65177 A2

&

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

7 August 2003 (07.08.2003) PCT WO 03/065177 A2
(51) International Patent Classification’: GO6F CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(21) International Application Number: PCT/US03/03151 LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(22) International Filing Date: 3 February 2003 (03.02.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/353,487 1 February 2002 (01.02.2002) US
(71) Applicant and
(72) Inventor: FAIRWEATHER, John [US/US]; 1649

Wellesley Drive, Santa Monica, CA 90405 (US).

(74) Agents: THIESSEN, Kendall, I et al.; Gibson, Dunn &
Crutcher LLP ,, 1801 California Street, Suite 4100, Denver,
CO 80202 (US).

(81) Designated States (rational): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,

YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR NAVIGATING DATA

(57) Abstract: The present invention provides a dynamic hyperlinking architecture that permits a user to enable/disable hyperlink
~~ domains that are automatically applied to every bit of textual data present in the system or displayed to the user. The present invention
includes synchronous and asynchronous, inter-thread function calls, including support for function overrides in a threaded scope
dependent manner. The present invention also supports broadcast (multiple call) call configurations and run-time examination of
function registries. In the preferred embodiment, the system comprises a threaded environment, threaded type dependant symbolic
functions and a hyperlinking system uses both the threaded environment and symbolic functions to dynamically create links to data
and functions that are displayed and/or executed responsive to user selection of a link.

WO 03/065177 PCT/US03/03151

SYSTEM AND METHOD FOR NAVIGATING DATA

Inventor: John Fairweather
BACKGROUND OF THE INVENTION

A user interface is only as good as the focus that it provides. Digital information
environments, such as the World Wide Web, are designed to capture and lead the focus of the
person using them. This is often based on the agenda of the person creating the web page and
most frequently that agenda is to garner advertising dollars. Thus, the problem of searching
for the answer to something on the web only to be forced to focus on irrelevant web sites is a
common experience. In such a scenario, a user often fails to find what they were looking for,
often forgetting what they were looking for in the first place. This effect occurs because the
digital domain is not constrained by the same relevance falloff law that constrains the analog
world. Each navigation step may be arbitrarily large, and the human mind is poorly equipped
to maintain focus, and thus the search for meaning or relevance in this environment is very

difficult. Nowhere is this problem more inherent than in the use of hyperlinks.

In any large collection of disparate data, effective navigation becomes critical. For
example, on the Internet the approach taken to navigation was to implement embedded
“hyperlinks” which transition the user’s focus to the URL referenced in the hyperlink. This
works effectively, but is a manual, restrictive, and error prone business. The web-site
designer must manually insert the chosen hyperlink to the URL, thereby enforcing his
perspective on the user, rather than the perspective of the user. Worse yet, URLs change
continuously and the referencing link then becomes out of date and useless. What is needed,
then, is the ability to define and enable/disable hyperlink domains on a per-user basis based
on the information and world-view that he, or the organization of which he is a member,
brings to the problem the user is researching. In other words, in addition to conventional
hyperlinks, which reveal the focus of others, what is needed is a user-centric, organization-
centric, and domain-centric hyperlinks that are automatically applied to every bit of textual

data present in the system or displayed to the user.

WO 03/065177 PCT/US03/03151

SUMMARY OF INVENTION

The present invention provides such a system. The present invention provides a
dynamic hyper-linking architecture under the control of each user, not under the control of
the information source. The present invention includes synchronous and asynchronous, inter-
thread function calls, including support for function overrides in a threaded scope dependent
manner. The present invention also supports broadcast (multiple call) call configurations and
run-time examination of function registries. In the preferred embodiment, the system

comprises the following:

» A threaded environment providing the following abilities:

a) Association of arbitrary data, in this case function registries, with

threads;

b) Hierarchical nesting of thread contexts with corresponding Ul context

relationships;

c) Ability to pass ‘events’ containing messages between threads;

d) Environment supplied transparent invocation of certain events;

e) Ability to ‘look-up’ threads based on a unique thread/widget ID;
* A series of function registries associated with each context in the system,
including a global registry whose scope encloses that of all others. Within these
registries, using API calls, functions can be registered by name (as a text string) by
specifying the ancestral scope at which the registration should occur; and
* In the preferred embodiment, an API that permits execution of functions by name
that internally searches the relevant thread’s registries in an order determined by
gradually widening scope (as defined by the threaded environment) and which causes
the necessary functions to be executed, with the parameters supplied by the caller,
either in the calling context (‘near’) by direct call, or in the registering context (‘far’)
by call in response to an appropriate event. A ‘reply’ function may also be specified
which allows function results to be returned to the calling context in a synchronous or

asynchronous manner.

Furthermore, the present invention provides a system for implementing threaded type-
dependant asynchronous invocation of a set of named logical actions in thread dependant,
scoped, manner including support for overriding the invoked functionality within any scope,

passing of arbitrary parameters from invoker to invoked, type ancestry dependant inheritance

WO 03/065177 PCT/US03/03151

of invocation behaviors (including scope dependency) based on a threaded symbolic registry
scheme such as described above. Finally, a hyperlinking system uses these features to
dynamically modify a user interface such that any text in a user interface can be hyperlinked
to one or more sets of types data using hyperlink dictionaries that may be user defined or
global. Additionally, clicking on such a hyperlink can invoke one or more functions (as
described above) based on the scope of the functions permitting display of wide ranging data

and media types.

It is anticipated that further modifications and extensions will also be provided. For
example, the system could be extended to support the ability through API calls to associate
arbitrary data and logical flags with registered functions. Additionally, they system could be
extended to support the ability to inhibit/enable functions in the registry(s) by scope through
described API calls.

WO 03/065177 PCT/US03/03151

BRIEF DESCRIPTION OF THE FIGURES

[NONE]

WO 03/065177 PCT/US03/03151

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The technology described herein preferably takes advantage of a number of other key
technologies and concepts. Ideally, the reader would be familiar with the technology
described in the patent applications listed below in order to fully understand breadth and
uniqueness of the present invention. For these reasons, the following technologies, which
have been previously described in the following related patent applications, have been fully

incorporated herein:

1) Appendix 1 — "Lexical Patent"
2) Appendix 2 - "Memory patent"
3) Appendix 3 — "Types Patent"

4) Appendix 4 — "Ontology patent"

It is important to understand that the invention described herein can be added to any
information accessed by the user regardless of source, internal or external. While its
application will be described with reference to web pages for simplicity, this is but one
example of its application and should not be construed as a limit to the scope of the present
invention. The present invention directly addresses the loss-of-focus issue described above
by allowing the user to define and modify his or her own hyper-linking environment and
allows all of the knowledge of the user or the user's organization to be used to analyze and
modify the appearance of the information being displayed. The architecture, within which
the user performs his daily activities, and the user interface (UI) it presents, provides and
automates this facility. More specifically, when a hyperlink is clicked, the architecture
identifies the nature, type and location of the datum to which that hyperlink refers. Once the
datum type has been retrieved, the architecture automatically launches the appropriate display
behaviors to show the target datum to the user in the most appropriate manner, which in

many cases will be context dependant.

The present invention is built up in three layers. The first layer (as exemplified by the
API calls starting with OC) is targeted at the more general problem of symbolically
invoking functionality within a complex threaded environment in a manner that permits both

local and remote synchronous and asynchronous function invocation and customization of the

WO 03/065177 PCT/US03/03151

actual functionality invoked in a context sensitive and scope dependant manner. The second
layer (as exemplified by the API calls starting with DB) ties this capability to a type-
dependent, ontology-based invocation system. The third layer provides the capabilities

required to handle and display ontology-centric hyperlinks.
Threaded Symbolic Function Calls

The first layer provides functionality that permits threaded, scope dependant symbolic
function invocation. Specifically, the first layer allows function calls to be made between and
across threads in a symbolic, possibly asynchronous manner. Throughout this discussion,
threads will be referred to as ‘widgets’ where each widget in the system has a unique widget

ID that can be used to reference it.

As an initial matter, it is helpful to describe the preferred thread architecture of the
substrate within which the functionality described herein is intended to run, and which
confers the ability to represent nested scope. Other substrate architectures are possible
provided that they support at least some portion of the scope behaviors described herein. The
need for scope dependant configuration of invoked functionality, and its complete divorcing
from the consideration of the invoker, permits large complex systems to be easily assembled
out of flexible adaptable building blocks. This is a problem that is poorly handled by more
conventional approaches such as object-oriented programming, for example. While such

approaches could be used, this is not the preferred approach.

The following description refers to compiled, executable code as ‘atomic widgets’.
Atomic widgets may be combined and nested within higher-level widgets (that generally do
not contain executable code) and are referred to as ‘compound widgets’. Collectively, atomic
widgets and compound widgets will be referred to as 'widgets'. In addition to logical nesting
within compounds, the present invention also provides a corresponding layout of widgets
within the user interface (UL) implied by such nesting. Compound and atomic widgets may
be combined into higher-level compound widgets to an arbitrary number of levels. In the
preferred embodiment, widgets can be grouped into loadable and executable ‘applications’,
comprised of one or more (possibly nested) widgets, which are known as 'views'. Generally,
there will be one or more windows within the user interface that correspond to a given view.
Views in turn can be combined into logical groups of views known as view packs. Further,

any widget within a view or view pack may cause the launching of another view or view

WO 03/065177 PCT/US03/03151

pack, and the launch dependency between these various views in the system is tracked and
utilized as part of determining ‘ancestry’. Thus, we have the concept of a scope or ancestry
chain for any given widget context running in the system that contains some or all of the

elements depicted below:

Global Environment context

View Pack
View .
Launched View [Pack] -- may be nested to any # of levels
View
Compound Widget -- may be nested to any # of levels
Atomic Widget

Because there is a close match between UI window layout and the logical nesting of
widgets described above, this ancestry chain closely matches the perceived visual context of
any given widget. This approach permits use of the scope defined by the ancestor chain to
configure the behaviors and resultant appearance of invoked functions into the context from
which they are invoked. For simplicity, the current widget’s scope will be defined to be zero
on a signed number line. Increasing widget ancestry can then be referenced as +1 for the
parent, +2 the grandparent etc. This positive incrementing continues until the nesting within
a given view is exhausted. The ancestry is also defined in the opposite direction. For
example, switches to —1 (local view scope) and increases in the negative direction with —2
being view pack scope, -3 launching view scope (if any), and so on in the negative direction
until the chain runs out. Finally, global environment scope within which all other scopes are

defined can be reference using the constant —32768.

In the preferred embodiment, the implementation of symbolic function registries in
the present invention utilizes string lists (as described in the Memory Patent) to store the
information passed on the call to OC_RegisterFunction(). Each scope node discussed above
may have such a registry associated with it if any functions have been registered. A such, the
present invention access these registries and looks for registered function in expanding scope
order during a call to OC_CallSymbolicFunc(). The basic scope logic is implemented by the
internal function OC_SymbolicFuncLoc() the pseudo-code for which is given below:

static ET_StringList OC_SymbolicFuncLoc (// obtain function
address list

WO 03/065177 PCT/US03/03151

int32 aWidgetID, // I:Widget ID(0 =
current)

int32 *aScopelD, // O:scope widget ID

int32HdA1 *index, // 0:~0 term. match
index list

charPtr aFuncName, // I:symbolic
function name

int32 options, // I:various logical
options

int32 aMatchWidgetID, // I:matching widget
ID,or O

ET_SymbolicFunc aMatchFuncAddr // I:Matching fn.

address or NULD
) // R:String List or
NULL

if (aWidgetID == kGlobalSCOPE)
scopeWP = 0;
else

{

scopeWP = convert aWidgetID & aMatchWidgetID to reference
vh = view handle of scopeWP

}
myIndex = -1;
if (aWidgetID !'= kGlobalSCOPE)

while (lctr && scopeWP) // search widget's
ancestry chain

{

if (aScopelD) *aSccopelD = scopeWP->widgetID;
sl = scopeWP function registry;
if (sL)
{
do

{

myIndex = search sL for name specified
if (name found)

if (! (options & kIncludeSuppressed))
if (function suppressed) // check ! supressed
continue;
extract all required values
add myIndex to *index array

} while (myIndex >= 0);

(tetxr)

—~—
Fh

scopeWP = parent widget of scopeWP

if (!scopeWP) // ran out of
widgets!
{
if (in a view pack) // now work through
views...
scopeWP = view widget of prime view of pack
else if (this view was launched by another)
{
scopeWP = view widget of the launcher
} else scopeWP = 0;
}
}
}

WO 03/065177

PCT/US03/03151

if (lctr && ! (options & kNoGlobalSearch))
registry...

if (aScopeID) *aScopelD = 0;
sL = global registry
myIndex = -1;
if (sL)
{
do
myIndex = search sL for name specified
if (name found)
if (! (options & kIncludeSuppressed))
if (function suppressed)
continue;

extract all required values
add myIndex to *index array

!
} while (myIndex >= 0);
}
if (, tectr)
sL = NULL;

return sL;

// try the global

// check ! supressed

In this embodiment, the function above returns a string list containing all matching

functions registered at the relevant scope. From this information, the implementation of most

routines in the function registry API can be deduced. For example, one implementation of

the function OC_CallSymbolicFunction() is as follows:

Boolean OC_CallSymbolicFunction

function

charPtr aFuncName,
function name

void *aFuncParameter,
NULL if N/A)

ET SymbolicReply aReplyFunc,
fn. or NULL

int32 aMatchWidgetID,
ID or O

ET_SymbolicFunc aMatchFuncAddr,
address or NULL

int32 options
options

)
{
sL = OC_SymbolicFuncLoc (0,NULL, &index, aFuncName, . . .

if (!sL || !index) return NO;
i = count the matches returned

if (!i) return NO;

ofP = NULL;

for (i-- ; i >= 0 ; i--)
element

/7
//
/1T
/] T
/lI
// T
/lT
// R:

call a symbolic
I:symbolic
:parameter (or
:Address of reply
:Matching widget
:Matching fn.
:Various logical

TRUE for success

no functions found

/7

// call fn.

for every

WO 03/065177 PCT/US03/03151

wid = 0;
sP = get function address
if (sF)

{
wid = get widget ID
farFunc = near or far call?;
id = current widget ID
if (wid == id) // both widget IDs
the same
farFunc = NO;
if (farFunc) // call far in
original context
{
ffP = (OC_FarFuncDescPtr)allocate heap pointer
ffP->func = s¥F;
if (ofP) ofP-»nextFunc = ££fP; // build up a doubly
linked list £fP->prevFunc = ofP;
ffP->options = options;
strcpy (££P->name, aFuncName) ;
ofP = f£fP;
ffP->reply = aReplyFunc;
ffP->aFuncParameter = aFuncParameter;
post wake message to registerer’s context referencing ffP
aFarFunc = YES;
} else // near functions
called here
{
(sF) (aFuncName, aFuncParameter, id, options);// call it ‘near’
if (aReplyFunc) // call the reply fn.
(aReplyFunc)(aFuncName,aFuncParameter,id,options);

}

if (laFarFunc && aFuncParameter && ! (options & kNoParameterDelete))
dispose of (aFuncParameter); // if no far funcs,
delete
return YES;
}
In the wake event handler for a far function, the logic may be implemented is as
follows:
static void OC_FarFunkWake (// far function
wake handler
ET NfyRecordPtr theWakeEvent // I:The wake
event record
) // R:void

£fP = (OC_FarFuncDescPtr)extract from theWakeEvent
if (1££fP) return;

lastGuy = !ffP->nextFunc && !£fP->prevFunc; // are we the last
function?
if (fEP->func)
(££P->func) (ffP->name, f£P->aFuncParameter, ...) ; // call symbolic
function

if (lastGuy && !f£fP->reply && ffP->aFuncParameter &&
1 (EfP->options & kNoParameterDelete))

10

WO 03/065177 PCT/US03/03151

dispose of (EfP->aFuncParameter) ; // de-allocate 1if

no reply
if (£ffP->reply)

ffP->func = £fP->reply;
f£P->reply = NULL;
post wake message back to caller’s context referencing £fP
} else
// remove from
linked list
if (ffP-snextFunc) ffP->nextFunc->prevFunc
if (£fP->prevFunc) ffP->prevFunc->nextFunc
dispose of (££P) ;

ffP->prevFunc;
ffP->nextFunc;

}
}

The code above is simply one embodiment of a process for achieving this result.
Namely, retrieving functions registered at a given scope and calling the symbolic function as
appropriate. As explained above, this functional layer provides threaded asynchronous

function calling behavior.
Threaded Type Dependant Invocation

In the preferred embodiment, the symbolic function capability described is extended
to a type and ID dependent form suitable for use in an abstract type-dependent invocation
scheme. This approach would preferably use a run time accessible typé system (a
methodology for 'typing" data) and corresponding system ontology. In the preferred
embodiment, the run time accessible types system is the types system described in the Types
Patent and the system ontology is the ontological framework described in the Ontology

patent. Other embodiments, however, could also be used to used.

