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Abstract: Biological questions today are often answered with the help of simulation models. Many of these models en-
code biological processes as biochemical reaction networks. The increasing amount of published models and
the growing size of encoded reaction networks demand methods to analyse models. Specifically, researchers
need to identify reoccurring and biologically relevant patterns. However, pattern recognition in large networks
is a hard problem, and only partial solutions for very specific biological networks exist until now. In addition,
while such patterns where already postulated, identifying them manually is barley feasible given a large set of
complex models. This paper examines automatic methods to find reoccurring patterns in models represented
as bipartite graphs. An approach is presented to find the most frequent structures within the models. Ap-
propriate patterns were found, which occur in a major part of the 575 input models. The occurrences of the
resulting structures can provide insight into the encoding of certain biological processes, evaluate the postu-
lated structures and serve as a reasonable similarity measure for grouping models that share many common
structures.

1 INTRODUCTION

Modeling has become an integral tool for research
in computational biology (Finkelstein et al., 2004). In
the field of Systems Biology, models are mostly dis-
tributed in standard formats, e. g., the Systems Biol-
ogy Markup Language (SBML) (Hucka et al., 2010)
or CellML (Lloyd et al., 2004). Model repositories
such as the BioModels Database (Li et al., 2010), the
CellML model repository (Yu et al., 2011), or JWS
Online (Olivier and Snoep, 2004) offer to the com-
munity valuable, curated, and reusable models de-
scribing biological systems. This enables researchers
to study biological systems without necessarily im-
plementing the models from scratch, thereby saving
time, effort and money.

The increasing impact of modeling for biology is
reflected in the rapidly growing number and com-
plexity of computational models of biological sys-
tems (Henkel et al., 2010; Li et al., 2010) and in the
large number of computational tools for simulation,
analysis, visualization, or comparison (Hucka et al.,
2011). Current modeling projects such as the Vir-
tual Physiological Humanrequire the usage of tech-
niques for model coupling, merging, and combination

at different scales. Computational support is needed
to curate models (i. e., to manually validate and se-
mantically annotate them). As models evolve over
time, good management strategies are needed to en-
sure model exchangeability, stability and result valid-
ity, and to foster communication between project part-
ners (Bechhofer et al., 2013; Waltemath et al., 2013;
Henkel et al., 2015). Open model repositories help
with model management. BioModels Database cur-
rently offers 575 curated, SBML-encoded models de-
scribing a variety of biological processes, such as cell
cycle, apoptosis or mitogen-activated protein kinase,
encoded as biochemical reaction networks (Juty et al.,
2015).

With this rich resource of model code at hand, it
is now interesting to analyse the function, structure
and behavior of models (Knüpfer et al., 2013). For
example, Tyson and Novák (2010) postulated com-
mon functional motifs in biochemical reaction net-
works. However, it remains open if and how such
motifs would be encoded in model’s biochemical re-
action networks; or if the model encoding differs from
the biological point of view. A prerequisite to validat-
ing Tyson’s results, computational methods for pat-
tern discovery in computational models are needed.
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In this manuscript we describe the available data and
its structure in the field. We then evaluate techniques
for pattern discovery. Finally, we show that subgraph
mining is a suitable method for pattern discovery and
explain the revealed patterns.

2 MOTIVATION

Many of today’s large biochemical reaction net-
works are semi-automatically being generated us-
ing data driven approaches (Smallbone et al., 2013).
These networks mostly focus on network diameter
and network efficiency Zhang and Zhang (2009), on
the topological and dynamical properties that control
the behaviour of the network (Barabasi and Oltvai,
2004), or on the degree of tolerance against errors
in scale-free networks (Albert et al., 2000). While
these approaches provide key figure values describ-
ing the network topology, they do not detect actual
patterns. These substructures in networks are, how-
ever, necessary for modelers to determine reoccurring
parts in models, or to characterise typical submodules
that may help identifying biological phenomena, for
example in model comparison tasks. One could, for
example, ask:
• What are the common structures to encode a sim-

ple biochemical reaction?
• Does the network contain circles and how many?
• Can we find unique pattern for certain types of

models (i.e. models derived from wet lab data or
theoretical models encoding a postulated network
to show a certain behavior)?

