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AUTOMATED EVALUATION OF EMBRYO IMPLANTATION POTENTIAL

FIELD OF THE INVENTION

f0001] The invention relates generally to the field of machine learning.

CROSS REFERENCE TO RELATED APPLICATIONS

f0002] This application claims the benefit of priority from U.S. Provisional Patent
Application No. 62799384 filed January 31, 2019, the contents of which are incorporated

herein by reference in their entirety.

BACKGROUND

f0003] In IVF treatments, early identification of embryos with high implantation potential
is essential for avoiding clinical complications to the newborn and/or to the mother, and for
shortening the time until achieving a successful pregnancy. Known embryo automated
classification tools are used to evaluate embryo developmental competence, for example,
based on manual scoring of multiple morphological properties of an embryo at a single time
point just before transfer into the uterus. The incorporation of time-lapse incubators in IVF
clinics provides continuous visual monitoring of the embryos, while maintaining them in
optimal culture conditions. Based on such video recordings, embryos can be represented by
the time sequence of developmental events that are used by morphokinetic algorithms for
predicting embryo blastulation and implantation. Both morphological and morphokinetic
classifiers require manual annotation by expert personnel and are limited to a discrete
representation of embryo preimplantation development while ignoring dynamic features

associated with embryo quality.

{0004] The foregoing examples of the related art and limitations related therewith are
intended to be illustrative and not exclusive. Other limitations of the related art will become
apparent to those of skill in the art upon a reading of the specification and a study of the

figures.
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SUMMARY

[0005] The following embodiments and aspects thereof are described and illustrated in
conjunction with systems, tools and methods which are meant to be exemplary and

illustrative, not limiting in scope.

[0006] There is provided in an embodiment, a system comprising: at least one hardware
processor; and a non-transitory computer-readable storage medium having stored thereon
program code, the program code executable by the at least one hardware processor to:
receive a plurality of video segments, each depicting prenatal embryogenesis of a
corresponding embryo; divide each of said video segments into a plurality of consecutive
packets, wherein each of said plurality of packets comprises a specified number of frames;
train a first machine learning model on a training set comprising (i) said packets, and (ii)
labels indicating a developmental parameter associated with each of said corresponding
embryos; and train a second machine learning model on a training set comprising: (iii) sets
of outputs of said first machine learning model, wherein each of said sets is associated with
said packets comprising one of said video segments, and (iv) labels indicating said
developmental parameter associated with said corresponding embryo depicted in said one of

said video segments.

f0007] There is also provided in an embodiment a method comprising: receiving a plurality
of video segments, each depicting prenatal embryogenesis of a corresponding embryo;
dividing each of said video segments into a plurality of consecutive packets, wherein each
of said plurality of packets comprises a specified number of frames; training a first machine
learning model on a training set comprising (i) said packets, and (ii) labels indicating a
developmental parameter associated with each of said corresponding embryos; and training
a second machine learning model on a training set comprising: (iii) sets of outputs of said
first machine learning model, wherein each of said sets is associated with said packets
comprising one of said video segments, and (iv) labels indicating said developmental
parameter associated with said corresponding embryo depicted in said one of said video

segments

f0008] A computer program product comprising a non-transitory computer-readable

storage medium having program code embodied therewith, the program code executable by
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at least one hardware processor to: receive a plurality of video segments, each depicting
prenatal embryogenesis of a corresponding embryo; divide each of said video segments into
a plurality of consecutive packets, wherein each of said plurality of packets comprises a
specified number of frames; train a first machine learning model on a training set comprising
(1) said packets, and (ii) labels indicating a developmental parameter associated with each of
said corresponding embryos; and train a second machine learning model on a training set
comprising: (iii) sets of outputs of said first machine learning model, wherein each of said
sets is associated with said packets comprising one of said video segments, and (iv) labels
indicating said developmental parameter associated with said corresponding embryo

depicted in said one of said video segments.

[0009] In some embodiments, with respect to each of said packets, the output of said
trained first machine learning model is a numerical representation indicating a probability

associated with said developmental parameter.

f0010] In some embodiments, the numerical representation is one of: a scalar

representation, a vector representation, and a matrix representation.

f0011] In some embodiments, the numerical representation reflects a dimensionality

reduction.

f0012] In some embodiments, the trained second machine learning model predicts a

developmental potential associated with each of said corresponding embryos.

f0013] In some embodiments, the program instructions are further executable to apply, and
the method further comprises applying, at an inference stage: (i) said trained first machine
learning model to target packets associated with a target video segment depicting prenatal
embryogenesis of a target embryo, to obtain said numerical representations for each of said
target packets; and said trained second machine learning model to said obtained numerical

representations, to predict a developmental potential of said target embryo.

f0014] In some embodiments, the first machine learning model comprises at least two
machine learning models, wherein: (i) with respect to a first of said machine learning models,

said developmental parameter indicated by said labels is a blastulation state; and (ii) with
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respect to a second of said machine learning models, said developmental parameter indicated

by said labels is an implantation state.

f0015] In some embodiments, the developmental parameter comprises at least one of:
morphological stage, cleavage stage, number of cells, cell fragmentation, cell symmetry,
inner cell mass, trophectoderm, pronuclei symmetry, pronuclei movement, pronuclei
location, cell location, and cell movement. In some embodiments, the trained second
machine learning model predicts at least one of: morphological stage, cleavage stage,
number of cells, cell fragmentation, cell symmetry, inner cell mass, trophectoderm,
pronuclei symmetry, pronuclei movement, pronuclei location, cell location, and cell

movement.

[0016] In some embodiments, the first machine learning model comprises a self-
supervised algorithm. In addition to the exemplary aspects and embodiments described
above, further aspects and embodiments will become apparent by reference to the figures

and by study of the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

[0017] Exemplary embodiments are illustrated in referenced figures. Dimensions of
components and features shown in the figures are generally chosen for convenience and

clarity of presentation and are not necessarily shown to scale. The figures are listed below.

[0018] Fig. | is a flowchart of functional steps in a process for training a machine learning
model to predict embryo implantation, in accordance with some embodiments of the present
invention;

f0019] Figs. 2A and 2B show tables of exemplary databases, in accordance with some

embodiments of the present disclosure;

f0020] Fig. 3 is a schematic illustration of exemplary data preprocessing, in accordance

with some embodiments of the present disclosure;

[0021] Figs. 4A and 4B show exemplary automated screenings of empty well images and
cropping embryo region of interest (ROI), in accordance with some embodiments of the

present disclosure;
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[0022] Figs. SA and 5B show exemplary embodiments of image preprocessing comprising
automated segmentation, down sampling of embryo region of interest (ROI), and discarding

empty well images, in accordance with some embodiments of the present disclosure;

f0023] Fig. 6 shows a table of exemplary morphokinetic time windows, in accordance with

some embodiments of the present disclosure;

{0024] Fig. 7 shows a table of exemplary morphokinetic intervals, in accordance with some

embodiments of the present disclosure;

[0025] Figs. 8A, 8B, 8C, 8D, 8E, 8F, and 8G show exemplary embodiments of
identification of developmentally arrested embryos that fail to reach blastulation

(BLAST _n), in accordance with some embodiments of the present disclosure;

[0026] Figs. 9A, 9B and 9C show an exemplary database comprising of embryo video files
and associated clinical metadata, in accordance with some embodiments of the present

disclosure;

[0027] Figs. 10A, 10B, 10C, and 10D are exemplary embodiments of automated
predictions of embryo blastulation, in accordance with some embodiments of the present

disclosure;

[0028] Figs. 11A, 11B, 11C, 11D, 11E, and 11F show exemplary embodiments of high
resolution morphokinetic analysis of embryo preimplantation development, in accordance

with some embodiments of the present disclosure;

[0029] Figs. 12A, 12B, 12C, and 12D show exemplary embodiments of statistical
characteristics of blastulation prediction, in accordance with some embodiments of the

present disclosure;

[0030] Figs. 13A and 13B show exemplary embodiments of morphokinetic overlaps
between different maternal age embryos, in accordance with some embodiments of the

present disclosure;

f0031] Figs. 14A, 14B, and 14C are exemplary embodiments of automated predictions of

embryo implantation, in accordance with some embodiments of the present disclosure;
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f0032] Figs. I15A and 15B are exemplary embodiments of machine learning model
optimization for prediction of embryo blastulation and implantation, in accordance with

some embodiments of the present disclosure;

[0033] Figs. 16A 16B and 16C are exemplary embodiments of machine learning model
optimization for prediction of embryo blastulation and implantation, in accordance with

some embodiments of the present disclosure;

[0034] Fig. 17 is a schematic illustration of exemplary learning process, in accordance with

some embodiments of the present disclosure;

f0035] Figs. 18A and 18B show exemplary embodiments of top positive versus negative
SHAP-scored embryo frames directing blastulation prediction, in accordance with some

embodiments of the present disclosure;

[0036] Figs. 19A and 19B show exemplary embodiments of top positive versus negative
SHAP-scored embryo frames directing implantation prediction, in accordance with some

embodiments of the present disclosure;

[0037] Figs. 20A and 20B are exemplary embodiments of automated predictions of

embryo blastulation, in accordance with some embodiments of the present disclosure;

[0038] Figs. 21 A and 21B shows exemplary embodiments of first direct unequal cleavage
(DUCI) embryos that are selected by SHIFR Ak, in accordance with some embodiments of

the present disclosure;

[0039] Figs. 22A, 22B, and 22C show statistical characteristics of blastulation prediction

by SHIFRAB, in accordance with some embodiments of the present disclosure;

[0040] Figs. 23A, 23B, and 23C are exemplary demonstrations of fully automated
predictions of embryo implantation, in accordance with some embodiments of the present

disclosure;

[0041] Figs. 24A, 24B, 24C, 24D, and 24E show the SHIFRAg and SHIFRAk databases
are optimized to predict blastulation and implantation with partial dependence on embryo

state, in accordance with some embodiments of the present disclosure;
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f0042] Figs. 25A and 25B are exemplary embryonic state distributions statistical analysis,

in accordance with some embodiments of the present disclosure;

[0043] Figs. 26A and 26B are exemplary statistical characteristics of implantation

prediction by SHIFRAK, in accordance with some embodiments of the present disclosure;

[0044] Fig. 27 is a table of the KIDScore-D3, in accordance with some embodiments of

the present disclosure;

[0045] Figs. 28A and 28B are exemplary embryo transfer and implantation statistics, in

accordance with some embodiments of the present disclosure;

[0046] Figs. 29A, 29B, 29C, and 29D shows that classification of embryo blastulation and
implantation is robust to differences in maternal age, in accordance with some embodiments

of the present disclosure; and

[0047] Figs. 30A, 30B, 30C, and 30D show exemplary embodiments of statistical
characteristics of implantation prediction by SHIFRAk, in accordance with some

embodiments of the present disclosure.

DETAILED DESCRIPTION

[0048] Disclosed herein are a system, method, and computer program product for
automated evaluation of embryonic developmental potential and/or competence. In some
embodiments, the present disclosure provides for an accurate prediction of embryo viability

and/or implantation potential.

{0049] The present disclosure provides for one or more machine learning models trained
to predict embryo viability, developmental, and/or implantation competence, which were
developed by training deep neural networks using video files depicting a plurality of
blastulation-labelled and implantation-labelled embryos. In some embodiments, the present
machine learning models provide for greater prediction accuracy compared to known

classification techniques.

f0050] In some embodiments, the present disclosure employs deep learning techniques to
generate automated, accurate and standardized machine learning models for early prediction

of embryo viability, developmental, and/or implantation potential. In some embodiments, a
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prediction accuracy of the present machine learning models remains high irrespective of
maternal age, without maternal age input. Deep learning methods employed by the present
disclosure offer an automated, standardized and accurate substitute to human-based

evaluation of embryonic developmental competence.

[0051] In some embodiments, the present machine learning models, which provide early
evaluation of blastulation and implantation potential, may be incorporated into a systemic
decision-making tool that may provide a personalized, multi-step embryo transfer strategy.
Accordingly, given a finite number of embryos obtained from a patient and their assessed
quality, this tool will specify the multistep order and timing of embryo transfers (including
transfers of multiple embryos), as well as which embryos are to be cryopreserved for
subsequent transfers. The general framework of the present disclosure opens the door for the
implementation of such personalized clinical tools that will optimize conception rates while

shortening time to pregnancy in IVF treatments.

f0052] In some embodiments, the present disclosure provides for training one or more
machine learning models, based, at least in part, on training data comprising image data

depicting at least a portion of a prenatal embryogenesis process of a plurality of embryos.

f0053] In some embodiments, the image data comprises a series of images and/or a video
segment. In some embodiments, the image data depicts, with respect to each embryo, at least
a portion of prenatal embryonic embryogenesis or embryo development process. In some
embodiments, the image data with respect to each embryo comprises one or more time-lapse
video segments, wherein an image is captured with a specified frequency, e.g., every several

minutes, e.g., every 18-20 minutes.

[0054] In some embodiments, the image data comprises multiple video segments with
respect to at least some of the embryos. In some embodiments, at least some video segments
with respect to each embryo are acquired using multifocal plane microscopy. In some
embodiments, multifocal plane microscopy or multiplane microscopy allows the tracking of
the 3D dynamics in embryonic cell-level development at high temporal and spatial

resolution, by simultaneously imaging different focal planes within the specimen.

