
US 20200186355A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0186355 A1

DAVIES (43) Pub . Date : Jun . 11 , 2020

Publication Classification (54) DISTRIBUTED TRANSACTION
PROCESSING AND AUTHENTICATION
SYSTEM

(71) Applicant : KALYPTON INTERNATIONAL
LIMITED , Giro's Passage (GI)

(72) Inventor : Lars DAVIES , West Sussex (GB)

(21) Appl . No .: 16 / 315,879

(51) Int . Ci .
H04L 9/32 (2006.01)
H04L 9/06 (2006.01)
GO6Q 40/02 (2006.01)

(52) U.S. CI .
CPC H04L 9/3242 (2013.01) ; H04L 9/3221

(2013.01) ; G06Q 40/02 (2013.01) ; H04L
9/0643 (2013.01) ; H04L 9/3247 (2013.01)

(57) ABSTRACT

A method of recording a data transaction comprising , at a
device associated with a first entity , determining first seed
data , generating a record of a first transaction between the
first entity and a second entity , determining second seed data
by combining at least the first seed data and the record of the
first data transaction , generating a first hash by hashing the
second seed data , the first hash comprising a history of data
transactions involving the first entity and storing the first
hash against the record of the first data transaction in a
memory .

(22) PCT Filed : Jul . 7 , 2017

PCT / GB2017 / 052004 (86) PCT No .:
$ 371 (c) (1) ,
(2) Date : Jan. 7 , 2019

(30) Foreign Application Priority Data

Jul . 8 , 2016 (GB) 1611948.9

Business rules engine
Defines business logic for
the deployed services
Services can be tailored to
individual users
UML or plain English
notation

Functional domains and
contexts

Customer activities and rules
Merchant activities and rules
individual users
Bank activities and rules
Mobiles , tablets , cards ... ATMs

.

System protocols
Terminal
Network interoperability ,
including ISO 20022
Server management
Card manufacturer
Licence validation

Framework and infrastructure
components

Smart Device Application Services
Framework (SDASF)
Payment Network Management
Card Manufacturer Interface
Licence Server

•

.

108

102

Smart devices

108

108

216

Patent Application Publication

210

Services

Terminals

Tereon Server

-104

Directory Server

License Server

SDASF Rules engine

Card issuers schemes

108

108

clearing houses Banks and

Jun . 11 , 2020 Sheet 1 of 22

102

-106

102

providers Service

Tereon Server

manufacturers Card

Tereon Server

108

108

FIG . 1

US 2020/0186355 A1

Patent Application Publication Jun . 11 , 2020 Sheet 2 of 22 US 2020/0186355 A1

214 204
220 216 222

Data
Transactor

Data
Service

Data
Transactor

Pessimistic
transactional

writes
Data

Service Data transactor cluster (n nodes)
Data

Transactor
Data Service (n nodes) Data

Service

Internal Directory Server (n nodes)

Tereon Directory
Server
Tereon Directory
Server
Tereon Directory
Server
Tereon Directory
Server

Data
Transactor | 226

Data
Service

Data
Service

Data Store Layer Protocols (TLS / Client Certificates / Serialization ...) Data
reads Database Tereon

Server
AML

Database Tereon
Server

Core data store (n nodes)
Audit

Monitoring
Database

Tereon Server (n nodes)

Special services Tereon
Server

224 Data
Rules

Database Tereon
Server

218
Database

202

Gateway (HTTP / anti - DDOS / monitoring and security / ...)

212 External
Internal
Systems 210 DNS

Service

Users
Other
Tereon
Servers

206

Tereon
License
Server
Tereon
License
Server

218 License server (n nodes) Directory server (n nodes)

Tereon Directory
Server
Tereon Directory
Server
Tereon Directory
Server

216
Tereon
License
Server FIG . 2

Patent Application Publication Jun . 11 , 2020 Sheet 3 of 22 US 2020/0186355 A1

Business rules engine
Defines business logic for
the deployed services
Services can be tailored to
individual users
UML or plain English
notation

Functional domains and
contexts

Customer activities and rules
Merchant activities and rules
individual users
Bank activities and rules
Mobiles , tablets , cards ... ATMs

.

System protocols
Terminal
Network interoperability ,
including ISO 20022
Server management
Card manufacturer
Licence validation

Framework and infrastructure
components

Smart Device Application Services
Framework (SDASF)
Payment Network Management
Card Manufacturer Interface
Licence Server

.

.

FIG . 2a

Patent Application Publication Jun . 11 , 2020 Sheet 4 of 22 US 2020/0186355 A1

350 370 360

302

304

306

308

310

312

314

316

318

320

322

324

FIG . 3

Patent Application Publication Jun . 11 , 2020 Sheet 5 of 22 US 2020/0186355 A1

450 470 460

402

404

406

408

410

412

414

416

418

420

422

FIG . 4

Patent Application Publication Jun . 11 , 2020 Sheet 6 of 22 US 2020/0186355 A1

404a
Networking

Server Network Stack

Shared Memory
402a

406a

HTTP Gateway

Sock Listener
Microservice A
(Example : Authentication)

Sock Accepter Microservice B
(Example : Authentication)

Client Sock Pool Microservice C
(Example : Authentication)

410a

Shared Memory

Semaphores Microservice N
(Example : Authentication)

408a

FIG . 4a

Patent Application Publication Jun . 11 , 2020 Sheet 7 of 22 US 2020/0186355 A1

506 502 504

510

512 514

518 516 520

508 524 522 526

530 528 532

536 534 538

FIG . 5

Patent Application Publication Jun . 11 , 2020 Sheet 8 of 22 US 2020/0186355 A1

604 0 616 FIG . 6

602 610 614

Patent Application Publication Jun . 11 , 2020 Sheet 9 of 22 US 2020/0186355 A1

602a 604a 606a 608a

610a 612a

614a 616a

618a 620a

622a 624a

626a 628a

630a 632a

FIG . 6a

Patent Application Publication Jun . 11 , 2020 Sheet 10 of 22 US 2020/0186355 A1

706 708 704 702

710 712

714 716

720 718

FIG . 7

Patent Application Publication Jun . 11 , 2020 Sheet 11 of 22 US 2020/0186355 A1

810 802 804 806

814 812 820 808

816 818

822 824

826 828

IL

832 830
TIL

III
IIII

FIG . 8

Patent Application Publication Jun . 11 , 2020 Sheet 12 of 22 US 2020/0186355 A1

202a 216 202b 218

902

904

response
to 904

906 -

908

response
to 908

910

FIG . 9

202a 202b 218

1002

1004

1006

FIG . 10

Patent Application Publication Jun . 11 , 2020 Sheet 13 of 22 US 2020/0186355 A1

202a 216 202b 2020 218

1102

1104

response
to 1104

1106

response
to 1106

1108

1110

response
to 1110

1112

FIG . 11

Patent Application Publication Jun . 11 , 2020 Sheet 14 of 22 US 2020/0186355 A1

216 218 202a
< Service 2 >

202b
< Service 3 >

220c
< Service 1 >

1202

1204

response
to 1204

1206

1208

response
to 1208

1210

1212

1214

response
to 1214

1216

1218

response
to 1218

1220

FIG . 12

Patent Application Publication Jun . 11 , 2020 Sheet 15 of 22 US 2020/0186355 A1

216

< User 1 Authentication ID >
< Service 1 >
< Tereon Server 202c >

< User 1 Authentication ID >
< Service 2 >
< Tereon Server 202d >

202c

< Terminal 1 Authentication ID >
< Service 4 >

< User 1 Authentication ID >
< Service 1 >

Terminal user's name
Terminal user's account and
information

User's name
User's account and information

202d

202a < User 1 Authentication ID >
< Service 2 >

User's name
User's account and information

202e

< User 1 Authentication ID >
< Service 3 >

User's name
User's account and information

FIG . 13

Patent Application Publication Jun . 11 , 2020 Sheet 16 of 22 US 2020/0186355 A1

216

< User Authentication ID >
< Service 1 >
< Tereon Server 202a >
< Start Date >
< End Date >

< User Authentication ID >
< Service 1 >

< Service 1 >
< User Authentication ID >
< Start Date >
< End Date >

< Service 1 >
< User Authentication ID >
< Start Date >
< End Date [blank] >

User's name
User's old account and information

User's name
User's account and information

Bank A Bank B
202a 202b

FIG . 14

Patent Application Publication Jun . 11 , 2020 Sheet 17 of 22 US 2020/0186355 A1

202a 216 202b 218

1502

response
to 1502

1504

response
to 1504

1506

response
to 1506

1508

response
to 1508

1510

response
to 1510

1512

response
to 1512

1514

response
to 1514

1516

response
to1516
1518

response
to 1518

1520

response
to 1520

1522

1524

FIG . 15

Patent Application Publication Jun . 11 , 2020 Sheet 18 of 22 US 2020/0186355 A1

216

< ID (mobile number 1] >
< Tereon Server 202a >
< Start Date (date - time 1] >
< End Date [date - time 3] >
< ID (mobile number 1] >
< Tereon Server 202b >
< Start Date [date - time 2] >
< End Date [date - time 5] >

< ID (mobile number 2] >
< Old ID [mobile number 1] >
< Tereon Server 202b >
< Start Date [date - time 4] >
< End Date [blank] >
< ID (mobile number 1] >
< Tereon Server 202a >
< Start Date [date - time 6] >
< End Date [blank] >

< ID [mobile number 1] >
< Start Date [date - time 1] >
< End Date (date - time 3] >

< ID (mobile number 1] >
< Start Date (date - time 2] >
< End Date (date - time 5] >

< ID [mobile number 1] >
< Start Date (date - time 6] >
< End Date [blank] >

< ID [mobile number 2] >
< Start Date (date - time 4] >
< End Date [blank] >

218

Old user's name , old account and
information (closed)

Old user's name , new account and
information

New user's name , account and
information (reusing ID)

202a 202b

FIG . 16

Patent Application Publication Jun . 11 , 2020 Sheet 19 of 22 US 2020/0186355 A1 9

216
< ID (mobile number 1] >
< Server 202b >
< Currency 1 >
< Start Date (date - time 1] >
< End Date (date - time 3] >

< ID (mobile number 1] >
< Server 202b >
< Currency 2 >
< Start Date (date - time 1] >
< End Date [date - time 3] >
< ID (mobile number 1] >
< Server 202c >
< Currency 1 >
< Start Date (date - time 2] >
< End Date [blank] >

< ID (mobile number 1] >
< Server 202c >
< Currency 2 >
< Start Date [date - time 2] >
< End Date (date - time 5] >

< ID (mobile number 2] >
< Old ID (mobile number 1] >
< Server 202c >
< Currency 2 >
< Start Date [date - time 4] >
< End Date [blank] > 202b 2020

< ID (mobile number 1] >
< Currency 1 >
< Start Date [date - time 1] >
< End Date [date - time 3] >

< ID (mobile number 1] >
< Currency 1 >
< Start Date (date - time 2] >
< End Date [blank] >

< ID (mobile number 1] >
< Currency 2 >
< Start Date (date - time 1] >
< End Date [date - time 3] >

< ID (mobile number 1] >
< Currency 2 >
< Start Date [date - time 2] >
< End Date (date - time 5] >

User's name , old account and
information (closed)

< ID (mobile number 2] >
< Currency 2 >
< Start Date [date - time 4] >
< End Date [blank] > 218

User's name , new account and
information

FIG . 17

Patent Application Publication Jun . 11 , 2020 Sheet 20 of 22 US 2020/0186355 A1 9

216
< ID (mobile number 1] >
< Server 202b >
< Currency 1 >
< Start Date [date - time 1] >
< End Date (date - time 3] >

< ID [mobile number 1] >
< Server 202b >
< Currency 2 >
< Start Date (date - time 1] >
< End Date [date - time 5] >
< ID (mobile number 1] >
< Server 202c >
< Currency 1 >
< Start Date [date - time 2] >
< End Date [blank] >
< ID (mobile number 2] >
< Old ID (mobile number 1] >
< Server 202b >
< Currency 2 >
< Start Date (date - time 4] >
< End Date [blank] > 202b 202c

< ID (mobile number 1] >
< Currency 1 >
< Start Date (date - time 1] >
< End Date [date - time 3] >

< ID (mobile number 1] >
< Currency 1 >
< Start Date [date - time 2] >
< End Date [blank] >

User's name , new currency 1
account and information

< ID [mobile number 1] >
< Currency 2 >
< Start Date [date - time 1] >
< End Date [date - time 5] >

218 < ID (mobile number 1] >
< Currency 2 >
< Start Date (date - time 4] >
< End Date [blank] >

User's name , old currency 1 account
and information (closed)

User's name , currency 2 account
and information

FIG . 17a

Patent Application Publication Jun . 11 , 2020 Sheet 21 of 22 US 2020/0186355 A1

1802 1804 1806

Complete
transaction

In time ?
Yes Enter

Amount + PIN

PIN
entered

correctly ?
Yes

No No

FIG . 18

No 1802 1902 1904 1804

Complete
transaction

In time ?
Yes

Customer
tapped
device ?

No
Customer

ID
detected

Yes Enter
Amount + PIN

No Yes

FIG . 19

No
1802 1904 2002 1804

Customer
tapped
device ?

No
Customer

ID
detected ?

Yes Display offer Yes Enter
Amount + PIN

Yes

FIG . 20

2102

2104

2106

2118

2100
Patent Application Publication

2128

Static

Processor

Main memory

memory

2122
2130

Jun . 11 , 2020 Sheet 22 of 22

Network interface device

Display

Input device

Control device

Audio device

2108

2110

2112

2114

2116

Fig . 21

US 2020/0186355 A1

US 2020/0186355 A1 Jun . 11 , 2020
1

DISTRIBUTED TRANSACTION
PROCESSING AND AUTHENTICATION

SYSTEM

FIELD

[0001] The present disclosure relates to systems and meth
ods of performing transactions of all types in a single
implementation at scale , securely and in near real - time .

effects has been a lack of security for the communications
between devices and servers that together comprise the
Internet of Things . Another is the inability to guarantee that
data gathered by a device actually relates to a specific event
detected by that device .
[0007] Cloud - based information storage systems also
exhibit the effects of these trade - offs , which often result in
a huge number of servers and systems that can guarantee
only eventual consistency .
[0008] There is therefore a need to provide ACID consis
tency with large - scale systems that in known systems can
only benefit from BASE consistency .

BACKGROUND

[0002] Transaction processing involves a wide range of
distributed computer based systems and multiple transactors
carrying out transactions , particularly in respect of pay
ments , but also to do with trade in other financial assets and
instruments , physical access control , logical access to data ,
managing and monitoring devices that comprise the Internet
of Things (IoT) , etc.
[0003] When creating transaction processing systems
today , engineers have to make difficult trade - offs . These
include choosing between speed and resilience , throughput
and consistency , security and performance , consistency and
scalability , and so forth . Such trade - offs invariably lead to
compromises that affect the overall system . Payment pro
cessing systems exhibit the effect of these trade - offs . They
may need to handle between 600 and a few tens of thousands
of transactions a second , but they can only do that by
part - processing them and storing the details for further
processing during a lull in the system's workload . This often
leads to problems with reconciling missing records , dupli
cating transactions , exposure to credit issues where accounts
have become overdrawn between the time of a transaction
and the time of processing that transaction , and so on . The
problems are not , however , limited to payments .
[0004] ACID (atomicity , consistency , isolation , and dura
bility) is a consistency model for databases that states that
each database transaction must succeed if the entire trans
action be rolled back (atomicity) , cannot leave the database
in an inconsistent state (consistency) , cannot interfere with
each other (isolation) ; and must persist , even when the
servers restart (durability) .
[0005] This model is generally thought to be incompatible
with the availability and performance requirements of large
scale systems , such as the existing banking payments net
works and other big data ’ transactional systems . These
systems instead rely on BASE consistency , (basic availabil
ity , soft - state , and eventual consistency) . This model holds
that it is enough for the database eventually to reach a
consistent state . Banking systems operate in this mode ,
which is why they often need to pause any transaction
processing and run reconciliation checks to reach a consis
tent state . This notion that trade - offs have to be made in high
volume transaction processing is enshrined in the CAP
theorem , which in its basic form states that it is impossible
for a distributed computer system to provide all three of
(C) onsistency , (A) vailability and (P) artition tolerance at the
same time . Current best practice solutions contain too many
limitations and trade - offs to satisfy emerging and current
requirements .
[0006] The issue of how to reconcile data that is generated
by the Internet of Things is beginning to come to the fore ,
an issue that arises due to the effects of the trade - offs that
engineers believe they have to make when constructing the
networks and transaction processing systems . One of the

SUMMARY
[0009] According to an aspect , there is provided a method
of recording a data transaction comprising , at a device
associated with a first entity , determining first seed data ,
generating a record of a first data transaction between the
first entity and a second entity , determining second seed data
by combining at least the first seed data and the record of the
first data transaction , generating a first hash by hashing the
second seed data , the first hash comprising a history of data
transactions involving the first entity , and storing the first
hash against the record of the first data transaction in a
memory .
[0010] According to another aspect , there is provided
device associated with a first entity , the device configured to
perform the method . According to another aspect , there is
provided a computer readable medium comprising code
portions that , when executed , cause a computing device to
perform the method .
[0011] According to another aspect , there is provided a
licence device configured to receive a first hash from a
device associated with a first entity , the first hash comprising
a history of data transactions involving the first entity ,
combine the first hash with a licence hash to provide a
licence input , generate a second licence hash by hashing the
licence input , and store the second licence hash in a memory .
[0012] According to another aspect , there is provided a
directory device configured receive a first hash from a
device associated with a first entity , the first hash comprising
a history of data transactions involving the first entity
combine the first hash with a directory hash to provide a
directory input , generate a second directory hash by hashing
the licence input , and store the second directory hash in a
memory .
[0013] According to another aspect , there is provided a
method of accessing a first service from a device comprising
providing an identifier of the device to a request server ,
authorising the device to request access to the first service
based on the identifier , enabling the device to access the first
service from a first host server at which the first service is
located , the access being via the request server . According to
another aspect , there is provided a device configured to
perform the method . According to another aspect , there is
provided a computer readable medium comprising code
portions that , when executed , cause a computing device to
perform the method .
[0014] According to another aspect , there is provided a
method of migrating data comprising providing a request to
switch first data from a first data store to a second data store ,
determining , from a directory server , an identifier of the first
data store based on an identifier comprised in the request ,
migrating the first data from the first data store to the second

US 2020/0186355 A1 Jun . 11 , 2020
2

data store . According to another aspect , there is provided a
device configured to perform the method . According to
another aspect , there is provided a computer readable
medium comprising code portions that , when executed ,
cause a computing device to perform the method .
[0015] According to another aspect , there is provided a
method of communication comprising sending a first com
munication from a first entity to a second entity , the first
communication comprising two or more data fields , each
field comprising a respective label , and sending a second
communication from the first entity to the second entity , the
second communication comprising the two or more data
fields , wherein the order of the fields in the second commu
nication is different from the order of the fields in the first
communication . According to another aspect , there is pro
vided a device configured to perform the method . According
to another aspect , there is provided a computer readable
medium comprising code portions that , when executed ,
cause a computing device to perform the method .
[0016] According to another aspect , there is provided a
method of communicating via unstructured supplementary
service data “ USSD ” comprising opening a USSD session
between a first device and a second device , generating a
cypher text for a communication in the session at the first
device , encoding the cypher text at the first device , trans
mitting the encoded cypher text from the first device to the
second device for decryption at the second device . Accord
ing to another aspect , there is provided a device configured
to perform the method . According to another aspect , there is
provided a computer readable medium comprising code
portions that , when executed , cause a computing device to
perform the method .
[0017] According to another aspect , there is provided a
method of communication between a first device associated
with a first entity and a second device associated with a
second entity comprising , at the first device , generating a
first PAKE session between the first device and the second
device using a first shared secret , receiving a registration key
and a second shared secret from the second device , hashing
the first shared secret , the registration key and the second
shared secret to provide a third shared secret for generating
a second PAKE session . According to another aspect , there
is provided a device configured to perform the method .
According to another aspect , there is provided a computer
readable medium comprising code portions that , when
executed , cause a computing device to perform the method .
[0018] According to another aspect , there is provided a
method of accessing a service comprising providing a cre
dential and a context for the credential , authenticating access
to the service based on the credential and the context .
According to another aspect , there is provided a device
configured to perform the method . According to another
aspect , there is provided a computer readable medium
comprising code portions that , when executed , cause a
computing device to perform the method .
[0019] According to another aspect , there is provided a
method of communicating between modules in a computer
system , the method comprising conveying a shared memory
channel from a first module to a proxy , conveying the shared
memory channel from the proxy to a second module ,
wherein the proxy comprises a hand - off module configured
to transmit data between the first module and the second
module by bypassing the kernel of the computer system ,
transmitting data from the first module to the second mod

ule . According to another aspect , there is provided a com
puting device configured to perform the method . According
to another aspect , there is provided a computer readable
medium comprising code portions that , when executed ,
cause a computing device to perform the method .
[0020] The first seed data may comprise a starting hash .
The starting hash may be the result of hashing a record of a
previous data transaction involving the first entity . The
starting hash may comprise a random hash . The random
hash may comprise at least one of a signature from the
device , the date and / or the time that the random hash was
generated .
[0021] Providing second seed data may further comprise
combining a first zero - knowledge proof and a second zero
knowledge proof with the first seed data and the record of
the first data transaction , wherein the first zero - knowledge
proof may comprise proof that the starting hash may com
prise the true hash of the previous data transaction involving
the first entity , and the second zero - knowledge proof may
comprise proof that a second hash may comprise the true
hash of a previous data transaction involving the second
entity . Providing second seed data may further comprise
combining a third zero - knowledge proof with the first seed
data , the record of the first data transaction , the first zero
knowledge proof and the second zero - knowledge proof . The
third zero - knowledge proof may be generated from random
data . The third zero - knowledge proof may be a repeat of the
first zero - knowledge proof or the second zero - knowledge
proof . The third zero - knowledge proof may be constructed
using a second record of the first data transaction that
corresponds to the second zero - knowledge proof .
[0022] The first data transaction may comprise at least two
stages and providing second seed data may comprise com
bining the first zero - knowledge proof with a record of the
first stage of the first data transaction , and combining the
second zero - knowledge proof with a record of the second
stage of the first data transaction . Providing second seed data
may comprise constructing a third zero - knowledge proof
from the record of the second stage of the first data trans
action , and combining the second zero - knowledge proof and
the third zero - knowledge proof with the record of the second
stage of the first data transaction . The first data transaction
may comprise at least three stages and providing second
seed data may further comprise combining the first zero
knowledge proof with a record of the third stage of the first
data transaction , and combining the second zero - knowledge
proof with the record of the third stage of the first data
transaction .
[0023] The first data transaction may comprise at least
three stages and providing second seed data may further
comprise combining the first zero - knowledge proof with a
record of the third stage of the first data transaction , and
combining the second zero - knowledge proof with random
data . The first data transaction may comprise at least three
stages and providing second seed data may further comprise
combining the first zero - knowledge proof with a record of
the third stage of the first data transaction , and combining
the second zero - knowledge proof with a record of a fourth
stage of the first data transaction wherein the fourth stage of
the first data transaction may be a repeat of the third stage
of the first data transaction .
[0024] The first data transaction may comprise at least
three stages and providing second seed data may further

US 2020/0186355 A1 Jun . 11 , 2020
3

comprise combining a third zero - knowledge proof with a
record of the third stage of the first data transaction .
[0025] The first zero - knowledge proof may be constructed
by the device associated with the first entity and the second
zero - knowledge proof may be constructed by a device
associated with the second entity .
[0026] Constructing the first zero - knowledge proof and
the second zero - knowledge proof may comprise using a key
exchange algorithm . The key exchange algorithm may com
prise a PAKE algorithm .
[0027] The method may further comprise sending the first
hash to a device associated with the second entity receiving
a second hash from a device associated with the second
entity , wherein the second hash may comprise a hash of a
previous data transaction involving the second entity , and
generating a record of a second data transaction between the
first party and the second party , determining third seed data
by combining the record of the second data transaction with
the first hash and the second hash , generating a third hash by
hashing the third seed data , the third hash comprising a
history of data transactions involving the first entity and a
history of data transactions involving the second entity , and
storing the third hash against the record of the second data
transaction in the memory .
[0028] Providing third seed data may further comprise
combining a third zero - knowledge proof and a fourth zero
knowledge proof with the record of the second data trans
action , the first hash and the second hash , wherein the third
zero - knowledge proof may comprise proof that the first hash
may comprise a true hash of the first data transaction , and the
fourth zero - knowledge proof may comprise proof that the
second hash may comprise the true hash of the previous data
transaction involving the second entity . The previous data
transaction involving the second entity may be the first data
transaction .
[0029] The method may further comprise associating each
of the hashes with an identifier of the first entity and / or the
second entity . The method may further comprise recalculat
ing the first hash , and comparing the generated first hash to
the recalculated second hash to determine a match . The
method may further comprise cancelling further data trans
actions if the comparison may be unsuccessful . The method
may further comprise generating , at a system device , a
system hash corresponding to the first data transaction .
[0030] Providing second seed data may further comprise
combining the system hash with the first seed data and the
record of the first data transaction . The system hash may be
the result of hashing a record of a previous data transaction
on the system device .
[0031] Providing second seed data may further comprise
receiving a licence hash from a licence device , and com
bining the licence hash with the first seed data and the record
of the first data transaction to provide the second seed data .
The method may further comprise , at the licence device
receiving the first hash , combining the first hash with the
licence hash to provide a licence input , generate a second
licence hash by hashing the licence input .
[0032] Providing second seed data may further comprise
receiving a directory hash from a directory device , and
combining the directory hash with the first seed data and the
record of the first data transaction to provide the second seed
data .
[0033] The method may further comprise , at the directory
server , receiving the first hash , combining the first hash with

the directory hash to provide a directory input , generate a
second directory hash by hashing the directory input .
[0034] Providing second seed data may further comprise
generating a key hash from an encryption key for the first
data transaction , and combining the key hash with the first
seed data and the record of the first data transaction to
provide the second seed data . The encryption key may
comprise a public key or a private key .
[0035] Combining the first seed data and the record of the
first data transaction may be performed as soon as the first
data transaction may be complete . The memory may be
located on a remote device . The method may further com
prise comparing , at the remote device , the first hash with
corresponding hashes received from other devices . The
method may further comprise notifying other devices to
which the device may be connected to expect to receive the
first hash .
[0036] The method may further comprise storing a chain
of hashes in the memory . The method may further comprise
sending the chain of hashes to a second memory located on
a device configured to limit access to the hash chains it has
been sent . The method may further comprise amending or
deleting a hash in the hash chain by regenerating a subject
hash in the hash chain , confirming that the record has not
been amended , recording the regenerated hash , amending or
deleting the record , generating a new hash for the record by
hashing a combination of the subject hash and the amended /
deleted record , and recording the new hash . The method may
further comprise generating a system hash using the new
hash .
[0037] The device may comprise a server . The device may
comprise a user device . The device may comprise at least
one of a personal computer , a smartphone , a smart tablet or
an Internet of Things “ IoT ” enabled device . The user device
may be configured to store the first hash in a memory on the
device . The user device may be configured to store the first
hash in a memory on the device only when it may be off - line
from a corresponding server . The device may further be
configured to send the first hash to a device associated with
the second entity . The device may further be configured to
send a signed , encrypted copy of the record of the first data
transaction to the device associated with the second entity ,
wherein the signature may comprise an indication of a
destination server for that record . The device may be con
figured to sign the record with a specific off - line public key .
The device may be configured to sign the record with a key
belonging to the device . Only the destination server may be
able to decrypt the encrypted copy of the record of the first
data transaction . The device may be configured to send the
encrypted records of its off - line data transactions and the
associated hashes to its corresponding server when the
device regains connection with its corresponding server . The
device may be further configured to send copies of records
of data transactions involving other entities that it holds to
its corresponding server for transmission to servers corre
sponding to the other entities . The transmission may com
prise notifying all servers to which the records apply to
expect to receive the records . The device may be configured
to create a unique internal transaction number to identify its
part in the first data transaction .
[0038] The authorising may comprise confirming that the
user device may be authorised to access the first service
based on the identifier . The confirming may comprise con
firming that the user meets at least one criteria based on the

US 2020/0186355 A1 Jun . 11 , 2020
4

be registered at a first server and the second user credential
may be registered at a second server . The method may
further comprise receiving , by the first account provider , a
communication directed to a user using the first user cre
dential , routing the communication to the second account
provider using the second user credential . The method may
further comprise reversing a data transaction made with the
first registration provider using the first credential to the
second registration provider using the second user creden
tial . The method may further comprise determining that the
user used the first user credential at the time of the data
transaction . A server sending the communication may need
to be approved to access the second user credential . The first
user credential and the second user credential may be the
same .

identifier . A first criterion may be stored at the first host
server or the request server , and a second criterion may be
located at a different server . The authorising may comprise
verifying a signature on a communication between the
request server and the first host server .
[0039] The authorising may be performed at the request
server . The authorising may comprise determining , at the
request server , that the device was previously authorised to
access the first service .
[0040] The authorising may be performed at a directory
server . The authorising may comprise the request server
requesting authorisation for the device from the directory
server . The enabling may comprise the directory server
sending an identifier for the first host server to the request
server . Data that authorises the identifier may be stored only
on the directory server .
[0041] The method may further comprise requesting
access to a second service , authorising the device to access
the second service based on the identifier , enabling the
device access to the second service via the request server .
The second service may be located at the first host server .
The second service may be located at a second host server .
[0042] Authorising the device to access the first service
may be performed at a first directory server , and authorising
the user device to access the second service may be per
formed at a second directory server .
[0043] The method may further comprise requesting
access to a third service , authorising the device to access the
third service based on the identifier , enabling the device
access to the third service .
[0044] The second service may be located at the first host
server , the second host server or a third host server . Autho
rising the device to access the third service may be per
formed at a third directory server .
[0045] Providing an identifier may comprise the device
communicating with the request server via an encrypted
tunnel . The method may further comprise caching data
received at each respective server . Each host server may
offer more than one service .
[0046] The device may comprise at least one of a personal
computer , a smartphone , a smart tablet or an Internet of
Things “ IoT ” enabled device .
[0047] The migrating may comprise , at the directory
server assigning a start timestamp for the data at the second
data store , and assigning an end timestamp for the data at the
first data store .
[0048] The method may further comprise instructing a
requesting server that attempts to access the data via the first
data store after the end timestamp to look up the user at the
second data store via the directory server . The data at the first
data store may comprise a first account registration with a
first account provider , and the data at the second data store
may comprise a second account registration with a new
account provider . The migrating may comprise sending
information regarding the first account registration from the
current account provider to the new account provider . The
information may comprise at least one of registrations ,
balances , configurations and / or payment instructions . The
migrating may comprise confirming an authentication code
indicating that the first registration should be switched from
the current account provider to the new account provider .
The first account registration may comprise a first user
credential , and the second account registration may com
prise a second user credential . The first user credential may

[0049] The device may comprise at least one of a personal
computer , a smartphone , a smart tablet or an Internet of
Things “ IoT ” enabled device .
[0050] The method may further comprise adding a random
field to the second communication . Each field may comprise
two or more characters , the method further comprising
mixing cases of characters in at least one field .
[0051] The method may further comprise decrypting and
ordering , by the second entity , the fields in the second
communication before processing the second communica
tion . The method may further comprise discarding , by the
second entity , fields that it cannot process . At least one of the
first entity and the second entity may comprise a server . At
least one of the first entity and the second entity may
comprise a personal computer , a smartphone , a smart tablet
or an Internet of Things “ IoT ” enabled device . The device
may comprise at least one of a personal computer , a smart
phone , a smart tablet or an Internet of Things “ IoT ” enabled
device .
[0052] The encoding may comprise encoding the cypher
text as a 7 - bit or 8 - bit character string . The method may
further comprise , if the length of the cypher text is longer
than the allowed space in the USSD session cutting the
cypher text into two or more parts , and transmitting the two
or more parts individually . The decryption may further
comprise reassembling the parts into the whole cypher text
at the second device .
[0053] The method may further comprise authenticating
the first and second devices . The authenticating may com
prise using an algorithm that provides privacy and data
integrity between two communicating computer applica
tions . The authenticating may comprise using transport layer
security " TLS " . Using TLS may further comprise generating
a first session key .
[0054] The method may further comprise using the first
session key to encrypt a PAKE protocol negotiation to
generate a second session key , and encrypting further com
munications in the session between the first party and the
second party using the second session key .
[0055] The method may further comprise authenticating
the first entity and the second entity . The authenticating may
comprise using an algorithm that provides privacy and data
integrity between two communicating computer applica
tions . The authenticating may comprise using TLS . The
method may further comprise generating a second PAKE
session between the first device and a third device using a
fourth shared secret . The fourth shared secret may comprise
an authentication code generated by the third device for the
first device .