• Do models of the biological domain (cell cycle,
apoptosis) share certain patterns?

• Can we find patterns postulated by Tyson and
Novák (2010) and are they used often rather than
occasionally?

Obtaining such information offers a variety of use
cases. For example, determining if a model was
created by a theoretical, data driven, or hybrid ap-
proach. Furthermore it would be possible to cluster
models by occurrence of pattern in their networks, in-
stead of using meta information (Alm et al., 2014),
and infer an affiliation to a biological domain. Ul-
timately it becomes possible to calculate a similarity
coefficient for models purely based on their network’s
structure. Combined with already existing model sim-
ilarity measures (Henkel et al., 2010; Schulz et al.,
2011) this will have an impact on the reuse and re-
producibility of scientific results created by modeling
(Waltemath et al., 2013; Henkel et al., 2015; Bech-
hofer et al., 2013).

To create a reasonable similarity measure for the
models’ networks represented as graphs, it is essential
to regard the network structure as a whole, rather than
treating them as a set of nodes and edges. Lakshmi
and Meyyappan (2012) state that the simple pairwise
comparison of nodes and edges within a network ne-
glects its structure, whereas it is possible to respect
the composition of network elements by viewing the
graphs as similar, if they share many common sub-
structures. Consequentially, the problem of detecting
structural similarities within the models is defined as
a frequent subgraph mining (FSM) task (Kuramochi
and Karypis, 2001).

On the basis of the results, very useful applica-
tions can be implemented. For example, a function to
search structural similar models could be established
as well as a recommender system that suggests suit-
able structures, while a researcher is modelling a pro-
cess.

3 STATE OF THE ART

A difficulty is that FSM algorithms require sub-
graph isomorphism testing - the problem to de-
cide whether a graph is embedded in another (Lak-
shmi and Meyyappan, 2012). This is known as an
NP-complete task (Keyvanpour and Azizani, 2012).
Thus, FSM techniques rely on heuristics, prior knowl-
edge or other particular strategies to improve the per-
formance. A variety of FSM algorithms are available
(Kuramochi and Karypis, 2001), mostly adapted and
refined to serve particular purposes. When choosing
an appropriate algorithm for a problem, the charac-
teristic aspects of the methods need to be evaluated.
These aspects include the type of input graph, the
necessity of prior background knowledge, the need
for exact or just approximate results as well as for
completeness of the resulting pattern set, the available
memory, and the possibility of user intervention.

FSM algorithms can be differentiated, for exam-
ple, according to their input type (Keyvanpour and
Azizani, 2012). Some algorithms take one large graph
and find the frequent subgraphs depending on the fre-
quency within this graph. Other algorithms take a
graph set as their input and search for structures that
occur in at least a certain number of graphs within the
set.

The Kyoto Encyclopedia of Genes and Genomes
(KEGG (Kanehisa et al., 2004)) is a widely used
pathway database. KEGG already determines struc-
tural similarities of network components (Koyutürk
et al., 2004; Hattori et al., 2003). Koyutürk et al.
(2004) search for frequent subgraphs within a set of
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metabolic pathways in the KEGG database, where
the pathways are represented as directed graphs with
unique node labellings. The authors state that their
approach is also applicable to various other biolog-
ical networks with only minor modifications at the
most. They reduce the computational costs by ex-
ploiting the sparse nature of metabolic pathways and
the unique node labelling. Their approach discovers
common patterns of related enzyme interactions.

Hattori et al. (2003) describe an algorithm to com-
pare chemical structures of compounds. The chemi-
cal structure is seen as a graph of atoms connected
by covalent bonds as edges. The developed algorithm
identifies and clusters mostly metabolic compounds.

Wong et al. (2011) find frequent occurring pat-
terns within biological networks and investigate cor-
relations between the functional behaviour of such
patterns with their structural topology. The authors
present several existing algorithms for this purpose.
The algorithms are evaluated by experimental results,
classified according to several characteristics, and
their advantages and disadvantages are discussed.

