WO 2006/055291 A2 |00 00 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 May 2006 (26.05.2006)

7 3
PO |0 000000 0O O O

(10) International Publication Number

WO 2006/055291 A2

(51) International Patent Classification:
GOGF 12/00 (2006.01)

(21) International Application Number:
PCT/US2005/040105

(22) International Filing Date:
7 November 2005 (07.11.2005)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
10/990,133 16 November 2004 (16.11.2004) US

(71) Applicant (for all designated States except US): MO-
TOROLA, INC. [US/US]; 1303 East Algonquin Road,
Schaumburg, 1L 60196 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KHAWAND,
Charbel [US/US]; 13411 S.w. 2nd Street, Miami, FL
33184 (US). GOLDBERG, Arthur, M. [US/US]; 5912
N.w. 73 Court, Parkland, FL. 33067 (US). TAO, Jian-
ping [CN/US]; 1802 Chula Vista Drive, Cedar Park, TX

(74)

(81)

(84)

78613 (US). VAGLICA, John, J. [US/US]; 10622 Creek
View Drive, Austin, TX 78748 (US). WONG, Chin, P.
[US/US]; 918 N.w. 123 Drive, Coral Springs, FL 33071
(US).

Agent: BROWN, Larry, G.; 8000 West Sunrise Boule-
vard, Room 1610, Plantation, FL. 33322, (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR EXCHANGING DATA

(57) Abstract: The invention concerns a method (300) and system

310

SET A DATA BOUNDARY SIZE

IN THE FORMAT CONVERTER 311

_

(100) for exchanging data in a multi-core architecture having at least
one shared memory (114). The method can include the steps of re-
questing (312) data in a first format from a predetermined range of
addresses in the shared memory in which the data is shared between

l different processors, storing (316) the requested data in a cache (118)

IN A MULTI-CORE ARCHITECTURE HAVING A SHARED MEMORY,
REQUEST DATA IN A FIRST FORMAT FROM A PREDETERMINED
RANGE OF ADDRESSES IN THE SHARED MEMORY IN WHICH
THE DATA IS SHARED BETWEEN DIFFERENT PROCESSORS

312

DEDICATE A FORMAT CONVERTER CACHE TO STORE
THE DATA AND ISOLATE OTHER INSTRUCTION AND
DATA CACHES FROM THE SHARED MEMORY

314

STORE THE REQUESTED DATA IN THE FORMAT CONVERTER
CACHE T0 BE RETRIEVED BY A FORMAT CONVERTER

l

AUTOMATICALLY ENABLE THE FORMAT CONVERTER WHEN
THE DATA IS REQUESTED FROM THE PREDETERMINED
RANGE OF ADDRESSES IN THE SHARED MEMORY

318

| IDENTIFY TG THE FORMAT CONVERTER

A DATA TYPE FOR THE DATA 320

WITH THE FORMAT CONVERTER, TRANSLATE-BASED ON
PREDETERMINDED RULES- THE DATA TO A SECOND FORMAT THAT
IS NATIVE TO A PROCESSOR THAT WILL PROCESS THE DATA
FORMAT TO THE FIRST FORMAT

I BYPASS THE FORMAT CONVERTER |

28

322

RETRANSLATE THE DATA FROM THE SECOND
324

326

300

to be retrieved by a format converter (120) and identifying (320) to the
format converter a data type for the data. The method can also include
the step of, with the format converter, translating (322) based on prede-
l termined rules the data to a second format that is native to a processor
(110) that will process the data.

WO 2006/055291 A2 [N A0VOH0 T 000 000

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ance Notes on Codes and Abbreviations" appearing at the begin-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

WO 2006/055291 PCT/US2005/040105

METHOD AND SYSTEM FOR EXCHANGING DATA

BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates in general to the exchange of data and more particularly
to the exchange of data between multiple processing cores that share a common
memory.

2. Description of the Related Art

Current platform architectures combine multiple processing cores, such as a
digital signal processing (DSP) core and a host application processing (AP) core.
These two cores share data from a common memory, which mandates that they
both operate on data in their native mode of operation. For example, the DSP core
may require a big endian memory model, and the AP core may operate on little
endian organization. The sharing of data in view of these different memory models,
however, is complicated by the manner in which data is loaded in each model.

To overcome the incompatibility, several methods have been proposed that
convert data between the big endian and little endian memory models. Up to this
point, however, the conversion has been limited to the big endian/little endian
memory models, with a focus on software. This approach ignores the possibility of
different memory organizations and imposes limitations on the software used to
operate on the shared data.