With a types system and ontology in place, the type-less symbolic functions can be
extended to a strongly typed action dependant form by taking advantage of the fact that
function names are strings. Specifically, by adding a type dependent wrapper layer (the DB_
calls described below), type names and unique ID numbers can be converted into unique
symbolic function names by using the C programming language sprintf() function. For
example, the internal symbolic name for an invoker for the action “myAction”, on the type
“MyType” having unique ID number “1234” would be “myActionMyTypel234”. This form
corresponds to what is internally registered by the function DB_OverrideForTypeAndItem().
The corresponding form for DB_OverrideForType() would be “myActionMyType”.
Implementation of the other DB_Override...() style functions in the API follows directly

11

WO 03/065177 PCT/US03/03151

from this approach. Using the definition of the invocation record type ET DBInvokeRec
(given below), the basic logic for the function invocation function (DB_Invoke()) could be

implemented as follows:

ET_ViewHdl DB_Invoke (// Invoke by type and
action

08Type aDataType, // I:Key Data type

charPtr actionName, // I:Action name or
NULL

ET DBInvokeRecPtr iR, // I0:The invoker
record

int32 options // I:Various logical
options

) // R:non-zero for
success, or NULL
{
dT = aDataType;
if (liR->dataType)
iR~->dataType = aDataType;
if (aDataType)

{

dp = resolve data type{aDataType) ; // check we know the
data type
while (!dp) // nothing specific
try ancestors
{
tid = TM_KeyTypeToTypelD (dT,NULL) ; // get ancestral key
type
if (tid)
tid = TM GetParentTypelID (NULL, tid) ;
if ('tid)

return NULL;
dT = TM GetTypeKeyType (NULL, tid) ;
dp = resolve data type(dT);
}
iR->options |= kIsClientServerInvokation;
aDataType = dT;

if (lactionName)
{
if (!iR-»action[0])
strepy (iR->action, "Display") ;
actionName = iR->action;
} else
strcpy (iR->action, actionName) ;

stillhoop = YES;
while (stillLoop)
{
stillLoop = NO;
strepy (fullName, actionName) ; // first look for
desired form
if (dp && !iR->dataltemTypel0])
strcpy (iR->dataItemType, dp->name) ;
strecat (fullName, (dp) ? dp->name : iR->dataltemType) ;
strcpy (nameWithID, fullName) ; // form is
'DisplayMyDataTypeName'

12

WO 03/065177 PCT/US03/03151

sprintf(tmp,“%11d",iR—>anItemID.id);
strecat (nameWithlID, tmp) ; // name and ID
override °?
if (! (options & kNoNameAndIdOverride) && resolve fn.)
{ // check for
supression
if (OC_WidgetIDtoAncestorSpec(O,aScopeID,&ancestorSpec))
if (!DB_OverridesForTypeAndItemDisabled(aDataType,...))
idoverrideOK = OC_CallSymbolicFunction(nameWithID, U I
}
}
if ('idOverrideOK)
{ // no name and ID
override...
if (!(options & kNoNameOverride) && resolve fullName)
{ // discard the ID
part
if (oC_CallSymbolicFunction(fullName,iR,...))
return (ET_ViewHdl)~0;
} else if (aDataType)
{
dT = aDataType;
vIif = DB_DoesInvokerExist(dT,actionName);
if (IvIE)
{
tid = TM KeyTypeToTypeID(dT,NULL) ;
if (tid) // try climbing for
ancestors
tid = TM_GetParentTypeID(NULL,tid);
if (tid)
aDataType = TM_GetTypeKeyType (NULL, tid) ;
if (aDataType)
{
dp = DB_ResolveDataType(aDataType,NO);
while (!dp) // up again!
{
tid = TM_KeyTypeToTypeID(aDataType,NULL);
if (tid)
tid = TM GetParentTypeID(NULL, tid) ;
if (!'tid)
return NULL;
aDataType = TM_GetTypeKeyType (NULL, tid) ;
dp = DB_ResolveDataType (aDataType,NO) ;
}
if (dp)
stillLoop = YES; // climb up and try
again...
}
}
} else
return (vIE) (iR);
}
} else
return (ET_ViewHdl)~0;
}
return NULL;
}

13

WO 03/065177 PCT/US03/03151

Hyperlinks

Given the type dependant, threaded invocation methodology described above, the next
step is to implement the user-centric hyperlink capability. As an initial matter, the present
invention uses a flexible dictionary system that can be used to build up lists of hyperlink
targets and to rapidly look up the information necessary to invoke those targets when clicked
on. The lexical analysis capability described in the Lexical Patent is the preferred system
used to implement such a flexible dictionary system. Again, other lexical analyzer or
dictionary system could also be used. In the context of hyperlinking, these dictionaries,
which are implemented as lexical analyzer DBs, will be referred to as hyperlink domains.
Given the lexical analyzer capabilities, adding an item to a domain (as in
DB_AddToDomainDictionary) can be achieved by calling LX_Add() with the token string
being the name involved and the token number being the corresponding unique ID.
Persistence of these domains can be achieved by loading and saving the domain recognizer
to/from a file placed within a hierarchical directory tree whose structure matches that of the
underlying system ontology. Furthermore, looking up hyperlinks (as in
DB_IsHyperlinkTarget) can be achieved by making a call to LX_Lex() (or a corresponding
functional call). In the preferred embodiment, hyperlink domains can also be placed into
active/inactive status. This can be most easily achieved by loading the corresponding lexical
DBs into a linked list of such recognizers in memory on the local machine. The
implementation of all hyperlink routines in the API below uses these calls to perform the

functions described below.

The final component used by the present invention to support dynamic hyperlinks is a
GUI framework that supports a multi-styled text display component. In other words, the
hyperlink code (see PU_NotifyHyperlinkChange) implemented by the user environment must
be able to examine the text in a control, and should a hyperlink phrase be found, must be able
to alter the style of that portion of the text so that it is displayed appropriately for a hyperlink
in the UL This capability is supported by most non-trivial GUI frameworks (such as internet
browsers) and is well-known to those skilled in the art. By combining a a framework that
permits alteration of text styles to indicate hyperlinks and in which the environment supplied
calls DB_Invoke() (which is tied to a system ontology) whenever the user clicks on any text
that has been altered in this manner, we have a complete user-centric type and scope

dependant hyperlink system.

14

WO 03/065177 PCT/US03/03151

API definitions

The API descriptions that follow give a sample embodiment of one basic public API
that could be used by the present invention. This API is intended to be illustrative of the
kinds of calls required and is by not intended to set forth any required implementation or
otherwise exhaust the possible implementations. An API listing is also provided in Appendix

A.

In the preferred embodiment, the function OC_RegisterFunction() registers a
function by symbolic name for a given scope, so that it can be invoked from any other widget
within that scope. The primary use of this functionality is to create a hyperlink registry to
allow widgets to jump to other named locations without having to actually know where the
location is or what the function it is calling actually does. In the preferred embodiment, the
function registry is hierarchical with a registry potentially being attached to every ancestral
level of the widget (including the widget itself). In this manner, it is possible to override the
meaning of a function ("whoKnowsWhat") for an individual widget, a compound widget, a
view, a view pack, or globally for the environment. This provides a great deal of flexibility
in defining links between widgets and also allows certain functions to be overridden locally
so that code that uses them can be modified without modifying the code itself. Preferably,
functions specified as 'kFarFunction' are actually called in the context of the widget that
registered them, not in that of the caller. On the other hand, 'near' functions are called in the
context of the widget that makes the OC_CallSymbolicFunction() call. A typical symbolic
function prototype might appear as follows:

void mySymbolicFunc (// Symbolic function
charPtr aFuncName, //I:Symbolic function name
void *aParameter, // IO:Parameter/Reply area (or
NULL)
int32 widgetID, // :Widget ID of caller
int32 options // I:Various logical options
) // R:void

Preferably, any widget registering a function will de-register it at the functions
terminate entry point. Otherwise, there is the possibility that the function may be called after

15

WO 03/065177 PCT/US03/03151

the widget itself is dead. In the preferred embodment, a routine, such as
OC_DeRegisterAllFuncs(), can be called to deregister any and all functions registered by a
given widget regardless of the scope for which they were registered. An ancestorSpec of
'kViewPackSCOPE' is equivalent to 'kLocalViewSCOPE' if the calling widget is not within a
view pack. When writing a 'kNearFunction' function, the near functions are called in the
context of the widget that makes the OC_CallSymbolicFunction() call. In general the data
associated with the installing widget may not be reliable and is it not safe to assume anything
about the calling widget unless what the function requires/assumes in the 'aFuncDesc'
parameter passed to this function is clearly described. A set of options, such as the
"kDistinguishFuncPtrs' options, can be used to allow multiple registrations of a given function
name within the same widget but using distinct function addresses. Alternatively, only a
single function 'funcName' can be registered for any given widget. For low-level libraries,
when registering global type functions (e.g., "LanguageChange"), it is often helpful to
distinguish registrations by different libraries.

In the preferred embodiment, the function OC_DeRegisterFunction(), can be used
to remove a registered function from the function registry for the scope specified. If the
function was not found at the specified scope, this function returns FALSE (and preferably

does not log an error).

In the preferred embodiment, the function OC_DisableFunction() can be used to
disable a registered function from the function registry for the scope specified. If the function
was not found at the specified scope, this function returns FALSE (and does not log an error).
Once disabled, the function will not be called until a corresponding OC_EnableFunction()
call is made (for the same scope but not necessarily by the same widget). In the preferred
embodiment, the function OC_EnableFunction() can be used to enable a registered function
from in function registry for the scope specified if it has been previously disabled by a call to
OC_DisableFunction(). If the function was not found at the specified scope, this function
returns FALSE (and does not log an error). Since functions can be enabled and disabled by
any widget within the scope, this mechanism serves as a convenient means of controlling
function calls without having to add logic to the caller. In the preferred embodiment, the
function OC_FunctionIsDisabled() allows you to determine is a specified function has been
disabled for the selected scope. Similar functions could also be provided that enable or

disable a function based on other factors, such as the time of day or date.

16

WO 03/065177 PCT/US03/03151

In the preferred embodiment, the function OC_DeRegister AllFuncs() can be use d to
remove all functions registered by the current widget (at any scope) from the function
registry. If functions are removed successfully, TRUE is returned, otherwise FALSE is

returned.

In the preferred embodiment, the function OC_CallSymbolicFunction() can be used
to call a symbolic function from the symbolic function registry. Note that the result of this
call reflects only whether the specified function could be found, not the result of actually
calling it. In order to obtain a result back from a symbolic function (near or far), the address
of a reply function (of type ET_SymbolicReply) must be provided which will be called in the
same widget context as the OC_CallSymbolicFunction() call, and will be passed the
'aFuncParameter' value originally supplied (and also passed to the symbolic function). The
parameter, if used, would be a pointer to a heap allocated block in the preferred embodiment.
This approach allows the symbolic function to modify the value at that address, and allows
the reply function (if specified) to examine the modified location to determine the result and
then take whatever additional steps are necessary in the context of the original caller. In the
preferred embodiment, the wrapping code possesses, dispossesses, and deletes the allocation

(if used) according to the following rules:

1) If'aReplyFunc' is specified, the allocation will be disposed of using
KILL_PTR() after the reply function has been invoked.

2) If'aReplyFunc' is not specified, the allocation will be disposed of using
KILL PTR() after the symbolic function has been invoked in the context of the

registering widget for a 'far' function, or the calling widget for a 'near' function.

Far symbolic functions are actually called from within the event loop of the
registering widget so those functions are responsible for causing the main loop of the widget
to react (if required) either by posting an event/message, or other in-widget communications
mechanisms. In particular, if the symbolic function needs to do something which might
potentially cause the widget to be re-scheduled (such as UI operations or communication), it

should preferably cause this to occur in the main widget loop, not do it itself.

Near symbolic functions are called immediately in the callers context and unlike far
functions do not return to the caller until the function, and if specified, the reply function,

have both been executed. If multiple different widgets have registered for the same symbolic

17

WO 03/065177 PCT/US03/03151

function name at the effective scope, then every widget/function will be called (near and/or
far) in sucession when 'aMatchWidgetID' is 0. This approach would permit broadcast type
operations, for example. In the preferred embodiment, if any registration under the same
name has occurred with a tighter scope, then the widget having the tighter scope will be

called thereby suppressing all calls at the looser scope.

When multiple calls are made in this manner, all called functions share the identical
'aFuncParameter' storage, which is disposed when the last invoked function/reply completes.
In the preferred embodiment, a number of options bits are reserved to allow the type of
parameter passed in 'aFuncParameter' to be specified in those cases where a function accepts
multiple parameter types. These definitions preferably have a one-for-one correspondence
with the data type definitions for the options word. Some of the pareameters that could be

used include:

kSymbParamTypelnvRec -- parameter is an ET _DBInvokeRecPtr
kSymbParamTypelnteger -- parameter is a pointer to a long

kSymbParamTypeString -- parameter is a C string pointer

In one embodiment, the 'kNoParameterDelete' supresses all possession, dispossession,
and deletion of the 'aReplyFunc' value. This may be appropriate if the memory is to stay
permanently owned by one widget, or if 'aFuncParameter’ does not actually represent a heap

pointer.

In the preferred embodiment, the function OC_CountSymbolicFunctions() can be
used to count the number of widgets that are registered for a given symbolic function name at
the effective scope. There are certain applications of symbolic functions that operate as a
broadcast mechanism whereby multiple widgets register for a given symbolic function at a
specified scope and all are called/invoked when the the OC_CallSymbolicFunction() call
occurs. In most cases, the caller does not care how many functions are actually being
triggered. In the event that it does, however, it may count the number and use the widget ID
array returned by this function to pass to the 'matchWidgetID' parameter of other functions in
order to select just a single instance (rather than all or just the first depending on the
implementation). The number of widgets registered for a function at an effective scope is
returned. In the preferred embodument, to specify a search of the global registry only, use
*aWidgetID' = kGlobalSCOPE on entry. "*aScopelD' (if specified) will be 0 on exit if the

18

WO 03/065177 PCT/US03/03151

function was found in the global registry. The caller will dispose of the array returned in

'widgetIDs' when no longer required.

In the preferred embodiment, the function OC_ResolveSymbolicFunction() can be
used to to determine if a given symbolic function exists, and if it does, the address of the
function. The widget itself would not normally call the function (except by using
OC_CallSymbolicFunction()) because many such functions are designed to be called in the
context of the widget that registered them and fail if called from elsewhere. If the function
pointer is not returned, then the function will return NULL. In this embodiment, to specify a
search of the global registry only, use "*aWidgetID' = kGlobalSCOPE on entry. "*aScopelD'
(if specified) will be 0 on exit if the function was found in the global registry.

In the preferred embodiment, the function OC_SetSymbolicFuncData(), can be
called to attach data (or information) of a specified type to a registered symbolic function. A
typical use of this function would be to attach an icon or picture to a function so that any
function that is going to invoke the symbolic function can display the icon or picture
associated with the function/destination. There are many other uses of this capability
including communicating through the content of the data handle. The primary purpose of the
ability for a sufficiently smart 'caller’, however, is to establish certain information about the
callee’ before the call is made. If data is allocated and attached to a registered function, it
must be deallocated at the time the function is de-registered. If an attempt is made to set
function data from a widget other than the one that registered the function, it will fail. If
operation is successful (meaning the registered widget was able to set function data), 0 is

returned, otherwise an error number is returned.

In the preferred embodiment, the function OC_GetSymbolicFuncData() can be used
to obtain the data (and its type) attached to a registered symbolic function. This information
is associated with the function by the widget that registered it using
OC_SetSymbolicFuncData(). The purpose of this data is to allow callers to obtain additional
information about the function, without actually having to call it. If the 'aDataHandle' and
‘aDataType' values come back as zero, there is no data associated with the function. Error
numbers are preferably returned in the case of failure. The handle returned belongs to the
widget that registered the symbolic function so any caller would preferably not de-allocate it

or modify the contents (unless that is it's purpose).

19

WO 03/065177 PCT/US03/03151

In the preferred embodiment, the function OC_SetSymbolicFuncFlags() can be
called to set the flags word associated with a symbolic function. Unlike the data associated
with a symbolic function, the flags word can be altered by any widget within the scope.
When setting the flags, it may be helpful to get the current flag settings using
OC_GetSymbolicFuncFlags(), alter only those bits of interest, then set the flags using
OC_SetSymbolicFuncFlags(). Failure to follow this protocol may result in confusion in
cases where multiple widgets are manipulating the flags. In the preferred embodiment, the
function OC_GetSymbolicFuncFlags() obtains the flags word associated with a registered
symbolic function. This information is associated with the function by the widget that
registered it using OC_SetSymbolicFuncFlags(). The purpose of this data is to allow callers

to obtain additional information about the function, without actually having to call it.

In the preferred embodiment, the function OC_GetSymbolicFuncDesc() can be used
to obtain the descriptive text (if any) associated with a registered symbolic function. If no
description was supplied, the returned string contains "???". If descriptive text is not found,
NULL is returned. In all other cases, a descriptive text handle is returned. The caller should

dispose of the handle returned when no longer required.

In the preferred embodiment, the function OC_ListSymbolicFunctions() can be used
to return an alpabetized, <CR> seperated list of all registered symbolic function names for the
specified scope. preferably, the entries in the list have the format “www functionName”
where 'www' is the widget ID of the widget that registered the function. To obtain the
function description, the function OC_GetSymbolicFuncDesc() can be called and passed the
'www' and "functionName' values. This function would returns a function list, or NULL if the

list is empty. The caller should dispose of the handle returned when no longer required.

In the preferred embodiment, the function OC_WidgetIDtoAncestorSpec() can be
used to convert a widget ID to the corresponding ancestor spec. If the widget ID is not
ancestral to the calling widget, the function returns FALSE. In the preferred embodiment, the
function OC_AncestorSpecToWidgetID() can be called to return the widget pointer
cotresponding to the ancestor specified relative to a given widget ID. The symbolic function
registry uses this type of ancestor specification. In the preferred embodiment, the function
OC_LowestCommonAncestor() returns the widget ID for the lowest common ancestor of

the two widget IDs supplied (if it exists).

20

WO 03/065177 PCT/US03/03151

In the preferred embodiment, the function DB_DefineHyperlinkDomain() allows a
hyperlink domain to be defined. The automatic hyperlinking facility assumes that hyperlink
targets can be broken down first by data type (see DB_DefineDataType) and then within a
given data type (People for example), as a set of groups or domains where each domain has a
'dictionary' (which is actually a lexical analyzer DB - see LX_MakeDB in the Lexical Patent
incorporated herein) which contains a list of all target members that fall into that domain. In
the example of the data type 'people’, possible domains might be things such as politicians,
military personel, or company staff. It is permissible that a given target (or person) be a
member of any number of domains, providing that the person is unique within any given
domain, or if not unique, is referenced by a different name for each multiple occurence (e.g.,
'F16' and 'Falcon' might refer to the same target). Domains may be either system domains,
meaning that the domain is common to all users of the system and are maintained by the
system administrator, or they may be user domains, meaning that the domains are unique to
each user of the system. If multiple domains recognize a given target, the first one to fire
(which will be the last one to be activated) takes precedence regardless of the system or user
attribute. Firing order can be controlled, if desired, by ensuring the preferred domain is
activated after that of the domain over which it is preferred. In general, active system
domains are loaded before user domains during startup, which normally has the effect of
giving user domains precedence over system domains. Again, however, this precedence can
be altered as desired. The effect of a hyperlink click is to invoke the "hyperlinkAction"
action (the default if none is specified is "Display") for the data type of the domain which
recognized the target. This means that hyperlinking is subject to all the same overriding and
redirecting behaviors available via the DB_Invoke() function. This is useful because
hyperlinks can be locally redirected when appropriate (with nested scope) while still

following the default link if no override is found.

Once defined, a domain preferably becomes permanently known due to the fact that a
domain dictionary file is created in the appropriate folder. The way to remove a domain is to
call DB_UnDefineHyperlinkDomain(). Defining a domain that is already known or for
which a domain dictionary file already exists, has no effect (this function returns TRUE with
no action). Domains may also be organized into hierarchies by specifying the hierarchy path
as a series of ancestral domains separated by colons (e.g., "animals:mammals:people"). This
feature allows whole sub-trees to be activated or de-activated at once and allows flexibility in

organizing domains according to any desired breakdown. Since a folder hierarchy is created

21

WO 03/065177 PCT/US03/03151

to reflect the domain specification, it is important to ensure that all fields of a domain name
meet the naming criteria for the underlying file system. In the preferred embodiment, all
necessary ancestral folders will be created automatically when the domain is defined so it is
not necessary to explicitly create the tree in a top down manner. To avoid confusion, domain
names should be unique. Furthermore, it is not desirable to define a system and user domain
name of the same name, nor is it desirable to have a domain name of a different 'aDataType'

with the same name.

