1 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 November 2002 (14.11.2002)

PCT

(10) International Publication Number

WO 02/091111 A2

(51) International Patent Classification’: GO6F

(21) International Application Number: PCT/US02/13970

(22) International Filing Date: 1 May 2002 (01.05.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/852,858 9 May 2001 (09.05.2001) US

(71) Applicant: CHAPARRAL NETWORK STORAGE
INC. [US/US]; 7420 East Dry Creek Parkway, Longmont,
CO 80503 (US).

(72) Inventor: BUSSER, Richard, W.; 1013 Chestnut Drive,
Longmont, CO 80503 (US).

(74) Agents: ZINGER, David, F. et al.; Sheridan Ross P.C,,
Suite 1200, 1560 Broadway, Denver, CO 80202-5141 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PARITY MIRRORING BETWEEN CONTROLLERS IN AN ACTIVE-ACTIVE CONTROLLER PAIR

FIRST ACYIVE CONTROLLER

PROGESSUR |~ "7

104

ey
S

J

\124

112

<
53

™

HOST

SECOND ACTIVE CONTROLLER

PROCESSOR 160

[>te

il

124

=
£

N
S

v={ (57) Abstract: A system and method for efficient parit morroring between controllers of an active-active controller pair in a redun-
= dant array of inexpensive disks (RAID) system is disclosed. When a second controller in an active controller pair receives new data
to be written to a disk array it mirrors the new data to a first controller in the active-active controller pair. The second controller then
computes new parity for the data stripe associated with the new data. The second controller then opens a parity log and mirrors logi-
~~ cal block addresse (LBA) information for the new data to a first ontroller in the active-active controller pair. In the event of a failure
of the second controller after mirroring the LBA information and prior to completing the write operation, the first controller uses the
LBA information to complete the write operation, assuring that the new data and new parity are properly stored on the disk array. If
a hard disk in the disk array fails, parity is mirrored between the first and second controllers, rathers than just LBA information. If a
hars disk and the second controller fail when the first controller contains LBA information, a list containing the LLVAs is created and
a media error is returned in the event that a host requests in the form of a read operation data contained in the listed LBAs.

0 02/091

10

15

20

25

30

WO 02/091111 PCT/US02/13970

PARITY MIRRORING BETWEEN CONTROLLERS
IN AN ACTIVE-ACTIVE CONTROLLER PAIR
FIELD OF THE INVENTION
The present invention relates to performance enhancements for redundant array of
inexpensive disks (RAID) storage systems and more particularly to a method and system for
enhancing performance of mirroring operations between controllers in an active-active

controller pair.

BACKGROUND OF THE INVENTION

A typical data processing system generally includes one or more storage units which
are connected to a host computer either directly or through a control unit and a channel. The
function of the storage units is to store data and other information (e.g., program code) which
the host computer uses in performing particular data processing tasks.

Various types of storage units are used in current data processing systems. A typical
system may include one or more large capacity tape units and/or disk drives connected to the
system through respective control units for storing data. However, a problem exists if one
of the storage units fails such that information contained in that unit is no longer available
to the system. Generally, such a failure will shut down the entire computer system, which
can create a problem for systems which require data storage systems to have high availability.

This problem has been overcome to a large extent by the use of Redundant Array of
Inexpensive Disks (RAID) systems. RAID systems are widely known, and several different
levels of RAID architectures exist, including RAID 1 through RAID 5, which are also widely
known. A key feature of a RAID system is redundancy, which is achieved through the
storage of a data file over several disk drives and parity information stored on one or more
drives. If one disk drive fails, then the RAID system is generally able to reconstruct the data
which was stored on the failed drive from the remaining drives in the array.

High availability is a key concern because in many applications users rely heavily on
the data stored on the RAID system. In these type of applications, unavailability of data
stored on the RAID system can result in significant loss of revenue and/or customer
satisfaction. Employing a RAID system in such an application enhances availability of the
stored data, since if a single disk drive fails, data may still be stored and retrieved from the
system. In addition to the use of a RAID system, it is common to use redundant RAID

controllers to further enhance the availability of such a storage system. In such a situation,

10

15

20

25

30

WO 02/091111 PCT/US02/13970

2

two or more controllers are used in a RAID system, where if one of the controllers fails the
other remaining controller will assume operations for the failed controller. Such a platform
enhances the availability of a RAID system because the system can sustain a failure of a
controller and continue to operate. When using dual controllers, each controller may conduct
independent read and write operations simultaneously, known as an active-active
configuration. It can be advantageous in certain applications to use the active-active
configuration, as the RAID system can support relatively high rates of data transfer between
the disks and host, although employing an active-active configuration requires mirroring of
data and parity between controllers to maintain redundancy, as will be described in detail
below.

With reference to Fig. 1, a RAID system 100 having an active-active controller pair
is described. The RAID system 100 is connected to a host computer 104 through a host
channel 108. The RAID system 100 includes a first active controller 112, a second active
controller 116, and a disk array 120. The disk array 120 is connected to the first active
controller 112 by a first disk channel 124 and a second disk channel 128, and to the second
active controller 116 by the first and second disk channels 124, 128. The disk array 120
contains a number of disk drives 132, 136, 140, 144, 148, that are used for data storage.
Within the first active controller 112, there is a processor 152 and a nonvolatile random
access memory (NVRAM) 156, and within the second active controller 116 there is a
processor 160 and a NVRAM 164. It should be understood that the number of drives shown
in Fig. 1 are for the purpose of discussion only, and that a RAID system 100 may contain
more or fewer disk drives than shown in Fig. 1. Data is written to the disk array 120 in such
a way that if one drive fails, data can continue to be read from and written to the disk array
120. How this redundancy is accomplished depends upon the level of RAID architecture
used, and is well known in the art.

