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Motivation

GPU computing

� performance gains for algorithms exposing fine grained parallelism

� improvements of about an order of magnitude over CPUs

Autotuning in GPU getting more difficult

� mapping even simple linear algebra operations to the underlying hardware
can be difficult

� high cardinality of the set of kernel instantiations (block sizes for better
cache reuse and the number of concurrent threads)

� long execution times to find high performing variant

Performance portability

� GPU computing presents a significant burden for application developers
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Machine learning for performance modeling

� performance modeling may provide a much more efficient methodology
for coping with high-dimensional search spaces in auto tuning

� algebraic performance models increasingly challenging

� statistical performance models: an effective alternative

� small number of input-output points obtained from empirical evaluation

� deployed to test and/or aid search, compiler, and auto tuning
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Active learning for performance modeling

� key idea: greater accuracy with fewer training points when allowed to
choose the training data

� actively query the model to assess predictive variance
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Active learning using dynaTrees

� Based on a classical nonparametric (do not rely on data belonging to any
particular distribution) modeling technique [M. Taddy et al. 2011]

Algorithm

� trees to represent input-output
relationships using binary recursive
partitioning

� the covariate space is partitioned
into a set of hyper-rectangles

� a simple tree model is fit within
each rectangle

� generate a pool of unlabeled points

� selection: maximize the expected
reduction in predictive variance

sequential!
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Active learning with concurrent evaluations
� batch (nb) of inputs, taken collectively, will lead to updates that are

better than one-at-a-time schemes

The ab-dynaTree algorithm

� select points and evaluate
concurrently

� issue: other configurations in the
batch become less informative

� condition sampling on tentative
evaluations

� µ(xprev) ← µpred(xprev);
=⇒ σ2(xprev) ← 0

� better exploration

� leads to better surrogates with
minimum evaluations

See [Balaprakash et al., Cluster’13]
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The ab-dynaTree algorithm for GPU kernels

� kernels executed in sequence on a single device (absence of a GPU cluster)

� nb = 1: “serial version” of ab-dynaTree

� nb > 1: model is updated only after these nb serial evaluations

Goal
does batching still provide significant benefits over the classical sequential
strategy?
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Experimental setup

Problems Operations Graphic Card # Param. Valid Conf.
|Xp|

vc1 vector copy Nvidia GeForce GTX 285 4 2,560
vc2 vector copy Nvidia GeForce GTX 470 4 2,560
vc3 vector copy Nvidia Tesla C2050 4 2,560
vc4 vector copy AMD Radeon HD 7970 4 2,560
vdot vector dot product Nvidia Tesla C2050 6 6,144
axpy vector-scalar product Nvidia Tesla C2050 6 7,680
spmv sparse matrix-vector Nvidia Tesla K20X 4 10,752
mm1 matrix multiplication Nvidia GeForce GTX 470 10 8,465
mm2 matrix multiplication AMD Radeon HD 7970 10 3,568

� surrogate models to minimize execution times

� all valid configurations evaluated and stored in a lookup table
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Experimental setup

� ab-dynaTree algorithm with a maximum budget of 1, 000 evaluations
(Xout, Yout)

� three non linear regression algorithms:

� dynaTrees algorithm (dT)
� random forest (rf)
� neural networks (nn)

� active learning (al) variants: (Xout,Yout) as the training set

� random sampling (rs) variants: 1,000 randomly chosen points

� test set T25%: the subset of data points whose mean run times are within
the lower 25% quartile of the empirical distribution for the run times

� root-mean-squared error (RMSE) as a measure of prediction accuracy
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Impact of batch size (nb) in ab-dynaTree

� nb > 1: explore and identify multiple regions in the input space

� nb = 1: high probability of sampling from only one promising region

� on 7 out of 9 problems, large batch size beneficial
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Comparison between regression algorithms

Table : RMSE averaged over 10 replications on the T25% test set for 1,000 training
points. The value is typeset in italics (bold) when a variant is significantly worse
(better) than dT(al) according to a t-test with significance (alpha) level 0.05.

Problem dT(al) dT(rs) nn(al) nn(rs) rf(al) rf(rs)

vc1 0.035 0.050 0.036 0.044 0.122 0.179
vc2 0.041 0.067 0.039 0.058 0.137 0.173
vc3 0.124 0.201 0.131 0.173 0.262 0.372
vc4 0.026 0.043 0.031 0.038 0.124 0.153
vdot 0.009 0.014 0.010 0.016 0.012 0.021
axpy 0.014 0.022 0.012 0.017 0.016 0.029
spmv 0.002 0.003 0.002 0.003 0.008 0.014
mm1 0.029 0.045 0.027 0.040 0.028 0.046
mm2 0.036 0.053 0.030 0.043 0.031 0.052

� al variants of dT, rf, and nn obtain lower RMSE than rs variants

� dT(al) completely dominates the three random sampling variants

� dT(al) obtains lower average RMSE than does rf(al)

� dT(al) and nn(al) are similar due to expensive parameter tuning of nn
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Comparison between regression algorithms

� Double win: Better RMSE, less training points (=time/evaluation)

� dT(al) requires relatively fewer evaluations to achieve a smaller RMSE
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Comparison between regression algorithms
� number of evaluations required by the variants to reach the RMSE

obtained by dT(rs) with 1,000 evaluations.

� on 7 out of 9 problems, dT(al) reaches the RMSE of dT(rs) within 300
to 700 training points; mm1 and mm2 rf(al) outperform dT(al)

� savings up to a factor of three
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Summary

� ab-dynaTree for developing empirical performance models of GPU
kernels

� active learning as an effective data acquisition strategy

� batch mode provides significant benefits over the classical, serial mode:
high degree of exploration

Future work

� asynchronous model updates

� multiobjective surrogate modeling

� structure exploiting numerical optimization algorithms

� deployment of ab-dynaTree in autotuning search algorithms
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