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MULTI-SENSOR, MULTI-VIEW,
MULTI-FRAME, MULTI-TASK SYNTHETIC
IMAGE FUSION ENGINE FOR MOBILE
IMAGING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION AND PRIORITY CLAIM

This application claims priority under 35 U.S.C. § 119(e)
to U.S. Provisional Patent Application No. 63/039,249 filed
on Jun. 15, 2020.

TECHNICAL FIELD

This disclosure relates generally to imaging systems.
More specifically, this disclosure relates to a multi-sensor,
multi-view, multi-frame, multi-task synthetic image fusion
engine for a mobile imaging system.

BACKGROUND

Many mobile electronic devices, such as smartphones and
tablet computers, include multiple cameras, depth sensors,
and even time-of-flight (ToF) sensors in a variety of physical
arrangements and specifications. This type of complicated
camera/depth sensor system is designed to offer better
photography or computer vision tasks, such as depth-of-field
rendering (like for Bokeh effects), super-resolution, high
dynamic range (HDR), optical flow, semantic segmentation,
scene recognition, and the like. An artificial neural network,
such as a convolutional neural network (CNN), is often used
in the systems to perform these tasks. Such a CNN may
require training using a large number (such as dozens,
hundreds, or thousands) of training images to perform at
high levels of accuracy. However, it can be very difficult to
capture training images synchronously using so many sen-
sors and to have humans annotate the training images from
different sensors with pixel-level accuracy.

SUMMARY

This disclosure provides a multi-sensor, multi-view,
multi-frame, multi-task synthetic image fusion engine for a
mobile imaging system.

In a first embodiment, a method includes obtaining, using
at least one processor of an electronic device, multiple
calibration parameters associated with multiple sensors of a
selected mobile device. The method also includes obtaining,
using the at least one processor, an identification of multiple
imaging tasks. The method further includes obtaining, using
the at least one processor, multiple synthetically-generated
scene images. In addition, the method includes generating,
using the at least one processor, multiple training images and
corresponding meta information based on the calibration
parameters, the identification of the imaging tasks, and the
scene images. The training images and corresponding meta
information are generated concurrently, different ones of the
training images correspond to different ones of the sensors,
and different pieces of the meta information correspond to
different ones of the imaging tasks.

In a second embodiment, an electronic device includes at
least one memory configured to store instructions. The
electronic device also includes at least one processing device
configured when executing the instructions to obtain mul-
tiple calibration parameters associated with multiple sensors
of a selected mobile device. The at least one processing
device is also configured when executing the instructions to
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obtain an identification of multiple imaging tasks. The at
least one processing device is further configured when
executing the instructions to obtain multiple synthetically-
generated scene images. In addition, the at least one pro-
cessing device is configured when executing the instructions
to generate multiple training images and corresponding meta
information based on the calibration parameters, the iden-
tification of the imaging tasks, and the scene images. The
training images and corresponding meta information are
generated concurrently, different ones of the training images
correspond to different ones of the sensors, and different
pieces of the meta information correspond to different ones
of the imaging tasks.

In a third embodiment, a non-transitory machine-readable
medium contains instructions that when executed cause at
least one processor of an electronic device to obtain multiple
calibration parameters associated with multiple sensors of a
selected mobile device. The medium also contains instruc-
tions that when executed cause the at least one processor to
obtain an identification of multiple imaging tasks. The
medium further contains instructions that when executed
cause the at least one processor to obtain multiple syntheti-
cally-generated scene images. In addition, the medium con-
tains instructions that when executed cause the at least one
processor to generate multiple training images and corre-
sponding meta information based on the calibration param-
eters, the identification of the imaging tasks, and the scene
images. The training images and corresponding meta infor-
mation are generated concurrently, different ones of the
training images correspond to different ones of the sensors,
and different pieces of the meta information correspond to
different ones of the imaging tasks.

Other technical features may be readily apparent to one
skilled in the art from the following figures, descriptions,
and claims.

Before undertaking the DETAILED DESCRIPTION
below, it may be advantageous to set forth definitions of
certain words and phrases used throughout this patent docu-
ment. The terms “transmit,” “receive,” and “communicate,”
as well as derivatives thereof, encompass both direct and
indirect communication. The terms “include” and “com-
prise,” as well as derivatives thereof, mean inclusion without
limitation. The term “or” is inclusive, meaning and/or. The
phrase “associated with,” as well as derivatives thereof,
means to include, be included within, interconnect with,
contain, be contained within, connect to or with, couple to
or with, be communicable with, cooperate with, interleave,
juxtapose, be proximate to, be bound to or with, have, have
a property of, have a relationship to or with, or the like.

Moreover, various functions described below can be
implemented or supported by one or more computer pro-
grams, each of which is formed from computer readable
program code and embodied in a computer readable
medium. The terms “application” and “program” refer to
one or more computer programs, software components, sets
of instructions, procedures, functions, objects, classes,
instances, related data, or a portion thereof adapted for
implementation in a suitable computer readable program
code. The phrase “computer readable program code”
includes any type of computer code, including source code,
object code, and executable code. The phrase “computer
readable medium” includes any type of medium capable of
being accessed by a computer, such as read only memory
(ROM), random access memory (RAM), a hard disk drive,
a compact disc (CD), a digital video disc (DVD), or any
other type of memory. A “non-transitory” computer readable
medium excludes wired, wireless, optical, or other commu-
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nication links that transport transitory electrical or other
signals. A non-transitory computer readable medium
includes media where data can be permanently stored and
media where data can be stored and later overwritten, such
as a rewritable optical disc or an erasable memory device.

As used here, terms and phrases such as “have,” “may
have,” “include,” or “may include” a feature (like a number,
function, operation, or component such as a part) indicate
the existence of the feature and do not exclude the existence
of other features. Also, as used here, the phrases “A or B,”
“at least one of A and/or B,” or “one or more of A and/or B”
may include all possible combinations of A and B. For
example, “A or B,” “at least one of A and B,” and “at least
one of A or B” may indicate all of (1) including at least one
A, (2) including at least one B, or (3) including at least one
A and at least one B. Further, as used here, the terms “first”
and “second” may modify various components regardless of
importance and do not limit the components. These terms
are only used to distinguish one component from another.
For example, a first user device and a second user device
may indicate different user devices from each other, regard-
less of the order or importance of the devices. A first
component may be denoted a second component and vice
versa without departing from the scope of this disclosure.

It will be understood that, when an element (such as a first
element) is referred to as being (operatively or communi-
catively) “coupled with/to” or “connected with/to” another
element (such as a second element), it can be coupled or
connected with/to the other element directly or via a third
element. In contrast, it will be understood that, when an
element (such as a first element) is referred to as being
“directly coupled with/to” or “directly connected with/to”
another element (such as a second element), no other ele-
ment (such as a third element) intervenes between the
element and the other element.