When storing data, generally, a controller receives the data and breaks the data down
into blocks which will be stored on the individual disk drives 132, 136, 140, 144, 148. The
blocks of data are then arranged to be stored on the drives 132, 136, 140, 144, 148. In
arranging the blocks of data, the controller organizes the blocks into stripes and generates a
parity block for each stripe. The data is written across several drives, and the parity for that

stripe is written to one disk drive. In certain cases, the data may not be large enough to fill

10

15

20

25

30

WO 02/091111 PCT/US02/13970

3

a complete stripe on the RAID system. This is known as a non-full stripe write. When the
data sent to the controller occupies a full stripe, the data is simply written over existing data
and the parity is written over the existing parity. Additionally, in certain cases, the controller
may aggregate several small writes together to create a full stripe of data, which the controller
treats as a full stripe of data for purposes of generating parity. However, in the case of anon-
full stripe write, modifying the stripe of data requires several steps, and is a disk intensive
activity.

The occurrence of non-full stripe writes is common in many applications, such as
financial, reservation and retail systems, where relatively small data records are widely used
and are accessed and modified at random. When an individual customer record needs to be
revised, it may reside in a stripe of data that contains several other customer data records.
In such a case, only a portion of the stripe needs to be modified, while the remainder of the
stripe remains unaffected by the modification of the data.

As mentioned above, when using an active-active controller pair in a RAID system,
in order to maintain redundancy, data and parity must be mirrored between the controllers
in the active-active system. In such a system, when the host computer 104 sends data to be
written to the disk array 120, the data is typically sent to either the first active controller 112,
or the second active controller 116. Where the data is sent depends upon the location in the
disk array 120 the data will be written. In active-active systems, typically one controller is
zoned to a specific array of drives, or a specific area within an array of drives. Thus, if data
is to be written to the array that the first active controller 112 is zoned to, the data is sent to
the first active controller 112. Likewise, if the data is to be written to an array that the second
active controller 116 is zoned to, the data is sent to the second active controller 116. In order
to maintain redundancy between the two controllers 112, 116, the data sent to the first active
controller 112 must be copied onto the second active controller 116. Likewise, the data sent
to the second active controller 116 must be copied onto the first active controller 112. The
data is copied between controllers because, for example, if the first active controller 112
suffers a failure, the second active controller 116 can then use the copy of the data to
complete any data writes which were outstanding on the first active controller 112 when it

failed. This process of copying data, as well as parity, is known as mirroring,

10

15

20

25

30

WO 02/091111 PCT/US02/13970

4

Mirroring in such a system is typically necessary because when the host 104 sends
data to be written, the controller that receives the data, stores the data in a memory location,
and sends a reply to the host 104 that the write is complete. Thus, even though the data may
not have been written to the disk array 120, the host 104 is notified that it has been written.
This is known as write-back caching. If the controller that received the data subsequently
suffers a failure prior to writing the data to the disk array 120, the data can be lost. However,
if the controller mirrors the data prior to sending the host 104 a reply that the data has been
written, a failure of the controller can still be recovered without loss of the data. The
recovery from the failure, as will be described below, is performed by the surviving
controller, which takes control of the operations of the failed controller. This process of
recovering from a controller failure is known as “failing over,” and the surviving controller
is known to be in a “failed over” mode when performing operations of the failed controller.

With reference now to Fig. 2, a flow chart representation of a data write is now
described. Initially, indicated by block 200, the first active controller 112 receives new data
to be written to the disk array 120 and stores the data in NVRAM 156. The first active
controller 112 next initiates a write operation, as noted by block 204. The first active
controller 112 then takes steps to mirror the new data to the second active controller 116, and
data is stored in the NVRAM 164 of the second active controller 116, and a mirror write
operation is initiated within the second active controller 116, as indicated by block 208. The
mirror write operation indicates that there is an outstanding write operation on the first active
controller 112, which can be used to recover the system in the event of a failure of the first
active controller 112, and will be discussed in more detail below. Once the new data has
been mirrored to the second active controller 116, the first active controller 112 sends the
host computer 104 an acknowledgment that the write of the new data is complete, according
toblock 212. Next at block 216, the first active controlier 112 processes the data into blocks
for storage on the disk array 130 and determines if the blocks of new data will occupy a full
stripe in the disk array 130.

Referring to block 220, if the new data will not occupy a full stripe in the disk array
130, the first active controller 112 reads the old data and old parity from the disk array 130.
The first active controller 112 then computes new parity by XORing the old data and old
parity with the new data, and stores the new parity in its NVRAM 156, as indicated by block

10

15

20

25

30

WO 02/091111 PCT/US02/13970

5

224. Next, a parity log is opened on the first active controller 112, as noted by block 228.
The parity log is also stored in NVRAM 156, and contains pointers to the memory storage
location of the parity data and user data, the location in the drives where the data will be
stored, the serial number for the drives being written, the serial number of the array the drives
belong to, and an array offset. Next in block 232, the first active controller 112 mirrors a
parity log message to the second active controller 116. The parity log message contains the
new parity, and also includes the parity log, both of which are stored in the NVRAM 164 on
the second active controller 116. Accordingly, by mirroring the parity, in the event of a
failure of the first active controller 112, the second active controller 116 is able to complete
the write of the new data and new parity, as will be described in more detail below. With
reference to block 236, the first active controller 112 next issues write commands to write
the new data and new parity to the disk array 130. Once the first active controller 112
receives acknowledgment from the disk array 130 that the data and parity writes are
complete, the first active controller 112 mirrors a command to the second active controller
116 to close the mirror write operation, as indicated by block 240. Next at block 244, the
first active controller 112 invalidates the parity log by marking the array offset with an
invalid number. The first active controller 112 then terminates the write operation, and the
data write is complete, as noted by block 248.

