
1

Disguised Executable Files in Spear-Phishing

Emails: Detecting the Point of Entry in

Advanced Persistent Threat
Ibrahim Ghafir1,2, Mohammad Hammoudeh2, Vaclav Prenosil1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK

ghafir@mail.muni.cz, M.Hammoudeh@mmu.ac.uk, prenosil@fi.muni.cz

Abstract

Advanced Persistent Threat (APT) is one of the most serious types of cyber attacks, which is a

new and more complex version of multi-step attack. Within the APT life cycle, the most common

technique used to get the point of entry is spear-phishing emails which may contain disguised

executable files. This paper presents the disguised executable file detection (DeFD) module, which

aims at detecting disguised exe files transferred over the connections. The detection is based

on a comparison between the MIME type of the transferred file and the file name extension.

This module was experimentally evaluated and the results show successful detection of disguised

executable files.

Keywords—Cyber attacks, advanced persistent threat, spear-phishing emails, disguised exe-

cutable file, malware, intrusion detection system.

I. Introduction

One of the most serious types of cyber attacks is the Advanced Persistent Threat (APT) [1],

which is targeting a specific organisation and it is performed through several steps. The main

aim of APT is espionage and then data exfiltration. Therefore, APT is considered as a new

and more complex version of multi-step attack [2]. These APTs form a problem for current

detection methods [3] as they use advanced techniques like social engineering [4] and make

use of unknown vulnerabilities. Moreover, the economic damages due to a successful APT

attack can be very expensive. The expected cost of attacks is the major motivation for the

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

2

investments in intrusion detection and prevention systems [5]. APTs are currently one of

the most serious threats to the companies and governments [6].

A novel approach for APT detection is proposed in [7]. The suggested system undergoes

two main phases, the first one detects eight techniques commonly used in APT life cycle.

For that purpose, eight detection modules are presented, which are disguised exe file de-

tection, malicious file hash detection [8], malicious domain name detection [9], malicious IP

address detection [10], malicious SSL certificate detection [11], domain flux detection [12],

scan detection, and Tor connection detection [13]. The second phase includes a correlation

framework to link the outputs of the detection modules.

Within the APT life cycle, the most common technique used to get the point of entry

is spear-phishing emails [14] which may contain disguised exe files. This paper presents

the disguised exe file detection (DeFD) module, which aims at detecting disguised exe files

transferred over the connections. The detection is based on a comparison between the MIME

type of the transferred file and the file name extension.

The remainder of this paper is organized as follows. Section II presents the related work

to APT detection. The disguised exe file detection module and its algorithm are explained

in Section III. Section IV shows the evaluation results and Section V concludes the paper.

II. Related Work

A classification model for APT detection is presented in [15]. This model is built based on

machine learning algorithms. First, the legitimate traffic for normal users is analysed aiming

to extract the CPU usage, memory usage, open ports and number of files in the system32

folder. A piece of malware, which is previously used for the APT attack, is injected into the

network and the four features are extracted. The dataset of benign and malicious features

are used to train the detection model using different machine learning algorithms.

TerminAPTor, an APT detector, is described in [16]. This detector uses information flow

tracking to find the links between the elementary attacks, which are triggered within the

APT life cycle. TerminAPTor depends on an agent, which can be a standard intrusion

detection system, to detect those elementary attacks. A statistical APT detector, similar

to TerminAPTor detector, is developed in [17]. This system considers that APT undergoes

five states which are delivery, exploit, installation, C&C and actions; and several activities

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

3

are taken in each state. The generated events in each state are correlated in a statistical

manner.

An APT detection system based on C&C domains detection is introduced in [18]. This

work analyses the C&C communication based on the observation that the access to C&C

domains is independent, while the access to legal domains is correlated.

An approach for APT detection based on spear phishing detection is explored in [19].

This approach depends on mathematical and computational analysis to filter spam emails.

Tokens, which are considered as a group of words and characters such as (click here, free,

Viagra, replica), should be defined for the detection algorithm to separate legitimate and

spam emails.

An active-learning-based framework for malicious PDFs detection is suggested in [20].

These malicious PDFs can be used in the early steps of APT to get the point of entry.

An approach based on Data Leakage Prevention (DLP) is proposed in [21]. This approach

focuses on detecting the last step of APT which is the data exfiltration. A DLP algorithm

is used to process the data traffic to detect data leaks and generate "fingerprints" according

to the features of the leak.

A context-based framework for APT detection is explained in [22]. This framework is

based on modelling APT as an attack pyramid in which the top of the pyramid represents

the attack goal, and the lateral planes indicates the environments involved in the APT life

cycle.

An in-depth analysis of Duqu is presented in [23]. A European organisation was targeted

by attackers using the Duqu malware to steal data. The authors propose the Duqu detector

toolkit, which consists of six investigation tools developed to detect the Duqu malware

involved in the APT attacks.

