(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
5 June 2008 (05.06.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2008/067329 Al

(51)

21

(22)

(25)

(26)

International Patent Classification:
GOGF 9/45 (2006.01) GOGF 12/02 (2006.01)

International Application Number:
PCT/US2007/085664

International Filing Date:
27 November 2007 (27.11.2007)
Filing Language: English

Publication Language: English

(34)

AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(30) Priority Data: ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
11/564,249 28 November 2006 (28.11.2006) US European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

(71) Applicant (for all designated States except US): MI- PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

(72)

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: WRIGHTON, David Charles; One Microsoft
Way, Redmond, Washington 98052-6399 (US). UNOKI,
Robert Sadao; One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

(81) Published:

with international search report

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: COMPILING EXECUTABLE CODE INTO A LESS-TRUSTED ADDRESS SPACE

Securly
————————————— Component
15
Application Program 110
Compiled Code 133 # Exgouied
- ¥
_ L Pointer 140 To L Code {120 ¥ Executed
JIT Compiler ¥
P 105 ! iled O 5
L.Code Code] YLOUO0B% 4 LA Complled Code 145
115
Poirter 130 To L Code {125

(57) Abstract: Unsafe application programs that implement managed code can be executed in a secure fashion. In particular, an
operating system can be configured to execute an application program in user mode, but handle managed code compilation through
a type-safe JIT compiler operating in kernel mode. The operating system can also designate a single memory location to be accessed
@20 through multiple address spaces with different permission sets. An application program operating in user mode can be executed
& in the read/execute address space, while the JIT compiler operates in a read/write address space. When encountering one or more
pointers to intermediate language code, the application runtime can send one or more compilation requests to a kernel mode security
component, which validates the requests. If validated, the JIT compiler will compile the requested intermediate language code, and
the application program can access the compiled code from a shared memory heap.

7067329 A1 I 0O A0 0

WO 20

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

COMPILING EXECUTABLE CODE INTO A
LESS-TRUSTED ADDRESS SPACE
BACKGROUND
[0001] As computerized systems have increased in popularity, so have the
various application programs used on the computerized systems. In particular,
there are now a wide range of applications programs configured for any number of
purposes, whether to function as complex operating systems, databases, and so
forth, or as a simple calculator. In many cases, software developers will write new
application programs with a particular operating system in mind, using any number
of appropriate languages. Once the software is complete, the developer will
compile the application into machine-executable code, which can then be installed
on a computer system with the appropriate operating system.
[0002] One will appreciate, therefore, that there are a number of considerations
that often must considered by developers of operating systems as well as of the
individual application programs. Many of these interests may even be competing.
For example, many application program developers may have interests related to
quick and fast operation, while many operating system developers may have
interests related to security and stability. In some cases, the security and stability
requirements can cause some application programs to have slower execution and/or
lower-performance.
[0003] For example, the operating system may be configured to have application
programs run in a less-trusted “user” level, but have other system components run
in a trusted “kernel” level. As a result, an application program running in a user
level might only be able to perform certain types of functions by requesting the
given function through an intermediary, trusted component. The intermediate
component can then validate the request and then pass the request for the function
to a kernel level component, which can then execute the request.
[0004] Other ways of managing security are to limit the various applications and
components to specific readable, writable, and/or executable permission spaces.
For example, an operating system might allow certain application programs to run

only in a read/execute address space. This might allow the application programs to

1

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

execute any existing instructions, but would prohibit the application from
performing any write operations. By contrast, the operating system might allow
other sensitive system components to operate only in a read/write address space.
This might allow the sensitive components to make new writes, but would prohibit
those writes from being executed.

[0005] In still other cases, an operating system might allow only certain types of
application programs conforming to certain code standards to run in a space that is
readable, writable, and executable. For example, the operating system might only
allow “type-safe” applications to run in a read/write/execute address space. One
example of a type-safety rule might be to require an integer value to be added only
to other integer values, rather than to floating point values. A type-safe compiler
could then be used to compile only that executable program code that is type-safe,
and thus trusted by the operating system.

[0006] Unfortunately, some recent trends in application program developing
complicates various aspects of the above-mentioned security management
approaches. For example, a wide range of application developers are now creating
video game application programs using “managed code.” In general, managed
code includes executable program code, as well as intermediate language code that
can be compiled on an as-needed basis. For example, a developer of an application
program might include one or more references (in the compiled, executable code)
to intermediate code. Thus, when the executable code comes to a point where it
needs to use a function that is available only in intermediate language code, a JIT
(Just-in-time) compiler is used to compile certain intermediate language code into
executable instructions.