4 DATA SET

For our analysis, we incorporated all publicly
available models from BioModels Database. The
stored reaction networks are encoded in an XML-
based, standard model representation format, SBML
(Hucka et al., 2010). BioModels Database contains
two types of models: Curated and non-curated. We
here choose only models from the curated branch as
those models are ensured to reproduce the results de-
scribed in their accompanying publication accurately.
Furthermore, curated models are syntactically vali-
dated and annotated with ontology terms according to
the MIRIAM standard (Novere et al., 2005). SBML
encodes biochemical reaction networks using species
and reactions. A species participates in a reaction
as a modifier, product or reactant. Consequently,
for our analysis we have two types of nodes (la-
beled species and reaction) and three types of edges
(labeled is reactant, has product, is modifier). We
here analyze Release 29 of BioModels Database (in
the following referred to as R29) containing 575 cu-
rated models and, in addition, compare the results to
BioModels first release containing only 30 curated
models (in the following referred to as R1). First,
we perform a key figure analysis. The aim of this
analysis is to get quantities of the nodes for models,
reactions and species as well as the edges between
them. 557 out of 575 models have species and 499
have reactions, respectively. The remaining models

Figure 1: This figure shows the distribution of species
among the models. On the x-axis the number of models
containing a particular number of species (y-axis) is pre-
sented.

Figure 2: This figure shows the distribution of reactions
among the models. On the x-axis the number of models
containing a particular number of reactions (y-axis) is pre-
sented.

only define species and rate rules, but do not represent
a network. They are thus neglected in further analy-
ses. Each reaction or species belongs to exactly one
SBML-model. There exist 18852 reaction nodes and
16843 species nodes in total. Compared with the first
release (R1), the rapid growth of models becomes ob-
vious, as previously reported by henkel2010ranked.
Data set R1 contains only 30 curated models having
736 reactions and 425 species, respectively. For R29,
Figure 1 shows the distribution of species, and Fig-
ure 2 shows the distribution of reactions among the
models. Most models contain less then 20 species
and reactions. A noticeable accumulation of models
can be found from three up to eleven species, while
there are just a few models with more than 60 Species.
For reactions, an accumulation of models that have
three up to twelve reactions is stated. Furthermore,
there are a few outliers with more than 100 reactions
and species. On average, a model has 30.2 species and
37.7 reactions. For R1 (results not displayed) a model
has 14.6 species and 25.4 reactions on average.

Figure 3 shows the distribution of interaction
classes among the models for data set R29. An in-
teraction class is a combination of species (reactants,
products and modifier) connected to a reaction. As
the figure states, most reactions have two or three par-
ticipating species. The most encoded interaction class
is a reaction having two species as reactants and one
species as product, followed by the interaction class
having a reaction with one species as reactant and one

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1479v1 | CC-BY 4.0 Open Access | rec: 7 Nov 2015, publ: 7 Nov 2015



as product. Also notable are the interaction classes for
seven and more participating species, here 136 differ-
ent interaction classes are encoded.

5 ALGORITHM AND METHODS

Frequent subgraph mining (FSM) is capable of de-
tecting structural similarities of networks (Kuramochi
and Karypis, 2001). One important characteristic
of this approach is the candidate generation method,
which mainly builds on four bases – join, extension,
inductive logic programming and replacing. When
generating candidate with join, the algorithm starts
with small frequent substructures and then merges
them into bigger structures where frequent ones in
turn can be joined. Extension based methods start
with frequent nodes and iteratively add one of each
possible edges, while infrequent patterns often are
pruned immediately and will not be observed for fur-
ther extension. By using inductive logic program-
ming, first order predicates represent the subgraphs.
Keyvanpour and Azizani (2012) state that in the re-
placing strategy ”[...] after detecting the frequent sub-
graph in each stage, the detected subgraph is replaced
by a node in the main graph and in the next stage,
the mining process continues on a new graph obtained
from graph replacing.”