As used here, the phrase “configured (or set) to” may be
interchangeably used with the phrases “suitable for,” “hav-
ing the capacity to,” “designed to,” “adapted to,” “made to,”
or “capable of”” depending on the circumstances. The phrase
“configured (or set) to” does not essentially mean “specifi-
cally designed in hardware to.” Rather, the phrase “config-
ured to” may mean that a device can perform an operation
together with another device or parts. For example, the
phrase “processor configured (or set) to perform A, B, and
C” may mean a generic-purpose processor (such as a CPU
or application processor) that may perform the operations by
executing one or more software programs stored in a
memory device or a dedicated processor (such as an embed-
ded processor) for performing the operations.

The terms and phrases as used here are provided merely
to describe some embodiments of this disclosure but not to
limit the scope of other embodiments of this disclosure. It is
to be understood that the singular forms “a,” “an,” and “the”
include plural references unless the context clearly dictates
otherwise. All terms and phrases, including technical and
scientific terms and phrases, used here have the same
meanings as commonly understood by one of ordinary skill
in the art to which the embodiments of this disclosure
belong. It will be further understood that terms and phrases,
such as those defined in commonly-used dictionaries, should
be interpreted as having a meaning that is consistent with
their meaning in the context of the relevant art and will not
be interpreted in an idealized or overly formal sense unless
expressly so defined here. In some cases, the terms and
phrases defined here may be interpreted to exclude embodi-
ments of this disclosure.
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Examples of an “electronic device” according to embodi-
ments of this disclosure may include at least one of a
smartphone, a tablet personal computer (PC), a mobile
phone, a video phone, an e-book reader, a desktop PC, a
laptop computer, a netbook computer, a workstation, a
personal digital assistant (PDA), a portable multimedia
player (PMP), an MP3 player, a mobile medical device, a
camera, or a wearable device (such as smart glasses, a
head-mounted device (HMD), electronic clothes, an elec-
tronic bracelet, an electronic necklace, an electronic acces-
sory, an electronic tattoo, a smart mirror, or a smart watch).
Other examples of an electronic device include a smart
home appliance. Examples of the smart home appliance may
include at least one of a television, a digital video disc
(DVD) player, an audio player, a refrigerator, an air condi-
tioner, a cleaner, an oven, a microwave oven, a washer, a
drier, an air cleaner, a set-top box, a home automation
control panel, a security control panel, a TV box (such as
SAMSUNG HOMESYNC, APPLETV, or GOOGLE TV), a
smart speaker or speaker with an integrated digital assistant
(such as SAMSUNG GALAXY HOME, APPLE HOME-
POD, or AMAZON ECHO), a gaming console (such as an
XBOX, PLAYSTATION, or NINTENDO), an electronic
dictionary, an electronic key, a camcorder, or an electronic
picture frame. Still other examples of an electronic device
include at least one of various medical devices (such as
diverse portable medical measuring devices (like a blood
sugar measuring device, a heartbeat measuring device, or a
body temperature measuring device), a magnetic resource
angiography (MRA) device, a magnetic resource imaging
(MRI) device, a computed tomography (CT) device, an
imaging device, or an ultrasonic device), a navigation
device, a global positioning system (GPS) receiver, an event
data recorder (EDR), a flight data recorder (FDR), an
automotive infotainment device, a sailing electronic device
(such as a sailing navigation device or a gyro compass),
avionics, security devices, vehicular head units, industrial or
home robots, automatic teller machines (ATMs), point of
sales (POS) devices, or Internet of Things (IoT) devices
(such as a bulb, various sensors, electric or gas meter,
sprinkler, fire alarm, thermostat, street light, toaster, fitness
equipment, hot water tank, heater, or boiler). Other examples
of an electronic device include at least one part of a piece of
furniture or building/structure, an electronic board, an elec-
tronic signature receiving device, a projector, or various
measurement devices (such as devices for measuring water,
electricity, gas, or electromagnetic waves). Note that,
according to various embodiments of this disclosure, an
electronic device may be one or a combination of the
above-listed devices. According to some embodiments of
this disclosure, the electronic device may be a flexible
electronic device. The electronic device disclosed here is not
limited to the above-listed devices and may include new
electronic devices depending on the development of tech-
nology.

In the following description, electronic devices are
described with reference to the accompanying drawings,
according to various embodiments of this disclosure. As
used here, the term “user” may denote a human or another
device (such as an artificial intelligent electronic device)
using the electronic device.

Definitions for other certain words and phrases may be
provided throughout this patent document. Those of ordi-
nary skill in the art should understand that in many if not
most instances, such definitions apply to prior as well as
future uses of such defined words and phrases.
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None of the description in this application should be read
as implying that any particular element, step, or function is
an essential element that must be included in the claim
scope. The scope of patented subject matter is defined only
by the claims. Moreover, none of the claims is intended to
invoke 35 U.S.C. § 112(f) unless the exact words “means
for” are followed by a participle. Use of any other term,

including without limitation “mechanism,” “module,”
“device,” “unit,” “component,” “element,” “member,”
“apparatus,” “machine,” “system,” “processor,” or “control-

ler,” within a claim is understood by the Applicant to refer
to structures known to those skilled in the relevant art and is
not intended to invoke 35 U.S.C. § 112(%).

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure and
its advantages, reference is now made to the following
description taken in conjunction with the accompanying
drawings, in which like reference numerals represent like
parts:

FIG. 1 illustrates an example network configuration
including an electronic device according to this disclosure;

FIG. 2 illustrates an example worktflow using a synthetic
image fusion engine according to this disclosure;

FIG. 3 illustrates additional details of an example photo-
metric calibration according to this disclosure;

FIG. 4 illustrates additional details of an example geo-
metric calibration according to this disclosure;

FIG. 5 illustrates additional details of an example noise
calibration according to this disclosure;

FIGS. 6A and 6B illustrate example training images
generated to include different levels of noise according to
this disclosure;

FIG. 7 illustrates example sensor outputs and ground truth
scene meta information generated by the synthetic image
fusion engine of FIG. 2 according to this disclosure;

FIGS. 8A, 8B, and 8C illustrate example benefits that can
be realized using one or more of the embodiments of this
disclosure;

FIGS. 9A and 9B illustrate additional example benefits
that can be realized using one or more of the embodiments
of this disclosure; and

FIG. 10 illustrates an example method for generating
training data using a synthetic image fusion engine accord-
ing to this disclosure.

DETAILED DESCRIPTION

FIGS. 1 through 10, discussed below, and the various
embodiments of this disclosure are described with reference
to the accompanying drawings. However, it should be appre-
ciated that this disclosure is not limited to these embodi-
ments and all changes and/or equivalents or replacements
thereto also belong to the scope of this disclosure.