{0055] In some embodiments, the image data is obtained using one or more of RGB

imaging techniques, monochrome imaging, near infrared (NIR), sort-wave infrared (SWIR),
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infrared (IR), ultraviolet (UV), multi spectral, hyperspectral, and/or any other and/or similar
imaging techniques. In some embodiments, the image data may be taken using different
imaging techniques, imaging equipment, from different distances and angles, using varying
backgrounds and settings, and/or under different illumination and ambient conditions. In
some embodiments, the image data is obtained using various magnification levels, which

can be optical and/or digital magnification.

[0056] In some embodiments, the obtained images undergo image processing analyses
comprising at least some of: data cleaning, data normalization, data standardization, and/or
similar and/or additional image preprocessing steps. In some embodiments, image data
preprocessing may comprise any one or more of object detection, object identification,
image transformations, and/or object segmentation, similar and/or additional

image preprocessing steps.

[0057] In some embodiments, the training data comprises image data and/or additional
and/or other clinical metadata associated with embryo development covering, e.g., at least a

portion of the period between fertilization and implantation.

f0058] Insome embodiments, image data may comprise a plurality of video segments each
depicting prenatal embryogenesis of a corresponding embryo. In some embodiments, each
video segment may be associated with an indication of a developmental parameter of the

depicted embryo.

f0059] In some embodiments, the developmental parameter may be a blastulation and/or
implantation state. In some embodiments, the developmental parameter may be any one of
morphological stage, cleavage stage, number of cells, cell fragmentation, cell symmetry,
inner cell mass, trophectoderm, pronuclei symmetry, pronuclei movement, pronuclei

location, cell location, and cell movement.

[0060] In some embodiments, each video segment may be divided into a plurality of
consecutive packets, wherein each of said plurality of packets comprises a specified number
of frames, e.g., between 3 and 7, e.g., 5 image frames. In some embodiments, each packet
may be associated with an indication and/or annotation and/or labels reflecting one or more

developmental parameters of the corresponding embryo.



WO 2020/157761 PCT/IL2020/050120

[0061] In some embodiments, one or more machine learning models may be trained to
produce a reduced dimension representation of each packer, e.g., a scalar representation, a

vector representation, and/or a matrix representation.

[0062] In some embodiments, the reduced dimension representation of the packets may be
used as part of a training set, to train a second machine learning model on sets of packets
associated with each complete video segment (and hence, a corresponding embryo) wherein
the sets may be associated with an indication and/or annotation and/or labels reflecting one

or more developmental parameters of the corresponding embryo.

[0063] In some embodiments, the second machine learning model may output a prediction
associated with embryo viability, developmental, and/or implantation competence and/or

potential.

[0064] In some embodiments, one or more training sets may be generated based on the
training data. In some embodiments, a first training set may be labeled with an indication of
blastocyst formation in each of the embryos depicted in the image data. In some
embodiments, a second training set may be labeled with an indication of a successful

eventual implantation associated with each embryo depicted in the image data.

[0065] In some embodiments, one or more blastulation machine learning models may be
trained on the first dataset, to predict an embryo blastulation outcome. In some embodiments,
one or more implantation machine learning models may be trained on the second dataset to

predict embryo implantation success.

[0066] In some embodiments, at an inference stage, one or more of the trained machine
learning models may be applied to image data associated with an embryo, to predict
implantation success of the embryo. In some embodiments, implantation success may be
determined based on a combination of prediction scores of the different machine learning

models.

[0067] In some embodiments, the method comprises training a first implantation machine
learning model on a training set comprising a plurality of packets associated with an
implantation indication. In some embodiments, the first implantation machine learning

model is trained using a database of packets associated with an implantation indication. In

10
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some embodiments, the first implantation machine learning model is trained to score at least
one of the frames of each packet a plurality of times, based on, at least in part, temporal
features of the embryo depicted by the frame. In some embodiments, the first implantation
machine learning model is configured to output a sum of the scores of each frame. In some
embodiments, first implantation machine learning model is configured to output a vector

comprising the sum of the scores of each packet.

[0068] In some embodiments, the second implantation machine learning model is trained
using a database of packets, wherein each packet comprises a label associated with a label
of the corresponding embryo depicted by the packet, the scores and/or vector outputted by

the first implantation machine learning model of each packet.

[0069] In some embodiments, the second implantation machine learning model is trained
using at least one vector outputted by the first blastulation machine learning model for each
packet. In some embodiments, for each frame and/or packet, the scores outputted by the first
implantation machine learning model and the first blastulation machine learning model were

summed into a single number and/or vector.

[0070] In some embodiments, the labels inputted into the second implantation machine
learning model for each frame depicting a specific embryo indicate if the specific embryo
has resulted in successful implantation. In some embodiments, the labels of an embryo
include positive implantation for an embryo that has resulted in successful implantation,
negative implantation for an embryo that has not resulted in successful implantation, and

unknown implantation for embryos for which the implantation success was undetermined.

f0071] In some embodiments, the second implantation machine learning model is
configured to evaluate the implantation potential of an embryo depicted by a packet based
on, at least in part, the scores and/or vectors of the frames and/or packets outputted by one
or more of the first implantation machine learning model and the first blastulation machine

learning model.

{0072] In some embodiments, the method comprises obtaining a target video segment
depicting a development period of a target embryo pre-implantation. In some embodiments,
the method comprises applying the first and second blastulation machine learning models to

obtain a blastulation evaluation associated with each of said target packets. In some

11
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embodiments, the method comprises applying the first and second implantation machine
learning models to obtain an implantation evaluation associated with each of said target

packets.

[0073] Reference is made to Fig. 1, which is a flowchart of functional steps in a process
for training a machine learning model to predict embryo implantation, in accordance with

some embodiments of the present invention.

[0074] According to some embodiments of the present disclosure, there is provided a
method for evaluating the developmental competence of an embryo. In some embodiments,
at step 205, the method comprises receiving video segments each depicting a development
period of a corresponding embryo during pre-implantation stages. In some embodiments,
each of the video segments comprises an indication of a developmental parameters of a

corresponding embryo.

[0075] Insome embodiments, at step 210, the method comprises dividing each of the video
segments into a plurality of consecutive packets. In some embodiments, each embryo is
associated with a plurality of packets which depict a sequence of developmental events. In
some embodiments, each of the plurality of packets comprises a specified number of frames.
In some embodiments, the frames are consecutive or separated by specific time increments.

In some embodiments, the frames depict one or more focal points of the video segments.

[0076] In some embodiments, at step 215, the method comprises training a first
blastulation machine learning model on a training set comprising a plurality of packets
labeled and/or annotated with class labels indicating the developmental parameter.
associated with a blastulation indication. In some embodiments, the first machine learning
model outputs, with respect to each of the packets, a numerical representations indicating a

probability associated with the developmental parameter.

f0077] In some embodiments, at step 220, a second machine learning model is trained
using the output of the first machine learning model, wherein the numerical representations
of packets are grouped together into sets associated with each individual video segment. In
some embodiments, each set is labeled and/or annotated with class labels indicating the

developmental parameter.

12
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[0078] In some embodiments, at an inference step 2235, the trained first machine learning
model is applied to target packets associated with a target video segment depicting prenatal

embryogenesis of a target embryo, to obtain numerical representations for each target packet.

f0079] In some embodiments, at an inference step 230, the trained second machine
learning model is applied to the output of step 2235, to predict a developmental potential of

said target embryo.

EMBRYONIC DEVELOPMENTAL IMAGE DATASET

[0080] In some embodiments, machine learning models (e.g., comprising deep neural
networks, DNNs) were trained to generate automated and standardized classification
algorithms of embryo blastulation and implantation. In some embodiments of the present
disclosure, machine learning models were trained directly on the raw video files. In some
embodiments, a dataset was assembled and compiled by collecting video depicting at least
portion of embryogenesis of files of over 20,000 embryos, cultured in time-lapse-monitored

incubators in several medical centers.

f0081] Reference is made to Figs. 2A and 2B, which show tables of exemplary datasets, in
accordance with some embodiments of the present disclosure. In some embodiments, such
as depicted by Fig. 2A, the dataset includes thousands of embryos with clinical
characteristics and statistical information, wherein TL: Time-lapse incubator, H: Hospital,

and KID: Known implantation data.

f0082] A potential advantage of using retrospective over prospective embryo transfer
datasets for machine learning model training is their ethical feasibility and far greater size.
However, prediction accuracy is limited due to lacking critical information about
endometrial receptivity and using a homogenous dataset of embryos that were
retrospectively preselected for transfer according to established morphological and/or
morphokinetic criteria. In some embodiments, in order to overcome these limitations, one or
more machine learning models may first be trained on blastulation outcome using a
heterogeneous set of labeled embryos, and then integrated with one or more machine

learning models trained separately on implantation outcome. Accordingly, accuracy of day-

13
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implantation prediction improved over implantation prediction based on implantation

outcome alone.

f0083] Insome embodiments, the dataset is arranged in a database with a front-end website

that supports display, query and data annotation.

[0084] In some embodiments, the image dataset comprises anonymized time-lapse video
files and the corresponding metadata. In some embodiments, only embryos that were
fertilized via intracytoplasmic sperm injection (ICSI) and/or show two-pronuclei appearance
(2PNa) inside the incubator are included in the dataset. In this manner, the time of
fertilization may be accurately defined, non-fertilized embryos discarded, and a full
morphokinetic profile, starting from tPNa, may be obtained. In some embodiments,

PGD/PGS tested embryos may be discarded from the dataset as well.

f0085] In some embodiments, morphokinetic annotations may be performed by qualified
and experienced embryologists, adhering to established protocols. In some embodiments,
annotation quality assurance (QA) may be carried out by comparing the morphokinetic
annotations of 253 randomly selected embryos with the annotations of an expert

embryologist in a blinded manner.

IMAGE DATA PREPROCESSING

[0086] In some embodiments, dataset video segments are preprocessed and/or decreased
in size by 16 fold, while the dynamic nature of pre-implantation embryo development is
captured and retained in the data. In some embodiments, the preprocessing of the input video
files decreases their size from ~100 MB each to less than 1 MB each, while retaining the
dynamic nature of pre-implantation embryo development. In some embodiments, the
preprocessing comprises 4X-resizing of embryo images (i.e., 2X biaxially) and/or

segmentation of the embryo region of interest (ROI).

f0087] Fig. 3 is an overview of the preprocessing of the input embryo video files, including
automated screening of empty well images, cropping and/or segmentation of embryo regions
of interest (ROI), and 2X down sampling along each axis. In some embodiments, five

consecutive ROIs of the same embryo and/or the same focal plane are grouped into packets.
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[O088] Reference is made to Figs. 4A and 4B, which show exemplary automated
screenings of empty well images and cropping embryo region of interest (ROI), in

accordance with some embodiments of the present disclosure.

[0089] Fig. 4A shows (i) Empty well images detected for a 3-cells embryo input image,
(ii) prewitt operators are applied bi-axially to generate a gradient map, wherein the sharp
boundaries of the culture wells are then segmented and pixels outside the well are set to zero,
(iii) low gradient pixels are set to zero and salt-and-pepper noise and/or impulse noise is
removed (/12), and (iv) the embryo is identified and cropped as the highest energy object. In
some embodiments, the pixels of other objects are set to zero. In some embodiments, images

with integrated intensity smaller than threshold are identified as empty wells.

f0090] Fig. 4B shows (i) embryo cropping algorithm is applied only to images that were
not identified as empty wells, as demonstrated here for a 2-cells embryo image, (ii) a gradient
map is generated using an SSIM descriptor, (iii) next, a 256x256 pixels convolution mask is
applied, which highlights high-gradient regions, (iv) based on the texture differences of the
cytoplasm and the surrounding zona pellucida compared with the surrounding well, the
coordinate of the ROI mask with maximal intensity is identified as the ROI in which the

embryo is bounded (cropped ROI).

[0091] In some embodiments, preprocessing comprises at least one of identifying and/or
discarding of empty well images, cropping of square regions of interests’ (ROIs) that contain

the embryos, and down-sampling of cropped embryo ROIs.

[0092] Insomeembodiments, the image data in which empty wells are depicted is screened
manually and/or automatically. In some embodiments, an algorithm determines whether an
image contains an embryo or the culture well is empty. In some embodiments, horizontal
and vertical 3x3 Prewitt operators are applied on the input image (Fig. 4A-i). In each pixel,
the L2-norm of the absolute values of both channels is calculated to generate a gradient map
which is then normalized by the median gradient value. To find the boundaries of the circular
culture well, each side of the image is treated separately (left, top, right, bottom) as illustrated
below for the top side of the image. In some embodiments, the central fifty columns
(columns 226 to 275) are scanned from top to bottom and the first pixel with value greater

than 0.4 is marked in each column. In some embodiments, the average y-axis coordinate of
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all fifty marked pixels is calculated. By applying these steps also to the bottom, left and right
sides, the rectangle in which the culture well is bounded is define. In some embodiments,

the boundaries of the well are obtained by fitting a circle inside.