GSpan is an extension based algorithm that takes
a graph set as its input and produces all frequent
connected subgraphs according to a given frequency
threshold (Yan and Han, 2002). Therefore, it uses a
unique minimum depth-first search code of the graphs
and a lexicographic ordering on these codes. Given
that, gSpan builds a search tree. As it uses the mini-
mum depth-first search code of graphs as a canonical
label, two graphs are isomorphic if and only if their
code is equal. This fact transforms the task into a se-
quential pattern mining problem, with already exist-
ing solving algorithms for this problem. Furthermore,
gSpan accelerates discovering patterns by combining
candidate generation and frequency counting, while
efficient pruning is performed. It also avoids false
positive pruning. For example, Priyadarshini and
Mishra (2010) describe an approach to graph mining
using the gSpan, while Wörlein et al. (2005) evalu-
ated its performance in comparison to the algorithms
MoFa, FFSM and Gaston. For this purpose, Wörlein
et al. (2005) developed a tool called the Parallel and
Sequential Mining Suite (ParSeMiS). ParSeMiS is
based on Java and implements algorithms such as
gSpan, Gaston, and Dagma. The above mentioned
advantages of gSpan, such as the use of a canonical
labelling and its availability in ParSeMiS offers the

Figure 4: The displayed pattern was found in 436 models
of data set R29 and 28 models of data set R1. It shows a
species that takes a role as a reactant in two reactions and as
a product in one reaction.

opportunity to analyze the biochemical reaction net-
works described in the Data Set section.

For our analysis, we furthermore build on the
work published by Henkel et al. (2015). They de-
scribe a method to import models from BioModels
Database into a graph database with a special focus
on the encoded reaction networks. Subsequently, we
build up a graph database based on Neo4J and im-
ported models from our data sets R1 and R29 into
that database. Afterwards, the reaction networks are
made available to the ParSeMiS tool. We use the im-
plemented gSpan algorithm to retrieve common sub-
graph patterns by model.

6 RESULTS

The aim of this work is to find common pattern in
biochemical reaction networks. Using the aforemen-
tioned method, we analysed data sets R1 and R29 on a
cluster node (180GB RAM, 16 Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz). For data set R29 we were able to
identify 37 pattern in total, whith 350 being the lowest
number of models that share a pattern. Identified pat-
tern contained between one and six entities (species or
reactions). The quest to identify pattern shared by less
then 350 models was not successful due to memory
limitations of the cluster. For the much smaller data
set R1, however, we identified 190 pattern, contain-
ing between one and eleven entities. Here we were
able to identify pattern shared by 20 of 30 models be-
fore limitations in memory occurred. Next to the
obvious and expected pattern containing one, two or
three entities (a single reaction or species or a combi-
nation of both), already pattern with four entities did
not match our expectations. According to our key fig-
ure analysis (Figure 3), one would expect to find pat-
tern containing one reaction as a center node and three
species taking roles as products, reactants or modifier.
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Figure 3: Listing of the node degree for reaction nodes in the data set R29 of curated models in BioModels Database. For each
number of species (from 1 to 6, and more then 6) participating an an reaction, the figure lists the number of reaction nodes
identified with a particular combination of its species relations (interaction class). The figure sums up smaller interaction
classes displayed by X. Is becomes obvious that most reactions have two or three participating species.

Figure 5: The displayed pattern was found in 390 models
of data set R29 and in 26 models of data set R1. It shows a
species that takes a role as a reactant in one reaction and as
a product in two reactions.

No such pattern was found to be encoded by 350 to
575 models. Instead, patterns as the ones depicted in
Figure 4 and Figure 5 were retrieved. Both examples
have a species as the center node. As it is still feasible
to manually list and search for all possible combina-
tions of one reaction connected to three participating
species (interaction classes with three species in Fig-
ure 3), we queried the database for those interaction
classes as shown in Table 1. The data shows that the
specific combination of two reactants and one product
only occurs in 314 models, despite being the most en-
coded interaction class. We can conclude that this pat-
tern was not found as we only retrieved pattern con-
tained in 350 to 575 models. Same holds for all other
possible interaction classes with three species.

Another interesting point is the usage of species
as a modifier. Overall, species are mostly taking part
in a reaction as a modifier (33209 times) compared to
participation as a product (23630) or reactant (25595).
However, in the 37 retrieved pattern only four of them

Table 1: This table shows the number of models containing
a particular interaction class with three species taking the
role of a reactant (R), product (P) or modifier (M). Values
are given for Release 1 and 29 of BioModels Database. For
each interaction class and release it is stated the count and
percentage of models where such an interaction class was
found.