US 2020/0186355 A1 Jun . 11 , 2020
5

[0056] The first shared secret may comprise an authenti
cation code generated by the second device for the first
device . The authentication code may be sent to the first
device together with an identifier for the first device . The
identifier may comprise a telephone number or serial num
ber the first device . The first shared secret may comprise a
personal account number “ PAN ” of a bank card associated
with the first entity . The first shared secret may comprise an
encoded serial number of a bank card associated with the
first entity .
[0057] The device may comprise at least one of a personal
computer , a smartphone , a smart tablet or an Internet of
Things “ IoT ” enabled device .
[0058] The authenticating access to the service may com
prise authenticating access to part of service based on the
credential and / or the context . The credential may comprise
a first credential associated with a device and a primary user
of the device . The credential may further comprise a second
credential associated with a device and a secondary user of
the device . The authenticating access to the service based on
the credential may comprise authenticating access to differ
ent services for the primary user and the secondary user
based on the first credential and the second credential
respectively . The device may comprise a bank card and the
different services are different spending limits for the pri
mary user and the secondary user . The credential may be
selected based on the context . The service may comprise a
plurality of services selected based on the context . An
administrator or user may be able to amend , add to , or cancel
the context or credential . The credential may comprise at
least one of a password , PIN , and / or other direct authenti
cation credential . The context may comprise at least one of
a device providing the credential , an application on the
device , a network to which the device may be connected , the
geographic location of the device and / or the service being
accessed .
[0059] The device may comprise at least one of a personal
computer , a smartphone , a smart tablet or an Internet of
Things “ IoT ” enabled device .
[0060] The method may further comprise batching a plu
rality of requests into a batched message in a buffer memory
of the first module , queueing the batched message to be sent
to the second module , setting at least one system flag that
authorises a system function , checking the at least one
system flag at the second module , and processing the
batched message at the second module .
[0061] The method may further comprise establishing at
least one shared memory channel between the first module
and the second module . The method may further comprise
the second module responding to the first module via the at
least one shared memory channel . The at least one shared
memory channel may receive and assembles the batched
message and hand ownership of the memory to the second
module . The at least one shared memory channel may
receive batched message via a network stack of the com
puter system . The at least one shared memory channel may
comprise an HTTP gateway . The HTTP gateway may be
used as a web service .
[0062] Communications may use a password authenti
cated key exchange protocol . The method may further
comprise using zero - copy networking in a network stack of
the computer system . The method may further comprise
using user - mode networking in a network stack of the
computer system .

[0063] The method may further comprise serializing data
such that the components of the data transmission from the
first module are combined as a single data stream and then
separated into the components at the second module . The
serialization may be abstracted at the edge of each module .
[0064] A buffer memory of each module may have a
configurable threshold of buffering . The first module and the
second module may be located on the same computing
device . The first module and the second module may be
located on different computing devices .
[0065] The data transmitted from the first module to the
second module may carry a version ID . The method may
further comprise verifying that the version ID may be
current for the data transmitted form the first module to the
second module . The method may further comprise , if any of
the data are updated , re - verifying the version ID as being
current . If the version ID is not verified , the data transmis
sion may fail .
[006] At least one of the first module and the second
module may comprise at least one data service module ,
wherein each data activity within the computer system may
be executed via the at least one data service module . The at
least one data service module may be configured to com
municate with a data store that may be implemented by a
core database store . The at least one data service module
may be only component of the computer system with direct
access to the data store . The core database store may
comprise at least one distributed database . The at least one
distributed database may have separate read and write access
channels . The data store may provide an interface to at least
one heterogeneous database . The data store may provide a
plurality of interface types . The plurality of interface types
may comprise at least one of a Structured Query Language
“ SQL ” interface , a cell and column interface , a document
interface and a graph interface layer above the core data
database store . All writes to the data store layer may be
managed by a single shared module that controls all or part
of one or more data transactions .
[0067] The method may further comprise operating at
least one redundant backup of the shared module . All data
changes may flow through the single shared module in a
serial rapid sequence . The single shared module may use a
hot backup redundancy model that presents itself as a data
transactor cluster , wherein the data transactor cluster may be
a set of modules in a hierarchy and each module may be
configured to control data transactions if a master module
fails . The method may further comprise partitioning data
across modules or data stores based upon rules configured
by domain . The method may further comprise hashing
targeted data of a record of a data transaction or of a record
of a parent data transaction . The hashing may have cardi
nality equal to the number of data partitions . The method
may further comprise hashing targeted data by at least one
of enumerated geographical area , last name and / or currency .
[0068] The method may further comprise performing at
least one data transmission via the at least one data service
module across multiple data partitions . The method may
further comprise completing at least one data transmission
via the at least one data service module by multiple modules .
The method may further comprise persisting at least one
data transmission on the at least one data service module on
multiple data storage nodes in the data store .
[0069] The computer system may comprise a plurality of
data service modules and each data service module hosts an

US 2020/0186355 A1 Jun . 11 , 2020
6

in - memory / in - process database engine , including cached
representations of all of the hot data for that instance . The
computer system may comprise a plurality of data service
modules and each data service module may comprise a
plurality of heterogeneous or homogeneous database
engines .
[0070] The method may further comprise using a Multi
version Concurrency Control “ MVCC ” versioning system to
manage concurrency of access to the data store , such that all
data reads are coherent and reflect corresponding data writes
exactly . The method may further comprise using pessimistic
consistency to manage concurrency of access to the data
store , such that a data record must be written to the data store
and confirmed as having been written before any subsequent
data transaction can access the data record .
[0071] The computer system may further comprise an
application layer and wherein the application layer cannot
proceed with a data transaction until the at least one data
service module confirms that it has written the record and
completed the data transmission .
[0072] All optional features of the 1st to the 26th aspects
relate to all other aspects mutatis mutandis . Variations of the
described embodiments are envisaged , for example , the
features of all the disclosed embodiments may be combined
in any way .

[0089] FIG . 13 illustrates the case where a server needs to
obtain credentials from three servers in order to construct a
multifaceted credential ;
[0090] FIG . 14 illustrates a user's relationship with a
bank ;
[0091] FIG . 15 illustrates the process undertaken to trans
fer an account ;
[0092] FIG . 16 illustrates the process undertaken to
change a registered mobile number ;
[0093] FIG . 17 illustrates the maintenance of a previously
registered mobile number to access to two currencies ;
[0094] FIG . 17a illustrates the maintenance of a previ
ously registered mobile number to access to two currencies ,
with each currency on a separate server ;
[0095] FIG . 18 illustrates a workflow ;
[0096] FIG . 19 illustrates an alternative workflow ;
[0097] FIG . 20 illustrates an alternative workflow ; and
[0098] FIG . 21 illustrates an exemplary computing sys
tem .

OVERVIEW

BRIEF DESCRIPTION OF THE DRAWINGS

[0073] Embodiments of the present disclosure will now be
described , by way of example only , with reference to the
accompanying drawings in which like reference numerals
are used to depict like parts . In the drawings :
[0074] FIG . 1 illustrates the modular concept behind
Tereon ;
[0075] FIG . 2 illustrates an example of the Tereon system
architecture ;
[0076] FIG . 2a illustrates how Tereon abstracts its services
and devices into functional domains and contexts , devices ,
components , and protocols ;
[0077] FIG . 3 depicts communications initiated over TLS
connections through an intermediary proxy ;
[0078] FIG . 4 illustrates the use of shared memory and
message passing to proxy memory ;
[0079] FIG . 4a illustrates a shared memory and semaphore
hand - over module ;
[0080] FIG . 5 illustrates a hash chain that involves four
accounts ;
[0081] FIG . 6 illustrates a hash chain that involves two
accounts on the same system ;
[0082] FIG . 6a illustrates a hash chain that involves three
accounts on the same system where the transaction stages
interleave ;
[0083] FIG . 7 illustrates the dendritic nature of licence
hashes ;
[0084] FIG . 8 illustrates a hash chain that involves four
devices that go off - line for a time ;
[0085] FIG.9 illustrates a reverse look - up function imple
mented for two servers ;
[0086] FIG . 10 illustrates the establishment of communi
cations between Tereon servers ;
[0087] FIG . 11 illustrates communications where a user
has migrated to another server ;
[0088] FIG . 12 illustrates how the directory service can
direct a requesting server to two different servers ;

[0099] The present disclosure relates to a new method of
processing transactions that does away with the need to
consider or be constrained by present trade - offs as described
above . This disclosure provides a method of authenticating
and processing transactions in real - time at a rate several
orders of magnitude greater than is possible with existing
systems , and settling , or processing and completing , those
transactions in real time .
[0100] The real - time settlement would not just apply to
financial transactions . It would apply to any transaction that
required , or would benefit from , some or all of immediate
authentication , authorisation , processing , and completion .
These could range from access control , through to records
validation , records and document exchange , command and
control instructions , and so forth .
[0101] This method comprises seven main areas :

[0102] A method for writing ACID compliant transac
tions at extremely high scale to any database product

[0103] A hash chain implementation that delivers
authentication of records across multiple private led
gers with full mathematical proof within the bounds of
a single real - time session and at extremely high scale .

[0104] A directory service that supports a mesh network
of transaction service providers rather than implement
ing a " hub and spoke ” architecture that creates major
scalability challenges .

[0105] An extensible framework that allows a merchant
or user device to update the application (or app) it uses
to process transactions over the air and from one
transaction to the next .

[0106] A data services layer that acts as a translation
matrix between apps supporting various different trans
action types and a common database structure .

[0107] A method for assembling and presenting an ad
hoc set of credentials that enables a service or device to
access a set of services or functions .

[0108] A method for creating secure real - time commu
nications in any protocol including NFC (Near Field
Communications) and USSD (Unstructured Supple
mentary Service Data) .

[0109] Uniquely amongst processing methods , the system
of the present disclosure provides a method to achieve real

US 2020/0186355 A1 Jun . 11 , 2020
7

time transaction processing and completion with zero incre
mental cost as the number of transactions increases .

DETAILED DESCRIPTION

[0110] Tereon is an electronic transaction processing and
authentication engine . It may be implemented as a mobile
and electronic payments processing system . It can also be
used in other implementations , for example as part of an IoT
communications system .
[0111] Tereon provides transaction capability with any IP
(internet protocol) enabled device , and any devices that can
interact with such an IP - enabled device . All that is required
is that each device has a unique ID . Tereon's use - cases range
from IoT devices , to medical records access and manage
ment , through to payments with something as common
place as a mobile phone , a payment terminal , or an ATM
(Automated Teller Machine) . In an initial example imple
mentation , Tereon supports mobile phones , cards , point - of
sale terminals , and any unique reference ID . Tereon provides
the functionality necessary to enable consumers and mer
chants to make payments , receive payments , transfer funds ,
receive funds , make refunds , receive refunds , deposit funds ,
withdraw funds , view account data , and view mini - state
ments of past transactions . Tereon supports cross - currency
and cross - border transactions . Thus a consumer might hold
an account in one currency , but make a payment of transfer
in another , for example .
[0112] In Tereon's initial implementation , whether an end
user can carry out a particular transaction depends on the
application that he is using at the time . Merchants or
merchant terminals can initiate some transactions , while a
consumer device can initiate others .
[0113] Where Tereon is used to process payments , the
transactions can be segmented into the following modes :
make and receive payments , mobile consumer to mobile
merchant , mobile consumer to on - line merchant portal ,
mobile consumer to mobile merchant where the customer is
not present , consumer account to merchant account from
within the account portal , NFC - Tereon card consumer to
mobile merchant , NFC or other card consumer to card
merchant , transfer and receive funds , consumer account to
consumer account from within the account portal , mobile
consumer to mobile consumer peer - to - peer , mobile con
sumer to card consumer peer - to - peer , card consumer to
mobile consumer peer - to - peer , card consumer to card con
sumer peer - to - peer , mobile consumer to non - user peer - to
peer , card consumer to non - user peer - to - peer , non - user to
non - user peer - to - peer , non - user to mobile consumer peer
to - peer , and non - user to card consumer peer - to - peer . Non
user can refer to someone not previously registered with the
payment service , such as an unbanked recipient of a remit
tance .
[0114] System Architecture
[0115] Internally , a Tereon server comprises two main
components , the Tereon Rules Engine and the Smart Device
Application Services Framework (SDASF) .
[0116] The SDASF allows Tereon to manage any number
of different devices and interfaces . It does so by allowing
Tereon to use and link a series of abstracted layers to define
how those devices and interfaces operate and so interlink to
Tereon .
[0117] For example , all banking cards will use a basic card
abstraction layer . The magnetic stripe abstraction layer will
apply to cards with a magnetic stripe , the NFC layer to cards

with an NFC chip , and a microprocessor layer to cards with
a chip contact . If a card uses all three , then Tereon will define
that card with the main card abstraction layer and the three
interface layers . The NFC layer will itself will not just apply
to cards . It will also apply to any device capable of sup
porting NFC , including mobile phones . The SDASF uses
these abstraction layers to create modules for each of the
devices or interfaces .
[0118] Externally , each service and each connection to a
device or network is a module . Thus services such as the
peer - to - peer payments service , the deposit service , and the
mini - statements are all modules . So too are the interfaces to
card manufacturers , banks , service providers , terminals ,
ATMs , and so on . Tereon's architecture can support any
number of modules .
[0119] Modular View
[0120] FIG . 1 illustrates the modular concept behind
Tereon . Essentially , Tereon is a collection of modules , most
of which themselves comprise modules . The modules are
defined by the contexts and functional domains within which
they operate , and by the business logic that determines the
functions that they are required to perform . These functions
can be any type of electronic transaction , such as , for
example , to manage the operation of and communications
between IoT devices , to manage and transact electronic or
digital payments , to manage and construct identification or
authorisation credentials on demand , or to manage and
operate any other form of electronic transaction or device .
[0121] Tereon Server
[0122] The modules that make up the Tereon server 102 as
shown in FIG . 1 can be viewed at two levels : the SDASF
104 and the rules engine 106. The rules engine 106 itself
defines the functional domains and contexts of each of the
modules 108 (some of which are illustrated in FIG . 1 ; these
include the modules that define the services , the protocols
(not illustrated) , the smart devices , the terminals , etc.) , and
these modules 108 then define the structure of the SDASF
104. The SDASF 104 and the resulting services and inter
faces that it supports then define the system protocols that
are available to Tereon . These protocols then define the rules
and services that Tereon can support , for example smart
devices , terminals , etc. , which themselves define the func
tional domains and contexts that Tereon provides . This
circular or iterative approach is used to ensure that the
definitions of the modules and the functions or requirements
that they support are consistent with each other . This allows
the modules to be updated , upgrades , and replaced in situ
without limiting the operation of the system .
[0123] The blocks and modules interface to each other
using abstracted application programming interfaces (APIs) ,
which themselves define the functional domains and con
texts that Tereon provides . Where possible , they communi
cate with each other using bespoke semaphore hand - off
modules , an example of which is set out in FIG . 4a and
which will be explained later , that can also make use of
shared memory . In this way , the internal operation and
functions of the blocks and modules can be updated or
replaced without compromising the operation of the system
as a whole .
[0124] Framework Infrastructure Components
[0125] The infrastructure components are also modular . In
the case of the SDASF , this component itself comprises
modules .

US 2020/0186355 A1 Jun . 11 , 2020
8

[0126] Multiple Interfaces
[0127] Each interface is constructed as a separate module
that connects to the core server . Tereon's modular structure
thus enables it to support multiple interfaces , including back
offices and core systems , cards , clearing houses , merchants ,
mobile telephones , services , service providers , storage , ter
minals , SMS (Short Message Service) gateways , HLR
(Home Location Register) gateways , etc.
[0128] The database interfaces support both Structured
Query Language (SQL) entry and graph analysis of the
stored data . The interfaces also support access control to
separate fields within the databases . Different user roles and
levels of authorisation may access defined data sets and
fields . The access is controlled by a variety of security
measures . The access , authentication , and authorisation can
be delivered via a range of industry standard approaches that
include ACLs (access control lists) , LDAP (lightweight
directory access protocol) , and custom role - based access ,
such as cell and row security , and access interfaces that are
restricted to individual roles .
[0129] E - Commerce Portals
[0130] Tereon can support ecommerce portals via an API ,
so that an operator of the portal can create a plug - in for that
portal .
[0131] Rules Engine
[0132] The rules engine 106 allows new services to be
built by knitting together the various abstracted components
for a transaction or to support a new device .
[0133] The rules define the business logic for the deployed
services , and the service provider can tailor these services to
individual users .
[0134] The rules can be defined in UML (Unified Model
ling Language) or in a code that is similar to plain English .
The engine will parse the rules and create the services from
the abstracted components .
[0135] The abstracted nature of the components allows
new service or device modules to be created quickly . This
enables Tereon to support new services or devices as the
need to do so arises .
[0136] Tereon's internal interfaces are protocol agnostic
so that external protocol modules can be interchanged
without affecting the functionality . For example , in order to
interface to a banking core system , a custom data inter
change protocol might be used with one part of an organi
zation , and an ISO 20022 protocol module with another .
[0137] The SDASF 104 enables Tereon to support mul
tiple smart devices and protocols . The idea of the SDASF
104 is to abstract the entities into device types and protocols .
The SDASF 104 defines multiple protocols , with each
device calling whichever protocol it requires for a particular
service or function .
[0138] The SDASF 104 can be extended by adding new
modules to existing installations without affecting that
installation's operations . It enables all the services to be
defined at a back - office server using whichever method is
preferred . Once installed on the merchant terminals , the
Tereon terminal applications communicate with the SDASF
to provide the services to the customer .
[0139] FIG . 2 sets out the Tereon system architecture 200 .
Where the diagram and narrative refers to a particular
component via a particular solution then this is simply
because these are the components or languages that are
chosen in an embodiment . Bespoke systems may be built to

replace these components , or use other languages and sys
tems where those would prove to be more efficient .
[0140] The Tereon Server
[0141] The Tereon Service 202 is a logical construct that
is identified as a monolithic artefact . In reality , it can exist
as a set of isolated microservices , each of which can differ
by function and scope .
[0142] The Communications Layer
[0143] The communications layer 204 is initiated over
TLS (transport layer security) connections through an inter
mediary proxy . This is also shown in FIG . 3. TLS is a
cryptographic protocol that provides communications secu
rity over a computer network , usually a TCP / IP (Transmis
sion Control Protocol / Internet Protocol) network . Each com
ponent has an ACL (access control list) , which specifies
which users or systems processes can access or connect to a
system , object , or service . This ensures that only the inter
mediary can establish an incoming , original connection ,
heightening intrinsic security and reducing the threat profile .
In this example , the proxy uses an HTTP gateway platform
known in the art with specialized Tereon customizations .
[0144] Private DNS Network
[0145] DNS 206 is used as the foundation for the directory
service 216. The directory service 216 is highly redundant
and replicated across geographic locations . However , its
structure and capabilities are far in excess of anything that
the existing DNS services can offer , as set out below .
[0146] Abstractions
[0147] FIG . 2a illustrates how Tereon abstracts its services
and devices into functional domains and contexts , such as
customer or consumer activities and rules , merchant activi
ties and rules , bank activities and rules , transport activities
and rules , device functionality and rules , etc. FIG . 1 illus
trates how Tereon gives effect to these abstractions by
abstracting the components and services of the system into
functional blocks or modules .
[0148] Tereon modules are constructed from these
abstractions . Each device , each interface , and each transac
tion type is abstracted into its domains and contexts . These
abstractions are reusable , and can , where meaningful or
allowed , interface to others . For example , charge card , credit
card , debit card , and loyalty card modules will each use a
number of common abstractions . So too will the payment
and funds transfer modules .
[0149] Protocols
[0150] Each of the protocols 204 and 212 that Tereon
supports is itself implemented as a module . Tereon makes
these modules available to those services or components that
require them .
[0151] Legacy systems struggle to process simultaneous
transactions in the 100s or 1,000s before they have to add
hardware . Rather than update their systems , banks have
relied on periodic settlement systems that require reconcili
ation accounts and high costs to cover the credit exposure up
to the point of settlement . Tereon does away with the credit
exposure and so the need for such accounts . It renders highly
affordable systems that are now called on to process 100 ,
000s of transactions per second . Tereon is designed to build
in resilience , support 1,000,000s of transactions per second
per server , and operate on high - end commodity hardware
rather than rely on expensive hardware . Tereon also supports
horizontal and vertical scaling in a near - linear fashion with
out compromising on the ACID guarantees or its real - time
performance .

US 2020/0186355 A1 Jun . 11 , 2020
9

[0152] The Licensing Subsystem
[0153] The Tereon Licensing Server 210 allows compo
nents of the system to ensure that they are communicating
with legitimate , authorised , licensed peer systems , both
within a single deployed instance where microservices of
a single instance are engaged in inter - process communica
tions on a single machine , regardless of whether the machine
is , for example , a physical machine , a logical machine , a
virtual machine , a container , or any other commonly used
mechanism for containing executable code , and across any
number or type of machines and across deployment
instances (e.g. separate customer platforms communicating
with each other) . The licensing platform is implemented via
a certificate authority structure known in the art .
[0154] When components are installed to the system , they
communicate their installation details (organization , com
ponent type and details , licence key , etc.) along with a
certificate signing request to the licence server over a secure ,
authenticated connection at prescribed , configurable inter
vals (e.g. monthly , with a one - week lead time) .
[0155] The certificate server compares those details with
its authorised component directory , and on a match , grants
the device initiating an installation request a new certificate ,
signed with an isolated , secured signing key (generally via
a hardware security module) in an internal certificate author
ity hierarchy , usable for a prescribed period of time (e.g. one
month) . All of the clocks in the connected systems are synchronized .
[0156] The caller can then use the certificate as a client
certificate when initiating communications with other mod
ules , and as a server certificate when acting as the recipient
of connections . The licence server , having never received
the private key , does not hold details that would allow any
other party to impersonate this certificate , even if compro
mised . If preferred , the caller can request two certificates , a
client certificate and a server certificate , from a licence

the custom zero - copy and optional user - mode functionality .
This is the platform through which mobile devices , termi
nals , and other external parties communicate with instances ,
in addition to site - to - site connectivity . This accommodates
industry standard intrusion detection , rate limiting and
DDOS (distributed denial - of - service) attack protection ,
hardware encryption offloading , and so on . It is functionally
the logical instance proxy mechanism writ large , and sup
ports all of the same functionality , including client / server
certificates and validation , while also using an externally
recognized certification authority to outside parties .
[0162] The Tereon Data Service
[0163] One of the key features of the Tereon system is that
it is able to handle significantly more transactions (in terms
of throughput) than previous systems . This is due to a unique
design that implements a highly concurrent , fast , and scal
able processing network , which can process data and trans
actions , and an extremely efficient data services layer as well
as algorithms and bespoke modules that minimize the pro
cessing overhead .
[0164] The performance characteristics described are pri
marily targeted at scaling up doing more on a given piece
of computing hardware , so leading to significant reductions
in running costs and power consumption . However , the
design is not restricted to a single system ; the Tereon system
is capable of scaling out both vertically and horizontally to
an enormous degree , with each service capable of running
concurrently on a large number of devices .
[0165] To achieve high levels of performance on a single
system or server , the system preferably minimizes its pro
cessing overhead by avoiding unnecessary serializations ,
avoiding unnecessary stream processing , avoiding unneces
sary memory copies , avoiding unnecessary transitions from
user to kernel mode , avoiding unnecessary context switches
between processes and avoiding random or unnecessary I / O .
When a system does so correctly , it becomes possible to
achieve extremely high levels of transactional performance
on that system .
[0166] In a traditional model , server A would receive a
request . It would then build and serialize a query to server
B , and immediately send that query to server B. Server B
would then decrypt (if necessary) , deserialize , and interpret
that query . It would then generate a response , serialize and ,
if necessary , encrypt that response , and then transmit that
response either back to server A or to another server . The
kernel and process context switches occur in the dozens per
message , the single message is cast in various forms a
number of times , and memory copied between a number of
work buffers . These kernel and process context switches
impose a huge processing overhead per message processed .
[0167] Communications Architecture
[0168] Tereon achieves its throughput by restructuring the
traditional way data and communications are handled by the
system . Where possible , Tereon bypasses the operating
system kernel to avoid the processing overhead imposed by
the kernel , and to avoid the security issues that often arise
with standard data management models .
[0169] Each data activity within the system is executed via
a data services instance 214. This is a scaled out service
oriented data service layer that is the only component of the
system with direct data platform access . Thus all data
activities on the system must pass through it .
[0170] The data service layer 214 communicates with a
data store layer 220 via separate dedicated read and write

server .