{0093] In some embodiments, all the pixels that are located outside the well boundaries are
set to zero (I, Fig. 4A-ii). In some embodiments, low gradient levels are removed by setting
low-intensity pixels I;< 0.2 to zero followed by removing ‘salt and pepper’ noise using
10x10 convolution mask (I, Fig. 4A-iii). In some embodiments, the remaining objects in
I, are typically larger than the size of the convolution mask. In some embodiments, and
under the assumption that the embryo is the largest object with the sharpest edges, all pixels
are set to zero, except for the pixels that belong to the highest-energy cluster, namely the
object with the maximal integrated intensity in [, (I3, Fig. 4A-iv). In some embodiments, an

image is labelled as empty if the sum of /3 pixels is lower than a threshold value, e.g., 8000.

[0094] Fig. 4B illustrates an exemplary automated segmentation of an embryo’s ROL In
some embodiments, a self-similarity descriptor (SSIM) is applied on the input image (Fig.
4B-i) to generate a gradient map, /. In some embodiments, gradients are calculated at each
pixel along eight equally-rotated directions (45° apart) at a distance of three pixels away. For
each angle, noise is reduced by averaging the gradients over 3x3 regions centered at distal
pixels. Next, the L?-norm of the all eight directional gradients is calculated and the value of
each pixel in I; is obtained by normalizing by the median SSIM value of the entire image.
In some embodiments, the SSIM depicts and highlights the edges of the well and of the
embryo (Fig. 4B-ii). In some embodiments, a convolution between [; and a 256x256 mask
of ones is performed. Since I is a 500x500 matrix, the product of this convolution, I, is
245x245 (Fig. 4B-iii). In some embodiments, the location of the region of interest (ROI) in
which the embryo is contained is obtained by the argument of maxima (ArgMax) of I, (Fig.
4B-iv). In some embodiments, the cropped ROI is down-sampled two-fold biaxially

(128x128 pixels).

[0095] Reference is made to Figs. SA and 5B, which show exemplary embodiments of
image preprocessing comprising automated segmentation, down sampling of embryo region
of interest (ROI), and discarding empty well images, in accordance with some embodiments

of the present disclosure.
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{0096] Fig. SA shows segmentation of 2,700 images spanning all developmental states for
training a fully automated neural network that was performed using the GrabCut semi-
automated algorithm. Embryo framing of a bounding box (marked by the blue box, left) is
performed manually followed by an initial segmentation by GrabCut (marked by the green
contour). Adjustment of regions to include within the embryo ROI (marked in red) and
regions to exclude from the embryo ROI (marked in yellow) are performed manually (for
example, as depicted by the embryo image positioned in the middle of the figure). Embryo
segmentation is then adjusted accordingly (as marked by green contour). Multiple iterations
of embryo segmentation adjustment are allowed. In some embodiments, once embryo
segmentation is approved by user, the morphological operations are performed (filling holes,
contour smoothing and rendering) and/or a binary mask of the embryo is defined (as depicted

by the embryo image positioned on the right and labeled as “corrected segmentation™).

[0097] Fig. 5B shows a U-Net that was trained on the images segmented by GrabCut and
a classifier that was executed for performing embryo segmentation of all images in the
database. In some embodiments, such as depicted in Fig. 5B-i, representative embryo
segmentations are shown at different developmental states. In some embodiments, such as
depicted in Fig. 5B-ii embryo segmentation accuracy is reported via the Dice coefficient on
150 test set embryos, showing nearly perfect segmentation across all developmental states.

In some embodiments, empty well images are identified based on small mask area.

f0098] In some embodiments, a large set of validated embryo images is generated and
segmented by binary masks of the embryo ROI, which may be used for training a fully
automated classifier. In some embodiments, the embryos are framed manually by a bounding
box using the semi-automated interactive GrabCut algorithm, allowing for an initial
segmentation of the embryo (Fig. 5B). Next, embryo segmentation may be adjusted
interactively by scribbling the regions to include within the embryo region of interest (ROI),
and regions to exclude from the embryo ROI, allowing fine tuning of embryo segmentation.
Multiple segmentation — scribbling — fine-tuning iterations may be used. Once embryo
segmentation is approved, morphological operations may be executed (e.g., filling holes,

contour smoothing, and dilation) and a binary mask may be defined.
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{0099] Insome embodiments, a U-Net classifier is trained using the images that are labeled
interactively via GrabCut. In some embodiments, segmented images are resized to 256x256
pixels and divided into train set (2,350 images), validation set (200 images) and
uncontaminated test set (150 images). In some embodiments, training is performed using
randomly selected 100 images batch size at 1,500 steps per epoch. In some embodiments,
each batch of images underwent random augmentation that included one or more of 0° to
180° rotations, horizontal flips, 0 to 0.1 shearing and O to 0.1 zooming. In some
embodiments, training exactly the same images on different steps was prevented. In some
embodiments, network convergence was reached within 20 epochs. In some embodiments,
the U-Net classifier obtained embryo images as an input and generated a binary mask output
of the embryo ROl resized to 500x500 pixels (Fig. 5B-i). In some embodiments, the accuracy
of embryo segmentation was evaluated on test set embryos using the Dice Coefficient, which
measures the overlap between the segmented pixels and the binary mask labels. In some
embodiments, the dice coefficient ranged between 0.91 and 0.94 across all developmental
states (Fig. 5B-ii). In some embodiments, the ROIs of the embryos were evaluated for all
images in the database. In some embodiments, empty well images were identified based on

small mask area and/or discarded.

f0100] In some embodiments, all of the segmented embryo frames were resized 2X along
each axis into a 128x128 pixel images. In some embodiments, five consecutive resized and
segmented frames of the same focal plane and the same embryo are grouped together into
packets. In some embodiments, each packet is designated with an identifier P;", including
embryo m and first frame time index n. In some embodiments, each packet is associated
with a blastulation (BLAST) and/or successful eventual implantation (KID) label y,,. In
some embodiments, the packets serve as the input objects of one or more packet learning

machine learning models comprising neural networks.
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Embryo Blastulation and Implantation Prediction

MACHINE LEARNING MODEL TRAINING

f0101] In some embodiments, the present disclosure provides for training one or more
machine learning models on embryo image data packets, to predict a probability of at least

one of blastulation and implantation in a prenatal embryo.

TRAINING SET PREPARATION AND ANNOTATION

f0102] In some embodiments, one or more training set are constructed to provide for
training one or more machine learning models to predict at least one of embryo blastulation

and implantation.

f0103] In some embodiments, the training sets comprise video image data such as a video
segments. In some embodiments, every point in time is represented in the video data by one
or more frames arranged in frame packets. In some embodiments, every point in time is
represented in the video data by one or more frames wherein each frame depicts a specific
focal plane. In some embodiments, each packet comprises a group of frames. In some
embodiments, each packet comprises a group of frames wherein the frames may or may not
comprise different focal planes. In some embodiments, each packet comprises a plurality of
frames depicting a plurality of focal points. In some embodiments, each packet comprises at
least 3 frames. In some embodiments, the increment of time between a pair of consecutive
frames within a packet is equal. In some embodiments, the increment of time is different
between every pair of consecutive frames. In some embodiments, frames comprising each

packet are temporally sequential and/or consecutive.

BLASTULATION ANNOTATION

[0104] In some embodiments, a training set associated with blastulation prediction may
comprise a plurality of video segment packets, generated as described in detail above,
wherein each video packet may be annotated and/or labeled according to a blastulation
outcome of the embryo depicted therein, e.g., ‘blastulation-positive’ (BLAST_p),
‘blastulation-negative’ (BALST_n), and ‘blastulation-unknwon’ (BALST u). The potential
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of an embryo to undergo blastulation marks its developmental quality and is linked with its

potential to implant in the uterus.

[0105] In some embodiments, embryo annotations and/or labeling may be performed
based on a morphokinetic evaluation of an embryo across a plurality of time point and/or

windows.

f0106] Reference is made to Fig. 6, which shows a table of exemplary morphokinetic time
windows, in accordance with some embodiments of the present disclosure. Fig. 6 shows,
based on the statistics of thousands of embryos, the defined time windows for the specified

morphokinetic events.

[0167] Reference is made to Fig. 7, which shows a table of exemplary morphokinetic
intervals, in accordance with some embodiments of the present disclosure. Fig. 7 shows,
based on the statistics of thousands of embryos, the defined time windows that correspond

to the intervals between consecutive morphokinetic events.

f0108] Identification of arrested embryos that cannot advance towards blastulation is based
on their morphokinetic profiles and an assessment of the time windows for advancing from

one morphokinetic event to the next.

[0109] Figs. 8A-8E show exemplary embodiments of identification of developmentally
arrested embryos that fail to reach blastulation (BLAST_n), in accordance with some

embodiments of the present disclosure.

f0110] Fig. 8A shows embryos plotted according to their incubation time from fertilization
(tinc) versus the latest developmental state reached inside the incubator. Embryos are
classified based on the temporal distributions of morphokinetic events. For each
developmental state from PNa to Morula, BLAST-unknown (BLAST _u) embryos are
located within the corresponding regions that are bounded between the 1st percentile of the
current event (bottom dashed line) and the 99th percentile of the of the consecutive event
(top dashed line). Developmentally-arrested embryos that failed to advance towards the next
developmental state within the defined time windows are located in the corresponding
regions which are bottom- bounded by the 99® percentile of the consecutive events.

Similarly, embryos are plotted according to the time that lapsed from the time of latest
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development event [t, — t,,—1] versus the latest morphokinetic state reached. Embryos are
classified based on the temporal distributions of morphokinetic intervals. For each
developmental state from PNf to Morula, BLAST_u embryos are located within the
corresponding regions that are bounded between the 1st (bottom dashed line) and 99th (top
dashed line) percentiles of interval distributions [t, — t,,—1]. Developmentally-arrested
embryos that failed to advance towards the next morphokinetic event within the
corresponding interval time windows are identified as ‘arrested’ either according to (i) the
statistics of morphokinetic events, or (ii) the statistics of morphokinetic intervals, and are
labeled BLAST-negative (BLAST _n). BLAST-positive (BLAST_p) are embryos that
reached start of blastulation inside the incubator. Ladder-like distributions reflect day-night

periodicity.

f0111] Fig. 8B shows video length distributions wherein that half of the embryos in the
database were incubated for four days or longer. Fig. 8C show totals in the dataset for
BLAST_p, BLAST_n, and BLAST_u embryos, with further breakdowns for developmental
states of BLAST_u and BLAST_n embryos. Fig. 8D shows the differences between different
medical centers in blastulation outcome statistics originate from the IVF policies (mainly

incubation time).

f0112] Fig. 8E shows embryos plotted according to their incubation time (t;;,., y-axis) and
the latest developmental state reached (x-axis), as well as according to the time that lapsed
from the time of latest development event (t;,. — t,, y-axis) and the latest morphokinetic
state reached (x-axis). Developmentally arrested embryos are located above the upper dotted
line and below the bottom dotted line. Ladder-like distributions reflect day-night periodicity.
Embryos that are identified as arrested either according to (i) the statistics of morphokinetic

events or (ii) the statistics of morphokinetic intervals are labeled BLAST_n.

f0113] Fig. 8F shows that half of the embryos were incubated for four days or longer. Fig.
8G shows totals in the dataset for BLAST_p, BLAST_n, and BLAST_u embryos, with
further breakdowns for developmental states of BLAST_u and BLAST_n embryos.

f0114] In some embodiments, metadata used in the annotation process includes, for each
embryo, total time of incubation measured from fertilization, t;,., and latest developmental

state reached inside the incubator, S,,. In some embodiments, metadata used in the annotation
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process includes, for each embryo, the time interval between the total time of incubation

measured from fertilization and the latest developmental state reached inside the incubator,
tinc — tn-
f0115] In some embodiments, metadata used in the annotation process includes, for each

embryo, two Cartesian coordinates, for example, [Sy, t_inc] and [S;, tine — thl-

[0116] In some embodiments, to minimize the potential impact of statistical outliers, time
windows were bound between the 1st and the 99" percentiles of the corresponding temporal
morphokinetic distributions as measured based on thousands of embryos. Therefore,
embryos that are located within the bounded area exhibit normal development and thus hold
the potential to proceed if incubation was extended. Embryos located in other regions may
be indicated as one of: (i) embryos upper-bounded by the 99" percentile of the next
consecutive morphokinetic event, S, 1, which reached state S,, and did not proceed to the
next developmental state, but are still within the permitted time window for proceeding to
Sn+1, (i) embryos that have missed the permitted time window for advancing towards the
next developmental state and are arrested in developmental state S,,, and (iii) embryos that
have the capacity to advance to the next developmental state if incubation was extended are
located within the orange regions, which are bound between the Ist percentile of the
temporal distribution of the morphokinetic event S,, and the 99th percentile of the temporal
distribution of the consecutive morphokinetic event S,.;. Embryos that are located in the
red regions, which are bottom-bounded by the 99th percentile of the consecutive
morphokinetic event S,44. For example, an embryo that was incubated for 96 hours and

reached 4-cells state, is arrested and is labeled 4-cells positive 5-cells negative (4CpSCn).

f0117] A similar statistical analysis may be performed to identify developmentally-

arrested embryos based on the temporal distributions of the morphokinetic intervals.

f0118] In some embodiments, a similar statistical analysis may be performed to identify
developmentally-arrested embryos based on the temporal distributions of the morphokinetic

intervals.