As noted above, many mobile electronic devices, such as
smartphones and tablet computers, include multiple cam-
eras, depth sensors, and even time-of-flight (ToF) sensors in
a variety of physical arrangements and specifications. This
type of complicated camera/depth sensor system is designed
to offer better photography or computer vision tasks, such as
depth-of-field rendering (like for Bokeh effects), super-
resolution, high dynamic range (HDR), optical flow, seman-
tic segmentation, scene recognition, and the like. An artifi-
cial neural network, such as a convolutional neural network
(CNN), is often used in the systems to perform these tasks.
Such a CNN may require training using a large number
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6

(such as dozens, hundreds, or thousands) of training images
to perform at high levels of accuracy. However, it can be
very difficult to capture training images synchronously using
so many sensors and to have humans annotate the training
images from different sensors with pixel-level accuracy.

This disclosure provides a multi-sensor, multi-view,
multi-frame, multi-task synthetic image fusion engine for a
mobile imaging system. The disclosed embodiments not
only simulate the physical properties of a multi-sensor
system (such as camera spacing, field of view, aperture,
exposure, lens distortion, and the like) but also simulate the
content information in one or more scenes, such as depth
mapping, optical flow mapping, semantic segmentation,
scene recognition, object detection, HDR generation, Bokeh
generation, super-resolution, and the like. Note, however,
that the disclosed synthetic data engine is not limited to
image sensors and can effectively simulate other sensor
modules, such as a ToF sensor.

Using the disclosed synthetic engine, it is possible to use
simulated senor outputs as inputs and simulated scene
information as ground truth labels to train one or more
CNNs or other machine learning architectures to achieve a
variety of tasks, possibly at the same time. The training can
be performed with various tasks exclusively using only
synthetic images without the need of any human annota-
tions. Moreover, a machine learning architecture trained
using the disclosed embodiments can outperform those
trained using real images and human annotated ground
truths.

FIG. 1 illustrates an example network configuration 100
including an electronic device according to this disclosure.
The embodiment of the network configuration 100 shown in
FIG. 1 is for illustration only. Other embodiments of the
network configuration 100 could be used without departing
from the scope of this disclosure.

According to embodiments of this disclosure, an elec-
tronic device 101 is included in the network configuration
100. The electronic device 101 can include at least one of a
bus 110, a processor 120, a memory 130, an input/output
(I/0) interface 150, a display 160, a communication inter-
face 170, or a sensor 180. In some embodiments, the
electronic device 101 may exclude at least one of these
components or may add at least one other component. The
bus 110 includes a circuit for connecting the components
120-180 with one another and for transferring communica-
tions (such as control messages and/or data) between the
components.

The processor 120 includes one or more of a central
processing unit (CPU), an application processor (AP), or a
communication processor (CP). The processor 120 is able to
perform control on at least one of the other components of
the electronic device 101 and/or perform an operation or
data processing relating to communication. In some embodi-
ments, the processor 120 can be a graphics processor unit
(GPU). As described in more detail below, the processor 120
can obtain multiple calibration parameters associated with
multiple sensors of a selected mobile device, obtain multiple
imaging tasks, obtain multiple synthetically-generated scene
images, and generate multiple training images and corre-
sponding meta information based on the calibration param-
eters, the imaging tasks, and the scene images. The training
images and corresponding meta information can be gener-
ated concurrently, different ones of the training images can
correspond to different ones of the sensors, and different
pieces of the meta information can correspond to different
ones of the imaging tasks.
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The memory 130 can include a volatile and/or non-
volatile memory. For example, the memory 130 can store
commands or data related to at least one other component of
the electronic device 101. According to embodiments of this
disclosure, the memory 130 can store software and/or a
program 140. The program 140 includes, for example, a
kernel 141, middleware 143, an application programming
interface (API) 145, and/or an application program (or
“application”) 147. At least a portion of the kernel 141,
middleware 143, or API 145 may be denoted an operating
system (OS).

The kernel 141 can control or manage system resources
(such as the bus 110, processor 120, or memory 130) used
to perform operations or functions implemented in other
programs (such as the middleware 143, API 145, or appli-
cation 147). The kernel 141 provides an interface that allows
the middleware 143, the API 145, or the application 147 to
access the individual components of the electronic device
101 to control or manage the system resources. The appli-
cation 147 includes one or more applications for image
capture and image processing as discussed below. These
functions can be performed by a single application or by
multiple applications that each carry out one or more of
these functions. The middleware 143 can function as a relay
to allow the API 145 or the application 147 to communicate
data with the kernel 141, for instance. A plurality of appli-
cations 147 can be provided. The middleware 143 is able to
control work requests received from the applications 147,
such as by allocating the priority of using the system
resources of the electronic device 101 (like the bus 110, the
processor 120, or the memory 130) to at least one of the
plurality of applications 147. The API 145 is an interface
allowing the application 147 to control functions provided
from the kernel 141 or the middleware 143. For example, the
API 145 includes at least one interface or function (such as
a command) for filing control, window control, image
processing, or text control.

The 1/O interface 150 serves as an interface that can, for
example, transfer commands or data input from a user or
other external devices to other component(s) of the elec-
tronic device 101. The I/O interface 150 can also output
commands or data received from other component(s) of the
electronic device 101 to the user or the other external device.

The display 160 includes, for example, a liquid crystal
display (LCD), a light emitting diode (LED) display, an
organic light emitting diode (OLED) display, a quantum-dot
light emitting diode (QLED) display, a microelectrome-
chanical systems (MEMS) display, or an electronic paper
display. The display 160 can also be a depth-aware display,
such as a multi-focal display. The display 160 is able to
display, for example, various contents (such as text, images,
videos, icons, or symbols) to the user. The display 160 can
include a touchscreen and may receive, for example, a touch,
gesture, proximity, or hovering input using an electronic pen
or a body portion of the user.

The communication interface 170, for example, is able to
set up communication between the electronic device 101 and
an external electronic device (such as a first electronic
device 102, a second electronic device 104, or a server 106).
For example, the communication interface 170 can be con-
nected with a network 162 or 164 through wireless or wired
communication to communicate with the external electronic
device. The communication interface 170 can be a wired or
wireless transceiver or any other component for transmitting
and receiving signals, such as images.

The wireless communication is able to use at least one of,
for example, long term evolution (LTE), long term evolu-
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tion-advanced (LTE-A), 5th generation wireless system
(5G), millimeter-wave or 60 GHz wireless communication,
Wireless USB, code division multiple access (CDMA),
wideband code division multiple access (WCDMA), univer-
sal mobile telecommunication system (UMTS), wireless
broadband (WiBro), or global system for mobile communi-
cation (GSM), as a cellular communication protocol. The
wired connection can include, for example, at least one of a
universal serial bus (USB), high definition multimedia inter-
face (HDMI), recommended standard 232 (RS-232), or plain
old telephone service (POTS). The network 162 or 164
includes at least one communication network, such as a
computer network (like a local area network (LAN) or wide
area network (WAN)), Internet, or a telephone network.

