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ABSTRACT

With the continuous advancement of deep learning technologies, neural machine
translation (NMT) has emerged as a powerful tool for enhancing communication
efficiency among the members of cross-language collaborative teams. Among the
various available approaches, leveraging syntactic dependency relations to achieve
enhanced translation performance has become a pivotal research direction. However,
current studies often lack in-depth considerations of non-Euclidean spaces when
exploring interword correlations and fail to effectively address the model complexity
arising from dependency relation encoding. To address these issues, we propose a
novel approach based on split graph convolutional self-attention encoding (SGSE),
aiming to more comprehensively utilize syntactic dependency relationships while
reducing model complexity. Specifically, we initially extract syntactic dependency
relations from the source language and construct a syntax dependency graph in a non-
Euclidean space. Subsequently, we devise split self-attention networks and syntactic
semantic self-attention networks, integrating them into a unified model. Through
experiments conducted on multiple standard datasets as well as datasets encompassing
scenarios related to team collaboration and enterprise management, the proposed
method significantly enhances the translation performance of the utilized model while
effectively mitigating model complexity. This approach has the potential to effectively
enhance communication among cross-language team members, thereby ameliorating
collaborative efficiency.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech, Text
Mining, Neural Networks

Keywords Neural machine translation, Syntactic dependency relations, Graph convolution, Split
self-attention

INTRODUCTION

In 2009, aiming to expand its global influence and underscore its commitment to customer
security and transparency, the HSBC Bank introduced the slogan “Assume Nothing.”
However, when translating this slogan into various other languages, an issue arose where
a literal translation rendered it as “Do Nothing,” leading to adverse effects on its brand
image. HSBC Bank had to invest $10 million to rectify this translation error. Translation
issues not only impact corporate marketing efforts but can also significantly affect the
corporate management processes of multinational companies. In numerous multinational
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corporations, project management often involves teams comprising members from around
the world. Challenges such as cross-border collaboration, multilingual communication, and
cultural differences are inevitable. In international project environments, the translation
of team communications becomes especially crucial, as it facilitates the transcendence of
cultural barriers, enabling more effective communication and thereby enhancing overall
project quality (Pérez, 2002; Almashhadani ¢ Almashhadani, 2023). Given the complexity
levels and scales of team projects, professional translation teams are often required to satisfy
project demands. Machine translation, recognized as a tool that can reduce translation
workloads and lower costs, is widely acknowledged as an effective approach (Plaza-Lara,
2020).

Machine translation aims to transform one natural language into another, facilitating
cross-lingual information exchange (Eria ¢ Jayabalan, 2019). Early approaches such as
statistical machine translation (SMT) employed statistical models to establish translation
rules and features for the translation process (He, Liu ¢ Lin, 2008). With the advancement
of deep learning techniques, neural machine translation (NMT) has swiftly emerged as
a novel paradigm in the machine translation field (Bahdanau, Cho ¢ Bengio, 2015). In
contrast with traditional SMT methods, NMT employs neural network models to directly
map source language sequences to target language sequences, bypassing intricate feature
engineering and alignment issues. As a result, NMT exhibits enhanced flexibility and
expression capabilities.

Despite these remarkable achievements, NMT still faces several challenges. Conventional
NMT models typically rely solely on extensive bilingual corpora for training purposes,
lacking a profound grasp of language structures and semantics. To achieve enhanced NMT
performance, researchers in the field have begun incorporating linguistic knowledge, such
as grammar rules (Donaj & Sepesy, 2022; Peters et al., 2018) and semantic information
(Su et al., 20215 Song et al., 2019). Embedding such knowledge into models can assist
them in better understanding and generating target language sentences. However, the
introduction of linguistic knowledge often necessitates the construction of more intricate
model architectures to delve into deep-seated linguistic insights. Additionally, extra data
preprocessing and encoding steps are required for parallel corpora, substantially elevating
the complexity and computational costs of the developed model.

In addition to integrating linguistic knowledge, scholars have further achieved enhanced
translation performance by altering the structures of NMT models. For instance, Miculicich
et al. (2018) introduced a hierarchical attention network (HAN) model to capture
contextual information in a structured and dynamic manner. They integrated the acquired
representation information into the original NMT architecture and demonstrated that
utilizing the HAN model architecture in both the encoder and decoder enables the NMT
model to complementarily extract additional contextual information from the context.
Building upon the HAN model, Maruf, Martins ¢ Haffari (2019) proposed a selective
attention network (SAN) model that employs sparse attention to selectively focus on
relevant sentences within the context of the given document. By combining hierarchical
attention mechanisms based on sentence- and word-level context information, they
obtained improved translation results on an English-German dataset. In contrast with
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mainstream methods that often focus on applying network enhancements to encoders, (Li
et al., 2022) employed a pretrained encoder combined with a bidirectional decoder. They
introduced optimization strategies involving alignment-based code switching and dynamic
dual masking, leading to significant machine translation performance improvements

in autoregressive NMT tasks. These enhancements enabled the model to better capture
the dependency relationships between the source and target languages and improved

its capacity to model long-distance dependencies. However, for more intricate syntactic
structures and semantic issues, the incorporation of deeper linguistic knowledge is often
necessary to enhance the effectiveness of the utilized model.

