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6. Poincaré Duality

These are notes from before.

Theorem 6.1 (Poincaré Duality). Suppose that M is a compact, con-
nected, oriented n-manifold (without boundary). Then there is an iso-
morphism

D : Hk(M ; Z)
≈−→ Hn−k(M ; Z)

which is given by cap product with the fundamental class [M ] ∈ Hn(M ; Z):

Dα = [M ] ∩ α

To explain this theorem, I need to give definitions of:

(1) topological manifold
(2) orientation of a manifold
(3) fundamental class [M ] ∈ Hn(M) (also called “orientation class”)
(4) cap product

The proof of Poincaré duality uses

(1) “good coverings” and
(2) Mayer-Vietoris sequences

Date: March 23, 2009.
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6.1. Manifolds.

Definition 6.2. A (topological) n-manifold is a Hausdorff space M
which is locally homeomorphic to (n-dimensional) Euclidean space.

Hausdorff means any two points are contained in disjoint open neigh-
borhoods. “Locally homeomorphic to Euclidean space” means: For ev-
ery x ∈M there is a neighborhood U of x in M and a homeomorphism
φ : U → Rn. Since Rn is homeomorphic to an open ball in Rn we can
assume that φ is a homeomorphism U ∼= B1(0). Sometimes we need a
ball-within-a-ball. Then we take V = φ−1(Bε(0)) for some 0 < ε < 1.

6.1.1. Charts and good atlases. The pair (U, φ) is called a chart for the
manifold M . A collection of charts {(Uα, φα)} which covers M in the
sense that

⋃
Uα = M is called an atlas for M . We want to consider

the case when these atlases are “good” even though good atlases may
not exist (or at least may be difficult to prove that they exist).

Definition 6.3. We say that V is a good open ball neighborhood of x
in M if there is a chart (U, φ) so that the closure of V lies in U ,

V = φ−1Bε(0)

and

V = φ−1Bε(0)

We call V a good disk nbd of x. (We also say V is a good open ball and
V is a good disk.

Proposition 6.4. (1) Every x ∈M has a good open nbh V ⊂M
(2) Hn(M,M − V ) ∼= Hn(M,M − V ) ∼= Z for every good open nbh

V of x.

Definition 6.5. A good covering of an n-manifold M is a collection of
good open balls Uα in M so that

(1) Any nonempty finite intersection of the Uα is a good open ball.
(2) M =

⋃
Uα

A good covering of a subset A ⊆ M is the same as above except that
the second condition is replaced by: A ⊆

⋃
Uα.

Theorem 6.6. Every compact subset A ⊆ Rn has an arbitrarily small
good covering.

Arbitrarily small means inside any open neighborhood of A.
The following theorem shows that most manifolds have good cover-

ings.
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Theorem 6.7. Any second countable C∞-manifold has a good cover-
ing.

Second countable means it has a countable basis. This implies (quot-
ing a number of difficult theorems) that you can properly embed the
manifold into Euclidean space so that the image is C∞. This gives
a metric on M and we can talk about geodesic subsets. These are
subsets U which contain the shortest path in M connecting any two
points of U . Every point in M has a geodesic open neighborhood (any
sufficiently small ε-ball). The intersection of two geodesic open sets is
obviously geodesic. So, this covering is good. (“Geodesic” takes the
place of “convex” in the earlier proof.)

6.2. Orientation. I need to define orientation in several settings

(1) as generator αx ∈ Hn(M |x) = Hn(M,M − {x}) ∼= Z
(2) as generator αV ∈ Hn(M |V ) = Hn(M,M − V ) ∼= Z for good

open balls V
(3) Orientation of M as a consistent family of point orientations.
(4) Orientation of M is a compatible family of orientations on a

covering of M .
(5) orientation class [M ] ∈ Hn(M) = Hn(M,M −M)

6.2.1. Generator of Hn(M,M − {x}). I reminded you about excision:

H∗(X,A) ∼= H∗(X −K,A−K)

if K is a closed subset of the interior of A. (We can “excise” or “cut
out” K.) Since each x ∈M has a neighborhood U ∼= Rn,

Hn(M,M − {x}) ∼= Hn(U,U − {x}) ∼= Hn(Rn,Rn − {0}) ∼= Z
Later, I started to use the shorthand notation:

Hn(M |x) := Hn(M,M − x) = Hn(M,M − {x})
A generator of Hn(M |x) ∼= Z is denoted αx and called an orientation
for M at x. There are two orientations at x. The other one is −αx.

6.2.2. Orientation of M . A (local) orientation of M is defined to be an
orientation αx at each point x ∈M which are “consistent” or “compat-
ible” in the following sense. For every x ∈M there is a good open nbh
V of x in M and an element αV ∈ Hn(M |V ) ∼= Z so that αV |y = αy
for all y ∈ V .

αx ∈Hn(M |x)← ∃αV ∈Hn(M |V )→ αy ∈Hn(M |y)

The orientations αx, αy are compatible since they are the restrictions
of the same orientation αV on V . Since these maps are isomorphisms,
αV is unique.
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6.2.3. Fundamental class. One way to get a consistent family of point
orientations αx is if there happens to be an element αM of Hn(M)
which restricts to αx for all x ∈ M . This is a consistent family by the
following diagram:

αM ∈ Hn(M) = Hn(M |M)→ αV ∈ Hn(M |V )→ αx ∈ Hn(M |x)

The main theorem about orientations is that, if M is compact and
oriented, this class exists and is unique. It is denoted [M ] and called
the fundamental class of a compact oriented manifold M .

Here is the way we started to do this in class.

Theorem 6.8. Suppose that M is a manifold with local orientation
{αx |x ∈ U} where U is an open neighborhood of a compact set A.
Then

(1) There is a unique αA ∈ Hn(M |A) so that αA|x = αx for all
x ∈ A and

(2) Hm(M |A) = 0 for all m > n.