SUMMARY OF THE INVENTION

The present invention concerns a method for exchanging data. The method
can include the steps of - in a multi-core architecture having at least one shared

memory - requesting data in a first format from a predetermined range of addresses

WO 2006/055291 PCT/US2005/040105

in the shared memory in which the data is shared between different processors and
storing the requested data in a cache to be retrieved by a format converter. The
method can also include the steps of identifying to the format converter a data type
for the data and - with the format converter - retrieving the data from the cache and
translating - based on predetermined rules - the data to a second format that is
native to a processor that will process the data. As an example, the predetermined
rules can be programmable in the format converter.

The method can also include the step of automatically enabling the format
converter when the data is requested from the predetermined range of addresses in
the shared memory. In addition, when the format converter is enabled, the method
can include the steps of dedicating the cache to storing the data and isolating other
instruction and data caches from the shared memory. In one arrangement, the size
of the format converter can be variable, and the method can further include the step
of setting a data boundary size in the format converter. The data boundary size can
be based on a bus size, for example. The method can also include the step of
bypassing the format converter when it is unnecessary to translate the data from the
first format to the second format.

In another arrangement, the first format can be based on a liitle endian
memory model, a big endian memory model or an emulated big endian model, and
the second format can be based on a translated little endian memory model, a
translated big endian memory model or a translated emulated big endian memory
model. The method can also include the step of retranslating the data from the
second format to the first format. As another example, the data type can be at least

one of a byte, a word and a double word. In another embodiment of the invention,

WO 2006/055291 PCT/US2005/040105

the multi-core architecture can include a plurality of shared memories. The method

can include the steps of programming into the format converter predetermined rules
for each shared memory and selecting the predetermined rules based on the type of
shared memory that the format converter accesses.

The present invention also concerns a system for exchanging data. The
system can include a first processor, a second processor, at least one memory
coupled to both the first processor and the second processor in which the first
processor and the second processor share at least a portion of data in the memory,
a format converter coupled to the memory and a format converter cache coupled to
the format converter. In one arrangement, the first processor can request the data
from a predetermined range of shared addresses in the memory. In addition, the
format converter cache can fetch and store the requested data, and the format
converter can retrieve the data from the format converter cache. The format
converter can translate - based on predetermined rules - the data from a first format
to a second format that is native to the first processor. The system can also include
suitable software and/or circuitry to carry out the processes described above.

The present invention also concerns a machine readable storage having
stored thereon a computer program having a plurality of code sections executable by
a portable computing device having a multi-core architecture and at least one shared
memory. The code sections can cause the portable computing device to perform
the steps of requesting data in a first format from a predetermined range of
addresses in the shared memory in which the data is shared between different
processors and storing the data in a cache. The code sections can also cause the

portable computing device to perform the steps of identifying to a format converter a

WO 2006/055291 PCT/US2005/040105

data type for the data and - with the format converter, retrieving the data from the
cache and translating - based on predetermined rules - the data to a second format
that is native to a processor that will process the data. The code sections can also
cause the portable computing device to perform the steps described above.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention, which are believed to be novel, are set
forth with particularity in the appended claims. The invention, together with further
objects and advantages thereof, may best be understood by reference to the
following description, taken in conjunction with the accompanying drawings, in the
several figures of which like reference numerals identify like elements, and in which:

FIG. 1 illustrates an example of a multi-core architecture in accordance with
an embodiment of the inventive arrangements;

FIG. 2 illustrates an example of a block diagram of a system that can
exchange data in accordance with an embodiment of the inventive arrangements;

FIG. 3 illustrates a method for exchanging data in accordance with an
embodiment of the inventive arrangements;

FIG. 4 illustrates a portion of the system of FIG. 2 and the result of a data
translation in accordance with an embodiment of the inventive arrangements;

FIG. 5 illustrates the portion of the system of FIG. 4 and the result of another
data translation in accordance with an embodiment of the inventive arrangements;

FIG. 6 illustrates the portion of the system of FIG. 4 and the result of another

data translation in accordance with an embodiment of the inventive arrangements;

WO 2006/055291 PCT/US2005/040105

FIG. 7 illustrates the portion of the system of FIG. 4 and the result of yet
another data translation in accordance with an embodiment of the inventive
arrangements; and

FIG. 8 illustrates another method for exchanging data in accordance with an
embodiment of the inventive arrangements.