[0157] Each component can validate that the server and
client certificates have been signed by an agent of the
trusted , authorised certificate authority , and can communi
cate with significant confidence that they are not subject to
man - in - the - middle attacks or surveillance , and that the
counter - party is who it says it is . Each certificate is granted
with usage code metadata that limits how each module can
present itself ; for instance , as a lookup server for a specific
organization . The organization is assured that all parties are
operating licensed , legally valid instances .
[0158] Most certificates simply expire and are never
renewed , having been granted for a fixed term . However , in
the rare instance that a certificate is compromised , or a
licence terminated or suspended , a revocation list is used and
asynchronously distributed to proxy services as needed . An
active certificate directory is always maintained , usable for
periodic auditing .
[0159] In addition to the two - way validation benefits (that
the client is who they say they are , and the server in each
connection is who it reports it is) , this implementation
allows components to intercommunicate securely without
each connection build - up requiring communications with
remote licence servers , securely communicating without
potentially reducing overall reliability of the platform .
[0160] Site to Site Communications
[0161] Site to site communications is facilitated through
an identified , exposed HTTP gateway instance 212 , running

US 2020/0186355 A1 Jun . 11 , 2020
10

access channels 226. The data store layer 220 is imple
mented over a core database store 224 , which itself com
prises at least one distributed database . These databases do
not need to offer ACID guarantees ; this is managed by the
data store layer .
[0171] All writes to the data store layer 220 are managed
by a single shared transactor , through which all data changes
flow in a serial rapid sequence to preserve causality . The
transactor design uses a hot backup redundancy model that
presents itself as data transactor cluster 222. If one transactor
fails or stalls for any reason , then one of the other transactors
will take over immediately .
[0172] While the data platform supports partitioning for
all data domains , that support is not shown in a figure . If in
any case a single data store layer (backed by unlimited data
nodes) was found prohibitive or if there were regulatory
reasons to do so , data can be partitioned through imperative
or declarative means to store to different data clusters using
different transactors . For instance , a site may have four data
platforms , partitioning customers by geographic or jurisdic
tional criteria , or for accounts starting with 1-5 to go in one ,
6-0 in another . There are processing ramifications to this , but
this is supported by the platform .
[0173] FIG . 3 shows communications over the communi
cations layer 204 that routes communications to and from
the data services layer 214. When a module 350 needs to
communicate with another module 360 , it first initiates a
connection with a proxy 370 , passes its client certificate to
authenticate at step 302 , and then checks that the proxy
certificate is valid and trusted on build - up at step 304. The
module 350 passes the message at step 306 to the proxy 370 .
The proxy 370 establishes a correlating connection with the
target module 360 at step 308 ; it first authenticates itself at
308 and validates that the module's certificate is valid and
trusted at step 310. The proxy 370 then passes the confirmed
details of the initiator (module 350) at step 312 , before it
receives the module's response at step 314. The proxy 370
returns details of the target (module 360) and its response at
step 316. This establishes a communications channel
between module 350 and module 360 via the proxy 370 ,
with both modules authenticated and identified to each other
to a high degree of confidence , and , where necessary , with
all communications and data encrypted . The proxy 370
relays the messages from module 350 at step 318 to the
target module 360 at step 320 , and relays the target module's
response at step 322 to module 350 at step 324 .
[0174] These connections use keep - alive and session shar
ing based upon the details of the caller's and the recipient's
certificates (e.g. the module 350 can “ close ” the connection
to the target module 360 , via the proxy 370 , and reopen it
without actually building a new end - to - end connection . The
connection would never be shared for any other circuit) . The
communication proxy 370 may be an HTTP gateway , or
some other suitable module or component .
[0175] Such an architecture traditionally comes at a sig
nificant performance cost with heavy use of memory . For the
module 350 to communicate with target module 360 , tradi
tionally it would need to serialize the payload , encrypt the
payload , stream it to the proxy 370 , where the proxy 370
would decrypt the payload , deserialize and interpret the
content , reserialize the payload , and encrypt it for the target
module 360 , before passing it to the target module 360. The
target module 360 would then decrypt the content , deseri
alize , and interpret the content .

[0176] Tereon uses several techniques to reduce average
and maximum latency , to reduce memory loading , and to
improve single - platform performance on commodity hard
ware . This achieves monolithic , in - process performance
while maintaining all of the security , maintenance , and
deployment benefits of microservices . It does so without
compromising the high levels of security and control that
such a system must provide .
[0177] Tereon can use a batched messaging model over
the communications layer as set out in FIG . 3. Each message
passed , such as the message passed from module 350 to the
proxy 370 at step 306 could be a batch of messages . Tereon
can , however , go much further than this .
[0178] In addition to batched messaging , FIG . 4 shows
how two servers of modules can communicate with each
other via a proxy module (the bespoke hand - over module) to
negotiate a shared memory channel between them . Steps
402 to 412 are analogous to the steps 302 to 312 in FIG . 3
with the addition that , if necessary , the attributes of the
service are checked to confirm that they match the client
request , something that can also occur in steps 302 to 312 .
The module 450 to the module 460 instance can use TLS , or
traditional TLS HTTPS , optimally with the HTTP gateway's
user - mode and zero copy for the caller transactions as well .
[0179] If the source module 450 and the destination mod
ule 460 are local , then after establishing the connection via
the proxy 470 from steps 402 through to 412 , the caller and
recipient may optionally request direct connectivity with
each other via shared memory , and it is here with this
optional request that this method diverges from the method
set out in FIG . 3. If the caller and recipient request direct
connectivity with each other then , after negotiations , a
shared channel is conveyed from module 460 at step 414 to
the proxy 470 , and from the proxy to module 450 at step 416 ,
and the two modules from that point on use a direct to direct
process mechanism that again uses semaphores and shared
memory . This is illustrated by the messages between module
450 and module 460 in steps 418 , 420 , 422 and so on .
[0180] In the Tereon model , server 450 batches a plurality
of requests in native memory buffers as optimal for the task ,

message for server 460 , and trips a semaphore .
Server 460 checks the flags , processes the directly shared
memory , and responds in shared memory . The connection
uses keep - alive and shared memory based on the details of
the caller's and the recipient's certificates , and shared
memory and semaphores for communication .
[0181] By using the method above , the communication
can circumvent the overhead of serialization and streaming
(given that it is contained within a machine) , to a secure ,
ACL - controlled , single - caller destination . It does not need
encryption ; the connection has been validated , authenti
cated , and authorised on setup and cannot be usurped , and ,
where appropriate , processes can share wholesale , propri
etary memory structures where appropriate .
[0182] Both the proxy 470 and the Tereon code modules
(450 and 460) support zero - copy networking and user - mode
networking where possible (when compiled with the requi
site TCP / IP library , an HTTP proxy can provide a solution
that avoids the significant cost of kernel context switches for
network packets) . This is facilitated via network driver
specific code that the proxy 470 and the Tereon code
modules can use . This minimizes memory usage for small

queues the

US 2020/0186355 A1 Jun . 11 , 2020
11

packet requests and responses ; these comprise the vast bulk
of Tereon operations , where most operations can fit in a
single TCP packet .
[0183] FIG . 4a illustrates how the Tereon system imple
ments a set of bespoke semaphore hand - off modules 408a ,
which can also make use of shared memory , that are used to
exchange data efficiently between any two components of
the Tereon system (such as the HTTP gateway 406a and the
microservices 410a that provide the functionality within
Tereon) . In FIG . 4a , the data services layer 214 is embodied
by microservices 410a . However , the microservices could
represent any sort of service module .
[0184] The network stack 404a (including a loopback
virtual device) receives and assembles the request from a
connecting server 402a and , instead of then copying it into
user - mode target memory , it simply hands ownership of the
memory grant to the recipient , in this case the HTTP
gateway 406a . This is primarily beneficial under a very
heavy load (e.g. millions of requests per second) where
memory bandwidth saturation starts occurring .
[0185] A custom Tereon upstream HTTP gateway module
406? allows local instances (relative to the HTTP gateway
instance , where generally there is an HTTP gateway instance
on each container or on each physical , logical , or virtual
machine) the option to use shared memory and message
passing to proxy memory from the gateway to the module ,
and vice versa for that upstream connection . Instead of the
HTTP gateway 406a serializing a request and passing it via
traditional mechanisms , when configured for a shared
memory upstream provider the HTTP gateway 406a uses
shared memory that it passes to the recipient .
[0186] In this case , the shared memory may have been set
up using another HTTP gateway , HTTP gateway instance or
other element as a proxy . Using an HTTP gateway can be
particularly efficient .
[0187] Instead of using communications hooks provided
by the operating system kernel , each data exchange module
bypasses the kernel ; this increases the throughput of the
system by avoiding the kernel overhead , and addresses areas
of insecurity that can occur when data is passed to and from
the services provided by the kernel . Within Tereon , a module
is used , for example , to exchange data efficiently from a
system component straight to the data services layer 214 and
from the data services layer 214 to a system component .
[0188] Another example of the advantage that this archi
tecture brings is the improved efficiency of the HTTP
gateway 406a , which is achieved by using the hand - off
module 408a that allows the HTTP gateway 406? to hand
over all of the incoming data to microservices 410a , such as
the data service layer 214 or other components , and all of the
outgoing data from the microservices 410a or the data
service layer 214 , to the HTTP gateway 406a . Instead of
using the default HTTP gateway's data and messaging
hand - off , which itself is efficient , the semaphore handoff
module , which can also use shared memory , allows the data
to be handed straight to the data layer 214 and from the data
layer 214 to the HTTP gateway 406a , bypassing the kernel .
This not only increases the throughput of the system ; it has
an added advantage in that this secures one of the common
areas of vulnerability in systems that use HTTP gateways .
[0189] Either the module that provides the shared memory
channel or the module that communicates with the shared
memory channel can batch and serialize or deserialize and
separate the requests . Which module performs that task will

come down to the function of that module and the processing
overhead that the module incurs in its normal operation . For
example , in one case , a module that itself is receiving a large
number of messages (which may or may not be requests)
may pass its messages to a shared memory module that itself
will batch and serialize those messages for the recipient
module , as the overhead of batching and serializing may
prevent that module from otherwise processing messages
efficiently and at load . In another case , a module may batch
and serialize its messages to a particular recipient before
passing that batch to that recipient via a shared memory
channel .
[0190] In yet another case , a module passing messages to
a recipient module may rely on the module that provides the
shared memory channel to batch and serialize the messages ,
but the module that receives the batched messages may itself
deserialize and separate the messages . The question of
which module carries out the task of batching and serializ
ing , or deserializing and separating comes down to which
choice provides the optimum performance level for the
functions that the modules perform . The order of batching
and serializing will itself depend on the message type and
the functions provided by the communicating modules .
[0191] Tereon uses an HTTP gateway 406? to masquerade
as a web service and so avoid potential issues with network
operators blocking non - standard services . Tereon can , of
course , masquerade as any other service if necessary , and so
can therefore work with well - known network security con
figurations with ease .
[0192] Following this design , the system carries on this
modular approach throughout the entire architecture , where
the system uses modules designed to exploit the available
resources , and to avoid kernel overhead where possible . An
additional example is the networking system , where Tereon
makes use , where possible , of modules that support user
mode networking or zero - copy networking in the network
stack 404a . This avoids the heavy overhead of using the
kernel for networking . The modular design also allows
Tereon to operate on multiple types of systems , where
similar bespoke modules provide similar functionality and
can be customized for each operating system or hardware
configuration .
[0193] Using an intermediary in the manner depicted in
FIG . 3 and FIG . 4 allows a centralized point of control for
all communications , whether intra- or extra - machine . It is a
single point of control for rate and security controls , moni
toring and auditing , and for specialized rules or re - direc
tions . This allows flexibility in deploying systems , even
while those systems are operational , without incurring
downtime or significant risks . It also easily facilitates load
balancing and redundancies without any client awareness or
complexity .
[0194] If the module 350 of FIG . 3 wants to talk to the
target module 360 , the use of an intermediary allows for the
target module 360 to be load balanced across “ n ” machines ,
and to be moved across any number or type of machines
without reconfiguring all potential clients , instead simply
reconfiguring the intermediary .
[0195] The system uses a PAKE (password authenticated
key exchange) protocol that was created to provide two
communicating parties with the ability to mutually authen
ticate their key exchange . This is impossible with other
well - known public key exchange protocols , such as the
Diffie - Hellman key exchange protocol , which renders those

US 2020/0186355 A1 Jun . 11 , 2020
12

[0205] d) Servers have a configurable threshold of buff
ering where they will attempt to batch requests to
minimize process context switches , and to maximize
cache coherency for any given server . If server A has
10,000 requests arrive within a 20 ms period , to give an
example , and the platform is targeting a 20 ms buffer
window , and it needs the assistance of server B for
those 10,000 requests , then it will gather the 10,000
requests into a single request , and then queue the
asynchronous message for server B , flagging the sema
phore . Server B can then rapidly process the 10000
requests , providing a single response to server A. This
is configurable based upon optimizing efficiency versus
maximum response time .

[0206] In practice , reducing the number of kernel and
process context switches has yielded enormous improve
ments in the performance level of the platform . Rather than
incur a number of kernel and process context switches per
message , the Tereon model incurs that number of kernel and
process context switches per block of messages , due to the
batching of messages being communicated . Tests indicate
that by using this model , the performance difference
between the traditional model and the Tereon model is
1 : 1000 and more for many workloads
[0207] The modules and their benefits are not , however ,
restricted to single systems . Even where server A and server
B exist , for example , on separate machines , the Tereon
system will still use efficient serialization and batching .
Regardless of whether this is then coupled with optional
zero - copy or user - mode networking , the Tereon model dra
matically improves the network and processing perfor
mance .

protocols vulnerable to a man - in - the - middle attack . The
PAKE protocol , if used correctly , is immune to man - in - the
middle attacks .
[0196] Where Tereon communicates with external sys
tems , such as an external device or server , it adds an
additional layer to the communications system . Many key
exchange protocols are theoretically susceptible to man - in
the - middle attacks . Once a connection is established , using
the certificates and signed messages to confirm that the
communication is between two known entities , the system
uses the PAKE protocol to establish a second secure session
key and so render the communications impervious to a
man - in - the - middle attack . Thus the communications will
use the TLS session key and then the PAKE protocol's
session key to encrypt all communications .
[0197] Where communication is with devices that have an
inviolable identity string , TLS can be dispensed with if
necessary and the PAKE protocol used as the main session
key protocol instead . This may , for example , occur where
the devices are small hardware sensors that form a set of the
components of the Internet of Things .
[0198] Communication Methods
[0199] The Tereon data service 214 is based upon a
key - value store with graph functionality that offers n + 1 or
greater redundancy and optional multi - site replication , and
which offers full ACID guarantees via a coordinating trans
actor (a device or module that carries out , manages , or
controls , all or part of one or more transactions) . The data
service 214 is encapsulated in a data - domain service that ,
aside from shared - memory functionality , additionally offers
zero - copy functionality and unlimited read scaling ,
in - memory caching , and extremely high levels of write
performance . This is persisted in a variable sized data
cluster , with heavy memory caching . In highly unique
circumstances , the data service can be circumvented for
direct use of the key - value stores .
[0200] The data service 214 offers both high performance
traditional SQL style functionality , along with graph pro
cessing to support functions such as money flow analysis .
The data service 214 , coupled with the very high perfor
mance module communications architecture (which pro
vides the efficiency and performance of the platform) , pro
vides an extremely efficient design that has exceeded 2.8
million transactions per second in tests on commodity server
hardware (with bonded 10 Gbps networking) .
[0201] By implementing the following architectural pri
orities , the system can dramatically reduce the number of
kernel and process context switches necessary to process the
messages transmitted within the system and between sys
tems :

[0202] a) Zero - copy networking is available to mini
mize transport costs from the network edge to services .

[0203] b) User - mode networking is available to mini
mize transport costs from the network edge to services .

[0204] c) Where serialization is necessary (primarily
when crossing machine or server boundaries) , high
efficiency serialization is used , e.g. protocol buffers or
Avro , as opposed to a high overhead serialization such
as Simple Object Access Protocol (SOAP) . This is
abstracted at the edge of each server such that a given
server can as easily talk over the Internet to a peer
server on another continent , albeit at a lower perfor
mance and efficiency level .

[0208] Tests have shown that these design elements have
demonstrated local server to server operations in the tens of
millions of message request and response round trips per
second (in batch , shared memory mode) , and in the low
millions per second over a high speed network wire (e.g.
bonded 10 Gbps) .
[0209] Since all of these transactions can be handled in
real - time and reconciled immediately , there are lots of
advantages particularly for banking , IoT , medical , ID
management , transportation , and other environments that
require accurate data processing . Specifically , such systems
do not currently reconcile transactions in real - time . Instead ,
the transactions are reconciled after a period of time , some
times in batches . That is why , for example , financial trans
actions are usually processed in batches with separate rec
onciliation processes run after hours . By using the Tereon
system , it is possible for the banks to reconcile all financial
transactions in real time in a nanner that was not previously
possible . It then becomes possible to avoid the need for
banks to have reconciliation accounts to cover financial
transactions that are not yet reconciled , or that cannot be
accurately reconciled as , by definition , all transactions will
have been reconciled when they are processed .
[0210] Transactions and Data Partitioning
[0211] All atomic activities in the Tereon system are
transactions — they succeed as a whole , or fail as a whole , as
is a fundamental requirement of any system backing ACID
guarantees for transactions . This section briefly explains
how this is accomplished , and sets out the details of the
approach that Tereon has taken to transactions and data
partitioning in order to mitigate the effects of partitioning on
achieving ACID guarantees for transactions .

US 2020/0186355 A1 Jun . 11 , 2020
13

[0212] As has been mentioned above , each data activity
within the Tereon platform is executed via a Tereon Data
Service instance 214 , which itself can operate as a set of
microservices 410a . This is a scaled out service - oriented
system that is the only component of the system with direct
data platform access , and thus all data activities must pass
through it . These data services are scaled out such that
parallel transactions within the system can be accomplished
via different data service instances , using instance cached
data MVCC (Multiversion Concurrency Control) to always
have coherent read data .
[0213] Data activities occur via atomic messages to a data
service instance , with the message containing the entirety of
the data job ; for example , a job might involve reading
several correlated records and attributes , or updating or
inserting data based upon dependent data , or a combination
of tasks . The data service instance executes the job as a
two - phased commit transaction across all backing , transac
tional data stores .
[0214] The Tereon model guarantees data consistency via
the following techniques :

[0215] a) Any set of read data carries a version ID .
[0216] All writes (updates and dependent inserts) verify

that this version ID is current for all relevant data as an
optimistic transaction . This means that if a source reads
three records to obtain various account attributes (e.g. ,
permissions , balance , and currency data) , then this
cluster of data has a coherent version ID . If any of those
values are then updated , or dependent data is written
(e.g. , a financial transfer) , the version ID is again
confirmed as current and if it differs say the currency
assumptions changed , or exchange rates were modi
fied — the write , as a whole , fails completely . The
downstream service re - reads , if appropriate , and
assesses whether the data changes the transaction in
any material way . If not then the transaction is submit
ted anew . If , again , the transaction fails , it is repeated
until the configurable number of retry attempts is
exceeded and a hard failure is emitted . A hard fail
would be extremely unlikely in normal circumstances .

[0217] In the vast majority of real - world scenarios , a
failed optimistic transaction would never occur , even

enormous transaction volumes and account
diversity . And in the rare case that one did , then data is
never compromised , and there is minimal processing
overhead . This MVCC / optimistic model is fully pro
tective for deleted records as well , given that the
platform that is used is a perpetual history database
(beyond regulatory deletes that may be required in
exceptional circumstances) .

[0218] b) Writes to the platform , for a given data
partition (which is a separate concept from the hori
zontal scaling of the data services) .

[0219] Many data service instances can write to and
read from one data partition , and a single data service
instance can all store to and read from multiple data
partitions . All reads and writes occur through a single
master transactor instance 222 with one or more redun
dant operating backup as necessary . However , only a
single instance is ever active . This guarantees that the
transactional and causal validity is maintained under all
circumstances (e.g. no skew during a network split , for
instance , or during brief communication delay) . This
transactor confirms all optimistic transactions as valid

or not , and is continually refreshing the cache managers
in the data service instances with updated and current
information as contextually important to that instance .

[0220] c) Optional data partitioning
[0221] Being constrained to a single transactor could

potentially limit scalability for very large Tereon
instances (understanding that a single organization
could manage multiple Tereon instances by region ,
etc.) . Data partitioning is the notion that a Tereon Data
Service cluster can partition data across transactors 222
or data stores 224 based upon configured Tereon rules
by domain . The Tereon platform supports the following
partitioning rules currently , as a heterogeneous , multi
component hashing strategy :

[0222] i) Hashing targeted data of a given element or of
any superior element (e.g. details hash according to the
parent record) . The high performance hashing has
cardinality equal to the number of partitions .
(0223] The system does not currently provide for

rebalancing , so in the current implementation hash
ing has to be up front , though rebalancing will be
provided for in a future implementation (though
partitions can still be added currently , using a multi
part rule that includes hashing by origin date and
time) .

[0224] ii) Data configured hashing of targeted data of a
given element or of any superior element e.g. by
enumerated geographical area . By last name A - K or
L - Z , etc. By currency . Etc.
[0225] The data targeted hashing supports alphanu
meric , Unicode , and other character code ranges ,
integer ranges , floating point ranges , and enumerated
sets .

[0226] iii) Combinations of the above .
[0227] In an implementation , for example , the two

letters , A and B can refer to two separate data sets
that are common across a whole geographic region ,
with the numbers 1 and 2 referring to two divisions
of that region . A single partition rule can support , for
instance , partitioning between the top level partitions
1AB and 2AB via a data rule , such as a geographic
region , and then further partitioning between the A
and B sub - partitions via an account number hash .

[0228] d) A single job accomplished via a single data
service instance can cross multiple data partitions , be
completed by multiple transactors and be persisted on
a large number of data storage nodes .
[0229] This presents obvious data integrity complexi

ties . The integrity of the data , however is guaranteed
as all components of the transaction are bound in a
single two - phased commit wrapper . The entirety of
the transaction , against all persistent nodes and
actors , completes or fails as a whole , and provides all
of the same versioned guarantees .

[0230] The end result of this confluence of architectural
designs is that the system is completely transactionally
secure , highly redundant , and highly scalable , both verti
cally and horizontally . While write transactions (which in
most scenarios encompass a small percentage of the activity)
can be limited by the transactional necessity of a single
transactor per partition , the addition of rule - based partition
ing , especially of superior data elements , provides enormous
flexibility to expand the system to a conceptually unlimited
degree , before even considering bifurcating instances .

across

US 2020/0186355 A1 Jun . 11 , 2020
14

[0231] The Tereon Data Store Implementation
[0232] The Tereon infrastructure is capable of handling
over 1,000,000 ACID guaranteed transactions per second .
This is achieved by abstracting or otherwise implementing a
data store layer 220 on top of a distributed database or
databases 224 , using a high performance key / value distrib
uted database for the storage tier (this can be at any level of
depth , from an abstraction via the Tereon Data Service ,
through to direct database use to the storage tier) , with
separate read and write access channels 226. Tereon's use
and configuration of the data store is unique .
[0233] The data services layer communicates with the data
store layer via its bespoke data exchange modules . The
databases themselves do not need to offer any ACID guar
antees at all that is handled by the data store layer 220. Nor
do they need to offer graph capabilities , as those slow down
the write processes significantly . The data store layer 220
provides the interface to the heterogeneous data layers and
provides the interface functionality that the different parts of
the system require . Thus the write functionality provides a
fast cell and column structure , whilst the read interface
provides a graph interface to enable it to traverse the
distributed data store in micro seconds .
[0234] The data store layer provides the SQL interface and
the graph interface layer above the core data store databases
224 , and provides a number of significant architectural
advantages that set Tereon apart . Each client instance (the
Tereon Data Service instances 214) hosts an in - memory / in
process database engine , including cached representations of
all of the hot data for that instance . In effect , the instance
hosts the database engine and the cached representations of
all of the current transactional data , the status of each current
transaction , and all other information that relates to that
instance's current state within its portion of the RAM or
other fast memory of the machine or machines in which that
instance is operating .
[0235] This allows the Tereon Data Service to facilitate
most read - oriented tasks at an enormous rate (millions of
discrete queries per second , per instance , where the hot ,
relevant data is cached locally) , magnitudes above the
performance levels that would be achieved were it to seri
alize and make external or off - machine requests to external
database systems . When data is not in the in - process cache
it is retrieved from the key value store .
[0236] An MVCC versioning system is used to manage
concurrency , and an attribute of the data layer is that data is
never deleted (outside of forced deletes for regulatory com
pliance) —the system retains the entire history of every
record change for the life of the data system . This makes
trivial operations such as “ as of " querying , and auditing any
platform changes .
[0237] The write implementation of the data layer uses a
single shared transactor through which all data changes must
flow , processed in a serial , rapid sequence . This ensures that
transactions are valid , consistent , and minimizes change
concurrency overhead , which is an onerous weight on most
database platforms . The transactor design uses a hot backup
redundancy model . As the transactor processes changes , it
notifies all active query engines (which in this case exist in
the Tereon Data Service) and they update their in - memory
caches as appropriate .
[0238] The design provides micro - second latency for
reads , writes , and searches , irrespective of the size of the
data store . It also provides a modular construction that

allows components to be upgraded and replaced without
affecting its operation . This data store is abstracted from the
underlying implementation , and can be substituted with
other stores in the Tereon Data Service .
[0239] If the data store layer is set to operate with pessi
mistic ACID guarantees 226 , that is to put in an extra step
to confirm that it has written a record before moving on to
the next transaction , then this adds a short delay , but
provides an absolute guarantee of ACID consistency and
data integrity .
[0240] The advantage of this design is that it provides
ACID guarantees , as the application layer cannot proceed
until the data layer confirms that it has written the record and
completed the transaction .
[0241] This means that , for instance , in banking , pay
ments , and other transaction types that must preserve cau
sality , problems caused by eventual consistency are
removed . By designing in ACID guarantees , any need for
reconciliation accounts to cover any shortfall when the bank
systems discover mismatched processes is also removed .
The real - time processing means that the time - delay that
reconciliation processes incur on eventual consistency sys
tems is also removed .
[0242] The design of this platform offers very high levels
of redundancy and reliability on commodity hardware , and extraordinary scalability (both vertically and horizontally) .
Theoretical concerns about possible limits of the transactor
system did lead to building a partitioning platform into the
data service to overcome those limits , but under the vast
majority of scenarios it would never be necessary to use that
platform .
[0243] Lookup / Directory Service
[0244] The Tereon system has a directory service 216 that
is a directory of the credentials and information in the
system that identifies which server a user or a device 218 is
registered to , or which server offers a particular function ,
resource , facility , transaction type , or other type of service .
The directory service enables multiple methods of authen
tication of a user 218 to take place , since it stores a number
of different types of credentials relating to that particular
user . For example , a user 218 may be authenticated using
their mobile number , email address , geographic location ,
PANs (primary account numbers) , etc. , and caches that data
so that it is not necessary to authenticate each time .
[0245] The directory service 216 provides a layer of
abstraction that separates the user's authentication ID from
the underlying services , servers , and the actual user
accounts . This provides abstraction between the credentials
that a user 218 or merchant may use to access a service and
the information that Tereon requires to perform the service
itself . For example , in a payments service the directory
service 216 would simply link an authentication ID , such as
a mobile number , and perhaps a currency code with a server
address . There is absolutely no way to determine whether
the user 218 has a bank account , or which bank that user 218
banks with .
[0246] The system architecture enables Tereon to provide
several novel services or features that are simply beyond the
scope of existing systems .
[0247] The Tereon system architecture is useful because it
allows scalable and redundant systems . Bank core systems
tend to offer modules dedicated to individual channels e.g. ,
card management , e - commerce , mobile payments . This rein
forces the silos and increases the complexity of their IT

US 2020/0186355 A1 Jun . 11 , 2020
15

systems . That complexity is one of the reasons why banks
fail to update their services and systems regularly .
[0248] Tereon is designed to support all devices and all use
cases with a modular architecture that renders it highly
configurable and customizable . The heart of this is the
SDASF 104 discussed above , and the business rules engine
106 , together with a high level of abstraction . It is this
together with the extensible framework that enables Tere
on’s flexibility .
[0249] Tereon enables an operator to use standard carrier
grade systems to provide and support numerous transaction
types . Tereon will support any transaction , whether or not
that transaction requires authentication .
[0250] Special Processes
[0251] Special processes 208 ideally leverage the func
tionality of the data services . However , there may be
instances where a unique requirement does not justify
changing or extending the core data service , such that the
data library is leveraged within the special process to draw
from the data directly . This may , for example , include
graph - functionality processes such as AML (anti - money
laundering) , CRM (customer relationship management) , or
ERP (enterprise resource planning) functions .
[0252] Multiple Services
[0253] As each service is a module , Tereon's modular
structure enables it to support multiple types of services and
devices . In payments , for example , this structure enables
Tereon to support a plurality of payment types and devices ,
including banks , charge cards , credit services , credit unions ,
debit services , employee schemes , ePurse , loyalty schemes ,
membership schemes , microfinance , prepayment , student
services , ticketing , SMS notifications , HLR lookups , etc.
[0254] Multiple End - Point Devices
[0255] Tereon's modular structure enables it to support
almost any end - point device that it can communicate with ,
either directly or indirectly , including magnetic stripe cards ,
smart cards , feature phones , smart phones , tablets , card
terminals , point of sales terminals , ATMs , PCs , display
screens , electronic access controls , e - commerce portals ,
wrist bands and other wearables , etc.
[0256] Multiple Databases
[0257] The modular architecture has another benefit in that
the system is not limited to one database . Instead , several
databases can be connected , each with a module specific to
the database in question , and so use specific data - bases for
specific purpose , or use a combination of data records across
multiple heterogeneous databases .
[0258] The implementation of a licensing subsystem 210
is novel in its use of certificate authorities for licensing
purposes in addition to the authorisation and authentication
benefits that it provides . Instead of each module either
trusting one another's claims , using simple authentication
with a shared database , or endlessly delegating to a separate
licence server on each connection build - up (with the per
formance and reliability overhead that entails) , which are the
most common implementation patterns for such distributed ,
module based systems . In Tereon , the licensing subsystem
ensures that connections between modules are intrinsically
secure , and have trusted , validated metadata about the
actors , with minimal performance and reliability overhead .
[0259] The implementation also limits the scope of poten
tial vulnerability in the instance of a licence server compro
mise : In a traditional deployment such a compromise would
merit a scorched - earth rebuilding of all components . In the