With regards to the processing of multiple streams of events, IBM suggests a conceptual

model for event processing in [24]. It describes the basic requirements to design an efficient

correlation system. The work presented in [25] is based on finite state machines and uses

a query language for event processing. Both systems can process the events in real time, a

key limitation shared by both approaches is that they can not detect so called low & slow

attacks, which take place over an extended time period.

Finally, APT detection systems face serious shortcomings in achieving real time detec-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

4

tion [26], detecting all APT attack steps [26], balance between false positive and false

negative rates [23], and correlating of events spanning over a long period of time [24] [25].

To address those weaknesses, a new approach for APT detection has been presented in [7],

and this paper is a step towards developing the proposed system.

III. Disguised executable File Detection (DeFD)

According to Mandiant APT1 report [27], spear phishing is the most commonly used

technique to get the point of entry in APT. The spear phishing emails contain either a

malicious attachment or a hyperlink to a malicious file. The subject line and the text in the

email body are usually relevant to the recipient. Executable files supposed to end in .exe

are made to appear as simple document files (pdf, doc, ppt, excel) to convince the victim

to click on it.

The DeFD module detects disguised exe files transferred over the connections. In other

words, it detects if the content of the file is exe while the extension is not exe. Figure 1 shows

the methodology of DeFD; the network traffic is processed, all connections are analysed and

all exe files identified when transferring over the connections are filtered. This filtering is

based on the file content. Following this, the file name extension should be checked to decide

about raising an alert on disguised exe file detection.

Match with
file name extension

Alert on
disguised exe file detection

exe file

Network traffic

Connections

Packets

Events

Output

Fig. 1. Methodology of the disguised exe file detection.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

5

Different security systems are used to monitor the network traffic [28] [29]. The DeFD

module is implemented on top of the Bro [30] [28]. Bro event engine reduces the incoming

packet stream into a series of higher-level events, more than 300 events.

Algorithm 1 shows the implementation pseudo-code of the DeFD module. The network

traffic is processed; this module waits for file_over_new_connection event to be generated

by Bro. This event indicates that a file has been seen in the process of being transferred over

a connection [31]. Then describe() function is applied on that file; this function provides a

text description regarding metadata of the file, so the file name can be extracted.

This method is able to detect disguised exe files in both cases, uploaded and downloaded,

but DeFD aims to detect only downloaded disguised exe files, as they are the ones used in

the second step of APT. Thus, DeFD checks the current connection, in which a new file

has seen being transferred, if it is established by a host from the monitored network. This

is done by checking the connection source IP address through is_local_addr function; this

function returns true if an address corresponds to one of the defined local networks, false if

not. For this reason, the subnet of the monitored network should be defined.

Following this, the mime_type [32], which can be extracted from file_over_new_connection

event, is checked for its presence in t_exe_file table. t_exe_file table contains the MIME

types of the files which DeFD aims to find and filter, i.e. MIME types of exe files. Therefore,

if the transferred file is an exe file (based on its mime_type), DeFD checks whether the

extension in the file name is exe; this file name extension is extracted from the output of

the describe() function previously mentioned. If the file name extension is not exe, this

means it is a disguised exe file. Before an alert is raised, DeFD checks if an alert regarding

the same host and for the same disguised exe file has been generated during the previous

day. This check is to ensure that DeFD does not generate the same alert about the same

set (host, file) during one day, therefore, DeFD checks if the current set exists in the

t_suppress_disguised_exe_alert table, this table contains all detected sets during the last

day.

If the current set (host, file) had not been detected during the previous 24 hours, DeFD

generates disguised_exe_alert event to be used in the FCI correlation framework. The

malicious connection information is written into a specific log disguised_exe_detection.log, to

keep a historical record of the monitored network. An alert email regarding disguised exe file

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

6

Algorithm 1 Implementation pseudo-code of DeFD
1: Get t_exe_file table

2: Get file_over_new_connection event

3: fname ← file name

4: if the connection is established by a host from the monitored network then

5: if the file MIME type is in t_exe_file table then

6: if file MIME type = fname extension then

7: if the same disguised_exe_alert has been generated over the last day then

8: goto End

9: else

10: Generate an event (disguised_exe_alert)

11: Write disguised_exe_alert into disguised_exe_detection.log

12: Send an alert email to RT

13: Suppress the same disguised_exe_alert over the next day

14: end if

15: else

16: goto End

17: end if

18: else

19: goto End

20: end if

21: else

22: goto End

23: end if

24: End

detection is sent to RT, where the network security team can perform additional forensics and

respond to it. The current detected set (host, file) is added into the t_suppress_disguised_exe_alert

table where it stays for one day to ensure that DeFD does not generate another alert about

the same set during the same day. The written information into disguised_exe_detection.log

