

US00D867591S

(12) United States Design Patent (10) Patent No.:

Adams (4

US D867,591 S

(45) Date of Patent: ** Nov. 19, 2019

(54) SINGLE STRAND MONO-DIRECTIONAL BARB LOOP SUTURE WITH SINGLE COATING SHIELD

(71) Applicant: Jason P. Adams, Farmington, NM (US)

(72) Inventor: Jason P. Adams, Farmington, NM (US)

(**) Term: 15 Years

(21) Appl. No.: 29/623,760

(22) Filed: Oct. 26, 2017

Related U.S. Application Data

(63) Continuation-in-part of application No. 15/096,496, filed on Apr. 12, 2016, now abandoned.

(51) LOC (12) Cl. 24-04

(52) **U.S. Cl.**

USPC **D24/145**

(58) Field of Classification Search
USPC D24/145, 146, 147, 148, 133, 155, 169
(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

3,720,055 A 3/1973 De Mestral et al. 4,622,777 A * 11/1986 Greene, Jr. A01G 9/022 47/67

(Continued)

FOREIGN PATENT DOCUMENTS

CA 2777345 A1 11/2012 EP 2338421 B1 11/2012 (Continued)

OTHER PUBLICATIONS

John R. Fowler, MD, Tiffany A. Perkins, BS, Bettina A. Buttaro, PhD, and Allan L. Truant, PhD, Clin Ortho Relat Res. Bacteria

Adhere Less to Barbed Monofilament Than Braided Sutures in a Contaminated Wound Model, Feb. 2013; 471(2): 665-671.

(Continued)

Primary Examiner — Cathron C Brooks

Assistant Examiner — Samantha Q Lawrence

(74) Attorney, Agent, or Firm — Pate Baird, PLLC

(57) **CLAIM**

The ornamental design for a single strand mono-directional barb loop suture with single coating shield, as shown and described.

DESCRIPTION

FIG. 1 is a side elevation view of a single strand monodirectional barb loop suture with single coating shield in accordance with the invention, showing single strand monodirectional barb loop suture with single coating shield in first condition of use wherein the strand is shown in a coated condition, with half of the strand in a coated condition and the other half of the strand in a non-coated condition;

FIG. 2 is an enlarged, side elevation of a portion of the single strand mono-directional barb loop suture with single coating shield taken from FIG. 1;

FIG. 3 is an enlarged, side elevation of a portion of the single strand mono-directional barb loop suture with single coating shield taken from FIG. 1;

FIG. 4 is a perspective view of the single strand monodirectional barb loop suture with single coating shield showing the portion indicated by Line A-A in FIG. 1;

FIG. 5 is a cross-section view thereof, showing the single strand mono-directional barb loop suture with single coating shield in a second condition of use wherein one strand is shown in a coated condition and the other strand is shown in a non-coated condition, taken along line B-B of FIG. 2; and, FIG. 6 is another cross-section view thereof, showing the single strand mono-directional barb loop suture with single coating shield in a second condition of use wherein both strands are in a non-coated condition.

The single strand mono-directional barb loop suture with single coating shield contains a repeating pattern of barbs along the lengths of the suture filaments forming a singlestrand suture. Before and during use, one half of the single-

(Continued)

strand suture is coated and the other half is non-coated. Once the suture is installed, the coating on the strand dissolves. The suture is shown with a symbolic break in its length. The appearance of any portion of the article between the break lines forms no part of the claimed design.

The broken lines shown in FIG. 1 illustrates the environment of the single strand mono-directional barb loop suture with single coating shield and form no part of the claimed design.

