive are the most useful choices because they do not lead to deadlock 
possibilities (the sender continues and the receiver times out). The send and receive con- 
structs are high-level communication primitives and are usually implemented on a network 
providing reliable communication by using time-out and retransmission for unreliable trans- 
mission media like those of Example 6. Notice that send and receive resemble in, respec- 
tively out, of a perfect message passing system. The main difference, however, is that the 
receiver explicitly accepts signals at times chosen by itself. In other words: the possibility 
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to output a message is under control of the environment instead of the system. We start 
by specifying the effect of a send statement: 

at(l) A send(l)  ~ at(1) until after(l).  

We use similar conventions about locations as we used in Example 3. send(l)  indicates 
that the location I contains a send statement. This axiom simply states that the send state- 
ment takes some finite time, and this is exactly the essence of an asynchronous send: the 
sender just continues in contrast with synchronous communication such as a rendezvous 
in Ada (see (Programming Language Ada 1983)). The signal that is the result of the send 
statement at location I will be represented by the function signal(l).  An alternative for this 
would be to put this explicitly in the predicate send, but in that case it should be additionally 
stated that only one signal is generated for each send statement: 

send(l,  s) A send(l,  s ' )  ~ s '  = s. 

We prefer the use of the predicate send(l)  and the function signal(l) because then it is 
implicit that a send statement can generate only one signal. The fact that a signal s is sent 
can be expressed by 

sent(s) :=  ] 1 [J after(1) A send(l)  A signal(l) = s]. 

Here we use the just-operator to indicate that the moment  of sending coincides precisely 
with the moment  that the send statement has just been passed. Because send statements 
can be executed simultaneously at different places (locations in different processes) in the 
program, and similarly for receive statements, we cannot suppose the no simultaneous input 
assumption. We want the data passed to be unique, so we must demand that simultaneously 
executed send statements generate different signals: 

send(l)  A send(l ' )  A signal(l) = signal(l ' )  ~ l '  = 1. 

We now turn to the receiving side. As we indicated above, the message passing relation 
between the sender and the receiver is somewhat nonstandard because the receiver chooses 
the time to make a selection between acceptable signals. This selection process is also a 
special one: Only certain signals can be accepted. This is expressed by the predicate select- 
able(s, l). There are several choices for the definition of this predicate depending on the 
intended possibilities to select signals, but the signal s should at least conform (either syn- 
tactically or semantically) to one of the possible choices of that particular receive statement 
(i.e., the one at location I) and the destination of s should be the process in which this 
receive statement (i.e., the location l) occurs. With a receive statement at location 1 and 
a signal s we associate the special location choice(s, l) representing the location where 
control is transferred to when signal s is chosen to be accepted at l. For these special loca- 
tions choice(s, l) we again impose a uniqueness assumption: 

choice(s, 1) = choice(s' ,  l ' )  ~ s '  = s A 1' = I. 
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A signal s can be chosen to be accepted at l if it is selectable, has been sent and was not 
chosen before. So define 

choosable(s, I) : =  selectable(s, l) A P sent(s) ^ ~ P 3 1' at(choice(s, l')). 

The fact that we can model that a signal s has been chosen before by P 31'at(choice(s, l')) 
depends crucially on the uniqueness assumption for the locations choice(s, l). To see this, 
consider the following program with three processes: 

PI : :  
P2:: 
P3:: 

SEND 0 TO P3 
SEND 0 TO P3 
RECEIVE 

0: . . .  
1: . . . ;  

RECEIVE 
0: . . .  
1: . . .  

Let sl and s2 be the signals sent from Pi and P2 respectively, and I one of the two receive 
statements in P3, then 

choice(s i, l) = choice(s3_ i, l) for 1 _< i _< 2. 

So, if sl is accepted in P3 first, P 31' at(choice(s2, l ')) will hold although s 2 has not been 
chosen yet. 

To arrive at a location choice(s, 1), s must have been choosable at l: 

J at(choice(s, l)) ~ choosable(s, l). 

The (nontimed) receive statement can now be described by the following two axioms: 

at(l) A receive(l) --* at(1) unless ] s at(choice(s, l)) 

at(l) ^ receive(l) A 3 s choosable(s, 1) ~ F ~ s' at(choice(s', 1)). 