Tereon model , there is a time - based exposure that would
demand a new intermediate signing certificate (if it was not
protected by a hardware security module) . All existing
certificates , granted pre - compromise , would be grandfa
thered in and could be renewed on the normal schedule . New
certificates would be granted under the new authority , and
any other rogue certificates would be rejected as post
compromise . This exposure window control benefits worst
case scenarios . The data held by the licence server is , outside
of the signing certificate private key that ideally is held on
a hardware security module , completely non - privileged
information .
[0260] Tereon's design also leads to the option of com
bining an end - point device , such as a mobile phone or an IoT
device with a miniaturized Tereon server that will commu
nicate with other Tereon servers as part of a network of such
servers . They will still communicate with a Tereon Licence
Server 210 , and perhaps one or more operator - run Tereon
Servers to collate data and co - ordinate activities . Neverthe
less , the distinction between an end - point device and a
Tereon server can be an abstract one , where any distinction
depends only on the use - cases to which the devices and
servers are put .
[0261] Hash Chains
[0262] One of the big drawbacks with blockchains is that
the blockchain stores an audit of all of the previous trans
actions (i.e. it is possible to determine the transaction history
in the blockchain , which is then used for authentication
purposes) . This means that the blockchain approach is not
infinitely scalable since the size of the block chain eventu
ally becomes too large to manage in a realistic time frame ,
while the size of each block limits the maximum transac
tions per second that the blockchain can register .
[0263] A second drawback is that the transactional history
is available to anyone who can access the blockchain , and so
provides them with the ability to ascertain who the parties to
a transaction are . This presents significant privacy and
regulatory challenges to using blockchain in any meaningful
activity where privacy and / or confidentiality are paramount
requirements .
[0264] Another drawback is that the blockchain can only
hash the result or final record of a transaction , and cannot
validate the actual processes or the steps of the transaction
themselves .
[0265] The hash chain disclosed herein seeks to overcome
these problems by using a specific hashing approach in order
to keep the records private between the transacting parties ,
and yet provide a distributed authentication network that
encompasses all users of Tereon , irrespective of whether
they operate on open or private networks .
[0266] This is achieved by the continuous construction of
a distributed chain of hashes that operates in real - time across
both public and private networks , without revealing to any
third party the contents of the underlying communications .
This contrasts directly with the standard model of a distrib
uted hash or ledger , where every party has to see and accept
the content of every communication , irrespective of whether
or not they are party to that communication .
[0267] When the hash chain uses a protocol that includes
a zero knowledge proof , then it can authenticate each of a
transaction's steps and the information or outcome gener
ated by those steps .
[0268] The implementation can either result in the parties
to a communication generating the same intermediate hash ,

US 2020/0186355 A1 Jun . 11 , 2020
16

or they can generate unique intermediate hashes for the same
communication . The structure also allows the parties to
migrate to new hash algorithms as existing algorithms are
deprecated , without affecting the integrity of the hash chain .
This contrasts directly with the difficulty of updating or
upgrading the algorithms used in existing live solutions ,
such as the blockchain .
[0269] Tereon creates a hash audit chain for each side
(account) of a transaction , where :

[0270] Tereon generates a hash associated with a record
and stores the hash against that record . Tereon will
generate that hash as soon as the action that generates
the record is complete , as it uses the steps that generates
the record and the information or outcome that arises
from those steps ;

[0271] Tereon uses the hash for the previous record as
part of the data for the current record ; and

[0272] the first hash in any record chain will be a
random hash with the server's signature , the date and
time that Tereon generates that hash , and , if required , a
random number .

[0273] If the record is of an action that involves two or
more parties and each party should have a record of its side
of the action , then for each of the parties in an action Tereon
will :

[0274] share each party's hash of the record with the
other party or parties ;

[0275] use that hash to form part of the recipient party's
record for which Tereon will create the record hash ;

[0276] create an intermediate hash of the record that
includes the hash from the other party or parties .

[0277] share that intermediate hash with the other party
or parties , so that each party thus has a hash that
encapsulates the other party's part in the action (if the
parties use the correct protocol then there is no need to
share their intermediate hashes as these will be exactly
the same) ;

[0278] include that intermediate hash in the record of
the action ;

[0279) generate a final hash that it will store against the
action and use as part of the next record ; and

[0280] associate each of the transferred hashes , or the
intermediate hash generated with the protocol using the
zero knowledge proof , against the transferor's ID or
Tereon number .

[0281] Tereon can provide the ACID guarantees and the
real - time session transaction and processing speed that are
required for this , as will be explained below . Furthermore ,
the prevalence of the blockchain has meant that develop
ments in this area have not been considered .
[0282] The blockchain can only hash a record of a trans
action once that transaction has been completed . There is no
guarantee that the record passed to the blockchain is actually
the genuine record of the transaction itself . The blockchain
is limited in this way as its underlying hash structure is
designed for static collections of data , not dynamic , real
time transactions , and it relies on the majority of its opera
tors acting honestly . The blockchain itself presents yet a
further limitation in that it can only offer eventual consis
tency ; not ACID consistency determined by the chronologi
cal order of the transactions , but by the order in which those
transactions are incorporated into blocks , and by the con
sensus model to manage forks in the blockchain when two

or more blocks that contain slightly different transaction sets
are discovered more or less simultaneously .
[0283] FIG . 5 illustrates the dendritic nature of a hash
chain that involves four accounts 502 , 504 , 506 and 508. The
accounts may be on the same server , or they may be on
separate servers . Each system may support one or more
server , and each server may support one or more accounts .
Where the accounts reside is irrelevant . FIG . 5 also illus
trates five transactions that occur between pairs of accounts .
There are two transactions that occur between accounts 502
and 504 , two transactions that occur between accounts 502
and 506 , and one transaction that occurs between account
506 and 508. In the figure , each box is a step that relates to
the account at the top of the column . Each step involves an
unseen action or transaction , such as a search within that
account , or a transaction between that account and another
unseen account or a system . What those transactions or
actions are is irrelevant . All that matters is that they involve
something that a Tereon system records in its audit .
[0284] At step 510 , the Tereon system takes h (502) , the
previous hash for this account . As discussed above , the first
hash is a random hash with the server's signature , the date
and time that Tereon generates that hash , and , if required , a
random number . Tereon adds this hash to the record for the
transaction or action that occurs at step 510 , and then uses
this as the seed to calculate h (512) , the hash for this
transaction . The record at this stage contains h (502) and
h (512) .
[0285] At step 512 , the system exchanges the hash ,
h (510) , with the server holding the account 504. It adds the
hash h (504) , the hash for this transaction for account 504 , to
the record , generates an intermediate hash h (512 .) , adds this
to its record , and then exchanges this for the intermediate
hash h (514 ;) from account 504 (generated at step 514 , as
explained below) . It then adds this hash to its record and
generates the hash h (512) .
[0286] This hash h (512) now contains information that
validates the chain of hashes for account 502 up to step 512 ,
and for account 504 up to the intermediate stage of step 514 .
The record contains h (510) , h (512 ;) , h (514 ;) , h (504) , and
h (512) .
[0287] At step 514 , the system exchanges the hash ,
h (504) , with the server holding the account 502. It adds the
hash h (510) from account 502 to the record , generates an
intermediate hash h (514 ;) , adds this to its record , and then
exchanges this for intermediate hash h (512 ,) from account
502. It then adds this hash to its record and generates the
hash h (514) .
[0288] This chain now contains information that validates
the chain of hashes in account 502 up to step 512 and for
account 504 up to step 514 .
[0289] This procedure is carried out for further transac
tions between accounts 502 , 504 , 506 and 508 in order to
generate hashes for each transaction in exactly the same way
as set out above . For example , at step 534 , the system takes
h (528) , the previous hash for account 502 generated at step
528 , adds this to the record for the (unseen) transaction or
action that leads to an audit record , and generates h (534) , the
hash for this transaction . This chain now contains informa
tion that validates the chain of hashes in account 502 up to
step 534 , for account 504 up to step 526 , for account 506 up
to step 530 , and for account 508 up to the intermediate hash
from account 508 that was used to generate h (530) at step
530. The record contains h (534) and h (528) . Tereon gener

US 2020/0186355 A1 Jun . 11 , 2020
17

ates the hash h (528) at step 528 from a record that included
h (530 ;) , which itself was generated from h (524) at step 530 .
The hash h (524) contains information that validated account
508 up to the intermediate hash from account 508 that was
used to generate h (524) at step 524 .
[0290] Reconciliation
[0291] In order to ensure that a transaction cannot take
place if a fraudster has altered the record of the previous
transaction , reconciliation can be performed over the last ‘ N ’
transactions first . Thus , for example , before Tereon carries
out the transaction represented by step 522 , it can first
recalculate the hashes for step 516 , and perhaps step 512 and
so on , up to the preceding ‘ N ’ transactions for account 502 .
The audit trail will have sufficient information to recalculate
the final hash values for the transactions . Likewise , the
system holding the account 504 can recalculate the hashes
for step 526 , step 520 , etc. Tereon does not need to recal
culate any of the hashes for account 506 for the step 522
transaction .
[0292] In a hash chain , if any of the recorded hashes do not
match the recalculated hashes then this means that a record
has been altered without authorisation , and the operator can
immediately investigate the issue or block further transac
tions .
[0293] System Hash Chain
[0294] A system hash can also be added to each record .
This will be a hash of the record where the seed will be the
hash of the previous action on the system , irrespective of
whether or not that action relates to the account to which the
record being hashed belongs . If the system hash is added
then a hash chain within each account , and a hash chain of
the system as a whole , is provided .
[0295] FIG . 6 illustrates the dendritic nature of a hash
chain that involves two accounts 602 and 604 on the same
system , whose ‘ system account that records all system
events is 606. The system creates a new hash of a record for
every action that results in a record , irrespective of where
that record resides . These are the system hashes , h (606) ,
h (608) , h (612) etc.
[0296] Administrative functions also result in records that
the system assigns to the administrative accounts , regardless
of whether those functions involve human input or whether
they are automated functions .
[0297] At step 608 , Tereon creates a hash of the record of
an unseen action or transaction in account 602 that triggers
an entry in the system's audit record (the record for account
602 includes the hash h (602) , the previous record hash for
that account) , and uses h (606) for that new system hash
h (608) . The system then records this hash against the record
for the transaction and calculates the hash h (610) for account
602 at step 610 .
[0298] If the system's computing performance allows ,
then it can use a stronger variation for the system hashes that
mirrors the operation of account hashes .
[0299] At step 610 , Tereon exchanges the hash , h (602) ,
with the system account 606 for the hash h (606) . It adds the
hash h (606) from the system account 606 to its record and
generates an intermediate hash h (610 ,) . It generates this after
it has completed the unseen action or transaction in account
602 that triggers an entry in the system's audit record and
adds the hash to its record . Tereon then exchanges this
intermediate hash for the intermediate system hash h (608 ;) .
It then adds this and h (608) to its record and generates a new
account hash h (610) .

[0300] At step 612 , Tereon exchanges the hash , h (608)
generated at step 608 , with accounts 602 and 604. It adds
h (610) generated at step 610 and h (604) to its record and
generates an intermediate hash h (612 ;) . It exchanges this
with accounts 602 and 604 for their intermediate account
system hashes h (614?i) and h (616si) , and intermediate
hashes h (614 ;) corresponding to account 602 and h (616 ;)
corresponding to account 604. It then generates a new
system hash h (612) . The system then records this hash .
[0301] At step 614 , Tereon exchanges the hash , h (610)
generated at step 610 , with the system account 606. It adds
the hash h (608) from the system account 606 , generated at
step 608 , to its record , generates an intermediate account
system hash h (614si) . It generates this hash after it has
completed the transaction with account 604 (and swaps the
intermediate transaction hashes h (614) and h (616 ;)) , adds it
to its record , and then exchanges this for the intermediate
system hash h (612 ,) . It then adds this and h (608) to its record
and generates the account hash h (614) .
[0302] At step 616 , Tereon exchanges the hash , h (604) ,
with the system account 606. It adds the hash h (608) from
the system account to its record , generates an intermediate
account system hash h (616si) . It generates this after it has
completed the transaction with account 602 (and swaps the
intermediate transaction hashes h (614 ;) and h (616 ;)) , adds
the hash to its record , and then exchanges this for the
intermediate system hash h (612 ;) . It then adds this and
h (608) to its record and generates the account hash h (616) .
[0303] At step 612 , one option is for the system to send the
intermediate system hash h (6145i) to account 604 , and the
intermediate system hash h (6165i) to account 602. This
would mean that the final record hashes for those accounts ,
h (614) and h (616) would contain records of the three
intermediate system hashes , h (614g .) , h (61451) , and h (612)
and so provide an extra layer of certainty .
[0304] The system hash chain now contains hashes of both
sides of each individual transaction , as well as the transac
tions as a whole , thus strengthening the hash chain consid
erably .
[0305] If Tereon manages a transaction between accounts
on a different system , then the process is as for steps 608 and
610 on each of those systems .
[0306] Licence Server Hashes
[0307] The hashes above relate to those generated on and
between separate Tereon systems . As these systems interact
with each other , so they will eventually join the hash tree
that contains information that will validate the transactions
on all of those systems . This will , however , only grow at the
rate that these systems interact with each other . The system
can go even further and build another layer that will ensure
that each server will immediately join the global hash tree .
This distinguishes the hash chain completely from the
blockchain .
[0308] Where a blockchain operator sets up a private
blockchain , then that blockchain operates in isolation of all
others . What it gains in overall processing speed it loses in
any security that it might otherwise offer , as a user cannot
rely on large network of blockchains to validate a transac
tion . One of the blockchain's claims to security is that an
attacker would need to compromise a number of the block
chain network's nodes to compromise its security (compro
mising between 25-33 % or so of the nodes could be suffi
cient to compromise the blockchain) . A single private
blockchain reduces that number , by definition , to one .

US 2020/0186355 A1 Jun . 11 , 2020
18

[0319] At step 720 , Tereon uses its hash , h (706) , to
generate an intermediate system hash h (720 ,) , adds this to its
record , and exchanges it for the intermediate licence hash
h (718 ;) from the Licence server 708. It then adds this hash
to its record and generates the system hash h (720) , which it
adds to its record .
[0320] These three Licence server to Tereon server trans
actions have resulted in the following results :

[0321] The hash h (712) generated at step 712 contains
information that validates the state of :
[0322] the Licence server 708's hash chain up to the

intermediate hash h (710 ,) ; and
[0323] server 702's hash chain up to the hash h (712) .

[0324] The hash h (716) generated at step 716 contains
information that validates the state of :
[0325] the Licence server 708's hash chain up to the

intermediate hash h (714 ;) ;
[0326] server 702's hash chain up to the intermediate
hash h (k7021 ') ; and

[0327] server 704's hash chain up to the hash h (716) .
[0328] The hash h (720) generated at step 720 contains

information that validates the state of :
[0329] the Licence server 708's hash chain up to the

intermediate hash h (718 ;) ;
[0330] server 702's hash chain up to the intermediate

hash h (kzozi ') ;

[0309] With the hash chain , even a private Tereon server
or network can benefit from the hash chains generated by the
public Tereon servers and networks . Operating a private
Tereon server or network does not mean that the operator
must compromise on the authentication strength of the
Tereon system because that system will still be a member of
the global hash chain . It is simply that its transactions , other
than those that relate to the licence server , will remain
completely private to that system .
[0310] To achieve this , every server must interact with the
licence server , regardless of whether or not it interacts with
other Tereon servers . If a Tereon server operates in a
closed - loop system then it will only interact with other
Tereon servers within that loop , and then only if that loop
comprises more than one server .
[0311] By adding a licence server hash , every server will
join the global server hash chain as soon as it interacts with
the licence server , which it must do on a daily basis . The
licence server hashes are essentially generated by a two
party transaction between a Tereon server and the licence
server . The licence server transactions do not affect any
underlying data transactions between Tereon servers , other
than the fact that the system hashes for each server will now
also contain information derived from the licence server
hashes , and vice versa .
[0312] FIG . 7 illustrates the dendritic nature of the licence
hashes . In this simple example , system server 702 is a closed
loop system , with which systems servers 704 and 706 will
interconnect . All three must interact with the licence server
708 on a periodic basis .
[0313] On its very first interrogation with the licence
server 708 , each server generates its first hash from its public
key , the date and time that the server first became licensed ,
and a random set of data .
[0314] At step 710 , Tereon uses its hash , h (708) , to
generate an intermediate licence hash h (710 ;) , adds this to its
record , and exchanges it for the intermediate system hash
h (712 ;) from server 702. It then adds this hash to its record
and then generates the licence hash h (710) which it adds to
its record .
[0315] At step 712 , Tereon uses its hash , h (702) , to
generate an intermediate system hash h (712 ;) , adds this to its
record , and exchanges it for the intermediate licence hash
h (710 ;) from the Licence server 708. It then adds this hash
to its record and generates the system hash h (712) , which it
adds to its record .
[0316] At step 714 , Tereon uses its hash , h (710) generated
at step 710 , to generate an intermediate licence hash h (714 ;) ,
adds this to its record , and exchanges it for the intermediate
system hash h (716 ,) from server 704. It then adds this hash
to its record and generates the licence hash h (714) , which it
adds to its record .
[0317] At step 716 , Tereon uses its hash , h (704) , to
generate an intermediate system hash h (716 ;) , adds this to its
record , and exchanges it for the intermediate licence hash
h (714 :) from the Licence server 708. It then adds this hash
to its record and generates the system hash h (716) , which it
adds to its record .
[0318] At step 718 , Tereon generate an intermediate
licence hash h (718 ;) , adds this to its record , and exchanges
it for the intermediate system hash h (720 ,) from server 706 .
It then adds this hash to its record and generates the licence
hash h (718) , which it adds to its record .

[0331] server 704's hash chain up to the intermediate
hash h (716 ;) ; and

(0332] server 706's hash chain up to the hash h (720) .
[0333] The hash h (718) generated at step 718 contains

information that validates the state of :
[0334] the Licence server 708's hash chain up to the
hash h (718) ;

[0335] server 702's hash chain up to the intermediate
hash h (k7021 ') ;

[0336] server 704's hash chain up to the hash
h (k704)) ; and

[0337] server 706's hash chain up to the hash h (720) .
[0338] The licence and system hashes therefore contain
information that enables them to verify the transactions on
every server in the network , regardless of whether or not
those servers are interconnected or operate as a closed loop .
[0339] Tereon can implement a similar layer with the
look - up directory service that will operate in a similar way
to the hash chain created by the licensing service .
[0340] Off - Line Transactions
[0341] Using this approach , off - line transactions can now
have the same validity as on - line transactions , as the need to
have constant communications links between devices and
their servers is removed . Thus devices , such as sensors ,
portable payments terminals , and so forth , could communi
cate between themselves and then connect with their servers
at predetermined intervals to download and upload data . The
system would operate seamlessly between connected and
unconnected environments .
[0342] The hash chain allows the devices to validate and
audit the transactions between themselves whilst they cannot
communicate with their respective servers , using business
rules to determine whether or not they can engage in the
off - line transactions . The devices would simply reconcile
those audit and transaction records with their servers when
they connect to those servers once more .
[0343] FIG . 8 illustrates an example of a hash chain that
involves four devices that go off - line from their respective

US 2020/0186355 A1 Jun . 11 , 2020
19

Tereon servers for a time . Three of these , 802 , 804 and 806 ,
are visible (the fourth , device 808 , interacts with the chain
at step 828) .
[0344] To support off - line transactions between devices ,
the devices themselves will generate a hash of each trans
action that they take part in . When the device is back on - line
and communicates with its server , that device will send the
hash for that transaction to its server .
[0345) Where the device that initiates a transaction is
off - line , it will generate a hash for its transaction , and store
that hash . It will also send that hash to its counterparty
device (the device that it is transacting with) , and that
counterparty device will send its hash to the first device . This
is achieved in the same way as the hash chains described
above . The devices can communicate between themselves
via any two - way channel , such as Bluetooth , NFC , local
Wi - Fi , and so on . They could even publish barcodes for each
transaction stage on their screens for the other to read . Each
device will also send a signed , encrypted copy of its trans
action record to the other device , where the signature will
also contain the destination server for that record . Only the
destination server will be able to decrypt that record .
[0346] Once a device regains communications with its
Tereon server , that device will send to the server the
encrypted records of its off - line transactions and their asso
ciated hashes . It will also send that server the copies of other
transactions that it holds , such as the records from its
counterparties , and the server will then transmit those
records and their associated hashes to the servers with which
those counterparty devices are registered . Each device will
create its own unique internal transaction number (such as
one generated by a monotonic counter , for example) that will
identify its part in a transaction . If the transaction is on - line ,
then the server to which the device is connected will also
generate a unique transaction number that both the device
and server will use .
[0347] Devices can combine their unique internal trans
action numbers with time and date stamps , information
about the devices clock skew , and other information to
preserve the causality of each transaction . When their
respective servers receive the transaction information , they
will be able to reconstruct the order of the transactions and
so preserve the causality of both on - line and off - line trans
actions for all devices .
[0348] Returning to FIG . 8 , at step 812 , the device 802
hashes the record of the transaction , which includes hash
h (802) , the previous record hash , and hash h (810) from
server 810 to generate h (812) . It then passes this hash to
server 810 , where that hash forms part of the record used to
calculate h (814) at step 814. The device 802 is on - line at this
point , meaning it is connected to its Tereon server 810. At
step 814 , Tereon uses h (810) , the previous hash for server
810 , adds this and h (812) to the record , and then calculates
h (814) . The record contains h (810) , h (812) , and h (814) .
[0349] If the operator has configured Tereon to include the
system hash then it will add this to the record before it
calculates the hash h (814) , as described above . The record
would then contain h (812) , h (810) , the intermediate system
hash if relevant , and h (814) .
[0350) At step 816 , the device 802 is now off - line as it
cannot connect to the server 810. It transacts with device
804 , which is also off - line from its respective Tereon server .
Devices 802 and 804 follow the hashing procedure outlined
above to generate an intermediate hash h (816) from device

802 , an intermediate hash h (818) from device 804 , the hash
h (816) from device 802 and the hash h (818) from device 804
at step 818. Devices 802 and 804 now sign their hashes with
their off - line public keys and pass this to the other device ,
together with an encrypted copy of the record for that
transaction . This is device 802's first off - line transaction
since it lost contact with server 810 and device 804's first
off - line transaction since it lost contact with its server .
[0351] The administrator can configure the system so that
the application will transfer up to its last n transactions to
each unique device that it transacts with off - line .
[0352] This procedure is repeated for the further transac
tions in the chain between device 802 and device 804 and
between device 804 and device 806. In these transactions ,
devices 802 and 804 do not need to exchange their hash and
record for previous transactions as they each already hold a
copy .
[0353] Device 802 will continue to operate this way until
it re - establishes contact with its server 810 at step 830 .
Device 802 now uploads all of the encrypted records of its
off - line transactions and their associated hashes , in this
example h (816) , h (822) , and h (826) , generated at steps 816 ,
822 and 826 respectively . It also uploads the encrypted
transaction records and hashes that it holds for devices 804 ,
806 and 808. The server stores these and uploads them
respectively to the servers corresponding to devices 804 ,
806 and 808. Server 810 registers this upload as a transac
tion and generates the hash h (832) at step 832. Device 802
clears its record of the hashes from devices 804 , 806 and
808 , and the respective transaction records , and generates
the hash h (830) at step 830 .
[0354] Device 802 holds the hash and encrypted record for
the transaction between devices 806 and 808 , which resulted
in the hash h (820) at step 820 and h (808) . In this example
h (808) is used to refer to the hash for device 808 generated
for that transaction here as it is not known how many off - line
transactions have occurred .
[0355] The server 810 will reconcile the off - line records
that it receives from device 802 , with those that it receives
from devices 804 , 806 and 808 , and any other server that
contains those transactions . Server 810 will know which
servers it will receive records from as these will correspond
to the servers that it sent records to for the transactions that
involved device 802. Device 802 will not expect to receive
records from device 808 , as device 802 did not transact with
device 808. If devices 804 or 806 transacted with off - line
devices attached to other servers , then server 810 may
receive additional records from those other servers .
[0356] The server 810 will use the time and date stamps on
the transaction records and the signatures to order and
number those transactions , and mark them as off - line trans
actions .
[0357] The off - line mode presents several variations . The
first is to do without the intermediate off - line hashes , and
simply use the hashes for each device's previous transaction .
This will work just as well , though it loses a layer of
certainty . The second is to generate device hashes only for
off - line transactions . This simplifies the on - line transactions
slightly , but again loses a layer of certainty . The third
variation is not to sign the records for off - line transactions
with a specific off - line public key , but to simply sign every
record with the device's key . Both the server and the device
will know which transactions are on - line and which are
off - line , as these will be recorded in the account audit trail .

US 2020/0186355 A1 Jun . 11 , 2020
20

However , by running a separate key and series of transaction
numbers for the device , it becomes trivial to show the
off - line versus on - line transactions .
[0358] A fourth variation is for each server , when it
receives records of off - line transactions from its connected
devices , to notify all of the servers to which those records
apply to expect records from those servers . For example , in
the off - line diagram shown in FIG . 8 , it is assumed that
device 804 connected to its server later , and that device 806
transacted with another device (not shown) . Once device
804 connects with its server , that server will send the records
pertaining to device 802 to server 810. Device 804 did not
transact off - line with any other device and holds no off - line
records for any other device . Server 810 , on the other hand ,
sends its records for device 804 to the server corresponding
to device 804 , and notifies that server that it can expect to
receive copies of the same records from device 806 (device
802 passed these on to device 806 during the transaction at
steps 826 and 828) . Likewise , once device 806 connects to
its server , that server will send its records for device 802 to
server 810 , for device 804 , to the server corresponding to
device 804 , for device 808 , to the server corresponding to
device 808 , and for the other device to its respective server .
It will also inform both the servers corresponding to device
802 (server 810) and 804 to expect records from the server
corresponding to the other device .
[0359] Using a hash chain does not impose an ever
increasing burden on Tereon . An action will rarely involve
more than two parties , and where it does , then that action
will usually be a one - to - many transfer , which itself will
simply be a collection of one - to - one transfers . A many - to
one transfer will also usually be a series of one - to - one
transfers , which is simply a collection of two - party actions .
[0360] Amending Records
[0361] If a user amends a record , then Tereon will not
overwrite the original record .
[0362] Instead , Tereon will simply create a new record that
contains the amended record , and this will be the version
that Tereon refers to until such time as that record is
amended again ; the amendment is an action . This is what
will happen with all financial and transaction records , where
the result of a transaction , such as a payment , effectively
amends the result of the previous transaction ; it will also
occur where an operator uses a subset of Tereon to manage
other record types , such as emails , medical records , and so
on . By doing this , Tereon will retain a copy of each version
of a record .
[0363] There may be circumstances where a court of law ,
or the general operation of law , requires an operator to
expunge a record entirely , or to amend the original record .
In these circumstances , Tereon will delete or amend the
contents of the original record , and perhaps the contents of
the associated records . Tereon can achieve this without
rendering the subsequent hashes invalid .
[0364] If Tereon must delete or amend a historical record ,
then it will :

[0365] regenerate the hash of that record to confirm that
the record has not been amended or changed before
Tereon deleted or amends the record , and record that
regenerated hash

[0366] record in a new field in the original record that
the contents of the record were deleted or amended , and
the reasons for the deletion or amendment

[0367] delete or amend the relevant fields in the record ,
and add the date and time of that deletion or amend
ment

[0368] generate a new hash for that record ; and
[0369] record the new hash .