1 Claim, 2 Drawing Sheets

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,062,363	B2		11/2011	Hirpara et al.	
8,353,931	B2		1/2013	Stopek et al.	
8,562,644			10/2013	Yuan et al.	
D734,459	S	*	7/2015	Arnett	D24/145
D745,964	S	*	12/2015	Ponganis	D24/133
D745,965				Anderson	
			12/2015	Ponganis	D24/133
D746,450	S	*	12/2015	Anderson	D24/133
D749,726	S	*	2/2016	Ponganis	D24/133
D844,140	\mathbf{S}	*	3/2019	Adams	D24/145
2012/0277793	A1	*	11/2012	Marczyk A61B	17/06166
					606/228

2013/0066369 A1	3/2013	Collier et al.
2013/0165971 A1	6/2013	Leung et al.
2015/0272720 A1*	10/2015	Marks A61B 17/00008
		623/13.2
2016/0120543 A1*	5/2016	Nawrocki A61B 17/06166
		606/230
2016/0278769 A1*	9/2016	Kim D02J 3/10
2017/0189016 A1*	7/2017	Gross A61B 17/06166
2017/0281160 A1*	10/2017	Lin A61B 17/06166
2017/0319195 A1*	11/2017	Denham A61F 2/0811
2017/0319203 A1*	11/2017	Cohen A61B 17/06166
2017/0360543 A1*	12/2017	Rosenblatt A61F 2/0045
2018/0103944 A9*	4/2018	Sauer A61B 17/0401
2018/0116648 A1*	5/2018	Kim A61B 17/06166
2018/0125472 A1*	5/2018	Dreyfuss A61B 17/0401
2018/0140291 A1*	5/2018	Dreyfuss A61B 17/0401

FOREIGN PATENT DOCUMENTS

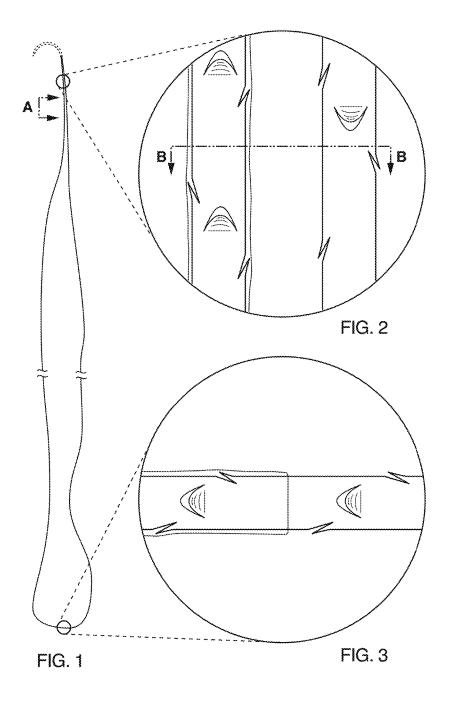
EP 2447040 A3 12/2013 JP 61171998 2/1986

OTHER PUBLICATIONS

James A. Greenberg, MD, US National Library of Medicine National Institute of Health, The Use of Barbed Sutures in Obstetrics and Gynecology, v.3(3); Summer 2010.

Dr. R.K. Mishra, Barbed Suture in Laparoscopic Surgery, Feb. 9, 2016

Angiotech Puerto Rico, Inc., Quill™ Knotless Tissue-Closure Device Product Catalog, 2007-2013.


Angiotech Pharmaceuticals, Inc. Quill™ SRS Product Catalog, 2009

Covidien, V-Loc™ Wound Closure Devices Product Overview, 2011

Covidien, V-LocTM Wound Closure Device (the secure advantage), 2013.

DePuy Mitek, a Johnson & Johnson Company, MicroFix Absorbable QuickAnchor® Plus, Massachusetts, 2005.

^{*} cited by examiner

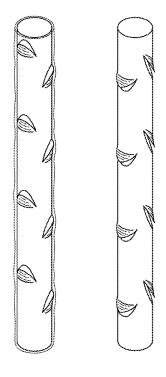
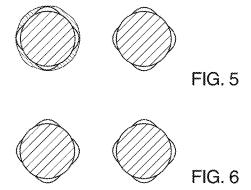



FIG. 4