In the preferred embodiment, the function DB_AddToDomainDictionary() can be
used to add a new target to the specified active hyperlink domain dictionary, thereby making
it available as a hyperlink destination. To add targets to an inactive domain, it is best to
temporarily activate (but not compact) the domain first. The most efficient way to add a
series of targets to a given domain is to first ensure the domain is active (and not compacted),
then add the targets (specifying the 'kNoSaveDomainToFile' option), and finally save the
domain by making a call without the kNoSaveDomainToFile' option and NULL specified for
'aTargetName'. Lastly, the domain should be deactivated if it was not originally active.
Preferably, this logic is handled automatically within a domain populator function as called
via DB_CallDomainPopulator(). For correct operation, hyperlink targets MUST start with an
alphanumeric character, not a delimiter or white-space. Alphanumeric characters may be in
an alternate language as well as English so hyperlinks can operate in any language or script

system.

In the preferred embodiment, the function DB_SubFromDomainDictionary() can be
used to remove a target from the specified active hyperlink domain dictionary, thereby
making it unavailable as a hyperlink destination. To remove targets from an inactive domain,
the domain should be temporarily activated (but not compacted) first. If a series of targets to
a given domain will be removed, the domain should be activated (or ensure the domain is
active and not compacted), then calls made to remove the targets (specifying the
'kNoSaveDomainToFile' option), and the domain saved by making a call without the
"kNoSaveDomainToFile' option and NULL specified for 'aTargetName'. Lastly, the domain

should be de-activate if it was not originally active.

In the preferred embodiment, the function DB_NotifyHyperlinkChange() should be
called whenever some kind of change is made to the hyperlink dictionaries that requires the

UI to be refreshed in order to determine again which hyperlinks are available. In the

22

WO 03/065177 PCT/US03/03151

preferred use of this hyperlink API, this function does not need to be explicitly called since

the calls are made automatically as appropriate.

In the preferred embodiment, the function DB_IsHyperlinkTarget() can be used to
determine if a given string is a hyperlink target and, if so, what the data type, domain name,
action, and unique ID are for that target. This function may be used to perform different
hyperlinks using DB_Invoke() while specifying additional options or parameters based on
detailed knowledge of the target, domain, or data type involved. Normally,
DB_HyperlinkToTarget() would be used to explicitly invoke a hyperlink via some
mechanism other than the automatic hyperlinking behavior provided for all text controls in
the system. By using this function (followed by a call to DB_Invoke or
DB_HyperlinkToTarget), it is possible to hyperlink to targets that are not in active domains.
On input, if 'aDataType' is NULL or non-NULL with a value of zero, this is taken to imply
that any key data type is acceptable, otherwise the value of “*aDataType' is used to restrict the
search to only those active domains of the data type specified. On output, if 'aDataType' is
non-NULL, it will hold the value of the key data type for which the target was found, or zero
if not found. Additionally, on input, if 'aDomainName' is NULL, or non-NULL with a string
value of ™, this is taken to imply that any active domain name is acceptable, otherwise the
value of the string pointed to by "*aDomainName' is taken to be a domain name in/below in
which to look to the exclusion of all others. On output, if 'aDomainName' is non-NULL, the
contents of the buffer to which the parameter value points will be replaced by the domain
name in which the target was found (or an empty string if not found). Note that
'aDomainName' may be a partial path in which case the search for targets is restricted to all
active domains below that path. In this embodiment, if and only if 'aDataType' and
'aDomainName' are specified explicitly, inactive &omains will also be examined using this
function. In all other cases, only active domains are considered. Because the contents of
'mumChars' is set to the actual number of characters consumed when scanning for the target
(found or otherwise), the string pointed to by 'aTargetName' can be an arbitrarily long
sequence of text which is scanned for possible targets by successive calls. This is exactly
what the function DB_FindNextHyperlinkInText() does. In such a case, the end of the string
being scanned can be detected by the fact that numChars' will be zero. When skipping over
characters, this function can also use a multilingual call to determine where alphanumeric
strings begin and end. This means that hyperlinks can be either in English or the alternate

language. It also means that when making a series of calls for a larger string, any trailing

23

WO 03/065177 PCT/US03/03151

white-space and delimiters will be skipped such that only string elements that start with an
alphanumeric character and are preceded by either a delimiter or white-space will actually be
examined as potential targets. By making this simplification, the process of scanning a large
block of text is greatly simplified and significantly optimized for speed. For this reason,
hyperlink target name strings would preferably not begin with white-space or delimiters.
Note that if 'maxChar' is specified (rather than defaulting it to zero), this routine will continue
to scan until it reaches the 'maxChar' character position. This means that the text string

supplied may contain embedded nulls.

In the preferred embodiment, the function DB_HyperlinkToTarget() can be used to
find a hyperlink to the specified target. Since hyperlink handling is automatically supported
for any and all text controls within the system, this function would only be used to invoke a
hyperlink jump by some other mechanism. If data type and domain name are both specified
explicitly, this function could also be used to hyperlink to a target that is not in an active
domain (although this may be slower than a call for an active domain due to the need to

temporarily load the domain dictionary).

In the preferred embodiment, the function DB_IsKnownDomain() can be used to
determine if the specified domain is known or not. A domain is known if the domain
dictionary file for the domain exists (even if the dictionary is empty). A domain does not
have to be active to be known, however, the corresponding data type would preferably be

defined. For a non-leaf domain, the value of 'isAutoActivate' will always be FALSE.

In the preferred embodiment, the function DB_IsActiveDomain() can be used to
determine if the specified domain is active or not. Inactive domains are not automatically

used when looking for targets.

In the preferred embodiment, the function DB_ActivateDomain() can be used to
activate the specified domain. Activating a domain causes the domain dictionary to be
loaded into memory and to be used automatically whenever any text within a text control is
scanned for potential hyperlinks. In other words, all targets in the domain become potential
hyperlinks. If the domain dictionary is compacted when it is activated, the dictionary will
occupy significantly less memory. It is preferably not to add or remove targets from a
compacted dictionary. A non-leaf domain may also be specified (domain name path ends in

") in which case all leaf domains within (to any level) will be activated. In the preferred

24

WO 03/065177 PCT/US03/03151

embodiment, the function DB_DeActivateDomain() can be used to deactivate a specified
domain. Deactivating a domain causes the domain dictionary to be removed from memory
thus preventing any targets within the domain from being used as automatic hyperlinks. If a
domain hés been designated in the optional hyperlinking administration window as 'auto
activate' then deactivating it will have only a momentary effect since it will be re-activated

almost immediately as a result of the auto-activation process.

In the preferred embodiment, the function DB_GetDomainAction() can be used to
return the invoker action associated with the specified hyperlink domain. This action is used
when calling DB_Invoke() during the hyperlinking process. The specified domain need not

be active to discover its action.

In the preferred embodiment, the function DB_SetDomainAutoFlags() can be used
to control wether the specified hyperlink domain is auto-activated during environment
initialization. By designating a domain as auto-activating, all hyperlinks in that domain will
be immediately available as soon as the application runs. For such domains, the
'autoCompact' flag can also be used to determine if the domain should be compacted when it

is auto-activated.

In the preferred embodiment, the function DB_SpecifyDomainPopulator() can be
used to specify a domain populator function to be used to fill out the dictionary associated
with a domain. It is often the case that hyperlink domains correspond to entries in an external
database of some kind. In the preferred embodiment, a populator function would perform a
query(s) on that database to obtain the set of all targets in the domain and then loop adding
the targets to the domain using DB_AddToDomainDictionary(). The hyperlink configuration
view allows the invocation of the populator function for any given domain as well as
configuration of which domains are to be active at any given time. At the time the domain
populator is called, the domain itself will preferably have been made active (temporarily if
appropriate) and the domain dictionary in memory will be empty. If the domain populator
function returns FALSE, the domain dictionary in memory will be discarded and replaced (if
appropriate) with the dictionary from the domain dictionary file. During all calls from within
a domain populator function, the save to file behavior of DB_AddToDomainDictionary() is
automatically inhibited for this reason. A typical domain populator function might appear as

follows:

25

WO 03/065177 PCT/US03/03151

EngErr myDomainPopulator (// my domain populator
ET TypelD aTypelD, // I:Data type for the domain
charPtr aDomainName, // I:Domain name
charPtr populatorDescription,// I:Populator description
long aParam /I I: custom parameter or 0
) // R:0 for success,else error #

In the preferred embodiment, the function DB_CallDomainPopulator() can be used
to call the hyperlink domain populator function (if there is one), passing an arbitrary
parameter. When populator functions are called from within the standard hyperlink

configuration UI, this parameter will be zero.

In the preferred embodiment, the function DB_UseDefaultDomainPopulator() can
be used to specify the use of the generic hyperlink domain populator provided for persistent
data types derived from the key type 'DTUM' (i.e., Datum).

In the preferred embodiment, the function DB_FindNextHyperlinkInText() can be
used to scan a block of text looking for hyperlink targets within it. In the preferred
embodiment, the function is called with both 'aDataType' and 'aDomainName' set to zero,
which causes it to utilize all active hyperlink domain dictionaries to scan the text looking for
a match. The data type may be restricted or a partial hyperlink domain specified. In
particular, if the data type is specified and a full or partial domain name is given, this function
will also find targets in any inactive hyperlink domains specified. See
DB_IsHyperlinkTarget() for details on restricting the hyperlink search. This function forms
the basis of the automatic hyperlinking capability provided by the UI encapsulation layer
whereby all text in a text control is scanned and hyperlinks inserted (by turning the target
word/phrase blue and underlining it, for example) and handled when clicked on by the Ul
layer. This function will return successive hyperlinks on each call until there are no more
hyperlinks left in the text at which time it will return FALSE. The value of '*context' should
be set to zero to start the scanning process, otherwise the value should be preserved between

successive calls to this function.

In the preferred embodiment, the function DB_ListKnownDomains() can be used to

return a hierarchical Lex DB containing all known system or user hyperlink domains. The

26

WO 03/065177 PCT/US03/03151

resulting Lex DB may be used either to recognize domain names, or it may be used to
process/list the domains using the facilities provided by LX List() and the associated
functions such as LX PruneList() and LX_Save/RestoreListContext(). The LexDB returned
by this function includes the data type name prefix in the domain paths. Calls to other

functions in this API do not contain this prefix for the 'aDomainName' parameter.

In the preferred embodiment, the function DB_ListActions() can be used to return an
alphabetized, carriage return (<nl>) separated list of all the invoker actions supported for a
given key data type. The list is repeatedly initialized until the tables are exhausted at which
time the next symbol is listed and displayed. NULL is returned in case of an error. The list
of actions returned may include actions for which there is not actually an invoker function
(see DB_DefineInvoker) but for which symbolic overrides have been defined. The routine

DB_DoesInvokerExist() can be used to determine if this is the case.

In the preferred embodiment, the function DB_DataTypeToName() can be used to
return the full symbolic name of the specified key data type. In the preferred embodiment,
the function DB_NameToDataType() returns the key data type given a full symbolic name,
type name, or an alternate name. In the preferred embodiment, the function
DB_OSTypeToString() can be used to convert a long to display as a character string. The

normal application would be for use with OSTypes.

In the preferred embodiment, the function DB_OverrideForTypeAndItemExists()
can be used to determine if an override exists for the specified key data type and item ID and,
if so, the scope relative to the asking widget. This information can be used to determine if it

is possible to display a given type within a particular calling context.

In the preferred embodiment, the function DB_OverrideForTypeAndItem() can be
called in order to register to handle a given action for a specified key data type and a unique
ID of that type. This capability can be used to cause re-mapping of the view invoked on a
DB_Invoke() call for an desired scope. This is particularly useful in ensuring that if data for
a given item is already being displayed, another view is not launched but instead the existing
view is simply brought forward. All items of a given type can be re-directed using
DB_OverrideForType(). In the preferred embodiment, the function DB_Invoke() will first
check for a specific override and then for a general one. In the preferred embodiment, the

function DB_UndoOverrideForTypeAndItem() can be used to remove an override

27

WO 03/065177 PCT/US03/03151

registered using DB_OverrideForTypeAndItem(). If no such override exists, the function will
do nothing.

In the preferred embodiment, the function DB_DisableOverrideForTypeAndItem()
can be used to supress overrides for a given key data type, ID, and scope. The suppression
remains in effect until a call to DB_EnableOverrideForTypeAndItem() is made. Any widget
may remove the suppression, not just the one registering it. When called with 'anltemID' of
zero, this function disables all ID based overrides for the type and scope. This disable is in
addition to any ID specific disables that may be in effect, and can be removed by passing
‘anltemID' of zero to DB_EnableOverrideForTypeAndItem(). In the preferred embodiment,
the function DB_EnableOverrideForTypeAndItem() can be used to remove any supression

for a given type, ID, and scope registered by DB_DisableOverrideForType AndItem().

In the preferred embodiment, the function DB_OverrideForType() can be called in
order to register to handle a given action for a specified key data type. This capability can be
used to cause re-mapping of the view invoked on a DB_Invoke() call for an desired scope.
Note that you can re-direct specific items of a given key data type using
DB_OverrideForTypeAndItem(). In the preferred embodiment, the function DB_Invoke()
will first check for a specific override and then for a general one. In the preferred
embodiment,v the function DB_UndoOverrideForType() removes an override registered

using DB_OverrideForType(). If no such override exists, the function will do nothing.

In the preferred embodiment, the function DB_DisableOverrideForType() can be
used to supress overrides for a given type and scope. The suppression remains in effect until
a call to DB_EnableOverrideForType() is made. Any widget may remove the suppression,
not just the one registering it. In the preferred embodiment, the function
DB_EnableOverrideForType() may be called to remove any suppression for a given key
data type and scope registered by DB_DisableOverrideForType(). In the preferred
embodiment, the function DB_OverridesForTypeDisabled() can be called to determine if

overrides for a given key data type and scope have been suppressed.

In the preferred embodiment, the function
DB_OverridesForTypeAndItemDisabled() can be used to determine if overrides for a

given key data type,ID and scope have been suppressed.

28

WO 03/065177 PCT/US03/03151

In the preferred embodiment, the function DB_OverrideForTypeExists() can be
used to determine if an override exists for the specified key data type, and if so with what
scope relative to the asking widget. This information can be used to determine if it is
possible to display a given type within a particular calling context. Even though an override
exists, it may have been disabled. Preferably, DB_OverridesForTypeAndltemDisabled() is

used to determine if this is the case.

In the preferred embodiment, the function DB_DefineInvoker() can be used to define
the view invoker function that should be called when an attempt is made to perform a
specified invoker action on a given key data type. For example, the 'actionName' parameter
might be "Display", in which case any subsequent call to DB_Invoke() for the action
"Display" will result in the specified invoker function being called. The invoker function is
responsible to instantiating or launching the view necessary to perform the requested action
for the specified data type. Custom named invoker actions may be defined for each different
data type as appropriate. In the preferred embodiment, certain predefined action types are
defined and would preferably be supported by a given key data type (by defining the

necessary invokers) wherever possible:

"Display" The invoker should display the selected data item as
appropriate, but may not allow editing. This action is required for IP
notification to be effective in this embodiment.

"Edit" The invoker should display and allow edit/update of the data item.
"Select" The invoker should display a list of items and notify the caller
of any selection made by the user.

"Print" The invoker should print the selected item in the appropriate
format (may not be a view launch).

"Info" Display information associated with the type (in a widget modal
window, NOT actually a view launch). This action is required to place a
"Show Info" button in the pending views window for this type in this

embodiment.

If 'anInvokerFn' is NULL, this function can be used to define an action type to
Database such that the available actions for the type can be returned on a subsequent
DB_ListActions() call or used in action overrides. Whenever an override is registered for a

defined type (i.e., from a call to DB_DefineDataType), the corresponding action is

29

WO 03/065177 PCT/US03/03151

automatically registered for the type using this function. In this way, it is possible to
determine the full set of actions (whether invoker based or via symbolic overrides) for a type
using DB_ListActions(). Any type manager type that is descended from a type manager type
that is also a key data type will inherit the invokers and actions of the key type. In the
preferred embodiment, the function DB_UnDefineInvoker() can be used to remove the
existing definition of an invoker function for the specified key data type and action,
presumably in preparation for defining a replacement function using DB_DefineInvoker(). If
invoker is removed, TRUE is returned, otherwise FALSE is returned. In the preferred
embodiment, the function DB_DoesInvokerExist() can be used to determine if an invoker
function exists for the specified key data type and action. An invoker function address is

returned, if it exists; otherwise NULL.

In the preferred embodiment, the function DB_Invoke() can be used to call the
registered invoker function for the key data type and action specified. The result is normally
to instantiate or launch another view. It is also possible, however, that the function will
execute entirely within the original caller's widget context. Examples of such invokers might
be "Print" or "Info". This function, and the 'ET_DBInvokeRec' record that it uses, could also
be used for other launcher/launchee situations even if the implementation below varies. In all
cases, the 'anltemID' field of 'iR' would preferably be filled out with a unique item number
that can be used by the invoked function to determine which item of a set of items is required.
The caller, depending on the situation and depending upon whether the caller has already
fetched the information necessary to accomplish the invocation, may also fill out other fields.
In order to provide sufficient flexibility to allow general use, this routine will preferably
accept an 'aDataType' value of zero as meaning that there is no true data type corresponding
to this invocation, but nonetheless the routine DB_Invoke() is being used. In this case, it is
preferably that the 'dataltemType' field of the 'iR' record contains a string describing the data
type involved (e.g., "My data type"). DB_Invoke() will take this string, concatenate it to the
‘actionName' string (for example "DisplayMy data type"), and check for the presence of a
registered symbolic function with that name (see OC_RegisterSymbolicFunction()). If such a

function is found, it will be invoked.

Within this symbolic function, any action necessary to accomplish the actual
invocation can be performed. The same symbolic function override capability exists for true

data types, i.e., if a function "DisplayNewswire" exists for the data type whose name is

30

WO 03/065177 PCT/US03/03151

"Newswire' then it will be called in preference to the registered invoker function for
"Newswire'. This feature allows registeration of invoker overrides at various scopes in order
to re-direct the behavior. This feature is also what allows DB_Invoke() to be used as a
universal invocation method (see description above). In the preferred embodiment, the
functions DB_OverrideForTypeAndItem() and DB_OverrideForType() are provided to allow
a convenient means of overriding (using symbolic functions) the function invoked for either a
specific item ID and data type (see DB_OverrideForTypeAndltem) or a specific data type
regardless of ID (see DB_OverrideForType). In the described embodiment, the iR’ parameter
must be a pointer allocated in the heap, it cannot be a stack variable. If a result (or an error)
is returned, the original caller is responsible for disposing of 'iR'". In the preferred
embodiment, if the 'actionName' parameter is NULL, this function attempts to invoke the

"Display" action (assuming an invoker for "Display" has been defined).