DETAILED DESCRIPTION

While the specification concludes with claims defining the features of the
invention that are regarded as novel, it is believed that the invention will be better
understood from a consideration of the following description in conjunction with the
drawing figures, in which like reference numerals are carried forward.

As required, detailed embodiments of the present invention are disclosed
herein; however, it is to be understood that the disclosed embodiments are merely
exemplary of the invention, which can be embodied in various forms. Therefore,
specific structural and functional details disclosed herein are not to be interpreted as
limiting, but merely as a basis for the claims and as a representative basis for
teaching one skilled in the art to variously employ the present invention in virtually
any appropriately detailed structure. Further, the terms and phrases used herein are
not intended to be limiting but rather to provide an understandable description of the
invention.

" The terms a or an, as used herein, are defined as one or more than one. The
term plurality, as used herein, is defined as two or more than two. The term another,
as used herein, is defined as at least a second or more. The terms including and/or
having, as used herein, are defined as comprising (i.e., open language). The term

coupled, as used herein, is defined as connected, although not necessarily directly,

WO 2006/055291 PCT/US2005/040105

and not necessarily mechanically. The terms program, software application, and the
like as used herein, are defined as a sequence of instructions designed for
execution on a computer system. A program, computer program, or software
application may include a subroutine, a function, a procedure, an object method, an
object implementation, an executable application, an applet, a servlet, a source
code, an object code, a shared library/dynamic load library and/or other sequence of
instructions designed for execution on a computer system.

This invention presents a method and system for exchanging data. In one
arrangement, the method can be practiced in a multi-core architecture having at
least one shared memory. The method can include the steps of requesting data in a
first format from a predetermined range of addresses in the shared memory in which
the data is shared between different processors and storing the translated data in a
cache to be retrieved by the processor. The method can further include identifying
to a format converter a data type for the data and translating - based on
predetermined rules - the data to a second format that is native to a processor that
will process the data. The translation can be performed with a format converter,
which can be programmed with the predetermined rules. The format converter can
be programmed with any suitable type of rules to convert data from the first format to
the second format, and this process can be used to seamlessly exchange data
between processors.

Referring to FIG. 1, a system 100 for exchanging data is shown. The system
100 can include a first processor 110, such as a baseband processor (BP), and a
second processor 112, which may be an application processor (AP). Although the

first processor 110 may be referred to as a BP and the second processor 112 may

WO 2006/055291 PCT/US2005/040105

be referred to as an AP, the first processor 110 and the second processor 112 may
be any suitable type of processor. The system 100 may also include one or more
bus masters 113, such as bus masters 1 through N. The BP 110, the AP 112 and
the bus masters 113 may share at least a portion of data in a shared memory 114.
Although they share data, the BP 110, the AP 112 and the bus master 113 may
process the data in their native mode of operation. As shown, the system 100 may
include any suitable number of shared memories 114.

As an example, the AP 112 may process the shared data based on a little
endian memory model (LE), and the BP 110 may process the shared data on a
memory model referred to as emulated big endian (BE-32). As is known in the ant,
BE-32, which may also be referred to as a word-invariant or munged address
endianness mode, is different from the “true” big endian memory model (BE) in that
low-order address bits are selectively flipped for certain data sizes, like bytes and
words. As an example, the data stored in the shared memory may be in a little
endian format. As will be explained below, the system 100 can permit the BP 110 to
process the data in its native mode of operation, such as the BE-32 scheme. The
bus masters 113 may also process information in accordance with a little endian
configuration.

Referring to FIG. 2, a more detailed illustration of the system 100 is shown.
In this example, the system 100 can also include arbitration logic 116, a format
converter cache 118 and a format converter 120. Data buses 122 and address
buses 124 can couple the arbitration logic 116 to the BP 110, the AP 112, the bus
masters 113, the shared memory 114 and a format converter cache 118. As an

example, the arbitration logic 116 can route signals over the data buses 122 and the

WO 2006/055291 PCT/US2005/040105

address buses 124 between any of the following components: the BP 110, the AP
112, the bus masters 113 and the format converter cache 118. As will be explained
below, the format converter cache 118 can store data from any number of shared
memories 114, and the format converter 120 can translate this data from a first
format to a second format to permit the data to be processed by the BP 110.