In response to the aforementioned challenges, we propose an NMT approach based
on split graph convolutional self-attention encoding SGSE. This method builds upon the
standard transformer sentence translation model (Vaswani et al., 2017) with the following
enhancements. First, it explores the syntactic dependency relations within the source
corpus and constructs a syntax dependency graph. The words acquired from the source
language are treated as nodes within this graph, and the extracted syntactic dependency
relations serve as edges in the syntax dependency graph. Subsequently, by employing
multiple rounds of message passing and aggregation, dependency graph convolution is
employed to obtain graph convolutional semantic encodings. A self-attention network is
constructed based on these graph convolutional semantic encodings, resulting in graph
convolutional self-attention encoding. Finally, the transformer’s self-attention network
and the constructed graph convolutional self-attention network are split and concatenated
based on their embedding dimensions, enabling encoding fusion. The fused encoding is
utilized as the input of the encoder, thereby enhancing its contextual understanding and
improving the resulting NMT performance.

The main contributions of this article are as follows.

(1) The study innovatively explores latent syntactic information in the corpus, utilizing
it as additional knowledge to enhance the encoding accuracy of words in the corpus.
Through this approach, we effectively improve the translation performance of neural
machine translation models, enabling them to more accurately capture grammatical
structures and generate more natural and precise translation results.

(2) Significant progress has been achieved in model enhancement. By adopting different
network split coefficients, we successfully integrate graph convolutional self-attention
encoding with the original context encoding. This innovative approach not only reduces
the number of parameters in the fused NMT model but also effectively enhances the model’s
inference speed. This approach is crucial for improving the practicality and efficiency of the
model, particularly in the context of team communication efficiency and communication
quality in management activities, presenting significant potential for improvement.

RELATED WORK

Syntactic dependency relations
To enhance the translation capabilities of NMT models, many researchers have attempted
to incorporate syntactic knowledge into such models. This syntactic knowledge includes
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grammar rules, syntactic dependency relations, and semantic roles, providing the
utilized model with additional insights into the structures and semantics of sentences.
Embedding syntactic knowledge into NMT models enables better target language sentence
comprehension and generation. One common approach involves combining syntactic
knowledge as supplementary features or constraints with the mapping relationship between
the source and target languages. For example, Algaisi (2023) improved bilingual word
embeddings by integrating syntactic dependency features into the NMT training process
and demonstrated that pretrained NMT models with syntax dependencies achieved superior
translation results. Bugliarello ¢~ Okazaki (2019) employed a self-attention mechanism to
learn word embeddings and adjusted the weights of the source syntax self-attention in
the encoder based on the syntactic distances between words, achieving translation results
surpassing those of a transformer. Pu ¢ Sima’an (2022) noted that the existing syntax-
enhanced NMT models typically use a single most probable unlabeled parse or a set of best
unlabeled parses derived from an external parser. They proposed concurrently transferring
the parser’s uncertainty and labeled syntactic knowledge to a transformer to achieve
improved machine translation performance. Another approach involves introducing prior
syntactic knowledge constraints during the model training process to guide the generation
of target language sentences while adhering to grammar rules and syntactic relations.
Wi et al. (2018) established a sequence dependency framework that considers both the
source and target languages and utilized contextually constructed semantic dependencies
derived from syntactic trees to attain enhanced translation performance. Gong et al. (2022)
introduced a syntax-guided self-attention neural network using additional syntax awareness
as bias information to guide and adjust the attention weights in the original transformer
attention distribution. Wan et al. (2023) introduced syntactic dependency information
to enhance the grammatical expression capacity of the model for the source language

in NMT. They adopted a multilevel grammar evaluation method, exploring scalable
translation approaches associated with syntactic knowledge. These methods effectively
leverage syntactic knowledge to boost NMT capabilities, and they have demonstrated
superiority in terms of handling complex syntactic structures and semantic issues.

Graph neural networks
As approaches that integrate traditional syntactic knowledge, graph neural networks
(GNNs) have been widely employed in recent years to enhance the translation capabilities
of NMT models. GNNs constitute a category of deep learning techniques that are specifically
designed to handle graph-structured data, proficiently capturing the relationships between
nodes. In the NMT domain, source language sentences can be construed as graph
structures, with each word serving as a node and with syntactic or dependency relationships
constituting edges. The introduction of GNNs had enabled the modeling of the syntax
relationships within source language sentences, integrating these relations into the model’s
representation.