If A = U = M then H∗(M |M) = H∗(M,M −M) = H∗(M). So,

Corollary 6.9. Suppose that M is a compact manifold with local ori-
entation {αx |x ∈M}. Then

(1) There is a unique αM ∈ Hn(M) so that αM |x = αx for all
x ∈M and

(2) Hm(M) = 0 for all m > n.

Lemma 6.10. Suppose that A ⊆ M is any subset and αx, βx, x ∈ A
are compatible families of orientations along A. Let

B = {x ∈ A |αx = βx}, C = {x ∈ A |αx 6= βx}.
Then A = B

∐
C and B,C are both relatively open subsets of A.

B relatively open means B = U ∩ A where U is an open set.

Proof. This follows from the definition of compatibility. �

Lemma 6.11. The theorem is true if U is an open ball and A is a good
closed disk.

Lemma 6.12. We may assume that A is a finite union of good closed
disks. In other words, if the theorem above holds in the case when A is
a finite union of good closed disks then it is true for all compact A.

During the proof we also saw the proof of the following statement.

Lemma 6.13. If γ ∈ H∗(M |A) with A compact then there is an open
nbd U of A in M and γ̃ ∈ H∗(M |U) so that γ̃|A = γ.
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Proof of Lemma 6.12. Suppose that the theorem holds when A = D =
∪Di. Then I showed that the theorem holds for all compact A.

(1) The first step was to show that Hm(M |A) = 0 for m > n. The
proof was by contradiction. Suppose that Hm(M |A) 6= 0. Then it
has a nonzero element γ 6= 0. This is represented by a relative cocycle:
γ = [c] where c =

∑
niσi where σi : ∆m →M . By definition of relative

homology, we have ∂c ∈ Cm−1(M − A). This implies that the support
of ∂c is disjoint from A. If ∂c =

∑
ajτj, aj ∈ Z, τj : ∆m−1 → M then

the support of ∂c is defined to be the union of the images of these
mappings:

K = supp(∂c) := ∪τj(∆m−1).

This is disjoint from A. So, if we take V = U −K, the same chain c
is a relative cocycle in Cm(M,M − V ). So γ̃ = [c] ∈ Hm(M |V ) is an
element which restricts to γ. But, we can cover A with a finite number
of closed disks Di contained in V and we get the following diagram.

γ̃ ∈ Hm(M |V )

��

// γ ∈ Hm(M | ∪Di) = 0

uujjjjjjjjjjjjjjj

γ ∈ Hm(M |A)

He have by assumption that Hm(M | ∪Di) = 0. So, γ = 0.
I pointed out that this argument proves Lemma 6.13.
(2) The existence of αA is clear. We just choose a covering of A with

good closed disks Di ⊆ U . Then there is a unique αD ∈ Hn(M | ∪Di)
which restricts to αx for all x ∈ D = ∪Di. Take αA = αD|A.

The uniqueness of αA follows from the uniqueness of αD. Suppose
that βA is another element with the property that

αA|x = βA|x = αx ∀x ∈ A
Then γ = αA − βA has the property that γx = 0 for all x ∈ A. As
before, γ lifts to γ̃ ∈ Hn(M |V ) and we can find disks Di so that
A ⊆ D = ∪Di ⊆ V and γ = γ̃|D ∈ Hn(M |D) so that γ|A = γ.
However, the assumed uniqueness of αD implies that γ = 0. (If γ 6= 0
then βD = αD + γ would be another choice of αD.)

I ran out of time so I skipped the use of Lemma 6.10. What we
actually have is that γ|x = 0 for all x ∈ A and we need γ|x for all
x ∈ D in order for the last step to work. However, Lemma 6.10 tells
us that the set B of all points y ∈ D for which αD|y = βD|y (or
equivalently, γ|y = 0) is both open and closed. So, any disk Di which
meets B is contained in B. So, B is a union of disks Di which contains
A. So we may take B = D and we are done. �
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Lemma 6.14 (Mayer-Vietoris argument). If Theorem 6.8 hold for
A1 ⊂ U1, A2 ⊆ U2 and A1 ∩ A2 ⊆ U1 ∩ U2 then it holds for A1 ∪ A2 ⊆
U1 ∪ U2.

Proof. (2): We have a long exact sequence:

→ Hm+1(M |A1 ∩ A2)︸ ︷︷ ︸
0

→ Hm(M |A1∪A2)→ Hm(M |A1)︸ ︷︷ ︸
0

⊕Hm(M |A2)︸ ︷︷ ︸
0

→ Hm(M |A1∩A2)→ · · ·

This shows that Hm(M |A1 ∪ A2) = 0 for m > n.
For m = n we get:

0→ Hn(M |A1∪A2)→ Hn(M |A1)︸ ︷︷ ︸
α1

⊕Hn(M |A2)︸ ︷︷ ︸
α2

→ Hn(M |A1∩A2)→ · · ·

The uniqueness statement implies that α1|A1 ∩ A2 = α2|A1 ∩ A2. The
exactness of the sequence implies that there is a unique element α ∈
Hn(M |A1∪A2) which restricts to α1, α2. But this property is equivalent
to the property that α|x = αx for all x ∈ A1 ∪ A2 by assumption. �

Lemma 6.15. If A = ∪Di and the disks Di form a good covering (i.e.,
any finite intersection is also ambiantly homeomorphic to a disk), e.g.,
if these are round disks in Rn, the theorem holds.

Ambiantly homeomorphic to a disk means there is a homeomorphism
of a neighborhood of the set onto an open ball which maps the set onto
a closed disk.

Proof. This follows by induction on the number of disks using the
Mayer-Vietoris argument (previous lemma). �

Lemma 6.16. The theorem holds for M = Rn for any compact A in
any open set U .