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

7

is:

timestamp = c$start_time ,

a ler t_type = " di sgu i sed_exe_aler t "

connect ion = c$ id

in f ec ted_host = cidor ig_h

ma l i c i o u s_ f i l e = fname

IV. Evaluation Results

To evaluate the effectiveness of the DeFD module, a download of disguised exe file

was simulated via the campus network. An experimental server was set up, using Bro, to

passively monitor the campus live traffic. DeFD was run on that experimental server for the

purpose of disguised exe file detection. Two exe files were randomly selected, SkypeSetup.exe

and ViberSetup.exe, and their names’ extensions (exe) were changed into pdf and doc

extensions, i.e. SkypeSetup.pdf and ViberSetup.doc respectively. The two disguised exe files

were uploaded to the speedyshare.com public server. Then a host working on a computer

connected to the Internet through the monitored network was used to connect to that public

server and download the modified files. As shown in Figure 2, DeFD was able to detect both

malicious downloads and write the information regarding each connection into a specific log.

#fields timestamp alert_type orig_h orig_p resp_h resp_p infected_host malicious_file
#types time string addr port addr port addr string
1407424021.202210 disguised_exe_alert 147.251.17.197 56973 207.244.73.42 80 147.251.17.197 SkypeSetup.pdf
1407424040.255414 disguised_exe_alert 147.251.17.197 53105 207.244.73.42 80 147.251.17.197 ViberSetup.doc
#close 2014-08-07-19-15-07

Fig. 2. The log produced by the DeFD module.

This experiment was repeated a hundred of times using different disguised exe files with

different extensions. DeFD was able to detect all the malicious files, the average detection

delay was 270 ms with a standard deviation of 54 ms.

V. Conclusion and Future Work

This paper presents the disguised exe file detection (DeFD) module, which aims at de-

tecting disguised exe files transferred over the connections. The detection is based on a

comparison between the MIME type of the transferred file and the file name extension.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

8

For future work, the output of this module will be correlated with the outputs of other

detection modules, developed to detect commonly used techniques over the APT life cycle,

to raise an alert on APT detection.

References

[1] I. Ghafir and V. Prenosil, “Advanced persistent threat attack detection: An overview,” International Journal of

Advances in Computer Networks and Its Security (IJCNS), vol. vol. 4, no. Issue 4, pp. 50–54, 2014.

[2] Z. Liu, C. Wang, and S. Chen, “Correlating multi-step attack and constructing attack scenarios based on attack

pattern modeling,” in Information Security and Assurance, 2008. ISA 2008. International Conference on. IEEE,

2008, pp. 214–219.

[3] I. Ghafir, M. Husak, and V. Prenosil, “A survey on intrusion detection and prevention systems,” in Proceedings

of student conference Zvule, IEEE/UREL. Brno University of Technology, 2014, pp. 10–14.

[4] I. Ghafir, V. Prenosil, A. Alhejailan, and M. Hammoudeh, “Social engineering attack strategies and defence

approaches,” in Future Internet of Things and Cloud (FiCloud), 2016 IEEE 4th International Conference on.

IEEE, 2016, pp. 145–149.

[5] T. R. Rakes, J. K. Deane, and L. Paul Rees, “It security planning under uncertainty for high-impact events,”

Omega, vol. 40, no. 1, pp. 79–88, 2012.

[6] P. Wood, M. Nisbet, G. Egan, N. Johnston, K. Haley, B. Krishnappa, T.-K. Tran, I. Asrar, O. Cox, S. Hittel

et al., “Symantec internet security threat report trends for 2011,” Volume XVII, 2012.

[7] I. Ghafir and V. Prenosil, “Proposed approach for targeted attacks detection,” in Advanced Computer and

Communication Engineering Technology. Springer, 2016, pp. 73–80.

[8] I. Ghafir and V. Prenosil, “Malicious file hash detection and drive-by download attacks,” in Proceedings of the

Second International Conference on Computer and Communication Technologies. Springer, 2016, pp. 661–669.

[9] I. Ghafir and V. Prenosil, “Dns traffic analysis for malicious domains detection,” in 2nd International Conference

on Signal Processing and Integrated Networks (SPIN). IEEE Xplore Digital Library, 2015, pp. 613–918.

[10] I. Ghafir and V. Prenosil, “Blacklist-based malicious ip traffic detection,” in Global Conference on Communica-

tion Technologies (GCCT). IEEE Xplore Digital Library, 2015, pp. 229–233.

[11] I. Ghafir, M. Hammoudeh, and V. Prenosil, “Malicious ssl certificate detection: A step towards advanced

persistent threat defence,” in Proceedings of International Conference on Future Networks and Distributed

Systems. Cambridge, United Kingdom: ACM Digital Library, 2017.