[0370] By following this procedure , Tereon will not need
to amend the hash chain any way . All of the hashes for
valid records that were generated from the original hash of
the deleted or amended record will remain valid . The system
hash will include the new hash of the deleted or amended
record as that deletion or amendment is an action . this
way , fraudulent activity can be easily recognised by finding
any recorded hashes that do not match the recalculated
hashes .
[0371] Hash Chain with Zero Knowledge Proofs
[0372] The hash chain provides an added layer that
enables both sides of a transaction to prove to the other that
they have hashed the records that the hashes pertain to . This
is done by including a key exchange algorithm within the
hash chain , which allows one party to prove to a second
party (the verifier) that the hash of the record is the true hash
of that record .
[0373] Any algorithm that allows two parties to negotiate
a common key can be used here , and there is no need to use
a zero knowledge proof . However , the PAKE (password
authenticated key exchange) algorithms that use zero knowl
edge proofs are the most efficient to use here . Using the
correct PAKE protocol and zero knowledge proof at the
intermediate stage removes the need to exchange hashes , as
the parties will generate the same intermediate hashes .
[0374] With an algorithm such as a PAKE algorithm that
allows both sides to generate the same hash using the zero
knowledge proof the parties can go further . By using a zero
knowledge proof that can include and use the information
that comprises the transaction to generate the ‘ proof ' , the
parties can both generate an identical intermediate hash .
This removes the need to swap their intermediate hashes
with each other . It also means that the steps that generate the
record and the information or outcome that arises from those
steps become components of the hash chain process . If more
than two parties are involved , then Tereon can use a group
variant of a protocol and zero knowledge proof to enable all
of the parties to generate a common hash .
[0375] The PAKE algorithms that enable the parties to
generate the same hash will usually take two or three passes
of information between the parties before they can generate
the intermediate hash . If a transaction only requires two
stages to complete (for example a request and an acceptance /
verification) , then the parties will only generate one inter
mediate hash . If a transaction requires three stages , and the
algorithm generates a hash in two passes , then the parties
will exchange four sets of information , repeating the third
stage twice , and generate two hashes , the first hash after the
first two steps in the transaction , then the second hash after
the repeat of the third step .
[0376] An example of such a zero knowledge proof is the
Schnorr NIZK Proof . This zero knowledge proof can be
extended simply by adding additional information to both
the information that is sent as part of the proof , and the
information that is used to generate the hash that is part of
the proof , as shown in the specification document for the
Schnorr NIZK Proof .
[0377] Another method , such as adapting the method of
generating the common key in the SPEKE (simple password

US 2020/0186355 A1 Jun . 11 , 2020
21

exponential key exchange) protocol can also be used , and
the way to do so is trivial given the above .
[0378] It is also a trivial exercise to extend key exchange
protocols to enable parties to generate a common key based
on the transaction data . Again , these are not illustrated here
simply for the purposes of brevity .
[0379] To generate the common hash , the parties simply
generate a hash of the common key . The hash will contain
information that can validate the transaction information ,
because that information was used in the process to generate
the common key , and thus the hash .
[0380] Transaction in Two Stages
[0381] An example that illustrates how this works will
refer again to FIG . 5 , which illustrates the dendritic nature
of a hash chain that involves four accounts , 502 , 504 , 506
and 508. The accounts may be on the same system , or they
may be on separate systems . Where the accounts reside is
irrelevant . This transaction at steps 512 and 514 takes two
stages .
[0382] Two Pass PAKE
[0383] In the first pass at step 512 , account 502 takes
h (510) , the previous hash for this account generated at step
510 , adds this to the first stage of transactional information ,
constructs the first zero knowledge proof , and passes this to
account 504. The zero knowledge proof accompanies the
information that makes up the first stage of the transactional
information and the hash h (510) .
[0384] In the second pass , account 504 takes h (504) , the
previous hash for that account , adds this to the second stage
of transactional information , constructs the second zero
knowledge proof , and passes this to account 502. The second
zero knowledge proof accompanies the information that
makes up the second stage of the transactional information
and the hash h (504) .
[0385] Accounts 502 and 504 now construct indepen
dently the hash h (512,514 ;) , which is the intermediate hash
for both accounts . Both accounts 502 and 504 add this hash
to their records . Account 502 generates the hash h (512) of its
record of the transaction at step 512 , and account 504
generates the hash h (514) of its record of the transaction at
step 514 .
[0386] Three Pass PAKE
[0387] In this example , the transaction at steps 512 and
514 takes two stages , with a PAKE algorithm that allows the
parties to construct a common hash after three passes .
[0388] The first pass and the second pass are performed as
above . In a third pass , account 502 takes the information that
account 504 sent in the second pass , constructs the third zero
knowledge proof with that information , and sends this to
account 504. The third zero knowledge proof also accom
panies the information that makes up the second stage of the
transactional information and the hash h (504) .
[0389] Accounts 502 and 504 now construct indepen
dently the hash h (5121514i) . Both accounts 502 and 504 add
this hash to their records . Account 502 generates the hash
h (512) of its record of the transaction at step 512 and
account 504 generates the hash h (514) of its record of the
transaction at step 514 , as in the two pass PAKE approach .
[0390] In both cases , the chain now contains information
that validates the chain of hashes in account 502 up to step
512 and for account 504 up to step 514. Both accounts 502
and 504 hold the intermediate hash h (512,514 ;) , as well as
their hashes for their records . The intermediate hash here ,
however , is subtly different to that of the intermediate hashes

that were exchanged between the systems in the previous
examples that do not use zero - knowledge proofs . Here the
intermediate hash is the hash of the transaction between
accounts 502 and 504 , and so is common to both accounts
502 and 504. The hash is the hash of the transaction and was
generated as part of the transaction . It is contemporaneous to
the transaction . Hash h (512) is account 502's hash of its
record of the transaction , which will include information
that is private to it , while account 504's hash , h (514) , is its
hash of its record of the transaction . Thus accounts 502 and
504 can prove both the actual steps in the transaction
between them , and their records of that transaction .
[0391] Transaction in Three Stages
[0392] As another example using FIG . 5 , suppose that the
transaction at steps 528 and 530 involves three separate
stages rather than two .
[0393] Two Pass PAKE
[0394] In the first pass , account 502 takes h (522) , the
previous hash for this account generated at step 522 , adds
this to the first stage of transactional information , constructs
the first zero knowledge proof , and passes this to account
506. The zero knowledge proof accompanies the informa
tion that makes up the first stage of the transactional infor
mation and the hash h (522) .
[0395] In the second pass , account 506 takes h (524) , the
previous hash for that account generated at step 524 , adds
this to the second stage of transactional information , con
structs the second zero knowledge proof , and passes this to
account 502. The second zero knowledge proof accompa
nies the information that makes up the second stage of the
transactional information and the hash h (524) .
[0396] Accounts 502 and 506 can now construct indepen
dently the hash h (528,530 ,) , as the PAKE algorithm allows
the parties to construct a common hash after two passes .
However , the transaction still has a third stage to perform .
[0397] In this example , the system simply runs through a
second set of passes with the PAKE algorithm , beginning
with the third stage of the transaction . The second pass of
this second set of passes could simply use random data .
Alternatively , it could repeat the last stage , which is similar
to using a three pass PAKE with a two - stage transaction .
[0398] In the latter case , a third pass (the first pass of the
new PAKE algorithm) is performed , where account 502
takes h (528,530 ,) , which it has signed , adds this to the third
stage of transactional information , constructs the third zero
knowledge proof with the information , and sends this to
account 506. A fourth pass (the second pass of new PAKE
algorithm) is performed , where account 506 takes
h (528,530 ;) , which it has signed , adds this to the third stage
of transactional information that account 502 sent , con
structs the fourth zero knowledge proof with the informa
tion , and sends this to account 502. Accounts 502 and 506
can now construct independently the hash h (528,2530,2) .
This is the second common hash generated in this transac
tion , and is now the hash of the transaction between accounts
502 and 506 as it contains all three stages of the transaction .
Both accounts 502 and 506 add this hash to their records .
Account 502 generates the hash h (528) of its record of the
transaction at step 528 and account 506 generates the hash
h (530) of its record of the transaction at step 530 .
[0399] This procedure is carried out for further transac
tions between accounts 502 , 504 , 506 and 508 in order to
generate hashes for each transaction in exactly the same way
as set out above .

US 2020/0186355 A1 Jun . 11 , 2020
22

[0400] Three Pass PAKE
[0401] The first pass and the second pass are performed as
above . In the third pass , account 502 constructs the third
zero knowledge proof with the information that makes up
the third stage of the transactional information , and sends
this to account 506. The zero knowledge proof accompanies
the information that make up the third stage of the transac
tional information .
[0402] Accounts 502 and 506 now construct indepen
dently the hash h (528,530 ;) . Both accounts 502 and 506 add
this hash to their records . Account 502 generates the hash
h (528) of its record of the transaction at step 528 and
account 506 generates the hash h (530) of its record of the
transaction at step 530 .
[0403] In the above examples relating to FIG . 5 , where the
system uses zero knowledge proofs to generate the interme
diate or transaction hashes , the hash h (530) contains infor
mation that validates all of account 502's hashes to h (528 ;) ,
all of account 504's hashes to h (526 ;) , all of account 508's
hashes up to the account 508's intermediate or transaction
hash that was created when account 506 created h (524) , and
all of account 506's hashes to h (530) . However , though it
validates all of the hashes in its transaction network , account
506 only holds the transaction records for the transactions
that it has entered into with other accounts , systems , or
servers . It knows nothing about the content of the transac
tional records for the transactions between accounts 502 and
504 , even though its hash contains information that account
502 or account 504 could use to verify the hashes for those
transactions .
[0404] What is important is that the algorithm that both
parties use to generate independently the same intermediate
hash uses the steps that the parties exchange to give effect to
the transaction . Thus , the transaction that generates the
record becomes a component of the hash chain process , and
the process that generates the hash chain entry is the same
as the process that gives effect to the transaction . Another
way of looking at it is that the transaction generates the hash
as part of the transaction , and that hash and its accompany
ing information become the audit of the transaction . They
become one and the same . With the blockchain , the initiator
of a transaction completes the transaction and sends its
record to blockchain for later auditing , which adds another
step to the process , instead of being integrated in the
transaction .
[0405] As the transaction itself becomes a contemporane
ous component of the audit trail that the hash chain provides ,
it becomes impossible to have a transaction whose details
are not captured and validated by the audit trail . Most audit
trails are “ after the event in that the completed transaction
record is passed to the audit system usually after the trans
action completes . In those circumstances , there is a possi
bility that the record received by the audit is not the same as
the record that was generated by the transaction . Thus ,
computer records are usually regarded as hearsay . Integrat
ing a zero knowledge proof with the correct PAKE or similar
protocol means that the audit trail is generated by the
transaction , and that the transaction and its records become
part of the audit trail . This has profound implications for
real - time transactions , as they are now audited and thus
reported in real - time .
[0406] The process of constructing the hash using zero
knowledge proofs can apply to any of the scenarios that
generate hashes in the hash chain . It can be used for system

hashes , licence server hashes , and even the off - line hashes
represented by FIG . 8. All that matters is that the hash
involves a transaction between two or more entities , regard
less of whether those entities are parties , devices , or systems .
The process does not exclude using standard hashes either .
Thus one system might use the hashes generated with zero
knowledge proofs for transactions between accounts ,
regardless of whether devices are on or off - line , but use the
standard hashes for system hashes and licensing hashes . A
second system might use zero knowledge proofs for all
hashes , while a third system might use standard hashes only .
[0407] Multiple Pass PAKEs with Multiple Transaction
Stages
[0408] Though the examples above are of how to use
transactions that involve two or three stages with PAKEs
that require two or three passes to enable both sides of a
transaction to create a common key , the system is not
restricted to those examples . The reality is that the same
method will work for a system to support transactions that
involve a plurality of stages to use PAKEs that require a
different plurality of passes . The system simply uses how
ever many PAKEs runs it requires to cover all of the stages
of a transaction . It repeats the final stage any number of
times to generate the required PAKE passes to generate the
final common key , and so generate the transaction hash .
[0409] System Hash Chain with Zero Knowledge Proofs
[0410] Returning to FIG . 6 , a hash chain that can use both
hashes generated with zero knowledge proofs and classic
hashes is shown . The figure shows two accounts 602 and
604 , on the same system 606 , together with the system
hashes , h (606) , h (608) , h (612) , etc. The system creates a
new hash of a record for every action that results in a record ,
irrespective of where that record resides . The transactions
between the accounts would use zero knowledge proofs to
generate the intermediate or transaction hashes for each of
the accounts , as set out above . The system hash would
comprise the system's hash of each record as it generates
that record .
[0411] Suppose that the transaction between accounts 602
and 604 at steps 614 and 616 involves three separate stages ,
with a PAKE algorithm that allows the parties to construct
a common hash after three passes .
[0412] In the first step of the transaction , account 602
exchanges the hash , h (610) , which is the hash of its previous
record , with the system account 606 for the system hash
h (608) generated at step 608. It adds this system hash and its
hash h (610) to the first stage of transactional information
generated at step 610 , constructs the first zero knowledge
proof , and passes this to account 604. The zero knowledge
proof accompanies the information that makes up the first
stage of the transactional information , the hash h (610) , and
the hash h (608) .
[0413] In the second step of the transaction , account 604
exchanges the hash , h (604) , with the system account for the
system hash h (608) generated at step 608. It adds this system
hash and its hash h (604) , which is the hash of its previous
record to the first stage of transactional information , con
structs the second zero knowledge proof , and passes this to
602. The zero knowledge proof accompanies the informa
tion that makes up the second stage of the transactional
information , the hash h (604) , and the hash h (608) .
[0414] In the third step of the transaction , system account
606 adds h (610) and h (604) to its record and generates an
intermediate system hash h (612 ;) .

US 2020/0186355 A1 Jun . 11 , 2020
23

[0415] In the fourth step account 602 constructs the third
zero knowledge proof with the information that make up the
third stage of the transactional information , and sends this to
account 604. The third zero knowledge proof accompanies
the information that makes up the third stage of the trans
actional information .
[0416] In the fifth step , accounts 602 and 604 construct
independently the hash h (614,616 ;) . Both accounts 602 and
604 add this hash to their records . Hash h (614,616 ;) is the
hash of the transaction .
[0417] In the sixth step account 602 exchanges
h (614,616 ;) with system account 606 for h (612 ;) , adds
h (612 ,) to its records , and generates the hash h (614) of its
record of the transaction at step 614. Account 604 exchanges
h (614,616 ,) with system account 606 for h (612 ;) , adds
h (612 ,) to its records , and generates the hash h (616) of its
record of the transaction at step 616 , and system account 606
adds the two copies of h (614,616 ,) to its record , and gen
erates the new system hash h (612) at step 612 .
[0418] Account 602's record for the transaction at step
614 contains the hash h (610) , the hash h (604) , the system
hash h (608) , the transaction hash h (614,616 ;) , the interme
diate system hash h (612 ;) , the three stages of the transac
tional information , its record of the transaction , the account
ID , and the hash h (614) .
[0419] Account 604's record of the transaction at step 616
contains the hash h (610) , the hash h (604) , the system hash
h (608) , the transaction hash h (614,616 ;) , the intermediate
system hash h (612 ;) , the three stages of the transactional
information , its record of the transaction , the account ID ,
and the hash h (616) .
[0420] (Account 602's records of the transaction will
differ from that of account 604's , as each began and ended
the transaction in different states , and each is a different
account with different account details and IDs .)
[0421] The system hash h (612) contains hashes of both
sides of each individual transaction , as well as the transac
tion as a whole , thus strengthening the hash chain consid
erably .
[0422] If Tereon manages a transaction between accounts
on a different system , then the process is slightly different ,
as here , each system will exchange its system hash and
intermediate system hash with the account that it manages .
Otherwise , the method described above in relation to FIG . 6
is the same except that , instead of having accounts 602 and
604 and system 606 , the figure would show system 606 with
associated account 602 , and a second system 605 with
associated account 604. With the transaction that will take
place at steps 614 and 616 , the system hashes that will result
will represent the system transaction at step 612 and the
equivalent transaction on the second system 605 correspond
ing to account 604. In reality , in a system that contains
several accounts that can transact concurrently , the system
will generate hashes for each interaction that generates a
record .
[0423] Though FIG . 6 shows sequential hashes and inter
mediate hashes the reality will be different . FIG . 6a shows
three accounts , 602a , 604a , and 606a , all of which are
interacting with accounts on outside servers , together with
the system account 608a . The stages of the transactions
interleave to illustrate what can occur when transactions take
place concurrently on a system . For simplicity , these are all
shown on the same server .

[0424] In the above examples , at step 612a account 602a
will swap its hash h (602a) with the system 608a to get
h (612a) . The system 608a will now generate what the above
examples show as the intermediate hash h (616a ;) . This
subscript “ i ” is used for clarity to indicate that each trans
action would involve three system hashes , the original hash
before the transaction , a system hash during a particular
stage of a transaction (the intermediate hash) , and the system
hash at the end of the transaction . The subscript “ i ” indicated
the intermediate hash . The final system hash would be
h (616a) with the above reasoning . With multiple concurrent
or interleaved transactions , this labelling no longer makes it
clear what is going on . Instead , each system hash , regardless
of whether or not it is generated during or after a transaction ,
is a system hash , albeit an increment on the previous hash .
If the three transactions take place so that account 602a
starts , then account 604a starts , account 606a starts , account
602a finishes , and that account 606a finishes before account
604a finishes , the order of hashes might look something like
the following , provided that no other transactions or actions
took place on these or any other accounts on the server , and
the diagram , as a result , is subtly different from the previous
figures .
[0425) Account 602a will swap its hash h (610a) with the
system to get h (612a) . The system now uses that hash
h (610a) to generate the next system hash h (616a) (this
would have originally been labelled h (628a ;) , as hash
h (628a) is the final system hash for that transaction once the
transaction for account 602a completes) .
[0426] Account 604a will swap its hash h (614a) with the
system to get h (616a) . The system now uses that hash
h (614a) to generate the next system hash h (620a) .
[0427] Account 606a will swap its hash h (618a) with the
system to get h (620a) . The system now uses that hash
h (618a) to generate the next system hash h (624a) .
[0428] Once account 602a has created its intermediate or
transaction hash , it will swap that hash h (622a) for the
system hash h (624a) . The system now uses that hash
h (622a) to generate the next system hash h (628a) .
[0429] Once account 606a has created its intermediate or
transaction hash , it will swap that hash h (626a) for the
system hash h (628a) . The system now uses that hash
h (626a) to generate the next system hash h (632a) .
[0430] Once account 604a has created its intermediate or
transaction hash , it will swap that hash h (630a) for the
system hash h (632a) . The system now uses that hash
h (630a) to generate the next system hash h (636a) (not
shown) .
[0431] The hash chain enables a system to process a
transaction , audit that transaction , and authenticate the data
transmitted or generated by that transaction at the same time .
These steps now become contemporaneous . There is no need
to assume that a device honestly reports a transaction to an
audit system . The transaction creates the audit and the audit
creates the transaction .
[0432] This changes both the nature of a transaction
carried out by a programmed device . Any programmed
device , including an IoT device can now validate and rely on
transactions and data transmitted between it and any other
device , as the transaction , and its audit and authentication
are contemporaneous .
[0433] There is no need to assume that a device will send
an accurate record of the transaction to an audit system , as
that transaction and the audit are generated as part of the

US 2020/0186355 A1 Jun . 11 , 2020
24

same process , and this contemporaneous nature changes the
quality of the evidential value of that audit trail . Each device
can rely on the information transmitted by the other without
making assumptions as to the honesty of that other device .
The data transmitted and received is the data that is trans
acted and the data that is authenticated and audited .
[0434] When combined with the look - up service , devices
that have not interacted before can now authenticate each
other , determine the services or functions that each per
forms , and then communicate between each other and rely
on that communication to carry our tasks as programmed ,
without requiring any human intervention to do so .
[0435] The hash chain allows programmed devices ,
including IoT devices to operate both on - line and off - line . If
when off - line the devices include time stamps , information
on that device's clock skew , the device's unique transaction
ID (generated , for example by an internal monotonic coun
ter) and other synchronization information in the transac
tional information , then they enable their servers to recon
struct accurate timelines that preserve the causality for each
transaction when those servers finally receive records of the
off - line transactions from the devices or from third party
servers . The hash chain , both in its on - line and in off - line
modes , allows the servers to rely on the content of the
transactional records .
[0436] When combined with the communications security
model that protect inter - device communications , the devices
and the servers can communicate in a manner that is
impervious to man - in - the - middle attacks . Tereon enables
IoT and other programmed devices to communicate securely
and to rely on the data transmitted between those devices .
[0437] One such example might be a network of IoT and
other programmed devices that operate as a set of industrial
sensors and controls . The security model allows these
devices to communicate amongst themselves securely , and
by using the look - up directory service , enables those devices
to interact with new devices as these are added to the
original collection . Tereon removes the need to reconfigure
the devices to enable them to recognize new devices and to
trust those new devices . The hash - chain enables the devices
to trust the content and timings of the communications
between them , and allows the operator to be able to rely on
the data generated and transmitted , without needing any
human evaluation as to the veracity of the data as transmit
ted . A third party cannot interfere with that data , whose audit
and authentication chains are contemporaneous with its
transmission .
[0438] The look - up service , when combined with the
security model and the look - up service , enables devices to
create ad hoc interconnections that they can trust and
authenticate without any need for human intervention . Once
a device is authorised and its details added to the look - up
service , other devices can connect to that device as the need
to do so arises . If that device is compromised in any way ,
then all access to it can be disabled via that same look - up
service .
[0439] The system provides an additional benefit that
arises from its hash chain and its look - up service . As all
devices are individually authorised and audited , the system
can instruct particular devices to download updates to those
devices ' software as the need arises , the devices can do so
only from secure , trusted sources . The look - up service will
detail the services , interfaces , and data formats (for
example) that a particular device offers and uses . Thus if a

device wishes to connect to another device to access a
particular survive and does not have the necessary software
to support the required interface or format , then either it or
the device that it is connecting , or both devices if necessary ,
can communicate with a system server to download the
necessary software or configuration to enable the two
devices to communicate with each other . Whether the
devices retain the software after the inter - device communi
cation finishes will be determined by the services that the
device or devices perform , and the capacity of those devices .
The hash - chain means that even if they remove that software
(they may reinstall it when they come to communicate
again) , the two devices will retain a complete audit and
record of the inter - device communications that they can later
upload to another device or server if necessary . This facility
extends to any type of device , from a fully autonomous IoT
device through to any other device as programmed , such as
a payments device .
[0440] Distributed Records of the Hash Chain
[0441] To provide a distributed replication of the entire
hash chain , the Tereon systems may upload their hash chains
to a central set of servers , such as the licence server , look - up
servers or some other set of servers , for all transactions that
occurred between the last connection to that server and the
current connection . The same Tereon system can then down
load the corresponding hash chains for the other Tereon
systems . This provides a distributed ledger of the hash
chains for all transactions for all Tereon systems , but without
the overhead of needing to recalculate each hash chain for
each transaction . It does , however , impose an additional
storage burden on the Tereon systems . The central servers
can be global , such as those for the licence and look - up
servers , or they can be specific to an industry , regions , or
some other constraint . By constraining the reach of the
copies of the hash chains , the computational and storage
burden of this variation can be reduced .
[0442] Instead of limiting the reach of the central servers ,
the systems that can download the hash chains that were
uploaded by other systems can be limited . Thus , the hash
chains from a bank may only be downloadable by another
bank , constrained by whether that bank in in the same region
as the uploading bank , or whether it has transacted with that
other bank . Similarly , a hospital's system may only down
load the hash chains that were uploaded by a hospital in the
same region . The flexibility is unconstrained .
[0443] The hash chain used in Tereon has a property that
is invaluable . It provides local ledgers but with distributed
authentication . It keeps the transactional information private
to the users and services involved in the transaction , but it
distributes the authentication provided by the hashes across
all servers , services , and devices . The hashes generated with
the zero knowledge proofs illustrate this . Only the systems
involved in a particular transaction hold the transactional
information . However , all of the systems and devices that
then interact with those systems generate hashes that contain
information about those systems ' earlier hashes .
[0444] The distributed authentication is key as it provides
a computationally impossible barrier to a potential fraudster
who wishes to hide a tampered record .
[0445] With the blockchain , the fraudster only has to
control between 25 to 33 % of the servers to hide a tampered
record and change the blockchain to record the tamper as a
valid record . Once done , the process is virtually impossible
to reverse .

US 2020/0186355 A1 Jun . 11 , 2020
25

[044] With the Tereon hash chain , a fraudster would need
to control every Tereon server , every Tereon service , and
every Tereon device , and recalculate every hash in the chain
on every one of those servers and devices . This is compu
tationally infeasible .
[0447] The hash chain will deliver at least the same level
of financial savings and economic efficiencies that the
blockchain's proponents are predicting for the latter . The
difference is that the Tereon hash chain is actually capable of
doing so ; the blockchain , due to its design and the limita
tions inherent in that design , just cannot do so .
[0448] The advantage of this system is that a fraudster will
be unable to delete or amend a record from a database
without also recalculating all of the hashes , and the linked
hashes associated with that record . Though this might theo
retically be possible if Tereon operates on a single server
without any system hashes and without any connection to a
licence server , if any of the linked chains involves a trans
action with a party on another server or device , then the
fraudster will also need to recalculate all of the hashes on the
other server or device . The difficulty of doing so increases
exponentially with each additional server or device that
interacts with the hash chain after the date and time of the
original record .
[0449] The hash chain enables an organization to be able
to guarantee the veracity of data collected , generated , or
managed by any device , to guarantee the original content
and integrity of a record , and to guarantee the integrity and
content of any transaction that was based on an earlier
record . This can apply to any device or transaction , from a
payment device , through to a medical device , a traffic sensor ,
a weather sensor , a water flow detector , etc.
[0450] This has clear governance benefits as each local
ledger is the responsibility of each individual organization ,
yet they learn from and lean on those of other organizations
in a way that provides shared strength with clearly delin
eated responsibility and accountability . The hash chain cre
ates a technical tool to enforce and support information and
transaction governance .
[0451] Furthermore , when the hash chain is used as a
component of a payments system , as Tereon processes fiat
money , its architecture is aligned with the way that payments
work today and it delivers benefits that equate or are superior
to cryptocurrencies like Bitcoin . It offers established pay
ment service providers and central banks a ‘ Bitcoin beater ' .
[0452] The hash chains are a particularly exciting part of
the Tereon system since they enable the very fast authenti
cation that is very secure .
[0453] One of Tereon's unique capabilities is its ability to
create comprehensive , real - time logs and audit trails . Tereon
transaction records contain every keystroke (apart from the
actual authentication credentials , such as a PIN and pass
word) that a transaction requires , together with all of the data
and metadata relating to that transaction for as long as they
are required to meet regulatory and business requirements .
It is important to render those records tamper evident , and
the sequence of transactions up to and after the transaction
in question tamper - evident , when they are stored across
multiple service providers .
[0454] The blockchain cannot do this . It can only accept a
record of a transaction after that record has been generated ,
but before it is authorised . The blockchain accretes a number
of records , creates a block and then adds that to the block
chain . It relies on the fact that the blockchain contains blocks

that themselves contain information pertaining to all previ
ous transactions . As the blockchain adds additional blocks ,
so it relies on the existence of these blocks to validate the
records and all previous records within the blockchain . This
causes scaling issues as file sizes grow and , if there is an
inconsistency , the whole branch loses authentication .
[0455] Rather than use the blockchain , or a derivative of
it , Tereon's hash chain uses a hashing strategy that isolates
any suspect record for investigation without undermining
the authentication of subsequent transactions . It also avoids
the scaling problem by having a design that is tailored for
any record type , whether for static records or for real - time
transactions .
[0456] The hashes , including the intermediate hashes , can
provide the information necessary for an administrator to
traverse the hash chain quickly to ascertain and verify
hashes and their respective records . So too can the records
themselves .
[0457] If any transaction or action takes place , then that
means that the previous hashes were reconciled and thus the
user and system can trust the output of the new transaction .
Thus Tereon can trust the running totals in each account
before it carries out a transaction . The validity of the hash
chain confirms that the running totals are correct .
[0458] It is this ability to isolate the effect of an amended ,
deleted , or tampered record that sets the hash chain apart
from the blockchain and its derivatives . By definition , any
amended or tampered record that is successfully hidden in
the blockchain will effect an entire recalculation of that
blockchain . There is no method to detect and amend a
tampered or false record other than by a democratic decision
of the entire blockchain community as every blockchain
must be amended . It was this feature that was identified by
security researchers as a major flaw within the design of the
blockchain . That design cannot be changed .
[0459] With the hash chain , a tampered record cannot
affect the remainder of the hash chain unless the attacker is
able to recalculate all of the subsequent hashes . As the
hashes prior to any tampering were , and remain , valid , any
transaction based on those hashes and the values related to
those hashes will remain valid .
[0460] The dendritic hash chain for off - line transactions
means that a server can register off - line transactions carried
out by an off - line device even if that device gets lost or
damaged before it can reconnect to the server .
[0461] The hash chain provides full support to validate
off - line transactions , which is something that the blockchain
and its derivatives just cannot achieve . The nodes that
operate their copies of the blockchain must be on - line to
validate the blocks . Though a bitcoin wallet can create a
transaction off - line , it cannot validate that transaction until
it goes on - line and pushes the record of that transaction to
the nodes . Even then the transaction is not validated until
one of the nodes wins the competition to generate the next
block in the blockchain and adds the record to that block .
[0462] Directory Service
[0463] Existing systems , such as transportation systems ,
payment networks such as EMV (Europay , MasterCard ,
Visa) , and other legacy systems use a hub and spoke
architecture such that all transactions go through a central
utility that represents a potential single point of failure or
vulnerability and which is expensive to scale .
[0464] The Tereon system is peer - to - peer , where one
server communicates directly with another , which is why the

US 2020/0186355 A1 Jun . 11 , 2020
26

hash chains for security are so important , since the hash
chain verification occurs across all elements of the peer - to
peer network .
[0465] As discussed , the Tereon system has a directory
service 216 that is a directory of the credentials and infor
mation in the system that identify which server a user or a
device 218 is registered to , or which server offers a particular
service or function , and enables multiple methods of authen
tication of a user 218 to take place , since it stores a number
of different types of credentials relating to a particular user .
For example , a user 218 may be authenticated using their
mobile number , email address , geographic location , PANs
(primary account numbers) , etc. and caches everything so it
is not necessary to authenticate each time .
[0466] The directory service 216 provides a layer of
abstraction that separates the user's authentication ID from
the underlying services , servers , and actual user accounts .
This provides abstraction between the credentials that a user
218 or merchant may use to access a service and the
information that Tereon requires to perform the service
itself . For example , in a payments service the directory
service 216 would link an authentication ID , such as a
mobile number , and perhaps a currency code with a server
address . There is absolutely no way to determine whether
the user 218 has a bank account , or what bank that user 218
banks with .
[0467] The directory service 216 acts as an intermediary
between various services such that service providers are not
able to see one another and thus the security of user data is
provided . Each service will define a set of fields (variables)
and values that are specific to that service . However , each
service will have a specific field and value that identifies the
service .
[0468] When a transaction is to be completed with a party
that is not known by it , a Tereon server associated with a user
218 sends a URN (uniform resource name) to the directory
service 216 , which returns an IP address for the Tereon
server of the payment service provider for a service that is
requested by the user 218. This allows the transaction to be
completed directly between the user 218 and the service
provider on a peer - to - peer basis . Additionally , the Tereon
server retains the IP address in cache so that any subsequent
transactions do not need to use the directory service 216 .
[0469] This abstraction provides security and privacy for
the users and their service details , the flexibility to add and
amend underlying services without affecting the public user
credentials , and the ability to segment and support multiple
services , each of which can be kept isolated from the others
if required . None of the fields in the data service contain data
necessary to initiate a transaction , and no user data , other
than the user's authentication ID is stored in the directory
service 216 .
[0470] The Tereon directory service 216 is , however ,
much more than this . It supports multiple credentials . Thus
a user 218 can use any number of credentials as a payment
ID . Examples include mobile phone numbers , PANs , email
addresses , etc. As long as the credential is unique , Tereon
will support it .
[0471] The directory service 216 can support multiple
services . This is where the concept of a multifaceted cre
dential — or “ psychic paper ' comes into being . When a
service provider checks a credential on the directory service
216 it can only see whether that credential is registered for
its service , and the Tereon server that services that creden

tial . The service provider cannot see any details of any other
service that the user 218 might be entitled to or registered
for .