Proof. Cover A with round disks Di each in a round ball Bi ⊆ U . Then

A ⊆ ∪Di ⊆ ∪Bi ⊆ U

and we can apply the previous lemma to ∪Di and use the “enough to
show for union of disks” argument to go from ∪Di to arbitrary compact
A ⊆ Rn. �

Proof of Theorem 6.8. We assume that A = ∪Di = D1 ∪ · · · ∪Dk and
U = ∪Vi. Suppose the theorem holds for k − 1. Then we know it is
true for A1 = D1 ∪ · · · ∪Dk−1 ⊆ U and A2 = Dk ⊆ Bk.

By the previous lemma, we know that the theorem holds for A1 ∩
A2 ⊆ U ∩ Bk = Bk since this is some compact set in an open ball.
Therefore, the MV argument shows that the theorem holds for A1 ∪
A2 = A in U ∪Bk = U . �
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6.2.4. Triangulated manifolds. We just showed that every compact ori-
ented n-manifold M has an orientation class [M ] = αM ∈ Hn(M). This
is the unique homology class which restricts to αx at every x ∈ M . If
M is triangulated then I showed that [M ] is represented by a simpli-
cian n-cycle given by the sum of the n-simplices with some sign on
each n-simplex. As an example I gave the octahedral triangulation of
S2 into 8 triangles.

Definition 6.17. A triangulation of any topological space X is a sim-
plicial complex K and a homeomorphism h : |K| → X where |K| is
the geometric realization of K.

First, I explained the difference between K and |K|. I pointed out
that K is a set which is finite if and only if |K| is compact. The
simplicial complex K is the set whose elements are the simplices of K.
This set is partially ordered by inclusion.

Recall that the geometric realization of K is defined to be the union
of the affine simplices corresponding to the elements of K:

|K| =
⋃
σ∈Kn

∆n(σ) ⊆ RV

Here ∆n(σ) is the set of all convex linear combinations of the vertices
of σ. The vertices of K should be placed in “general position” in some
Euclidean space and the standard way to do that is to make the vertices
the unit coordinate vectors in RV where V = K0 is the set of vertices
of K. So,

∆n = {(t0, t1, · · · , tn) ∈ Rn+1 | ti ≥ 0 and
∑

ti = 1}

Theorem 6.18. Suppose that M is a triangulated n-manifold, i.e., we
have a homeomorphism h : M ∼= |K| where K is an n-dimensional
simplicial complex. Suppose that M is compact and oriented and that
[M ] = αM ∈ Hn(M) is the fundamental class. Then, in the simplicial
chain complex,

[M ] =
[∑

±σi
]

In other words, the (unique) n-chain representing the homology class
[M ] is a linear combination of the n-simplices where the coefficient of
each n-simplex is ±1.

This follows from the following lemma. Let M be any n-manifold
and let x ∈ M . Choose any disk neighborhood D of x in M . Thus,
we have a homeomorphism φ : D → Dn, the unit disk in Rn, so that
φ(x) = 0. This gives a mapping φ : D → Sn = Dn/∂Dn given by
pinching the boundary ∂Dn to a point which we call the South pole
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(sp). We call φ(x) = 0 ∈ Dn/∂ = Sn the North pole (np). Consider
the continuous mapping f : M → Sn = Dn/∂Dn given as follows.

f(y) =

{
φ(y) if y ∈ D
sp otherwise

Lemma 6.19. If M is compact and oriented then the mapping f∗ :
Hn(M)→ Hn(Sn) ∼= Z sends [M ] to a fundamental class [Sn] which is
also a generator of Hn(Sn).

Proof. The mapping f : M → Sn sends x to the North pole and the
complement of x to the complement of np. So we get the following
commuting diagram.

Hn(M)
f∗ //

��

Hn(Sn)

∼=
��

Hn(M |x)
∼= // Hn(Sn|np)

Since the fundamental class [M ] maps to the generator αx ∈ Hn(M |x)
by definition, f∗[M ] must be a generator of Sn. This generator is a
fundamental class for Sn since it maps to a generator of Hn(Sn|z) for
any z ∈ Sn. �

Proof of Theorem 6.18. Suppose that [M ] = [
∑
niσi]. Then each σi is

an n-simplex and therefore homoemorphic to a disk φ : σi ∼= Dn. The
mapping f : M → Sn in the lemma sends every other simplex to the
South pole. So,

f∗[M ] = [Sn] = f∗(
∑

niσi) = f∗(niσi) = nif∗(σi).

Since this is a generator of Hn(Sn) we must have ni = ±1 for every
i. �
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6.3. Orientation sheaf. The next thing we did was to construct the

orientation sheaf M̃ for any n-manifold M :

(1) As a set, M̃ is the set of all pairs (x, αx) where x ∈ M and
αx ∈ Hn(M |x) is an orientation of M at x.

(2) The topology on M̃ is given by the basic open sets 〈U, αU〉 which
is given by letting U be an open subset ofM and αU ∈ Hn(M |U)
be an orientation along U , i.e., so that αU |x ∈ Hn(M |x) is a
generator for every x ∈ U .

(3) The mapping p : M̃ →M is given by p(x, αx) = x.

One obvious thing that you can say is that p : M̃ → M is a 2-1
mapping since every point x has exactly two possible orientations αx.
Another easy point is that, if M is oriented then 〈M, [M ]〉 is a basic
open set.

Lemma 6.20. The subsets 〈U, αU〉 ⊆ M̃ form a basis for a topology

on M̃ .

First I recalled the definition. A collection of “basic open sets” forms
a basis for a topology if for any two basic open sets U, V and any
x ∈ U∩V there exists a third basic open set W so that x ∈ W ⊆ U∩V .
This condition implies that the intersection of any two basic open sets
is a union of basic open sets. Thus we can define a set to be open if
it is the union of basic open sets and the axioms for open sets will be
satisfied:

(1) Any union of open sets is open.
(2) Any finite intersection of open sets is open.
(3) The empty set and the whole space are open.