[0007] One can appreciate, therefore, that operating systems will sometimes
limit the use of managed code to type-safe applications. In particular, since the JIT
compiler will need to write, and since the application will need to execute, and
tfurther since the application program will need to access the compiled code written
by the JIT compiler, the JIT compiler and the executing application program will
typically operate in the same address space, which is readable, writable, and

executable. Thus, if the intermediate language code were not type-safe (or

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

conforming to some other program code restrictions), a malicious party could trick
the JIT compiler into generating harmful instructions that are executed.
[0008] Unfortunately, program code restrictions such as type-safety are often
believed to conflict with speed and performance considerations. This can be
particularly problematic for video game applications, where speed and performance
considerations are placed at a premium. In some cases, therefore, the developers of
video game applications may find it better or more efficient to ignore specific code
specifications, such as type-safety.

BRIEF SUMMARY
[0009] Implementations of the present invention provide systems, methods, and
computer program products configured to allow for the use of managed code in an
operating system, where the managed code may not necessarily conform to any
particular code standard. In one implementation, for example, an operating system
provides access to a memory location in two different address spaces, and sets the
permissions in the address spaces, such that the memory location is accessible with
different permissions from the two different address spaces. In one
implementation, a JIT compiler operating in one address space passes compiled
code into a shared memory heap. Executable program code, in turn, accesses the
compiled code from the memory heap, and executes it in the other memory address
space.
[0010] For example, a method of executing managed code so that untrusted
program code can be compiled and executed in a manner that does not threaten or
otherwise compromise system security can involve executing an application
program in a first address space of a memory location. The method can also
involve receiving one or more requests from the application program to compile
one or more sets of intermediate language instructions. In addition, the method can
involve compiling the one or more sets of intermediate language instructions into
newly compiled code using a JIT compiler running in a second address space of the
memory location. Furthermore, the method can involve passing the newly

compiled code to a shared memory heap. The application program can then

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

retrieve the newly compiled code from the shared memory heap into the first
address space.
[0011] Similarly, another method of generating computer executable program
code in a manner that uses JIT compilation while avoiding security violations can
involve receiving application program code that includes executable code and code
to be compiled. The method can also involve executing the executable code in a
lower-privilege mode and in a first address space. In addition, the method can
involve identifying one or more pointers in the executable code for at least some
code to be compiled. Furthermore, the method can involve switching to a higher-
privilege mode. Still further, the method can involve compiling the at least some
code in a different address space using a compiler operating in the higher-privilege
mode.
[0012] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.
[0013] Additional features and advantages of the invention will be set forth in
the description which follows, and in part will be obvious from the description, or
may be learned by the practice of the invention. The features and advantages of the
invention may be realized and obtained by means of the instruments and
combinations particularly pointed out in the appended claims. These and other
teatures of the present invention will become more fully apparent from the
tollowing description and appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0014] In order to describe the manner in which the above-recited and other
advantages and features of the invention can be obtained, a more particular
description of the invention briefly described above will be rendered by reference
to specific embodiments thereof which are illustrated in the appended drawings.

Understanding that these drawings depict only typical embodiments of the

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

invention and are not therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional specificity and detail
through the use of the accompanying drawings in which:
[0015] Figure 1A illustrates an overview schematic diagram of an
implementation in accordance with the present invention in which an application
program running in a less trusted security mode invokes managed code, which is
compiled by a JIT compiler in a trusted security mode;
[0016] Figure 1B illustrates a schematic diagram in which a memory location
managed by the operating system is accessible by components in two different
address spaces, which have different permissions for accessing the memory
location;
[0017] Figure 2 illustrates a flowchart of a sequence of acts in accordance with
an implementation of the present invention in which a JIT compiler receives and
handles one or more requests for intermediate language instructions; and
[0018] Figure 3 illustrates a flowchart of an overview sequence of acts in which
an operating system receives an application program that includes one or more
references to managed code, and executes the application program in accordance
with one or more security mechanisms.

DETAILED DESCRIPTION
[0019] Implementations of the present invention extend to systems, methods,
and computer program products configured to allow for the use of managed code in
an operating system, where the managed code may not necessarily conform to any
particular code standard. In one implementation, for example, an operating system
provides access to a memory location in two different address spaces, and sets the
permissions in the address spaces, such that the memory location is accessible with
different permissions from the two different address spaces. In one
implementation, a JIT compiler operating in one address space passes compiled
code into a shared memory heap. Executable program code, in turn, accesses the
compiled code from the memory heap, and executes it in the other memory address

space.