[0472] For example , a mobile phone or card could become
a library card credential in a library , a transport ticket on a
bus or train , a secure key to access a room or facility , an
in - house payment device in a firm's canteen , a theatre ticket ,
and a standard payment device in a supermarket . It could
also become a driving licence , a health care card , or an ID
card to prove entitlement to a service , which could bring up
photo ID on the merchant's device if the service required
that , etc. There are few , if any , limits to the type of credential
that a device can become .

[0473] Though it would be difficult to disguise the original
external appearance of a card (this could be done once cards
incorporate OLED covers or colour e - paper covers , for
example , where the service could instruct the card to display
the get - up and information that a particular credential or
service requires) , the appearance of the phone applications
is changed by Tereon to reflect the nature of the credential
and service .

[0474] A reverse look - up function can be implemented for
each server . That function will allow a server to check
whether the server communicating with it is licensed and
authenticated . That function is not needed as every commu
nication between Tereon devices , be they cards , terminal ,
mobiles , or servers , must be signed . There may , however , be
circumstances where an operator needs or wants the added
security that a reverse look - up will bring .
[0475] Here the directory service 216 will contain a num
ber of fields , such as service , Tereon server domain address ,
Tereon server number , Tereon server operator , time to live ,
terminal authentication ID , etc. The service tag here will
refer to the server reverse look - up , rather than a transaction
service .

[0476] FIG . 9 shows an example with two servers , server
202a and server 2026. A user 218 , is registered with server
202b , and accesses a service via a terminal that is connected
to server 202a .

[0477] At step 902 , a user 218 identifies himself to the
terminal with his own device , which automatically identifies
itself to the terminal . The terminal also passes its identifi
cation to the user's device if he uses a smart device . (If the
user 218 uses a card , then the terminal could only pass its
identification to the user's device if that device is a micro
processor card . In this case , the card would communicate
with server 202b , the server to which he is registered , via an
encrypted tunnel through the terminal to pass the terminal's
ID to server 202b .)
[0478] At step 904 , server 202a takes the identification
provided by the user's device and checks that ID against the
list that it maintains . It does not hold that ID and so has never
dealt with the user 218 before . Server 202a now contacts the
directory service 216. The directory service 216 checks the
signature on server 202a's communication and sees that it is
valid . The directory service 216 looks up the ID against the
service tag for the requested service (server 202a's signature
confirms that the server is authorised to make a request for
that service) and responds with the information that identi
fies server 2025 , together with the cache time to live
information .

US 2020/0186355 A1 Jun . 11 , 2020
27

[0479] At step 906 , server 202a now contacts server 2026
to confirm that the user's device is registered with server
202b for the service . Server 202a also passes on the termi
nal's ID to server 202b .
[0480] At step 908 , server 202b , if it has not already done
so , can make a similar request to the directory service 216
to look up the server to which the terminal is registered . It
can also confirm that the terminal is registered for the
requested service with server 202a . The directory service
216 responds with the information that identifies server
202a , together with the cache time to live information .
[0481] At step 910 , server 202a and server 202b now
communicate directly with each other in order to carry out
the required transaction . This can be anything from making
a payment to opening a door .
[0482] The Tereon servers themselves contain the infor
mation necessary to initiate a transaction , and they will only
communicate with other licensed and authenticated servers
or devices .
[0483] Once the servers have communicated with the
directory service 216 and with each other , they will cache
the data until the data expires in their own mini directory
services .

[0484] In this case , the communications to establish the
connection between Tereon server 202a and 202b are obvi
ous and simple . This is shown in FIG . 10 .
[0485] At step 1002 , the user 218 identifies himself to the
terminal connected to server 202a with his own device ,
which automatically identifies itself to the terminal . The
terminal also passes its identification to the user's device if
he uses a smart device .
[0486] At step 1004 , server 202a takes the identification
provided by the user's device and checks that ID against the
list that it maintains . The data it holds is valid and so server
202a contacts server 202b to confirm that the device is still
registered with it for the requested service . Server 202a also
passes on the terminal's ID to server 202b . Server 202b
confirms that the device is registered with it . Server 202a's
cache contains valid data on the terminal's ID and so it
contacts server 202b to confirm that the terminal is still
registered with it . Server 202b confirms this .
[0487] At step 1006 , server 202a and server 202b now
communicate directly with each other in order to carry out
the required transaction .
[0488] If the cached data expires on a server , then that
server simply contacts the directory service 216 as before . If
a user 218 has migrated to another server then the commu
nications differ slightly . FIG . 11 illustrates this case . The
difference is that the first communication with server 202b ,
based on the now out - of - date cached information , will force
server 202a to look - up the new data in the directory service
216 .
[0489] At step 1102 , the user 218 identifies himself to the
terminal connected to server 202a with his own device ,
which automatically identifies itself to the terminal . The
terminal also passes its identification to the user's device if
he uses a smart device . Server 202a takes the identification
provided by the user's device and checks that ID against the
list that it maintains . It holds that ID and sees that the cached
data shows that the ID is registered with server 202b .
[0490] At step 1104 , server 202a now contacts server 2025
to confirm that the user's device is registered with server

202b for the service . Server 202a also passes on the termi
nal's ID to server 202b . Server 202b responds that the ID is
no longer registered with it .
[0491] At step 1106 , server 202a now contacts the direc
tory service 216. The directory service 216 checks the
signature on server 202a's communication and sees that it is
valid . The directory service 216 looks up the ID against the
service tag for the requested service and responds with the
information that identifies server 202c , together with the
cache time to live information .
[0492] At step 1108 , server 2020 now contacts server 2020
to confirm that the user's device is registered with server
202c for the same service , which it does . Server 202a also
passes on the terminal's ID to server 202c , and updates its
cache with the new details for the ID from the user's device .
[0493] At step 1110 , server 202c , if it has not already done
so , can make a similar request to the directory service 216
to look up the server to which the terminal is registered . It
can also confirm that the terminal is registered for the
requested service with server 202a . The directory service
216 responds with the information that identifies server
202a , together with the cache time to live information .
[0494] At step 1112 , server 202a and server 2020 now
communicate directly with each other in order to carry out
the required transaction .
[0495] The directory service 216 will always retain a
complete trail of the user ID's that a user 218 has registered ,
both old and new , together with the dates that these were
assigned to the user 218 .
[0496] Server 2020 only retains the information that
relates to the registered ID from the date that the ID was
registered with it . Server 202b will retain the data relating to
the period that it serviced that ID .
[0497] The abstraction layer provided by the directory
service 216 goes further as it segments the services . Thus in
the example above , server 202a can only request the infor
mation that identifies the server that has registered the user's
device for the required service .
[0498] Server 202a must sign each communication that it
makes with a device , and that signature will identify the
service that the communication is involved in . If a server can
offer more than one service then it will have a private key for
each of those services , and it will use that key to sign the
relevant communications .
[0499] The Tereon servers themselves , in the case above
these are servers 202a and 202b , contain the look - up infor
mation that identifies the user's account data from the tags
or information provided . Thus only server 202b contains the
data that maps the user's device's ID to the user's account ;
the information in the directory service 216 is simply a
pointer to server 202b . The user's device can easily be
registered on different servers for different services . What
enables the Tereon servers to find the correct server is the
combination of the user's device ID and the credentials that
define the service .
[0500] Once the server 202a communicates with server
202b , and passes the service tag , the user ID , and any other
relevant transactional data (e.g. , age , currency , amount , etc.) ,
server 202b looks up the relevant user's data and performs
its side of the transaction . Server 202a never sees the user's
data . All it sees is the user's authentication ID and the
transactional data passed to it by server 202b .
[0501] Likewise , server 202b never sees the information
that identifies the account to which the terminal is con

US 2020/0186355 A1 Jun . 11 , 2020
28

nected . It simply sees the terminal ID and the transactional
data passed to it by server 202a .
(0502] Psychic Paper — the Multifaceted Credential
[0503] One of the more intriguing effects of the directory
service's structure it its ability to create ad hoc multifaceted
credentials that are tailored to particular services , as and
when those credentials are required . The services do not
need to have been envisaged at the time that the directory
service is created for the directory service to be able to
provide those credentials . This is known as “ psychic paper ' .
[0504] The ad hoc multifaceted credential means that the
user's device becomes the credential that a particular service
may require , and no more . It delivers exactly the information
required to authenticate , authorise , or otherwise benefit from
a service , and that is all that the service provider sees .
[0505] As an example , the user 218 has registered for a
number of different services , such as a payments service
from his bank and a library borrowing service at his local
library . Because he had to provide his birthdate when he
registered for Tereon , he automatically has access to an age
verification service .
[0506] FIG . 12 illustrates how the directory service 216
can direct a requesting server (server 202a) to two different
servers (servers 2025 and 202c) , depending on the service
that the user 218 has requested . Two or more separate
directory services for separate services could also be used if
necessary . What is important is that the transactional data is
part of an abstract and separated from the underlying
account data .
(0507] The user 218 needs to verify his age , for example
to purchase an alcoholic drink at a bar (service 2) . In this
instance , steps 1202 to 1210 are performed as steps 902 to
910 in FIG . 9 , although between servers 202a and 2020 ,
rather than servers 202a and 2026. Accordingly , at step
1210 , server 202a and server 202c communicate directly
with each other . In this case server 202a wants to verify that
the user 218 is over the age of 21. Server 202c simply
confirms that he is over 21 .
[0508] If the operator requires additional confirmation due
to legal or regulatory requirements , server 202c could send
a passport - type image of the user 218 to display on the
terminal so that the operator can see that he or she is really
talking to the user 218. The server could also send a question
for the user 218 to answer in order to provide additional
confirmation that it is the correct user , though there is little
need to do so as the user 218 has already identified himself
to server 202a . The operator never gets to see the user's
actual age or any personal information that is not required ,
as that is not needed . All that the operator needs to know is
that the user 218 is old enough to buy an alcoholic drink . If
the user 218 uses his device to pay for his drink then the
terminal connected to server 202a will contact server 2020
again , but this time for a payment service (service 1) .
[0509] The user 218 now goes to his local library and
wants to borrow a book (service 3) . At step 1212 , the user
218 identifies himself to the terminal in the library with his
own device , which automatically identifies itself to the
terminal . The terminal in the library is connected to server
202b . The terminal also passes its identification to the user's
device if he uses a smart device .
[0510] At step 1214 , server 2026 takes the identification
provided by the user's device and checks that ID against the
list that it maintains . It holds that ID but the cache is out of
date . Server 202b now contacts the directory service 216 .

The directory service 216 checks the signature on server
202b's communication and sees that it is valid . The directory
service 216 looks up the ID against the service tag for the
requested service and responds with the information that
identifies server 202c , together with the cache time to live
information .
[0511] At step 1216 , server 202b now contacts server 2020
to confirm that the user's device is registered with server
202c for the service , which it does . Server 202b also passes
on the terminal's ID to server 202c , and updates its cache
with the new details for the ID from the user's device .
[0512] At step 1218 , server 202c , if it has not already done
so , can make a similar request to the directory service 216
to look up the server to which the terminal is registered . It
can also confirm that the terminal is registered for the
requested service with server 2025. The directory service
216 responds with the credentials that identify server 202b .
[0513] At step 1220 , server 202b and server 2020 now
communicate directly with each other in order to carry out
the required transaction . Server 202b wants to know if the
user 218 may borrow a book (service 3) , and server 2020
confirms that the user 218 is registered with the library
service to borrow books (this is a service that the Tereon
operator provides for libraries) . If the user 218 needs to use
his device to pay a fee to borrow a book then the terminal
will contact server 202c again , but this time for a payment
service (service 1) .
[0514] Server 202c need not provide any service to the
library . The user 218 could easily have registered with
another server , say server 202d (not shown) , in which case
server 202d would confirm to server 202b that the user 218
could borrow books . What is important is that in the first
case , server 202a only confirmed that the user 218 was over
21. It does not know that he can borrow books , and does not
know that the user 218 can pay by Tereon . Likewise , server
2025 knows that the user 218 can borrow books , but has no
idea that he is over a certain age or that he can pay by Tereon .
[0515] A requesting server can also make multiple
requests to separate servers if it needs to assemble a set of
credentials for a particular transaction . For example , sup
pose that the user 218 wants to borrow a film that is age
restricted . In this case the requesting server would make two
separate requests , one to verify the user's age , and one to
verify that he is registered to borrow films from the library .
Tereon will assemble the individual , verified credentials to
construct the set of credentials that the library requires .
[0516] The structure of the directory service 216 allows
the servers that deliver the individual credentials to be
separated . Thus a requesting server can interrogate any
number of servers in order to obtain the individual creden
tials that it requires to construct the set of credentials
necessary to ascertain whether or not it can deliver a
particular service to a user 218 .
[0517) FIG . 13 illustrates the case where server 202a
needs to obtain credentials from three servers 202c , 202d ,
and 202e in order to construct a multifaceted credential to
offer a service to a user 218. For example , service 2 on server
202d may be a service to rent a film , which would require
age verification as a first credential from server 202c , a
membership credential from server 202d and a sufficient
funds credential from server 202e .
[0518] The relationship is not necessarily one - to - one , that
is one where each of the three servers holds one and only one
credential . Any of the three servers may each deliver more

US 2020/0186355 A1 Jun . 11 , 2020
29

than one credential to server 202a . They may only deliver
one credential to server 202a . The number of credentials is
irrelevant . What matters is that server 202a can contact more
than one external server to obtain the credentials it requires
to enable a user 218 to access a service .
[0519] It may be that server 202a , at which the user 218
access a terminal , already holds some credentials that it
needs in order to deliver some services to the user 218 .
However , for the purposes of data protection , the user 218
does not want to provide certain details to server 202a (for
example , his age , and so forth) . If all server 202a needs to
do is verify that the user 218 is over a certain age , or is
allowed to order certain goods , then it can simply contact
those servers that will confirm or deny those questions . This
is extremely useful for e - commerce websites — they can
confirm certain facts or parameters without knowing the
exact details . Essentially , the directory service 216 can act as
a zero - knowledge proof provider or a confidential notary .
Tereon can prove or disprove a fact or parameter to server
202a without disclosing what that fact is .
[0520] Thus the credential for a particular service could
comprise credentials from 202a , 202c , 202d , 202e and other
servers . The credentials can be on one server or they can be
distributed across multiple servers .
[0521] This is extremely powerful as it allows individuals
and organizations to prove that they are entitled to a service
without needing to disclose information that need not be
disclosed . Again , taking the example of the e - commerce
website , the user 218 may register his name and address on
the website . However , his bank holds his payment creden
tials , a government server registers the fact that he is
authorised to purchase restricted items , his local railway
company holds his travel authorisation , and his health
authority's server can confirm his age .
[0522] The method of assembling an ad hoc set of cre
dentials for a service does not apply only to users and their
devices . It can apply just as well to autonomous sensors ,
devices , and services , such as , for example , IoT devices that
need to connect to different services at different times . They
can simply assemble the credentials need for those services
as and when those sets of credentials are required .
[0523] Account Switching
[0524] A major issue that often delays the adoption of new
systems is the perceived difficulty of transferring data from
legacy systems to those new systems without loss or service
interruption . The same issue affects system upgrades , where
operators often choose to remain with the initial hardware
and software configurations rather than upgrade and update
due to their perception of the dangers of losing data in any
upgrade or update .
[0525] The directory service 216 counters these issues by
providing a mechanism to move data , accounts , and con
figuration information seamlessly from one server or data
store to another . One of the blocks to supporting real - time
transfers of accounts between institutions is the question of
how to catch and deal with in - the - air payments . This indus
try currently has an accounts transfer system that takes
18 - months in total (7 days for the initial switch and then 18
months to catch any payments or transfers) . This could also
be applied to switching a set of data from one data store to
another .
[0526] The directory service 216 provides an abstraction
layer that separates the user's authentication ID from the
underlying services , servers , and actual user accounts . Thus

a user 218 can maintain his or her authentication ID while
changing the services and the underlying servers to which
his or her device is registered .
[0527] The account switching process is best described
with an example . In this example , the user 218 banks with
Bank A. FIG . 14 illustrates the user's relationship with bank
A and its Tereon server 202a . Bank B also supports Tereon
on server 202b , though the user 218 is not yet a customer .
The user 218 decides to move his account from bank A to
bank B.
[0528] FIG . 15 illustrates the process that the user 218
undertakes to transfer his account from bank A to bank B.
For this example , the user 218 is not overdrawn and has no
loans from bank A.
[0529] At step 1502 , the user 218 opens an account with
Bank B and registers his card and his mobile phone with that
bank and its Tereon server 202b .
[0530] At step 1504 , bank B’s Tereon server 202b looks
up the user's mobile number and his card's PAN on the
Tereon directory service 216 and detects that both are
registered to bank A.
[0531] At step 1506 , bank B’s Tereon server 202b now
contacts the user 218 to confirm that he wants to move his
registration to bank B and the user 218 confirms this by
entering an additional authentication code sent to him spe
cifically for this purpose .
[0532] At step 1508 , bank B’s Tereon server 202b now
contacts bank A's server 202a and informs it that the user
218 has requested to move his accounts and IDs to bank B ,
and has confirmed this .
[0533] At step 1510 , bank A's Tereon server 202a now
sends the user 218 a request to confirm that he wants to move
his account and the user 218 confirms his move .
[0534] At step 1512 , bank A's Tereon server 202a now
confirms this with bank B’s Tereon server 202b , and informs
bank B's server 202b of the user's account registrations ,
balances , configurations , payment instructions and so forth .
Bank B's server 202b sets these accounts up in exactly the
same manner as those on bank A , or as close as it can do to
provide the services that it is authorised to provide .
[0535] For example , the user 218 has three separate cur
rency accounts with bank A that allows him to hold GBP ,
USD , and EUR . Unfortunately bank B only provides GBP
and USD accounts , though he can pay and receive EUR
from and to any account . Bank B's server 202b informs the
user 218 of this when the user opens the account , and he
decides to convert the EUR to GBP . Bank B would then
instruct bank A to send the EUR as GBP .
[0536] At step 1514 , bank B’s Tereon server 202b now
informs the directory service 216 that the user's IDs are now
registered with its server 202b .
[0537] At step 1516 , bank B’s Tereon server 202b informs
bank A's server 202a that it has registered the user's IDs in
the directory service 216 and instructs bank A to transfer the
balances to it .
[0538] At step 1518 , bank A confirms with the directory
service 216 that it no longer manages the user's IDs . The
directory service 216 sets a start date and time against the
new ID registration to bank B , and sets an end date and time
in the field against the old registration to bank A. Bank A
now sets its directory service to inform any server that
attempts to pay the user 218 that it no longer holds the user's
accounts and to instruct that server to look up the user's
details in the directory service 216. It does this by entering

US 2020/0186355 A1 Jun . 11 , 2020
30

the date and time in its end date field . Bank B will now
receive all payments made to the user 218 that were initially
directed to bank A.
[0539] The directory service 216 can now catch in - the - air
payments , which are payments made to the user's old
account after the user 218 has switched to a new account . In
a similar way , Tereon can also catch deferred payments that
are due to come out of the old account . These will now come
out of the new account once the balances have been trans
ferred , a task that takes minutes rather than days , weeks , or
months .
[0540] At step 1520 , bank A transfers the balances to bank
B. Bank B informs Bank A that it has received the funds .
[0541] At step 1522 , bank A closes the user's accounts ,
and informs the user 218 that it has done so and transferred
his balances to his new bank .
[0542] At step 1524 , bank B informs the user 218 that he
has now received his balances from bank A.
[0543] If the user 218 was overdrawn in one or more of his
accounts at bank A , and bank B agreed to accept his
business , then bank B would transfer balances to bank A in
steps 516 and 520 , and the user's corresponding accounts at
bank B would be overdrawn . The user 218 might also decide
to transfer funds between his accounts in bank A in order to
clear any overdraft before he transferred his accounts to
bank B.
[0544] For payments , the Tereon numbering system dis
tinguishes between user , organization , account , service type ,
and transaction . They all have separate numbering systems .
These features allow the directory server to manage the
process by which a user 218 moves his account to a new
service provider in real - time . The structure of the directory
service 216 , together with the ability to process transactions
in real - time , allows users to change accounts in minutes ,
rather than days .
[0545] The directory service 216 , as described above ,
together with the real - time processing of all transaction ,
removes the issue of in - the - air transactions , such as in - the
air payments . With Tereon , transactions simply cannot enter
an in - the - air state . They either complete or they are can
celled .
[0546] Tereon also supports the notion of account porta
bility , such as bank account portability , a feature that would
increase competition in the market , and yet one that the
banks and regulators believe it is impossible to implement .
Because Tereon does not use account details directly but
uses a separate credential to identify each payer and payee ,
it inserts an abstraction between the user 218 and the user's
bank account details . It is this abstraction , which the direc
tory service 216 provides , that facilitates account switching
and portability .
[0547] Changing Credentials
[0548] The directory service 216 allows operators and
users to replace existing ID credentials with new credentials ,
and to reuse past credentials without confusing transactions
with previous users of the ID . The abstraction layer provided
by the directory service 216 allows Tereon to do this .
[0549] If a user 218 transfers his or her account to another
server then that user 218 may be able to retain a particular
credential , such as a PAN , or the server may issue the user
218 with a new credential . In the latter case , the original
server can reuse the credential almost immediately . Because
each credential has a time and date stamp that reflects when

it is issued to a user 218 , a new user 218 of a particular
credential would be able to use that credential almost
immediately
[0550] Each credential has a time and date stamp for when
it is issued to a particular user at a particular server . As each
transaction also retains a time and date stamp , each Tereon
server retains the credential used for each transaction ,
Tereon simply uses these components to route transactions
to the correct destination . For example , a user 218 may
purchase something from a merchant with credential A (for
example , a mobile phone number) and then a few days later
move to another bank when he or she needs to use another
credential B (for example , a new mobile phone number) .
Later the user 218 takes the item back to the merchant as it
is defective . The merchant simply locates the transaction and
pressed refund . Though the original transaction used cre
dential A , the server for credential A reports a time and date
stamp that indicates a change in the credential . The mer
chant's server looks up credential A and discovers that the
user 218 who used credential A at the time of the transaction
now uses credential B. The server now contacts the server
for credential B , which confirms that the user 218 for
credential B used credential A at the time of the transaction ,
and the servers then begin the process of making the refund .
[0551] User A can be sure that the user of B is not
fraudulent as Tereon's security model requires all commu
nications to be signed . Server 202b will only be able to sign
its communications if it has a valid licence from the licence
server , and user B’s device will only be able to sign its
communications if server 202b is valid , as it will have issued
and will check the device's licence . User B will not be able
to complete a transaction unless that user knows the correct
credentials to authorise a transaction , or to access the
application on the device .
[0552] In another example , a user may have entered a
contact's mobile phone number in his or her phone directory
and now wants to make a surprise P2P transfer to that
contact . Tereon searches the records for that number and
discovers , as above , that the contact has changed mobile
numbers (if the contact is a Tereon user) . It confirms with the
correct server that the user who uses the new number used
to use the old number registered with the previous server .
Tereon also supports the function where a contact may set
his or her account to allow the directory server to update that
user's mobile number or other Tereon credential when
certain approved contacts attempt to make a transaction with
them via an old credential . In this example , the aunt's niece
has set her account to update all family members , and so the
next time her aunt accesses her contact list , she will see her
niece's new mobile number .
[0553] FIG . 16 illustrates an example for server 2020 ,
server 202b , and the directory service 216. Here the old user
has migrated his accounts from server 202a to server 202b .
202a is bank A's server , and 202b is bank B's server .
[0554] The old user initially used mobile number 1 as his
ID . After migrating his accounts , he continued to use mobile
number 1 for a time . The communications between the user
218 , the directory service 216 , and servers 202a and 202b
proceeded as described above and set out in FIG . 15. The
entries in the directory service show that user 218 used
server 202a from date - time 1 to date - time 3 , and that the user
used server 202b from date - time 2. The slight overlap is to
ensure that all in - air payments are caught and that there is no
time gap where the user does not have a server that his ID

US 2020/0186355 A1 Jun . 11 , 2020
31

is registered to . (It is possible to avoid overlapping date - time
entries by ensuring that the server to which the account
migrates controls all of the date - time and ID entries for that
migration , and this is how a system migration could oper
ate .)
[0555] At some point in time , the user 218 decides to
change mobile numbers . He registers his new mobile num
ber 2 as his ID with server 202b and deregisters mobile
number 1. server 202b notifies the directory service 216 of
the change , which now shows that the user started using
mobile number 2 as his ID at date - time 4 and that mobile
number 1 ceased to be an ID to server 202b on date - time 5 .
[0556] Later a new user creates an account with server
202a and registers mobile number 1 as his ID at date - time
6. The new user may have been given the old users old
mobile , or that number may have been released for reuse by
the mobile operator . server 202a notifies the directory ser
vice 216 that it has registered the ID (after checking that the
ID is available) , and so the directory service now shows that
mobile number 1 is registered to server 202a as of date - time
6 .