Proof. Suppose that (x, αx) ∈ 〈U, αU〉 ∩ 〈V, βV 〉. This means that x ∈
U ∩ V and that αU |x = αx = βV |x. We need to find a basic open nbh
〈W,αW 〉 of (x, αx) so that 〈W,αW 〉 ⊆ 〈U, αU〉 ∩ 〈V, βV 〉. This is easy:
Just take W to be any good open ball neighborhood of x in U∩V . Then
Hn(M |W ) ∼= Hn(M |x). So, there is a unique element αW ∈ Hn(M |W )
which restricts to αx. We looked at the following diagram which we
had before:

Hn(M |U)

''NNNNNNNNNNN
// Hn(M |W )

∼=
��

Hn(M |V )oo

wwppppppppppp

Hn(M |x)

Since αU |x = βV |x, we must have αU |W = βV |W . Therefore, (x, αx) ∈
〈W,αW 〉 ⊆ 〈U, αU〉 ∩ 〈V, βV 〉 as required. �
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Lemma 6.21. p : M̃ →M is an open mapping (i.e. it sends open sets
to open sets).

Proof. This is obvious since p 〈U, αU〉 = U is open. �

Lemma 6.22. p : M̃ →M is continuous.

Proof. Take any open set U in M and let (x, αx) be a point in the
inverse image (i.e., x ∈ U). Then we need to find a basic open nbh
〈V, αV 〉 of (x, αx) so that V ⊆ U . But this is easy. Just take V to
be any good open nbh of x in U . Then αx extends uniquely to an
orientation αV for V . �

Theorem 6.23. p : M̃ →M is a two fold covering map.

Proof. We needed to show that M is covered by open sets U so that
p−1U = V1

∐
V2 where each Vi maps homeomorphically onto U .

Finding U, V1, V2 was easy: We took the covering of M by good
open balls U . Each open ball was constructed with a center point x
and Hn(M |U) ∼= Hn(M |x) ∼= Z. Take the two generators αU , βU ∈
Hn(M |U). Then we let V1 = 〈U, αU〉 , V2 = 〈U, βU〉. Since p is open
and continuous, p maps V1 and V2 homeomorphically onto U . The only
thing we needed to prove was that V1 and V2 are disjoint.

This was again a repetition of a previous argument. (If this proof
was organized better, we could probably avoid all this repetition, but I
hope this made it easier to understand.) We let B = {y ∈ U |αy = βy}
and C = {y ∈ U |αy 6= βy} where I used the notation αy = αU |y and
βy = βU |y. Then, as before, we have that B,C are both open and
U = B

∐
C. Since U is an open ball it is connected. So, it cannot be

a union of two disjoint open sets. So, either B is empty or C is empty.
Since x ∈ C, we have that B is empty. But this implies that V1, V2 are
disjoint since B = p(V1 ∩ V2). �

Corollary 6.24. (1) Any simply connected manifold is orientable.
(2) If M is a connected manifold and π1M has no subgroups of

index 2 then M is orientable.

Proof. I pointed out that (1) is a special case of (2) and (2) follows
from covering space theory. The nontrivial 2-fold covering spaces of
M are in 1-1 correspondence with index 2 subgroups of π1M . So, if

π1M has no index 2 subgroups, it means that M̃ must be the trivial

2-fold covering, i.e., M̃ = M
∐
M , the disjoint union of two copies of

M . Each of these gives a section of M which gives a compatible family
of orientations at all points in M . �
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6.4. Cap product. The cap product will be a mapping

∩ : Hn(X,A)⊗Hp(X)→ Hn−p(X,A)

which makes H∗ =
⊕

Hn(X,A) into a graded module over the graded
ring H∗(X) =

⊕
Hp(X).

6.4.1. definition.

Definition 6.25. If σ : ∆n → X is any singular simplex in X and
ϕ ∈ Cp(X,Z) is any integral cochain then

σ ∩ ϕ = ϕ(fpσ)bqσ ∈ Cq(X)

where p+ q = n.

Since ϕ(fpσ) is a number, we have:

∂(σ ∩ ϕ) = ϕ(fpσ)∂bqσ = (ϕfp ⊗ ∂bq)σ
I needed another formula for the cap product to get a better formula
for the boundary. If c =

∑
aiσi ∈ Cn(X) is an n-chain then:

c ∩ ϕ = (ϕ⊗ 1q)∆pqc

Since ∆pq = fp ⊗ bq, this is the same formula as the one above. The
formula for the boundary is now:

∂(c ∩ ϕ) = (ϕ⊗ ∂)∆pqc

The reason this is a better notation is that we can write down the fact
that ∆ is a chain map: ∆∂ = ∂⊗∆ applied to c we get:

∆∂c = ∂⊗∆c =
∑
p+q=n

(∂p ⊗ 1q + (−1)p1p ⊗ ∂q)∆c

So,
(∂c) ∩ ϕ = (ϕ⊗ 1)∆∂c = (ϕ∂ ⊗ 1 + (−1)pϕ⊗ ∂) ∆c

(∂c) ∩ ϕ = c ∩ δϕ+ (−1)p∂(c ∩ ϕ)

Solving for ∂(c ∩ ϕ) we get:

∂(c ∩ ϕ) = (−1)p(∂c) ∩ ϕ+ (−1)p+1c ∩ δϕ

Looking at this formula we see immediately that, if c is a cycle and ϕ
is a cocycle then c ∩ ϕ is a cycle. So, we get an induced map

Hn(X)⊗Hp(X)
∩−→ Hq(X)

Next, suppose that c ∈ Cn(X,A) is a relative cycle and δϕ = 0. Then
∂c ∈ Cn−1(A). So,

∂(c ∩ ϕ) = (−1)p(∂c) ∩ ϕ ∈ Cq(A)
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making c ∩ ϕ a relative cycle. Thus we get an induced map:

Hn(X,A)⊗Hp(X)
∩−→ Hq(X,A)

Finally, and this is the most surprising one, if c ∈ Cn(X,A) is a relative
cycle (so that ∂c ∈ Cn−1(A)) and ϕ ∈ Cp(X,A) is a relative cocycle
(so that δϕ = 0 and ϕ(Cp(A)) = 0) then

∂(c ∩ ϕ) = (−1)p(∂c) ∩ ϕ = 0

which means we get an induced map

Hn(X,A)⊗Hp(X,A)
∩−→ Hq(X)

Now change the notation: A = X − K. Then Hn(X,A) = Hn(X|K)
and Hp(X,A) = Hp(X|K). So, cap product is:

Hn(X|K)⊗Hp(X|K)
∩−→ Hq(X)

Special case: Suppose that n = p and X is connected. Then we
have:

Hn(X,A)⊗Hn(X,A)
∩−→ H0(X)

≈−→ Z.
This mapping is the evaluation map since, for c =

∑
aiσi, we get

c ∩ ϕ =
∑

aiσi ∩ ϕ =
∑

aiϕ(fnσi)⊗ b0σi 7→
∑

aiφ(σi) = φ(c)

Theorem 6.26. C∗(X,A) is a graded right module over the graded
associative ring C∗(X) and H∗(X,A) is a graded right module over the
graded commutative and associative ring H∗(X).

Proof. This was the following calculation. If σ : ∆n → X and ϕ, ψ or
cochains of degree p, q resp and n = p+ q + r then

(σn ∩ ϕp) ∩ ψq = aψq(fqτ)brτ

where

σn ∩ ϕp = aτ q+r = ϕ(fpσ)︸ ︷︷ ︸
a

bq+rσ︸ ︷︷ ︸
τ

But fq(τ) = mqσ, the middle q-face of σ, and brτ = βrσ. So,

(σn ∩ ϕ) ∩ ψ = ϕ(fpσ)ψ(mqσ)brσ

= (ϕ ∪ ψ)(fp+qσ)brσ = σ ∩ (ϕ ∪ ψ)

Here the superscripts and subscripts are only to keep track of dimen-
sions and degrees. �
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6.4.2. Statement of Poincaré Duality.

Theorem 6.27. If M is a compact oriented n-manifold then we have
an isomorphism:

[M ]∩ : Hp(M)
≈−→ Hn−p(M)

Example 6.28. Let M = RP n = Sn/ ± 1. This is n-dimensional
projective space. It is orientable if n is odd. The homology of M = RP 3

is given by
coef : Z Z/2 Q

H0(M) = Z Z/2 Q
H1(M) = Z/2 Z/2 0
H2(M) = 0 Z/2 0
H3(M) = Z Z/2 Q

Poincaré duality for p = 0 tells up that H3(M) ∼= H0(M) = Z. Next,
we compared what we get from the UCT and PD:

H2(M) ∼=PD H1(M ; Z) ∼=UCT Hom(H1(M)︸ ︷︷ ︸
Z/2

,Z)⊗Ext(H0(M)︸ ︷︷ ︸
Z

,Z) = 0⊕0 = 0

H1(M) ∼=PD H2(M ; Z) ∼=UCT Hom(H2(M)︸ ︷︷ ︸
0

,Z)⊗Ext(H1(M)︸ ︷︷ ︸
Z/2

,Z) = 0⊕Z/2 = Z/2

H0(M) ∼=PD H3(M ; Z) ∼=UCT Hom(H3(M)︸ ︷︷ ︸
Z

,Z)⊗Ext(H2(M)︸ ︷︷ ︸
0

,Z) = Z⊕0 = Z

If we take coefficients in a field then we get the following.

Corollary 6.29. If F is a field then

Hn−p(M ;F ) ∼=PD Hp(M ;F ) ∼=UCT Hp(M ;F )

So, in the chart above, the last two columns are vertically symmet-
rical.

6.4.3. geometric interpretation of Poincaré duality. In response to ques-
tions I explained that Poincaré duality reflects that fact that a trian-
gulated manifold M ∼= |K| has a “dual triangulation” by “dual cells”
which are actually not simplices but a CW-decomposition of the man-
ifold.

Geometrically, each p simplex σp has a dual n−p cell D(σ)n−p which
goes to the center of every n simplex containing σ. This gives a CW
complex X ∼= M and the cellular chain complex of X is the “upside
down” version of the simplicial chain complex of K. In other words,
τ p−1 is in the boundary of σp if and only if the dual n−p cell D(σ) is in
the boundary of the n− p+ 1 cell D(τ). Algebraically, the matrix that
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gives the boundary map Cn−p+1(X) → Cn−p(X) is the transpose of
the boundary map Cp(K)→ Cp−1(K). This duality between these two
chain complexes is given by cap product with the fundamental class
which is the sum of the n-simplices.
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6.5. Proof for good coverings. The proof of Poincar’e duality that
I presented was a very long version of what is in Hatcher’s book. The
basic idea is to use a Mayer-Vietoris argument. So, we need a local
version of the theorem which holds for open balls and then I need to
paste them together.

The first step was to look at the special case of a disk inside of an
open ball. Suppose that K is a disk contained in an open ball U and
the pair (U,K) is homeomorphic to the pair (B1(0), B1/2(0)) where
these balls are in Rn. Call these good disk-ball pairs Then

Hn(U |K) = Hn(U,U −K) ∼= Z

and Hk(U |K) = 0 for k 6= n. Any generator αK ∈ Hn(U |K) is an
orientation. The first case of Poincaré duality was the following.