The electronic device 101 further includes one or more
sensors 180 that can meter a physical quantity or detect an
activation state of the electronic device 101 and convert
metered or detected information into an electrical signal. For
example, one or more sensors 180 can include one or more
cameras or other imaging sensors for capturing images of
scenes. The sensor(s) 180 can also include one or more
buttons for touch input, a gesture sensor, a gyroscope or gyro
sensor, an air pressure sensor, a magnetic sensor or magne-
tometer, an acceleration sensor or accelerometer, a grip
sensor, a proximity sensor, a color sensor (such as a red
green blue (RGB) sensor), a bio-physical sensor, a tempera-
ture sensor, a humidity sensor, an illumination sensor, an
ultraviolet (UV) sensor, an electromyography (EMG) sen-
sor, an electroencephalogram (EEG) sensor, an electrocar-
diogram (ECG) sensor, an infrared (IR) sensor, an ultra-
sound sensor, an iris sensor, or a fingerprint sensor. The
sensor(s) 180 can further include an inertial measurement
unit, which can include one or more accelerometers, gyro-
scopes, and other components. In addition, the sensor(s) 180
can include a control circuit for controlling at least one of the
sensors included here. Any of these sensor(s) 180 can be
located within the electronic device 101.

The first external electronic device 102 or the second
external electronic device 104 can be a wearable device or
an electronic device-mountable wearable device (such as an
HMD). When the electronic device 101 is mounted in the
electronic device 102 (such as the HMD), the electronic
device 101 can communicate with the electronic device 102
through the communication interface 170. The electronic
device 101 can be directly connected with the electronic
device 102 to communicate with the electronic device 102
without involving with a separate network. The electronic
device 101 can also be an augmented reality wearable
device, such as eyeglasses, that include one or more cam-
eras.

The first and second external electronic devices 102 and
104 and the server 106 each can be a device of the same or
a different type from the electronic device 101. According to
certain embodiments of this disclosure, the server 106
includes a group of one or more servers. Also, according to
certain embodiments of this disclosure, all or some of the
operations executed on the electronic device 101 can be
executed on another or multiple other electronic devices
(such as the electronic devices 102 and 104 or server 106).
Further, according to certain embodiments of this disclosure,
when the electronic device 101 should perform some func-
tion or service automatically or at a request, the electronic
device 101, instead of executing the function or service on
its own or additionally, can request another device (such as
electronic devices 102 and 104 or server 106) to perform at
least some functions associated therewith. The other elec-
tronic device (such as electronic devices 102 and 104 or
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server 106) is able to execute the requested functions or
additional functions and transfer a result of the execution to
the electronic device 101. The electronic device 101 can
provide a requested function or service by processing the
received result as it is or additionally. To that end, a cloud
computing, distributed computing, or client-server comput-
ing technique may be used, for example. While FIG. 1 shows
that the electronic device 101 includes the communication
interface 170 to communicate with the external electronic
device 104 or server 106 via the network 162 or 164, the
electronic device 101 may be independently operated with-
out a separate communication function according to some
embodiments of this disclosure.

The server 106 can include the same or similar compo-
nents 110-180 as the electronic device 101 (or a suitable
subset thereof). The server 106 can support to drive the
electronic device 101 by performing at least one of opera-
tions (or functions) implemented on the electronic device
101. For example, the server 106 can include a processing
module or processor that may support the processor 120
implemented in the electronic device 101. In some embodi-
ments, the server 106 can obtain multiple calibration param-
eters associated with multiple sensors of a selected mobile
device, obtain multiple imaging tasks, obtain multiple syn-
thetically-generated scene images, and generate multiple
training images and corresponding meta information based
on the calibration parameters, the imaging tasks, and the
scene images. The training images and corresponding meta
information can be generated concurrently, different ones of
the training images can correspond to different ones of the
sensors, and different pieces of the meta information can
correspond to different ones of the imaging tasks.

Although FIG. 1 illustrates one example of a network
configuration 100 including an electronic device 101, vari-
ous changes may be made to FIG. 1. For example, the
network configuration 100 could include any number of
each component in any suitable arrangement. In general,
computing and communication systems come in a wide
variety of configurations, and FIG. 1 does not limit the scope
of'this disclosure to any particular configuration. Also, while
FIG. 1 illustrates one operational environment in which
various features disclosed in this patent document can be
used, these features could be used in any other suitable
system.

FIG. 2 illustrates an example workflow 200 using a
synthetic image fusion engine according to this disclosure.
For ease of explanation, portions of the workflow 200 are
described as being implemented in the electronic device 101
shown in FIG. 1. However, the workflow 200 could be
implemented in any other suitable electronic device and in
any suitable system, such as by the server 106. As described
below, the workflow 200 uses a synthetic image fusion
engine 220 to generate training image data that can be used
to train one or more CNNs or other machine learning
architectures.

As shown in FIG. 2, a mobile device 202, such as a smart
phone, tablet, or the like, is selected. For example, an
operator (such as an engineer working at the mobile device
manufacturer) can select the mobile device 202 based on its
make and model. The actor may select the mobile device 202
in order to generate training data for use in training one or
more CNNs or other machine learning architectures associ-
ated with the mobile device 202. In some embodiments, the
mobile device 202 can represent (or be represented by) one
of the electronic devices 101, 102, 104 of FIG. 1.

According to its make and model, the mobile device 202
includes multiple sensors 204 arranged in a particular layout
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and configured for the capture of images and other infor-
mation. Each of the sensors 204 can be configured for a
different image capture function or other function. For
example, the sensors 204 of the mobile device 202 can
include a telephoto camera, a wide lens camera, an ultra-
wide lens camera, and a ToF sensor arranged in a square
layout. Of course, this is merely one example, and the
mobile device 202 could have different numbers of sensors
204 in different arrangements or layouts (such as straight
line, triangle, and the like) in other embodiments. The make,
model, and sensor layout of the mobile device 202 are
provided as inputs to the synthetic image fusion engine 220.

A list of imaging tasks 206 is selected for the mobile
device 202, and the list is provided as an input to the
synthetic image fusion engine 220. For example, the opera-
tor can select the imaging tasks 206 as training tasks that are
to be performed in conjunction with the mobile device 202
and for which training data is to be generated. In some
embodiments, the imaging tasks 206 can include depth,
optical flow, semantic segmentation, HDR generation,
Bokeh generation, super resolution, scene recognition, or a
combination of two or more of these. Depending on the
model of the mobile device 202 and the desired training, the
selected imaging tasks 206 could include one task, more
than one task, or all possible tasks. Unlike some existing
processes that allow for the creation of training data for only
task at a time, the synthetic image fusion engine 220 is able
to concurrently generate training data for multiple imaging
tasks 206 in such a manner so that the training data is
synchronized across the imaging tasks 206.