[0119] In some embodiments, each embryo is represented by the time that lapsed between
time of last morphokinetic event and time of incubation, t;,. — t,, which is plotted versus

the latest developmental state reached inside the incubator, S,,.
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[0120] In some embodiments, embryos may be indicated as one of: (i) embryos which have
reached developmental state S, and still hold the potential to advance to morphokinetic stage
Sp+1 if incubation is extended and/or continued, (ii) embryos that missed their interval time

window and are thus arrested in developmental state S,,.

f0121] For example, an embryo that had completed 4-cells cleavage and that 36 hours have

lapsed since without advancing to the next cleavage event is arrested.
{0122] In some embodiments, embryos are annotated as follows:

¢ Embryos found to be developmentally arrested either based on their morphokinetic

profiles or based on their interval profiles are annotated as BLAST _n;

s Embryos that reached start-of-blastulation (SB) inside the incubator are labeled

BLAST_p; and
s All other embryos are annotated as BLAST-unknown (BLAST _u).

[0123] In some embodiments, labelling of embryo blastulation is based on morphokinetic
histories. In some embodiments, embryos that reached start-of-blastulation (tSB) inside the
incubator were labeled blastulation-positive (BLAST_p). In some embodiments, BLAST-
negative (BLAST_n) embryos that had been arrested at earlier developmental states and
BLAST-unknown (BLAST_u) embryos were identified by projecting their morphokinetic
profiles onto the time windows that permit transitioning from one embryo state to the next.
In some embodiments, the SHIFRA database contains additional metadata, including

maternal age, day-of-transfer and co-transferred embryo statistics (Figs. 9A and 9B).

IMPLANTATION AND CLINICAL PREGNANCY ANNOTATION

f0124] In some embodiments, embryos in the dataset that are known to have reached
implantation in the uterus is labeled as ‘Known Implantation Data’ (KID). KID status is
determined based on established protocols by comparing the number of transferred embryos
with the number of implanted embryos as determined by the measured number of gestational
sacks on week five of pregnancy. In the case that the number of transferred and implanted
embryos was equal, the embryos are labelled KID-positive (KID_p). KID-negative (KID_n)

corresponds to the case of no implanted embryos. KID-unknown (KID_u) marks embryos
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whose implantation outcome cannot be determined, for example when three embryos were
transferred and only one or two were implanted. Clinical pregnancy (CP) accounts for the
implantation of a viable embryo as determined by fetal heartbeat ultrasound measurement
on week 7 of pregnancy. Positive CP (CP_p) accounts for the case that the number of
transferred embryos, gestational sacs and fetal heart beats is the same. Negative CP (CP_n)
includes transferred embryos that failed to implant (KID_n) and KID_p embryos with no
fetal heartbeat.

[0125] Reference is made to Figs. 9A-9C, which show totals and breakdown of an
exemplary training dataset comprising embryo video files and associated clinical metadata,

in accordance with some embodiments of the present disclosure.

[0126] Fig. 9A shows dataset totals and breakdowns of time-lapse video files of over
20,000 embryos generated by nine time-lapse (TL) incubators located in four medical
centers. Clinical metadata includes information on maternal age, day of transfer (7,824
transferred embryos) and number of co-transferred embryos (5,372 transfers). Fig. 9B shows
distributions of maternal age, day of transfer and number of co-transferred cycles vary
between medical centers, thus reflecting different IVF policies. Fig. 9C shows known
implantation data (KID) labels of positive, negative and unknown implantation outcome are

presented for embryos in each clinic.

f0127] Reference is made to Figs. 10A-10D. Fig. 10A shows (i) time-lapse image
acquisition of preimplantation embryo development as performed at 18-to-20 minute
intervals for up to six days of culture inside a time-lapse incubator. At each time point, a z-

stack of seven focal planes 15um apart is recorded.

[0128] Fig. 10B shows high resolution temporal distributions of the morphokinetic events
and intervals between consecutive events of positive and negative blastulation-labelled
embryos (BLAST_p and BLAST _n). The temporal overlap between BLAST_p and
BLAST_n distributions is quantified by K-S distances (top rows).

f0129] Reference is made to Figs. 11A 11B, 11C, 11D, 11E, and 11F, which show
exemplary embodiments of high resolution morphokinetic analysis of embryo
preimplantation development, in accordance with some embodiments of the present

disclosure.
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f0130] Fig. 11A shows morphokinetic annotation performed by trained embryologists. QA
validation was performed blindly by an expert embryologist using a set of randomly selected
253 embryos. The temporal differences between the performed annotations and QA
morphokinetic annotations were calculated and the corresponding cumulative distributions

are presented, showing almost complete agreement with negligible inconsistencies.

f0131] Fig. 11B shows high temporal resolution distributions of (i) morphokinetic events
and (ii) intervals between consecutive events are evaluated based on annotation of thousands
of embryos according to established protocols. The morphokinetic events of the first (tPNf

to t2), second (t3 to t4) and third (t5 to t8) cleavage cycles appear to be separated in time.

f0132] Fig. 11C shows the dataset totals and breakdown, and includes information on time-
lapse incubator, medical center, maternal age, co-transferred embryo statistics of 3654

transfer cycles, and known implantation data (KID) labels.

[0133] Fig. 11D shows high temporal resolution distributions of morphokinetic events
which were evaluated based on manual annotation of thousands of embryos according to
established protocols. The morphokinetic events of the first (tPNf-12), second (t3-t4) and

third (t5 to t8) cleavage cycles are separated in time.

[0134] Fig. 11E shows the temporal distributions of the intervals between consecutive

morphokinetic events show slow transitions between cell cycles.

f0135] Fig. 11F illustrates the accuracy of morphokinetic annotation was validated by an
expert embryologist. The cumulative distributions of the temporal differences show

negligible inconsistencies as evaluated using a set of randomly selected 253 embryos.

f0136] In some embodiments, the dataset comprises embryos associated with maternal
patients having a heterogeneous ethnic and racial backgrounds, who span different maternal
age groups, thus decreasing the effect of confounding variables and increasing embryo
classification generality. Seven-frame z-stacks, 15um apart, were recorded at 18-to-20-
minute intervals for up to six days of incubation, providing a continuous three-dimensional
imaging of preimplantation embryo development. In some embodiments, morphokinetic
profiles of 16,000 embryos were annotated based on time-lapse imaging. In some

embodiments, the annotations specified the time series of discrete events, e.g., pronuclei
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appearance and fading (tPNa/f), cleavage of N cells (tN; N=2 to 9), morula compaction (tM)
and start of blastulation (tSB). In some embodiments, morphokinetic annotations are
determined via majority voting across multiple qualified and trained embryologists
according to established protocols, and further validated blindly by an expert embryologist.
In some embodiments, the temporal intervals between consecutive morphokinetic events are

included, showing temporal separation between cleavage cycles.

[0137] In some embodiments, known implantation data (KID) labelling is determined
based on embryo transfer statistics and/or the number of gestational sacs and fetal heart beats
as measured on week 5 to 7 of pregnancy. In some embodiments, positive and negative
implantation outcome (KID_p and KID_n) refer to embryos that were successfully
implanted or failed to implant, respectively. In some embodiments, embryos whose

implantation outcome was uncertain are labelled KID unknown (KID_u).

BLASTULATION AND IMPLANTATION PREDICTION MACHINE LEARNING
MODELS

[0138] In some embodiments, one or more machine learning models may be trained on the
training dataset constructed as detailed above, to predict blastulation and/or implantation in

video image data associated with embryogenesis of a target embryo.

f0139] Insome embodiments, a fully automated BLAST classifier and/or prediction model
of the present disclosure, termed herein ‘SHIFRAB, is disclosed. In some embodiments, a
fully automated KID classifier and/or prediction model of the present disclosure, termed

herein ‘SHIFRAK, is disclosed.

f0140] In some embodiments, SHIFR Ap comprises a single CNN, whereas seven CNN’s
of the same architecture, training parameters and loss function are applied in parallel to
evaluate KID-labeled packets. In some embodiments, three subnetworks are trained on
BLAST-labeled embryos and four subnetworks were trained on KID-labeled embryos. As a
result, in some embodiments, BLAST-labeled packets obtained a single value score and
KID-labeled packets obtained seven scores. In some embodiments, both BLAST- and KID-
labeled packets were grouped according to their time index into a series of cohorts that were

separated by two hours. In some embodiments, since each cohort included all the packets
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from the preceding 12-hours, packets were shared between six successive cohorts. In some
embodiments, the seven scores of each KID-labeled packet were integrated into a single
value packet score by training a soft support vector machine (SVM) with a linear kernel

within each cohort separately.

[0141] In some embodiments, the implantation outcome of transferred embryos depends
not only on their developmental competence, but also on endometrial receptivity, which was
not taken into account in the learning process. Therefore, in some embodiments, packet-
learning for KID-prediction is performed using an ensemble of three DNNs that are trained
on KID-labeled packets and one DNN that is trained on BLAST-labeled packets (four
networks in total). In this manner, BLAST prediction packet learning generates one frame
score whereas KID prediction packet learning generates four scores for the first image of

each packet that are summed into one final frame score.

[0142] In some embodiments, SHIFRAp may comprise two stages. In some embodiments,
a first stage may be trained on time-lapse video image data packets of embryos, to output a
scalar value for each frame in each packet from the start of fertilization to time of prediction
(tp)- In some embodiments, a second stage of the BLAST classifier of the present disclosure
may be trained on the output of the first stage, to evaluate a potential of an embryo to

blastulate, e.g., based on training a Random Forest algorithm

{0143] In some embodiments, the predictive strength was quantified using the area under
the curve (AUC) of the receiver operating characteristic (ROC). In some embodiments,
BLAST prediction AUC that was evaluated for test set embryos, increased monotonically
with time of prediction, t, (e.g., 0.65 at 48 hours, 0.73 at 72 hours, 0.88 at 96 hours and 0.94
at 110 hours). In some embodiments, in order to confirm that SHIFRAg can significantly
predict blastulation also of high-quality embryos, the AUC was calculated for a cohort of
embryos that reached at least 8-cells cleavage state (§C_p). The BLAST-prediction AUC of
8C_p embryos was lower than for total embryo population, yet it reached 0.63 at 72 hours,
0.84 at 96 hours and 0.91 at 110 hours. In some embodiments, automated BLAST predictions
by SHIFRAg were compared with the a known manual morphokinetic classifier developed

by Milewski et al. for five-cells positive (SC_p) embryos (see R. Milewski et al., A predictive
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model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring

of embryo development. J Assist Reprod Genet 32, 571-579 (2015).

[0144] Reference is made to Figs 12A, 12B, 12C, and 12D, which show exemplary
embodiments of statistical characteristics of BLAST prediction by SHIFRARg, in accordance

with some embodiments of the present disclosure.

f0145] Fig. 12A shows a BLAST prediction by SHIFRAg (72 hours) for test-set embryos
obtained from different medical centers. Fig. 12B shows cross validation predictions,
wherein the cross validation comprises leaving one clinic out, and wherein a classifier is
trained on embryos only from three clinics and AUC is evaluated on embryos obtained from
the fourth clinic. The AUC of clinics H1 and H3, which contribute most of the BLAST-
labeled embryos, are relatively low consistent with high demand for additional embryos for

training.

[0146] Fig. 12C shows BLAST prediction using by SHIFRAg (72 hours) as evaluated for

test set embryos of different maternal age groups.

[0147] Fig. 12D shows five-fold cross validation of embryo-stage learning, wherein a
classifier is trained on 80% of the embryos and tested on the remaining 20%, which
demonstrates small differences in AUC and is indicative of lack of overfitting and supports
generality of BLAST prediction. In some embodiments, the AUC comprises the area under

the ROC curve.

[0148] To test generality, a five-fold stratified cross-validation was performed, yielding an
average AUC = 0.83 £+ 0.02 STD. In addition, the BLAST prediction of test set embryos
from each clinic were compared separately (AUC = 0.78 + 0.07 STD) and performed
leave-one-clinic-out cross-validation where classifiers were trained on embryos from three
clinics and tested on the forth. Since H3 clinic is the largest data provider of BLAST-labeled

embryos, H3 AUC was smaller than the other clinics.

f0149] Reference is made to Figs 13A and 13B, which show exemplary embodiments of
morphokinetic overlaps between different maternal age embryos, in accordance with some
embodiments of the present disclosure. Fig. 13A shows high resolution temporal

distributions of the morphokinetic events. Fig. 13B shows high resolution temporal
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distributions of intervals between consecutive events of embryos obtained from young
(age<32) and older (age>38) women are evaluated based on thousands of annotated profiles.

Temporal distributions are highly overlapping as quantified by K- S distances (top rows).

f0150] Temporal comparison between the morphokinetic events and intervals of embryos
that were obtained from young (age<32) and older (age>38) women showed negligible
differences (KS < 0.08) except for time of start blastulation (tSB), which occurred on average
three hours faster, and tM-tSB interval, which was 1.5 hours shorter in embryos derived from
young women. To verify that BLAST prediction was not confounded by maternal age, the
test set embryos were divided to four age groups and calculated AUC separately for each. In
some embodiments, BLAST prediction AUC was comparable between maternal age groups:
AUC = 0.75 £ 0.03 STD. In a clinic, binary classification of embryos can be obtained by
setting the threshold values of SHIFRAp that define negative prediction (below threshold)
and positive prediction (above threshold). The retrospective BLAST prediction statistics are
presented by setting two threshold values that support positive predictive value 0.91 (PPV2)
and sensitivity 0.98. Collectively, the accuracy, robustness and generality of a fully
automated day-3 prediction of embryo blastulation were established and clinical utility was

retrospectively demonstrated.