For instance, Marcheggiani, Titov ¢ Bastings (2018) constructed a semantic network
based on predicate-argument structures, employing graph convolutional networks
(GCNs) to update the word embeddings of the nodes within the semantic network.
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Through this process, the model effectively uncovers the syntactic knowledge concealed
within the semantic network. Li et al. (2023) proposed a dynamic graph convolutional
translation architecture, utilizing a syntax graph structure as its input and generating a
sequential output. In this framework, the decoder simultaneously handles source feature
representations and their corresponding syntax graphs. By jointly modeling and generating
target translations, this approach enhances the NMT model’s grasp of syntactic knowledge
and subsequently elevates the resulting translation quality. Additionally, Nguyen et al.
(2023) encoded the Universal Conceptual Cognitive Annotation (UCCA) via a GNN
for additional encoding purposes. They fused UCCA encodings into transformer word
embeddings, effectively enhancing the translation capabilities of their NMT model.
Through the incorporation of GNN-based feature extraction, the model attained an
improved comprehension of the source language sentence’s structure and semantics,
leading to more accurate and coherent target language translation outcomes.

Integrating syntactic knowledge and GNN techniques aids models in gaining a deeper
understanding of linguistic structures and semantic relationships, ultimately enhancing
the final translation quality and fluency. However, the incorporation of supplementary
syntactic knowledge and network structures could potentially augment the complexity of
the model, resulting in increased computational resource demands and prolonged training
and inference times.

In contrast with the existing works, we enhance the process of semantically extracting
the source syntactic relations within the convolutional encoding of the dependency graph
by additionally constructing a self-attention network. Simultaneously, the transformer’s
self-attention network and the constructed graph convolutional self-attention network are
split and concatenated based on their embedding dimensions, enabling encoding fusion.
This encoding fusion process not only reduces the complexity of the NMT model structure
but also enhances the translation performance of the model.

METHODS

To effectively enhance the efficiency and quality of team communications in management
activities, this study explores an NMT approach based on SGSE. The overall model
framework of SGSE is illustrated in Fig. 1.

The right-hand side of the figure presents the machine translation module of the
model, while the left-hand side reveals the detailed steps required to obtain the graph
convolutional encodings. To clearly illustrate the application of our proposed method, we
deliberately select two sentences from a parallel corpus as examples to demonstrate the
process of constructing dependency graphs between the source and target languages.
This graph convolutional encoding approach aids in more effectively capturing the
syntactic structures and contextual relationships between sentences in cross-language
communication scenarios.

During the translation process, the SGSE model employs the same parallel encoding
and decoding strategy as that of the standard transformer model, processing all the
sentences derived from the input parallel corpus. For the purpose of analyzing syntactic
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Figure 1 NMT model framework based on SGSE.
Full-size G4l DOI: 10.7717/peerjcs.1886/fig-1

relationship modeling, we construct a source dependency graph based on the source
language corpus and utilize the word vectors generated from the source language corpus
as the feature representations for the nodes in the source dependency graph. By applying
multilayer graph convolutions, we obtain syntactic relationship-based graph convolutional
semantic encodings (as detailed in Constructing Syntax Dependency Graphs). To acquire
graph convolutional self-attention encodings for the current source input, we perform
word embedding splitting operations that are complementary to the encoding-side
splitting coefficients on the obtained graph convolutional semantic encodings, leading
to the construction of a graph encoding self-attention network (as detailed in Syntactic
Semantic Encoding Network). Before and after the self-attention computations on the
model’s encoding side, we conduct splitting and concatenation operations on the graph
convolutional encodings, fusing the graph convolutional self-attention encodings (as
detailed in Integration of Syntactic Semantic Encoding and Machine Translation). Through
this fused encoding approach, the SGSE model substantially reduces the number of required
parameters, enhances its computational efficiency, and simultaneously learns contextual
information and syntactic knowledge from the source language corpus, resulting in
improved machine translation performance.

Constructing syntax dependency graphs
We utilize the syntactic dependency information derived from the source language corpus.
By extracting these syntactic relationships, syntactic relation triplets are generated, and
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based on these triplets, a syntax dependency graph is constructed. The generated syntax
dependency graph provides richer and more accurate grammatical information for the
subsequent NMT task, thereby aiding the model in better comprehending the structure
and semantics of the source language sentence.

First, performing syntactic dependency analysis on the source language involves
segmenting the source language into word-level units to extract the syntactic relationships
between words. Assuming that M sentences are contained in the source language, the
segmentation of the m-th sentence X,, in the source language is depicted as shown in

Eq. (1).
Xm:xmlaxmbxmﬁiv---ame (1)

where N represents the maximum number of words in the m-th sentence and x corresponds
to each word in the sentence.

Next, a pretrained syntax dependency analysis model is employed to perform dependency
parsing on the source corpus. This model is trained on extensive corpora and is capable
of automatically identifying the dependency relationships among words in sentences, such
as subject-predicate relationships and verb-object relationships. Utilizing the syntactic
dependency relationships, a set of syntactic relationship triplets is constructed for all M
sentences in the source language, as depicted in Eq. (2).