Multiple scene images 208 are selected for use in the
training. For example, the operator may select a variety of
different scene images from a public scene image dataset,
such as the MICROSOFT COCO dataset. In some embodi-
ments, the scene images 208 include synthetically generated
“perfect” images that are noise-free and have the same
synthetic color. The scene images 208 can include one or
more ground truth depth images. The scene images 208 are
typically selected to represent a variety of different scenes,
such as human portraits, indoor scenes, low light scenes,
outdoor scenes, bright light scenes, action scenes, and the
like. In general, a greater number of selected scene images
208 enables a greater diversity of data for training. In some
typical cases, the number of scene images 208 selected could
be greater than one hundred, although different numbers of
selected scene images 208 are possible and within the scope
of this disclosure. The scene images 208 are provided as
inputs to the synthetic image fusion engine 220.

The sensors 204 of the mobile device 202 are calibrated
using a calibration process 210. The calibration process 210
includes multiple calibration operations, including photo-
metric calibration 211, geometric calibration 212, and noise
calibration 213. As described in greater detail below, the
calibration process 210 is performed to obtain key calibra-
tion parameters for each sensor 204, including the sensor’s
intrinsic and extrinsic parameters 215, lens model param-
eters 216 (such as lens distortion coefficients), noise model
parameters 217 (such as sensor noise distribution param-
eters), and color mapping parameters 218 (such as one or
more color mapping tables). The intrinsic parameters of a
sensor are associated with internal parameters between the
sensor receiver and the lens (such as optical center, focal
length, etc.), while the extrinsic parameters of the sensor are
associated with external parameters outside of the lens (such
as location of the sensor in the scene). The calibration
parameters 215-218 are provided as inputs to the synthetic
image fusion engine 220 and used to reduce the differences
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between the synthetic scene images 208 and corresponding
real images that can be captured by the mobile device 202.

Photometric calibration 211 is performed to ensure that
color generation is consistent between synthetically-gener-
ated training images and real images generated by any of the
sensors 204 of the mobile device 202. It is common for
synthetically-generated images and actual images captured
by a real camera or other sensor to have different color
characteristics. In one example embodiment of the photo-
metric calibration 211, one or more color charts can be used
to generate at least one lookup table to map synthetic colors
to or from actual colors under different lighting conditions.
Here, the “real” colors are colors captured by the mobile
device 202 using one or more of the sensors 204.

FIG. 3 illustrates additional details of an example photo-
metric calibration 211 according to this disclosure. As
shown in FIG. 3, a color chart 302 represents a real image
of a color checkerboard generated by the mobile device 202
under predetermined lighting conditions and lens settings
(such as ISO-50, £/2.4, 1/2000s, 9000 lux). Another color
chart 304 represents a synthetically-generated image of the
same color checkerboard for the same lighting conditions
and lens settings. The color chart 304 represents a “perfect”
representation, or ground truth, of the colors in the color
chart 304. For example, one color box 305 on the color chart
304 may be perfect red, which can be represented in RGB
format as (255, 0, 0). However, the same color box 305 on
the color chart 302 may appear as slightly off-red (such as
RGB=(254, 1, 1)). The differences between the color chart
302 and the color chart 304 can result from a variety of
physical characteristics of the color checkerboard (such as
material, texture, etc.), environmental factors (lighting, dis-
tance, etc.), and sensor properties (noise, focal length, etc.).
In some embodiments, a lux sensor or other color measuring
device can be employed to measure the differences between
color chart 302 and the color chart 304.

Using the difference information, a color lookup table 306
can be generated to map colors under different lighting
conditions and lens settings. For example, based on the
example above, the value (255, 0, 0) can be mapped to the
value (254, 1, 1) in the lookup table 306 for one of the
sensors 204 for a given set of conditions. The lookup table
306 can then be provided to the synthetic image fusion
engine 220 as the color mapping parameters 218 and used by
the synthetic image fusion engine 220 to apply a variance to
the synthetically-generated scene images 208. For example,
the color chart 308 may represent a calibrated synthetic
color image generated by the synthetic image fusion engine
220. While the calibrated color chart 308 is not exactly the
same as the real color chart 302, the calibrated color chart
308 is closer to the real color chart 302 than the synthetic
color chart 304.

Turning again to FIG. 2, the geometric calibration 212 is
performed to model lens distortions exhibited by one or
more of the sensors 204 of the mobile device 202. That is,
the geometric calibration 212 is performed to make the
synthetic scene images 208 appear more similar to images
that could be captured by one or more of the real sensors
204. For example, the ultra-wide lens sensor 204 may be
similar to a “fish eye” lens, generating substantial distortions
at the edges of captured images. Thus, the geometric cali-
bration 212 can be performed to emulate these distortions.
Without geometric calibration 212, depth distortion may be
found in peripheral regions of the synthetic training data.

FIG. 4 illustrates additional details of an example geo-
metric calibration 212 according to this disclosure. As
shown in FIG. 4, the geometric calibration 212 can include
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a synthetic checkerboard image 402, a real checkerboard
image 404, a mapping grid 406, and a lens distortion map
408. The synthetic checkerboard image 402 is a “perfect” or
ground truth image of a physical checkerboard formed of
substantially perfect squares. The synthetic checkerboard
image 402 represents an image captured by an ideal sensor.
The real checkerboard image 404 represents an image of the
checkerboard captured by one or more sensors 204 of the
mobile device 202. Because different sensors 204 are posi-
tioned in different locations on the mobile device 202, each
sensor 204 captures the same image from a slightly different
angle. This difference in angle can cause what is referred to
as tangential distortion. As evident in FIG. 4, the real
checkerboard image 404 exhibits significant distortion,
while the synthetic checkerboard image 402 exhibits little or
no distortion. The amount of distortion shown in the real
checkerboard image 404 may be exaggerated for illustrative
purposes, but the real checkerboard image 404 still repre-
sents a type of distortion that may be present in a real image.

The coordinates of each “square” of the real checkerboard
image 404 can be measured and mapped into a mapping grid
406 and a lens distortion map 408 that includes multiple lens
distortion coefficients. The mapping grid 406 and lens
distortion map 408 represent the distortion present in the real
checkerboard image 404. The mapping grid 406 shown in
FIG. 4 is a visual representation of the lens distortion map
408, which can be provided to the synthetic image fusion
engine 220 as the lens model parameters 216. The lens
distortion coefficients of the lens distortion map 408 allow
the synthetic image fusion engine 220 to “warp” the per-
fectly flat synthetic scene images 208 to better simulate what
is actually captured by the imperfect sensors 204.

Turning again to FIG. 2, the noise calibration 213 is
performed to model the amount of noise generated by the
sensors 204 under different lighting conditions. For
example, some synthetic data engines generate data that is
too “perfect,” meaning the synthetic images exhibit essen-
tially zero noise. However, real image sensors, such as the
sensors 204, may generate images with detectable or even
substantial amounts of noise, especially in low light condi-
tions. The noise calibration 213 is performed to include this
noise into the generated training data.