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

[0020] As will be understood more fully herein, implementations of the present
invention can provide a secure system without necessarily needing to verify that the
generated code does not violate the security constraints of the system. This can be
done at least partly by “sandboxing” the compiled code, as well as any other code
that 1s being executed. In particular, implementations of the present invention can
define a “sandbox,” which is essentially a predefined set of boundaries in which
any type of code can be executed. Specifically, the sandbox boundaries described
herein will result in malicious request(s) made by the executing code being either
denied by the operating system (as coming from a user mode component), or
limited to actions or functions only within the predefined permissions (e.g., denying
a write to a read/execute address space).

[0021] As a result, code that is compiled by a JIT compiler (e.g., 105), or even
the application program (e.g., 110) ultimately invoking the JIT compiler, can be
executed within the sandbox without necessarily being “type-safe,” or conforming
to some other security consideration. One will appreciate that this can free a given
developer to write application program code in a manner that is potentially less
constrained, and potentially faster and performance driven than previously possible.
[0022] In addition to ensuring that code is executed properly, implementations
of the present invention also provide mechanisms that ensure that the JIT compiler,
itself, cannot be “hijacked,” such as when receiving and compiling intermediate
language code. In particular, implementations of the present invention include a
JIT compiler that is configured for type-safe execution, rather than necessarily
checking incoming code for type-safety or compiling only type-sate code. As such,
the JIT compiler in accordance with implementations of the present invention can
be protected against requests that would cause the JIT compiler itself to violate
safety definitions (e.g., type-safe definitions).

[0023] In one implementation, for example, the JIT compiler can be configured
with type-safety definitions that restrict the JIT compiler from reaching outside of
its own data structures, or the data structures that are defined as part of the system
100 runtime. For example, the JIT compiler can be configured to perform a series

of checks to ensure that only valid casts are performed whenever performing casts

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

from one type to another. Similarly, the JIT compiler can be configured so that,
whenever asked to read out of arrays, the JIT compiler performs one or more
boundary checks to ensure that the JIT compiler is within the bounds of the array.
With respect to use within the C programming language, for example, the JIT
compiler can also be configured to ensure that whenever using a “union,” the JIT
compiler reads or writes to the proper part of the union. Furthermore, the JIT
compiler can be configured to ensure the JIT compiler never overtflows or
underflows while reading or writing the type-stack (the type-stack within the JIT
compiler).

[0024] In general, the JIT compiler’s type-stack is an internal data structure that
is generally important to maintain correctness, etc. For example, intermediate
language code is typically a stack-based system in which the JIT compiler operates
on objects in a stack in order, and places results back into the stack in order. The
JIT compiler in accordance with implementations of the present invention is thus
configured to simulate a stack to ensure that the JIT compiler is operating as
expected. For example, the JIT compiler can perform stack simulation while
compiling intermediate language code. If the simulated stack deviates significantly
from what the JIT compiler is being fed, the JIT compiler can quit compilation or
generate an error. This helps the JIT compiler ensure that it is operating within
prescribed boundaries, and thus protected from violating one or more security rules.
[0025] Figure 1A illustrates an overview schematic diagram of a computerized
system 100 (e.g., a video game operating system) in which an application program
(i.e., 110) 1s being executed. In one implementation, application program 110 is a
video game application, though one will appreciate that application program 110
can be any type of executable program code. In any event, Figure 1A also shows
that application program 110 comprises one or more sets of executable instructions,
such as compiled code 135, which includes a pointer 140 to intermediate language
(“IL”) code 120. Similarly, Figure 1A shows that application program 110
comprises compiled code 145, which includes pointer 150 to intermediate language

code 125. Intermediate language code 125, in turn, comprises several different

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

components or modules, such as code 120, 125 and 130, which need further
compilation before they can be executed.

[0026] There are any number of different ways that application program 110
will or can be executed in computer system 100. For example, a user might load a
storage device onto another device on which the system 100 is installed. The
storage device may include binary executable code for application program 110, as
well as managed code in the form of intermediate language code 115. Both the
executable code and intermediate language code of application program 110 could
then be loaded into computerized system 100. In other cases, a user, such as a
developer, may upload the application program 110, including intermediate
language code 115 through a network connection. In such a case, the user might be
executing application program 110 for testing newly developed application
programs (e.g., 110).