In the case of  a timed receive statement there is the additional possibility to transfer con- 
trol to the special else-location after timervalue (cf. the waitvalue of a wait statement in 
Example 3) time units have elapsed. Combined with the two axioms above for the nontimed 
case this leads to the axiom 

J at(l) ^ timedreceive(l) 
at(l) until6(amervalue(t)) at(else(l)) V 
at(l) until<~(timervalue(l) ) 

((at(l) A 3 s choosable(s ,  l))  until 3 s '  at(choice(s ', I))). 
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Note that the choice to take the else-branch is always possible because it is not observable 
whether a signal has arrived at its destination or not. In other words, we know nothing 
about the speed of the reliable communication network. It would be realistic to impose 
an upper bound on the time for signals to arrive (the maximum transmission time). In 
that case the else-branch can only be taken if we add that there could not have arrived 
a signal within timervalue time units. This can be done by adding the following conjunct 
to the first clause of the disjunction in the axiom above (maxtt represents the maximum 
transmission time): 

A ~ 3 s[selectable(s, l) A ~ P 3 l '  at(choice(s, 1')) A 

F6(timervalue(l)) P > maxn sent(s)] 

where P>6 ~P is defined by 

35' [t5 ,~ iS' A P~, ~].  

In the same way one can introduce a minimum transmission time by incorporating such 
a mintt in the definition of choosable(s, l): 

selectable(s, 1) ^ P>mintt sent(s) ^ ~ P 3 1' at(choice(s, 1')). 

A (timed) receive statement can choose between several signals to accept. A fairness 
assumption can be added for these choices, relating to the locations choice(s, l). 

5.& Example 8: Continuously changing state variables 

In the previous examples we concentrated on events since these are very important for real- 
time systems. In case state variables also play an important role, for example, in case of 
process control systems, it is still often the case that not the variable itself is the dominant 
feature but a certain event or condition involving this state variable. A typical example 
is a continuous physical variable like temperature. (Note: Continuous here does not refer 
so much to the possibility of allowing a continuous range of values for temperature, but 
to the fact that temperature may change continuously in time.) Usually we are not interested 
in the absolute value of this state variable as such but more in the fact whether it stays 
within certain bounds, for example, the system should only react when the condition temper- 
ature <_ maxtemp becomes false. An instance where such a condition is crucial is a process 
where this condition leads to irreversible phenomena (such as a chemical chain reaction) 
that occur immediately. Whenever such a catastrophe occurs, emergency measures (such 
as a shutdown) are required. Suppose that reactime is the required reaction time and that 
shutdown is the required reaction, then such a requirement can be specified in metric tem- 
poral logic by 

J(temperature > maxtemp) ~ F<reac t im  e shutdown. 
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Here we use the just-operator to catch the exact moment when the condition temperature 

<_ maxtemp changes from true to false. 
One could argue that this behavior can be captured by a discrete system that takes samples 

of temperature and that uses only two events, catastrophic and critical, that have the following 
correspondence: 

catastrophic -- temperature > maxtemp 

critical - maxtemp - temperature < e 

where e is a constant depending on the rate of change of temperature and the chosen sample 
time. The point is that even if the possible rate of change is exactly known beforehand 
and the chosen sample time is sufficiently fast, it cannot be determined in the case that 
temperature has a value in between maxtemp - e and maxtemp whether event catastrophic 

will occur. For that reason, if one wants to stay at the safe side, this entails that a shutdown 
should be performed whenever the event critical (instead of catastrophic) occurs. In other 
words, the threshold has been lowered from the occurrence of the event catastrophic, as 
originally intended, to the event critical. In temporal logic the above can be rephrased by 
the validity of 

catastrophic ~ P critical 

but not 

critical ~ F catastrophic. 

So, the conclusion must be that discrete systems can only model continuously changing 
state variables to a certain extent. Therefore, if one wants to specify the behavior of such 
state variables completely, a temporal logic that can reason about continuous time domains 
is essential. Metric temporal logic caters for this possibility. 