Ifthe first active controller 112 determines in block 216 that the new data will occupy
a full stripe, the first active controller 112 then computes new parity by XORing all of the
data blocks, as noted by block 252. The first active controller 112 then writes the data and
parity to the appropriate stripe in the disk array 130, in accordance with block 256. The first
active controller 112 then terminates the write operation, and the data write is complete, as
noted by block 248.

With reference now to Fig. 3, recovery from a failure of a disk drive in an active-
active controller pair is described. Initially, a hard disk drive fails, as indicated by block 300.
When this occurs, the controllers recognize that a disk drive has failed, and begin operation
in critical mode, as noted by block 304. When operating in critical mode, data continues to
be written and read from the disk array, and the controllers 112, 116 compensate for the
failed drive using the remaining drives and the parity. For example, if disk drive 136 fails,

and the first active controller 112 needs to read data from the disk array 120, the first active

10

15

20

25

30

WO 02/091111 PCT/US02/13970

6

controller 112 determines whether the failed drive 136 contained parity or data. If the failed
disk drive 136 contained data, the first active controller 112 would read the data and parity
from the remaining drives in the disk array 120, and compute the data for the failed drive 136
by XORing the remaining data with the parity. If the failed disk drive 136 contained parity,
the first active controller 112 would simply read the data from the remaining drives.

With reference now to Fig. 4, recovery from a controller failure in an active-active
controller pair is now described. Initially, the first active controller 112 suffers a failure, as
noted by block 400. The second active controller 116 recognizes this failure, and takes
control of the operations of the first active controller 112, as indicated by block 404. The
second active controller 116 then checks for the existence of any outstanding parity logs, the
presence of which indicates that the first active controller 112 had data writes outstanding,
according to block 408. Ifno data writes were outstanding on the first active controller 112,
the second active controller 116 continues operations, according to block 412.

Ifthere are parity logs outstanding, the second active controller 116 then at block 416
issues a write command to write the new data and new parity associated with the parity log
to the disk array 120. Once the data and parity writes have completed, the second active
controller 116 invalidates the parity log, as noted by block 420. Once all of the outstanding
write operations are complete, operations are continued using the second active controller
116, as indicated by block 424.

With reference now to Fig. 5, recovery from a controller failure and a disk failure in
an active-active controller pair is now described. Initially, at block 500 the first active
controller 112 and one disk drive suffer a failure. The second active controller 116
recognizes the failure of the first active controller 112, and takes control of the operations
that were performed by the first active controller 112, as noted by block 504. When taking
control of the operations, the second active controller 116 first determines whether any parity
logs are outstanding on the first active controller 112, as indicated by block 508. If no parity
logs were outstanding on the first active controller 112 at the time of the failure, the second
active controller 116 continues operation in critical mode, according to block 512. If parity
logs were outstanding, the second active controller 116 then writes the parity and data
associated with the parity log to the disk array, ignoring any writes to the failed drive, as
noted by block 516.

10

15

20

25

30

WO 02/091111 PCT/US02/13970

7

Once the data and parity writes have completed, the second active controller 116
invalidates the parity log, in accordance with block 520. Once all of the outstanding write
operations with outstanding parity logs are complete, operations are continued in critical
mode using the second active controller 116, as indicated by block 524.

As can be noted from the above discussion, mirroring parity between controllers in
an active-active controller pair is required in order to provide redundancy to the RAID system
100. However, the parity is mirrored between controllers using the first disk channel 124 and
the second disk channel 128. Thus, mirroring the full parity consumes bandwidth from these
channels, and can reduce the performance of the system. This bandwidth consumption is
magnified when the data writes are for small amounts of data. For example, it is common
for a stripe of data to occupy a 64 Kbyte data block on each data disk in a disk array 120, and
have a 64 Kbyte parity block on the parity drive. If the host computer has a 100 Kbyte data
file to be written to a stripe of data, the data will be written to at least two of the drives within
the disk array 120. When writing the data, the controller writing the data, for purposes of
discussion the first active controller 112, will break the data into appropriate sections, called
chunks, to be stored on the individual disk drives. When writing the data, the first active
controller 112 writes one chunk at a time, and computes new parity for the stripe of data for
each chunk. In this example, the first active controller would compute new parity for the first
chunk of data, mirror the new parity to the second active controller 116, and write the new
data and parity to the disk array 120. The first active controller 112 would then perform the
same tasks for the second chunk of data to complete the data write operation. Thus, fora 100
Kbyte data write, the parity block is mirrored two times, giving 128 Kbyte of mirrored parity
from the first active controller 112 to the second active controller 116. The amount of
mirrored data grows if, as is common, the data write requires data to be written to more than
two drives in the disk array. For example, if the data write is written to three drives, 192
Kbytes of parity are mirrored for the 100 Kbyte data write. Additionally, as can be noted
from the above discussion, the full parity is only required to recover from a double failure,
which is a relatively infrequent event. Thus, it would be advantageous to have a method and
apparatus which reduces the amount of parity that is mirrored between controllers in an

active-active controller pair while still allowing for the recovery from a single failure.