FIG. 5 illustrates additional details of an example noise
calibration 213 according to this disclosure. As shown in
FIG. 5, multiple real image frames 502 are captured in a
temporal sequence using the mobile device 202. The real
image frames 502 are captured using the same sensor 204 or
group of sensors 204. The real image frames 502 are
typically of a static scene, such as a color chart, although
other scenes are possible. While FIG. 5 shows a sequence of
four real image frames 502, other numbers of real image
frames 502 are possible and within the scope of this disclo-
sure. The real image frames 502 are averaged together to
generate an average image 504. The averaging of the frames
502 effectively reduces noise by averaging the noise values
over multiple images. That is, the averaging has the effect of
noise filtering since the noise is generally distributed ran-
domly within images and not at the same locations in
multiple images. The generated average image 504 is con-
sidered to be a noise-free ground truth of the image.

One of the real image frames 502 is selected as a noisy
frame 506, and the average image 504 is subtracted from the
noisy frame 506 using a pixel-wise subtraction process to
generate a noise map 508. The noise map 508 is a pixel-wise
representation of the noise in the noisy frame 506. Addi-
tional noise maps 508 are generated by selecting other ones
of the real image frames 502 as noisy frames 506 and
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subtracting the average image 504 from those noisy frames
506. In some embodiments, one noise map 508 is generated
for each of the real image frames 502 that are captured.
Using the noise maps 508 as input, a noise histogram 510 of
the noise maps 508 is generated. In some embodiments, a
noise histogram 510 is generated for each of the RGB
channels. The noise histogram(s) 510 can be provided as the
noise model parameters 217 and used as the modeled noise
that is added to the perfect synthetic scene images 208 in the
synthetic image fusion engine 220.

In some embodiments, the noise calibration 213 can be
performed multiple times, such as once for each of multiple
lighting conditions. Each noise calibration 213 can result in
a set of noise model parameters 217 for the given light
condition. The different noise model parameters 217 can be
used by the synthetic image fusion engine 220 to generate
training images with different amounts of simulated noise
for different lighting conditions. For example, FIG. 6A
shows an example training image 601 that includes noise for
ISO 200 lighting, while FIG. 6B shows an example training
image 602 that includes noise for ISO 800 lighting. As
evident in the figures, the training image 602 includes more
simulated noise than the training image 601. In both images
601 and 602, the noise is very realistic.

After the calibration process 210, the calibration param-
eters 215-218 can be provided as inputs to the synthetic
image fusion engine 220, which concurrently generates
sensor outputs 230 (including multiple synchronous sensor
frames) and corresponding ground truth scene meta infor-
mation 240 (such as depth map, optical flow map, semantic
segmentation map, and the like) based on the scene images
208. The synthetic image fusion engine 220 can simulate a
large number of synchronous sensor frames 230 and the
corresponding ground truth scene meta information 240 for
each imaging task 206. In addition, the synthetic image
fusion engine 220 can generate the sensor frames 230 to
emulate different levels of sensor noise, lens distortions, and
the like, to reflect the different types and locations of the
sensors 204. This helps to ensure photo-realism of the
generated images.

FIG. 7 illustrates example sensor outputs 230 and ground
truth scene meta information 240 generated by the synthetic
image fusion engine 220 according to this disclosure. As
shown in FIG. 7, the synthetic image fusion engine 220
generates outputs that can be arranged in three dimensions
701-703. One dimension is a “spatial” or “sensor” dimen-
sion 701, which simulates the spatial location of the different
sensors 204 of the mobile device 202. Each of the sensors
204 has a different field of view based on its location on the
mobile device 202 and the type of sensor, and the synthetic
image fusion engine 220 generates a different training image
705 for each of the sensors 204. The training images 705
represent the simulated camera captures and are the sensor
outputs 230 that are provided as inputs to a CNN training
engine 250 as shown in FIG. 2.

Another dimension is the “task” dimension 702, which
simulates multiple vision or imaging tasks (such as depth,
semantic segmentation, HDR generation, Bokeh generation,
super resolution, scene recognition, and the like) that are to
be performed by the CNN training engine 250. The synthetic
image fusion engine 220 generates different pieces of meta
information 710 for each task and each sensor 204. The meta
information 710 in each row of FIG. 7 corresponds to the
training image 705 and the sensor 204 of the same row. The
meta information 710 is the ground truth scene meta infor-
mation 240 that is provided as input to the CNN training
engine 250 and is used as the ground truth for each task-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

specific CNN. The various training images 705 and corre-
sponding meta information 710 exhibit different levels of
color mapping, distortion, and noise, which is an accurate
reflection of image data that could be captured by the
different sensors 204 of the mobile device 202.

The remaining dimension is a “temporal” or “multi-
frame” dimension 703, which is represented in FIG. 7 as the
Z axis (such as orthogonal to the plane of the figure). The
multi-frame dimension 703 is a time axis and represents a
sequence of consecutive image frames captured by the
sensors 204, which can be simulated by the synthetic image
fusion engine 220. That is, the synthetic image fusion engine
220 can generate additional layers of training images 705
and meta information 710, where each layer corresponds to
simulated image frames that appear to be captured by the
sensors 204 at a different moment in time. The training
images 705 and meta information 710 in each layer can
exhibit different levels of color mapping, distortion, and
noise, as compared to corresponding training images 705
and meta information 710 in other layers. This reflects the
fact that a scene can change over time due to object
movement, camera movement, lighting changes, sensor con-
figuration changes, and the like.

The synthetic image fusion engine 220 uses the calibra-
tion parameters 215-218 of the different sensors 204,
obtained using the calibration process 210, and renders the
training images 705 and corresponding meta information
710 differently for each sensor 204. The calibration process
210 enables the synthetic image fusion engine 220 to
generate highly-customized data that is tuned for the specific
configuration of the mobile device 202. In particular, the
synthetic image fusion engine 220 ensures that the sensor
outputs 230 and the ground truth scene meta information
240 are highly optimized (and thus photo-realistic) for a
specific camera or phone model. The synthetic sensor out-
puts 230 generated by the synthetic image fusion engine 220
can precisely simulate multi-camera and multi-frame use
cases. In addition, the ground truth scene meta information
240 is pixel-level accurate, which is typically not possible
for human annotated systems. Also, the sensor outputs 230
and the ground truth scene meta information 240 are per-
fectly synchronized, or synchronized at a level of precision
that is difficult or impossible in human annotated systems.