FM:{(xmnl,R(an1 . ),xmm) 0<m=<M,0<n <ny SN} (2)
£ 711’12

where X, and x,,,, are two words in the m-th row of the source language that have
a syntactic dependency relationship. These nodes correspond to the head node and tail
node in the syntactic relationship triplet, respectively. R represents the syntactic

xmn] 7xmn2

relationship between words x,,,, and X,,,,,, which is denoted as “R” in the subsequent
descriptions in this article. The corresponding edge in the syntactic relationship triplet is
not considered directional in our approach.

Finally, the obtained set of relationship triplets I'js isused to construct a syntactic
dependency graph G based on the source language, as shown in Eq. (3).

G={(V,E)|Ve{xu},E€{R},0<m<M,0<n<N}. (3)

Here, Vrepresents the set of nodes in the syntactic dependency graph, and E represents
the set of edges. In the context of this article’s approach, the influence of the strengths of
the syntactic relationships on the weights of the edge relationships is not considered.

Graph convolutional semantic encoding

For the m-th sentence in the source language, X;;, = X1, Xm2, Xm3, - - - » XmnN > the embedding
layer of the transformer is employed to obtain word embeddings for each word in the
sentence, as shown in Eq. (4).

Ep=EXm1,Xm2, Xm3s -+, XmN) (4)

where E,, € RN %! and d,,,,; represents the dimensionality of the word embeddings.
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The approach presented in this article utilizes the word embeddings of each word as the
feature encodings for the corresponding nodes in the constructed syntactic dependency
graph. To achieve graph convolutional semantic encoding, a series of message passing
and aggregation operations are performed on the syntactic dependency graph. Each node
exchanges information with its adjacent nodes and updates based on the features of the
surrounding nodes, gradually aggregating the contextual semantic information acquired
from the neighboring nodes. The process of obtaining a graph convolutional semantic
encoding for the m-th source sentence is illustrated in Eq. (5).

1 1
s (DtngDadjEpr(l)> 1>1 -
E, =0

where Dy represents the input degree matrix of the target nodes, D,4; represents the output
degree matrix of the neighbor nodes, A represents the adjacency matrix of the target nodes,
and E?® represents the encoding output of the 1-th layer GCN. When [ is 0, the NMT model
does not use the GCN and instead uses the initial word embedding representation Em.E,(,,i)
represents the feedforward network layer added after the I-th layer of graph convolution,

and orepresents the process of message aggregation.

Notably, we do not employ an additional embedding encoding layer to represent the
node features within the syntactic dependency graph. Instead, the original word embedding
representations derived from the transformer are utilized. Consequently, in comparison
with the traditional transformer model, the graph convolutional semantic encoding process
introduced in this article does not require supplementary training parameters.

Syntactic semantic encoding network
The method proposed in this article is built upon the transformer model introduced
by Vaswani et al. (2017), which has become the prevailing approach in the field of
NMT. Additionally, the transformer model serves as a fundamental building block for
language models such as ChatGPT. The transformer model departs from traditional
NMT models that rely on methods such as recurrent neural networks (RNNs) (Sutskever,
Vinyals & Le, 2014), convolutional computations (Gehring et al., 2017), and attention
mechanisms (Eriguchi, Hashimoto & Tsuruoka, 2016). Instead, it fully embraces self-
attention mechanisms to learn the contextual representations of words.

Building upon the foundation of the transformer model, we introduce a strategy
to partition the initial word embedding representations. This partitioning process is
subsequently used to tailor the input and output layers of the self-attention networks
according to specific splitting ratios. For the m-th sentence, the split multihead self-
attention computation is detailed in Egs. (6) to (8). Formulas (6) and (7) are derived from
Vaswani et al. (2017).

MHSA(Quus, Kins, Vins) = [heads; ...; head}; | Wy (6)
QmsKT )
head; = softmax "N Vs (7)
§ = sof ( =
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Qunss Kins, Vins = (A-Epy + PE) (A- W, A- Wi, A-Wy ) 0<i<1. (8)

Here, the term MHSA denotes a multihead self-attention mechanism, wherein multiple
parallel attention heads are employed. head;, represents an individual self-attention head
obtained after network pruning. Q,,s, Kis, and Vs denote the query, key, and value
vectors, respectively, obtained through the splitting of the embedding representations
and the pruning of the self-attention network. W,,; represents the parameter matrix to be
learned by the model. A signifies the splitting coefficient of the embedding representation,
which also serves as the pruning ratio for the self-attention network.

To more effectively extract features from the graph convolutional semantic encoding
while simultaneously reducing parameter complexity and maintaining the NMT
performance of the constructed model, we introduce an additional syntactic encoding
self-attention network. This network takes the graph convolutional semantic encoding
as its input. The computation process of the syntactic encoding self-attention network is
illustrated by Eqs. (7) to (11).