[0027] In any event, Figure 1A also illustrates that application program 110 is
being executed in a lower-privilege mode (e.g., “user” mode), while JIT compiler
105 1s operating in a higher-privilege mode (e.g., “kernel” mode). For example,
Figure 1A shows that application program 110 is operating in user mode 113 with
user privileges, while JIT compiler 105 is operating in kernel mode 103 with
corresponding kernel privileges. In addition, Figure 1A shows that intermediate
language code 115 is accessed by one or more components with kernel 103 level
privileges. Conversely, and as will be understood more fully herein, executable
code will only be executed by components operating with user 113 levels of
privileges.

[0028] Accordingly, as the runtime for application program 110 executes each
of the compiled instructions 135, 145 in user 113 mode, the runtime will come
across any of one or more pointers to intermediate language code. For example,
during execution, the runtime for application program 110 comes across pointer
140 to intermediate language code 120. Since pointer 140 references code that can
only be accessed in kernel 103 mode, the runtime will break out of user mode and

system 100 will switch to kernel 103 mode.

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

[0029] The request 143 will then be handled by security component 155, which
operates in kernel 103 mode. In general, security component 155 can comprise any
number or type of components or modules configured to receive a user mode 113
component request (e.g., 143), and then validate whether the request is appropriate.
This 1s done since user mode 113 is untrusted, and since application program 110
may or may not represent (or otherwise include) dangerous or malicious code.
[0030] Thus, to ensure that requests from user mode 113 execution will not
damage system 100, security component 155 can perform any number or type of
validation functions. For example, security component 155 can review message
143 for any number of handles, tokens, or the like. Furthermore, security
component 155 can review request 143 for application instructions that could be
used to compromise system 100, such as specific memory address requests, or
requests that could result in a buffer overrun, etc. Upon validating request 143,
security component 155 can initiate JIT compiler 105 in kernel mode.

[0031] Once operating in kernel mode, JIT compiler can then be fed the
requested code (i.e., 120) and begin compilation. For example, Figure 1A shows
that security component 155 executes one or more requests 147 that cause JIT
compiler 105 to receive and compile intermediate language code 120. After
compiling code 120 into executable binary instructions (i.e., compiled code 123),
Figure 1A also shows that JIT compiler 105 can then pass code 123 into memory
heap 160.

[0032] As will be understood more fully with respect to Figure 1B, memory
heap 160 straddles the boundary between user mode 113 and kernel mode 103
operations. In effect, memory heap 160 acts as a cross-permission / cross-boundary
store that is accessible by components operating in kernel mode 103 and/or in user
mode 113. Once compilation is completed, system 100 can switch back to user
mode and continue execution of the application program 110. In particular,
application 110 — operating in user mode — can pull the compiled code 123 as soon
as it is available, and begin executing it in user mode 113. One will appreciate,
therefore, that memory heap 160 can be used to help maintain the security

boundaries between the two security layers by allowing JIT compiler 105 and user

9

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

113 to function independently, in different privilege modes, without direct
communication.

[0033] Figure 1B illustrates additional details on how the security boundary
between the JIT compiler 105 and application program 110 can be accomplished or
otherwise maintained. In particular, Figure 1B illustrates an implementation in
which JIT compiler 105 and application program 110 operate with respect to a
particular same memory location, albeit with different permission sets. In
particular, Figure 1B illustrates an implementation in which the same memory
location can be accessed by components in one address space with one set of
permissions in one address space, and accessed by different components in another
address space with a different set of permissions. For example, Figure 1B shows
that memory location 160 is available in an address space 170 with read/write
permissions, and an address space 165 with read/execute permission.

[0034] In general, one or more kernel layer 103 components of operating system
100 will maintain a memory page table 180 for any given address location and
corresponding address spaces. For example, Figure 1B shows that memory page
table 180 is maintained in kernel 103 layer (i.e., one or more kernel mode
components) of system 100. One reason this is maintained by a kernel 103 mode
component is to ensure that an untrusted application program (i.e., operating in user
mode) cannot access or otherwise improperly manipulate the page table.

[0035] In any event, Figure 1B shows that page table 180 correlates memory
locations 160 and 165 with address spaces 170, 175, 190, and 195. For example,
memory location 160 is the shared memory heap, while memory location 165 is a
location in which application program 110 is loaded for execution. In addition,
page table 180 maps the access permissions of memory location 160 and 165, such
that address spaces 170 and 190 have “read/write” access to locations 160 or 165,
respectively. Similarly, page table 180 maps the permissions of memory location
160 and 165 for address spaces 175 or 195 as ‘“read/execute,” respectively.
Accordingly, when security component 155 (Figure 1A) receives a request (e.g.,

143) from a user mode 113 component, security component 155 can correlate the

10

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

address spaces of the component originating the request (e.g., 143) with the address
space for JIT compiler output (e.g., 123).