In one particular example, the system 100 can include a bypass section 126,
which can couple the BP 110 to the arbitration logic 116. This bypass section 126
can contain one or more caches 128, such as instruction or data caches. As an
example, these caches 128 can be used to fetch data from the shared memory 114
when the data is in a format that is native to the BP 110. The system 160 can
further include a bypass line 130 and data access type lines 132. The BP 110 can
enable or disable the format converter 120 through the bypass line 130 and can
identify data access types over the data access type lines 132. Although two data
access type lines 132 are shown, the system 100 can include any suitable number
of these lines 132 for purposes of identifying virtually any typé of access type. A
data bus 122 and an address bus 124 can also couple the BP processor 110 to the
format converter 120 through an address selection unit 134. The BP 110 can
request data from addresses in the shared memory 114 through the address
selection unit 134.

Referring to FIG. 3, a method 300 for exchanging data is illustrated. To
describe the method 300, reference may be made to FIG. 2, although the method
300 can be practiced using any other suitable devices or systems. That is, a system
for exchanging data in accordance with the inventive arrangements is not limited to

that pictured in FIG. 2. Moreover, the method 300 is not limited to the particular

WO 2006/055291 PCT/US2005/040105

steps that are shown in FIG. 3 or to the order in which they are depicted. The
inventive method 300 may also include a fewer or greater number of steps as
compared to what is shown in FIG. 3.

At step 310, the method 300 can begin. At step 311, a data boundary size of
a format converter can be set. At step 312, in a multi-core architecture having at
least one shared memory, data in a first format can be requested from a range of
predetermined addresses in the shared memory in which the data is shared between
different processors. At step 314, a format converter cache can be dedicated to
store the data, and other instruction and data caches can be isolated from the
shared memory. The requested data can then be stored in the format converter
cache, where it can be retrieved by the format converter, as shown at step 316. At
step 318, the format converter can be automatically enabled when the data is
requested from the predetermined range of addresses in the shared memory.

For example, referring to FIG. 2, the system 100 can be a multi-core
architecture having at least one shared memory 114, meaning that it can include at
least two processors on a single platform in which the processors read data from
and/or write data to at least one common memory. For example, the BP 110 and
the AP112 can read data from and/or write data to the shared memory 114. As a
result, the BP 110 and the AP 112 can share data from a shared memory 114.

The data boundary size of the format converter 120 can be set, and in one
arrangement, the data boundary size of the format converter 120 can be configured
based on a particular bus size. For example, the size of the data bus 122 from the
address selection unit 134 and the BP 110 can be thirty-two bits, and the maximum

size of the data boundary for the format converter may be 256 bits. If the format

WO 2006/055291 PCT/US2005/040105

converter 120 is to receive data from or pass data to this particular data bus 122, the
data boundary size of the format converter 120 can be set to thirty-two bits. Of
course, the format converter 120 may be coupled to other data and program buses
of various sizes, and its data boundary size can be set based on the bus it will be
receiving data from or transferring data to.

To describe one way how the invention operates, an example will be given
where the BP 110 requests data from the shared memory in which the BP 110
conforms to a word invariant memory model, such as BE-32, and the AP 112
organizes data based on LE. Of course, the invention is applicable to any system
having multiple processors that share data in any other suitable format.

Continuing with the example, the BP 110 can request data from certain
addresses, and in response, the address selection unit 134 can determine whether
the requested data is stored in a range of predetermined addresses in the shared
memory 114. That is, the address selection unit 134 can be programmed with a
range of addresses in the shared memory 114, where these addresses contain data
that may be shared by the BP 110 and the AP 112. If the requested data is within
the range of predetermined addresses, the address selection unit 134 can signal the
format converter cache 118 to fetch from the shared memory 114 one or more lines
of data having the requested data and to store the lines of data. In this way, the
format converter cache 118 has been dedicated to storing the requested data. As
will be described later, the format converter 120 can retrieve the requested data from
the format converter cache 118.

Additionally, the address selection unit 134 can disable the bypass section

126 by isolating the instruction and data caches 128 from the shared memory 114.

10

WO 2006/055291 PCT/US2005/040105

The address selection unit 134 can also automatically enable the format converter
120 when the requested data is in the predetermined range of addresses in the
shared memory 114. This step can be in anticipation of the format converter 120
translating the requested data from a first format to a second format, as will be
explained below.

Referring back to the method 300, at step 320, a data type for the requested
data can be identified to the format converter. At step 322, with the format
converter, the data — based on predetermined rules — can be translated to a second
format that is native to a processor that will process the data.

For example, referring once again to FIG. 2, the BP 110 can signal the format
converter 120 over the data access type lines 132 the data type for the data being
requested. In one arrangement, the data type can be a byte, a word or a double-
word, although any other suitable data type is within contemplation of the inventive
arrangements. The data type, as will be illustrated below, can be used to set
translation rules for the format converter 120.