MHSA (Quep. Kiep: Vi) = [ head{ s . heads? | Wy (9)
QdepKdT
head ™™ = softmax | ——2_2P Vie (10)
h f ( «/d_k P

Qus: Kinss Vins = (1 =M ETV[(1—=2) - W, (1=2) - Wk, (1—1)- Wy 0 <A < L. (11)

Here, headﬁeP represents an individual self-attention head in the syntax encoding
self-attention network. Qgep, Kiep, and Vi, denote the query, key, and value vectors of the
syntax encoding self-attention network, respectively. Wy, represents the parameter matrix
that the model learns.

In contrast with Eq. (8), we do not introduce positional encoding during the graph
convolutional semantic encoding process. This design considers the characteristics of
GCNs: their node connections are constructed based on syntactic dependency relations,
and GCNss are not sensitive to the relative positional relationships between nodes. Given
that GCNs inherently account for the relative positional relationships between nodes when
handling nonsequential-structured data, reintroducing positional encoding would result
in redundant encoding steps and potentially impact the performance of the model.

Integration of syntactic semantic encoding and machine translation
Building upon the foundation of graph convolutional semantic encoding, this study
explores the fusion of this encoding process with split self-attention network encoding.
In ‘Syntactic Dependency Relations’, we first employ the split self-attention network

to segment the initial word embedding representation, resulting in split self-attention
network encodings that retain contextual semantic information. Subsequently, in ‘Graph
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Neural Networks’, we obtain graph convolutional syntactic semantic encodings, which
encompass semantic information obtained by constructing independent syntactic encoding
self-attention networks.

During the fusion process, we seamlessly match the dimensions of the two encodings
with the initial word embedding dimensions through the settings of the splitting coefficients
in Eqgs. (8) and (11). By concatenating these two encodings in Eq. (12), we successfully
combine the contextual semantic information with the syntactic dependencies among
different words in the source language.

Ep = [MHSA (Qums> Kins, Vins) ; MHSA (Qdepu Kiep, Vdep)] . (12)

Here, Ep, represents the fused word encoding, and [;] denotes the concatenation
operation.

Through this fusion approach, we maintain consistent encoding dimensions, avoiding
unnecessary information losses or issues arising from dimension mismatches. The fused
encodings retain the observed contextual information while also encompassing richer
syntactic relationships, enhancing the model’s understanding of the structure and semantics
of the source sentence. Consequently, this method achieves significant improvements in
machine translation tasks.

Compared to the traditional transformer model, the SGSE model greatly reduces the
number of required parameters. This advantage stems primarily from the optimized design
of the split self-attention network and the syntactic semantic self-attention network. During
the self-attention computation, the parameter count is determined mainly by the query
(Q), key (K), and value (V) dimensions, where the number of parameters needed for
each dimension equals the square of the word embedding dimensionality. For a single
encoder, the parameter reduction achieved by the SGSE model compared to the traditional
transformer model is illustrated in Eq. (13).

Preduce = Preduce (Q,K, V) + Preduce (MHSA)
= 3{dyot — rllot)* — [(1 = 1) dnot1*} + [Hed ot — H Oulyot)® — H [(1 = N dot]*- (13)
=23+H)A(1-2)d;

mol

Here, Preguce (Q,K, V') represents the reduction in the parameter count of the “query,
key, and value” parameter matrices in the self-attention mechanism, while P, (MHSA)
represents the reduction in the parameter count of the linear transformation matrices
in the multihead self-attention mechanism. H stands for the number of attention heads,
dmo represents the dimensionality of the word embeddings, and A denotes the splitting
coefficient.

As inferred from Eq. (13), it is evident that the parameter reduction achieved by our
approach is linearly proportional to the number of self-attention heads and quadratically
proportional to the word embedding dimensionality. This signifies that under equivalent
model dimensions, our proposed method can efficiently utilize the available computational
resources, substantially diminishing the parameter count of the constructed model.
Consequently, this leads to decreased computational costs in terms of training and
inference.
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Table 1 Software and hardware details for the simulations.

Experimental parameters Detailed Information

CPU Intel(R) Core(TM) i7-10700K
Memory 64GB

Hard Disk 6TB

GPU NVIDIA GeForce RTX 4070 Ti 12GB
Operating System Microsoft Windows 10
Programming Language Python 3.9.17

torch 1.13.1+cull7
fairseq 0.12.2

dgl 1.1.1+cull?
hanlp 2.1.0

Toolkit

Table 2 Statistics of the parallel sentence pairs in the different datasets.

Dataset IWSLT14de-en IWSLT20es-de WMT14fr-en IWSLT17zh-en
train 160250 260871 160538 204954

val 7284 11857 8484 3300

test 6750 13613 3003 5566

RESULTS AND DISCUSSION

Experimental settings

To ensure the comparability of the simulation results, we conducted simulation experiments
in the same software and hardware environment. The details of the software and hardware
resources, as well as crucial toolkit information, are presented in Table 1.

