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Introduction

PCA
PCA (Principal Component Analysis) is a powerful
technique for extracting structure from possibly
high-dimensional data sets.
It is often the case that only small number of principle
component is sufficient to account for most of the structure.

Kernel trick
We generalizes PCA to the case where we are not
interested in principal components in “input space”, but
rather in principal components of “features”, which are
nonlinearly related to the input variables.
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PCA in Feature Space

Review of PCA
(THM) A matix is orthogonally diagonallyzable if and only if
it is symmetric.
(THM) A symmetric matrix is diagonalized by a matrix of its
orthonormal eigenvectors.
The data set is X = [x1 . . . xM ]T . Since XX T is symmetric,
it provides: XX T = PDPT where D is a diagonal matrix
and P is an orthonormal matrix of eigenvectors of XX T

arranged as columns.
The principal components of X are the eigenvectors of
XX T , and each diagonal value of D is the variance of X
along the corresponding principal component.
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PCA in Feature Space

Review of PCA
Given a set of M centered observations xk , k = 1, . . . ,M,
xx ∈ RN ,

∑M
k=1 xk = 0, the covariance matrix

C =
1
M

M∑
j=1

xjxT
j .

PCA diagonalizes C; we solve λv = Cv for λ ≥ 0, v 6= 0.
Since the variance of any real-valued random variable is
nonnegative, and the symmetry of the covariance matrix,
only a p.s.d. matrix can be a covariance matrix.
(THM) A is p.s.d. if and only if all eigenvalues of A are
nonnegative.
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PCA in Feature Space

Review of PCA
(THM) The eigenvectors lie in the span of x1, . . . ,xM .

(Proof)

Cv = λv⇒ v =
1

Mλ

M∑
j=1

(xj · v)xj .

But, (xj · v) is just scalar, so all solutions v with λ 6= 0
lies in span{x1, . . . ,xM}.
Thus, there exist α′is such that v =

∑M
i=1 αixi , and

it sufficient to solve λ(xk ·v) = (xk ·Cv) for all k = 1, . . . ,M,
to solve the eigenvalue problem.
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PCA in Feature Space

PCA in feature space

Let Φ : RN → F be a (nonlinear) map, where F is another
dot product space. We refer to F as the feature space.
Assuming

∑M
k=1 Φ(xk ) = 0, the covariance matrix is

C̄ =
1
M

M∑
j=1

Φ(xj)Φ(xj)
T .

We have to find λ ≥ 0 and V ∈ F\{0} satisfying λV = C̄V.
It suffices to solve λ(Φ(xk ) · V) = (Φ(xk ) · C̄V) for all k .
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PCA in Feature Space

PCA in feature space

λ(Φ(xk ) · V) = (Φ(xk ) · C̄V) for all k .
(LHS)= λ

∑M
i=1 αi(Φ(xk ) · Φ(xi))

(RHS) = 1
M
∑M

i=1
∑M

j=1 αi(Φ(xk ) · Φ(xj))(Φ(xj) · Φ(xi))

Defining K :=
(
Φ(xi) · Φ(xj)

)
i,j ,

MλKα = K 2α, where α = [α1 . . . αM ]T

⇔ Mλα = Kα (since K is symmetric)
Since K = [Φ(x1) . . .Φ(xM)]T · [Φ(x1) . . .Φ(xM)],
(X · KX ) ≥ 0 for all X ∈ F , so K is positive semidefinite.
Thus, all eigenvalues of K are nonnegative, and are
exactly give the solutions Mλ.

Therefore, we only need to diagonalize K .
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PCA in Feature Space

PCA in feature space

Let λ1 ≤ . . . ≤ λM be the eigenvalues, and α1, . . . , αM the
corresponding eigenvectors.
Let λp be the first nonzero eigenvalue. We normalize
αp, . . . , αM so that V k · V k = 1 for all k = p, . . . ,M.
1 = V k · V k =

∑M
i,j=1 α

k
i α

k
j Kij = λk (αk · αk ).

Let x be a test point, with an image Φ(x) in F , then
(V k · Φ(x)) =

∑M
i=1 α

k
i (Φ(xi) · Φ(x)) may be called its

nonlinear principal components corresponding to Φ.
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PCA in Feature Space

Summary
The necessary steps to compute the principal components.