Once it receives the data type, the format converter 120 can retrieve the
appropriate data from the format converter cache 118. Referring to FIG. 4, the
shared memory 114 (with several addresses listed) and a more detailed view of the
format converter 120 are illustrated. In the following examples, it is assumed that
the BP processor 110 will perform a four-byte read, although certainly other
processor operations are within the scope of the invention.

The format converter 120 can transfer the‘data from the format converter
cache 118 to a first register 140. The first register 140 shows the data as how it

appears based on a conventional word-invariant memory model, i.e., no translation

11

WO 2006/055291 PCT/US2005/040105

has occurred. The numbers below the first register 140 represent address values.
In one arrangement, the format converter 120 can be programmed with a set of
transition rules 146. These transition rules 146 can instruct the format converter 120
as to how the data will be converted to a second format.

For example, the first format can be LE, and the second format can be a
translated word invariant model, such as BE-32. In addition, the data type can be a
byte. As is known in the art, BE-32 may sometimes alter the last two address bits of
data accessed from a shared memory, depending on the data access type. In
particular, for a byte access, the last two address bits can be inverted. Thus, if no
translation will occur for this type of data access, the data shown in the shared
memory 114, which can be stored in a LE format, may be stored in accordance with
the order shown in the first register 140. For instance, the data stored in the shared
memory 114 in LE format at address 0 would be stored in the first register 140 at
address 3. Such a process may complicate the sharing of the data.

In accordance with an embodiment of the inventive arrangements, the data in
the first format can be translated into a second format, which can be native to a
processor that will process the data. For example, staying with FIG. 4, the format
converter 120 can translate the data based on the set of translation rules 146 from a
first format to a second format and can transfer it to a second register 144. Again,
the numbers below the second register 144 represent values for addresses. As
shown, the data stored at addresses 0 and 1 in the first register 140 can be
respectively stored at addresses 3 and 2 in the second register 144. Similarly, the
data stored at addresses 2 and 3 in the first register 140 can be stored at addresses

1 and 0 in the second register 144.

12

WO 2006/055291 PCT/US2005/040105

Once transferred to the second register 144, the BP 110 can access the data
and perform any subsequent operations. Through the translation of the data, the
data can be in a format that is native to the BP 110, which improves the efficiency of
data sharing.

The translation rules 146, which can be programmed into the format converter
120, can be any suitable program that can translate data from a first format to any
format that is native to a processor that requests the data. For example and without
limitation, the first format can be selected from LE, BE-32 and true BE memory
models, and the second format can be selected from translated LE, translated BE-
32 and translated true BE memory models. The translation that occurs can also be
dependent on the data access type, as referenced above.

For instance, consider the previous example above, but the data access type
can be a word. Referring to FIG. 5, the untranslated data, which complicates data
sharing, is shown in the first register 140. Here, the word-invariant format, as is
known in the art, inverts the next-to-last address bit when the data access type is a
word. The format converter 120, however, can translate the data in the first register
140 to the order shown in the second register 144. This format can be native to the
BP 110.

Although the examples above describe the process of translating data from
LE to BE-32, it must be understood that the format converter 120 can iranslate data
between virtually any format. As another example and referring to FIG. 6, the first
format can be based on a LE scheme, and the second format can be based on a
true BE memory model. In this example, the data access type can be a double-word

or thirty-two bit. Again, the first register 140 shows the order of the data if no

13

WO 2006/055291 PCT/US2005/040105

translation operation is performed, which is not optimal. Because it is capable of
handling virtually any type of translation, the format converter 120 can convert the
data to a second format that is suitable for a processor that employs a true BE
scheme. The results are shown in the second register 144. As can be seen, the
format converter 120 can be programmed with translation rules that can permit it to
translate data from one format to any other format.

Referring back to the method 300 of FIG. 3, at step 324, the data can be
retransiated from the second format to the first format. In addition, the format
converter can be bypassed if it is unnecessary to translate the data from the first
format to the second format, as shown at step 326. Finally, at step 328, the method
300 can end.

For example, referring to FIGs. é—G, the BP 110 may need to write data back
into the shared memory 114. For optimal performance, it is desirable to have the
shared data written back in the shared memory 114 in accordance with the memory
model in which the shared memory 114 is configured. As a more specific example,
the BP 110 may need to write the data that is native to the BP 110 but which
conflicts with the memory model employed by the shared memory 114. In response,
the address selection unit 134 can signal the format converter 120, which can then
retranslate the data back to an order that complies with the memory model of the
shared memory 114.