Turning again to FIG. 2, the generated sensor outputs 230
and ground truth scene meta information 240 are provided to
the CNN training engine 250 to train various CNNs 260 for
different tasks (such as depth, semantic segmentation, HDR
generation, Bokeh generation, super resolution, scene rec-
ognition, and the like). In some embodiments, the CNNs 260
are multi-task CNNs that are difficult or impossible to
accurately train without extensive manual labeling or anno-
tation efforts. Due to the training data generated by the
synthetic image fusion engine 220, the CNNs 260 trained by
the CNN training engine 250 are highly optimized to the
model of the mobile device 202 and surpass conventional
CNNs that are trained using real images with human anno-
tations. In addition, convergences in the CNNs 260 occur
much faster than conventional CNNs because of the perfect
quality of the ground truths generated by the synthetic image
fusion engine 220. The synthetic image fusion engine 220
allows replacement of real image CNN training with syn-
thetic image CNN training yet achieves better accuracy and
quality for multiple tasks.

Note that while the workflow 200 has been described
above as being performed at a mobile device manufacturer,
the workflow 200 is not limited to offline data generation for
offline CNN training. In some embodiments, at least por-
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tions of the workflow 200 can also be implemented on-
device by the mobile device 202 for online data generation
and online CNN fine tuning. For example, one limitation of
factory-based camera or sensor calibration processes is that
such processes may not capture a lens distortion map 408
due to variations in the manufacturing process of the sen-
sors, variations in the installation processes of the sensors
into the mobile devices, or a combination of these. As a
result, offline implementations of the workflow 200 may
only capture statistically averaged calibration parameters.
This is adequate for a specific phone model in a statistical
sense, but it may not fit perfectly for each individual
manufactured device of the same model. In such cases, all or
portions of the workflow 200 can be performed online at the
mobile device 202 using a version of the synthetic image
fusion engine 220 installed on the mobile device 202. For
instance, after performing geometric calibration 212 using
the mobile device 202, a detailed lens distortion map 408
can be generated for the specific instance of the mobile
device 202. Also, an on-device version of the synthetic
image fusion engine 220 can be executed using the lens
distortion map 408, and the synthetic image fusion engine
220 can generate synthetic data to fine tune the CNNs
on-device to achieve the best effect for the specific indi-
vidual mobile device 202 (not just the device model). In
some embodiments, portions of the workflow 200 (such as
the synthetic image fusion engine 220) can run automati-
cally in the background. As the mobile device 202 captures
more images over time, more input data is available for the
synthetic image fusion engine 220 to process.

It should be noted that at least some of the operations and
functions shown in FIGS. 2 through 7 can be implemented
in an electronic device 101, 102, 104, server 106, or other
device(s) in any suitable manner. For example, in some
embodiments, at least some of the operations shown in
FIGS. 2 through 7 can be implemented or supported using
one or more software applications or other software instruc-
tions that are executed by the processor 120. In other
embodiments, at least some of the operations shown in
FIGS. 2 through 7 can be implemented or supported using
dedicated hardware components. In general, at least some of
the operations shown in FIGS. 2 through 7 can be performed
using any suitable hardware or any suitable combination of
hardware and software/firmware instructions.

Although FIGS. 2 through 7 illustrate example details of
a workflow 200 using a synthetic image fusion engine,
various changes may be made to FIGS. 2 through 7. For
example, while shown as a specific sequence of operations,
various operations shown in FIGS. 2 through 7 could
overlap, occur in parallel, occur in a different order, or occur
any number of times (including zero times). Also, the
specific operations shown in FIGS. 2 through 7 are examples
only, and other techniques could be used to perform each of
the operations shown in FIGS. 2 through 7. In addition,
while described as being used to train CNNs, the same or
similar approaches here may be used to train any other
suitable machine learning architectures.

FIGS. 8A, 8B, and 8C illustrate example benefits that can
be realized using one or more of the embodiments of this
disclosure. More specifically, FIG. 8A illustrates a real
image 801, while FIGS. 8B and 8C illustrate depth maps 802
and 803 that are generated using the real image 801. In the
image 801, the subject’s face is obscured for privacy. In FIG.
8B, the depth map 802 was generated using a conventional
depth map training operation. As evident by FIG. 8B, the
depth map 802 exhibits significant blurring at transitions
between dark and light areas. In contrast, the depth map 803
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in FIG. 8C was generated using the synthetic image fusion
engine 220 as described above. The resulting depth map 803
exhibits much sharper transitions between dark and light
areas. In addition, the results can be better customized to a
particular imaging system. The synthetic image fusion
engine 220 provides more details and more accurate depth
estimation.

FIGS. 9A and 9B illustrate additional example benefits
that can be realized using one or more of the embodiments
of this disclosure. More specifically, FIGS. 9A and 9B
illustrate a comparison between semantic segmentation
using conventional techniques and semantic segmentation
using one or more of the embodiments of this disclosure. In
FIG. 9A, an image 901 is a publicly-available annotated
ground truth from a public dataset. The level of accuracy of
the image 901 is polygon level accuracy, not pixel-level
accuracy. That is, the shapes outlined in the image 901
include polygons of limited detail, which is a limitation of
human annotation. In contrast, FIG. 9B shows a ground truth
image 902 that was generated using the synthetic image
fusion engine 220 as described above. The ground truth
image 902 exhibits pixel-level accuracy and precision,
meaning a much finer level of accuracy and precision,
compared to the image 901.

Although FIGS. 8A, 8B, 8C, 9A, and 9B illustrate
examples of benefits that can be realized using one or more
of the embodiments of this disclosure, various changes may
be made to these figures. For example, images can be
captured of numerous scenes under different conditions and
with different sensors, and these figures do not limit the
scope of this disclosure. These figures are merely meant to
illustrate example types of benefits that might be obtainable
using the techniques described above.

FIG. 10 illustrates an example method 1000 for generat-
ing training data using a synthetic image fusion engine
according to this disclosure. For ease of explanation, the
method 1000 shown in FIG. 10 is described as involving the
use of the workflow 200 shown in FIGS. 2 through 7 with
the electronic device 101 shown in FIG. 1. However, the
method 1000 shown in FIG. 10 could be used with any other
suitable electronic device and in any suitable system.

As shown in FIG. 10, an electronic device obtains mul-
tiple calibration parameters associated with multiple sensors
of a selected mobile device at step 1002. This could include,
for example, the electronic device 101 obtaining the cali-
bration parameters 215-218, which are associated with the
sensors 204 of the mobile device 202. The electronic device
obtains an identification of multiple imaging tasks at step
1004. This could include, for example, the electronic device
101 obtaining a list of the imaging tasks 206. The electronic
device obtains multiple synthetically-generated scene
images at step 1006. This could include, for example, the
electronic device 101 obtaining the scene images 208.