{0151] Insome embodiments, KID prediction is required to overcome two major obstacles:
(1) Unlike blastulation, which depends on the capacity of the embryo to develop in the
incubator under controlled conditions, implantation also depends on endometrial receptivity
— a parameter that is not accounted for during training; and (2) Training is limited to embryos
that had been preselected for transfer according to existing morphological and/or
morphokinetic protocols. As a result, training is restricted to a dataset of morphokinetically-

homogenous KID-labeled embryos.

f0152] Similarly to SHIFRAg, an automated two-stage KID classifier termed SHIFRAk
may be disclosed herein. In some embodiments, SHIFRAx comprises packet-learning
followed by embryo learning. In some embodiments, and in order to improve predictive
strength and robustness, packet learning combined three DNNs which are trained separately
on KID-labeled embryos, and one DNN that is trained on BLAST-labeled embryos. In some

embodiments, the PPV quantifies the probability that embryos that are predicted positive are
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indeed positive. In some embodiments, the sensitivity quantifies the fraction of positive-

predicted embryos out of all positive-labeled embryos.

[0153] Reference is made to Figs. 14A, 14B, and 14C, which are exemplary embodiments
of automated predictions of embryo implantation, in accordance with some embodiments of

the present disclosure.

f0154] Fig. 14A shows high resolution temporal distributions of the (i) morphokinetic
events and (ii) intervals between consecutive events of positive and negative known
implantation data-labelled (KID_p and KID_n) embryos are evaluated based on thousands
of annotated profiles. KID_p and KID_n distributions are almost indistinguishable as

quantified by K-S distances (top rows).

[0155] Fig. 14B shows the AUC of automated KID prediction by SHIFRAk of Day-5
transferred embryos (n=359; 355 transferred blastocysts) increases with prediction time, t,,.
Inset: ROC curves of automated KID prediction by SHIFRAk at 68 hours (left) and at 110
hours (right) are compared with implantation prediction by KIDScore-D3 and KIDScore-D5

manual-morphokinetic algorithms, respectively.

f0156] Fig. 14C shows confusion matrices demonstrating KID prediction based on
retrospective outcome of embryo implantation. In some embodiments, binary classifiers that
optimize (i) the positive predictive value (PPV); and/or (ii) the sensitivity were generated by

setting SHIFR Ak threshold values.

f0157] Accordingly, the temporal distributions of morphokinetic events and intervals of
KID_p and KID_n embryos are almost fully overlapping. The dataset of over 5,500 KID-
labelled embryos was divided into a train-validation set and an uncontaminated test set that

consisted of randomly selected 21% of the embryos.

f0158] Reference is made to Figs. 15A and 15B, which are exemplary embodiments of
SHIFRAs and SHIFRAx optimization for prediction of embryo blastulation and

implantation, in accordance with some embodiments of the present disclosure.

f0159] Fig. 15A shows scores of KID prediction (110 hours) and BLAST prediction (72
hours) of BLAST_p- KID_n (BpKn) and BLAST_p-KID_p (BpKp) co-labeled embryos

(n=396) are weakly-positively correlated (Spearman correlation 0.3). Consistent with their
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blastulation labels, BLAST prediction histograms of BpKn and BpKp embryos overlap (top
panel) and their average scores are comparable (b-left). However, BpKp embryos are scored
40% higher than BpKn embryos only by SHIFR Ak consistent with their implantation labels
(b-right).

[0160] Fig. 15B shows the temporal features of SHIFRAg (72 hours) and SHIFRAk (110
hours) are ranked according to their mean adjusted SHapley Additive exPlantions (SHAP),
which scores feature contribution to accurate BLAST and KID prediction. The ten top-
ranked BLAST features (> (0.004) and the thirteen top-ranked KID features (>0.007) were
derived from the latest time-lapse images (BLAST > 66 hours and KID > 100 hours). SHAP
values and feature values of the top ranked temporal features were calculated for BLAST-
labeled and KID-labeled train set embryos. ROC curves and AUC obtained by (i) BLAST
and (ii) KID classifiers that were trained only on the top ten BLAST features and the top

thirteen KID features, are shown respectively.

f0161] Aneuploidy might impair embryo implantation but permit blastocyst formation. To
study the relationship between blastulation and implantation potentials, the classification of
BLAST and KID co-labeled embryos was analyzed: 121 BLAST p — KID_n (ByK.,)
embryos and 275 BLAST_p — KID_p (BpKp) embryos. BLAST and KID prediction scores
are weakly-positively correlated (Pearson correlation score 0.3), which is indicative of
common visual elements. Consistent with their BLAST_p labels, BLAST prediction score
distributions of BpKp and BpKp embryos overlap. In some embodiments, average
implantation score of the latter embryos was 40% higher than BpKp embryos, indicating that
SHIFRAx differentiates between blastocysts that have the capacity to implant and
blastocysts that don’t.

f0162] Reference is made to Figs. 16A 16B and 16C, which are exemplary embodiments
of SHIFRAg and SHIFRAx optimization for prediction of embryo blastulation and
implantation, in accordance with some embodiments of the present disclosure. Figs. 16A,
16B, and 16C show that the temporal features of SHIFRAg (72 hours) and SHIFRAx (110
hours) are ranked according to their mean adjusted SHapley Additive exPlantions (SHAP),
which scores feature contribution to accurate BLAST and KID prediction. In some

embodiments, the ten top-ranked BLAST features (> 0.004) and (Fig. 16B-ii) the thirteen
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top-ranked KID features (> 0.007) were derived from the latest time-lapse images (BLAST
> 66 hours and KID > 100 hours; color coded). In some embodiments, the SHAP values and
feature values of the top ranked temporal features were calculated for (Fig. 16A-ii) BLAST-
labeled and (Fig. 16B-ii) KID- labeled train set embryos. Fig. 16C shows ROC curves and
AUC obtained by (i) BLAST and (ii) KID classifiers that were trained only on the top ten
BLAST features and the top thirteen KID features, respectively.

[0163] In some embodiments, and in order to gain additional insight into the underlying
mechanisms of embryo classification, the visual information that is embedded within the
time-lapse images, which SHIFRAg and SHIFR Ak are sensitive to, is analyzed. To this end,
SHAP methodology is employed for quantifying the impact of the temporal features on
embryo prediction are identified. In some embodiments, the frames that contribute the most
to accurate embryo classification by setting the sign of the SHAP values of each feature
according to the BLAST or KID label of the embryos (negative: -1; positive: +1) and
averaged across embryos (mean adjusted SHAP). In this manner, positive (negative) SHAP
values of temporal features of positively (negatively) labelled embryos contribute oppositely
to the mean adjusted SHAP compared with positive (negative) SHAP values of temporal
features of negatively (positively) labelled embryos. In some embodiments, the contribution
of the temporal features to BLAST prediction and to KID prediction changes greatly between

different frames.

f0164] In some embodiments, temporal features of low mean adjusted SHAP scores are
associated with early time points. In some embodiments, the top ten BLAST features
(adjusted SHAP > 0.004) and top thirteen KID features (adjusted SHAP > 0.007) were
associated with latest frames. In some embodiments, the SHAP values and the feature values
of the top-ranked BLAST and KID temporal features were correlated across individual
embryos (Figs. 16A-ii and 16B-ii). In some embodiments, and in order to study whether the
top-ranked temporal features can direct BLAST and KID prediction without including the
rest of the temporal features, the embryo-learning BLAST and KID classifiers were trained
again using only the top-ranked features. The results were that the top-ranked features were
sufficient for reaching high predictive power with comparable AUC values (BLAST:
AUC=0.75; KID: 0.7 Fig. 7C-i,ii) as SHIFRAg (AUC=0.74, Fig. 10C-inset) and SHIFRAk
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(AUC=0.71, Fig. 14B-inset). This indicates that the top-ranked temporal features as defined

here mark the developmental potential of the embryos to blastulate and to implant.

[0165] In some embodiments, each of the one or more machine learning models comprises
one or more neural networks. In some embodiments, a neural network of the present
disclosure may be implemented using the PyTorch framework, and/or trained using

Stochastic Gradient Descent with Nesterov of 0.9.

[0166] In some embodiments, the input objects of the network are packets of five pre-
processed frames P,;". In some embodiments, training batches include randomly selected
k = 4 packets obtained from K = 8 embryos within 12-hour windows, 20 hour time
windows, and/or any range therebetween. In some embodiments, the packets are obtained
from randomly selected embryos such that pairs of packets are separated by no longer than
8 hours. In some embodiments, the training batches are Convolutional Neural Network

(CNN) training batches. In some embodiments, the training comprises CNN training.

[0167] In some embodiments, packets of all focal planes are used for training. In some
embodiments, packets of the three central focal planes (-15, 0 and +15 pm) are used for
training, whereas validation and test set embryos contributed packets only of the middle
focal plane. In some embodiments, the residual network architecture comprises thirteen
layers that include seven residual blocks and two fully-connected layers. In some
embodiments, the layers comprise one or more of a convolution-max pooling layer, residual-
max pooling convolution blocks, residual convolution blocks, fully-connected layers, and
one or more input neurons that are associated with non-overlapping time windows. In some
embodiments, the time windows comprise 6-19 hour time windows, for example, such as
12-hour time windows. In some embodiments, the duration of the time windows ranges
between 48 and 120 hours. In some embodiments, packets representing a time point earlier
than 48 hours are associated with the first neuron and packets later than 120 hours are
associated with the sixth neuron. In some embodiments, the packet score is selected out of

the input neurons according to its time index.

{0168] In some embodiments, the last layer consists of w input neurons that are associated

with non-overlapping time windows as defined for BLAST and KID prediction networks. In
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some embodiments, packet score output is determined by selection of one of the input

neurons according to the time index n of the first frame of the packet.

f0169] In some embodiments, embryo developmental potential is marked by scarce
dynamic events that last 30 to 60 min and are thus captured by individual packets. In some
embodiments, a high-quality embryo will have only a few packets that are scored high
whereas all packets of a low-quality embryo will be scored low. This principle is
implemented by weighing logistic loss as follows. In some embodiments, the weighted loss

of embryo m is calculated based on all k packets:
k m
[m= Z wLog (1 + e YmSn),
n=1

where s;;* are the packet scores and w;;* are the softmax weights:

eV*si

m _
Wn - —y-Sm
n=1€ "

[0170] In some embodiments, the sum of the weights wy* across k packets of embryo m

is 1. In some embodiments, y is the softness parameter. In some embodiments, at the limit
. 1.
y — 0, the weight becomes p independent of the scores of the packets. In some

embodiments, at the opposite limit of large y, w,* approaches 1 only for the packet of
maximal score. The problem of approaching this limit is that it will be increasingly difficult

for the network to converge. In some embodiments, the batch loss L is:

1 K
=15
Kium=1

f0171] The weights are thus optimized to minimize L. In some embodiments, the weights
are DNN weights. In some embodiments, the weights are CNN weights. In some
embodiments, the performances are optimized by setting the value of y. For example, in
some embodiments, y is set as y = 3. For example, in some embodiments, y is setas y =
5. In some embodiments, for a negative labeled embryo (y; = —1), even if a single packet
will obtain a positive score, its weight w;,* will be highest and the loss of the embryo ["* will
be large. As aresult, convergence will be approached only if all packets of a negative embryo

will obtain negative scores. On the other hand, one packet with a high positive score is
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sufficient for obtaining a small loss for a positive embryo (y; = +1). For these embryos, the
packets with low scores will have small weights and the packet with the highest score will
have the highest weight and a small loss will be obtained. In some embodiments, CNN

training by BLAST-labeled and by KID-labeled embryos converged within ten epochs.

MACHINE LEARNING MODEL OUTPUT

f0172] In some embodiments an output of the trained machine learning models, e.g.,
SHIFRAg and SHIFR Ak, comprises a scalar and/or compact and/or reduced-dimensionality
representation of each video image data packet. In some embodiments, the output is a single

number and/or a vector representing each packet.

f0173] In some embodiments, and as described in greater detail elsewhere herein, the
modified soft hinge loss and/or the batch loss are calculated for a plurality of packets. In

some embodiments, the training comprises calculating the loss for all the packets together.

f0174] In some embodiments, the scalar representation is a vector. In some embodiments,
the conversion comprises labeling the morphokinetic state of each packet. In some
embodiments, the conversion comprises labeling the number of cells in each frame. In some
embodiments, the conversion comprises generating a vector comprising n characters. In
some embodiments, a vector comprises a character for each morphological state. In some
embodiments, each character comprises a score between 0 and 1 for each cell. In some
embodiments, the score of each character indicates the association of the packet with a

specific classification.

f0175] Insome embodiments, the vector represents a predictive probability vector. In some
embodiments, for an embryo depicted by the packet, each position of a character along the
vector indicates the probability of the embryo to be in a specific state in that position along
the vector. In some embodiments, the specific state comprises the state of the embryo for a
specific position within the vector. In some embodiments, the vector can be converted into

a single number that represents the morphokinetic state of the embryo as a function of time.

[0176] In some embodiments, the conversion of the image data to compact representation
includes using an autoencoder. In some embodiments, the conversion comprises training a

network to compress an image to compact representation. In some embodiments, the
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conversion comprises training a network to decompress the compact representation to

restore the image data.