[0557] In the example shown in FIG . 16 , if the old user
used a card issued by bank A 202a , then once the user 218
has transferred his accounts to bank B 202b , the bank can
issue a new card to the user 218 with a credential , such as
a PAN , that is registered to it . The user 218 activates that
card once he receives it and bank B's server 202b informs
bank A's server 202a that the user's original credential is no
longer in use . Bank B registers the new credential with the
Tereon directory service 216. The user 218 could have
requested to keep the original credential , in which case he
might have been charged a small fee by bank A for doing so
if bank A agreed to the request . Thus Tereon supports card
number or PAN portability .
[0558] The user could , at some time in the future , decide
to stop using the card originally issued by bank A , and thus
release that credential . Bank A may not be able to reuse that
PAN credential for six full calendar months after bank B
releases it or after the user has transferred his accounts to
bank B ; the exact time will depend on what the bank's
regulators will allow . After that time , it can use the credential
because the directory service 216 does not just contain a list
of mobile numbers , PANs , or other credentials ; it also
contains a list of the dates when those credentials were
registered and the dates that they expired or were released on
a user by user basis .
(0559] The account switching method allows the system to
capture in - the - air payments . It also provides an extremely
flexible and robust way to direct transactions that follow on
from previous transactions , based on the credentials used for
those previous transactions . Refunds for earlier transactions
are one real - world example of this . A merchant , who makes
a refund against an old ID will be able to refund the correct
account as the directory service 216 will direct his server to
pay the correct ID , even if the original ID was subsequently
reused . EMV and current mobile look - up technologies
assume that numbers are never reused . Unfortunately , they
sometimes are .
[0560] FIG . 16 illustrates this . Suppose at some time
between date - time 1 and date - time 2 the old user purchases
an item from a merchant using a device with mobile number
1 as its ID . Later that item proves to be faulty and the user
wants a refund .

[0561] If that user 218 then goes to the merchant between
date - time 1 and date - time 2 for a refund , then the Tereon
system will direct the merchant's system to make the refund
payment to the user's account on system 202a (as the user
has not yet closed his account) .
[0562] If that user 218 the goes to the merchant between
date - time 2 and date - time 4 for a refund , then the Tereon
system will direct the merchant's system to make the refund
payment to the user's account on server 202b , even though
the payment for the item originally came from server 202a .
[0563] The account switching method will also account
for the user's new ID . If that user 218 then goes to the
merchant after date - time 4 for a refund , and used his mobile
number 2 as his ID , then the Tereon system will direct the
merchant's system to make the refund payment to the user's
account on server 202b , even though the payment for the
item originally came from server 202a and even though the
user originally used mobile number 1 as his payment ID .
[0564] The same will hold for records of PANs , email
addresses , and any other reusable credentials . (Biometric
credentials cannot be reused for obvious reasons .)
[0565] The system allows credentials to be segmented to
any level of granularity . One example of this in payments
involves currencies or currency codes , where a user can use
different IDs for different currencies on the same , or on
separate servers .
[0566] FIG . 17 illustrates an example for server 202b ,
server 202c , and the directory service 216. The user 218 has
already migrated his accounts from server 202b to server
202c in a similar way to that illustrated in FIG . 16 , and with
the inter - server communications managed as illustrated in
FIG . 15 .
[0567] The user 218 initially uses mobile number 1 as his
ID . After migrating his accounts , he continues to use mobile
number 1 for a time for transactions in both currency 1 and
currency 2. The entries in the directory service 216 show that
user 218 used server 202b from date - time 1 to date - time 3 ,
and that the user used server 202c from date - time 2. The
slight overlap is to ensure that all in - air payments are caught
and that there is no time gap where the user does not have
a server that his ID is registered to .
[0568] At some point in time , the user 218 decided to use
a new mobile for transactions in currency 2. He registered
his new mobile number 2 as his ID with server 202c for
transactions in currency 2. Server 202c notified the directory
service 216 of the change , which now shows that the user
started using mobile number 2 as his ID for all transactions
in currency 2 at date - time 4 and that mobile number 1 ceased
to be an ID for any transaction in currency 2 to on date - time
5 .

[0569] FIG . 17a illustrates another example for server
202b , server 202c , and the directory service 216. In the
figure , the user 218 has already migrated his currency 1
account from server 202b to server 202c in a similar way to
that illustrated in FIG . 16 , and with the inter - server com
munications managed as illustrated in FIG . 15 .
[0570] After migrating his account , the user continued for
a time to use mobile number 1 for a time for transactions in
both currency 1 and currency 2. The entries in the directory
service 216 show that user 218 used server 202b from
date - time 1 to date - time 3 for transactions in both currencies ,
and that from date - time 2 he used use mobile number 1 as
his ID with server 202c for transactions in currency 1. The

US 2020/0186355 A1 Jun . 11 , 2020
32

directory service entries also show that the user continued to
use mobile number 1 as his ID with server 202b for
transactions in currency 2 .
[0571] At some point in time , the user 218 decided to use
a new mobile for transactions in currency 2. He registered
his new mobile number 2 as his ID with server 202b for
transactions in currency 2. Server 202b notified the directory
service 216 of the change , which now shows that the user
started using mobile number 2 as his ID for all transactions
in currency 2 at date - time 4 and that mobile number 1 ceased
to be an ID for any transaction in currency 2 to on date - time
5 .
[0572] Prior to date - time 4 , the user 218 used his mobile
number 1 as the ID for all his transactions . The directory
service 216 simply directed the transactions to server 202b
if those transactions were in currency 2 , and to server 2020
if those transactions were in currency 1. The fact that the
user had registered the same ID on two servers is irrelevant ,
as it is the complete set of credentials that governs which
server a transaction is directed to . A merchant's system
transacting in currency 1 with the user for the first time after
date - time 2 would never know that the user had previously
used server 202b for transactions in that currency . Likewise ,
that merchant's system would not know that the user used
the same ID for transactions in currency 2 at server 202b
unless that system entered into a transaction with that user
in currency 2 .
[0573] Tereon does more than simply switch a user 218
from one network to another . As already mentioned , the
usual methods of switching users fail to deal with in - the - air
payments . The most advanced account switching system
currently available , as claimed by its originators , requires an
18 - month manual process to catch such payments before the
user is left to fend for themselves . During the 18 - month
period , both the banks and the user must work to ensure that
they transfer all of the existing payments instructions from
the old account to the new account . Tereon does away with
this requirement entirely .
[0574] Currently banks cannot reuse any payment creden
tials . Tereon's account switching mechanism removes this
limitation , and banks can reissue PANs and account numbers
after a certain period of time has elapsed if regulators wish
to permit them to do so .
[0575] Though the method is referred to as an account
switching function , in reality it has many applications over
and above basic account switching . For example , it can
provide failover to a back - up service provider in the event
that bank core systems fail , so providing a way of migrating
data from one system to another by translating from one data
format to another without any loss of information .
[0576] Another example is to streamline number portabil
ity in mobile systems . Currently , if a user switched his or her
mobile number from one provider to another , then the first
provider must reroute all calls to the new provider . If the user
then switched to a third provider , then the first provider must
route the call to the second provider , who must then route the
call to the third provider . This is extremely inefficient and
costly to do and yet the operators must support number
portability . Tereon avoids the need to reroute calls multiple
times .
[0577] If operators were to use Tereon to support number
portability , then they would not need to support multiple
hops . Once a user decides to port his or her number from the
first operator to the second operator , the second operator

would simply need to inform a directory server that it now
supported that mobile number . The first operator would
divert calls for that number to the directory server , which
would route the call to the second operator . Whenever the
user ported his or her number again , then the new operator
would inform the directory server of the change , and the
directory server would simply route the calls to the operator
who served that number . (If users have bank accounts , such
as IBANs , that are globally unique , then Tereon will support
bank account portability in the same way that it supports
mobile number portability .)
[0578] A similar example is one where an operator
migrates IoT services and devices from one server to another
in order to upgrade the Tereon system where a simple
migration of , for example , a physical machine , a logical
machine , a virtual machine , a container , or any other com
monly used mechanism for containing executable code , will
not suffice .
[0579] Another example is to operate as a system migra
tion tool . This would be , for example , where an operator
wants to migrate a service , together with the accounts to
which devices are registered , from one version of the Tereon
system to an upgraded version . The operator would simply
set the old server to transfer the device registrations ,
accounts , and system configurations , to the new server and
the system would carry out the transfer . Each account would
be transferred across , together with its data and audit logs ,
and the servers would update the directory service 216 as the
transfers progress . Now , when the devices in the field , be
they payment devices , traffic sensors , IoT devices , or so on ,
wish to communicate with their server , the directory service
216 will simply redirect them to their old or their new server ,
depending on whether they contacted their server before or
after their accounts were transferred .
[0580] The examples above demonstrate how Tereon
facilitates credential portability and supports ad hoc multi
faceted credentials . This has far - reaching applications , and
takes Tereon into virtually any network arena where that
network needs to manage credentials .
[0581] Extensible Framework
[0582] The workflows for existing transaction processing
systems are all too often static in nature . Once implemented ,
they are very difficult to change , and the services or opera
tions that the systems support remain inflexible .
[0583] Up until now , if a payment provider launched a
service , then the payment pattern for that service became
static . The provider could only amend the service by launch
ing a replacement or amended service and issuing new cards
or applications to support that service . This is one of the
reasons why , despite the universal knowledge of the severe
weaknesses of EMV , it is impossible to fix the system , as
that would mean recalling every EMV card in existence ,
reprogramming and launching the EMV payments infra
structure , and then issuing new cards . This would require
thousands of issuers and acquirers to cooperate .
[0584] Tereon puts all the functionality on to the back end
using the SDASF and the back - end can guide the merchant
device in real - time through the process . This enables the
service provider to create new services that can be as
granular as the individual user .
[0585] The extensible framework is a framework that sits
within the Tereon system and enables the addition of new
services without necessarily needing to reconfigure the

US 2020/0186355 A1 Jun . 11 , 2020
33

depend on the format used and serialization protocol used ,
if any , but the principle remains the same .
[0599] The mode of obfuscation has an additional advan
tage . The contents of predefined communications can be
extended without breaking the communications protocol . If
a device receives fields that it cannot process , then it will
simply discard those fields and their values . Thus , one or
more random field and value pairs could be included that the
system discards , but which add additional uncertainty to the
communications .
[0600] The following three communications would be the
same :

Tereon system . The extensible framework works with the
directory service 216 to provide a number of advantages to
the Tereon system .
[0586] Flexible Message Structure
[0587] The extensible framework is partly provided by a
flexible message structure in which any data or record type
may be provided with a variable length field such that the
Tereon system can modify the length of the field to operate
with legacy or otherwise incompatible systems .
[0588] The extensible framework allows the addition of an
additional layer of security to the communications infra
structure by changing the standard order of processes . In
many industries , payments being just an example , the com
munications use fixed message structures . This leads to a
weakness that criminals can exploit even if the communi
cations are encrypted . Structured messages are vulnerable to
an attack in depth . Though organizations and others can still
protect the integrity of a message by using a hash message
authentication code (HMAC) , the HMAC does not retain the
absolute secrecy that the message should attract .
[0589] The extensible framework designs away the prob
lem of static systems for any transaction processing system .
It provides the flexibility to operate alongside existing
systems and services , and allows providers to update exist
ing services , and build new services without needing to
relaunch an infrastructure or issue new end - point devices ,
such as cards . The framework is flexible enough to enable
providers to build services that they can customize to
individual users . This will be explained below .
[0590] Obfuscation
[0591] One of the theoretical risks that any system with
structured message formats faces is that a repeated use of a
message format will provide ample material for a hacker to
use in a brute force attack . This is true for systems that do
not implement encryption algorithms correctly with some
form of random seeding . Nevertheless , it is a risk that should
be overcome .
[0592] The extensible framework enables operators and
users to break from the need to send a structured message
between devices and servers . Instead , the message can be
obfuscated .
[0593] Each of the transaction communications in Tereon
will comprise two or more fields together with the labels for
those fields . Instead of following a fixed order of fields for
every communication the order can be altered in a random
manner . As each field will always be accompanied by its
identifying tag , it must be ensured that the devices at each
end of a communication will first decrypt and then order the
fields before they process them .
[0594] For example , using an excerpt from the example
provided by the JavaScript Object Notation (JSON) docu
mentation (although other formats can of course be and are
used in the system) , the following three renditions would be
the same :

[0595] { " version " : 1 , “ firstName ” : “ John ” , “ lastName ” :
“ Smith ” , “ is Alive " : true , " age ” : 25 }

[0596] " version " : 1 , " firstName ” : “ John ” , “ isAlive ” :
true , “ lastName ” : “ Smith ” , “ age " : 25 }

[0597] { " age ” : 25 , “ firstName ” : “ John ” , “ is Alive " : true ,
“ lastName ” : “ Smith ” , " version " : 1 }

[0598] An attacker would not know which , if any , cypher
texts that he has contains information that is known and in
the same order . The exact mode of obfuscation would

[0601] { " version " : 1 , " firstName ” : “ John ” , “ nonce ” :
5780534 , “ lastName ” : “ Smith ” , “ isAlive " : true , “ age " :
25 }

[0602] { “ whoknows " : " 698gtHGF " , " version " : 1 ,
" firstName ” : “ John ” , " isAlive " : true , " lastName " :
“ Smith ” , “ age ” : 25 }

[0603] { " age ” : 25 , “ firstName ” : “ John ” , “ is Alive " : true ,
“ lastName ” : “ Smith ” , “ whatis this ” : “ Jor90 % hr , " " ver
sion " : 1 }

[0604] In each of the above communications , the devices
would discard the unknown field and value pair .
[0605] The field names could be further obfuscated by
mixing cases in a random fashion for each communication .
The devices will process these fields to their canonical form .
[0606] Thus the following three communications would
be the same :

[0607] { “ veRsioN " : 1 , " firstName ” : “ John ” , “ nOnce ” :
5780534 , “ laStnAMe ” : “ Smith ” , “ is Alive " : true ,
" Age " : 25

[0608] { " whoknows " : " 698gtHGF ” , “ vErsion " : 1 ,
" fiRStname ” : “ John ” , “ iSaLive " : true , " lastName ” :
“ Smith ” , “ age ” : 25 }

[0609] { “ GE ” : 25 , “ firstname ” : “ John ” , “ is Alive ” :
true , " las TName ” : “ Smith ” , “ whatis this ” : “ Jor90 %
hr , ” “ versiOn ” : 1 }

[0610] If a version 2 message is sent that might contain
additional fields , then any device that only understood
version 1 would either reject the message or , if backwards
compatibility is ensured , process the fields that it under
stands and discard the remainder . This could be further
enhanced by providing a field that signified which versions
were backwards compatible with some of the fields .
[0611] This removes the vulnerability to an attack in
depth . The structure of the message can also be retained , but
with variable length fields . Again this achieves a similar
result . By also using an HMAC , both the integrity of the
message and its secrecy are protected . If the end organiza
tion's core systems require messages in a structured format
then Tereon will simply restructure the messages once they
have reached a server , and reformat them in the form
required by the organization's core systems . The extensible
framework thus enables the security issues with legacy
systems to be overcome , and yet still operate with such
systems .
[0612] The extensible framework supports any data or
record type , with exactly the same level of security and
flexibility as mentioned above .
[0613] Abstracted Workflow Components
[0614] In existing solutions , a payments process would be
defined in software , implemented , tested , and then released .
That payment transaction structure would now be fixed , and

US 2020/0186355 A1 Jun . 11 , 2020
34

could not be changed without significant effort to recall and
replace or reprogram devices , terminals , and servers .
[0615] Tereon does not do this . Instead , it constructs the
payments process from individual components , each of
which interacts with its connected components . Those com
ponents essentially lay out the workflow of the process . Each
component can be updated , and have functions added with
out affecting the payment process itself . This abstracts the
process components from the device , so that a transaction ,
once defined , can apply to any number of devices , be they
cards and card terminals , mobile phones , or web portals .
[0616] Each component passes instructions and informa
tion to the next component , depending on the result of the
instruction that it received . The instructions can be transac
tional , or they can include controls , such as how the next
component should operate (for example , request a PIN if
that is optional , offer a set of choices , display a particular
message , and the expected or allowed responses) .
[0617] This provides the ability to alter existing payment
services and construct new services without needing to
reprogram or replace the existing end points . At the moment ,
once a payment service provider implements a payment
system the payment service provider cannot easily change
the system without replacing the end points . The existing
systems are essentially static . This replaces them with a
dynamic system .
[0618] The extensible framework enables the operator to
plan out the workflow for a particular transaction using these
components . It enables workflows , including decision trees
and the like to be constructed . An operator could amend an
existing workflow , simply by rearranging the existing com
ponents , by adding new components that provide new func
tions , or by removing components . To do this in an existing
system , the servers and the terminals would need to be
reprogrammed , and the cards themselves may need to be
replaced .
[0619] An example of this is shown in FIGS . 18 to 20. The
components themselves are represented as blocks by a
terminal screen to make it easy to visualize what each
component does . However , the components apply equally to
mobile transactions , web portal transactions , and to card
terminal transactions . To change an existing workflow , the
order and connection of the components would simply be
altered . To create a new workflow , the required components
would simply be connected together in the desired order .
[0620] Normal payment processes would create separate
payments processes for contact - less , contact , and mobile
payments . Component 1804 would thus normally appear to
the left in the chain , just after the complete transaction in
time ' component 1802 as shown in FIG . 18 .
[0621] However , by moving this component further along
the right , as shown in FIG . 19 , and inserting two further
decision components 1902 and 1904 into the chain , the
operator can create a single payments process that can
manage contact , contact - less , and mobile payments in one
single payments process .
[0622] The operator could go further . Perhaps it would
like to add a special seasonal offer to the process once the
system has identified the customer . As shown in FIG . 20 , it
could at any time move component 1804 further to the right
and insert in its original position a new component 2002 that
automatically makes the customer an offer before the mer
chant needs to enter the amount and PIN . The operator could
configure that component to operate in the 24 days leading

to Christmas , for example , and provide a different compo
nent for the days thereafter leading up to New Year . This
would dynamically alter the payment process for the Christ
mas and New Year season , without requiring an operator to
recall and reprogram and devices . The components would
simply instruct the display device , be that a mobile phone or
a card terminal , to display the offer to the customer . The
operator could easily disable the PIN requirement by con
figuring component 1804 to disable the PIN requirement .
Likewise , if the component did not have a function to
require a PIN , then the operator could update the component
to include that function .
[0623] The operator could go even further and build a
whole decision tree to enable the customer to choose from
among a range of offers if it wanted to do so . Once the offer
season comes to an end , the operator would simply remove
the new components and the process would resume its
original structure .
[0624] What is important to note is that at no point does
the operator ever need to recall the devices to change the
process . It simply reconfigures the process at the back end
and then implements that change at a time and date of its
choosing
[0625] The framework to give the internal management
and operation of the Tereon servers can be configured in
exactly the same way , where the framework components
interact with the context of the access to govern how and
what information the users and administrators can access
and what tasks they can perform .
[0626] Dynamic Services
[0627] The extensible framework enables an organization
to create and implement new services quickly . The operator
simply defines these services by linking together the blocks
that are required , and defining any relevant messages .
Instead of needing to employ programmers to write the code
for a service , the framework allows the marketing and IT
departments to implement the services by writing a defini
tion file to define the workflow , by using a graphical system
to draw the workflow ' , or by any other workflow defining
process . Once it has checked the workflow , the operator
simply implements the workflow by linking defined steps or
blocks together and Tereon makes the service available to all
qualifying users .
[0628] For example , an operator would need to use a block
to accept a payment of any value with a subsequent block to
request a PIN . However , if an operator wants to offer an
access control system , then that same operator may create a
block to allow PIN - less access to one set of rooms whilst
using a block to request a PIN to access another set of rooms .
[0629] This means that , unlike existing systems , the sys
tem allows organizations to design and implement new
services , or amend or remove existing services , even after
that organization has launched the transaction processing
system , without needing to replace the devices issued to
users . If a device understands and can operate any of the
defined steps , then that device will support any service that
the organization defines using those steps . Once an organi
zation defines a service , the system will make that service
immediately available to the targeted user or users .
[0630] Abstracted Devices
[0631] The extensible framework takes the principle of
abstraction further and abstracts the devices themselves . The
framework defines process components for each class of
device that relate to the functions of those devices . The

US 2020/0186355 A1 Jun . 11 , 2020
35

process components will interact with those functional com
ponents . Depending on the available functions , the process
components will instruct the functional components to per
form tasks , such as what to output , and what to input .
[0632] Granularity
[0633] Tereon can identify each device , user , and account
individually , and can access the context within which a user
is using a device to access a service . Therefore , the operator
can configure components , and options within those com
ponents , to trigger an action based on the context within
which an individual user accesses the service . Tereon effec
tively allows the operator to tailor services to each user , to
each user's device , and to the context within which the user
uses that device to access the services .
[0634] For example , one user might see a choice of three
offers in a transaction , a different user may only see one offer
that he or she would receive automatically , whilst a third
may not see an offer at all .
[0635] If the process relates to accessing records , for
example , patient records , then a user may be able to access
his or her records and administer access rights if the user
accesses those records in a medical facility or in a home
domain . However , if the user (or someone else) accesses
those records away from those domains , then the user may
only see a subset of those records , or not be able to access
those records at all (depending on the context settings for
that service) .
[0636] If the user accesses the service using a card termi
nal , then the components will instruct the card terminal to
display the relevant information . If the user accesses the
same service using a mobile phone or other screen device ,
then the components will instruct that screen to display the
relevant information . In this way , the abstraction layer of the
extensible framework becomes device agnostic . It can use
any suitable display and access point to control the user
system interaction .
[0637] The same applies to services that are provided .
Each user's account will have the provider's default level of
services . Where an operator adds new services , or modifies
existing services for one or more users , then those user's
accounts will have those services . The key to the service will
be a combination of its providers tag , the user's account
number , and the user's device registration tag . This creates
a short dendritic path to the service definitions and rules for
that user .
[0638] For example , the sender may use a mobile phone ,
on which he has set his rules to allow interactive or auto
matic transfers . The recipient may have set his device to
accept automatic transfers . In this case , the sender's device
will simply go through the steps to make an automatic
transfer . The service tag does not include any information
about whether or not the transfer is interactive ; that is left to
the information on the service stored in the sender's and
recipient's servers .
[0639] If the recipient has set his device to accept inter
active or automatic transfers , then the sender's device will
ask the sender which mode to use . The recipient may have
set his device to accept automatic transfers between certain
times , and interactive transfers at other times . Here the
recipient's Tereon server will simply inform the sender's
server of the mode of transfer to use , depending on the
recipient's time of day .
[0640] If the sender's or the recipient's device will only
accept interactive transfers , then if the recipient and sender

are on - line at the same time , they will go through the steps
to carry out the transfer . If the recipient only has a card , then
the recipient will need to go to a merchant's terminal to
perform his side of the transaction . If the recipient is off - line ,
then the sender will go through his steps , but the recipient
must then go through his steps in the transaction , such as
accept the transfer and enter his PIN , before Tereon com
pletes that transfer . Until then , Tereon will hold the transfer
in an escrow facility , similar to the way that it deals with
transfers to non - Tereon users .
[0641] Dynamic Interfaces
[0642] The extensible framework leads to context depen
dent services e.g. offers , help a user find his or her seat at an
event , merchant specific processes etc. It allows an organi
zation to customize the services and experiences that each
user will have as that user interacts with Tereon , the degree
to which services are available depending on the context ,
which buttons may appear , what options may be available ,
and so on .
[0643] The number of services that each user and each
merchant can interact with depends entirely on the overlap
between the services that the individual user can access and
the services that the merchant can offer .
[0644] For example , where a merchant can offer pay
ments , deposits , and withdrawals , and if a user comes to that
merchant , and that user can only access payments at a
merchant , then the user and merchant will only see the
functions related to a payment , namely payment and refund .
If a user comes to that same merchant , and that user can
access payments , deposits , and withdrawals , then that user
will see all of those functions . If that merchant now no
longer has sufficient funds to support deposits or withdraw
als , then when the full - service user comes to that merchant ,
the user will only see the payment functions on his or her
device or the merchant's terminal . That merchant will also
no longer appear on any search for merchants that offer
deposits or withdrawals until the merchant . It may be that a
user cannot access certain services at some merchants , but
can access those services at another merchant . The frame
work will handle these cases .
[0645] The dynamic interface supplements the use of a
multifaceted credential , and enables the device and its
associated applications to become something akin to ‘ psy
chic paper ' , as discussed above . In this case , the device
provides only the services available , and the interface is
tailored to just those services , irrespective of the plurality of
services that the user might be registered for . It may look like
a payment device to one service , a transport ticket to another ,
a door key to another , and so forth . Service providers do not
need to issue separate devices to access their services , and
as such this reduces both the complexity and cost of offering
services , and of upgrading those services .
[0646] The extensible framework enables the device to
change its appearance , and the present the credentials and
services required by the context within which and for which
the device is used . Thus , for example , it can tailor the screen
of an independent ATM , such as one in a grocery store , to
take on the look and feel of the user's operator when the user
accesses that ATM , and present only those services that the
user has subscribed to .
[0647] Interaction with Other Layers
[0648] The ability of the extensible framework to interact
with other components within the Tereon system is a fun
damental feature of the extensible framework . Aside from

US 2020/0186355 A1 Jun . 11 , 2020
36

able to authorise transfers or payments out of the account up
to the value of the account balance less the off - line allow
ance .

the contextual security , which itself incorporates the wider
security model , the extensible framework instructions can be
embedded within the transactional information transmitted
via the hash - chain (as disclosed in relation to the hash chain
with zero knowledge proofs) .
[0649] Off - Line Mode
[0650] Tereon offers three off - line modes ; user off - line ,
merchant off - line and both off - line .
[0651] In the first two cases , Tereon completes a real - time
transaction by going the other way round the square ; i.e. the
user communicates with his Tereon server via the merchant
terminal and the merchant's Tereon server . Neither the
merchant nor the user will experience service deterioration .
Tereon uses a PAKE protocol , or a protocol with similar
functions , to create the secure pathway through the three
sides of the square for the relevant device .
[0652] In the third case , where both devices are off - line ,
the immediate impression would be that Tereon would not
be able to check in real - time whether or not the user or
merchant had sufficient funds to support a transaction and so
create the very credit risk exposure that Tereon was designed
to over - come . This is not the case .
[0653] By using features of the extensible framework and
a version of the hash chain , Tereon can ensure that the
system can still check for funds . Both the user and the
merchant will be able to carry out all of their functions . The
user will need to use either a mobile or a microprocessor
card , but neither the user nor the merchant will see a
deterioration in the service that they experience . Both the
merchant's device and the user's device will store the
encrypted details of the transaction between them , and a
random sample of previous off - line transactions that the
merchant has made . The merchant's device sets the maxi
mum number of copies of each transaction that it will pass
to a user's card or phone .
[0654] Tereon would use a combination of business logic
and its security models and hash chains to prevent any user
from using a combination of off - line devices and on - line
devices to withdraw more than exists within an account . An
account may only support off - line devices if that account
provides a credit function . The off - line logic does not require
credit , though a permit to offer credit may be required by a
service provider's regulators .
[0655) If a device is not authorised to operate off - line then
it will be unable to transact with any other device when it is
off - line . Its security and authentication model will prevent it
from doing so , as its signature will identify it as only
supporting on - line transactions , and the device will be
incapable of processing any transaction that will affect the
value of any account it is registered to .
[0656] If a device can support off - line transactions , then
the service provider will limit this to a certain amount (either
a credit limit , or a fraction of the account balance , which is
always updated with the device is on - line) , which is the
off - line allowance . The device will only be able to authorise
transfers or payments of funds from the account to the total
value or that off - line allowance . The service provider can , of
course , authorise the device to accept transfers or funds , and
it can limit the value of those acceptances (the off - line
acceptance allowance) . If the user accesses the account
whilst the first device is off - line , either directly via a portal
or with another on - line device , then the user will only be

[0657] Tereon reconciles all of the off - line transactions
once one of the devices that contains the relevant records
goes back on line . It will , as a matter of course , receive
multiple copies of some transactions , but it can use these to
confirm the previous reconciliations .
[0658] If , therefore , the server receives records from third
party servers of off - line transactions that relate to the pay
ments or transfers made to the off - line device , then it will ,
once it has received sufficient copies of those transactions ,
process those transactions and add those funds to the
account balance . Likewise , if the server receives records
from third - party servers of off - line transactions that relate to
the payments or transfers made from the off - line device , then
it will , once it has received sufficient copies of those
transactions , process those transactions and subtract those
funds from the account balance and the remaining off - line
allowance .
[0659] Though the illustrations given above refer to pay
ment , as these are easy to visualise , the same modes of
operation can apply to any type of transactional system . One
example would be the interaction between IoT devices or
other industrial components . By creating workflows that
comprise modules that can be rearranged , inserted , or
removed , operators can reconfigure the devices to operate in
new ways without needing to recall , re - programme , and
reinstall them .
[0660] Operators can repurpose devices in the field ,
change the way that they operate , or even let devices control
other devices and modify their work flows depending on any
changes that those devices detect to the environment within
which those devices operate .
[0661] IoT devices can also modify each other's work
flows by modifying the assembly of modules that make up
the work flows as and when required to do so . The security
model that governs the inter - device communications will
render that communication resistant to man - in - the - middle
attacks , while the look - up service will enable devices to
identify and authenticate each other .
[0662] The off - line mode allows such devices to operate
autonomously or semi - autonomously and interoperate with
each other , to validate and verify any transactions between
those devices , and to interact with an operator's systems
only as and when required .
[0663] The contextual security model explained below
extends to any type of device , such as an IoT device . So long
as a device is authorised to operate , and so long as that
device's services are listed in a relevant look - up service , any
device can communicate with any other device , and each
will use the hash chain to enable it to trust and validate the
transaction and data communication between the devices ,
including instructions to modify the devices work flows ,
upgrade a device's systems , or simply to pass or collate data
between those systems . Each device will retain a complete
audit of its transactions .
[0664] Security
[0665] The Tereon system uses a number of unique secu
rity models that overcome the flaws and restrictions that
exist in the current security models and protocols used in
legacy transaction processing systems . The security models ,
for example , remove the need to store data on a device . This
is a major issue with existing systems .