[0036] As previously mentioned, one of the ways that system 100 can enforce
the permission and security layer boundaries is through memory heap 160, which
straddles the described security/permission boundaries. In general, a “memory
heap” comprises a set of memory addresses set aside by system 100 during or just
prior to runtime. In this particular example, system 100 can allocate and configure
memory heap 160 so that only kernel layer components (e.g., JIT compiler 105) can
write to memory heap 160 (e.g., via page table 180), while user layer components
can only read from memory heap 160. As a result, application program 110 cannot
execute any compiled code from JIT compiler 105 in memory heap 160, but, rather,
must do so only in address space 175.

[0037] One will appreciate, therefore, that a “sandbox” can be set by requiring
operation of an application only in user mode, and by requiring the application and
JIT compiler to access certain components or data structures from a memory
address associated with different permission sets. Accordingly, Figures 1A-1B and
the corresponding text illustrate a number of different architectural components that
can be used to access and/or execute virtually any type of executable code,
including managed code, in a secure fashion. In particular, Figures 1A-1B and the
corresponding text illustrate how an application can execute in a user 113 mode,
and access a memory heap with only read or read/execute permissions for the JIT
compiled code. In addition, the Figures and corresponding text illustrate how the
application can invoke one or more kernel-layer components in different address
space 170, which has read/write permissions for memory heap 160, and can thus
compile and pass managed code to memory heap 160 but not execute it.

[0038] As previously mentioned, this type of distributed address space
configuration can provide a number of different benefits to program execution and
development. At the outset, for example, an application program developer can
write virtually any type of code without worrying about safety considerations (e.g.,

type-safety) In addition, an operating system developer need not speed exhaustive

11

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

resources developing the runtime verification code that would force all executing
program code to be safe (e.g., type-safe).

[0039] In addition to the foregoing, implementations of the present invention
can also be described in terms of flow charts having one or more acts in a method
for accomplishing a particular result. In particular, Figures 2 and 3, and the
corresponding text, illustrates flow charts one or more acts for executing managed
code so that safe and unsafe application program code can be executed without
threatening or compromising security. The methods illustrated in Figures 2 and 3
are described below with reference to the components and diagrams of Figures 1A-
1B.

[0040] Accordingly, Figure 2 shows that a method from the perspective client
computer system can comprise act 200 of executing an application in a first address
space. Act 200 includes executing an application program in a first address space
of a memory location. For example, Figure 1B shows that application program 110
1s executing from address space 175, which has read/execute permissions for
accessing memory location 160 (i.e., where the JIT compiled code will be placed
and thus designated as read/execute).

[0041] Figure 2 also shows that the method can comprise an act 210 of receiving
a request from the application for intermediate language instructions. Act 210 can
include receiving one or more requests from the application program to compile
one or more sets of intermediate language instructions. For example, the runtime
tor application program 110 comes across pointer 140 to intermediate language
code 120, which can only be accessed in kernel 103 mode. As such, the runtime
passes the pointer 120 as message 143 to security component 155, which processes
the request in kernel mode.

[0042] In addition, Figure 2 shows that the method can comprise an act 220 of
compiling the intermediate language instructions in a second address space. Act
220 includes compiling one or more sets of intermediate language instructions into
newly compiled code using a JIT compiler running in a second address space. For
example, upon validating request 143, security component 155 prepares and

executes one or more requests 147 to pass the requested intermediate language code

12

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

to JIT compiler 105. JIT compiler 105 then compiles the intermediate language
code 120 in the second address space 170, which in this illustration is provided
with read/write permissions to the shared memory heap 160.

[0043] Furthermore, Figure 2 shows that the method can comprise an act 230 of
passing the compiled code to a shared memory heap. Act 230 includes passing the
newly compiled code to a shared memory heap, wherein the application program
can retrieve the newly compiled code into the first address space. For example,
Figures 1A and 1B shows that JIT compiler 105, as well as application program
110, have access to memory heap 160. In particular, JIT compiler 105 can write to
(but not execute in) memory heap 160, while application program 110 can only
read and execute from memory heap 160. Thus, when JIT compiler 105 compiles
and creates code 123, the runtime for application program 110 can retrieve
compiled code 123 into address space 175, and execute the code in user mode.
[0044] In addition to the foregoing, Figure 3 shows that a method in accordance
with an implementation of the present invention of generating computer-executable
program code for a computer system in a manner that uses JIT compilation while
avoiding security violations can comprise an act 300 of receiving executable code
and code to be compiled. Act 300 includes receiving program code that includes
executable code and code to be compiled. For example, operating system 100
receives one or more storage media, and/or receives a network-based upload of
application program 110. Application program 110 includes executable program
code, as well as intermediate language code 115, which is accessed separately by
one or more kernel layer 103 components.