An example of this process is shown in FIG. 7, where the second register 144
shows the translated data received from the BP 110 and the first register 140
depicts the data after it has been retranslated. This particular retranslation can be

based on a byte write-back operation. The retranslation can place the data in an

14

WO 2006/055291 PCT/US2005/040105

order that complies with LE, which can be the memory model for the shared memory
114. It is important to note, however, that the data that is retranslated is not
necessarily limited to data that was initially fetched from the shared memory 114.
That is, the process of retranslation may apply to any suitable type of data that must
be converted to be stored in the shared memory 114.

There may be circumstances where it is desirable to not translate data. In
such circumstances, the format converter 120 can be bypassed. For example, the
BP 110 may request data that is not within the predetermined range of addresses in
the shared memory 114, which means that translation may not be necessary. In
response, the address selection unit 134 can disable the format converter 120 and
can enable the bypass section 126. Once the bypass section 126 is enabled, any of
the caches 128 may be used to retrieve data from the shared memory 114 or some
other memory. Through the bypass line 130, the BP 110 can also disable the format
converter 120 if no translation is required. The BP processor 110, however, can still
usé the format converter cache 118 for storing data in a conventional manner. This
procedure may be useful if the requested data will be in a format that is native to the
BP 110. Of course, the invention is not limited to the examples, as other
circumstances may warrant the bypassing of the format converter 120.

As mentioned earlier, although examples have been presented in which the
format converter 120 has translated data from LE to BE-32 and true BE, the
invention can be used to translate data between other suitable formats. Moreover,
the invention is not limited to thirty-two bit machines, as other any other suitable bit
size is within contemplation of the inventive arrangements. In addition, the

processors in the multi-core architecture are not limited to having the same bit sizes,

15

WO 2006/055291 PCT/US2005/040105

and any number of format converters 120 and format converter caches 118 may be
present in the multi-core architecture.

Referring to FIG. 8, another method 800 for exchanging data is shown. As
noted above, the system 100 may include any suitable number of shared memories.
The method 800 shows several steps that may be taken in view if this possible
configuration. For example, at step 810, the method 800 can begin, and at step
812, predetermined rules can be programmed into a format converter for each
shared memory in a multi-core architecture. In addition, at step 814, the
predetermined rules can be selected based on the type of shared memory that the
format converter accesses.

For example, referring to FIG. 2, the system 100 may include any suitable
number of shared memories 114. These shared memories 114 may operate on
various memory models, including LE, BE, BE-32 or some other memory
configuration. As such, the format converter 120 can be programmed with
translation rules 146 that enable the format converter 120 to translate between the
various formats of the shared memories 114 and the processor requesting the data,
e.g., the BP 110. The format converter 120 can even perform these multiple
translations simultaneously, if so desired. The translation rules 146 that the format
converter 120 selects can be based on the type of shared memory 114 that is
accessed. In particular, this process can refer to the memory organization employed
by the shared memory 114 that is accessed.

It is also understood that this multiple translation can apply to a processor
writing data to several different shared memories 114. It is also important to note

that the system 100 may include any suitable number of format converters 120 and

16

WO 2006/055291 PCT/US2005/040105

format converter caches 118, each of which are capable of working in tandem to
ensure the proper translation of data from any suitable number of shared memories.
That is, the system 100 is in no way limited to merely a single format converter 120
or format cache 118. Referring back to FIG. 8, the method 800 can end at step 816.

The present invention, including the translation of data, can be realized in
hardware, software or a combination of hardware and software. Any kind of
computer system or other apparatus adapted for carrying out the methods described
herein are suitable. A typical combination of hardware and software can be a mobile
communication device with a computer program that, when being loaded and
executed, can control the mobile communication device such that it carries out the
methods described herein. The present invention can also be embedded in a
computer program product, which comprises all the features enabling the
implementation of the methods described herein and which when loaded in a
computer system, is able to carry out these methods.

While the preferred embodiments of the invention have been illustrated and
described, it will be clear that thé invention is not so limited. Numerous
modifications, changes, variations, substitutions and equivalents will occur to those
skilled in the art without departing from the spirit and scope of the present invention
as defined by the appended claims.

What is claimed is:

17

WO 2006/055291 PCT/US2005/040105

CLAIMS

1. A method for exchanging data, comprising the steps of:

in a multi-core architecture having at least one shared memory,
requesting data in a first format from a predetermined range of addresses in the
shared memory, wherein the data is shared between different processors;

storing the requested data in a cache to be retrieved by a format
converter;

identifying to the format converter a data type for the data;

with the format converter, retrieving the data from the cache and
translating based on predetermined rules the cata to a second férmat that is native

to a processor that will process the data.