In the preferred embodiment, the function PU_CursorToHyperlink() can be called
by the environment within the widget context during idle time. This function can be used to
determine what hyperlink, if any, the cursor/mouse is currently over provided that it is called
within the appropriate widget context. By doing this, the environment knows when a user
clicks on a hyperlink within some text and can automatically invoke the link as necessary. In
systems including drag-and-drop, this mechanism is extended to automatically follow any
hyperlink over which the user hovers while executing a drag so that the user can use the

hyperlink mechanism as part of the navigation process during drag-and-drop operations.

In the preferred embodiment, the function PU_NotifyHyperlinkChange() can be
called automatically by the environment in order to ensure that all text controls display the
correct hyperlinks within them (see DB_NotifyHyperlinkChange). In the preferred
embodiment, the function scans all widget contexts, and all windows within those widgets
looking for text controls. The function then examines the text within those controls for
possible hyperlinks (see DB_FindNextHyperlinkInText) and if one is found, alters the style
run for the text portion that represents the hyperlink to the appearance necessary to indicate to
the user that a hyperlink is present. This means that any UI displayed by the system will
always show whatever hyperlinks exist for the currently active domains and this appearance
will be dynamically updated should any change occur in the users hyperlinking configuration.
This feature enables a truly dynamic and "real time" hyperlinking system.

31

WO 03/065177 PCT/US03/03151

The foregoing description of the preferred embodiments of the invention has been
presented for the purposes of illustration and description. For example, although described
with respect to the C programming language, any programming language could be used to
implement this invention. Additionally, the claimed system and method should not be
limited to the particular API disclosed. The descriptions of the header structures should also
not be limited to the embodiments described. While the sample pseudo code provides
examples of the code that may be used, the plurality of implementations that could in fact be
developed is nearly limitless. Finally, although described with reference to "Internet" terms
such as hyperlinking, this invention could be applied to content from any number of different
envionments. For these reasons, this description is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are possible
in light of the above teaching. It is intended that the scope of the invention be limited not by

this detailed description, but rather by the claims appended hereto.

32

WO 03/065177 PCT/US03/03151

SYSTEM AND METHOD FOR ANALYZING DATA

Inventor: John Fairweather
BACKGROUND OF THE INVENTION

Lexical analyzers are generally used to scan sequentially through a sequence or "stream"
of characters that is received as input and returns a series of language tokens to the parser. A
token is simply one of a small number of values that tells the parser what kind of language
element was encountered next in the input stream. Some tokens have associated semantic
values, such as the name of an identifier or the value of an integer. For example if the input

stream was:

dst = sr¢ + dst->moveFrom

After passing through the lexical analyzer, the stream of tokens presented to the parser

might be:

(tok=1, string="dst”) --i.e., 1 is the token for identifier
(tok=100, string="=")

(tok=1,string="src”)

(tok=101, string="+")

(tok=1,string="dst”)

(tok=102, string="->")

(tok=1,string="moveFrom”)

To implement a lexical analyzer, one must first construct a Deterministic Finite
Automaton (DFA) from the set of tokens to be recognized in the language. The DFA is a
kind of state machine that tells the lexical analyzer given its current state and the current
input character in the stream, what new state to move to. A finite state automaton is
deterministic if it has no transitions on input € (epsilon) and for each state, S, and symbol, A,
there is at most one edge labeled A leaving S. In the present art, a DFA is constructed by first
constructing a Non-deterministic Finite Automaton (NFA). Following construction of the
NFA, the NFA is converted into a corresponding DFA. This process is covered in more

detail in most books on compiler theory.

APPENDIX 1

33

WO 03/065177 PCT/US03/03151

In Figure 1, a state machine that has been programmed to scan all incoming text for
any occurrence of the keywords “dog”, “cat”, and “camel” while passing all other words
through unchanged is shown. The NFA begins at the initial state (0). If the next character in
the stream is ‘d’, the state moves to 7, which is a non-accepting state. A non-accepting state
is one in which only part of the token has been recognized while an accepting state represents
the situation in which a complete token has been recognized. In Figure 1, accepting states
are denoted by the double border. From state 7, if the next character is ‘0’, the state moves to
8. This process will then repeat for the next character in the stream. If the lexical analyzer is
in an accepting state when either the next character in the stream does not match or in the
event that the input stream terminates, then the token for that accepting state is returned.
Note that since “cat” and “camel” both start with “ca”, the analyzer state is "shared" for both
possible "Lexemes". By sharing the state in this manner, the lexical analyzer does not need
to examine each complete string for a match against all possible tokens, thereby reducing the
search space by roughly a factor of 26 (the number of letters in the alphabet) as each
character of the input is processed. If at any point the next input token does not match any of
the possible transitions from a given state, the analyzer should revert to state 10 which will
accept any other word (tepresented by the dotted lines above). For example if the input word
were “doctor”, the state would get to 8 and then there would be no valid transition for the ‘¢’
character resulting in taking the dotted line path (i.e., any other character) to state 10. As will
be noted from the definition above, this state machine is an NFA not a DFA. This is because
from state 0, for the characters ‘c’ and ‘d’, there are two possible paths, one directly to state
10, and the others to the beginnings of “dog” and “cat”, thus we violate the requirement that

there be one and only one transition for each state-character pair in a DFA.

Implementation of the state diagram set forth in Figure 1 in software would be very
inefficient. This is in part because, for any non-trivial language, the analyzer table will need
to be very large in order to accommodate all the "dotted line transitions". A standard
algorithm, often called ‘subset construction’, is used to convert an NFA to a corresponding
DFA. One of the problems with this algorithm is that, in the worst-case scenario, the number
of states in the resulting DFA can be exponential to the number of NFA states. For these
reasons, the ability to construct languages and parsers for complex languages on the fly is
needed. Additionally, because lexical analysis is occurring so pervasively and often on many

systems, lexical analyzer generation and operation needs to be more efficient.

34

WO 03/065177 PCT/US03/03151

SUMMARY OF INVENTION

The following system and method provides the ability to construct lexical analyzers

on the fly in an efficient and pervasive manner. Rather than using a single DFA table and a
single method for lexical analysis, the present invention splits the table describing the
automata into two distinct tables and splits the lexical analyzer into two phases, one for each
table. The two phases consist of a single transition algorithm and a range transition
algorithm, both of which are table driven and, by eliminating the need for NFA to DFA
conversion, permit the dynamic modification of those tables during operation. A third ‘entry
point’ table may also be used to speed up the process of finding the first table element from
state 0 for any given input character (i.e, states 1 and 7 in Figure 1). This third table is
merely an optimization and is not essential to the algorithm. The two tables are referred to as
the ‘onecat’ table and the ‘catrange’ tables. The onecat table includes records, of type
"ET onecat", that include a flag field, a catalyst field, and an offset field. The catalyst field of
an ET onecat record specifies the input siream character to which this record relates. The
offset field contains the positive (possibly scaled) offset to the next record to be processed as
part of recognizing the stream. Thus the ‘state’ of the lexical analyzer in this implementation
is actually represented by the current ‘onecat’ table index. The ‘catrange’ table consists of an
ordered series of records of type ET_CatRange, with each record having the fields 'Istat'
(representing the lower bound of starting states), 'hstat' (representing the upper bound of

- starting states), 'lcat’ (representing the lower bound of catalyst character), 'hcat' (representing
the upper bound of catalyst character) and 'estat' (representing the ending state if the

transition is made).

The method of the present invention begins when the analyzer first loops through the
‘onecat’ table until it reaches a record with a catalyst character of 0, at which time the ‘offset’
field holds the token number recognized. If this is not the final state after the loop, the lexical
analyzer has failed to recognize a token using the ‘onecat’ table and must now re-process the
input stream using the ‘catrange’ table. The lexical analyzer loops re-scanning the ‘catrange’
table from the beginning for each input character looking for a transition where the initial
analyzer state lies between the ‘Istat’ and ‘hstat’ bounds, and the input character lies between
the ‘Icat’ and ‘hcat’ bounds. If such a state is found, the analyzer moves to the new state \
specified by ‘estat’. If the table runs out (denoted by a record with ‘Istat’ set to 255) or the

input string runs out, the loop exits.

35

WO 03/065177 PCT/US03/03151

The invention also provides a built-in lexical analyzer generator to create the catrange
and onecat tables. By using a two-table approach, the generation phase is extremely fast but
more importantly, it can be incremental, meaning that new symbols can be added to the
analyzer while it is running. This is a key difference over conventional approaches because it
opens up the use of the lexical analyzer for a variety of other purposes that would not
normally be possible. The two-phase approach of the present invention also provides
significant advantages over standard techniques in terms of performance and flexibility when
implemented in software, however, more interesting applications exist when one considers
the possibility of a hardware implementation. As further described below, this invention may

be implemented in hardware, software, or both.

36

WO 03/065177 PCT/US03/03151

BRIEF DESCRIPTION OF THE FIGURES
Figure 1 illustrates a sample non-deterministic finite automaton.
Figure 2 illustrates a sample ET_onecat record using the C programming language.
Figure 3 illustrates a sample ET_catrange record using the C programming language.
Figure 4 illustrates a state diagram representing a directory tree.
Figure 5 illustrates a sample structure for a recognizer DB.
Figure 6 illustrates a sample implementation of the Single Transition Module.
Figure 7 illustrates the operation of the Single Transition Module.

Figure 8 illustrates a logical representation of a Single Transition Module

implementation.
Figure 9 illustrates a sample implementation of the Range Transition Module.

Figure 10 illustrates a complete hardware implementation of the Single Transition

Module and the Range Transition Module.

37

WO 03/065177 PCT/US03/03151

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following description of the invention references various C programming code
examples that are intended to clarify the operation of the method and system. This is not
intended to limit the invention as any number of programming languages or implementations

may be used.

The present invention provides an improved method and system for performing
lexical analysis on a given stream of input. The present invention comprises two distinct
tables that describe the automata and splits the lexical analyzer into two phases, one for each
table. The two phases consist of a single transition algorithm and a range transition
algorithm. A third ‘entry point’ table may also be used to speed up the process of finding the
first table element from state 0 for any given input character (i.e, states 1 and 7 in Figure 1).
This third table is merely an optimization and is not essential to the algorithm. The two

tables are referred to as the ‘onecat’ table and the ‘catrange’ tables.

Referring now to Figure 2, programming code illustrating a sample ET_onecat record
200 is provided.The onecat table includes records, of type "ET_onecat", that include a flag
field, a catalyst field, and an offset field. The catalyst field of an ET onecat record specifies
the input stream character to which this record relates. The offset field contains the positive
(possibly scaled) offset to the next record to be processed as part of recognizing the stream.
Thus the ‘state’ of the lexical analyzer in this implementation is actually represented by the
current ‘onecat’ table index.The ‘onecat’ table is a true DFA and describes single character
transitions via a series of records of type ET_onecat 200. A variety of specialized flag
definitions exist for the flags field 210 but for the purposes of clarity, only ‘kLexJump’ and
‘kNeedDelim’ will be considered. The catalyst field 205 of an ET onecat record 200
specifies the input stream character to which this record relates. The offset field 215 contains
the positive (possibly scaled) offset to the next record to be processed as part of recognizing
the stream. Thus the ‘state’ of the lexical analyzer in this implementation is actually
represented by the current ‘onecat’ table index. For efficiency, the various ‘onecat’ records
may be organized so that for any given starting state, all possible transition states are ordered

alphabetically by catalyst character.

38

WO 03/065177 PCT/US03/03151

The basic algorithm for the first phase of the lexical analyzer, also called the onecat
algorithm, is provided. The algorithm begins by looping through the ‘onecat’ table (not
shown) until it reaches a record with a catalyst character of 0, at which time the ‘offset’ field
215 holds the token number recognized. If this is not the final state after the loop, the
algorithm has failed to recognize a token using the ‘onecat’ table and the lexical analyzer

must now re-process the input stream from the initial point using the ‘catrange’ table.

ch = *ptr; I/ ‘ptr’

tbl = &onecat[entryPoint[ch]]; // initialize using 3" table
for (done=NO3;;)

{

tch = tbl->catalyst;
state = tbl->flags;

if (*ptr) done = YES; /1 oops! the source string ran out!
if (tch==ch) /1 if ‘ch’ matches catalyst char
{ // match found, increment to next
if (done) break; /1 exit if past the terminating NULL
tbl++; /{ increment pointer if char accepted
pir++; /l in the input stream.
ch = *ptr;
}
else if (thl->flags & kLexJump)
thl += tbl->offset; // there is a jump alternative available
else break; // no more records, terminate loop

}
match = ltch && (*ptr is a delimiter || !(state & (kNeedDelim+kLexJump)));

if (match) return tbl->offset; // on success, offset field holds token#

Referring now to Figure 3, sample programming code for creating an ET Catrange
record 300 is shown. The ‘catrange’ table (not shown) consists of an ordered series of
records of type ET_CatRange 300. In this implementation, records of type ET_CatRange
300 include the fields 'Istat' 305 (representing the lower bound of starting states), 'hstat' 310
(representing the upper bound of starting states), 'lcat' 315 (representing the lower bound of
catalyst character), 'hcat' 320 (representing the upper bound of catalyst character) and 'estat'
325 (representing the ending state if the transition is made). These are the minimum fields
required but, as described above, any number of additional fields or flags may be

incorporated.

A sample code implementation of the second phase of the lexical analyzer algorithm,

also called the catrange algorithm, is set forth below.

39

WO 03/065177 PCT/US03/03151

tab = tab1 = &catRange[0];
state = 0;

ch = *ptr;

for (;;)

{ /Il LSTAT byte = 255 ends table
if (tab->lstat == 255) break;

else if ((tab->Istat <= state && state <= tab->hstat) &&

(tab->Icat <= ch && ch <= tab->hcat))

{ // state in range & input char a valid catalyst
state = tab->estat; // move to final state specified

ptrtt; /[accept character

ch = *ptr;

if (!ch) break; // whoops! the input string ran out

tab = tabl; // start again at beginning of table

}

else tab++; // move to next record if not end

if (state > maxAccState || *ptr not a delimiter && *(ptr-1) not a delimiter)
return bad token error
return state

As the code above illustrates, the process begins by looping and re-scanning the
‘catRange’ table from the beginning for each input character looking for a transition where
the initial analyzer state lies between the ‘Istat’ 305 and ‘hstat’ 310 bounds, and the input
character lies between the ‘Icat’ 315 and ‘hcat’ 320 bounds. If such a state is found, the
analyzer moves to the new state specified by ‘estat’ 325. If the table runs out (denoted by a
record with ‘Istat’ set to 255) or the input string runs out, the loop exits. In the preferred
embodiment, a small number of tokens will be handled by the ‘catRange’ table (such an
numbers, identifiers, strings etc.) since the reserved words of the language to be tokenized
will be tokenized by the ‘onecat’ phase. Thus, the lower state values (i.e. <64) could be
reserved as accepting while states above that would be considered non-accepting. This

boundary line is specified for a given analyzer by the value of ‘maxAccState’ (not shown).

To illustrate the approach, the table specification below is sufficient to recognize all

required ‘catRange’ symbols for the C programming language: .

0Ollaz <eol> 1 = Identifier

011 <eol> more identifier

11109 <eol> more identifier

00100"" <eol> ' begins character constant ;
100 100 101\\ <eol> a \ begins character escape sequence |

40

WO 03/065177

PCT/US03/03151

10110210207
101101103 xx
103103103 af
10310310309
1001002 "'
1021032
100 103 100
001000
10101007
00319
33309
00110..
334..
10104..
44409
1101104 ..
3411lee
1010 111ee
111111509
111111112+ +
000\
111111 112 - -
112112509
55509
456ff
45611
1010120xx
120120709
1201207 af
177709
777af
77811
778uu

<eol> numeric character escape sequence
<eol> hexadecimal numeric character escape sequence
<eol> more hexadecimal escape sequence
<eol> more hexadecimal escape sequence
<eol>' terminates the character sequence
<eol> you can have multiple char constants
<eol> 2 = character constant

<eol> 10 = octal constant

<eol> more octal constant

<eol> 3 = decimal number

<eol> more decimal number

<eol> start of fp number

<eol> 4 = floating point number

<eol> change octal constant to fp #

<eol> more fp number

<eol> more fp number

<eol> 5 = fp number with exponent

<eol> change octal constant to fp #

<eol> more exponent

<eol> more exponent

<eol> continuation that does not belong to anything
<eol> more exponent

<eol> more exponent

<eol> more exponent

<eol> 6 = fp number with optional float marker
<eol> more float marker

<eol> beginning hex number

<eol> 7 = hexadecimal number

<eol> more hexadecimal

<eol> more hexadecimal

<eol> more hexadecimal

<eol> 8 = hex number with L or U specifier

<eol>

41

WO 03/065177 PCT/US03/03151

33911 <eol> 9 = decimal number with L or U specifier
33%uu <eol>

10101111 <eol> 11 = octal constant with L or U specifier
101011uu <eol>

0o130"" <eol> begin string constant...

130130 12"" <eol> 12 = string constant

130 130 13\\ <eol> 13 = string const with line continuation '\
131313107 <eol> numeric character escape sequence
13113113107 <eol>numeric character escape sequence
1313132xx <eol>hexadecimal numeric character escape sequence
13113212"" <eol> end of string

1313 130 <eol> anything else must be char or escape char
132132132 af <eol> more hexadecimal escape sequence
13213213209 <eol> more hexadecimal escape sequence

130 132 130 <eol> anything else is part of the string

In this example, the ‘catRange’ algorithm would return token numbers 1 through 13
to signify recognition of various C language tokens. In the listing above (which is actually
valid input to the associated lexical analyzer generator), the 3 fields correspond to the ‘Istat®
305, ‘hstat’ 310, ‘estat’ 325, ‘lcat’ 315 and ‘hcat’ 320 fields of the ET_CatRange record 300.
This is a very compact and efficient representation of what would otherwise be a huge
number of transitions in a conventional DFA table. The use of ranges in both state and input
character allow us to represent large numbers of transitions by a single table entry. The fact
that the table is re-scanned from the beginning each time is important for ensuring that
correct recognition occurs by arranging the table elements appropriately. By using this two
pass approach, we have trivially implemented all the dotted-line transitions shown in the
initial state machine diagram as well as eliminating the need to perform the NFA to DFA
transformation. Additionally since the ‘oneCat’ table can ignore the possibility of multiple
transitions, it can be optimized for speed to a level not attainable with the conventional NFA-

>DFA approach.

The present invention also provides a built-in lexical analyzer generator to create the

tables described. ‘CatRange’ tables are specified in the format provided in Figure 3, while

42

WO 03/065177 PCT/US03/03151

‘oneCat’ tables may be specified via application programming interface or "API" calls or

simply by specifying a series of lines of the form provided below.