To validate the effectiveness of the proposed approach, we selected parallel corpora
from the International Workshop on Spoken Language Translation (IWSLT) and
Workshop on Machine Translation (WMT) conferences as experimental datasets,
IWSLT is an international conference focused on spoken language translation, while
WMT is an international conference dedicated to machine translation. The source
corpora for the experiments encompass four language pairs: German-English (de-en),
Spanish-German (es-de), French-English (fr-en), and Chinese-English (zh-en). For
the de-en translation task, the data were sourced from the TED speech data in the
IWSLT 2014 corpus (https:/wit3.fbk.eu/2014-01). The es-de translation task utilized
the TED speech data from IWSLT 2020 (https:/wit3.tbk.eu/2020-01), while the fr-en
translation task employed the News-Commentary dataset from the WMT 2014 conference
(https:/www.statmt.orgivmt14). The zh-en translation task relied on the TED speech data
contained in the IWSLT 2017 corpus (https:/wit3.fbk.eu/2017-01-c). Detailed information
about the sample sizes of the parallel corpora for each dataset is provided in Table 2.

All parallel corpora underwent subword segmentation through byte pair encoding
(BPE) (Sennrich, Haddow ¢ Birch, 2016). To constrain the memory usage of the model,
while learning the BPE encoding rules, we set a uniform upper limit of 10,000 BPE tokens.
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Additionally, the parallel corpora underwent preprocessing steps, including normalization,
tokenization, lowercase conversion, and corpus cleaning.

Building upon the transformer framework, this study extended its capabilities and
conducted comparisons with several baseline methods. These baseline methods include
the standard transformer sentence translation model (Vaswani et al., 2017) based on
parallel corpora; Mix-models (Shen et al., 2019), which employs ensemble learning to
capture translation diversity through multimodel blending; LightConv (Wu et al., 2019)
and Linformer (Wang et al., 2020), both of which aim to achieve model parameter and
computational complexity reductions; and the NMT model uses dependency parse
graphs and graph attention networks (DP-GAT), which utilizes syntactic relationships
to enhance its translation effect. The original DP-GAT model (AMR+GAT) was proposed
by Nguyen, Pham & Dinh (2020), while the baseline model employs a GAT to encode
semantic information derived from dependency parse graphs.

In this study, we implemented the proposed NMT model based on SGSE encoding
using the open-source Fairseq toolkit (Ort ef al., 2019). We utilized the HanLP toolkit
to extract the dependency syntactic relationships between words in the source language
and employed the open-source DGLtoolkit (Wang, 2019) to perform message passing
and aggregation operations on the dependency graph. Regarding the selection of the
baseline models, both the proposed approach and all baseline methods adopted the
transformer_base model parameters. The encoder and decoder consisted of six layers
each, with eight attention heads per layer and a word embedding dimensionality of 512.
During the model training process, the learning rate was set to 10~%, and the employed loss
function was label_smoothed_cross_entropy. To ensure acceptable training efficiency and
memory usage, each sentence’s maximum length was capped at max-tokens of 4,096. Given
concerns about excessive smoothing due to an excessive number of graph convolutional
layers, the number of graph convolutional layers was set to 3, which was consistent with
the literature (Chen et al., 2020). All the experimental models were trained for 150 epochs
on an RTX 4070Ti GPU. The detailed information regarding the experimental parameters
is presented in Table 3.

During the model evaluation stage, a beam search algorithm was employed with a
beam size of 5. To accurately gauge the translation quality of each model, we employed
the “multi-bleu.Perl” script from the Moses toolkit (Koehn et al., 2007) to calculate BLEU
scores for NMT tasks, providing an objective assessment of the models’ translation

performance.

Main experimental results

This section aims to validate the effectiveness of the proposed method in terms of its
machine translation performance while also assessing the simplicity of its model. Table 4
provides a summary of the BLEU scores produced by both the baseline NMT models and
the proposed method across four translation task test sets. Figure 2 illustrates the loss value

Wan and Li (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1886 12/21


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1886

PeerJ Computer Science

Table 3 Parameter settings for model training.

NMT model Parameter Value
Transformer / Same as SGSE
Mix-models num-experts 3
LightConv / Same as SGSE
Linformer / Same as SGSE
DP-GAT / Same as SGSE
Encoder layers 6
Decoder layers 6
Attention heads 8
Embed dimension 512
Learning rate 10-4
Max tokens 4096
SGSE Training epochs 150
Graph layers 3
Optimizer Adam
Dropout 0.3
Weight decay 5e—5
Activation function ReLU
Lr scheduler inverse-sqrt
Wormup 4000

Table 4 Comparison among the BLEU scores of different models on public datasets.

NMT-Model IWSLT14de-en IWSLT20es-de WMT14fr-en IWSLT17zh-en
BLEU score Parameters
Transformer 33.49 23.03 24.24 19.67 73.9 Million
Mix-models 33.06 23.60 24.21 19.80 74.2 Million
Baseline LightConv 33.60 23.25 25.69 20.02 55.8 Million
Linformer 29.71 20.80 20.57 16.58 58.4 Million
DP-GAT 34.37 24.28 27.11 20.85 74.9 Million
Our Method SGSE 34.62 23.97 26.94 20.92 69.2 Million

and BLEU score variations exhibited on the validation set during the training process of
each model.