US 2020/0186355 A1 Jun . 11 , 2020
37

[0666] Securing USSD
[0667] USSD (unstructured supplementary service data) is
commonly used as the communications channel for numer
ous transaction types , including payments to and from
feature phones . Tereon allows USSD to be used securely .
[0668] Most implementations require the user to enter a
USSD code or choose an action from a numbered menu . A
series of unencrypted messages go back and forward . This
leads to issues of cost , poor security and poor user experi

generates for the user's account , together with the mobile
number or serial number of the device (if the application
cannot first ascertain that number) . The user can also register
his or her application with multiple Tereon servers , where
each server will generate a unique one - time activation code
for each account or service that the server operates for the
user .

ence .

[0669] Instead of sending messages as either 7 or 8 - bit
text , which is where the security concerns arise , Tereon uses
USSD and similar communications channels in a new way .
Tereon simply views it as a session - based short - burst com
munications channel .
[0670] Tereon does not tailor a message to fit USSD ,
which is what existing systems do . Instead , for each
encrypted communication in a transaction session , Tereon
encrypts the communication as it would do for a commu
nication over TCP / IP (i.e. , GPRS , 3G , 4G , WiFi , etc.) to
generate a cypher text , and then encodes the cypher text as
a base64 7 - bit character string . Tereon then checks the length
of the cypher text . If it is longer than the allowed space in
the USSD messages , it cuts the cypher text into two or more
parts , and transmits these individually using USSD . At the
other end , Tereon reassembles the parts into the whole
character string , converts it back to the cypher text , and then
decrypts it .
[0671] Tereon can use this method to first use TLS (trans
port layer security) to identify and authenticate the parties .
This will generate the first session key . Tereon can then use
this session key to encrypt the PAKE protocol negotiation
that generates the second session key that the parties will use
to encrypt all further communications in the session .
[0672] Some feature phones support WAP (wireless appli
cation protocol) . Where these implementations use WAP
over USSD , then Tereon will simply use the WAP protocol
stack as a way of communicating across USSD . This will
provide the wireless transport layer security (WTLS) layer ,
which will simply act as an additional level of authentication
(it is weaker than the TLS and advanced encryption standard
256 (AES256) encryption that Tereon uses as the default ,
and so Tereon will use AES256 to encrypt the communica
tions in any event) .
[0673] This is also how Tereon can secure other commu
nications channels that are perceived to lack security (e.g. ,
NFC , Bluetooth , etc.) . By constructing a messaging session
carefully , the nature of USSD and other ‘ unsecured ' chan
nels can be changed completely .
[0674] Security Model for Active Devices (and the Inter
net of Things)
[0675] The security model for active devices , such as
mobile phones , card terminals , etc. , operates in a similar
way to the security model for cards (see below) . The SIM is
not used as the security algorithms were cracked some time
ago . Instead , a registration key is used , which is encrypted
and stored on the device , together with a unique key that the
network generates . On mobile devices , Tereon can use that
key to perform a look - up to check that the IMSI (interna
tional mobile subscriber identity) reported by the mobile is
genuine .
[0676] When a user first runs an application (users can
have multiple applications if they wish) , the application will
request a one - time authentication code that the Tereon server

[0677] Once the user enters the one - time activation code ,
the application uses that code as the shared secret between
it and the server to generate the first PAKE session (after the
application and the Tereon server have validated each other
using TLS or a similar protocol , if necessary) . Once they
have established the first PAKE session , the Tereon server
will send an encrypted and signed registration key to the
application , together with a new , shared secret . Both the
server and the application will use the one - time activation
code , the registration key , and the shared secret to generate
a new , shared secret by creating a hash of all three .
[0678] Each time the server and the application commu
nicate , they will create a shared secret by hashing the
previous shared secret with a hash of the previous messages
that they communicated between themselves in on - line
communications . Every time the application and server
communicate with each other , they will generate a hash of
the contents of the transaction , the transaction hash , which
they have exchanged with the hash of the previous
exchanges . They both use this transaction hash to generate
the new , shared secret .
[0679] If a user loses his or her device , or if he or she needs
to reregister an application or change devices , then the
Tereon server will generate a new one - time authentication
code and registration key . The new , shared secret that the
server will pass to the application will be generated from the
hash of the previous messages exchanged between that
server and the application .
[0680] This key forwarding enables the application and
Tereon server to always have a fresh , shared secret for each
PAKE session . Thus , if an attacker were able to break the
TLS session (which would be extremely difficult as both the
server and the application would sign their messages) the
attacker would still need to break the underlying PAKE
session key . If the party managed that feat , then that would
give the party the key for that session and for that session
only . The process of generating a new key for each com
munication means that the party would need to repeat that
feat for each communication , a task that is virtually impos
sible computationally .
[0681] Because the application authenticates against a
particular service in any session , the user's application will
interact with that service only . The server will not have any
knowledge of any of the other services that the user's
application is registered to . In effect , the applications
become something akin to “ psychic paper ' , an identification
device that provides only the credentials required by a
service , irrespective of the plurality of services that the user
might be registered for . It may look like a payment device
to one service , a transport ticket to another , a door key to
another , and so forth . Service providers do not need to issue
separate devices to access their services , and as such this
reduces both the complexity and cost of offering services ,
and of upgrading those services .
[0682] The security model has an added benefit . If a user
loses his or her device , then the user can obtain a new device
with exactly the same number . The old device with its

US 2020/0186355 A1 Jun . 11 , 2020
38

applications will not work , whilst the new device , once that
is registered , will work , as it will have the secret key and the
registration code that are valid . Though there may be a gap
in time between losing and reporting a lost device , no - one
will be able to make any transaction , as no - one will have the
necessary password and PIN , or any other authentication
token .
[0683] The user , or the Tereon system administrator , can
also configure the application to require a password before
the user can access the application . This password is
checked with the Tereon server . If it is valid , then the Tereon
server will instruct the application to operate (with commu
nication that is always signed and encrypted) . If the pass
word is invalid , then the Tereon server will instruct the
application to request a new password for a limited number
of attempts . Thereafter , the Tereon server will lock out the
user's application , and the user will need to contact the
administrator to unlock the application and re - register the
device .
[0684] Each credential is timed . That means that one user
may have a particular credential assigned to him or her
during a defined period of time , and all transactions that take
place with that credential during that time period are linked
to that user . If that user then changes credential , then the
original credential can be assigned to another user . However ,
the look - up server will continue to link transactions and
credentials based on the combination of the credentials and
the time periods registered against those credentials .
[0685] The same model can be adapted to secure commu
nications between devices in the ‘ Internet of Things ' . Here
a certificate or a hard - wired serial number can be used to
identify each device . That will become the first shared secret
that each device will swap on first contact , when that is
hashed with the date of the transaction , or with the previous
messages sent between the devices . Two numbers would be
used , an open serial number that would identify the device ,
and act in place of a PKI (public key infrastructure) certifi
cate , and a cryptographically protected serial number that
would act as the shared secret . Alternatively , a single serial
number could be used as the ID and the first shared secret ,
and a new secret key would be uploaded via the secure
communications channel (see the discussion on the commu
nication layers in the systems architecture) .
[0686] Tereon's mobile security model has another advan
tage . An operator can use it to set access rights to individual
services , and configure the level of access depending on the
device and network over which a particular use is attempting
to success that service . This means , for instance , that a
provider can specify that an administrator might be able to
view system logs over a secured public network , but only
access the system administration functions over an internal
network , and then only via a fixed , as opposed to a mobile
device .
[0687] Though this ability has some application in pay
ments (it secures access to the system administration func
tions to defined networks and devices) , it comes into its own
for other services where limited access to sensitive or
privileged content is required , so that users can control
exactly who can see certain data , which data these third
parties can see , and from which location they can do so .
[0688] The security model enables an organization to be
able to guarantee the privacy and security of any data
collected , generated , or transmitted by any device . This can

apply to any device or transaction , from a payment , through
to a medical device , a traffic sensor , a weather sensor , a
water flow detector , etc.
[0689] Card Security Model
[0690] EMV cards and mobile phones using host card
emulation store a PIN on the chip or in a secure element on
the phone . Contactless cards , and mobiles that emulate those
cards , also store most of the card details in the clear , or in a
form that is easy to read . The card terminals check the PIN
that the user enters against the PIN stored on the card . This
is where many of the weakness in the EMV system come to
light , and renders the EMV process open to a number of
well - documented attacks .
[0691] Tereon stores only an authentication key on the
card and checks the value entered against a value stored on
the Tereon service (in a secure area of the database closed to
administrators who see only that the values match not the
actual value) . It authenticates against both the service and
the particular function , resource , facility , or transaction type ,
or other type of service provided by that service . Tereon uses
two security models , one of which is a subset of the other .
[0692] Most cards will display a PAN (the long number) .
Tereon does not use this number to identify the account .
Rather , it uses the PAN in the same way as a mobile number ;
it is simply an access credential . Each card has an encrypted
PAN . The card also has an encrypted registration key that
identifies the card as valid for each service to which it is
registered , much in the same way that the registration key on
a mobile authenticates that device . The encrypted code will
have a prefix that simply points to the country look - up
directory service that the merchant's Tereon service will
need to request , if it does not already have the address details
relating to that encrypted PAN string registered on its Tereon
service .
[0693] When the user presents the card to the terminal , the
terminal will read the encrypted PAN , and use that and the
encrypted registration key to validate the card with the
card's registered terminal . Once the user's Tereon service
has validated and authenticated both the card and the mer
chant's Tereon service , the user's service will send the
merchant's Tereon service the PAN , in its unencrypted form
so that it can register this , along - side the encrypted form , in
its cache . Thus if the user later enters the PAN in the clear ,
such as via an ecommerce portal or a merchant's terminal ,
then the service will know which other service to contact .
[0694] If the card reader cannot read the card for any
reason , then the user or merchant can type in the PAN and
the merchant's Tereon service will use that PAN to obtain
the address of the user's Tereon service . The user could
alternatively enter his or her email address , mobile telephone
number , or any other unique credential so long as that
credential is registered to that user's account . The card's
PAN is simply one of many credentials that the user can use .
[0695] Once the merchant's Tereon service has validated
the card , the merchant's terminal will set up a TLS and then
a PAKE session with its Tereon service , using its hashed key
to do so (each time the terminal communicates with its
service it hashes its previous key with its registration key to
generate the new shared secret for the PAKE session) . The
merchant process will proceed until the merchant's terminal
needs to request a PIN (if the user's Tereon service requires
a PIN for that transaction , as determined by the payment
service provider and enshrined in the Tereon service's
business rules engine) . The user's Tereon service will gen

US 2020/0186355 A1 Jun . 11 , 2020
39

erate a PAKE session with the merchant's service and then
send a one - time key to the merchant's service , and an
encrypted message to the terminal via another PAKE session
created using TLS first .
[0696] The merchant's terminal will receive the key and
decrypt the message to display a text selected by the user
that shows that the terminal is authorised by the merchant's
service . The user enters his or her PIN , which is communi
cated via the terminal's PAKE session with the user's
service . This process only happens where the user has to
enter his or her PIN at a merchant terminal . The merchant's
terminal never sees the PIN in the clear as this is entered in
a secure app that the merchant's terminal accesses from the
user's Tereon service and encrypted with a second one - time
key that the user's service transmits to the terminal in a
secure , signed key exchange . All communications would
normally go via the merchant's service , direct communica
tions between the terminal and the user's Tereon service can
also be established where the Terminal can support that
functionality .
[0697] If the card is a micro - processor card (Chip & PIN ,
contactless , or both) , then the card can also have a shared
secret that was initially generated when it was issued .
[0698] A micro - processor card would also use PAKE to
establish a session with its registered Tereon Service (or the
service for the service) . This session would be alongside the
session established by the card terminal (which might be a
mobile tablet or a PoS card terminal) with its Tereon service .
This immediately removes the key vulnerability that existing
terminals and Chip & PIN cards exhibit , which is the
vulnerability of the existing infrastructure to interfere with
and subvert the PIN verification process via a number of
‘ man - in - the - middle ' or ' wedge ' at - tacks .
[0699] The card will use this channel to generate a key that
it will transmit to its service , and which its service in turn
will transmit to the merchant's terminal to encrypt the PIN .
It will also use this channel to facilitate off - line transactions ,
when the card will store the balance of the last on - line
transaction , the key that it will use as a seed to generate the
series of keys that it will use for off - line transactions , and the
records of a number of third - party off - line transactions .
[0700] If a card is lost or stolen , Tereon's security model
means that the issuer does not need to issue a new PAN .
[0701] Context Based Security
[0702] Most security protocols use a few credentials , and
build on underlying assumptions . It is these assumptions that
can lead to errors and so a loss of security . The Tereon
system does not rely on any underlying assumption other
than the assumptions that the communications network ,
without this system , may be insecure and cannot be trusted ,
and that the environment within which a device operates
may also be insecure .
[0703] The Tereon system goes several stages further and
looks at both a set of credentials and the context within
which those credentials are presented . This provides both
additional security and secures one of the means by which
organizations can enable their employees or members to use
their own devices (sometimes referred to as BYOD) in some
or all circumstances .
[0704] Tereon may not only use the user's passwords ,
PINs , or other direct authentication credentials ; it will also
use details of the device , the application on that device , the
network by which that device is accessing Tereon , the

geographic location of that device at the time of , and during ,
the session , and the service or information that the user is
accessing with that device .
[0705] Tereon takes the credentials and , based on the
context set by and against those credentials , will control
access to the information , granting a level of access appro
priate to the credential .
[0706] For example , an administrator attempting to access
the deep administration services on a private device that has
not been approved by Tereon will be blocked from those
services , irrespective of whether or not that administrator is
in the workplace and on the workplace's network . However ,
that same administrator may be entitled to view some of the
system logs on that same device .
[0707) A second example would be where the context
security model governs the services that a secondary user
may see . A user has a phone or card that provides multiple
functions such as deposits , withdrawals , and payments with
out set limits (up to any credit limit or available funds of
course) . That user has frequented a café on a number of
occasions and has always bought a coffee and almond
croissant . Today , the user has given his card to his son and
set a total spending limit of £ 40 for the card . The user has
also set up a second PIN for his son's use , who takes the card
to the same café to buy a coffee . The Tereon system would
normally have offered a free almond croissant to the user
today , as he has already bought 6 in the past , and the café
uses Tereon to push offers to its customers . However , when
the user's son enters his PIN , the Tereon system detects that
it is the user's son who is making the payment (he does not
know his father's PIN) , and blocks the offer for today as he
has a nut allergy , and his father has linked his son's PIN to
his son's profile . The merchant does not see any notice of the
offer of a free croissant and Tereon knows that the user's son
cannot eat nuts . All that the merchant can see is a payment
for a coffee .
[0708] The user has also allowed his son to withdraw cash
of up to £ 10 , but not to deposit funds . Thus , when the user's
son goes into a merchant that can offer a withdrawal of up
to £ 10 , he will see the option on the merchant's terminal .
[0709] The context - based security goes further than access
control . Depending on the context within which a user
presents or uses a device , that device will present only the
credentials necessary for that context ; it becomes “ psychic
paper ' . In this way , the directory service 216 provides
functionality that can support the context - based security .
[0710] The context - based security does away with the
need for separate credentials and devices for particular
contexts . Now a single device can become a library card
credential in a library , a transport ticket on a bus or train , a
secure key to access a room or facility , an in - house payment
device in a firm's canteen , a theatre ticket , standard payment
device in a supermarket , a driving licence , an NHS card , an
ID card to prove entitlement to a service , which could bring
up photo ID on the merchant's device if the service required
that , etc.
[0711] Because Tereon provides dynamic , real - time , trans
action processing and settlement , an administrator or user
can amend , add to , or even cancel an allowed context or
credential in real - time . The amendment is immediately
reflected in the Tereon server that provides a service , or in
the look - up directory service 216 , or both . Lost devices need
no longer pose the risk of a period of financial or ID
exposure until the current systems deactivate the device .

US 2020/0186355 A1 Jun . 11 , 2020
40

Once a user or administrator cancels or amends a credential
or context , that change will become active immediately .
[0712] One Touch Transaction
[0713] Tereon implements a one - button transaction
authorisation and access method that eliminates the security
flaws in the existing systems . For example , current PIN - less
or NFC payments are extremely dangerous as they provide
no authentication for a payment . Until a card issuer cancels
a phone or card credential on the contactless EMV system ,
a user remains liable for all payments . Even if the device is
cancelled by the issuer , the consumer still has to try to prove
that he did not activate the payment . How can he do so if the
payment never required a PIN to authenticate it ? This leaves
a huge hole that allows anyone to pick up a contactless card
or phone and simply tap and go to make payments . Until it
is cancelled , the device remains valid .
[0714] Tereon supports tap - and - go in one of three modes ,
each of which depends on its context to operate . One of these
provides a one - touch transaction that uses an approach to
identifying an individual . Where both the user and the
service provider agree that the level of authentication pro
vided is satisfactory , the system will provide a one - touch
authentication method whereby the device will display a
large button , or configure a large area on the screen for the
user to touch . The other modes are a completely touchless
mode , such as the existing contactless transaction where the
user enters no credentials , and one , where the user enters his
or her standard payment credentials after the devices have
identified themselves to each other .
[0715] The button or area itself provides the authentication
via the touch screen . Every individual presses a screen in a
unique way , both in terms of where that individual presses ,
and the pressure pattern that they use . If an individual
intends to use this function , then Tereon will ask that
individual to press the button or area a number of times until
it has learned that individual's signature press . The screen is
logically divided into a number of discrete cells , and Tereon
will look at the proximity and pattern of the cells that the
user touches during the training period , and where possible
with the pressure pattern and any device movement that
occurs when the user presses the screen . It will use and
monitor that data to build the profile that it uses to authen
ticate the user .
[0716] FIG . 21 illustrates a block diagram of one imple
mentation of a computing device 2100 within which a set of
instructions , for causing the computing device to perform
any one or more of the methodologies discussed herein , may
be executed . In alternative implementations , the computing
device may be connected (e.g. , networked) to other
machines in a Local Area Network (LAN) , an intranet , an
extranet , or the Internet . The computing device may operate
in the capacity of a server or a client machine in a client
server network environment , or as a peer machine in a
peer - to - peer (or distributed) network environment . The
computing device may be a personal computer (PC) , a tablet
computer , a set - top box (STB) , a Personal Digital Assistant
(PDA) , a cellular telephone , a web appliance , a server , a
network router , switch or bridge , a processor , or any
machine capable of executing a set of instructions (sequen
tial or otherwise) that specify actions to be taken by that
machine . Further , while only a single computing device is
illustrated , the term " computing device ” shall also be taken
to include any collection of machines (e.g. , computers) that

individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo
gies discussed herein .
[0717] The example computing device 2100 includes a
processing device 2102 , a main memory 2104 (e.g. , read
only memory (ROM) , flash memory , dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM) or Rambus DRAM (RDRAM) , etc.) , a static
memory 2106 (e.g. , flash memory , static random access
memory (SRAM) , etc.) , and a secondary memory (e.g. , a
data storage device 2118) , which communicate with each
other via a bus 2130 .
[0718] Processing device 2102 represents one or more
general - purpose processors such as a microprocessor , cen
tral processing unit , or the like . More particularly , the
processing device 2102 may be a complex instruction set
computing (CISC) microprocessor , reduced instruction set
computing (RISC) microprocessor , very long instruction
word (VLIW) microprocessor , processor implementing
other instruction sets , or processors implementing a combi
nation of instruction sets . Processing device 2102 may also
be one or more special - purpose processing devices such as
an application specific integrated circuit (ASIC) , a field
programmable gate array (FPGA) , a digital signal processor
(DSP) , network processor , or the like . Processing device
2102 is configured to execute the processing logic (instruc
tions 2122) for performing the operations and steps dis
cussed herein .
[0719] The computing device 2100 may further include a
network interface device 2108. The computing device 2100
also may include a video display unit 2110 (e.g. , a liquid
crystal display (LCD) or a cathode ray tube (CRT)) , an
alphanumeric input device 2112 (e.g. , a keyboard or touch
screen) , a cursor control device 2114 (e.g. , a mouse or
touchscreen) , and an audio device 2116 (e.g. , a speaker) .
[0720] The data storage device 2118 may include one or
more machine - readable storage media (or more specifically

more non - transitory computer - readable storage
media) 2128 on which is stored one or more sets of instruc
tions 2122 embodying any one or more of the methodologies
or functions described herein . The instructions 2122 may
also reside , completely or at least partially , within the main
memory 2104 and / or within the processing device 2102
during execution thereof by the computer system 2100 , the
main memory 2104 and the processing device 2102 also
constituting computer - readable storage media .
[0721] The various methods described above may be
implemented by a computer program . The computer pro
gram may include computer code arranged to instruct a
computer to perform the functions of one or more of the
various methods described above . The computer program
and / or the code for performing such methods may be
provided to an apparatus , such as a computer , on one or more
computer readable media or , more generally , a computer
program product . The computer readable media may be
transitory or non - transitory . The one or more computer
readable media could be , for example , an electronic , mag
netic , optical , electromagnetic , infrared , or semiconductor
system , or a propagation medium for data transmission , for
example for downloading the code over the Internet . Alter
natively , the one or more computer readable media could
take the form of one or more physical computer readable
media such as semiconductor or solid state memory , mag
netic tape , a removable computer diskette , a random access

one or

US 2020/0186355 A1 Jun . 11 , 2020
41

memory (RAM) , a read - only memory (ROM) , a rigid mag
netic disc , and an optical disk , such as a CD - ROM , CD - R / W
or DVD .
[0722] In an implementation , the modules , components
and other features described herein can be implemented as
discrete components or integrated in the functionality of
hardware components such as ASICS , FPGAs , DSPs or
similar devices as part of an individualization server .
[0723] A “ hardware component ” is a tangible (e.g. , non
transitory) physical component (e.g. , a set of one or more
processors) capable of performing certain operations and
may be configured or arranged in a certain physical manner .
A hardware component may include dedicated circuitry or
logic that is permanently configured to perform certain
operations . A hardware component may be or include a
special - purpose processor , such as a field programmable
gate array (FPGA) or an ASIC . A hardware component may
also include programmable logic or circuitry that is tempo
rarily configured by software to perform certain operations .
[0724] Accordingly , the phrase " hardware component "
should be understood to encompass a tangible entity that
may be physically constructed , permanently configured
(e.g. , hardwired) , or temporarily configured (e.g. , pro
grammed) to operate in a certain manner or to perform
certain operations described herein .
[0725] A machine may be , for example , a physical
machine , a logical machine , a virtual machine , a container ,
or any other commonly used mechanism for containing
executable code . A machine may be a single machine , or it
may refer to a plurality of connected or distributed
machines , regardless of whether those machines are of the
same type or are of a plurality of types of machine .
[0726] In addition , the modules and components can be
implemented as firmware or functional circuitry within
hardware devices . Further , the modules and components can
be implemented in any combination of hardware devices and
software components , or only in software (e.g. , code stored
or otherwise embodied in a machine - readable medium or in
a transmission medium) .
[0727] Unless specifically stated otherwise , as apparent
from the following discussion , it is appreciated that through
out the description , discussions utilizing terms such as
" sending ” , “ receiving ” , “ determining " , " comparing ” ,
" enabling " , " maintaining " , " identifying " , or the like , refer to
the actions and processes of a computer system , or similar
electronic computing device , that manipulates and trans
forms data represented as physical (electronic) quantities
within the computer system's registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage , transmission or display devices .
[0728] It is to be understood that the above description is
intended to be illustrative , and not restrictive . Many other
implementations will be apparent to those of skill in the art
upon reading and understanding the above description .
Although the present disclosure has been described with
reference to specific example implementations , it will be
recognized that the disclosure is not limited to the imple
mentations described , but can be practiced with modification
and alteration within the spirit and scope of the appended
claims . Accordingly , the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense . The scope of the disclosure should , therefore , be

determined with reference to the appended claims , along
with the full scope of equivalents to which such claims are
entitled .
[0729] All optional features of the various aspects relate to
all other aspects mutatis mutandis . Variations of the
described embodiments are envisaged , for example , the
features of all the disclosed embodiments may be combined
in any way .

1-196 . (canceled)
197. A method of recording a data transaction comprising ,

at a device associated with a first entity :
determining first seed data ;
generating a record of a first data transaction between the

first entity and a second entity ;
determining second seed data by combining at least the

first seed data and the record of the first data transac
tion ;

generating a first hash by hashing the second seed data ,
the first hash comprising a history of data transactions
involving the first entity ; and

storing the first hash against the record of the first data
transaction in a memory .

198. The method of claim 197 , wherein the first seed data
comprises a starting hash .

199. The method of claim 198 , wherein the starting hash
is the result of hashing a record of a previous data transac
tion involving the first entity .

200. The method of claim 198 , wherein the starting hash
comprises a random hash .

201. The method of claim 200 , wherein the random hash
comprises at least one of a signature from the device , the
date and / or the time that the random hash was generated .

202. The method of claim 197 , wherein providing second
seed data further comprises combining a first zero - knowl
edge proof and a second zero - knowledge proof with the first
seed data and the record of the first data transaction ,
wherein :

the first zero - knowledge proof comprises proof that the
starting hash comprises the true hash of the previous
data transaction involving the first entity ; and

the second zero - knowledge proof comprises proof that a
second hash comprises the true hash of a previous data
transaction involving the second entity .

203. The method of claim 202 , wherein providing second
seed data further comprises combining a third zero - knowl
edge proof with the first seed data , the record of the first data
transaction , the first zero - knowledge proof and the second
zero - knowledge proof .

204. The method of claim 203 , wherein the third zero
knowledge proof is generated from random data .

205. The method of claim 203 , wherein the third zero
knowledge proof is a repeat of the first zero - knowledge
proof or the second zero - knowledge proof .

206. The method of claim 203 , wherein the third zero
knowledge proof is constructed using a second record of the
first data transaction that corresponds to the second zero
knowledge proof .

207. The method of claim 202 , wherein the first data
transaction comprises at least two stages and providing
second seed data comprises :

combining the first zero - knowledge proof with a record of
the first stage of the first data transaction ; and

combining the second zero - knowledge proof with a
record of the second stage of the first data transaction .

US 2020/0186355 A1 Jun . 11 , 2020
42

208. The method of claim 207 , wherein providing second
seed data comprises :

constructing a third zero - knowledge proof from the record
of the second stage of the first data transaction ; and

combining the second zero - knowledge proof and the third
zero - knowledge proof with the record of the second
stage of the first data transaction .

209. The method of claim 207 , wherein the first data
transaction comprises at least three stages and providing
second seed data further comprises :

combining the first zero - knowledge proof with a record of
the third stage of the first data transaction ; and

combining the second zero - knowledge proof with the
record of the third stage of the first data transaction .

210. The method of claim 207 , wherein the first data
transaction comprises at least three stages and providing
second seed data further comprises :

combining the first zero - knowledge proof with a record of
the third stage of the first data transaction ; and

combining the second zero - knowledge proof with random
data .

211. The method of claim 207 , wherein the first data
transaction comprises at least three stages and providing
second seed data further comprises :

combining the first zero - knowledge proof with a record of
the third stage of the first data transaction ; and

combining the second zero - knowledge proof with a
record of a fourth stage of the first data transaction ;

wherein the fourth stage of the first data transaction is a
repeat of the third stage of the first data transaction .

212. The method of claim 207 , wherein the first data
transaction comprises at least three stages and providing
second seed data further comprises :

combining a third zero - knowledge proof with a record of
the third stage of the first data transaction .

213. The method of claim 202 wherein the first zero
knowledge proof is constructed by the device associated
with the first entity and the second zero - knowledge proof is
constructed by a device associated with the second entity .

214. The method of claim 213 wherein constructing the
first zero - knowledge proof and the second zero - knowledge
proof comprises using a key exchange algorithm .

215. The method of claim 214 wherein the key exchange
algorithm comprises a PAKE algorithm .

216. The method of claim 197 , further comprising :
sending the first hash to a device associated with the

second entity ;
receiving a second hash from a device associated with the

second entity , wherein the second hash comprises a
hash of a previous data transaction involving the sec
ond entity ; and

generating a record of a second data transaction between
the first party and the second party ;

determining third seed data by combining the record of
the second data transaction with the first hash and the
second hash ;

generating a third hash by hashing the third seed data , the
third hash comprising a history of data transactions
involving the first entity and a history of data transac
tions involving the second entity ; and

storing the third hash against the record of the second data
transaction in the memory .

