Structure-Preserving Signatures on Equivalence Classes and their Application to Anonymous Credentials

Christian Hanser and Daniel Slamanig, IAIK, Graz University of Technology, Austria

9. December 2014

Contribution

- Structure-Preserving Signatures on Equivalence Classes (SPS-EQ)
- Polynomial Commitments with Factor Openings
- ⇒ Multi-Show Attribute-Based Anonymous Credentials

Contribution

- Structure-Preserving Signatures on Equivalence Classes (SPS-EQ)
- **Polynomial Commitments with Factor Openings**
- ⇒ Multi-Show Attribute-Based Anonymous Credentials:
	- First ABC system with $O(1)$ -size creds and $O(1)$ communication!
	- Only single *O*(1) PoK required!
		- only for freshness and reductions!
		- m. no PoK for possession of signature nor for possession of attributes
	- Simple design

Multi-Show ABCs

Motivation

- Find new, highly efficient way to build attribute-based anonymous credentials
	- Reduce number of PoKs
- **Alternative?** Commitments to sets with subset openings
- **Unlinkability?** Randomizing commitments and witnesses
- **Authenticity?** Needed signature scheme that allows to consistently re-randomize messages and signatures *(compatible with commitment randomization)*

Latest Developments

■ Original SPS-EQ scheme broken by Fuchsbauer

- erroneous GGM proof
- only secure against RMA (and not EUF-CMA)
- Replacement construction as joint work with Fuchsbauer *(eprint report 2014/944)*
	- Even more efficient (in terms of #PPEs, signature size, PK size)
	- Yields efficient instantiation of our ABC construction

Preliminaries

Bilinear map $e: G_1 \times G_2 \rightarrow G_7$ where G_1, G_2, G_7 have prime order p and $G_1 \neq G_2$

$$
\blacksquare\text{ Let }G_1=\langle P\rangle, G_2=\langle P'\rangle
$$

- co-*t*-SDH assumption:
	- Type-3 counterpart of *q*-SDH assumption
	- **Used in static way**

Structure Preserving Signatures [AFG+10]

Signature scheme

- signing group element vectors
- whose signatures and PKs consist only of group elements
- whose verification algorithm uses solely PPEs and group membership tests

So far mainly used in context of Groth-Sahai proofs

Signing Equivalence Classes

As with the projective space, we can partition G_1^{ℓ} into projective equivalence classes using

$$
M\sim_{\mathcal R} N \Leftrightarrow \exists k\in \mathbb Z_p^*: N=k\cdot M
$$

since G_1 has prime order.

Signing Equivalence Classes

As with the projective space, we can partition G_1^{ℓ} into projective equivalence classes using

$$
M\sim_{\mathcal R} N \Leftrightarrow \exists k\in \mathbb Z_p^*: N=k\cdot M
$$

since G_1 has prime order.

Is it possible to build a signature scheme that signs such equivalence classes?

Goals:

Signing a class $[M]_{R}$ by signing a representative $M \in (G_1^*)^\ell$

Goals:

- Signing a class $[M]_R$ by signing a representative $M \in (G_1^*)^\ell$
- Controlled malleability:
	- ability to switch representative in the public: choose $k \in \mathbb{Z}_p^*$, compute $k \cdot M$
	- consistent signature update

Goals:

- Signing a class $[M]_R$ by signing a representative $M \in (G_1^*)^\ell$
- Controlled malleability:
	- ability to switch representative in the public: choose $k \in \mathbb{Z}_p^*$, compute $k \cdot M$
	- consistent signature update
- **Indistinguishability of updated message-signature** pair from random message-signature pair

Abstract Model:

- **As in ordinary SPS scheme:**
	- \blacksquare $BGGen_{\mathcal{R}}$, KeyGen $_{\mathcal{R}}$, Sign $_{\mathcal{R}}$, Verify $_{\mathcal{R}}$
	- *except for messages considered to be representatives*

Abstract Model:

- As in ordinary SPS scheme:
	- $BGGen_{\mathcal{R}}$, KeyGen $_{\mathcal{R}}$, Sign $_{\mathcal{R}}$, Verify $_{\mathcal{R}}$ \blacksquare
	- *except for messages considered to be representatives*
- **Additionally:**
	- **ChgRep**_{R}(*M*, σ , *k*, pk): Returns representative $k \cdot M$ of class $[M]_{R}$ plus update of signature σ

Security Properties:

- Correctness
- **Unforgeability**
- **Class Hiding**

Security Properties:

- Correctness
- **Unforgeability**
- **Class Hiding**

EUF-CMA security defined w.r.t. equivalence classes:

$$
\text{Pr}\left[\begin{matrix}\mathsf{B}\mathsf{G}\leftarrow\mathsf{B}\mathsf{G}\mathsf{G}\mathsf{e}\mathsf{n}_{\mathcal{R}}(\kappa), \ \ (\mathsf{sk},\mathsf{pk})\leftarrow\mathsf{KeyGen}_{\mathcal{R}}(\mathsf{B}\mathsf{G},\ell), \\ \ \ (\mathsf{M}^*,\sigma^*)\leftarrow\mathcal{A}^{\mathcal{O}(\mathsf{sk},\cdot)}(\mathsf{pk}): \\ \ \ [\mathsf{M}^*]_\mathcal{R}\neq [\mathsf{M}]_\mathcal{R}\ \ \forall\ \text{queried}\ \mathsf{M}\ \ \wedge\ \ \mathsf{Verify}_{\mathcal{R}}(\mathsf{M}^*,\sigma^*,\mathsf{pk})=\mathsf{true}\end{matrix}\right]\leq \epsilon\big(\kappa\big),
$$

Class Hiding (relaxed version):

Christian Hanser and Daniel Slamanig, IAIK, TUG 12 | Criffisian Hanser a

Outline of EUF-CMA-secure scheme:

- **Signature size:**
	- **2** G_1 + 1 G_2 elements
- **PK** size:
	- \blacksquare ℓ G_2 elements
- $#PPFs:$
	- 2

Construction optimal (SPS-EQ implies SPS)

Polynomial Commitments w/ Factor Openings

Overview:

- **Perfectly hiding, succinct commitments to monic,** reducible $f(X) \in \mathbb{Z}_p[X]$
- Ability to open factors $g(X) | f(X)$
	- Alternatively: Compute $f(X)$ having roots in $S \subset \mathbb{Z}_p$ and use $g(X)$ to open $T \subset S$
- Commitments + witnesses consistently re-randomizable

Polynomial Commitments w/ Factor Openings

Overview:

- **Perfectly hiding, succinct commitments to monic,** reducible $f(X) \in \mathbb{Z}_p[X]$
- Ability to open factors $g(X) | f(X)$
	- Alternatively: Compute $f(X)$ having roots in $S \subset \mathbb{Z}_p$ and use $g(X)$ to open $T \subset S$
- Commitments + witnesses consistently re-randomizable

Alternative to original polynomial commitments [KZG10]

EXECT: Less generic, but more efficient for certain use-cases

Construction Idea:

■ Setup

- pp \simeq co-*t*-SDH instance
- Commit to $f(X)$:
	- Evaluate $f(X)$ in group using pp, multiply with random $r \rightarrow$ commitment C

Construction Idea:

- Open factor $g(X) | f(X)$ (let $f(X) = g(X)h(X)$):
	- Compute witness *W* to $h(X)$ in same way as commitment C

Construction Idea:

- Open factor $g(X) | f(X)$ (let $f(X) = g(X)h(X)$):
	- Compute witness *W* to $h(X)$ in same way as commitment C
- Verify factor opening of $q(X)$:
	- Evaluate $g(X)$ in group and plug everything together in one PPE

Re-randomizability:

Factor verification still works for *k* · C and *k* · *W*

Security:

- **Extensive security model**
- Construction based on co-*t*-SDH assumption

ABCs from SPS-EQ

New ABC construction type + Appropriate Security Model

Ingredients:

- SPS-EQ + PolyCommitFO
- A single *O*(1) OR PoK
- Collision-resistant hash function $H: \{0, 1\}^* \to \mathbb{Z}_p$

Outline of Obtain/Issue Phase:

- **Use PolyCommitFO to compute commitment** \mathcal{C} **to** attribute set:
	- commit to $f(X)$ having hashed attribute/value pairs as roots (using *H*)
	- \blacksquare include user secret into $\mathcal C$
- Obtain SPS-EQ signature σ on (C, P)
- **Credential:** (C, σ)

Outline of Showings:

■ The prover

- picks *k R* ← Z ∗ *p* , runs $((k \cdot C, k \cdot P), \tilde{\sigma}) \leftarrow \text{ChgRep}_{\mathcal{R}}(((C, P), \sigma), k, \text{pk})$
- opens $k \cdot C$ to $q(X) | f(X)$ corr. to selected attribute set → witness *W*
- sends $((k \cdot C, k \cdot P), \tilde{\sigma})$, *W* and perform OR PoK on *k* or knowledge of dlog of a CRS value *(freshness + reduction)*

Outline of Showings:

- **Verifier checks**
	- validity of $((k \cdot C, k \cdot P), \tilde{\sigma})$
	- whether shown attributes and **W** give factor opening of $k \cdot C$
	- PoK

Efficiency (when using repaired SPS-EQ scheme):

- Credential size:
	- **3** G_1 + 1 G_2 elements
- Communication:
	- \blacksquare *O*(1)
- **Showing:**
	- User $O(\#(\text{unshown attributes}))$
	- **Verifier** $O(\#(\text{shown attributes}))$

Conclusions

■ SPS-EQ: new, powerful signature primitive

- **potential applications in many other contexts!**
- **Efficient, randomizable, perfectly hiding polynomial** commitments
- **Highly efficient multi-show ABCs**
	- first construction having $O(1)$ credential size and communication!

Thank you for your attention!

<christian.hanser@iaik.tugraz.at>