6. Conclusions 

We extended temporal logic with metric operators derived from their qualitative versions 
described in Section 3. We showed how these metric operators could be usefully applied 
to the formal specification of real-time systems. (Burgess 1984) Section 6 contains an alter- 
native proposal for metric temporal logic where time is structured as an ordered Abelian 
group. From a philosophical viewpoint, the idea that duration of time is expressed as an 
element of the time domain itself seems unnatural. Also technically, the natural addition 
on a time domain may not be sufficient for determining the distance between any two points, 
as is exemplified by the points (0, 1) and (1, 0) in Example 4.1 of Section 4. When only 
interested in qualitative aspects of distances, however, Tarski's qualitative geometry (Tarski 
1969) suggests models (T, < ,  E) where E is the equidistance-predicate (Exyuv if and only 
if x and y have the same distance as u and v). An interesting question connecting this 
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approach with metric temporal logic is: How should < and E be axiomatized to describe 
models (T, < ,  E) that allow a representation in terms of our metric point structures such 
that Eryuv r d(x, y) = d(u, v)? Another alternative for expressing quantitative timing 
properties is dynamic logic (see (Harel 1984)) with one atomic program 'successor' S. But, 
already for the expression of bounded response time we need an infinitary dynamic logic 
(Goldblatt 1982): 

Y IS*] IP "~ V < si > q ~ 

This approach is only suitable for discrete structures, but our philosophy behind metric 
temporal logic required that the qualitative fragment concerning all point structures should 
be nicely embedded. This makes sense in practice too, because real-time systems may contain 
nondiscrete elements such as analog devices for handling continuous physical entities like 
temperature (see Section 2 and example 8 of Section 5). 

A review of formal methods for describing real-time systems is given in (Joseph and 
Goswami 1988). As far as we know, (Bernstein and Harter 1981) was the first paper (using 
temporal logic) to specify timing characteristics of real-time systems formally. Their approach 
differs at several points from ours. Firstly, they use only real-time operators related to tem- 
poral implication instead of the more powerful operators of metric temporal logic. Secondly, 
they use the interleaving model. Consequently their method is restricted to uniprocessor 
implementations. Thirdly, their method is limited to specific safety properties. (Pnueli and 
Harel 1988) contains a brief account of some attempts to use temporal logic for the specifica- 
tion of real-time systems. The computational model used is a timed interleaving model 
where enabled transitions have associated lower and upper bounds within which they must 
be taken. It considers two possible extensions of temporal logic to deal with real-time. 
The first adds a global clock as an explicit variable to which the specification may refer. 
The second approach introduces quantitative temporal operators and is very much akin 
to metric temporal logic. For specifying synchronous systems it recommends the use of 
a discrete time domain (such as the natural numbers) and for asynchronous systems a dense 
time domain (such as the rationals). One of the methods using the first approach is that 
of Ostroff (1987, 1989). It introduces a distinguished variable t representing the clock. A 
typical formula of his logic RTTL (Real-Time Temporal Logic) is the following: 

~ A t  = T ~  < > ( ~ A t  < T + 5 )  

where T is a global variable. 
The semantics of this formula corresponds to that of the metric temporal logic formula 

,a --' 0_<5 ft. 

As is obvious from this example, metric temporal logic provides a more concise and natural 
way of specifying real-time properties: the explicit clock variable is against the original 
philosophy of temporal logic to abstract from time as much as possible (and in the case 
of real-time it is sufficient to add only terms for expressing time units as in the metric 
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temporal logic formula above). On the other hand, RTTL is based on the work of Manna 
and Pnueli so that a sound proof system based on their work is immediately available. An 
example using the second approach is (Ghezzi, Mandrioli and Morzenti 1989) incorporating 
an executable specification language. Another formal approach to the specification of real- 
time systems, not based on temporal logic, is the Real-Time Logic (RTL) of Jahanian and 
Mok (1986, 1987). Events are central in RTL and reasoning about real-time systems is based 
on assertions about the occurrences of events which are mapped by the occurrence function 
into the time domain of the natural numbers. The use of RTL is restricted to the specifica- 
tion of safety properties. 

The examples in Section 5 showed how several aspects of real-time systems can be specified 
with metric temporal logic, ranging from very simple real-time constructs and systems to 
combined message passing/real-time systems and semantics for real-time communication 
constructs of concurrent programming languages. The resulting specifications are elegant 
and rather directly formalize our intuition about the timing aspects of real-time systems. 

Regarding future developments, it remains to be seen how we can apply metric temporal 
logic to medium and large scale examples. Before this can be done it must be sorted out 
how we can embed such a specification formalism into a method that supports hierarchical 
development and caters for the description of complex data structures. 
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