Compared to the standard sentence translation model (the transformer), our approach
makes full use of the syntactic dependency information within the source language, leading
to a significant translation quality enhancement. Across the IWSLT14 de-en, IWSLT20
es-de, WMT14 fr-en, and IWSLT17 zh-en datasets, our method achieves BLEU score
improvements of 1.13, 0.94, 1.70, and 1.25, respectively, over the transformer. Notably,
in the zh-en translation task, our method also reduces the number of required model
parameters by 6.4%.

In contrast with Mix-models, which employs ensemble learning techniques, our
approach not only demonstrates superior translation capabilities but also obviates the
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Figure 2 Variations in the loss and BLEU values produced on the validation set.
Full-size & DOI: 10.7717/peerjcs.1886/fig-2

need to train multiple independent NMT models, resulting in a notable reduction in
model training time. When juxtaposed with the LightConv and Linformer models, which
also utilize structural optimizations, our approach exhibits clear advantages. Compared to
LightConv, our method achieves BLEU score improvements of 1.02, 0.72, 1.25, and 0.80.

Moreover, in comparison with the DP-GAT model, which utilizes syntactic dependency
relations and employs an additional GAT to extract syntactic information, our approach
attains leading BLEU scores in the IWSLT14 de-en and IWSLT17 zh-en tasks and performs
comparably to the DP-GAT model in the remaining two translation tasks. Additionally,
our method achieves a 7.7% reduction in the number of required model parameters.

Impacts of different splitting coefficients

This section aims to investigate the impacts of different splitting coefficients, denoted as
“A”, for the proposed method on the translation performance of the NMT model. In the
experiments of this study, we perform the splitting operation on the word embeddings and
graph convolutional encodings of the transformer to adjust the relative contributions of the
self-attention computation and graph convolutional encoding during the encoding process.
The splitting coefficient is used to specify the proportions of the vector dimensions used
in self-attention computation and graph convolutional encoding processes. It is divided
into eight equal parts to ensure that the dimensionality of self-attention is divisible by
the number of attention heads, maintaining computational efficiency. The experimental
results are presented in Table 5.

The experimental results demonstrate that the splitting coefficient significantly impacts
the model’s performance and parameter count. When the splitting coefficient is small,
the influence of the original transformer embeddings on the final fused encoding is
minimal, and the graph convolutional encoding process dominates. In this case, the
model’s performance gradually improves as the splitting coefficient increases. Conversely,
when the splitting coefficient is large, the original transformer embeddings start to play
a dominant role, and the impact of graph convolutional encoding diminishes. In this
scenario, the contribution of the contextual semantics becomes more prominent. When
the splitting coefficient is set to 0.75, the model requires fewer parameters (approximately
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Table 5 Experimental comparison among the results obtained in Chinese-English translation tasks
with different splitting coefficients.

split_rate A Parameters BLEU produced on val set BLEU produced ontest set
0 73.9 million 1.24 2.29
0.125 71.1 million 17.73 19.04
0.25 69.1 million 18.19 19.75
0.375 67.9 million 18.33 19.89
0.5 67.5 million 18.04 19.38
0.625 67.9 million 18.84 20.19
0.75 69.1 million 19.29 20.92
0.875 71.1 million 19.07 20.65
1 73.9 million 18.53 19.67

Table 6 BLEU scores produced by translation models on parallel sentence pairs with different sen-

tence lengths.

Sentence length Number of sentences Transformer SGSE BLEU Increase
less than 10 1,102 24.05 25.34 1.29

10~14 1,136 21.10 22.46 1.36

15~20 1,119 20.54 22.12 1.58

21~32 1,200 19.92 20.66 0.74

over 32 1,009 18.05 19.46 1.41

All sentences 5,566 19.67 20.92 1.25

69.1 million) and achieves the highest BLEU score (20.92). This suggests that at this
particular splitting coefficient, the model strikes a favorable balance between performance
and parameter efficiency.

Notably, when the splitting coefficient is 0, the model utilizes only dependency graph
convolution embeddings as feature inputs, whereas when the splitting coefficient is 1,
the model relies solely on contextual semantic embeddings as feature inputs. Clearly,
contextual semantic embeddings serve as the primary source of information during the
model’s translation process, and the introduction of dependency graph convolution
embeddings enriches information from the perspective of grammatical structure, thereby
enhancing the translation performance of the model.

Model performance comparison across different corpus lengths
In this section, we conduct a comprehensive comparative analysis of the performance of
our proposed method and the transformer model across various sentence lengths. We aim
to showcase their performance variations within different length ranges. To achieve this,
we partition the test set into five groups based on the lengths of English sentences. This
division enables us to meticulously investigate the performance of both methods under
different length conditions. The experimental results are presented in Table 6.