[token#] tokenString [. | J

As shown above, in the preferred embodiment, a first field is used to specify the
token number to be returned if the symbol is recognized. This field is optional, however, and
other default rules may be used. For example, if this field is omitted, the last token number +
1 may be used instead. The next field is the token string itself, which may be any sequence
of characters including whitespace. Finally, if the trailing period is present, this indicates that
the “kNeedDelim’ flag (the flags word bit for needs delimiter, as illustrated in Figure 2) is

false, otherwise it is true.

Because of the two-table approach, this generation phase is extremely fast. More
importantly, however, the two table approach can be incremental. That is, new symbols can
be added to the analyzer while it is running. This is a key difference over conventional
approaches because it opens up the use of the lexical analyzer for a variety of other purposes
that would not normally be possible. For example, in many situations there is a need for a
symbolic registration database wherein other programming code can register items identified
by a unique ‘name’. In the preferred embodiment, such registries are implemented by
dynamically adding the symbol to a ‘oneCat’ table, and then using the token number to refer
back to whatever was registered along with the symbol, normally via a pointer. The
advantage of this approach is the speed with which both the insertion and the lookup can
occur. Search time in the registry is also dramatically improved over standard searching
techniques (e.g., binary search). Specifically, search time efficiency (the "Big O" efficiency)
to lookup a given word is proportional to the log (base N) of the number of characters in the
token, where ‘N’ is the number of different ASCII codes that exist in significant proportions
in the input stream. This is considerably better than standard search techniques.
Additionally, the trivial nature of the code needed to implement a lookup registry and the fact
that no structure or code needs to be designed for insertion, removal and lookup, make this

approach very convenient.

In addition to its use in connnection with flat registries, this invention may also be
used to represent, lookup, and navigate through hierarchical data. For example, it may be

desirable to “flatten’ a complete directory tree listing with all files within it for transmission

43

WO 03/065177 PCT/US03/03151

to another machine. This could be easily accomplished by iterating through all files and
directories in the tree and adding the full file path to the lexical analyzer database of the
present invention. The output of such a process would be a table in which all entries in the
table were unique and all entries would be automatically ordered and accessible as a

hierarchy.

Referring now to Figure 4, a state diagram representing a directory tree is shown. The
directory tree consists of a directory A containing sub-directories B and C and files F1 and F2
and sub-directory C contains F1 and F3. A function, LX_List(), is provided to allow
alphabetized listing of all entries in the recognizer database. When called successively for

the state diagram provided in Figure 6, it will produce the sequence:
“As”, “AiB:”, “AiC”, “A:C:F17, “A:C:F3”, “A:F1”, “A:F2”

Furthermore, additional routines may be used to support arbitrary navigation of the
tree. For example, routines could be provided that will prune the list (LX PruneList()), to
save the list (LX SaveListContext()) and restore the list (LX_RestoreListContext()). The
routine LX_PruneList() is used to "prune" the list when a recognizer database is being
navigated or treated as a hierarchical data structure. In one embodiment, the routine
LX PruneList() consists of nothing more than decrementing the internal token size used
during successive calls to LX_List(). The effect of a call to LX PruneList() is to remove all
descendant tokens of the currently listed token from the list sequence. To illustrate the point,
assume that the contents of the recognizer DB represent the file/folder tree on a disk and that
any token ending in "' is a folder while those ending otherwise are files. A program could
easily be developed to enumerate all files within the folder folder "Disk:MyFiles:" but not
any files contained within lower level folders. For example, the following code demonstrates

how the LX_PruneList() routine is used to "prune" any lower level folders as desired:

tokSize = 256; // set max file path length
prefix = "Disk:MyFiles:";
toknum = LX_List(theDB,0,&tokSize,0,prefix); // initialize to start folder path
while (toknum !=-1) // repeat for all files
{

toknum = LX_List(theDB,fName,&tokSize,0,prefix); // list next file name

44

WO 03/065177

PCT/US03/03151

if (toknum !=-1)
if (fName[tokSize-1] == "'
LX_ PruneList(theDB)
else

-- process the file somehow

// is it a file or a folder ?
// it is a folder
// prune it and all it's children

// it is a file...

In a similar manner, the routines LX_SaveListContext() and

LX_RestoreListContext() may be used to save and restore the internal state of the listing

process as manipulated by successive calls to LX_List() in order to permit nested/recursive

calls to LX_List() as part of processing a hierarchy. These functions are also applicable to

other non-recursive situations where a return to a previous position in the listing/navigation

process is desired. Taking the recognizer DB of the prior example (which represents the

file/folder tree on a disk), the folder tree processing files within each folder at every level

could be recursively walked non-recursively by simply handling tokens containing partial

folder paths. If a more direct approach is desired, the recursiveness could be simplified. The

following code illustrates one direct and simple process for recursing a tree:

45

WO 03/065177 PCT/US03/03151

void myFunc (charPtr folderPath)
{
tokSize = 256; // set max file path length
toknum = LX_List(theDB,0,&tokSize,0,folderPath); // initialize to start folder
while (toknum !=-1) // repeat for all files
{
toknum = LX_List(theDB,fName,&tokSize,0,prefix); // list next file name
if (toknum !=-1) // is it a file or a folder ?
if (fName[tokSize-1]=="") // it is a folder
sprintf(nuPath,"%s%s",folderPath,fName); // create new folder path
tmp = LX_SaveListContext(theDB); // prepare for recursive listing
myFunc(nuPath); // recurse!
LX_RestoreListContext(theDB,tmp); // restore listing context
else /] it is a file...
-- process the file somehow
}
}

These routines are only a few of the routines that could be used in conjunction with
the present invention. Those in the prior art will appreciate that any number of additional
routines could be provided to permit manipulation of the DB and lexical analyzer. For
example, the following non-exclusive list of additional routines are basic to lexical analyzer
use but will not be described in detail since their implementation may be easily deduced from

the basic data structures described above:

LX_Add() — Adds a new symbol to a recognizer table. The implementation of this routine is
similar to LX_Lex() except when the algorithm reaches a point where the input token
does not match, it then enters a second loop to append additional blocks to the
recognizer table that will cause recognition of the new token.

LX_Sub() - Subtracts a symbol from a recognizer table. This consists of removing or

altering table elements in order to prevent recognition of a previously entered symbol.

46

WO 03/065177 PCT/US03/03151

LX_Set() — Alters the token value for a given symbol. Basically equivalent to a call to
LX_Lex() followed by assignment to the table token value at the point where the
symbol was recognized.

LX_Init() — Creates a new empty recognizer DB.

LX_KillDB() — Disposes of a recognizer DB.

LX FindToken() — Converts a token number to the corresponding token string using

LX_List().

In addition to tﬁe above routines, additional routines and structures within a
recognizer DB may be used to handle certain aspects of punctuation and white space that may
vary between languages to be recognized. This is particularly true if a non-Roman script
system is involved, such as is the case for many non-European languages. In order to
distinguish between delimiter characters (i.e., punctuation etc.) and non-delimiters (i.e.,
alphanumeric characters), the invention may also include the routines LX_AddDelimiter()
and LX_SubDelimiter(). When a recognizer DB is first created by LX_Init(), the default
delimiters are set to match those used by the English language. This set can then be
selectively modified by adding or subtracting the ASCII codes of interest. Whether an ASCII
character is a delimiter or not is determined by whether the corresponding bit is set in a bit-
array ‘Dels’ associated with the recognizer DB and it is this array that is altered by calls to
add or subtract an ASCII code. In a similar manner, determining whether a character is
white-space is crucial to determining if a given token should be recognized, particularly
where a longer token with the same prefix exists (e.g., Smith and Smithsonian). For this
reason, a second array ‘whitespace’ is associated with the recognizer DB and is used to add
. new whitespace characters. For example an Arabic space character has the ASCII value of
the English space plus 128. This array is accessed via LX_AddDelimiter() and
LX_SubDelimiter() functions.

A sample structure for a recognizer DB 500 is set forth in Figure 5. The elements of
the structure 500 are as follows: onecatmax 501 (storing the number of elements in 'onecat’),
catrangemax 502 (storing number of elements in ‘catrange'), lexFlags 503 (storing behavior
configuration options), maxToken 504 (representing the highest token number in table),
nSymbols 505 (storing number of symbols in table), name 506 (name of lexical recognizer
DB 500), Dels 507 (holds delimiter characters for DB), MaxAccState 508 (highest accepting

state for catrange), whitespace 509 (for storing additional whitespace characters), entry 510

47

WO 03/065177 PCT/US03/03151

(storing entry points for each character), onecat 511 (a table for storing single state transitions
using record type ET_onecat 200) and catrange 512 (a table storing range transitions and is

record type ET_CatRange 400).

As the above description makes clear, the two-phase approach to lexical analysis
provides significant advantages over standard techniques in terms of performance and
flexibility when implemented in software. Additional applications are enhanced when the

invention is imlemented in hardware.

Referring now to Figure 6, a sample implementation of a hardware device based on
the ‘OneCat’ algorithm (henceforth referred to as a Single Transition Module 600 or STM
600) is shown. The STM module 600 is preferably implemented as a single chip containing a
large amount of recognizer memory 605 combined with a simple bit-slice execution unit 610,
such as a 2610 sequencer standard module and a control input 645. In operation the STM

600 would behave as follows:

1) The system processor on which the user program resides (not shown) would load
up a recognizer DB 800 into the recognizer memory 605 using the port 615
formatted as a record of type ET_onecat 200.

2) The system processor would initialize the source of the text input stream to be
scanned. The simplest external interface for text stream processing might be to tie
the “Next’ signal 625 to an incrementing address generator 1020 such that each
pulse on the ‘Next’ line 625 is output by the STM 600 and requests the system
processor to send the next byte of text to the port 630. The contents of the next
external memory location (previously loaded with the text to be scanned) would
then be presented to the text port 630. The incrementing address generator 1020
would be reset to address zero at the same time the STM 600 is reset by the

system processor.

Referring now to Figure 7, another illustration of the operation of the STM 600 is
shown. As the figure illustrates, once the ‘Reset’ line 620 is released, the STM 600 fetches
successive input bytes by clocking based on the ‘Next’ line 620, which causes external
circuitry to present the new byte to input port 630. The execution unit 610 (as shown in

Figure 6) then performs the ‘OneCat’ lexical analyzer algorithm described above. Other

48

WO 03/065177 PCT/US03/03151

hardware implementations, via a sequencer or otherwise, are possible and would be obvious
to those skilled in the art. In the simple case, where single word is to be recognized, the
algorithm drives the ‘Break’ line 640 high at which time the state of the ‘Match’ line 635
determines how the external processot/circuitry 710 should interpret the contents of the table
address presented by the port 615. The ‘Break’ signal 640 going high signifies that the
recognizer (not shown) has completed an attempt to recognize a token within the text 720. In
the case of a match, the contents presented by the port 615 may be used to determine the
token number. The ‘Break’ line 640 is fed back internally within theLexical Analyzer
Module or '"LAM' (see Figure 14) to cause the recognition algorithm to re-start at state zero

when the next character after the one that completed the cycle is presented.

Referring now to Figure 8, a logical representation of an internal STM
implementation is shown. The fields/memory described by the ET_onecat 200 structure is
now represented by three registers 1110, 1120, 1130, two of 8 bits 1110, 1120 and one of at
least 32 bits 1130 which are connected logically as shown. The ‘Break’ signal 640 going
high signifies that the STM 600 has completed an attempt to recognize a token within the text
stream. At this point external circuitry or software can examine the state of the ‘Match’ line

635 in order to decide between the following actions:

1) Ifthe “Match’ line 635 is high, the external system can determine the token
number recognized simply by examining recognizer memory 605 at the address

presented via the register 1145.

2) Ifthe ‘Match’ line 635 is low, then the STM 600 failed to recognize a legal token
and the external system may either ignore the result, reset the STM 600 to try for a
new match, or alternatively execute the range transition algorithm 500 starting
from the original text point in order to determine if a token represented by a range
transition exists. The choice of which option makes sense at this point is a

function of the application to which the STM 600 is being applied.

The “=?" block 1150, “0?” blocks 1155, 1160, and “Add” block 1170 in Figure 11
could be implemented using standard hardware gates and circuits. Implementation of the
“delim?” block 1165 would require the external CPU to load up a 256*1 memory block with

1 bits for all delimiter characters and O bits for all others. Once loaded, the “delim?” block

49

WO 03/065177) PCT/US03/03151

1165 would simply address this memory with the 8-bit text character 1161 and the memory
output (0 or 1) would indicate whether the corresponding character was or was nota
delimiter. The same approach can be used to identify white-space characters and in practice a
256*8 memory would be used thus allowing up to 8 such determinations to be made
simultaneously for any given character. Handling case insensitive operation is possible via

lookup in a separate 256*8 memory block.

In the preferred implementation, the circuitry associated with the ‘OneCat’
recognition algorithm is segregated from the circuitry/software associated with the
‘CatRange’ recognition algorithm. The reason for this segregation is to preserve the full
power and flexibility of the distinct software algorithms while allowing the ‘OneCat’
algorithm to be executed in hardware at far greater speeds and with no load on the main
system processor. This is exactly the balance needed to speed up the kind of CAM and text
processing applications that are described in further detail below. This separation and
implementation in hardware has the added advantage of permitting arrangements whereby a
large number of STM modules (Fig 6 and 7) can be operated in parallel permitting the
scanning of huge volumes of text while allowing the system processor to simply coordinate
the results of each STM module 600. This supports the development of a massive and

scaleable scanning bandwidth.

Referring now to Figure 9, a sample hardware implementation for the ‘CatRange’
algorithm 500 is shown. The preferred embodiment is a second analyzer module similar to
the STM 600, which shall be referred to as the Range Transition Module or RTM 1200. The
RTM module 1200 is preferably implemented as a single chip containing a small amount of
range table memory 1210 combined with a sirﬁple bit-slice execution unit 1220, such as a

2910 sequencer standard module. In operation the RTM would behave as follows:

1) The system processor (on which the user program resides) would load up a range
table into the range table memory 1210 via the port 1225, wherein the the range

table is formatted as described above with reference to ET_CatRange 300.

2) Initialization and external connections, such as the control/reset line 1230, next
line 1235, match line 1240 and break line 1245, are similar to those for the STM
900.

50

WO 03/065177 PCT/US03/03151

3) Once the ‘Reset’ line 1230 is released, the RTM 1200 fetches successive input
bytes by clocking based on the ‘Next’ line 1235 which causes external circuitry to
present the new byte to port 1250. The execution unit 1220 then perfofms the
‘CatRange’ algorithm 500. Other implementations, via a sequencer or otherwise

are obviously possible.

In a complete hardware implementation of the two-phase lexical analyzer algorithm,
the STM and RTM are combined into a single circuit component known as the Lexical
Analyzer Module or LAM 1400. Referring now to Figure 10, a sample LAM 1400 is shown.
The LAM 1400 presents a similar external interface to either the STM 600 or RTM 1200 but
contains both modules internally together with additional circuitry and logic 1410 to allow
both modules 600, 1200 to be run in parallel on the incoming text stream and their results to
be combined. The combination logic 1410 provides the following basic functions in cases

where both modules are involved in a particular application (either may be inhibited):

1) The clocking of successive characters from the text stream 1460 via the sub-
module ‘Next’ signals 925, 1235 must be synchronized so that either module

waits for the other before proceeding to process the next text character.

2) The external LAM ‘Match’ signals 1425 and ‘Break’ signals 1430 are coordinated
so that if the STM module 900 fails to recognize a token but the RTM module
1200 is still processing characters, the RTM 1200 is allowed to continue until it
completes. Conversly, if the RTM 1200 completes but the STM 600 is still in
progress, it is allowed to continue until it completes. If the STM 600 completes

and recognizes a token, further RTM 1200 processing is inhibited.

3) An additional output signal “S/R token” 1435 allows external circuitry/software to
determine which of the two sub-modules 600, 1200 recognized the token and if
appropriate allows the retrieval of the token value for the RTM 1200 via a
dedicated location on port 1440. Alternately, this function may be achieved by
driving the address latch to a dedicated value used to pass RTM 1200 results. A

control line 1450 is also provided.

The final stage in implementing very high performance hardware systems based on

this technology is to implement the LAM as a standard module within a large programmable

51

WO 03/065177 PCT/US03/03151

gate array which can thus contain a number of LAM modules all of which can operate on the -
incoming text stream in parallel. On a large circuit card, multiple gate arrays of this type can
be combined. In this configuration, the table memory for all LAMs can be loaded by external
software and then each individual LAM is dynamically ‘tied’ to a particular block of this
memory, much in the same manner that the ET_LexHdl structure (described above) achieves
in software. Once again, combination logic similar to the combination logic 1410 utilized
between STM 600 and RTM 1200 within a given LAM 1400 can be configured to allow a set
of LAM modules 1400 to operate on a single text stream in parallel. This allows external
software to configure the circuitry so that multiple different recognizers, each of which may
relate to a particular recognition domain, can be run in parallel. This implementation permits
the development and execution of applications that require separate but simultaneous
scanning of text streams for a number of distinct purposes. The external software
architecture necessary to support this is not difficult to imagine, as are the kinds of
sophisticated applications, especially for intelligence purposes, for which this capability

might find application.

Once implemented in hardware and preferably as a LAM module 1400, loaded and

configured from software, the following applications (not exhaustive) can be created:

1) Content-addressable memory (CAM). In a CAM system, storage is addressed
by name, not by a physical storage address derived by some other means. In other
words, in a CAM one would reference and obtain the information on “John
Smith” simply using the name, rather than by somehow looking up the name in
order to obtain a physical memory reference to the corresponding data record.
This significantly speeds and simplifies the software involved in the process. One
application area for such a system is in ultra-high performance database search
systems, such as network routing (i.e., the rapid translation of domains and IP
addresses that occurs during all internet protocol routing) advanced computing
architectures (i.e., non-Von Neuman systems), object oriented database systems,

and similar high performance database search systems.

2) Fast Text Search Engine. In extremely high performance text search
applications such as intelligence applications, there is a need for a massively

parallel, fast search text engine that can be configured and controlled from

52

WO 03/065177 PCT/US03/03151

software. The present invention is ideally suited to this problem domain,
especially those applications where a text stream is being searched for key words
in order to route interesting portions of the text to other software for in-depth
analysis. High performance text search applications can also be used on foreign
scripts by using one or more character encoding systems, such as those developed
by Unicode and specifically UTF-8, which allow multi-byte Unicode characters to

be treated as one or more single byte encodings.

3) Language Translation. To rapidly translate one language to another, the first
stage is a fast and flexible dictionary lookup process. In addition to simple one-
to-one mappings, it is important that such a system flexibly and transparently
handle the translation of phrases and key word sequences to the corresponding

phrases. The present invention is ideally suited to this task.

Other applications. A variety of other applications based on a hardware
implementation of the lexical analysis algorithm described are possible including (but not
limited to); routing hierarchical text based address strings, sorting applications, searching for

repetitive patterns, and similar applications.