1 Compute the dot product matrix K .
K is called the kernel matrix, whose ij-th element is the
inner-product kernel K (xi ,xj).

2 Compute its eigenvectors and normalize them in F .
3 Compute projections of a test point onto the eigenvectors.
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Computing Dot Products in Feature Space

Kernel representation
In order to compute dot products of the form Φ(x) · Φ(y),
we use kernel representations of the form
k(x,y) = Φ(x) · Φ(y).

The choice of k implicitly determines the mapping Φ and
the feature space F .
If F is high-dimensional, we would like to be able to find a
closed form expression for k which can be efficiently
computed.
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Computing Dot Products in Feature Space

Example (Bad choice of k )

(x · y)d = (Cd (x),Cd (y)) where Cd maps x to the vector
Cd (x) whose entries are all possible n-th degre ordered
products of the entries of x.
If x = (x1, x2), then C2(x) = (x2

1 , x
2
2 , x1x2, x2x1).

For N dimensional data, there exist (N+d−1)!
d!(N−1)! different

monomials. For example, 16× 16 pixel input images with a
monomial degree d = 5 yields a dimension of almost 1010.
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Kernel PCA

The algorithm
1 Compute Kij = (k(xi ,xj))ij .

2 Solve Mλα = Kα by diagonalizing K , and normalizing the
eigenvalue expansion coefficients αn by solving 1 = λn(αn · αn).

3 Extract the principal components (corresponding to the kernel k )
of a test point x: compute
(kPC)n(x) = (V n · Φ(x)) =

∑M
i=1 α

n
i k(xi ,x).
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Kernel PCA

Dimensional reduction
Kernel PCA allows the extraction of a number of principal
components which can exceed the input dimensionality.
(This is not necessary a dimensional reduction)

Computational complexity
Kernel functions may easy to compute. However,
extracting principal components does take more work,
because we have to evaluate the kernel functions M times
for each extracted principal components, instead of just
one dot product as in linear PCA.
It has a disadvantage. e.g. extract principal components as
a preprocessing step for classification.
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Kernel PCA

Computational complexity
We can speed up the extraction; approximate each
eigenvector V =

∑`
i=1 αiΦ(xi) by Ṽ =

∑m
j=1 βjΦ(zj), where

||V − Ṽ ||2 is minimized, for some chosen m < `.

SVM
If we replaces xi · xj by K (xi ,xj), then in test phase a linear
SVM is used by computing sign of

f (x) =
Ns∑
i=1

αiyiΦ(si) · Φ(x) + b =
Ns∑
i=1

αiyiK (si ,x) + b

where si are the support vectors. We can avoid computing
Φ(x) and use K (si ,x) instead. It can be done fast.
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Experiments

Two-dimensional toy examples

xi ∈ [−1,1], yi = x2
i + ξ, where ξ ∼ N(0,0.2).

From left to right, we use k(x,y) = (x · x)d , d = 1, . . . ,4.
From top to bottom, the first 3 eigenvectors are shown.
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Nonlinear variants of other algorithms

Kernel-k -means clustering
Consider k -means clustering. Let Miv = 1 if xi belongs to
cluster v , 0 otherwise.
We are trying to find k centers mv . Clearly, the centers
should lie in span{Φ(x1), . . . ,Φ(xM)}. If not, we could
project mv to the above span.
We have mv =

∑M
j=1 γvjΦ(xj). Initially, we can set γij = δij .

The squared distance between mv and a mapped pattern
Φ(x) can be expressed as ||Φ(x)−mv ||2.
The kernel-k -means proceeds as follows: each new data
point xt+1, assigned to the closest mean mv .
Update: mt+1

v = mt
v + ζ(Φ(xt+1)−mt

v ), where
ζ =1/#(points in cluster v ).
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Nonlinear variants of other algorithms

Classification and image indexing
Clearly, distance-based algorithms like k -NN can be easily
recast in the nonlinear kernel framework.
In addition, it would be desirable to develop nonlinear
forms of discriminant analysis based on kernels.
PCA has the shortcoming of only being able to take into
account second order correlation between pixels.
Nonlinear component analysis take into account higher
order correlations.
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