[0045] Figure 3 also shows that the method can comprise an act 310 of
executing the executable code in a lower-privilege mode. Act 310 includes
executing the executable code in a lower-privilege mode and in a first address
space. For example, Figure 1A shows that the executable portion of application
program 110 1s accessed or otherwise executed only in user mode 113, whereas the
intermediate language code 115 is only accessed by kernel mode components.
[0046] In addition, Figure 3 shows that the method can comprise an act 310 of

receiving a pointer for code to be compiled. Act 310 includes receiving one or

13

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

more pointers in the executable code for at least some code to be compiled. For
example, Figures 1A-1B shows application program 110, which is operating in user
mode 113 and in/from address space 175, comprises compiled code 135, pointer
140 to intermediate language code 120, compiled code 145, and pointer 150 to
intermediate language code 125. While executing application program 110 in user
mode, the pointers 140 and/or 150 will be identified in turn.

[0047] Furthermore, Figure 3 shows that the method can comprise an act 330 of
switching to a higher-privileged mode. For example, the runtime for application
program 110 identifies pointer 140 during execution, and identifies that JIT
compiler 105 will need to be initiated. Since JIT compiler 105 will need to operate
in kernel mode, system 100 momentarily pauses execution of application 110,
switches from user mode to kernel mode, and then initiates JIT compiler 105 as a
kernel mode 103 component. A message 143, which includes pointer 140, is then
passed to a kernel mode 103 security component 155. Security component 155,
operating in kernel mode, then evaluates the request to ensure the request 143 is
properly formed, and/or includes the appropriate handles, security identifiers, etc.
[0048] Still further, Figure 3 shows that the method can comprise an act 340 of
compiling the requested code in a higher-privilege mode. Act 340 includes
compiling the requested code in a different address space using a compiler
operating in the higher-privilege mode. For example, Figures 1A and 1B show that
JIT compiler 105, which is operating in the higher-privilege kernel layer 103, can
compile code 120 in one address space (address space 170), and further pass
compiled code 123 to memory heap 160, where the JIT compiler has read/write
access. Upon switching back to user mode, application program 110 can then
access the compiled code 123 and execute this code from an different address space
(address space 175) which has read/execute permissions for the memory heap 160.
[0049] As such, Figures 1A-2 and the corresponding text provide a number of
components, modules, and mechanisms that can be used to execute untrusted code,
including managed code, without sacrificing important security guarantees. As
previously described, this can be accomplished at least in part by separating

compilation of intermediate language code and execution of binary code in separate

14

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

address spaces for the same program. In addition, this can be accomplished with a
type-sate JIT compiler, which compiles intermediate code and passes the compiled
code into a shared memory heap. The type-safe JIT compiler is configured so that,
while it can accept and compile code that is not type-safe, the JIT compiler, itself,
1s constrained from operating outside of certain prescribed type-safety boundaries.
Still further, this can be accomplished by ensuring that executable code is only
accessed by components operating in user mode, and that intermediate language
code is only accessed by components operating in kernel mode in a read/write
address space.

[0050] The embodiments of the present invention may comprise a special
purpose or general-purpose computer including various computer hardware, as
discussed in greater detail below. Embodiments within the scope of the present
invention also include computer-readable media for carrying or having computer-
executable instructions or data structures stored thereon. Such computer-readable
media can be any available media that can be accessed by a general purpose or
special purpose computer.

[0051] By way of example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to carry or store desired program code means in the form of
computer-executable instructions or data structures and which can be accessed by a
general purpose or special purpose computer. When information is transferred or
provided over a network or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a computer, the computer
properly views the connection as a computer-readable medium. Thus, any such
connection is properly termed a computer-readable medium. Combinations of the
above should also be included within the scope of computer-readable media.

[0052] Computer-executable instructions comprise, for example, instructions
and data which cause a general purpose computer, special purpose computer, or
special purpose processing device to perform a certain function or group of

functions. Although the subject matter has been described in language specific to

15

10

WO 2008/067329 PCT/US2007/085664

structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specitic
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims.