The electronic device generates multiple training images
and corresponding meta information based on the calibration
parameters, the imaging tasks, and the scene images at step
1008. This could include, for example, the electronic device
101 using the synthetic image fusion engine 220 to generate
the sensor outputs 230 (which may include training images
705) and the ground truth scene meta information 240
(which may include the meta information 710). In some
embodiments, the training images and corresponding meta
information are generated concurrently, different ones of the
training images correspond to different ones of the sensors,
and different pieces of the meta information correspond to
different ones of the imaging tasks. The electronic device
provides the training images and the corresponding meta
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information to a CNN training engine configured to train
multi-task CNNs at step 1010. This could include, for
example, the electronic device 101 providing the sensor
outputs 230 and the ground truth scene meta information
240 to the CNN training engine 250 for training the CNNs
260.

Although FIG. 10 illustrates one example of a method
1000 for generating training data using a synthetic image
fusion engine, various changes may be made to FIG. 10. For
example, while shown as a series of steps, various steps in
FIG. 10 could overlap, occur in parallel, occur in a different
order, or occur any number of times. Also, while described
as being used to train CNNs, the same or similar approaches
here may be used to train any other suitable machine
learning architectures.

Although this disclosure has been described with refer-
ence to various example embodiments, various changes and
modifications may be suggested to one skilled in the art. It
is intended that this disclosure encompass such changes and
modifications as fall within the scope of the appended
claims.

What is claimed is:

1. A method comprising:

obtaining, using at least one processor of an electronic

device, multiple calibration parameters associated with
multiple sensors of a selected mobile device, the cali-
bration parameters comprising at least one noise his-
togram generated during a noise calibration of the
mobile device and at least one color lookup table
generated during a photometric calibration of the
mobile device;

obtaining, using the at least one processor, an identifica-

tion of multiple imaging tasks;

obtaining, using the at least one processor, multiple syn-

thetically-generated scene images; and

generating, using the at least one processor, multiple

training images and corresponding meta information
based on the calibration parameters, the identification
of the imaging tasks, and the scene images;

wherein the training images and the corresponding meta

information are generated concurrently, different ones
of the training images correspond to different ones of
the sensors, and different pieces of the meta informa-
tion correspond to different ones of the imaging tasks.

2. The method of claim 1, wherein different ones of the
training images correspond to a sequence of consecutive
image frames captured by the sensors over time.

3. The method of claim 1, further comprising:

training one or more multi-task convolutional neural

networks (CNNs) using the training images and the
corresponding meta information.
4. The method of claim 1, wherein the calibration param-
eters comprise intrinsic and extrinsic parameters of each
sensor, lens model parameters, noise model parameters, and
color mapping parameters.
5. The method of claim 4, wherein:
the lens model parameters comprise multiple lens distor-
tion coeflicients of a lens distortion map generated
during a geometric calibration of the mobile device;

the noise model parameters comprise the at least one
noise histogram generated during the noise calibration
of the mobile device; and

the color mapping parameters comprise the at least one

color lookup table generated during the photometric
calibration of the mobile device.
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6. The method of claim 1, wherein the training images
emulate different levels of sensor noise and lens distortion
reflecting different types and locations of the sensors.

7. The method of claim 1, wherein the imaging tasks
comprise at least two of: depth mapping, optical flow
mapping, semantic segmentation, scene recognition, object
detection, high dynamic range (HDR) generation, Bokeh
generation, and super-resolution.

8. The method of claim 1, wherein at least some of the
meta information comprises ground truth scene meta infor-
mation that exhibits pixel-level accuracy.

9. The method of claim 1, wherein the scene images are
selected from a public scene image dataset.

10. An electronic device comprising:

at least one memory configured to store instructions; and

at least one processor configured when executing the

instructions to:

obtain multiple calibration parameters associated with
multiple sensors of a selected mobile device, the
calibration parameters comprising at least one noise
histogram generated during a noise calibration of the
mobile device and at least one color lookup table
generated during a photometric calibration of the
mobile device;

obtain an identification of multiple imaging tasks;

obtain multiple synthetically-generated scene images;
and

generate multiple training images and corresponding
meta information based on the calibration param-
eters, the identification of the imaging tasks, and the
scene images;

wherein the training images and the corresponding meta

information are generated concurrently, different ones
of the training images correspond to different ones of
the sensors, and different pieces of the meta informa-
tion correspond to different ones of the imaging tasks.
11. The electronic device of claim 10, wherein different
ones of the training images correspond to a sequence of
consecutive image frames captured by the sensors over time.
12. The electronic device of claim 10, wherein the at least
one processor is further configured to train one or more
multi-task convolutional neural networks (CNNss) using the
training images and the corresponding meta information.
13. The electronic device of claim 10, wherein the cali-
bration parameters comprise intrinsic and extrinsic param-
eters of each sensor, lens model parameters, noise model
parameters, and color mapping parameters.
14. The electronic device of claim 13, wherein:
the lens model parameters comprise multiple lens distor-
tion coeflicients of a lens distortion map generated
during a geometric calibration of the mobile device;

the noise model parameters comprise the at least one
noise histogram generated during the noise calibration
of the mobile device; and

the color mapping parameters comprise the at least one

color lookup table generated during the photometric
calibration of the mobile device.

15. The electronic device of claim 10, wherein the training
images emulate different levels of sensor noise and lens
distortion reflecting different types and locations of the
sensors.

16. A non-transitory machine-readable medium contain-
ing instructions that when executed cause at least one
processor of an electronic device to:

obtain multiple calibration parameters associated with

multiple sensors of a selected mobile device, the cali-
bration parameters comprising at least one noise his-
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togram generated during a noise calibration of the
mobile device and at least one color lookup table
generated during a photometric calibration of the
mobile device;
obtain an identification of multiple imaging tasks;
obtain multiple synthetically-generated scene images; and
generate multiple training images and corresponding meta
information based on the calibration parameters, the
identification of the imaging tasks, and the scene
images;
wherein the training images and the corresponding meta
information are generated concurrently, different ones
of the training images correspond to different ones of
the sensors, and different pieces of the meta informa-
tion correspond to different ones of the imaging tasks.
17. The non-transitory machine-readable medium of
claim 16, wherein different ones of the training images
correspond to a sequence of consecutive image frames
captured by the sensors over time.
18. The non-transitory machine-readable medium of
claim 16, wherein the instructions when executed further
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cause the at least one processor to train one or more
multi-task convolutional neural networks (CNNss) using the
training images and the corresponding meta information.
19. The non-transitory machine-readable medium of
claim 16, wherein the calibration parameters comprise
intrinsic and extrinsic parameters of each sensor, lens model
parameters, noise model parameters, and color mapping
parameters.
20. The non-transitory machine-readable medium of
claim 19, wherein:
the lens model parameters comprise multiple lens distor-
tion coeflicients of a lens distortion map generated
during a geometric calibration of the mobile device;
the noise model parameters comprise the at least one
noise histogram generated during the noise calibration
of the mobile device; and
the color mapping parameters comprise the at least one
color lookup table generated during the photometric
calibration of the mobile device.
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