10

15

20

25

30

WO 02/091111 PCT/US02/13970

8

SUMMARY OF THE INVENTION

The present invention provides a system and method for enhancing performance
related to mirroring parity. The system includes an array of drives that stores data and parity
including at least first parity associated with a first write operation. The system also includes
a first controller subsystem in communication with the array of drives. The first controller
subsystem includes a first controller and a memory that stores logical block address (LBA)
information associated with the first write operation. The system includes a second controller
subsystem in communication with the array of drives. The second controller subsystem
includes a second controller involved with the first write operation including storing the first
parity with the array of drives. The first LBA information includes the most recent logical
block address to which data is being written using the second controller. The first controller
subsystem receives a parity log message that includes the first LBA information. The first
LBA information is included in the parity log message when all drives in the array of drives
are usable to store data in association with the first write operation, and the parity log
message includes the parity when less than all of the drives in the array of drives are usable
to store data in association with the first write operation.

If the second controller fails after the first LBA information is stored with the
memory and before the first parity is stored on the array of drives, the first controller
subsystem uses the first LBA information to provide the first parity in association with the
first write operation. If the second controller fails and less than all of the drives in the array
of drives are usable to store data, and the first LBA information is stored in memory, then the
LBA information is used to mark the data associated with the first write operation as missing.
The first controller is used to provide an indication that the second controller has failed when
less than all of the drives in the array of drives are usable. In one embodiment, the LBA
information is different from a parity log and different from the first parity, with each thereof
associated with the first write operation.

The method for enhancing performance related to mirroring parity includes
controlling parity-related information being stored in the memory of the first controller
subsystem, with the parity-related information being associated with a first write operation
that is being conducted by the second controller subsystem. The first write operation is

conducted using the second controller subsystem and includes storing parity on the array of

10

15

20

25

30

WO 02/091111 PCT/US02/13970

9

drives, with the parity being different than the parity-related information. In one
embodiment, the parity related information includes information related to the LBA to which
data is being written using the second controller subsystem. In this embodiment, the LBA
information is the most recent LBA to which data is being written using the second controller
subsystem. In one embodiment, the parity-related information is part of a parity log message
provided to the first controller subsystem. When less than all drives in the array are usable
to store data, parity is stored in the memory of the first controller subsystem. In one
embodiment, the parity-related information is less in amount and is stored in less time than
the parity. The parity related information is different from a parity log that is related to an
identifier associated with the first write operation. In another embodiment, the second
controller subsystem includes a second controller, and when the second controller has failed
after the parity-related information is stored in the memory and before the parity is stored
with the array of drives, the parity related information is used by the first controller of the
first controller subsystem to provide parity for the first write operation. In another
embodiment, a second write operation is performed using the first controller subsystem,
including storing parity related to the second write operation, and the parity-related

information is not controlled when one drive of the array of drives has failed.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram representation of a RAID system utilizing an active-active
controller pair;

Fig. 2 is a flow chart representation of a write operation using an active-active
controller pair;

Fig. 3 is a flow chart representation of recovery from a hard disk failure using an
active-active controller pair;

Fig. 4 is a flow chart representation of recovery from a controller failure using an
active-active controller pair;

Fig. 5 is aflow chart representation of recovery from a controller and hard disk failure
using an active-active controller pair;

Fig. 6 is a block diagram representation of a RAID system utilizing an active-active

controller pair of the present invention;

10

15

20

25

30

WO 02/091111 PCT/US02/13970

10

Fig. 7 is a flow chart representation of a data write using LBA mirroring;

Fig. 8 is a flow chart representation of recovery from a hard disk failure when using
LBA mirroring;

Fig. 9 is a flow chart representation of recovery from a controller failure when using
LBA mirroring; and

Fig. 10 is a flow chart representation of recovery from a controller and hard disk

failure using LBA mirroring.

DETAILED DESCRIPTION

Fig. 6 is a block diagram representation of a RAID storage system 600 having an
active-active controller pair. The system 600 includes a first controller subsystem 604
including a first controller 608, a second controller subsystem 612 including a second
controller 616. The controller subsystems 604, 608 can also include other subsystems, such
as interface subsystems (not shown) and power supply and regulation subsystems (not
shown). The system includes at least one array of disk drives 620, including a number of
disk drives 624, 628, 632, 636, 640, which is connected to the first controller subsystem 604
through a first disk channel 644 and a second disk channel 648 and to the second controller
subsystem 612 through the first and second disk channel 648. The system 600 communicates
with a host 652, over a host channel 656, and stores and retrieves information stored on the
array of drives 620 as required by the host 652.

Within the first controller 608, there is a first processor 660 and a first memory
storage 664. The first processor 660 is used for controlling operation of the first controller
subsystem 604 and for manipulating data as required for storage and retrieval of data. The
first memory storage 664 is used for temporary storage of data and parity, as well as related
information, and includes a first parity storage area 668, a first data storage area 670, a first
parity log storage area 672 and a first parity-related information storage area 676. Likewise,
within the second controller 616, there is a second processor 680 and a second memory
storage 684. The second processor 680 is used for controlling operation of the second
controller subsystem 612 and for manipulating data as required for storage and retrieval of
data. The second memory storage 684 is used for temporary storage of data and parity, as

well as related information, and includes a second parity storage area 688, a second data

10

15

20

25

30

WO 02/091111 PCT/US02/13970

11

storage area 690, a second parity log storage area 692, and a second parity-related
information storage area 694. In one embodiment, the memory storage areas 664, 684 are
nonvolatile random access memory (NVRAM). In the embodiment shown in Fig, 6, the first
and second memory storage 680, 684, contain separate areas for different information,
however it should be noted that one or more of the listed areas could be combined with one
or more of the other listed areas.