The foregoing description of the preferred embodiment of the invention has been
presented for the purposes of illustration and description. Any number of other basic
features, functions, or extensions of the foregoing method and systems would be obvious to
those skilled in the art in light of the above teaching. For example, other basic features that
would be provided by the lexical analyzer, but that are not described in detail herein, include
case insensitivity, delimiter customization, white space customization, line-end and line-start
sensitive tokens, symbol flags and tagging, analyzer backup, and other features of lexical
analyzers that are well-known in the prior art. For these reasons, this description is not
intended to be exhaustive or to limit the invention to the precise forms disclosed. It is
intended that the scope of the invention be limited not by this detailed description but rather
by the claims appended hereto.

53

WO 03/065177 PCT/US03/03151

SYSTEM AND METHOD FOR MANAGING MEMORY
Inventor: John Fairweather

. BACKGROUND OF THE INVENTION

The Macintosh Operating system ("OS"), like all OS layers, provides an API where
applications can allocate and de-allocate arbitrary sized blocks of memory from a heap.
There are two basic types of allocation, viz: handles and pointers. A pointer is a non-
relocatable block of memory in heap (referred to aé *p in the C programming language,
hereinafter “C”), while a handle is a non-relocatable reference to a relocatable block of
‘memory in heap (referred to as **} in C). In general, handles are used in situations where the
size of an allocation may grow, as it is possible that an attempt to grow a pointer allocation
may fail due to the presence of other pointers above it. In many operating systems (including
OS X on the Macintosh) the negd for a handle is removed entirely as a programrﬁer me;y use

the memory management hardware to convert all logical addresses to and from physical

- addresses.

The most difficult aspéct of using' handle based memory, howe'ver, is that unless the
handle is ‘locked’, the physical memory allocation for the handle can move around in
memory by the memory manager at any time. Movement of the physical mémory allocation
is often hecessar}: in order to create a large enough contiguous chunk for the new block size.
The change in the physical memory location, however, means that one cannot ‘de-reference’
a handle to obtain a pointer to some structure within the handle and pass the pointer to other
systems as the physical address will inevitably become invalid. Even if the handle is locked,
any pointer value(s) are only valid in the current machine’s memory. If the structure is
passed to another maéhine, it will be instantiated at a different logical address in memory and
all pointer references from elsewhere will be invalid. This makes it very difficult to
efficiently pass references to data. What is needed, then, is a method for managing memory
references such that a reference can be passed to another ma»chine‘ and the machine would be
able to retrieve or store the necessary data even if the physical address of the data has been
changed when transferred to the new machine or otherwise altered as a result of changes to

the data.

APPENDIX 2

54

WO 03/065177) PCT/US03/03151

SUMMARY OF THE INVENTION

The following invention provides a method for generating a memory reference that is
capable of being transfeﬁed to different machine or memory location without jeopardizing
access to relevant data. Specifically, the memory management system and method of the
present invention creates a new memory tuple that creates both a handle as well as a reference
to an item within the handle. In the latter case, the reference is created using an offset value
that defines the physical offset of the data within the memory block. If references are passed
in terms of their offset value, this value will be the same in any copy of the handle regardless
of the machine. In the context of a distributed computing environment, all that then remains
is to establish the equivalence between handles, which can accompiished in a single ‘
transaction between two communicating machines. Thereafter, the two machines can

communicate about specific handle contents simply by using offsets.

The minimum reference is therefore a tuple comprised of the handle together with the
offset into the memory block, we shall call such a tuple an ‘ET_ViewRef” and sample code
used to create such a tuple 100 in C is provided in Figure 1. Once this tuple has been created,
it becomes possible to use the ET_ViewRef structure as the basic relocatable handle
reference in order to reference structures internal to the handle even when the handle may
move. The price for this flat memory model is the need for a wrapper layer that transparently
handles the kinds of manipulations described above during all de-referencing operations,
however, even with such a wrapper, operations in this flat memory model are considerably

faster that corresponding OS supplied operations on the application heap.

55

WO 03/065177 PCT/US03/03151

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 illustrates sample code used to create the minimum reference ‘tuple’ of the

present invention;
}

Figure 2 illustrates a drawing convention that is used to describe the interrelationship

between sub-layers in one embodiment of the present invention;

Figure 3 illustrates a sample header block that may be used to practice the present

invention;
Figure 4 illustrates a simple initial state for a handle containing multiple structures;

Figure § illustrates the type of logical relationships that may be created between

structures in a handle following the addition of a new structure;

Figure 6 illustrates a sample of a handle after increasing the size of a given structure

within the handle beyond its initial physical memory allocation;

Figure 7 illustrates the manner in which a handle could be adapted to enable unlimited

growth to a given structure within the handle;
Figure 8 illustrates the handle after performing an undo operation;

Figure 9 illustrates a handle that has been adapted to include a time axis in the header

field of the structures within the handle;

Figure 10 illustrates the manner in which the present invention can be used to store

data as a hierarchical tree; and

Figure 11 illustrates the process for using the memory model to sort structures within
a handle.

56

WO 03/065177 PCT/US03/03151

DETAILED DESCRIPTION
Descriptive Conventions

In order to graphically describe the architectural components and interrelations that
comprise the software, this document adopts a number of formalized drawing conventions.
In general, any given software aspect is built upon a number of sub-layers. Referring now to
figure 2, a block diagram is provided that depicts these sub-layers as a ‘stack’ of blocks. The
lowest block is the most fundamental (generally the underlying OS) and the higher block(s)
aré successive layers of abstraction built upon lower blocks. Each such block is referred to-

interchangeably as either a module or a p.ackage.

The first, an opaque module 200, is illustrated as a rectangular in Figure 2A. An
opaque module 200 is one that cannot be customized or altered via registered plug-ins. Such
a form generally provides a compiete encapsulation of a given area of functionality for which

customization is either inappropriate or undesirable.

The second module, illustrated as T-shaped form 210 in Figure 2B, represents a
module that provides the ability to register plug-in functions that modify its behavior for
i)articular purposes. In Figure 2A, these plug-ins 220 are shown as ‘hanging’ below the
horizdptal bar of the module 210. In such cases, the module 210 provides a complete
‘logical’ interface to a certain functional capability while the plug-ins 220 customize that
functionality as desired. In general, the plug-ins 220 do not provide a callable API of their
own. This methodology provides the benefits of customization and flexibility without the
negative effects of allowing application specific knowledge to percolate any higher up the
stack than necessary. Generally, most modules provide a predeﬁnéd set of plug-in behaviors
so that for normal operation they can be used directly without the need for plug-in

registration.

In any given diagram, the visibility of lower layers as viewed from above, implies that
direct calls to that layer from higher-level layers above is supported or required as part of
normal operation. Modules that are hidden vertically by higher-level modules, are not

intended to be called directly in the context depicted.

57

WO 03/065177 PCT/US03/03151
Figure 2C illustrates this descriptive convention. Module 230 is built upon and makes
use of modules 235, 240, and 245 (as well as what may be below module 245). Module 230,
235 and 240 make use of module 245 exclusively. The functionality within module 240 is
completely hidden from higher level modules via module 230, however direct access to

modules 250 and 235 (but not 245) is still possible.

In Figure 2D, the Viewstructs memory system and method 250 is illustrated. The
ViewStructs 250 package (which implements the memory model described herein) is layered
directly upon the heap memory encapsulation 280 provided by the TBFilters 260,
TrapPatches 265, and WidgetQC 270 packages. These three packages 260, 265, 270 form the
heap memory abstraction, and provide sophisticated debugging and memory tracking
capabilities that are discussed elsewhere. When used elsewhere, the terms ViewStructs or

'memory model apply only to the contents of a single handle within the heap.

To reference and manipulate variable sized structures within a single memory
allocation, we reqﬁire that all structures start with a standard header block. A sample header
block (called an ET_Hdr) may be defined in C programming language as illustrated in Figure
3. For the purpose of discussing the memory model, we shall only consider the use of
ET_Offset fields 310, 320, 330, 340. The word ‘flags’ 305, among other things, indicates ‘d{e
type of record follows the ET_Hdr. The ‘version’ 350 and ‘date’ fields 360 are associated
with the ability to map oid or changed structures into the latest structure definition, but these

fields 350, 360 are not necessary to practice the invention and are not discussed herein.

Referring now to Figure 4, Figure 4 illustrates a simple initial state for a handle

_ containing multiple structures. The handle contains two distinct memory structures, structure
410 and structure 420. Each structure is preceded by a header record, as previously
illustrated in Figure 3, which defines its type (not shown) and its relationship to other
structures in the handle. As can be seen from the diagram, the ‘Nextltem’ field 310 is simply
a daisy chain where each link simply gives the relative offset from the start of the referencing
structure to the start of the next structure in the handle. Note that all references in this model
are relative to the start of the referencing structure header and indicate the (possibly scaled)
offset to the start of the referenced structure header. The final structure in the handle is
indicated by a header record 430 with no associated additional data where ‘Nextltem = 0’.
By following the ‘“Nextltem’ daisy chain it is possible to examine and locate every structure 4
within the handle.

58

WO 03/065177 PCT/US03/03151

As the figure illustrates, the ‘parent’ field 340 is used to indicate parental relationships
between different structures in the handle. Thus we can see that structure B 420 is a child of
structure A 410. The terminating header record 430 (also referred to as an ET_Null record)
always has a parent field that references the immediately preceding structure in the handle.
Use of the parent field in the terminating header record 430 does not represent a "paren !
relationship, it is simply a convenience to allow easy addition of new records to the handle.
Similarly, the otherwise meaningless ‘moveFrom’ field 330 for the first record in the handle
contains a relative reference to the final ET Null. This provides an expedi-ent way to locate
the logical end of the handle without the need to daisy chain through the ‘nextltem’ fields for

each structure.

Referring now to Figure 5, Figure 5 illustrates the logical relationship between the
structures after adding a third structure C 510 to the handle. As shown in Figure 5, structure
C 510 is a child of B 420 (grandchild of A 410). The insertion of the new structure involves
the following steps:

1) If necessary, grow the handle to make room for C 510, C’s header 520, and the
trailing ET_Null record 430;

2) Overwrite the previous ET_Null 430 with the header and body of structure C 510.

3) Set up C’s parent relationship. In the illustrated example, structure C 510 is a
child of B 420, which is established by pointing the 'parent’ field of C's header file
520 to the start of structure B 420.

4) Append a final ET_Null 530, Wit}; parent referenced to C's header 520.

5) Adjust the ‘moveFrom’ field 330 to reflect the offset of the new terminating
'ET_Null 530. ’

In addition to adding structures, the present invention must handle growth within
existing structures. If a structure, such as structure B 420, needs to grow, it is often
problematic since there may be another structure immediately following the one being grown
(structure C 510 in the present illustration). Moving all trailing structures down to make
enough room for the larger B 420 is one way to resolve this issue but this solution, in addition
to being extremely inefficient for large handles, destroy the integrity of the handle contents,

as the relative references within the original B structure 420 would be rendered invalid once

59

WO 03/065177 PCT/US03/03151

such a shift had occurred. The handle would then have to be scanned looking for such
references and altering them. The fact that structures A 410, B 420, and C 510 will generally
contain relative references over and above those in the header portion make this impractical
without knowledge of all structures that might be part of the handle. In a dynamic computing
environment such knowledge would rarely, if ever, be available, making such a solution

impractical and in many cases impossible.

For these.reasons, the header for each structure further includes a moveFrom and
moveTo fields. Figure 6 illustrates the handle after growing B 420 by adding the enlarged B’
structure 610 to the end of the handle. As shown, the original B structure 420 remains where
it is and all references to it (such as the parent reference from C 510) are unchanged. B 420
is now referred to as thie “base record” whereas B' 610 is the “moved record”. Whenever any
reference is resolved now, the process of finding the referenced pointer address using C code

is:

src = address of referencing structure header
dst = src + ET_Offset value for the reference
if (dst->moveTo)
dst = dst + dst->moveTo -- follow the move

Further whenever a new reference is created, the process of finding the referenced

pointer using C code is:

src = address of referencing structure header
dst = address of referenced structure header
if (dst->moveFrom)

dst = dst + dst->moveFrom,;
ref value = dst - src

Thus, the use of the moveto and movefrom fields ensures that no references become

invalid, even when structures must be moved as they grow.

Figure 7 illustrates the handle when B 420 must be further expanded into B" 710. In
this case the ‘moveTo’ of the base record 420 directly references the most recent version of
the structure, in this example B" 710. Correspondingly, the record B’” 710 now has a
‘moveFrom’ 720 field that references the base record 420. B’s moveFrom 720 still refers
back to B 420 and indeed if there were more intermediate records between B 420 and B*”
(such as B' 610 in this example) the ‘moveTo’ and ‘moveFrom’ fields for all of the records
420, 610, 710 would form a doubly linked list. Once each of these records 420, 610, 710

60

WO 03/065177 PCT/US03/03151

have been linked, it is possible to re-trace through all previous versions of a structure using
these links. For example, one could find all previous versions of the record starting with B"
710 by following the 'movefrom' field 720 to the base record 420 and then following the
‘nextItem’ link of each record until a record with a ‘moveFrom’ referencing the base record
420 is found. Alternatively, and perhaps more reliably, one could look for structures whose
‘moveTo’ field references reéord 420 and then work backward through the chain to find

earlier versions.

This method, in which the last ‘grown’ structure moves to the end of the handle, has
the beneficial effect that the same structure is often grown many times in sequence and in
these cases we can optionally avoid creating a series of intermediate ‘orphan’ records.
References occurring from within the bodies of structures may be treated in a similar manner
to those described above and thus by extrapolation one can see that arbitrarily complex
collections of cross-referencing structures can be created and maintained in this manner all

within a single ‘flat’ memory allocation.

The pﬁce for this flat memory model is the need for a wrapper layer that transparently
handles the kinds of manipulations described above during all de-referencing operations,
however, even with such a wrapper, operations in this flat memory model are considerably
faster that corresponding OS supplied operations on the application heap. Regardless of
complexity, a collection of cross-referencing structures created using this approach is
completely ‘flat’ and the entire ‘serialization’ issue is avoided when passing such collections

between processors. This is a key requirement in a distributed data-flow based environment.

In addition to providing the ability to grow and move structures without impacting the
references in other structures, another advantage of the ‘moveTo’/’moveFrom’ approach is
inherent support for ‘undo’. FIGURE 8 illustrates the handle after performing an ‘undo’ on

the change from B’ to B”’. The steps involved for ‘undo’ are provided below:

src = base record (i.e., B) ,

dst = locate ‘moved’ record (i.e. B’*) by following ‘moveTo’ of base record
prev = locate last record in handle whose ‘moveTo’ references dst
src->moveTo = prev — sIc;

The corresponding process for ‘redo’ (which restores the state to that depicted after
B’’ was first added) is depicted below:
l src = base record (i.e., B) J

61

WO 03/065177 PCT/US03/03151

dst = locate ‘moved’ record (i.e. B*) by following ‘moveTo’ of base record
if (dst->moveTo)

nxt = dst + dst->moveTo
src->moveTo = nxXt - src;

This process works because of the fact that ‘moveTo’ fields are only followed once when
referencing via the base record. The ability to trivially perform undo/redo operations is very
useful in situations where the structures involved represent information being edited by the

user, it is also an invaluable technique for handling the effects of a time axis in the data.

One method for maintaining a time axis is by using a date field in the header of each
structure. In this situation, the undo/redo mechanism can be combined with a ‘date’ field 910
in the header that holds the date when the item was actually changed. This process is

illustrated in Figure 9 (some fields have been omitted for clarity).

This time axis can also be used to track the evolution of data over time. Rather than usiﬁg
the 'moveTo' fields to handle -growing structures, the 'moveTo' fields could be used to
reference future iterations of the aata. For example, the base record could specify that it
stores the high and low temperatures for a given day in Cairo. Each successive record within
that chain of structures could then represent the high and low temperatures for a given date
910, 920, 930, 940. By using the ‘date’ fields 910, 920, 930, 940 in this fashion, the memory
system and method can be used to represent and reference time-variant data, a critical
requirement of any system designed to monitor, query, and visualize information over time.
Moreover, this ability to handle time variance exists within the ‘flat” model and thus data can
be distributed throughout a system while still retaining variance information. This ability
lends itself well to such things as evolving simulations, database record storage and

transaction rollback, and animations. -

Additionally, if each instance of a given data record represents a distinct version of
the data designed for a different ‘user’ or process, this model can be used to represent data
having multiple values depending on context. To achieve this, whatever variable is driving
the context is simply used to set the ‘moveTo’ field of the base record, much like time was
used in the example above. This allows the model to handle differing security privileges,
data whose value is a function of external variables or state, multiple distinct sources for the
same datum, configuration choices, user interface display options, and other multi-value

situations.

62

WO 03/065177 PCT/US03/03151

A ‘flags’ field could also be used in the header record and can be used to provide
additional flexibility and functionality within the memory model. For example, the header
could include a ‘flag’ field that is split into two parts. The first portion could contain
arbitrary logical flags that are defined on a per-record type basis. The second portion could
be used to define the structure type for the data that follows the header. While the full list of
all possible structure types is a matter of implementation, the following basic types are

examples of types that may be used and will be discussed herein:

kNullRecord — a terminating NULL record, described above.
kStringRecord —a ‘C’ format variable length string record.

kSimplexRecord — a variable format/size record whose contents is described by a
type-id.

kComplexRecord — a ‘collection’ element description record (discussed below)

kOrphanRecord — a record that has been logically deleted/orphaned and no longer has
any meaning. :

By examining the structure type field of a given record, the memory wrapper layer is
able to determine ‘what’ that record is and more importantly, what other fields exist within
the record itself that also participate in the memory model, and must be handled by the
wrapper layer. The following definition describes a structure named ‘kComplexRecord’ and

will be used to illustrate this method:

typedef struct ET_Complex // Collection element record
ET_Hdr hdr; // Standard header
ET_Offset /* ET_SimplexPtr */ valueR; // value reference
ET_TypeID typelD; // ID of this type
ET Offset /* ET ComplexPtr */ -. nextElem; // next elem. link
ET_Offset /* ET_ComplexPtr */ , prevElem; // prev. elem. link

ET_Offset /* ET_ComplexPtr */ childHdr; // First child link
ET_Offset /* ET_ComplexPtr */ childTail; // Last child link

} ET_Complex;

The structure defined above rﬁay be used to create arbitrary collections of typed data
and to navigate around these collections. It does so by utilizing the additional ET_Offset
fields listed above to create logical relationships between the various elements within the
handle.

63

WO 03/065177 PCT/US03/03151

Figure 10 illustrates the use of this structure 1010 to represent a hierarchical tree
.1020. The ET_Complex structure defined above is sufficiently general, however, that
virtually any collection metaphor can be represented by it including (but not limited to) arrays
(multi-dimensional), stacks, rings, queues, sets, n-trees, binary trees, linked lists etc. The
‘moveTo’, ‘moveFrom’ and ‘nextltem’ fields of the header have been omitted for clarity.
The ‘valueR’ field would contain a relative reference to the actual value associated with the
tree node (if present), which would be contained in a record of type ET_Simplex. The type
'ID of this record would be specified in the ‘typeID’ field of the ET_Complex and, assuming
the existence of an infrastructure for converting type IDs to a corresponding type and field
érrangement, this could be used to examine the contents of the value (which could further

contain ET_Offset fields as well).