Interaction Class Release 1 Release 29
2R, 1P 18/60% 304/53%

1R, 1P, 1M 14/47% 279/49%
1R, 2P 13/43% 259/45%
1P, 2M 6/20% 223/39%
1R, 2M 6/20% 173/30%
2P, 1M 2/7% 130/23%
2R, 1M 3/10% 103/18%

3P 2/7% 83/14%
3R 3/10% 54/9%

Figure 6: This pattern occurred in 351 models of data set
R29 and shows a species taking part in a reaction as a reac-
tant and a modifier.

contain a species as a modifier. One example is given
in Figure 6. Apparently, all pattern are chains.

A further investigation reveals how unequally dis-
tributed the usage of modifiers among the models are.
Ten models together count for 20620 modifier us-
ages. Among those models are five derivations of
the aforementioned semi-automatically created mod-
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Figure 7: This pattern shows the smallest biologically
meaningful circle. It is contained in 330 models of data
set R29 and in 25 models of data set R1.

els by Smallbone et al. (2013). This might be a hint
that modifiers are used in semi-automatically created
models more often and differently.

We also expected a pattern containing a circle.
Theoretically, such a pattern could be created with
only one species and one reaction, if the species takes
part as reactant and product. However, from a biolog-
ical perspective there is no point in encoding such a
construct. The next highest number of entities neces-
sary for creating a circle is four (Figure 7). Such a
construct is biologically meaningful, for example, to
encode the creation and degradation of a protein, or
to encode direct positive or negative feedback loops
(please refer to Tyson and Novák (2010), Table 1). As
we did not initially find such a pattern in R29 (350 to
575 models), we specifically searched for this pattern
and identified it in 330 models.

The data set R1 is much smaller than R29. It was
thus possible to identify both, more pattern and pat-
tern containing more entities. The smallest meaning-
ful circle (see Figure 7) was identified in 25 models
of data set R1; the next possible circles containing six
or eight entities was not found – even though patterns
with up to 11 entities could be identified for R1 (Fig-
ure 8. Interestingly, a pattern with two circles con-
sisting of seven entities (Figure 9) is contained in 21
models of R1. This could be a subset of motifs with 3
compounds as suggested by Tyson and Novák (2010).

7 CONCLUSION

The increasing amount of published models and
the growing size of encoded reaction networks de-
mand methods to analyse models. A number of ap-
proaches exist to compare models based on the en-

Figure 8: A pattern with ten entities containing two
branches. This pattern is the biggest pattern that is not a
chain.

Figure 9: A pattern with seven entities containing two cir-
cles. This pattern is included in 21 models of R1.
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coding format, the XML tags, or semantic annota-
tions. We propose to add to the set of existing meth-
ods a new way of comparing models, which deter-
mines similar substructures. In this paper, we used
the gSpan algorithm to analyse two data sets, the first
and the latest release of models provided by BioMod-
els Database. For the first release, we retrieved 190
patterns used in 20 to 30 models. For the latest re-
lease, we performed a key figure analysis. We then
compared the identified 37 patterns (used in 350 to
575 models) and discussed the compliance and differ-
ences between the findings of the key figure analysis
and the detected patterns. We found that a pure key
figure analysis is not sufficient to characterize bio-
chemical reaction networks.

We then searched for the motifs suggested by
Tyson and Novák (2010). Using our algorithm, we
could identify motifs with two compounds and a (pre-
sumable) subset of motifs with three compounds.

The Systems Biology Ontology (SBO) (Juty and
le Novère, 2013) is an ontology representing math-
ematical concepts that are relevant for models. SBO
thus provides terms for the functional role of a species
or reaction. For example, a species that acts as a mod-
ifier can be annotated as ”the modifying function is
an inhibition of the reaction” (SBO:0000407). Most
species and reactions in our data sets contain such an-
notations. The use of annotations, specifically from
SBO, will enable us to identify motifs more precisely.
It will also lower the computational costs of the search
for submodels, because valuable semantic knowledge
can be incorporated to reduce the number of potential
alignments.
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