[0053] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments
are to be considered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended claims rather than by
the foregoing description. All changes which come within the meaning and range

of equivalency of the claims are to be embraced within their scope.

16

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

CLAIMS
We claim:
1. In a computerized environment comprising a memory, as well as a JIT
compiler and one or more application programs loaded in the memory, a method of
executing managed code so that untrusted program code can be compiled and
executed in a manner that does not threaten or otherwise compromise system
security, comprising:
executing an application program from a first address space set with a
first set of permissions for accessing a shared memory heap;
receiving one or more requests from the application program to
compile one or more sets of intermediate language instructions;
compiling the one or more sets of intermediate language instructions
into newly compiled code using a JIT compiler running in a second address
space that has a second set of permissions for accessing the shared memory
heap; and
passing the newly compiled code to the shared memory heap, wherein
the application program can retrieve and execute the newly compiled code
from the first address space.
2. The method as recited in claim 1, further comprising an act of, upon
receiving an indication that the newly compiled code has been passed to the shared
memory heap, switching from a kernel mode to a user mode level of operation.
3. The method as recited in claim 2, further comprising an act of the
application program retrieving the compiled code, and executing the compiled code
from the first address space.
4, The method as recited in claim 1, wherein the first address space is
configured with read/execute permissions with respect to accessing the shared
memory heap, such that no component operating in the first address space can write
to the shared memory heap.
S. The method as recited in claim 1, wherein the second address space is

configured to access the memory heap with read/write permissions, such that no

17

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

component operating in the second address space can execute code in the memory
heap.
6. The method as recited in claim 1, wherein the JIT compiler is operating in a
higher-privilege mode, and the application program is running in a lower-privilege
mode.
7. The method as recited in claim 1, wherein the JIT compiler is constrained to
execute within one or more type-safety restraints, but configured to accept and
compile intermediate language code that is not type-safe.
8. The method as recited in claim 7, wherein the JIT compiler performs the acts
of:
receiving one or more requests to perform a function that violates a
security restraint for the JIT compiler; and
rejecting the one or more requests to perform the function, or
discontinuing compiling the one or more sets of intermediate language
instructions.
9. The method as recited in claim 1, further comprising an act of, upon
receiving the one or more requests from the application program, activating a
kernel mode level of operation.
10. The method as recited in claim 9, wherein the act of activating a kernel
mode level of operation includes an act of initiating a kernel mode security
component.
11. The method as recited in claim 10, wherein the one or more requests from
the application program are received by a kernel mode security component.
12. The method as recited in claim 11, further comprising an act of the kernel
mode security component validating the one or more requests from the application
program.
13. The method as recited in claim 12, wherein the act of validating the one or
more requests comprises an act of determining whether a handle included in the
one or more requests is valid.
14. In a computerized environment comprising a storage, a JIT compiler, and

one or more application programs loaded in memory, a method of generating

18

10

15

20

25

30

WO 2008/067329 PCT/US2007/085664

computer executable program code in a manner that uses JIT compilation while
avoiding security violations, comprising:
receiving application program code that includes executable code and
code to be compiled;
executing the executable code in a lower-privilege mode and in a first
address space;
identifying one or more pointers in the executable code for at least
some code to be compiled;
switching to a higher-privilege mode; and
compiling the at least some code in a different address space using a
compiler operating in the higher-privilege mode.
15. The method as recited in claim 14, wherein the application program code
comprises part of a video game application that is received from the storage into a
video game operating system.
16. The method as recited in claim 14, wherein the compiler is a type-safe JIT
compiler configured to handle only type-safe requests, but otherwise configured to
compile type-safe or non-type-safe intermediate language code.
17. The method as recited in claim 14, wherein the higher-privilege mode is a
kernel mode level of operation, and the lower-privilege mode is a user level of
operation.
18. The method as recited in claim 14, wherein the first address space is
configured to access a memory heap with read/execute permissions, and the second
address space is configured to access the memory heap with read/write permissions.
19. The method as recited in claim 14, further comprising the acts of:
switching to the lower-privilege mode upon identifying that the at
least some code has been compiled; and
executing the compiled at least some code in the first address space.
20. In a computerized environment comprising a memory, a JIT compiler, and
one or more application programs loaded in the memory, a computer program
storage product having computer executable instructions stored thereon that, when

executed, cause one or more processors to perform a method comprising:

19

10

WO 2008/067329 PCT/US2007/085664

executing an application program from a first address space set with a
first set of permissions for accessing a shared memory heap;

receiving one or more requests from the application program to
compile one or more sets of intermediate language instructions;

compiling the one or more sets of intermediate language instructions
into newly compiled code using a JIT compiler running in a second address
space that has a second set of permissions for accessing the shared memory
heap; and

passing the newly compiled code to the shared memory heap, wherein
the application program can retrieve and execute the newly compiled code

from the first address space.