" As Figure 10 illustrates, ‘A’ 1025 has only oﬁe child (namely ‘B’ 1030), both the
‘childHdr’ 1035 and ‘childTail’ 1040 fields reference ‘B’ 1030, this is in contrast to the
‘childHdr’ 1045 and ‘childTail> 1070 fields of ‘B’ 1030 itself which reflect the fact that ‘B’
1030 has three children 1050, 1055, 1060. To navigate between children 1050, 1055, 1060,
the doubly-linked ‘nextItem’ and ‘previtem’ fields are used. Finally the ‘parent’ field from
the standard header is used to represent the hierarchy. Itis éasy to see how simply by
manipulating the various fields of the ET_Complex structure, arbitrary collection types can
be created as can a large variety of common operations on those types. In the example of the
tree above, operations might include pruning, grafting, sorting, insertion, rotations, shifts,
randomization, promotion, demotion etc. Because the ET_Complex type is ‘known’ to the
wrapper layer, it can transparently handle all the manipulations to the ET_Offset fields in
order.to ensure referential integrity is maintained during all such operations. This ability is
critical to situations where large collections of disparate data must be accessed and

distributed (while maintaining ‘flatness’) throughout a system.

Figure 11 illustrates the process for using the memory model to “sort” various
structures. A sample structure, named ET_String 1100, could be defined in the following

manner (defined below) to perform sorting on variablé sized structures:

typedef struct ET_String // String Structure

ET_Hdr hdr; // standard header
ET_Offset /* ET_StringPtr */ nextString; // ref. to next string

char . theString[0]; // C string (size varies)
} ET_String;

64

WO 03/065177 PCT/US03/03151

Prior to the sort, the ‘nextString’ fields 1110, 1115, 1120, 1125 essentially track the
‘nextltem’ field in the header, indeed ‘un-sort’ can be trivially impleménted by taking
account of this fact. By accessing the strings in such a list by index (i.e., by following the
‘nextString’ field), users of such a ‘string list’ abstraction can manipulate collections of
variable sized strings. When combined with the ability to arbitrarily grow the string records
as described previously (using ‘moveTo’ and ‘moveFrom’), a complete and generalized
string list manipulation package is relatively easy to implement. The initial ‘Start’ reference
1130 in such a list must obviously come from a distinct record, normally the first record in
the handle. For example, one could define a special start record format for containers
describing executable code hierarchies. The specific implementation of these ‘start’ records
are not important. What is important, however, is that each record type contain a number of
ET_Offset fields that can be used as references or ‘anchors’ into whatever logical

collection(s) is represented by the other records within the handle. '

The process of deleting a structure in this memory model relates not so much to the
fields of the header record itself, but rather to the fields of the full structure and the logical
relationships between them. In other words, the record itself is not deleted from physical
memory, rather it is logically deleted by removing from all logical chains that reference it.
The specific manner in which references are altered to point “around” the deleted record will
thus vary for each particular record type. Figure 12 illustrates the situation after deleting
“Dog” 1125 from the string list 1100 and ‘C’ 1050from the tree 1020.

When being deleted, the deleted record is generally ‘orphaned’. In order to more
easily identify the record as deleted, a record may be set to a defined record type, such as
‘kOrphanRecord’. This record type could be used during compression operations to identify
those records that have been deleted. A record could also be identified as deleted by
conﬁrming that it is no longer referenced from any other structure within the handle. Given
the complete knowledge that the wrapper layer has of the various fields of the structures
within the handle, this condition can be checked with relative ease and forms a valuable

double-check when particularly sensitive data is being deleted.

The compression process involves movement of higher structures down to fill the gap
and then the subsequent adjustment of all references that span the gap to reduce the reference

offset value by the size of the gap "being closed during compression. Once again, the fact that

65

WO 03/065177 PCT/US03/03151

the wrapper layer has complete knowledge of all the ET_Offset fields within the structures in

the handle make compression a straightforward operation.

The foregoing description of the preferred embodiment of the invention has been
presented for the purposes of illustration and description. For example, the term “handle”
throughout this description is addressed as it is currently used in the Macintosh OS. This
term should not be narrowly construed to only apply to the Macintosh OS, however, as the
method and system could be used to enhance any sort of memory management system. The
descriptions of the header structures should also not be lifnited to the embodiments described.
While the defined header structures provide examples of the structures that may be used, the
plurality of header structures that could in fact be implemented is nearly limitless. Indeed, it
is the very flexibility afforded by the memory management system that serves as its greatest
strength. For these reasons, this description is not intended to be exhaustive or to limit the
invention to the precise form disclosed. Many modifications and variations are possible in
light of the above teaching. In particular due to the simplicity of the model, hardware based
implementations can be envisaged. It is intended that the scope of the invention be limited

not by this detailed description, but rather by the claims appended hereto.

66

WO 03/065177 PCT/US03/03151

A SYSTEM FOR EXCHANGING BINARY DATA
Inventor: John Fairweather

BACKGROUND OF THE INVENTION

In most modern computer environments, such as programming languages, and
applications, the programming language compiler itself performs the job of defining data
structures and the types and the fields that make them up. That type information is compile-
time determined. This approach has the advantage of allowing the compiler itself to detect
many common programmer errors in accessing compound data structures rather than
allowing such errors to occur at run-time where they are much harder to find. However, this
approach is completely inadequate to the needs of a distributed and evolving system since it
is impossible to ensure that the code for all nodes on the system has been compiled with a
compatible set of type definitions and will therefore operate correctly. The problem is
aggravated when systems from different vendors wish to exchange data and information since
their type definitions are bound to be different and thus the compiler can give no help in the
exchange. In recent years, technologies such as B2B suites and XML have emerged to try to
facilitate the exchange of information between disparate knowledge representation systems
by use of common tags, which may be used by the receiving end to identify the content of
specific fields. If the receiving system does not understand the tag involved, the
corresponding data may be discarded. These systems simply address the problem of
converting from one ‘normalized’ representation to another, (i.e., how do I get it from my
relational database into yours?) by use of a tagged, textual, intermediate form (e.g. XML).
Such text-based markup-language approaches, while they work well for simple data objects,
have major shortcomings when it comes to the interchange of complex multimedia and non-
flat (i.e., having multiple cross-referenced allocations) binary data. Despite the ‘buzz’
associated with the latest data-interchange techniques, such systems and approaches are
totally inadequate for addressing the kinds of problems faced by a system, such as an
intelligence system, which attempt to monitor and capture ever-changing streams of
unstructured or semi-structured inputs, from the outside world and derive knowledge,
computability, and understanding from the data so gathered. The conversion of information,
especially complex and multimedia information to/from a textual form such as XML
becomes an unacceptable burden on complex information systems and is inadequate for
describing many complex data interrelationships. This approach is the current state of the art.

At a minimum, what is needed is an interchange language designed to describe and

APPENDIX 3

67

WO 03/065177 PCT/US03/03151

manipulate typed binary data at run-time. Ideally, this type information will be held in a

;ﬂat’ (i.e., easily transmitted) form and ideally is capable of being embedded in the data itself
without impact on data integrity. The system would also ideally make use of the power of
compiled strongly typed programming languages (such as C) to define arbitrarily interrelated
and complex structures, while preserving the ability to use this descriptive power at run-time

to interpret and create new types.
SUMMARY OF INVENTION

The present invention provides a strongly-typed, distributed, run-time system capable of
describing and manipulating arbitrarily complex, non-flat, binary data derived from type
descriptions in a standard (or slightly extended) programming language, including handling
of type inheritance. The invention comprises four main components. First, a plurality of
databases having binary type and field descriptions. The flat data-model technology
(hereinafter “Claimed Database™) described in Appendix 1 is the preferred model for storing
such information because it is capable of providing a ‘flat’ (i.e., single memory allocation)
representation of an inherently complex and hierarchical (i.e., including type inheritance)
type and field set. Second, a run-time modifiable type compiler that is capable of generating
type databases either via explicit API calls or by compilation of unmodified header files or.
individual type definitions in a standard programming language. This function is preferably
provided by the parsing technology disclosed in Appendix 2 (hereinafter “Claimed Parser”).
Third, a complete API suite for access to type information as well as full support for reading
and writing types, type relationships and inheritance, and type fields, given knowledge of the
unique numeric type ID and the field name/path. A sample API suite is provided below.
Finally, a hashing process for converting type names to unique type IDs (which may also
incorporate a number of logical flags relating to the nature of the type). A sample hashing

scheme is further described below.

The system of the present invention is a pre-requisite for efficient, flexible, and adaptive

distributed information systems.

68

WO 03/065177 PCT/US03/03151

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 provides a sample implementation of the data structure ET_Field;
Figure 2 provides a sample code implementation of the data structure ET_Type;

Figure 3 is a block diagram illustrating a sample type definition tree relating ET_Type and
ET Field data structures; and

Figure 4 provides a sample embodiment of the logical flags that may be used to describe the
typelD.

69

WO 03/065177 PCT/US03/03151

DETAILED DESCRIPTION OF THE INVENTION

The following description provides an overview of one embodiment of the invention.
Please refer to the patent application incorporated herein for a more complete understanding of

the Claimed Parser and Claimed Database.

All type information can be encoded by using just two structure variants, these are the
‘ET_Field’ structure, which is used to describe the fields of a given type, and the ‘ET_Type’
structure, which is used to described the type itself. Referring now to Figure 1, a sample
implementation of the ET_Field structure 100 is provided. The fields in the ET_Field

structure are defined and used as follows:

“hdr” 102 - This is a standard header record of type ET_Hdr as defined in the

Claimed Database patent application.

“typeID” 104 - This field, and the union that surrounds it, contain a unique 64-bit
type ID that will be utilized to rapidly identify the type of any data item. The method
for computing this type ID is discussed in detail below.

“fName”106 - This field contains a relative reference to an ET_String structure

specifying the name of the field.

“fDesc” 108 - This field may contain a relative reference to an ET_String
structure containing any descriptive text associated with the field (for example the

contents of the line comments in the type definitions above).

“fieldLink” 110 — This field contains a relative reference to the next field of the
current type. Fields are thus organized into a link list that starts from the “fieldHDR”
220 field 220 of the type and passes through successive “fieldLink” 110 links 110

until there are no more fields.

“offset” 112 - This field contains the byte offset from the start of the parent type at

which the field starts. This offset provides rapid access to field values at run-time.

70

WO 03/065177 PCT/US03/03151

“unitID” 114 - This field contains the unique unit ID of the field. Many fields have
units (e.g., miles-per-hour) and knowledge of the units for a given field is essential

when using or comparing field values.

“bounds™ 116 - For fields having array bounds (e.g., and array of char[80]), this field

contains the first array dimension.

“bounds2” 118 - For two dimensional arrays, this field contains the second
dimension. This invention is particularly well-adapted for structures of a higher
dimensionality than two, or where the connections between elements of a structure is

more complex that simple array indexing.

“fScript” 120 - Arbitrary and pre-defined actions, functions, and scripts may be
associated with any field of a type. These ‘scripts’ are held in a formatted character

string referenced via a relative reference from this field.

“fAnnotation” 122 — In a manner similar to scripts, the text field referenced from this
field can contain arbitrary annotations associated with the field. The use of these

annotations will be discussed in later patents.

“flagIndex” 124 — It is often convenient to refer to a field via a single number rather
than carrying around the field name. The field index is basically a count of the field

occurrence index within the parent type and serves this purpose.

“fEchoField” 126- This field is associated with forms of reference that are not

relevant to this patent and is not discussed herein.

“flagindexTypeID” 128 In cases where a field is embedded within multiple
enclosing parent types, the ‘flagIndex’ value stored in the field must be tagged in this

manner to identify which ancestral enclosing type the index refers to.

Referring now to Figure 2, a sample embodiment of the ET Type structure 200 is
provided. The fields of the ET Type structure 200 are defined and used as follows:

“hdr” 202 - This is a standard header record of type ET_Hdr as defined in the

Claimed Database patent application.

71

WO 03/065177 PCT/US03/03151

“typelD” 204 - This field, and the union that surrounds it, contain a unique 64-bit
type ID that will be utilized to rapidly identify the type of any data item. The method
for computing this type ID is discussed in detail below.

“name” 206 - This is a relative reference to a string giving the name of the type.

“edit”,”display” 208 - These are relative references to strings identifying the
“process” to be used to display/edit this type (if other than the default). For example
the specialized process to display/edit a color might be a color-wheel dialog rather

than a simple dialog allowing entry of the fields of a color (red,green,blue).
“description” 210- This is a relative reference to a string describing the type.

“ChildLink” 212 — For an ancestral type from which descendant types inherit, this
field gives the relative reference to the next descendant type derived from the same
ancestor. Type hierarchies are defined by creating trees of derived types. The header
to the list of child types at any level is the “childHdr” field 218, the link between child
types is the “ChildLink” field 212. Because types are organized into multiple type
databases (as discussed later), there are two forms of such links: the local form and
non-local form. The non-local form is mediated by type ID references, not relative
references (as for the local form), and involves the fields “childIDLink” 236,
“childIDHdr” 238, and “parentID” 240 (which hold the reference from the child type
to its parent). The parent reference for the local form is held in the “parent” field of

“hdr” 202.

“cTypedef” 216 - This field may optionally contain a relative reference to a string
giving the C language type definition from which the type was created.

“childHdr” 218 - This field contains the header to the list of child types at any level .
“fieldHDR” 220 — Fields are organized into a link list that starts from the this field.

“keywords” 222 — This field contains a relative reference to a string contain key

words by which the type can be looked up.
“bounds” 224, “bounds2” 226 — array dimensions as for ET_Field

“size” 228 — Total size of the type in bytes.

72

WO 03/065177 PCT/US03/03151

“color” 230- To facilitate type identification in various situations, types may be

assigned inheritable colors.
“fileIndex” 232 — used to identify the source file from which the type was created.

“keyTypeID” 234 — This field is used to indicate whether this type is designated a
“key” type. In a full data-flow based system, certain types are designated ‘key’ types

and may have servers associated with them.
“nextKeyType” 246 - This field is used to link key types into a list.

“tScript” 242,”tAnnotation” 244 — These fields reference type scripts and annotations
as for ET Field 100.

“maxFieldIndex” 248 — This field contains the maximum field index value (see

ET Field 100) contained within the current type.
“numFields” 250 — This gives the total number of fields within the current type.

To illustrate the application of these structures 100, 200 to the respresentation of types
and the fields within them, consider the type definitions below whereby the types “Cat” and
“Dog” are both descendant from the higher level type “Mammal” (denoted by the “::”
symbol similar to C++ syntax).

typedef struct Mammal
{

RGBColor hairColor;

int32 : gestation; // in days
} Mammal;

typedef struct Dog::Mammal

{
int32 barkVol; // in decibels

} Dog;

typedef struct Cat::Mammal

{

73

WO 03/065177 PCT/US03/03151

int32 purrVol; // in decibels
} Cat;

Because they are mammals, both Cat and Dog inherit the fields “hairColor” and
“gestationPeriod” which means the additional field(s) defined for each start immediately after
the total of all inherited fields (from each successive ancestor). Referring now to Figure 3,
this portion of the type definition tree when viewed as a tree of related ET_Type 200 and
ET_Field 100 structures is shown. In this diagram, the vertical lines 305 linking the types
315, 320 are mediated via the “childHdr” 218 and “parent” 240 links. The horizontal line
310 linking Dog 320 and Cat 325 is mediated via “ChildLink” 242. Similarly for the field
links 330, 335, 340, 345 within any given type, the fields involved are “parentID” 240,
“fieldHDR” 220, and “fieldLink” 110. It is thus very obvious how one would navigate
through the hierarchy in order to discover say all the fields of a given type. For example, the
following sample pseudo code illustrates use of recursion to first process all inherited fields

before processing those unique to the type itself.

void LoopOverFields (ET_Type *aType)
{
if (aType->hdr.parent)
LoopOverFields(aType->hdr.parent)
for (fieldPtr = aType->fieldHdr ; fieldPtr ; fieldPtr = fieldPtr->fieldLink)
-- do something with the field

Given this simple tree structure in which type information is stored and accessed, it
should be clear to any capable software engineer how to implement the algorithms setr forth
in the Applications Programming Interface (API) given below. This API illustrates the nature
and scope of one set of routines that provide full control over the run-time type system of this
invention. This API is intended to be illustrative of the types of capabilities provided by the
system of this invention and is not intended to be exhaustive. Sample code implementing the

following defined API is provided in the attached Appendix A.

The routine TM_CruiseTypeHierarchy() recursively iterates through all the
subtypes contained in a root type, call out to the provided callback for each type in the

74

WO 03/065177 PCT/US03/03151

hierarchy. In the preferred embodiment, if the function 'callbackFunc' returns -1, this routine

omits calling for any of that types sub-types.

The routine TM_Code2TypeDB() takes a type DB code (or TypelD value) and
converts it to a handle to the types database to which it corresponds (if any). The type
system of this invention allows for multiple related type databases (as described below) and

this routine determines which database a given type is defined in.

TM_InitATypeDB() and TM_TermATypeDB() initialize and terminate a types
database respectively. Each type DB is simply a single memory allocation utilizing a ‘flat’
memory model (such as the system disclosed in the Claimed Database patent application)
containing primarily records of ET_Type 100 and ET_Field 200 defining a set of types and

their inter-relationships.

TM_SaveATypeDB() saves a types database to a file from which it can be re-loaded

for later use.

TM_AlignedCopy() copies data from a packed structure in which no alignment rules
are applied to a normal output structure of the same type for which the alignment rules do
apply. These non-aligned structures may occur when reading from files using the type
manager. Different machine architectures and compilers pack data into structures with
different rules regarding the ‘padding’ inserted between fields. As a result, these data
structures may not align on convenient boundaries for the underlying processor. For this
reason, this function is used to handle these differences when passing data between dissimilar

machine architecture.