[0177] In some embodiments, the vector is converted to a matrix. For example, an image
of 500 by 500 can be compressed to 100 by 1, and thereby stored as a column of a compact-
representation matrix. In some embodiments, the compact representation matrix comprises
a plurality of columns wherein each column comprises a two-dimensional compact

representation of an image.

f0178] In some embodiments, the embryo depicted by the compact representation is
evaluated. In some embodiments, the compact representation of each embryo comprises a
plurality of vectors. For example, in some embodiments the compact representation of each
embryo comprises 6 vectors: 3 vectors are fed into a machine learning model trained to
identify blastulation packets and 3 vectors are fed into a machine learning model trained to
identify implantation packets. In some embodiments, the plurality of vectors are summed
together into a single vector which is evaluated for blastulation and/or implantation potential

of the represented embryo.

f0179] In some embodiments, the compact representation comprises a matrix which is
applied to a machine learning model trained to evaluate the blastulation and/or implantation

potential of the embryo represented by the matrix.

f0180] In some embodiments, packet learning for BLAST prediction and for KID
prediction is performed using the same DNNs as described above. In some embodiments,
network training for BLAST prediction is performed using w = 25 non-overlapping time
windows (0-4; 4-8; 8-12; 12-16; 16-20; 20-24; 24-27; 27-30; 30-5 33; 33-36; 36-42; 42-46;
46-48; 48-51; 51-56; 56-64; 64-72; 72-76; 76-80; 80-85; 85-90; 90-95; 95-105; 105-115;
>115). In some embodiments, network training for KID prediction is performed using w =
16 non-overlapping time windows (0-12; 12-24; 24-30; 30-36; 36-42; 42-48; 48-56; 56-64;
64-72; 72-76; 76-80; 80-85; 85-95; 95-115; 115-120; >120). In some embodiments, DNN
training using BLAST-labeled and KID- labeled embryos typically converged within 20-to-
60 epochs.

fO181] Fig. 17 shows the input of the deep neural network m are the preprocessed packets

P of embryo m and time index n. The DNN consists of 13 layers. There are m input
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neurons to the last layer, which determine the time windows for each packet according to its
time index n. The output scalar neuron of the network is the packet score. In some
embodiments, conv comprises Convolution. In some embodiments, RCB comprises

Residual convolution block.

[0182] In some embodiments, the developmental competence of each embryo was
evaluated based on the scores of the packets that belong to it. Consistent with the postulation
that high-developmental competence is marked by rare visual features, threshold values were
applied across all BLAST- and KID-labeled packet cohorts, thus removing low-score noisy
packets and highlighting high-score packets. One hundred equally-separated threshold
values were defined for each 12-hours packet cohort, ranging between the lowest and the
highest train-set packet scores. For each threshold value, embryo scores were calculated
based on the validation-set packets that belong to it as follows. Packets of lower scores were
discarded and packets of higher scores were summed after threshold-subtraction. For each
time of prediction, the selected threshold value generated the maximal AUC as calculated

across the validation set embryos.

EMBRYO DEVELOPMENTAL COMPETENCE PREDICTION

[0183] In some embodiments, the developmental potential of embryos is scored using a
second trained classifier. Each embryo is represented by a vector of frame scores obtained
by packet learning. In some embodiments, the temporal features were generated by
interpolation of the vectors of frame scores, thus obtaining a synchronized representation of
all embryos. In some embodiments, different classifiers are trained independently in order
to allow embryo prediction at different time points (time of prediction, t,). In some
embodiments, a classifier is trained on all train-set labeled embryos of video length greater
than a given t,, using the temporal features earlier than t,,. In some embodiments, the BLAST
prediction is performed using a Random Forest classifier. In some embodiments, the KID
prediction was performed using logistic regression. In both cases, training parameters were

optimized via grid-search five-fold cross validation.
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EXPERIMENTAL RESULTS

{0184] The ambiguity in identifying the actual visual elements that direct neural network
prediction is one of the major drawbacks in deep learning. In some embodiments, in order
to obtain a mechanistic insight into how embryo prediction by SHIFRAg and SHIFRAk
work, the top-ten positive SHAP images and top-ten negative SHAP images for each of the
top-ranked BLAST and KID temporal features are present. In some embodiments, embryos
are marked such that the cleavage-stage embryos with 4 cells or less, embryos with
asymmetric blastomeres, and highly-fragmented embryos in the images that contributed the
most to positive and negative BLAST prediction by SHIFRAg. In some embodiments,
temporal features 1 (72 hours), 2 (70 hours) and 4 (71 hours) were most sensitive to 4-cells
cleavage stage embryos and were identified as SHAP-negative images. In some
embodiments, temporal features 1, 3 (71.7 hours) and 8 (66.3 hours) were most sensitive to
uneven blastomere size and temporal features 2 and 4 were most sensitive to embryo

fragmentation, which also obtained negative-SHAP scores.

f0185] In some embodiments, the cleavage and morula stage embryos were marked with
non-compacted blastomeres and compacted morulae in the images that contributed the most
to positive and negative KID prediction by SHIFRAk. In some embodiments, the temporal
features 10 (106.7 hours) and 13 (107.3 hours) were most sensitive to the appearance of non-
compacted blastometres and temporal features 3 (109.7 hours), 9 (100.3 hours) and 11 (103.7
hours) were most sensitive to morula. In both cases, these morphological characteristics
directed negative-SHAP KID prediction. In some embodiments, the morphokinetic and
morphological characteristics are depicted only by a small fraction of the images of the
temporal features, indicating that the determinant visual elements that direct BLAST and

KID prediction are not distinguished by human level perception.

f0186] Reference is made to Figs. 18 A and 18B, which show exemplary embodiments of
top positive versus negative SHAP-scored embryo frames directing BLAST prediction, in

accordance with some embodiments of the present disclosure.

fO187] Figs. 18A and 18B shows Top ten SHAP-positive versus top ten SHAP-negative
embryo frames are shown for the selected temporal features by mean adjusted SHAP for

SHIFRAg BLAST prediction at 72 hours. In some embodiments, cleavage stage embryos
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with no more than 4 cells , blastomere asymmetry and high fragmentation embryos are

marked.

[O188] Reference is made to Figs. 19A and 19B, which show exemplary embodiments of
top positive versus negative SHAP-scored embryo frames directing KID prediction, in

accordance with some embodiments of the present disclosure.

f0189] Figs. 19A and 19B show top ten SHAP-positive versus top ten SHAP-negative
embryo frames are shown for the selected temporal features by mean adjusted SHAP for
SHIFRAx KID prediction at 110 hours. In some embodiments, cleavage stage or murula

stage embryos exposing non-compacted blastomeres and morula stage embryos are marked.

f0190] Fig. 10C shows the area-under-curve (AUC) of automated blastulation prediction
by SHIFRAg of test set embryos (n=1,621) and high quality embryos that reached 8-cells
(8C_p; n=1,456) with video length > 110 hours increase monotonically with time of
prediction, t,. Left inset: Receiver operating characteristic (ROC) curves and AUC values
calculated at t, = 72 hours of test set embryos and 8C_p embryos with sufficiently long
videos. Right inset: A comparison between SHIFRAk and Milewski BLAST classifier at
t, = 86 hours (8). Fig. 10D shows confusion matrices demonstrating retrospective BLAST
prediction. Binary classifiers were generated by setting SHIFRAg threshold values to
optimize (i) PPV and (ii) sensitivity, wherein K-S: Kolmogorov Smirnov, ROC: Receiver
operating characteristic, AUC: Area under the (ROC) curve, and PPV: positive predictive

value.

{0191] Fig. 20A shows fully automated prediction of embryo blastulation by SHIFRAg
that is performed directly on the time-lapse video files of the embryos. With prediction time,
the AUC is monotonically increasing as the visual information encoded in the video gains
association with embryo quality. Fig. 20B shows the ROC curves of BLAST prediction at
72 hours of (i) all test set embryos (n=852), (ii) high quality embryos that reached 8cells
(8Cp, n=775), and (iii) very high quality embryos that reached morula compaction
(MORULAp, n=730).

[0192] IVF cycles typically consist of multiple fertilized oocytes whose number and

quality tend to decline at advanced maternal age. The decision which embryo(s) to transfer
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and when is critically important for reaching live birth while minimizing health risks and
shortening time to pregnancy by decreasing the number of cycles. During incubation, each
embryo can either be transferred, discarded, further cultured or frozen as a reserve for
subsequent transfers. This complex decision-making process requires a comprehensive
strategy that optimizes implantation potential and takes into account outcomes of previous
cycles, maternal age, sperm quality, and clinical background. The present disclosure
comprises scoring the developmental potential of individual embryos to form a blastocyst
and implant in the uterus. Video files of over 11,000 embryos were collected, wherein the
embryos were cultured in nine incubators and located in five medical centers during the past
five years. In some embodiments, seven-frame Z-stacks, 15 um apart, were recorded at ~20
minute intervals for up to six days of incubation, thus providing a continuous three-
dimensional imaging of preimplantation embryo development. In addition to the video files,
the SHIFRA database includes metadata for each embryo, including maternal age, co-
transferred embryo statistics, and implantation outcome (Figs. 11A-11F). In some
embodiments, morphokinetic events of all embryos were annotated by expert embryologists

in accordance with established protocols and validated via a quality assurance protocol.

{0193] Reference is made to Figs. 21 A and 21B, which shows exemplary embodiments of
first direct unequal cleavage (DUCI1) embryos that are selected by SHIFR Ak, in accordance
with some embodiments of the present disclosure. Fig. 21A shows DUCI referring to the
abnormal division of the first cell into three blastomeres leading to chromosomal aberrations.
Fig. 21B shows DUCI embryos that are scored low relative to non-DUC1 embryos (both
KID_n and KID_p embryos), and are thus deselected by SHIFRAk at 90 hours. In some
embodiments, analysis included all DUC1 embryos in the SHIFRA database compared with
test-set non-DUC1 embryos in order to improve statistical significance. Out of 1,131 KID_p
embryos in the SHIFRA database, only three were DUC1 embryos and only one was

incubated for over 90 hours.

{0194] In some embodiments, the temporal distributions of the morphokinetic events and
the consecutive intervals between them were evaluated based on the profiles of thousands of
embryos. In some embodiments, the small fraction of direct unequal cleavage (DUC)
embryos was identified and labelled as well. In some embodiments, the embryos were

divided into train, validation and test sets. In some embodiments, test sets comprise of
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randomly selected 18% of all embryos. In some embodiments, test sets were strictly
maintained uncontaminated and were used only after training processes were completed. In
some embodiments, the capacity of an embryo to undergo blastulation marks its
developmental quality and is linked with its potential to implant in the uterus. Hence,
classification of BLAST-positive (BLAST_p) embryos that can reach start-of-blastulation
(SB) and BLAST-negative (BLAST_n) embryos that are developmentally arrested is of high
clinical value (Figs. 8A-8G). A comparison between the temporal distributions of BLAST_p

and BLAST_n embryos shows high overlap across all morphokinetic events and intervals.

[0195] Reference is made to Figs. 22A, 22B, and 22C, which show statistical
characteristics of BLAST prediction by SHIFRAB, in accordance with some embodiments
of the present disclosure. Fig. 22A shows the BLAST prediction ROC curves at 72 hours of
the train, in which the validation and test sets are overlapping, thus excluding overfitting by
SHIFR Ag. Fig. 22B shows positive and negative predictive values (PPV and NPV) that are
plotted as a function of classification threshold at 72 hours. Fig. 22C demonstrates binary
prediction of embryo blastulation by SHIFRAg, where a threshold value of 42 was set such
that embryos with scores higher than the threshold are classified positive. At this setting,
PPV=0.91 and NPV=0.31.

[0196] In some embodiments, a deep neural network was trained directly on the video files
using BLAST-labelled embryos, which is not limited to a morphokinetic representation. In
some embodiments, a fully automated classifier SHIFRAg was generated, which predicts
embryo blastulation. A detailed description of the CNN design (Figs. 3 and Fig. 17) and the
learning process is provided in the present disclosure. In some embodiments, the overlap
between the receiver operating characteristic (ROC) curves of the train, validation and test

set embryos excludes overfitting.

{0197] Insome embodiments, the BLAST-prediction, which is measured by the area under
the ROC curve (AUC) for test-set embryos with sufficiently long video recordings, increases
monotonically from 0.68 at 60 hours and 0.75 at 72 hours to 0.87 at 90 hours. In some
embodiments, the BLAST prediction is also demonstrated for high-quality embryos that
reached 8-cells state (AUC=0.65) and very- high quality embryos that reached morula

compaction (AUC=0.61), demonstrating that SHIFRAg can discriminate between morulae
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that can form a blastocyst and developmentally arrested morulae. In some embodiments, a
binary classifier that supports SET methodology is derived by selecting a threshold value
42, which optimizes positive predictive value (PPV, Fig. 22B). In some embodiments, 399

embryos are classified positive and 469 embryos are classified negative, with 91% precision.