Lemma 6.30. Cap product with αK gives an isomorphism

αK∩ : Hp(U |K)
≈−→ Hn−p(U)

Proof. Since U is a ball, it is contractible and has only homology in
degree 0: H0(U) ∼= Z. But, in degree p = n, cap product is the
evaluation map. So, cap product with αK is evaluation at αK :

Z ∼= Hn(U |K)
eval−−→ H0(U) = Z

ϕ 7→ ϕ(αK).

This is surjective and thus an isomorphism since the identity map in
Hn(U |K) ∼= Hom(Z,Z) maps to ±1 ∈ Z. �

Starting with this one example, we can get everything using the
Mayer-Vietoris sequence if we have a good covering.

Lemma 6.31. Suppose that K,L are compact subsets of U, V and α ∈
Hn(M |K ∪ L) is an orientation along K ∪ L. Let αK ∈ Hn(M |K) =
Hn(U |K), αL ∈ Hn(M |L) = Hn(V |L) be the restrictions of α to K and
L. Suppose that

αK∩ : Hp(M |K) ∼= Hn−p(U)

and similarly for (V, L) and (U ∩ V,K ∩ L). Then the corresponding
statement holds for (U ∪ V,K ∪ L), i.e.,

α∩ : Hp(M |K) ∼= Hn−p(U ∪ V )

Proof. We get a map from one MV sequence to another:

Hp(M |K ∩ L) //

∼= αK∩L∩
��

Hp(M |K)⊕Hp(M |L) //

∼= αK∩⊕αL∩
��

Hp(M |K ∪ L)

αK∪L∩
��

Hn−p(U ∩ V ) // Hn−p(U)⊕Hn−p(V ) // Hn−p(U ∪ V )
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So, the lemma follows from the 5-lemma. There is one technical point
which I glossed over in class which was the commutativity of the dia-
gram. Not the part drawn above but the boundary map. I will explain
that below (but not in class). �

Lemma 6.32. Suppose that (Vi, Di) is a finite collection of good disk
ball pairs in M so that

(1) Any finite intersection of the disks K = Dj1 ∩ Dj2 ∩ · · · ∩ Djk

is a disk if it is nonempty and the intersection V of the corre-
sponding balls Vji is a ball and the pair (V,K) is a good disk-ball
pair.

(2) If any finite intersection of the disks Dj1 ∩ Dj2 ∩ · · · ∩ Djk is
empty then the intersection of the corresponding balls Uji is also
empty.

Suppose also that αD ∈ Hn(M |D) = Hn(U |D) is an orientation along
D = ∪Vi. Then, cap product with αD gives an isomorphism

αD∩ : Hp(U |K) ∼= Hn−p(U)

where U = ∪Vi.

Proof. This just follows from the previous two lemmas by induction on
the number of disks. Suppose the lemma holds for m − 1. Then it
holds for K = D1 ∪ · · ·Dm−1 inside of U = V1 ∪ · · · ∪ Vm−1. Also

K ∩Dm = (D1 ∩Dm) ∪ (D2 ∩Dm) ∪ · · · ∪ (Dm−1 ∩Dm)

is a union of m − 1 disks which have good intersections and it lies in
U ∩Vm =

⋃
(Vi ∩Vm) which is a union of balls with good intersections.

So, the condition holds for this pair and we can use MV to get it on
the union. �

But what if we don’t have a good system of disks and balls? The
situation in Rn is as follows. Suppose that K is a compact subset of
an open set U . Then, we can cover K with a finite number of small
round disks Di which are contained in open balls Vi which intersect in
a good way. (The formula I gave in class was to let ε be the smallest
distance between any finite intersection of the disks with a disk which
does not meet that intersection. Then let each ball Bi be the ball of
radius ε/3 greater than the radius of the disk that it surrounds.) This
implies the following.

Lemma 6.33. Let K be any compact subset of Rn and let U be an
open neighborhood of K. Then there exists another compact set D and
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another open set V with K ⊆ D ⊆ V ⊆ U so that the theorem holds
for (U,D), i.e.,

αD∩ : Hp(Rn|D)
≈−→ Hn−p(V )

where αD is any orientation class for D.

What we now want to do is to take the direct limit of both sides.

{αD∩} : lim
→
Hp(Rn|D)

≈−→ lim
→
Hn−p(V )

The result will be an isomorphism between compactly generated co-
homology on the left and homology of U on the right since homology
commutes with direct limit:

Hp
c (Rn|U)

≈−→ Hn−p(U)
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6.6. Direct limit. I went over the definition and basic properties of
direct limits.

Definition 6.34. A directed system is a diagram:

))SSSSSS
))SSSSSSS

Xi

((QQQQQQ

44jjjjjjj

&&LLLLLL77oooooo

&&NNNNNN Xk

77oooooo

''NNNNNN

Xj

))SSSSSSS

77nnnnnn

99ssssss
55lllllll

consisting of

(a) Xi which are abelian groups or topological spaces of objects in
some other category indexed by i ∈ I where I is a partially
ordered set (poset), i.e. a set with a transitive, antireflexive
relation (i < j, j < k ⇒ i < k and i < j ⇒ i 6= j).

(b) fji : Xi → Xj either a homomorphism of groups or a continuous
mapping of spaces for all i < j.

And these should satisfy two conditions. (I decided that we can’t call
it a “directed system” if we don’t use the usual definition.)

(1) The first condition is that, for all i, j ∈ I there is a k ∈ I so
that i, j < k, as indicated in the diagram above.

(2) The second condition is that

fkjfji = fki

for all i < j < k. I.e., the entire big diagram commutes.

6.6.1. direct limit. The direct limit of a directed system is denoted
lim→Xi and can be defined in two ways: by a universal property and
by a formula.

The universal property of the direct limit X∞ = lim→Xi is the fol-
lowing.