20

PCT/US2007/085664

WO 2008/067329

1/3

m £ m
b, 3EP00 pepduindy ™y

GZ1) 8pod oL TT ieuisd
CFL apog pepduog

PAFIDANT - -

iy PR I

el epot % L OFT smuing 1
Gt 1 apog pajidund

GIT weibolg uopeoyddy

ETTRER ~ -

g% S ..“.nm “““

e
el
L [awﬁw
“““ oL 0T Y mmmww PO
wpduog 1p | S wT
SROTy
—
MPOTHY
w..ww: A7 S ; /
UBUOTUOT) i
Aunosg

LU BUIeN

i 94

PCT/US2007/085664

2/3

WO 2008/067329

;L
el 7 desp ADuwspy &gi
weboid uogesyddy Jandwesy 1
BN0BNT /PR | BUM/DRRY | AuGpERY | BWIM/PESY | 681
RSP00Y ON | SSRUOY ON |SINoSXT/pesy| aun/pesy | AT
54 SOBUL SSALDY i/} =0BUG SSBIDPY &L 1 Gl i HUOEO0T
| R S58IDDY 1 eneds SR | S0BdR SSSUDDY | S0B0S SsapDy | AIOWSH
0BT spep obied
bw : i
/ R §9i o
%mwmm uogeoo Lowsmi® M
L 18s(£07 RUBH
L >

e 8% B

PCT/US2007/085664

WO 2008/067329

3/3

£ Ol

1 S -

apopy sbsiAl BUBIH Y Ul
8pory pasanbay iy Bumdwon

OEE e

apcy aBoiAl A
syl y of Suoumg

(28 =

pajiduio] 84 of 8poD)
304 ISHHOA Y AL

&

OLE =

apoiy ebepAL-amo Y Ul
apo7 AgENEXT ey Bugnoexy

H

008 = es

OBICT) 85) 8D07)
DLy 8p07) 2iqEInex T DUiAROSy

¢ Ol

8 =

desi AIOUBN DOIBHS
Gf #p00 peiduion sy Blssed

B

D8

308dS S92Ip0Y pUINS
Y U suogonasy ofenbuen
seipauuany ey Suipdwon

1

048 s

sucRonasy abenbue
ABIPSLUGY 04 uonentdy
1] W0 18anbay Y BUIAIEDSYN

1

(07 =

300U SSRIDDY 1814
Y U uonesiddy Uy Bugnosx

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2007/085664

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/45(20006.01)i, GOOF 12/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 8 : GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models since 1975
Japanese utility models and applications for utility models since 1975

eKIPASS(Kipo Internal), Google, YesKisti

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

keywords:security, trust, privilege, kernel, system, mode, level, compile, JIT, Intermediate, heap, execution, run

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See section 2.1, 3.1.1,3.2.1 and 3.6

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US2004/0255268 A1 (MEIJER. E. et al.) 16 DECEMBER 2004 1-20
See figures 1,3; paragraphs [10][25][54]~[57].
A US2006/0123403 A1 (BRUECKLMAYR, F. J. et al.) 08 JUNE 2006 1-20
See figures 1-3; paragraphs [25][64][65].
A US2003/0236986 A1 (CRONCE, P. A. et al.) 25 DECEMBER 2003 1-20
See figures 3.4; paragraphs [10][11][40][41].
A US2005/0172286 A1 (BRUMME, C. W. et al.) 04 AUGUST 2005 1-20
See figures 2,5; paragraphs [19][25][37].
PA HUNT, G.C and LARUS, J.R. Singularity: Rethinking the Software Stack. ACM SIGOPS 1-20

Operating Systems Review April 2007, Vol 41 Issue 2, pages 37-49.

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

wn

e

yn

ng"

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

11 MARCH 2008 (11.03.2008)

Date of mailing of the international search report

11 MARCH 2008 (11.03.2008)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo-
gu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.

YOON, Hye Sook

82-42-481-8370

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/085664
Patent document Publication Patent family Publication
cited in search report date member(s) date
US20040255268A1 16.12.2004 NONE
US20060123403A1 08.06.2006 NONE
US20030236986A 1 25.12.2003 NONE
US20050172286A1 04.08.2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