With reference to Figs. 6 and 7, LBA mirroring to close the RAIDS5 write hole and
improve performance while mirroring data in an active-active RAID storage system is now
described. Initially, the second controller subsystem 612 receives new data from the host
computer 652 to be written to the disk array 620, in accordance with block 700. Within the
second controller subsystem 612, the second controller 616 initiates a write operation and
stores the new data in the second data storage area 690 within the second memory storage
684, as noted by block 704. The second controller 616 then mirrors the new data to the first
controller 608 within the first controller subsystem 604 in the active-active pair, as indicated
by block 708, and the first controller 608 opens a mirror write operation and stores the new
data in the first data storage area 670 within the first memory storage 664. The mirror write
operation indicates that there is an outstanding write operation on the second controller 616,
which can be used to recover the system in the event of a failure of the second controller 16
and will be discussed in more detail below. Once the new data has been mirrored to the first
controller 608, the second controller 616 sends the host computer 652 an acknowledgment
that the write of the new data is complete, according to block 712. Next at block 716, the
second controller 616 processes the data into blocks for storage on the disk array 620 and
determines if the blocks of new data will occupy a full stripe in the disk array 620.

Referring to block 720, if the new data will not occupy a full stripe in the disk array
620, the second controller 616 reads the old data and old parity from the disk array 620. The
second controller 616 then computes new parity by XORing the old data and old parity with
the new data, and stores the new parity in the second parity storage area 688, as indicated by
block 724. Next, a parity log is opened on the second controller 616, as noted by block 728.
The parity log is stored in the second parity log storage area 692, and contains pointers to the
memory storage location of the parity data and user data, the location in the drives where the

data will be stored, the serial number for the drives being written, the serial number of the

10

15

20

25

30

WO 02/091111 PCT/US02/13970

12

array the drives belong to, and an array offset. Next in block 732, the second controller 616
mirrors a parity log message to the first controller 608. The parity log message contains the
logical block addresses (LBAs) of the new data blocks with outstanding parity, and the LBAs
are stored in the first parity-related information storage area 676. The parity log message also
includes a parity log, which is stored in the first parity log storage area 674. The LBA
indicates the location within a hard disk drive where the data is to be stored and may be
defined as being comprised of a substantial number of separately addressable memory
locations. Accordingly, by including the LBAs in the parity log message, in the event of a
failure of the second controller 616, the first controller 608 is able to determine the locations
within the disk array 620 which may have inconsistent data and parity, as will be described
in more detail below. With reference to block 736, the second controller 616 next issues
write commands to write the new data and new parity to the disk array 620. Once the second
controller 616 receives acknowledgment from the disk array 620 that the data and parity
writes are complete, the second controller 616 mirrors a command to the first controller 608
to close the mirror write operation, as indicated by block 740. Next at block 744, the second
controller 616 invalidates the parity log by marking the array offset with an invalid number.
The second controller 616 then terminates the write operation, and the data write is complete,
as noted by block 748.

If the second controller 616 determines in block 716 that the new data will occupy
a full stripe, the second controller 616 then computes new parity by XORing all of the data
blocks, as noted by block 752. The second controller 616 then writes the data and parity to
the appropriate stripe in the disk array 620, in accordance with block 756. The second
controller 616 then terminates the write operation, and the data write is complete, as noted
by block 748.

With reference now to Fig. 8, recovery from a failure of a disk drive when mirroring
LBAs in the parity log message is described. Initially, a hard disk drive fails, as indicated by
block 800. When this occurs, the controllers recognize that a disk drive has failed, and begin
mirroring the full parity block in the parity log messages, rather than just the LBAs with
outstanding data writes, according to block 804. The full parity block is mirrored because
the controller containing the parity block may fail. In such a case, the remaining controller,

if it had only the outstanding LBAs, would not be able to reconstruct the data from the

10

15

20

25

30

WO 02/091111 PCT/US02/13970

13

missing disk drive. Thus, if the full parity block is mirrored following a disk drive failure,
the system can still recover from a controller failure. The RAID system then continues
operation in critical mode, as noted by block 808.

With reference now to Fig. 9, recovery from a controller failure when mirroring LBAs
in the parity log message is now described. Initially, the second controller 616 suffers a
failure, as noted by block 900. The first controller 608 recognizes this failure, and fails over
to take control of the operations of the second controller 616, as indicated by block 904. The
first controller 608 then checks for the existence of any parity logs, the presence of which
indicates that the second controller 616 had data writes outstanding, according to block 908.
If no parity logs were outstanding on the second controller 616, the first controller 608
continues operations, according to block 912. If there are parity logs outstanding, the first
controller 608 then determines whether the parity log is an LBA only parity log, as noted by
block 916.