(1) For all i ∈ I we have a map hi : Xi → X∞.
(2) For all i < j ∈ I we have a commuting diagram: hj ◦ fji = hi.
(3) For any system (Z, gi : Xi → Z) consisting of an object Z and

arrows gi : Xi → Z so that gj ◦ fji = gi for all i < j, there is a
unique arrow g∞ : X∞ → Z so that g∞ ◦ hi = gi for all i. I.e.,
the giant diagram including all of the above mentioned objects
and arrows commutes.
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It is clear that, if the direct limit exists, then it is unique. For abelian
groups the existence is given by the formula:

X∞ = lim
→
Xi =

⊕
Xi

xi ∈ Xi ∼ fji(xi) ∈ Xj

Example 6.35. The first example was a really dumb one which ac-
tually need later. If the diagram consists of the same group repeated:
Xi = G for all i and fji = idG for all i < j then lim→Xi = G.

The second more interesting example was the limit of the diagram
where I = {1, 2, 3, · · · }, Xi = Z for all i but Xi = Z → Xi+1 = Z was
multiplication by i+ 1:

Z 2−→ Z 3−→ Z 4−→ · · ·
In this case, X∞ = Q with hi = 1

i!
: Xi = Z→ Q given by dividing by

i!
As a third more general example suppose that I = {1, 2, 3, · · · }, the

groups Xi are all subgroups of some group X = ∪Xi and suppose that
fji : Xj → Xi is the inclusion map for all i < j:

X1 ↪→ X2 ↪→ X3 ↪→ X4 ↪→ · · ·
Then X∞ = lim→Xi = X.

For topological spaces the formula for the direct limit is:

X∞ = lim
→
Xi =

∐
Xi

xi ∈ Xi ∼ fji(xi) ∈ Xj

with the quotient topology, i.e., a subset of X∞ is open if and only if
its inverse image in each Xi is open. The following is pretty clear.

Lemma 6.36. Suppose that

U1 ⊆ U2 ⊆ U3 · · ·
is an increasing sequence of open subsets of some space X and X =
∪Ui. Then X = lim→ Ui.

6.6.2. cofinal subsystems.

Definition 6.37. A cofinal subsequence or subsystem of a directed
system consists of the objects {Xn |n ∈ J} where J is a subset of I so
that for all i ∈ I there is an n ∈ J so that i ≤ n.

Lemma 6.38. A cofinal subsystem of a directed system is directed.

Proof. If i, j ∈ J then there exists some k ∈ I so that i, j < k. But
then there is an n ≥ k in J so i, j < k ≤ n ∈ J . �
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Theorem 6.39.
lim
−→
n∈J

Xn = lim
−→
i∈I

Xi

We also needed one other property of direct limits of groups:

Lemma 6.40. lim→ is an exact functor. In other words, any directed
system of short exact sequences

0→ Ai → Bi → Ci → 0

gives a short exact sequence of direct limits:

0→ lim
→
Ai → lim

→
Bi → lim

→
Ci → 0

Since Ci = Bi/Ai, this implies that

lim
→

Bi

Ai
=

lim→Bi

lim→Ai

Proof. Right exactness follows from the fact that lim→ is a left adjoint
functor by the universal property:

Hom(lim
→
Xi, Z) ∼= Hom({Xi}, {Z})

The right adjoint is C(Z) = the constant system Zi = Z.
Left exactness (the fact that lim→Ai ⊂ lim→Bi) follows from the

fact that any element of the limit comes from some a ∈ Ai and if it
goes to zero in lim→Bi then it goes to zero in some Bj and therefore
in Aj. �

6.6.3. compactly generated cohomology. I defined this and used two dif-
ferent notations for the same thing.

Definition 6.41. If X is any topological space then the compactly
generated cohomology groups of X are defined to be the direct limit:

Hp
c (X) := lim

→
Hp(X|K)

where the limit is taken over all compact subsets K ⊆ X.

I also used the notation:

Hp
c (M |U) = lim

→
Hp(M |K)

where the direct limit is over all compact K in U . But when U is open
this is the same thing by excision: Hp

c (M |U) = Hp
c (U).

Lemma 6.42. If U is an open subset of Rn then Hp
c (U) is the direct

limit of the groups Hp(Rn|D) where D runs over all subsets of U which
are finite unions of good disks.
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Proof. This follows from the fact that these unions of good disk D form
a cofinal subsystem of the directed system of all compact subsets of U .
That is the gist of the statement that for any compact K ⊆ U we have
a good pair (V,D) so that K ⊆ D ⊆ V ⊆ U . �

Theorem 6.43. If U is any open subset of Rn and αU is any orienta-
tion of U then

αU∩ : Hp(U)
≈−→ Hn−p(U)

Proof. We take the cofinal system of good disk-ball unions:

Hp(M |D) ∼= Hn−p(V )

We just need to know that lim→H∗(V ) = H∗(U). �

6.6.4. homology commutes with direct limit. The general theorem is
that for any directed system of topological space,

Hk

(
lim
→
Xi

)
∼= lim
→
Hk(Xi).

However, I only proved it in the case that we need when the directed
system is a collection of open subsets Ui of X = ∪Vi.

Lemma 6.44. Suppose that {Ui} is a collection of open subsets of X
so that

(1) The system is directed, i.e., for all i, j there is a k so that
Ui ∪ Uj ⊆ Uk.

(2) ∪Ui = X.

Then X = lim→ Ui.