[0198] Reference is made to Figs. 23A, 23B, and 23C, which are exemplary
demonstrations of fully automated predictions of embryo implantation (SHIFRAk), in
accordance with some embodiments of the present disclosure. Fig. 23A shows the temporal
distributions of (i) the morphokinetic events and (ii) the time intervals between consecutive
events are evaluated based on thousands of annotated profiles, revealing significant overlaps
between positive and negative known implantation data labelled embryos (KID_p and
KID_n; KS test scores < 0.34, top rows). Fig. 23B shows fully automated prediction of
embryo implantation by SHIFR Ak is performed directly on the time-lapse video files of the
embryos at time of prediction. The drop in the AUC at 80-82 hours is due to a decrease in
the number of transferred embryos beyond day-3 that are available for CNN training. In
some embodiments, the KID prediction by SHIFRAk is superior compared KIDScore-D3
morphokinetic classifier. Fig. 23C shows the ROC curves of KID prediction by SHIFR Ak
at (i) 60 hours (n=626), (i1) 74 hours (n=274) and (iii) 90 hours (n=204).

[0199] Reference is made to Figs. 24A, 24B, 24C, 24D, and 24E, which show the
SHIFRAg and SHIFRAKk databases are optimized to predict blastulation and implantation
with partial dependence on embryo state, in accordance with some embodiments of the

present disclosure.

[0200] Fig. 24A shows the prediction scores of embryo implantation (SHIFRAk), which
are linearly correlated with the prediction scores of blastulation (SHIFRAg) as computed for
co-labeled embryos at 72 hours (Spearman correlation coefficient 0.77). The BLAST_n-
KID_n (BnKn) embryos are scored low by both classifiers. Relative to BLAST_p-KID_n
(BpKn) embryos, the distribution of BLAST_p-KID_p (BpKp) embryos is shifted towards
higher implantation scores (right panel) but not towards higher blastulation scores (top

panel).

{0201] Fig. 24B shows that the average prediction scores yield BnKn< BpKn< BpKp by
SHIFRAg and by SHIFR Ak, but BpKn< BpKp is statistically significant only by SHIFR Ak,
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indicating that SHIFR Ak is capable of correctly evaluating the potential even of blastocysts
to implant. Fig. 24C shows that the probability distributions of the developmental states of
positive and negative (i) BLAST-labeled and (ii) KID-labeled embryos are shown between

60 and 90 hours from fertilization.

[0202] Fig. 24D shows that the information entropies, Hgz(t) > Hy(t), as calculated for
the embryonic states of BLAST and KID labeled embryos, vary little between 60 and 90
hours. Fig. 24E shows the adjusted mutual information (AMI) between the distributions of
SHIFRAp and SHIFRAx classification scores, and the distributions of states of BLAST-
labeled and KID-labeled embryos are plotted as a function of prediction time. As a control,

the AMI calculated relative to a random distribution of states are zero.

[0203] Reference is made to Figs. 25A and 25B, which are exemplary embryonic state
distributions statistical analysis, in accordance with some embodiments of the present

disclosure.

{0204] Fig. 25A shows the probability distributions of the developmental states of all test
set embryos are shown between 60 and 90 hours from fertilization. Fig. 25B shows the
information entropy H(t), as calculated for the embryonic state distributions, varies little
between 60 and 90 hours. Hence, the effective number of states that the embryos are found

in, estimated by 27 (t), 18 maintained constant.

[0205] Compared with BLAST classification, prediction of known implantation data
(KID) is inherently hindered due to two reasons: (1) Unlike blastulation, which depends on
the capacity of the embryo to develop in the incubator under controlled conditions,
implantation also depends on uterus receptivity, which is not taken into account in the
training process, and (2) KID-labelled embryos had been preselected for transfer according
to morphological and/or morphokinetic parameters. This is reflected by the high temporal
overlap between the distributions of the morphokinetic events and intervals of KID-positive
(KID_p) and KID-negative (KID_n) embryos. Hence, the embryos available for training of
KID prediction form a homogenous group compared with the morphokinetic variation that
is characteristic of BLAST-labeled embryos (Figs. 10A-10D, Figs. 20A-20B, and Fig. 24C-
24D) and the entire population of embryos (Figs. 10A-10F and Figs. 25A-25B).
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[0206] Reference is made to Figs. 26A and 26B, which are exemplary statistical
characteristics of KID prediction by SHIFR Ak, in accordance with some embodiments of
the present disclosure. Positive and negative predictive values (PPV and NPV) are plotted
as a function of SHIFRAx classification threshold at (depicted by Fig. 26A-i) 72 and at
(depicted by Fig. 26B-i) 90 hours. Binary classification of embryo implantation is
demonstrated by setting threshold values (depicted by Fig. 26A-ii) 80 at 72 hours, and
(depicted by Fig. 26B-ii) 115 at 90 hours. Embryos with scores higher than thresholds are
classified positive. At these settings, (depicted by Fig. 26A-iii) PPV=0.64 and NPV=0.72 at
72 hours, and (depicted by Fig. 26B-iii) PPV=0.81 and NPV=0.72 at 90 hours.

[0207] Reference is made to Fig. 27, which is a table of the KIDScore-D3, in accordance
with some embodiments of the present disclosure. Fig. 27 shows the sensitivity and

specificity of KIDScore-D3 as calculated for the test set KID-labelled embryos.

[0208] To overcome these limitations, the KID-classifier SHIFRAx integrates multiple
subnetworks that were trained in parallel on BLAST-labeled and on KID-labeled embryos.
KID prediction is comparable when evaluated on the train, validation and test sets, both at
72 hours and at 90 hours’ prediction time, thus excluding overfitting. In some embodiments,
the AUC increased with prediction time from 0.65 at 60 hours, 0.70 at 74 hours and 0.74 at
90 hours (Figs. 23B and 23C). In some embodiments, at 66 hours, KID prediction by

SHIFR Ak outperforms the current state-of-the-art morphokinetic classifier KIDScore-D3.

[0209] Reference is made to Figs. 28A and 28B, which are exemplary embryo transfer and
implantation statistics, in accordance with some embodiments of the present disclosure. Fig.
28 A shows a histogram of the time of embryo transfer shows a separation between embryos
that were transferred on day-2, day-3, day-4 and day-5. Embryos from all 3654 transfer
cycles from five hospitals are included. Fig. 28B shows that while (i) the number of BLAST-
labeled embryos is remains almost constant until day-5, (ii) the number of KID-labeled

embryos drops sequentially on days 2 to 5 due to embryo transfers.

{0210] The decrease in AUC at 80-82 hours is due to the reduction in the number of
transferred embryos and specifically KID-labeled embryos that were available for training.
In some embodiments, the high AUC at 90 hours is consistent with a high PPV compared
with 72 hours whereas NPV is the same. Similar to BLAST prediction, a binary KID
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classifier that supports SET methodology was derive by selecting threshold 80 at 72 hours
and 115 at 90 hours. PPV increased from 0.64 (72 hours) to 0.81 (90 hours) while NPV was
0.72.

f0211] In some embodiments, direct unequal cleavage (DUC) embryos were not removed
from the training, validation and test sets, in order to maintain full automation of KID
prediction by SHIFRAk. Compared with late DUC events, the first DUC (DUCI) is
associated with the most significant decrease in embryo blastulation, implantation and
euploid rate, and holds the most far-reaching clinical implications. DUCI1 embryos were
deselected for transfer: the prevalence of DUCI embryos is 4.7% in the SHIFRA database
but only 2.1% of transferred embryos are DUC1. The implantation rate of DUCI and non-
DUCI transferred embryos was 15% (17 embryos) and 37%, respectively. Satisfyingly,
SHIFRAx scores both KID_n and KID_p DUCI embryos significantly lower than non-
DUCI1 embryos. In fact, the KID_p DUCI embryo is scored lower than KID_n non-DUCI
embryos, indicating that DUCI-embryos are strongly deselected by SHIFRAK. Since KID
prediction is evaluated based on the image packets of the 12-hours preceding prediction time,
deselection of DUCI embryos by SHIFRAK on day-3 or later is not based on the images of

first and second cleavage events, but rather on visual features that propagated forward.

f0212] Reference is made to Figs. 29A, 29B, 29C, and 29D, which shows that
classification of embryo blastulation and implantation is robust to differences in maternal
age, in accordance with some embodiments of the present disclosure. Fig. 29A shows a
comparison between the temporal distributions of all morphokinetic events of embryos of
young (age<32) and older (age>38) women as evaluated based on thousands of annotated
profiles shows very high overlaps (KS test scores < 0.13, top row). On average, only Morula
compaction (tM) and start-of-blastulation (tSB) appear earlier in embryos obtained from

young women.

f0213] Fig. 29B shows the fraction of successfully implanted embryos obtained from
young women (722 out of 1702 transferred embryos) is 2.7 fold greater than embryos
obtained from older women (351 out of 2249 transferred embryos). Fig. 29C and Fig. 29D
show the ROC curves of BLAST prediction and KID prediction, respectively, at 72 hours

are plotted for embryos obtained from young versus older women. The AUC (legends) of
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embryos of young women is comparable with the AUC of the entire pool of embryos, yet
the AUC of embryos from older women is higher, indicating that both SHIFRAg and
SHIFR Ak, which were trained on the entire pool of embryos, detect visual features that are

associated with advanced maternal age.

[0214] In some embodiments, the KID predictive strength increased with time of
prediction t,,, as evaluated for the same cohort of day-5 transferred test-set embryos. In some
embodiments, the AUC increases slowly from 48 to 84 hours and more rapidly from 84
hours onward. Compared with the manual-morphokinetic KIDScore™ decision support
tools, embryo implantation prediction by SHIFR Ak is as accurate as KIDScore-D3 on day-
3 and more accurate than KIDScore-D35 on day-5 as evaluated for the same test-set embryos.
In some embodiments, Day-5 predictive strength of SHIFRAx remains high despite the fact
that 98% of the transferred embryos were blastocysts (very high-quality embryos) and

endometrial receptivity was likely an important factor.

f0215] Prediction of embryo implantation was performed by KIDSCore-D3 on day-3 (66
hours’ prediction time) and by KIDScore-D5 on day-5 (110 hours’ prediction time)
according to the manufacturer’s protocols. Specificity and sensitivity were evaluated as a

function of KIDScore values.

[0216] Reference is made to Fig. 30A, 30B, 30C, and 30D, which show exemplary
embodiments of statistical characteristics of KID prediction by SHIFRAk, in accordance

with some embodiments of the present disclosure.

{0217] Fig. 30A shows KID prediction by SHIFRAk is shown for test-set Day-5
transferred embryos obtained from different medical centers. Fig. 30B shows Leave one
clinic out cross validation predictions, where a classifier is trained on embryos only from
three clinics and AUC is evaluated on embryos obtained from the fourth clinic, are presented.
In some embodiments, AUC of clinic H3, which contributes most of the KID-labeled

embryos, is relatively low consistent with high demand for additional embryos for training.

{0218] Fig. 30C shows Day-5 KID prediction using SHIFRAKk is evaluated for test set
embryos of different maternal age groups. Fig. 30D shows five-fold cross validation of

embryo-stage learning, where a classifier is trained on 80% of the embryos and tested on the
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remaining 20%, demonstrates small differences in AUC, which is indicative of lack of

overfitting and supports generality of KID prediction.

[0219] In some embodiments, generality of SHIFRAK is verified first via five-fold cross-
validation of day-5 transferred embryos, showing negligible variation of KID prediction:
AUC = 0.69 + 0.02 STD. In some embodiments, KID prediction of test set embryos that
are obtained from different clinics are compared, giving AUC = 0.64 + 0.04 STD. AUC
values by H1 (above average) and H2 (below average) clinics were likely skewed due to a
highly uneven ratio between KID_p and KID_n train-set embryos. In some embodiments,
generality was tested via leave-one-clinic-out cross-validation: AUC = 0.64 + 0.04 STD.
The below-average AUC by H3 is consistent with the smallest available train-set once H3
embryos were removed. The fraction of implanted embryos out of all transferred embryos
(taking into account also KID u transfers) was 2.7 fold higher for young women (age < 32;
39%) than older women (age > 38, 14%). In some embodiments, and in order to verify that
SHIFR Ak is not biased by maternal age, the embryos were divided into four age groups and
tested KID-prediction on each. Satisfyingly, variation in day-5 KID prediction across age
groups was small: average AUC = 0.75 + 0.03 STD. In some embodiments, retrospective
KID prediction statistics were demonstrated by setting the SHIFRAx threshold values that
support PPV 0.59 and sensitivity 0.89. Thus, automated prediction of embryo implantation
with superior predictive strength of day-5 transfers was confirmed, and generality across

clinics and age groups and retrospectively demonstrate clinical utility was verified.

{0220] Throughout the pre-menopause life span of the woman, oocytes are continuously
exposed to various stress mediators. Hence, maternal age is an important determinant of
female fertility. In some embodiments, a broad comparison was performed between the
morphokinetic statistics of embryos that were obtained from young (age<32) versus older
(age>38) women. In some embodiments, the temporal morphokinetic differences associated
with maternal age appear negligible between PNa and 9C states (KS test < 0.08). In some
embodiments, only morula compaction (tM) and start-of-blastulation (tSB) become retarded
in advanced age. In some embodiments, the fraction of successfully implanted embryos out
of all transferred embryos is 2.7 fold higher for young compared with older women, likely

due to the accumulation of chromosomal aberrations and aneuploidy. To verify that
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SHIFRAg and SHIFRAK are robust to the reduced developmental potential associated with
advanced maternal age, BLAST-prediction and KID-prediction were compared at 72 hours.
In some embodiments, the AUC values of BLAST and KID prediction of embryos from
older women are higher than the AUC values of embryos from young women and the entire
pool of embryos (Figs. 20B-i, and 23C-ii). This indicates that SHIFRAp and SHIFRAk are

sensitive to visual features that are encoded within the video files of advanced maternal age.