2. The method according to claim 1, further comprising the step of
automatically enabling the format converter when the data is requested from the

predetermined range of addresses in the shared memory.

3. The method according to claim 2, wherein when the format converter is
enabled, further comprising the steps of:
dedicating the cache to storing the data; and

isolating other instruction and data caches from the shared memory.

4. The method according to claim 1, further comprising the step of setting

a data boundary size in the format converter based on a bus size.

18

WO 2006/055291 PCT/US2005/040105

5. The method according to claim 1, further comprising the step of
bypassing the format converter when it is unnecessary to translate the data from the

first format to the second format.

6. The method according to claim 1, wherein the first format is based on
at least one of a little endian memory model, a big endian memory model and an :
emulated big endian memory model and the second format is based on at least one
of a translated little endian memory model, a translated big endian memory model

and a translated emulated big endian memory model.

7. The method according to claim 1, wherein the multi-core architecture
has a plurality of shared memories and the method further comprises the steps of:
programming predetermined rules for each shared memory into the
format converter; and
selecting the predetermined rules based on the type of shared memory

that the format converter accesses.

19

WO 2006/055291 PCT/US2005/040105

8. A system for exchanging data, comprising:

a first processor;

a second processor;

at least one memory coupled to both the first processor and the
second processor, wherein the first processor and the second processor share at
least a portion of data in the memory;

a format converter coupled to the memory; and

a format converter cache coupled to the format converter, wherein the
first processor requests the data from a predetermined range of shared addresses in
the memory, the format converter cache fetches and stores the requested data and
the format converter retrieves the data from the format converter cache and
translates based on predetermined rules the data from a first format to a second

format that is native to the first processor.

9. The system according to claim 8, further comprising an address
selection unit coupled to the first processor, wherein the address selection unit
automatically enables the format converter when the first processor requests the

data from the range of predetermined addresses in the shared memory.

10. The system according to claim 9, further comprising at least one of an
instruction cache and a data cache, wherein when the address selection unit
enables the format converter, the address selection unit dedicates the format
converter cache to storing the data and isolates the instruction cache and the data

cache.

20

WO 2006/055291 PCT/US2005/040105

11. The system according to claim 8, wherein at least one of the first
processor and the address selection unit causes the data to bypass the format

converter when it is unnecessary to translate the data from the first format to the

second format.

21

PCT/US2005/040105

WO 2006/055291

1/7

AYONIN Q3YVHS

VIl

N d3LSYW Snd

AYONIN Q3VHS

AYOWIN QIAVHS

. MNN\\\
L]

¢ ¥3LSYW sSnd

Y

L ¥ILSYWN Snd

vIl

00X0

LOX0

Z0X0

£0X0

AJONIN GRIVHS

w-\\\\

A

clt

40SS320ud
NOILVIIlddv

vﬂml\\\

d40SS3004d
(NvE3Svd

PCT/US2005/040105

2/7

WO 2006/055291

| LINN
| el NOILDTTIS
! Y zer |'ssmaev | per !
| - N_E”._b%o - |
0 1VN - >
_ [cel
&g I | ret e ot D 0550
_ oIt FHOVD YILYIANOD 1SHT 4
| L LYAYO04
! /
U A A 0T Oll
00T _ 74N vy ccl _.IIIIIIIIIIIII=I=._
" . = 1 1 iy
“ grr___ | 71901 B __z MOV ese|z JHOVI |1 FHOVO| | e—
»| Norvyligwy [T ! _
_ - ~ L L[V] _
“ WEIEERE _.Il.ll\mll.l,ﬂlw,.ull
vl
| 22— [wor 821 J
e 4 1 zer 9zT
|
| o .
“ . "] N ¥3LSYA snd
vel 00X0 0
j .
o0 |1 zaT J/
" @) | / e vr e gl
“ /NNH ¢ | ¢ ¥3LSYA Snd
vII *
! eIT
“ Wmozﬁz // Ww_oz»uz Wmoz».h_z # \ o] | 43SV Sn8 \
" aves |* * °] a3uvks ATYVHS AJONIN 034VHS Kwﬁ\mﬁ\