If at block 916 the first controller 608 determines that there is an LBA only parity log
showing outstanding parity, the first controller 608 then reads the stripe of data indicated in
the LBA only parity log, as noted by block 920. Next at block 924, the first controller 608
generates new parity for the stripe. The first controller 608 then writes the new parity to the
disk array, as noted by block 928. This new parity is generated and written to the disk array
to assure that the data and parity for the stripe are consistent. The first controller608 then,
noted by block 932, invalidates the parity log. Operations are then continued using the first
controller608, as noted by block 936.

If at block 916 the first controller 608 determines that the parity log is not an LBA
only parity log, the first controller 608 then issues write commands to write the new data and
parity associated with the parity log to the disk array 620, as noted by block 944. Once the
data and parity have been successfully stored on the disk array 620, the first controller 608
invalidates the parity log, as noted by block 932. The first controller 608 then continues
operations of the system, as indicated by block 936.

With reference now to Fig. 10, recovery from a controller failure and a disk failure
using mirroring and parity logging of outstanding LBAs is now described. Initially, at block
1000 the second controller 616 and one disk drive suffer a failure. The first controller 608

recognizes the failure of the second controller 616, and fails over to take control of the

10

15

20

25

30

WO 02/091111 PCT/US02/13970

14

operations that were performed by the second controller 616, as noted by block 1004. When
taking control of the operations, the first controller 608 first determines whether any parity
logs are outstanding, as indicated by block 1008. If no parity logs were outstanding on the
second controller 616 at the time of the failure, the first controller 608 continues operation
in critical mode, according to block 1012, Ifparity logs were outstanding, the first controller
608 then determines whether the parity logs are LBA only parity logs, as noted by block
1016.

Referring to block 1020, if there is an LBA only parity log, the first controller 608
then determines whether the failed drive contained parity information or data for the stripe
of data indicated in the LBA only parity log. If the failed drive contained data, the first
controller 608 then marks the data associated with the LBA only parity log and with the
failed drive as missing, in accordance with block 1024. Next at block 1028, the first
controller 608 invalidates the parity log. Once all of the outstanding mirror write operations
are complete, operations are continued using the first controller 608, as indicated by block
1032.

If the first controller 608 determines that the parity log is not an LBA only parity log
in block 1016, it then writes the new data and new parity associated with the parity log to the
disk array, ignoring any writes to the failed drive, according to block 1040. The first
controller 608 then invalidates the parity log, and continues operations in critical mode, in
accordance with blocks 1028 and 1032, respectively.

Following the recovery from the double failure, the first controller 608 then continues
operation of the array in critical mode. If the host computer 652 requests a read of data from
a stripe in which data was marked as missing in block 1024, the first controller 608 returns
an error. Alternatively, in one embodiment, if the first controller 608 receives a request for
data from a stripe which had a parity write outstanding, the first controller 608 analyzes the
request to determine if the data requested is contained in the LBAs which were contained in
the parity log. Ifthe read request is for data not in these LBAs, the first controller 608 returns
this data if it is stored on available drives. Ifa portion of the data is on a failed drive, the first
controller 608 returns an error.

The foregoing discussion of the invention has been presented for purposes of

illustration and description. Further, the description is not intended to limit the invention to

WO 02/091111 PCT/US02/13970

15

the form disclosed herein. Consequently, variations and modifications commensurate with
the above teachings, within the skill and knowledge of the relevant art, are within the scope
of the present invention. The embodiments described hereinabove are further intended to
explain the best modes presently known of practicing the inventions and to enable others
skilled in the art to utilize the inventions in such, or in other embodiments, and with the
various modifications required by their particular application or uses of the invention. It is
intended that the appended claims be construed to include alternative embodiments to the

extent permitted by the prior art.

10

15

20

25

30

WO 02/091111 PCT/US02/13970

16

What is claimed is:

L. In a system that includes an array of drives and an active-active controller pair,
a method for enhancing performance related to parity, comprising:

controlling parity-related information being stored in memory of a first controller
subsystem and with said parity-related information being associated with a first write
operation being conducted using a second controller subsystem; and

conducting at least said first write operation to an array of drives using said second
controller subsystem including storing parity on said array of drives, with said parity being
different from said parity-related information.

2. A method, as claimed in Claim 1, wherein:

said parity-related information includes information related to at least one logical
block address (LBA) to which data is being written using said second controller subsystem.

3. A method, as claimed in Claim 2, wherein:

said at least one LBA is the mostrecent LBA to which data is being written using said
second controller subsystem.

4, A method, as claimed in Claim 1, wherein:

said parity-related information is part of a parity log message provided to said first
controller subsystem.

5. A method, as claimed in Claim 1, wherein:

said controlling step is performed when all drives of said array are usable to store data
and said parity is stored with said memory when less than all drives of said array are usable
to store data.

6. A method, as claimed in Claim 1, wherein:

said parity-related information is less in amount and stored in less time than said
parity.

7. A method, as claimed in Claim 1, wherein:

said parity-related information is different from a parity log that is related to an
identifier associated with said first write operation.

8. A method, as claimed in Claim 1, wherein:

said first controller subsystem includes a first controller and, when said first controller

is in a failed over mode after said parity-related information is stored in said memory and

10

15

20

25

30

WO 02/091111 PCT/US02/13970

17

before said parity is stored with said array of drives, said parity-related information is used
by said first controller to provide parity for said first write operation.

9. A method, as claimed in Claim 1, further including:

storing a parity log by said second controller subsystem associated with said first
write operation.

10. A method, as claimed in Claim 1, further including:

performing a second write operation and storing parity for said second write operation
using said first controller subsystem and not controlling parity-related information associated
with said second write operation when one drive of said array of drives is in a fail mode.