We conduct experimental comparisons on parallel corpora from different groups. In
the group with sentence lengths ranging from 15 to 20, a BLEU score improvement of
1.58 is observed. In the other groups, the BLEU score improvements fall between 0.7
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Table 7 Experimental comparison results obtained on team communication datasets.

Parallel corpora Number of Transformer DP-GAT SGSE
parallel pairs
BLEU score Inference BLEU score Inference BLEU score Inference
Time(s) Time(s) Time(s)

NLP-CEPARACFIN 100 15.46 1.5 1591 2.2 15.75 1.8
TED-Enterprise 1,173 22.41 16.5 24.09 18.4 24.05 15.4
TED-Management 1,241 22.07 17.4 23.81 19.5 23.68 16.7
UN-Conference 4,000 8.53 55.9 9.55 61.4 9.72 50.4
NC-Enterprise 5,969 10.60 83.3 11.35 91.1 11.49 73.2
NC-Management 3,270 10.85 45.7 11.86 50.3 11.71 43.0

and 1.41. We posit that longer sentences tend to encapsulate more intricate internal
syntactic relationships, thereby furnishing the model with a wealth of valuable syntactic
information, which aids in optimizing its translation performance. Conversely, shorter
sentence lengths might lead to an internal syntactic information reduction, limiting further
model enhancement. Notably, owing to the inherent characteristics of machine translation,
excessively long sentences might encounter constraints during decoding due to factors such
as beam search algorithms, thus restricting the ability to obtain substantial performance
gains.

Performance analysis of the model on the team communication
dataset
In this section, we shift our focus to real-world application scenarios such as team
collaboration, business operations, and management. We conduct an in-depth comparison
between the SGSE model and several baseline models in terms of translation accuracy and
speed.We utilize a carefully curated group of datasets to comprehensively evaluate the
performance of the proposed model. Among them, the NLP-CEPARACFIN dataset
(https:/magichub.com/) is an open-source parallel corpus with financial domain activities
in Chinese and English. The UN-Conference dataset (https:/conferences.unite.un.org/
UNCorpus) originates from United Nations conferences and serves to test the diversity
and challenges of corpora. Furthermore, we meticulously select enterprise-related parallel
corpora from the TED2020 and News Commentaryl7 datasets, which are designated as
TED-Enterprise and NC-Enterprise, respectively. Additionally, we extract parallel corpora
associated with business and government management, labeled TED-Management and
NC-Management, respectively. All the experimental results are presented in Table 7.
Compared to the transformer model, the SGSE model demonstrates superior translation
performance across six distinct datasets. Particularly, in scenarios involving large-
scale samples, the SGSE model exhibits faster translation speeds than the transformer.
Additionally, it is worth noting that the SGSE model achieves translation performance on
par with that of the DP-GAT method while maintaining a significant advantage over the
DP-GAT model in terms of translation speed.
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Furthermore, the SGSE model is more effective in extracting syntactic structure
information present in the corpus. For instance, in the 1,336th line of the TED-Management
dataset, the reference translation is “I joined Unilever in 1976 as a management trainee in
India.” The translation generated by the SGSE model is “In 1976, I joined Unilever as a
management training student in India.” In contrast, the Transformer’s translation is “In
1976, 1 joined Unilever in India as a management training training.” Clearly, the translation
produced by the Transformer exhibits serious grammatical errors, while the SGSE model
maintains a sentence structure consistent with the reference translation, with differences
only in the translation of specialized terms such as “management trainee.”

These findings collectively reveal that the SGSE model can significantly enhance the
quality and efficiency of collaboration within multilingual teams. This advantage presents
the possibility of optimizing the cross-cultural communication and management paradigms
within multinational enterprises, with the potential to foster closer cooperation among
different language groups within an organization.

CONCLUSIONS

We introduce a novel NMT approach named SGSE, which incorporates split graph
convolutional self-attention encoding into the constructed model. By effectively harnessing
syntactic dependency relationships and optimizing the design of self-attention networks,
our approach achieves a translation performance improvement while significantly reducing
the number of required model parameters. Through experiments conducted on various
standard conference datasets, we showcase the outstanding performance of the SGSE model
in multilingual translation tasks. Furthermore, we validate the practicality and efficiency
of our method in real-world team collaboration and management scenarios.

In future research, we will strive to further optimize our method to better cater to
the demands of practical applications. Specifically, we plan to pursue the following two
directions. First, we plan to conduct in-depth validation of our proposed methods on a
broader range of datasets, encompassing bidirectional translation datasets with complex
syntactic structures and deep semantics, such as German, Tamil, and others. This will
contribute to a more comprehensive assessment of the applicability and universality of
our approach. Second, in the face of scarce parallel corpora, we will explore leveraging
the constructed syntactic dependency graph to predict the potential relationships between
nodes, aiming to further enhance the translation quality achieved under small-sample
conditions such as team management scenarios.
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