WO 2006/055291 PCT/US2005/040105

3/7

BEGIN
310

Y
SET A DATA BOUNDARY SIZE
IN THE FORMAT CONVERTER 311

Y

IN A MULTI-CORE ARCHITECTURE HAVING A SHARED MEMORY,
REQUEST DATA IN A FIRST FORMAT FROM A PREDETERMINED 312
RANGE OF ADDRESSES IN THE SHARED MEMORY IN WHICH
THE DATA IS SHARED BETWEEN DIFFERENT PROCESSORS

Y
DEDICATE A FORMAT CONVERTER CACHE TO STORE

THE DATA AND ISOLATE OTHER INSTRUCTION AND | 34
DATA CACHES FROM THE SHARED MEMORY

STORE THE REQUESTED DATA IN THE FORMAT CONVERTER
CACHE TO BE RETRIEVED BY A FORMAT CONVERTER 316

Y
AUTOMATICALLY ENABLE THE FORMAT CONVERTER WHEN

THE DATA IS REQUESTED FROM THE PREDETERMINED 318
RANGE OF ADDRESSES IN THE SHARED MEMORY

Y /

IDENTIFY TO THE FORMAT CONVERTER
A DATA TYPE FOR THE DATA 320

Y
WITH THE FORMAT CONVERTER, TRANSLATE-BASED ON

PREDETERMINDED RULES- THE DATA TO A SECOND FORMAT THAT | 322
IS NATIVE TO A PROCESSOR THAT WILL PROCESS THE DATA

A

RETRANSLATE THE DATA FROM THE SECOND
FORMAT TO THE FIRST FORMAT 324

Y
BYPASS THE FORMAT CONVERTER 326

P ERIG. 3

WO 2006/055291 PCT/US2005/040105

4/7

SHARED MEMORY

0X03
0X02

0X01 ’——\\\\}14
0X00

S

FORMAT CONVERTER

O - N

CACHE 118
140
120
R S 2\
30 | 32 1 0
j 1 0X00 | OXO1 | OX02 | OX03
I
BYPASS

l
[
[
I
I
I
I
!
I
0X03 | 0X02 | 0X01 | 0X00 l
I
I
I
I
I
I
l
I

132 3 2 1 0
A?:éEAss TRANSLATION
RULES 146
TYPE S—>:
L o e e e e e e e e e o e o e — — — — J

T0 FIRST PROCESSOR 110
(BP)

FI1G. 4

WO 2006/055291 PCT/US2005/040105

5/7

SHARED MEMORY

3 0%03
2 0X02
1 0X01 /—\1 14
0 0X00

U

FORMAT CONVERTER

CACHE 118
140
120
L IR 2\
j I 0X01 | 0X00 | OX03 | 0X02
I
BYPASS

0X03 | 0x02 | 0XO1 | 0X00

132 3 2 1 0
ATA S l -
ACLESS ! s 146
TYPE S——»:
L o o e e e e J

T0 FIRST PROCESSOR 110
(BP)

FIG. 5

WO 2006/055291

.
B0 |
|

|
BYPASSS—L

132
DATA S—L
ACCESS
TYPE S————-—*>:
|

O — N

6/7

SHARED MEMORY

0X03

0X02

0X01

0X00

U

FORMAT CONVERTER

(BP)

FI1G. 6

CACHE

3 2 1 0
0X00 | 0X01 | OX02 | 0X03
144
0X03 | 0X02 | O0X01 | 0X00

3 2 1 0

TRANSLATION
RULES 146

T0 FIRST PROCESSOR 110

114

PCT/US2005/040105

WO 2006/055291 PCT/US2005/040105

717

SHARED MEMORY

3 0X03
2 0X02
1 0X01 ’\1 14
0 0X00

FORMAT - CONVERTER

CACHE 118
140
T3 =
S S A
130 : S 2 1 0
j I 0X03 | 0x02 | OX01 | 0X00
I
BYPASS

I
|
1
I
: 0X00 | OX01 | 0X02 | OX03
!
|

132
3 2 1 0

DATA TRANSLATION

ACCESS l RULES 146

TYPE

L o e e o e e e o o e o e e - — — a— — 4
T0 FIRST PROCESSOR 110
(BP)
BEGIN
810
Yy

PROGRAM INTO A FORMAT CONVERTER PREDETERMINED RULES 812

FOR EACH SHARED MEMORY IN A MULTI-CORE ARCHITECTURE

Y

SELECT THE PREDETERMINED RULES BASED ON THE TYPE OF 814
SHARED MEMORY THAT THE FORMAT CONVERTER ACCESSES

Y

& w) 8 FIGL 8

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