11. A method, as claimed in Claim 10, wherein:

said performing step includes ascertaining whether said second write operation
involves a full stripe of data for said array of drives.

12. A system for enhancing performance related to parity, comprising:

an array of drives that stores data and parity including at least first parity associated
with a first write operation;

a first controller subsystem in communication with said array of drives, said first
controller subsystem including a first controller and memory that stores at least first logical
block address (LBA)-related information associated with said first write operation; and

a second controller subsystem in communication with said array of drives and
including a second controller involved with said first write operation including storing said
first parity with said array of drives.

13. A system, as claimed in Claim 12, wherein:

said first LBA-related information includes the most recent logical block address to
which data is being written using said second controller.

14. A system, as claimed in Claim 12, wherein:

said first controller subsystem receives a parity log message that includes said first
LBA-related information.

15. A system, as claimed in Claim 12, wherein:

said memory receives said first LBA-related information when all drives of said array

of drives are usable to store data in association with said first write operation and said

10

15

WO 02/091111 PCT/US02/13970

18

memory receives said parity when less than all of said drives of said array are usable to store
data in association with said first write operation.

16. A system, as claimed in Claim 12, wherein:

when said first controller is in a failed over mode and after said first LBA-related
information is stored with said memory and before said first parity is stored with said array
of drives, said first controlle; uses said first LBA-related information to provide said first
parity in association with said first write operation.

17. A system, as claimed in Claim 12, wherein:

when said first controller is in a failed over mode and less than all of said drives of
said array are usable to store data and while said first LBA-related information is stored with
said memory, data associated with said first write operation is marked as inaccessible from
said array of drives.

18. A system, as claimed in Claim 17, wherein:

said first controller is used in providing an indication that said first controller is in
said failed over mode when less than all of said drives of said array are useable to store data.

19. A system, as claimed in Claim 12, wherein:

said first LBA-related information is different from a parity log and different from

said first parity with each thereof associated with said first write operation.

PCT/US02/13970

WO 02/091111

1/8

(v 1oud) | "]

917 1 WVHAN

09} 40SS3304d

YITI041NOD JAILIY ANOJIS

96, WYYAN

1 408$3904d

¢S5l

YITI0HINGD JAILY 1SHI4

_ 8¢l

| \

_

| sz

| wmh.\

_

| — 771

| 9~
|

| — 071

| 47

— - ——

! > Vel ./
[

| — <€} //

_

e

_ 0clt

|

I mmh\

ISOH

v0}

SUBSTITUTE SHEET (RULE 26)

WO 02/091111

2/8

FIRST ACTIVE CONTROLLER RECEIVES NEW DATA TO BE
WRITTEN TO THE DISK ARRAY

A

INITIATE WRITE OPERATION ON THE FIRST ACTIVE CONTROLLER

Y

MIRROR NEW DATA TO THE SECOND ACTIVE CONTROLLER

A\ 4

SEND HOST COMPUTER AN INDICATION THAT THE WRITE IS
COMPLETE

PCT/US02/13970

252
/\

READ THE OLD DATA AND OLD PARITY FROM THE DISK ARRAY
\ 4
COMPUTE NEW PARITY |~ 224
" 228
OPEN A PARITY L0G e
\ 4
MIRROR THE NEW PARITY AND THE PARITY LOG TO | 232
THE SECOND ACTIVE CONTROLLER
\ 4
WRITE THE NEW PARITY AND NEW DATA TO THE DISK ARRAY |~ 236
v
MIRROR COMMAND TO SECOND ACTIVE CONTROLLERT0 | 2%
TERMINATE WRITE OPERATION
\ 4
INVALIDATE THE PARITY L0G | 244

COMPUTE A PARITY
BLOCK BY XORING THE
DATA BLOCKS

Y

WRITE THE NEW DATA
AND THE NEW PARITY
TO THE DISK ARRAY

L25,6

N 4 4 248
(TERMINATE THE WRITE OPERATION ON THE \C-/

FIRST ACTIVE CONTROLLER J

FIG. 2 (Prior Art)

SUBSTITUTE SHEET (RULE 26)

WO 02/091111 PCT/US02/13970

3/8

ONE HARD DISK DRIVE FAILS | _—300

Y.

(CONTINUE OPERATION IN CRITICAL MU[D/" 304

FIG. 3 (Prior Art)

FIRST ACTIVE CONTROLLER FAILURE

A

SECOND ACTIVE CONTROLLER TAKES CONTROL 404

/‘ 412
ARE ANY PARITY CONTINUE OPERATIONS
LOGS OUTSTANDING? USING SECOND ACTIVE
. CONTROLLER

WRITE THE PARITY AND DATA ASSOCIATED WITH THE PARITY | __ /0
LOG TO THE DISK ARRAY
Y
INVALIDATE THE PARITY LOG L 420

A

CONTINUE OPERATIONS USING THE
SECOND ACTIVE CONTROLLER 424

FIG. 4 (Prior Art)

SUBSTITUTE SHEET (RULE 26)

WO 02/091111 PCT/US02/13970

4/8

FIRST ACTIVE CONTROLLER AND ONE DISK FAIL

A

SECOND ACTIVE CONTROLLER TAKES CONTROL | 904

/‘ 512
508 CONTINUE OPERATIONS IN
LUQI;EU‘l\l'gTF;\‘:IRI%G'? CRITIGAL MODE USING SECOND
' ACTIVE CONTROLLER

WRITE THE PARITY AND DATA ASSOCIATED WITH THE PARITY
LOG TO THE DISK ARRAY, IGNORING ANY WRITES TO THE FAILED
DRIVE
v
INVALIDATE THE PARITY LOG L 520