Proof. I will show that X satisfies the universal property of direct limit.
Suppose that Z is any topological space and gi : Ui → Z are con-

tinuous mappings so that gj ◦ fji = gi, i.e., gj|Ui = gi for all Ui ⊆ Uj.
Then, we need to show that, for all i,j, we have

gi|Ui ∩ Uj = gj|Ui ∩ Uj
The proof of this is simple: there is a k so that Ui ∪ Uj ⊆ Uk. And we
are assuming that gi = gk|Ui and gj = gk|Uj. It follows that gi = gj on
Ui∩Uj. Since the family of mappings gi : Ui → Z agree on all overlaps,
they define a mapping g : X = ∪Ui → Z. And g is continuous since,
for any open set W ⊆ Z, g−1(W ) = ∪g−1

i (W ) is a union of open set
and thus open. �

Lemma 6.45. For any compact K ⊆ U , there is a Ui is the directed
system of open subsets of X which contains K.
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Proof. This is easy. Each point in K is contained in some Ui. Take
a finite subcovering. Then, since the system is directed, there exists
some Uk which contains all of the Ui in this finite covering. Then
K ⊆ Uk. �

Theorem 6.46. Suppose that {Ui} is a directed system of open subsets
of a space X and X = ∪Ui. Then Hk (lim→Xi) ∼= lim→Hk(Xi).

Proof. Since lim→ is exact, we have:

lim
→
Hk(Ui) = lim

→

Zk(Ui)

Bk(Ui)
=

lim→ Zk(Ui)

lim→Bk(Ui)
=?

Zk(X)

Bk(X)
= Hk(X)

All we need is to show that lim→ Zk(Ui) = Zk(X) and similarly for
Bk(X). Since Zk(Ui) is a subgroup of Zk(X) we just need to show that
every element of Zk(X) lies in some Zk(Ui). Let c =

∑
aiσi ∈ Zk(X).

Then, recall that the support of c is the union of the images of the
mappings σi : ∆k → X. This is compact. By the lemma above, there
is some Ui which contains the support of c. But then c ∈ Zk(Ui) and
we are done. �

This finally completes the proof of Theorem 6.43 which we need to
finish this really long proof of Poincaré duality.
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6.7. Proof of Poincaré duality. The proof is as follows. Choose a
finite covering of M by open balls Vi. Let Um = V1 ∪ V2 ∪ · · · ∪ Vm−1.
We want to show by induction on m that cap product with [M ] induces
an isomorphism

Hp
c (M |Um) ∼= Hn−p(Um)

For this we use the map of Mayer-Vietoris sequences

Hp
c (M |Um ∩ Vm) //

∼=
��

Hp
c (M |Um)⊕Hp

c (M |Vm) //

∼=
��

Hp
c (M |Um ∪ Vm)

��
Hn−p(Um ∩ Vm) // Hn−p(Um)⊕Hn−p(Vm) // Hn−p(Um ∪ Vm)

The fact that the top row is exact comes from the fact that it is the
direct limit of the exact sequences

→ Hp(M |K∩L)→ Hp(M |K)⊕Hp(M |L)→ Hp(M |K∪L)→ Hp+1(M |K∩L)→
and direct limit takes exact sequences to exact sequences. The theorem
vertical map on the left is an isomorphism by Theorem 6.43 since Um∩
Vm is contained in the open ball Vm. The middle vertical map is an
isomorphism by induction for Um and by Theorem 6.43 for Vm. So,
we get the result we want by the 5-lemma. There is only the technical
point about the commutativity of the diagram.

I also gave a very short geometric proof of Poincaré duality for tri-
angulated manifolds. I will write both of these up later.
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6.7.1. Commutativity of the diagram. The only thing we need to do is
to show that the diagram commutes. This is very tricky.

• M = U ∪ V
• K ⊂ U,L ⊂ V are compact subsets.
• φ ∈ Ck(M |K ∪ L) means φ : Ck(M) → R and φ = 0 on
Ck(M − (K ∪ L)).
• φ = φK + φL where
• φK = 0 on M −K
• φL = 0 on M − L
• αK∪L ∈ Cn(M |K ∪ L) is the orientation class.
• αK∪L = αK + αK∩L + αL where
• αK ∈ Cn(M − L). So, φL(αK) = 0.
• αL ∈ Cn(M −K). So, φK(αL) = 0.
• αK∩L ∈ Cn(U ∩V ) is the orientation class for K∩L. So, ∂αK∩L

is disjoint from K ∩ L.
• αK + αK∩L = αK
• αL + αK∩L = αL

We need to check that the following diagram commutes.

φ //

��

δφK − δφL

��

Ck(M |K ∪ L) //

αK∪L∩
��

Ck+1(M |K ∩ L)

αK∩L∩
��

Cn−k(M) // Cn−k−1(U ∩ V )

αK∪L ∩ φ // ∂(αK ∩ φ+ αK∩L ∩ φ)− ∂(αL ∩ φ) αK∩L ∩ δφK − αK∩L ∩ δφL

LHS RHS

The first thing to notice is that ∂(αK∩L ∩ φ) = 0 in homology since
αK∩L lies in U ∩ V . The other two terms ∂(αK ∩ φ) and −∂(αL ∩ φ)
are not zero since αK , αL do not lie inside U ∩ V . However, ∂φ = 0.
So, the formula:

∂(µ ∩ φ) = (−1)k∂µ ∩ φ− (−1)kµ ∩ δφ

implies that ∂(αK ∩φ) = (−1)k∂αK ∩φ and ∂(αL∩φ) = (−1)k∂αL∩φ.
But φ = φK + φL and αK lies in the place where φL = 0 and similarly
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for αL. So,
∂(αK ∩ φ) = (−1)k∂αK ∩ φK
∂(αL ∩ φ) = (−1)k∂αL ∩ φL

So,
LHS ∼ (−1)k∂αK ∩ φK − (−1)k∂αL ∩ φL

The right hand side is αK∩L ∩ δφK − αK∩L ∩ δφL which differs by a
boundary from

∂αK∩L ∩ φK − ∂αK∩L ∩ φL
Now we use the fact that αK +αK∩L = αK with boundary ∂αK disjoint
from K. So, ∂αK ∩ φK = 0. Similarly for φL. So,

∂αK∩L ∩ φK = −αK ∩ φK
−∂αK∩L ∩ φL = αL ∩ φL

So,
RHS ∼ −αK ∩ φK + αL ∩ φL ∼ (−1)k+1LHS
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