[0221] In some embodiments, the set of 186 BLAST and KID co-labeled embryos was
analyzed to study the relationship between blastulation and implantation potentials.
Developmentally impaired embryos, for example due to chromosomal aberrations, can form
blastocysts despite their compromised implantation potential. The positive correlation
between BLAST and KID prediction scores (Spearman correlation 0.77) is indicative of
common visual features. BLAST_n-KID_n (BnKn) embryos are of poor developmental
quality and are scored lower than BLAST_p-KID_n (BpKn) and BLAST_p-KID_p (BpKp)
embryos not only by SHIFRAg but also by SHIFRAk. In some embodiments, the SHIFRAk
but not SHIFRAg scores BpKp embryos higher than BpKn embryos in a statistically-
significant manner, demonstrating that SHIFRAk can differentiate between blastocysts that
have the capacity to implant in the uterus and the blastocysts that don’t. This is indicative of
visual features that are identified by SHIFRAk, which are exclusively associated with

implantation and not with blastulation.

f0222] Insome embodiments, a careful analysis of the distributions of the embryonic states
of BLAST-labelled and KID-labelled embryos between 60 and 90 hours shows agreement
between the most probable states, consistent will all embryos pooled together, but the
distributions of BLAST-labelled embryos are broader. In some embodiments, a measure of
the number of states that BLAST-labelled and KID-labelled embryos are found in, is given
by 2MB® and 27x®), respectively, where Hyz(t) and Hy(t) are the corresponding
information entropies. In some embodiments, between 60 and 90 hours, the BLAST-labeled
embryos occupied 5.3 to 6.3 states, similar to all embryos pooled together, whereas KID-
labeled embryos occupied only 3.3 to 4.7 states due to the preselection of embryos for

transfer according to common morphological and/or morphokinetic parameters.
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[0223] In some embodiments, the adjusted mutual information (AMI) was calculated
between the distributions of the developmental states of the embryos at time of prediction
and their BLAST and KID prediction scores in order to obtain insight into how embryonic
developmental potential is evaluated. In some embodiments, the AMI quantifies the
dependence between the state of the embryo at prediction time and the score it obtained by
SHIFR Ag and by SHIFR Ak. In some embodiments, as a control, the AMI for both classifiers

is zero for a random state distribution.

f0224] In some embodiments, SHIFRAg is more sensitive to the developmental states of
the embryos than SHIFRAk, yet in both cases the AMI is smaller than 0.2, indicating that
visual features other than the developmental states of the embryos have a greater effect on
embryo classification. In some embodiments, the dependence of BLAST classification on
the embryo state is increasing between 60 and 78 hours. In some embodiments, for KID
classification, the AMI is highest between 72 and 76 hours and between 84 and 88 hours

when the embryos approach morula compaction.

[0225] As will be appreciated by one skilled in the art, aspects of the present invention
may be embodied as a system, method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be referred to

herein as a "circuit," "module” or "system." Furthermore, aspects of the present invention
may take the form of a computer program product embodied in one or more computer

readable medium(s) having computer readable program code embodied thereon.

{0226] Any combination of one or more computer readable medium(s) may be utilized.
The computer readable medium may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable storage medium would include
the following: an electrical connection having one or more wires, a portable computer

diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an
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erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction execution system, apparatus, or

device.

[0227] A computer readable signal medium may include a propagated data signal with
computer readable program code embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer
readable signal medium may be any computer readable medium that is not a computer
readable storage medium and that can communicate, propagate, or transport a program for

use by or in connection with an instruction execution system, apparatus, or device.

f0228] Program code embodied on a computer readable medium may be transmitted using
any appropriate medium, including but not limited to wireless, wireline, optical fiber cable,

RF, etc., or any suitable combination of the foregoing.

[0229] Computer program code for carrying out operations for aspects of the present
invention may be written in any combination of one or more programming languages,
including an object-oriented programming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such as the "C" programming
language or similar programming languages. The program code may execute entirely on the
user's computer, partly on the user's computer, as a stand-alone software package, partly on
the user's computer and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user's computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

f0230] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems) and computer program

products according to embodiments of the invention. It will be understood that each block
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of the flowchart illustrations and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be provided to a hardware processor
of a general-purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart and/or block diagram block

or blocks.

[0231] These computer program instructions may also be stored in a computer readable
medium that can direct a computer, other programmable data processing apparatus, or other
devices to function in a particular manner, such that the instructions stored in the computer
readable medium produce an article of manufacture including instructions which implement

the function/act specified in the flowchart and/or block diagram block or blocks.

f0232] The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

f0233] The flowcharts and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion
of code, which comprises one or more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart

illustration, and combinations of blocks in the block diagrams and/or flowchart illustration,
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can be implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

[0234] The descriptions of the various embodiments of the present invention have been
presented for purposes of illustration but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and spirit of the described
embodiments. The terminology used herein was chosen to best explain the principles of the
embodiments, the practical application or technical improvement over technologies found in
the marketplace, or to enable others of ordinary skill in the art to understand the

embodiments disclosed herein.

[0235] In the description and claims of the application, each of the words "comprise"
"include" and "have", and forms thereof, are not necessarily limited to members in a list with
which the words may be associated. In addition, where there are inconsistencies between
this application and any document incorporated by reference, it is hereby intended that the

present application controls.
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CLAIMS

What is claimed is:

1. A system comprising:

at least one hardware processor; and

a non-transitory computer-readable storage medium having stored thereon program
code, the program code executable by the at least one hardware processor to:

receive a plurality of video segments, each depicting prenatal embryogenesis of

a corresponding embryo;
divide each of said video segments into a plurality of consecutive packets,
wherein each of said plurality of packets comprises a specified number of frames;
train a first machine learning model on a training set comprising

@) said packets, and

(i)  labels indicating a developmental parameter associated with each of said
corresponding embryos; and

train a second machine learning model on a training set comprising:

(iii)  sets of outputs of said first machine learning model, wherein each of said
sets is associated with said packets comprising one of said video segments,
and

(iv) labels indicating said developmental parameter associated with said

corresponding embryo depicted in said one of said video segments.

2. The system of claim 1, wherein, with respect to each of said packets, said output of
said trained first machine learning model is a numerical representations indicating a

probability associated with said developmental parameter.

3. The system of claim 2, wherein said numerical representation is one of: a scalar

representation, a vector representation, and a matrix representation.

4. The system of any one of claims 1-3, wherein said numerical representation reflects

a dimensionality reduction.
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5. The system of any one of claims 1-4, wherein said trained second machine learning
model predicts a developmental potential associated with each of said corresponding

embryos.

6. The system of any one of claims 1-5, further comprising, at an inference stage:
@) applying said trained first machine learning model to target packets
associated with a target video segment depicting prenatal embryogenesis of
a target embryo, to obtain said numerical representations for each of said
target packets; and
(i1) applying said trained second machine learning model to said obtained
numerical representations, to predict a developmental potential of said target

embryo.

7. The system of any one of claims 1-6, wherein said first machine learning model
comprises at least two machine learning models, and wherein:
@) with respect to a first of said machine learning models, said developmental
parameter indicated by said labels is a blastulation state; and
(ii) with respect to a second of said machine learning models, said developmental

parameter indicated by said labels is an implantation state.

8. The system of any one of claims 1-6, wherein said developmental parameter
comprises at least one of: morphological stage, cleavage stage, number of cells, cell
fragmentation, cell symmetry, inner cell mass, trophectoderm, pronuclei symmetry,

pronuclei movement, pronuclei location, cell location, and cell movement.

9. The system of claim 8, wherein said trained second machine learning model predicts
at least one of: morphological stage, cleavage stage, number of cells, cell fragmentation, cell
symmetry, inner cell mass, trophectoderm, pronuclei symmetry, pronuclei movement,

pronuclei location, cell location, and cell movement.

10. The system of any one of claims 1-6, wherein said first machine learning model

comprises a self-supervised algorithm.

11. A method comprising:
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receiving a plurality of video segments, each depicting prenatal embryogenesis of a
corresponding embryo;
dividing each of said video segments into a plurality of consecutive packets, wherein
each of said plurality of packets comprises a specified number of frames;
training a first machine learning model on a training set comprising
@) said packets, and
(ii) labels indicating a developmental parameter associated with each of said
corresponding embryos; and
training a second machine learning model on a training set comprising:
(iii))  sets of outputs of said first machine learning model, wherein each of said sets
is associated with said packets comprising one of said video segments, and
(iv)  labels indicating said developmental parameter associated with said

corresponding embryo depicted in said one of said video segments.

12. The method of claim 11, wherein, with respect to each of said packets, said output
of said trained first machine learning model is a numerical representations indicating a

probability associated with said developmental parameter.

13. The method of claim 12, wherein said numerical representation is one of: a scalar

representation, a vector representation, and a matrix representation.

14. The method of any one of claims 11-13, wherein said numerical representation

reflects a dimensionality reduction.

15. The method of any one of claims 11-14, wherein said trained second machine
learning model predicts a developmental potential associated with each of said

corresponding embryos.

16. The method of any one of claims 11-15, further comprising, at an inference stage:
@) applying said trained first machine learning model to target packets
associated with a target video segment depicting prenatal embryogenesis of
a target embryo, to obtain said numerical representations for each of said

target packets; and
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(i1) applying said trained second machine learning model to said obtained
numerical representations, to predict a developmental potential of said target

embryo.

17. The method of any one of claims 11-16, wherein said first machine learning model
comprises at least two machine learning models, and wherein:
@) with respect to a first of said machine learning models, said developmental
parameter indicated by said labels is a blastulation state; and
(ii) with respect to a second of said machine learning models, said developmental

parameter indicated by said labels is an implantation state.

18. The method of any one of claims 11-16, wherein said developmental parameter
comprises at least one of: morphological stage, cleavage stage, number of cells, cell
fragmentation, cell symmetry, inner cell mass, trophectoderm, pronuclei symmetry,

pronuclei movement, pronuclei location, cell location, and cell movement.

19. The method of claim 18, wherein said trained second machine learning model
predicts at least one of: morphological stage, cleavage stage, number of cells, cell
fragmentation, cell symmetry, inner cell mass, trophectoderm, pronuclei symmetry,

pronuclei movement, pronuclei location, cell location, and cell movement.

20. The method of any one of claims 11-16, wherein said first machine learning model

comprises a self-supervised algorithm.

21. A computer program product comprising a non-transitory computer-readable storage
medium having program code embodied therewith, the program code executable by at least
one hardware processor to:

receive a plurality of video segments, each depicting prenatal embryogenesis of a
corresponding embryo;

divide each of said video segments into a plurality of consecutive packets, wherein
each of said plurality of packets comprises a specified number of frames;

train a first machine learning model on a training set comprising

@) said packets, and
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(ii) labels indicating a developmental parameter associated with each of said
corresponding embryos; and

train a second machine learning model on a training set comprising:

(iii))  sets of outputs of said first machine learning model, wherein each of said sets
is associated with said packets comprising one of said video segments, and

(iv)  labels indicating said developmental parameter associated with said

corresponding embryo depicted in said one of said video segments.

22. The computer program product of claim 21, wherein, with respect to each of said
packets, said output of said trained first machine learning model is a numerical

representations indicating a probability associated with said developmental parameter.

23. The computer program product of claim 22, wherein said numerical representation

is one of: a scalar representation, a vector representation, and a matrix representation.

24. The computer program product of any one of claims 21-23, wherein said numerical

representation reflects a dimensionality reduction.

25. The computer program product of any one of claims 21-24, wherein said trained
second machine learning model predicts a developmental potential associated with each of

said corresponding embryos.

26. The computer program product of any one of claims 21-25, further comprising, at an
inference stage:

@) applying said trained first machine learning model to target packets
associated with a target video segment depicting prenatal embryogenesis of
a target embryo, to obtain said numerical representations for each of said

target packets; and
(i1) applying said trained second machine learning model to said obtained
numerical representations, to predict a developmental potential of said target

embryo.

27. The computer program product of any one of claims 21-26, wherein said first

machine learning model comprises at least two machine learning models, and wherein:
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@) with respect to a first of said machine learning models, said developmental
parameter indicated by said labels is a blastulation state; and
(ii) with respect to a second of said machine learning models, said developmental

parameter indicated by said labels is an implantation state.

28. The computer program product of any one of claims 21-26, wherein said
developmental parameter comprises at least one of: morphological stage, cleavage stage,
number of cells, cell fragmentation, cell symmetry, inner cell mass, trophectoderm,
pronuclei symmetry, pronuclei movement, pronuclei location, cell location, and cell

movement.

29. The computer program product of claim 28, wherein said trained second machine
learning model predicts at least one of: morphological stage, cleavage stage, number of cells,
cell fragmentation, cell symmetry, inner cell mass, trophectoderm, pronuclei symmetry,

pronuclei movement, pronuclei location, cell location, and cell movement.

30. The computer program product of any one of claims 21-26, wherein said first

machine learning model comprises a self-supervised algorithm.
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