_— 516

v
CONTINUE OPERATIONS IN CRITICAL MODE 594
USING SECOND ACTIVE CONTROLLER

FIG. 5 (Prior Art)

SUBSTITUTE SHEET (RULE 26)

PCT/US02/13970

WO 02/091111

5/8

9%9
T9V401S NOILYWHOINI
A P TINTAY-ALNY
0P9—~ g ¢69~7] _ 33YH0LS J0T ALI¥Yd
| ysia 269~| ______J9YH0LS VI¥a
7 o 13V40LS ALy
7r9 99—~ IDYHOLS KON

-
9e9——1 | ysig 99—"| 0gg 40S53904d
219" YITI041NO3 ONDJIS

| ¢

¢e9— ¥SIa
09| 19VHOLS NOLLVWHOAH]
A O I R N Q3LV13Y-ALIYYd |
829——1 1 ¥sia 7,9~ _ JIVHOLS 90T ALIYYd |
59 09~ _____ J9WH0LS VIYa
_ L) | se9~|___ T0VH0LS ALIEd
— $99~1 " TOVHOLS NUOWTMW

pz9——1 | 4SI0 89—

— 097 ¥ITIOHINDD 1SHId

1SOH

¢q9

SUBSTITUTE SHEET (RULE 26)

WO 02/091111

PCT/US02/13970

6/8
SECOND CONTROLLER RECEIVES NEW DATA TO BE WRITTEN T0 00
THE DISK ARRAY L
A\ 4
INTIATE WRITE GPERATION ON THE SECOND CONTROLLER AND | _ 7,
STORE NEW DATA IN MEMORY
v
MIRROR NEW DATA TO THE FIRST CONTROLLER, INTITE | 708
MIRROR WRITE OPERATION
v
SEND HOST COMPUTER AN INDICATION THAT THE WRITEIS | _— 712
COMPLETE -
716 ya
N VES COMPUTE A PARITY
BLOCK BY XORING THE
DATA BLOCKS
/~720
\ 4
READ THE OLD DATA AND OLD PARITY FROM THE DISK ARRAY WRITE THE NEW DATA
7 AND THE NEW PARITY
COMPUTE NEW PARITY, STORE IN MEMORY |~ 724 TOTHE DISK ARRAY
v - U756
OPEN A PARITY LOG e
A 4
MIRROR PARITY LOG MESSAGE CONTAINING LBAs WITH |~ 732
OUTSTANDING PARITY
\ 4
WRITE THE NEW PARITY AND NEW DATA TO THE DISK ARRAY |~ 736
\ 4
MIRROR COMMAND TO THE FIRST CONTROLLER T0 TERMINATE | 740
MIRROR WRITE OPERATION
\ 4
NVALIDATE THE PARITY LOG | 744
v 748
TERMINATE THE WRITE OPERATION ONTHE X
SECOND CONTROLLER A

SUBSTITUTE SHEET (RULE 26)

WO 02/091111 PCT/US02/13970

7/8
ONE HARD DISK DRIVE FAILS 800
v
BEGIN MIRRORING FULL PARITY WITH THE PARITY LOGS
\ 4
(cummw OPERATION IN CRITICAL MoDE) 608
900
SECOND CONTROLLER FAILURE -
\ 4
FIRST CONTROLLER FAILS OVER 904
/‘912
T ANV PARIY CONTINUE OPERATIONS
LOBS OUTSTANDING? USING THE FIRST
' CONTROLLER
916
IS THE WRITE THE PARITY AND DATA
PARITY LOG AN LBA ONLY ASSOCIATED WITH THE PARITY
PARITY LOG? LOG TO THE DISK ARRAY
READ THE DATA FROM THE STRIPE INDICATED 944
IN THE PARITY LOG - 920
v
COMPUTE NEW PARITY FOR THIS STRIPE |~924
\ 4
WRITE NEW PARITY TO THE PARITY DRIVE — 928
y _N032
INVALIDATE THE PARITY LOG <
)
CONTINUE OPERATIONS USING THE
FIRST CONTROLLER 936

SUBSTITUTE SHEET (RULE 26)

WO 02/091111

NO

8/8

PCT/US02/13970

SECOND CONTROLLER AND ONE DISK DRIVE FAIL

v

FIRST CONTROLLER FAILS OVER

ARE ANY PARITY

CONTINUE OPERATIONS IN

LOGS OUTSTANDING?

101

PARITY LOG AN LBA ONLY NO

»CRITICAL MODE USING FIRST
CONTROLLER

WRITE THE NEW DATA AND
NEW PARITY ASSOCIATED

1020

DID THE

A

_DEAD DRIVE HAVE DATA FOR THIS
STRIPE?

>|' WITH THE PARITY LOG TO
THE DISK ARRAY,

IGNORING ANY WRITES T0
THE FAILED DRIVE

|

1040

MARK DATA ASSOCIATED WITH THE FAILED DRIVE AS MISSING

_—1024

Y

Y

INVALIDATE THE PARITY LOG

1028

\
CONTINUE OPERATIONS [N CRITICAL MODE
USING FIRST CONTROLLER 1032

FIG. 10

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