[12] I. Ghafir and V. Prenosil, “Dns query failure and algorithmically generated domain-flux detection,” in

International Conference on Frontiers of Communications, Networks and Applications (ICFCNA). IEEE Xplore

Digital Library, 2014, pp. 1–5.

[13] I. Ghafir, J. Svoboda, and V. Prenosil, “Tor-based malware and tor connection detection,” in International

Conference on Frontiers of Communications, Networks and Applications (ICFCNA). IEEE Xplore Digital

Library, 2014, pp. 1–6.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

9

[14] I. Ghafir and V. Prenosil, “Advanced persistent threat and spear phishing emails,” in Proceedings of International

Conference on Distance Learning, Simulation and Communication. University of Defence, 2015, pp. 34–41.

[15] S. Chandran, P. Hrudya, and P. Poornachandran, “An efficient classification model for detecting advanced

persistent threat,” in Advances in Computing, Communications and Informatics (ICACCI), 2015 International

Conference on. IEEE, 2015, pp. 2001–2009.

[16] G. Brogi and V. V. T. Tong, “Terminaptor: Highlighting advanced persistent threats through information flow

tracking,” in New Technologies, Mobility and Security (NTMS), 2016 8th IFIP International Conference on.

IEEE, 2016, pp. 1–5.

[17] J. Sexton, C. Storlie, and J. Neil, “Attack chain detection,” Statistical Analysis and Data Mining: The ASA

Data Science Journal, vol. 8, no. 5-6, pp. 353–363, 2015.

[18] X. Wang, K. Zheng, X. Niu, B. Wu, and C. Wu, “Detection of command and control in advanced persistent

threat based on independent access,” in Communications (ICC), 2016 IEEE International Conference on. IEEE,

2016, pp. 1–6.

[19] J. V. Chandra, N. Challa, and S. K. Pasupuleti, “A practical approach to e-mail spam filters to protect data

from advanced persistent threat,” in Circuit, Power and Computing Technologies (ICCPCT), 2016 International

Conference on. IEEE, 2016, pp. 1–5.

[20] N. Nissim, A. Cohen, C. Glezer, and Y. Elovici, “Detection of malicious pdf files and directions for enhancements:

a state-of-the art survey,” Computers & Security, vol. 48, pp. 246–266, 2015.

[21] J. Sigholm and M. Bang, “Towards offensive cyber counterintelligence: Adopting a target-centric view on

advanced persistent threats,” in Intelligence and Security Informatics Conference (EISIC), 2013 European.

IEEE, 2013, pp. 166–171.

[22] P. Giura and W. Wang, “A context-based detection framework for advanced persistent threats,” in Cyber Security

(CyberSecurity), 2012 International Conference on. IEEE, 2012, pp. 69–74.

[23] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi, “Duqu: Analysis, detection, and lessons learned,” in ACM

European Workshop on System Security (EuroSec), vol. 2012, 2012.

[24] C. Moxey, M. Edwards, O. Etzion, M. Ibrahim, S. Iyer, H. Lalanne, M. Monze, M. Peters, Y. Rabinovich,

G. Sharon et al., “A conceptual model for event processing systems,” IBM Redguide publication, 2010.

[25] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald, M. Thatte, and W. White,

“Cayuga: a high-performance event processing engine,” in Proceedings of the 2007 ACM SIGMOD international

conference on Management of data. ACM, 2007, pp. 1100–1102.

[26] M. Balduzzi, V. Ciangaglini, and R. McArdle, “Targeted attacks detection with spunge,” 2013.

[27] FireEye, “Mandiant apt1 report,” https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/

mandiant-apt1-report.pdf, accessed: 26-06-2016.

[28] I. Ghafir, V. Prenosil, J. Svoboda, and M. Hammoudeh, “A survey on network security monitoring systems,” in

IEEE International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). IEEE Xplore

Digital Library, 2016, pp. 77–82.

[29] J. Svoboda, I. Ghafir, and V. Prenosil, “Network monitoring approaches: An overview,” International Journal

of Advances in Computer Networks and Its Security (IJCNS), vol. vol. 5, no. Issue I, 2015.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

10

[30] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer networks, vol. 31, no. 23,

pp. 2435–2463, 1999.

[31] B. Project, “file_over_new_connection event,” https://www.bro.org/sphinx/scripts/base/bif/event.bif.bro.

html\#id-file_new, accessed: 01-06-2016.

[32] MrForms, “Mime types list,” http://www.freeformatter.com/mime-types-list.html, accessed: 07-04-2015.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2998v1 | CC BY 4.0 Open Access | rec: 1 Jun 2017, publ: 1 Jun 2017