TM_FixByteOrdering() corrects the byte ordering of a given type from the byte
ordering of a 'source' machine to that of a 'target' machine (normally O for the current
machine architecture). This capability is often necessary when reading or writing data
from/to files originating from another computer system. Common byte orderings supported

are as follows:

« kBigEndian -- e.g., the Macintosh PowerPC
« kLittleEndian -- e.g., the Intel x86 architecture
« kCurrentByteOrdering -- current machine architecture

75

WO 03/065177 PCT/US03/03151

TM_FindTypeDB() can be used to find the TypeDB handle that contains the
definition of the type name specified (if any). There are multiple type DBs in the system
which are accessed such that user typeDBs are consulted first, followed by system type DBs.
The type DBs are accessed in the reverse order to that in which they were defined. This
means that it is possible to override the definition of an existing type by defining a new one in
a later types DB. Normally the containing typeDB can be deduced from the type ID alone
{which contains an embedded DB index), however, in cases where only the name is known,
this function deduces the corresponding DB. This routine returns the handle to containing
type DB or NULL if not found. This invention allows for a number of distinct type DBs to
co-exist so that types coming from different sources or relating to different functional areas
may be self contained. 1In the preferred embodiment, these type DBs are identified by the
letters of the alphabet (‘A’ to ‘Z’) yielding a maximum of 26 fixed type databases. In
addition, temporary type databases (any number) can be defined and accessed from within a
given process context and used to hold local or temporary types that are unique to that
context. All type DBs are connected together via a linked list and types from any later
database may reference or derive from types in an earlier database (the converse is not true).
Certain of these type DBs may be pre-defined to havé specialized meanings. A preferred list

of type DBs that have specialized meanings as follows:
'A' - built-in types and platform Toolbox header files
'B' - GUI framework and environment header files
'C' - Project specific header files

'D' — Flat data-model structure old-versions DB (allows automatic adaption to type

changes)

'E' - Reserved for 'proxy' types

'F' - Reserved for internal dynamic use by the environment
'T' - Project specific ontology types

TM_GetTypelD() retrieves a type's ID Number when given its name. If

aTypeName is valid, the type ID is returned, otherwise 0 is returned and an error is reported.

76

WO 03/065177 PCT/US03/03151

TM_IsKnownTypeName() is almost identical but does not report an error if the specified

type name cannot be found.

TM_ComputeTypeBaseID() computes the 32-bit unique type base ID for a given
type name, returning it in the most significant 32-bit word of a 64-bit ET_TypelID 104. The
base ID is calculated by hashing the type name and should thus be unique to all practical
purposes. The full typelD is a 64-bit quantity where the base ID as calculated by this routine
forms the most significant 32 bits while a variety of logical flags describing the type occupy
the least significant 32-bits. In order to ensure that there is a minimal probability of two
different names mapping onto the same type ID, the hash function chosen in the preferred
embodiment is the 32-bit CRC used as the frame check sequence in ADCCP (ANSI X3.66,
also known as FIPS PUB 71 and FED-STD-1003, the U.S. versions of CCITT's X.25 link-
level protocol) but with the bit order reversed. The FIPS PUB 78 states that the 32-bit FCS
reduces hash collisions by a factor of 10/-5 over the 16-bit FCS. Any other suitable hashing
scheme, however, could be used. The approach allows type names to be rapidly and uniquely
converted to the corresponding type ID by the system. This is an important feature if type
information is to be reliably shared across a network by different machines. The key point is
that by knowledge of the type name alone, a unique numeric type ID can be formed which
can then be efficiently used to access information about the type, its fields, and its ancestry.
The other 32 bits of a complete 64-bit type ID are utilized to contain logical flags concerning
the exact nature of the type and are provided in Appendix A.

Given these type flag definitions and knowledge of the hashing algorithm involved, it
is possible to define constants for the various built-in types (i.e., those directly supported by
the underlying platform from which all other compound types can be defined by
accumulation). A sample list of constants for the various built in types is provided in

Appendix A.

Assuming that the constant definitions set forth in Appendix A are used, it is clear that
the very top of the type hierarchy, the built-in types (from which all other types eventually
derive), are similar to that exposed by the C language.

Referring now to Figure 4, a diagrammatic representation of a built-in type is shown
(where indentation implies a descendant type). Within the kUniversalType 405, the set of
direct descendants includes kVoidType 410, kScalarType 415, kStructType 420, kUnionType

77

WO 03/065177 PCT/US03/03151

425, and kFunctionType 430. kScalarType also includes descendants for handling integers
435, descendants for handling real numbers 440 and descendants for handling special case
scalar values 445. Again, this illustrates only one embodiment of built-in types that may be

utilized by the present system.

The following description provides a detailed summary of some of the functions that
may be used in conjunction with the present invention. This list is not meant to be exhaustive
nor or many of these functions required (depending upon the functionality required for a
given implementation). The pseudo code associated with these functions is further illustrated
in attached Appendix A. It will be obvious to those skilled in the art how these functions

could be implemented in code.

Returning now to Appendix A, a function TM_CleanFieldName() is defined which
provides a standardized way of converting field names within a type into human readable
labels that can be displayed in a Ul. By choosing suitable field names for types, the system
can create “human readable” labels in the corresponding UI. The conversion algorithm can

be implemented as follows:

1) Convert underscores to spaces, capitalizing any letter that immediately follows the

underscore
2) Capitalize the first letter

3) Insert a space in front of every capitalized letter that immediately follows a lower

case letter
4) Capitalize any letter that immediately follows a '.' character (field path delimiter)

5) De-capitalize the first letter of any of the following filler words (unless they start

the sentence):
"an","and","of","the","or","to","is","as","a"
So for example:
"aFieldName" would become "A Field Name" as would "a_field name"

"timeOfDay" would become "Time of Day" as would "time_of day"

78

WO 03/065177 PCT/US03/03151

A function, such as TM_AbbreveFieldName(), could be used to provide a
standardized way of converting field names within a type into abbreviated forms that are still
(mostly) recognizable. Again, choosing suitable field names for types ensures both human
readable labels in the corresponding UI as well as readable abbreviations for other purposes
(such as generating database table names in an external relational database system). The

conversion algorithm is as follows:
1) The first letter is copied over and capitalized.
2) For all subsequent letters:

a) If the letter is a capital, copy it over and any ‘numLowerCase' lower case letters

that immediately follow it.
b) If the letter follows a space or an underscore, copy it over and capitalize it

c) If the letter is ', '[', or ']', convert it (and any immediately subsequent letters in
this set) to a single ' ' character, capitalize the next letter (if any). This behavior

allows this function to handle field paths.
d) otherwise disgard it
So for example:

"aFieldName" would become "AFiNa" as would "a_field name" if

‘numLowerCase' was 1, it would be 'AFieNam' if it were 2

"timeOfDay" would become "TiOfDa" as would "time of day" if ‘numLowerCase'

was 1, it would be 'TimOfDay" if it were 2
For a field path example:
"geog.city[3].population" would become "Ge_Ci_3_Po" if 'numLowerCase' was 1

Wrapper functions, such as TM_SetTypeEdit(), TM_SetTypeDisplay(),
TM_SetTypeConverter(), TM_SetTypeCtypedef(),
TM_SetTypeKeyWords(),TM_SetTypeDescription() , and TM_SetTypeColor(), may be
used set the corresponding field of the ET_Type structure 200. The corresponding ‘get’

functions are simply wrapper functions to get the same field.

79

WO 03/065177 PCT/US03/03151

A function, TM_SetTypelcon(), may be provided that sets the colof icon ID
associated with the type (if specified). It is often useful for UI puzrposes to associate an
identifiable icon with particular types (e.g., a type of occupation), this icon can be specified
using TM_SetTypelcon() or as part of the normal acquisition process. Auto-generated Ul
(and many other UI context) may use such icons to aid in UI clarity. Icons can also be
inherited from ancestral types so that it is only necessary to specify an icon if the derived type
has a sufficiently different meaning semantically in a UI context. The function

TM_GetTypelcon() returns the icons associated with a type (if any).

A function, such as TM_SetTypeKeyType(), may be used to associate a key data
type (see TM_GetTypeKeyType) with a type manager type. By making this association, it
is possible to utilize the full suite of behaviors supported for external APIs such as Database
and Client-Server APIs, including creation and communication with server(s) of that type,
symbolic invocation, etc. For integration with external APIs, another routine, such as
TM_KeyTypeToTypelD(), may be used to obtain the type manager type ID corresponding

to a given key data type. If there is no corresponding type ID, this routine returns zero.

Another function, TM_GetTypeName(), may be used to get a type's name given the
type ID number. In the preferred embodiment, this function returns using the 'aTypeName'

parameter, the name of the type.

A function, such as TM_FindTypesByKeyword(), may be used to search for all type
DBs (available from the context in which it is called) to find types that contain the keywords
specified in the 'aKeywordList' parameter. If matches are found, the function can allocate
and return a handle to an array of type IDs in the 'theIDList' parameter and a count of the
number of elements in this array as it's result. If the function result is zero, 'theIDList' is not

allocated.

The function TM_GetTypeFileName() gets the name of the header file in which a
type was defined (if any).

Given a type ID, a function, such as TM_GetParentTypelD(), can be used to get the
ID of the parent type. If the given ID has no parent, an ID of 0 will be returned. If an error

occurrs, a value of -1 will be returned.

80

WO 03/065177 PCT/US03/03151

Another function, such as TM_IsTypeDescendant(), may be used to determine if
one type is the same as or a descendant of another. The TM_IsTypeDescendant() call could
be used to check only direct lineage whereas TM_AreTypesCompatible() checks lineage and
other factors in determining compatibility. If the source is a descendant of, or the same as,

the target, TRUE is returned, otherwise FALSE is returned.

Another set of functions, hereinafter referred to as TM_ TypelsPointer(),
TM_TypelsHandle(), TM_TypelsRelRef(), TM_TypelsCollectionRef(),
TM_TypelsPersistentRef(), may be used to determine if a typelD represents a
pointer/handle/relative etc. reference to memory or the memory contents itself (see typelD
flag definitions). The routines optionally return the typeID of the base type that is referenced
if the type ID does represent a pointer/handle/ref. In the preferred embodiment, when calling
TM_TypelsPtr(), a type ID that is a handle will return FALSE so the determination of
whether the type is a handle, using a function such as TM_TypelsHandle(), could be checked
first where both possibilities may occur. The function TM_TypelsReference() will return
true if the type is any kind of reference. This function could also return the particular

reference type via a paramter, such as the 'refType' parameter.

Another function, such as TM_TypesAreCompatible(), may be used to check if the
source type is the same as, or a descendant of, the target type. In the preferred embodiment,

this routine returns:
+1 Ifthe source typeisa descendant of the target type (a legal connection)

-1 If the source type is a group type (no size) and the target is descended from it

(also a legal connection)
0 Otherwise (an illegal connection)

If the source type is a 'grouping' type (e.g., Scalar), i.e., it has no size then this routine
will return compatible if either the source is ancestral to the target or vice-versa. This allows
for data flow connections that are typed using a group to be connected to flows that are more

restricted.

Additional functions, such as TM_GetTypeSize() and TM_SizeOf(), could be
applied in order to return the size of the specified data type. For example,

TM_GetTypeSize() could be provided with an optional data handle which may be used to

81

WO 03/065177 PCT/US03/03151

determine the size of variable sized types (e.g., strings). Either the size of the type could be
returned or, alternatively, a 0 could be returned for an error. TM_SizeOf() could be provided

with a similar optional data pointer. It also could return the size of the type or 0 for an error.

A function, such as TM_GetTypeBounds(), could be programmed to return the array
bounds of an array type. If the type is not an array type, this function could return a FALSE

indicator instead.

The function TM_GetArrayTypeElementOffset() can be used to access the
individual elements of an array type. Note that this is distinct from accessing the elements an
array field. If a type is an array type, the parent type is the type of the element of that array.
This knowledge can be used to allow assignment or access to the array elements through the

type manager APL

The function TM_InitMem() initializes an existing block of memory for a type. The
memory will be set to zero except for any fields which have values which will be initialized
to the appropriate default (either via annotation or script calls — not discussed herein). The
function TM_NewPtr() allocates and initializes a heap data pointer. If you wish to allocate a
larger amount of memory than the type would imply, you may specify a non-zero value for
the 'size' parameter. The value passed should be TM_GetTypeSize(...) + the extra memory
required. If a type ends in a variable sized array parameter, this will be necessary in order to
ensure the correct allocation. The function TM_NewHdl() performs a similar function for a
heap data handle. The functions TM_DisposePtr() and TM_DisposeHdl() may be used to

de-allocate memory allocated in this manner.

The function TM_LocalFieldPath() can be used to truncate a field path to that
portion that lies within the specified enclosing type. Normally field paths would inherently
satisfy this condition, however, there are situations where a field path implicitly follows a
reference. This path truncation behavior is performed internally for most field related calls.
This function should be used prior to such calls if the possibility of a non-local field path

exists in order to avoid confusion. For example:

typedef struct t1
{

char x[16];
il

82

WO 03/065177 PCT/US03/03151

typedef struct 2
{

tl ¥s
32

then TM_LocalFieldPath(,12,"y.x[3]",) would yield the string "y".

Given a type ID, and a field within that type, TM_GetFieldTypeID() will return the

type ID of the aforementioned field or 0 in the case of an error.

The function TM_GetBuiltInAncestor() returns the first built-in direct (i.e., not via a

reference) ancestor of the type ID given.

Two functions, hereinafter called TM_GetIntegerValue() and TM_GetRealValue(),
could be used to obtain integer and real values in a standardized form. In the preferred
embodiment, if the specified type is, or can be converted to, an integer value, the
TM_GetIntegerValue() would return that value as the largest integer type (i.e., int64). If the
specified type is, or can be converted to, a real value, TM_GetRealValue() would return that
value the largest real type (i.e., long double). This is useful when code does not want to be
concerned with the actual integer or real variant used by the type or field. Additional
functions, such as TM_SetIntegerValue() and TM_SetRealValue(), could perform the same

function in the opposite direction.

Given a type ID, and a field within that type, a function, hereinafter called
TM_GetFieldContainer TypelD(), could be used to return the container type ID of the
aforementioned field or 0 in the case of an error. Normally the container type ID of a field is
identical to 'aTypeID', however, in the case where a type inherits fields from other ancestral
types, the field specified may actually be contributed by one of those ancestors and in this
case, the type ID returned will be some ancestor of 'aTypelID". In the preferred embodiment,
if a field path is specified via 'aFieldName' (e.g., field1.field2) then the container type ID
returned would correspond to the immediate ancestor of 'field2', that is 'field1'. Often these
inner structures are anonymous types that the type manager creates during the types

acquisition process.

83

WO 03/065177 PCT/US03/03151

A function, hereinafter called TM_GetFieldSize(), returns the size, in bytes, of a

field, given the field name and the field's enclosing type; 0 is returned if unsuccessful.

A function, hereinafter called TM_IsLegalFieldPath(), determines if a string could
be a legal field path, i.e., does not contain any characters that could not be part of a field path.
This check does not mean that the path actually is valid for a given type, simply that it could
be. This function operates by rejecting any string that contains characters that are not either

alphanumeric or in the set '[',"]',"_', or .". Spaces are allowed only between [and ']".

Given an enclosing type ID, a field name, and a handle to the data, a function,
hereinafter known as TM_GetFieldValueH(), could be used to copy the field data referenced
by the handle into a new handle. In the preferred embodiment, it will return the handle
storing the copy of the field data. If the field is an array bf ‘char', this call would append a
terminating null byte. That is if a field is "char[4]" then at least a 5 byte buffer must be
allocated in order to hold the result. This approach greatly simplifies C string handling since
returned strings are guaranteed to be properly terminated. A function, such as
TM_GetFieldValueP(), could serve as the pointer based equivalent. Additionally, a
function such as TM_SetFieldValue() could be used to seta field value given a type ID, a

field name and a binary object. It would also return an error code in an error.

A function, such as TM_SetCStringFieldValue(), could be used to set the C string
field of a field within the specified type. This function could transparently handle logic for

the various allowable C-string fields as follows:
1) if the field is a charHdl then:

a) if the field already contains a value, update/grow the existing handle to hold the

new value

b) otherwise allocate a handle and assign it to the field
2) if the ﬁéld is a charPir then:

a) if the field already contains a value:

i) if the previous string is equal to or longer than the new one, copy new string

into existing pointer

84

WO 03/065177 PCT/US03/03151
ii) otherwise dispose of previous pointer, allocate a new one and assign it
b) otherwise allocate a pointer and assign it to the field
3) if the field is a relative reference then:

a) this should be considered an error. A pointer value could be assigned to such a
field prior to moving the data into a collection in which case you should use a

function similar to the TM_SetFieldValue() function described above.
4) if the field is an array of char then:

a) if the new value does not fit, report array bounds error

b) otherwise copy the value into the array

A function, such as TM_AssignToField(), could be used to assign a simple field to a

value expressed as a C string. For example, the target field could be:
a) Any form of string field or string reference;
b) A persistent or collection reference to another type; or

c) Any other direct simple or structure field type. In this case the format of the C
string given should be compatible with a call to TM_StringToBinary() (described above) for
the field type involved. The delimiter for TM_StringToBinary() is taken to be "," and the
'kCharArrayAsString' option (see TM_BinaryToString) is assumed.

In the preferred embodiment, the assignment logic used by this routine (when the
'kAppendStringValue' is present) would result in existing string fields having new values
appended to the end of them rather than being overwritten. This is in contrast to the behavior
of TM_SetCStringFieldValue() described above. For non-string fields, any values specified
overwrite the previous field content with the exception of assignment to the 'aStringH' field
of a collection or persistent reference with is appended if the 'kAppendStringValue' option is
present. If the field being assigned is a collection reference and the 'kAppendStringValue'
option is set, the contents of 'aStringPtr' could be appended to the contents of a string field. If
the field being assigned is a persistent reference, the

'kAssignToRefType',’kAssignToUniqueID' or 'kAssignToStringH' would be used to

85

WO 03/065177 PCT/US03/03151

determine if the typeID, unique ID, or 'aStringH' field of the reference is assigned. Otherwise
the assignment is to the name field. In the case of 'kAssignToRefType', the string could be
assumed to be a valid type name which is first converted to a type ID. If the field is a
relative reference (assumed to be to a string), the contents of 'aStringPtr' could be assigned to

it as a (internally allocated) heap pointer.

Given an enclosing type ID, a field name, and a pointer to the data, a function such as
TM_SetArrFieldValue () could be used to copy the data referenced by the pointer into an
element of an array field element into the buffer supplied. Array fields may have one, or two

dimensions.

Functions, hereinafter named TM_GetCStringFieldValueB(),
TM_GetCStringFieldValueP() and TM_GetCStringFieldValueH(), could be used to geta
C string field from a type into a buffer/pointer/handle. In the case of a buffer, the buffer
supplied must be large enough to contain the field contents returned. In other cases the
function or program making the call must dispose of the memory returned when no longer
required. In the preferred embodiment, this function will return any string field contents
regardless of how is actually stored in the type structure, that is the field value may be in an
array, via a pointer, or via a handle, it will be returned in the memory supplied. If the field
type is not appropriate for a C string, this function could optionally return FALSE and
provide an empty output buffer.

Given an enclosing type ID, a field name, and a pointer to the data, the system should
also include a function, hereinafter name TM_GetArrFieldValueP (), that will copy an
element of an array field element's data referenced by the pointer into the buffer supplied.

Array fields may have one, or two dimensions.

Simple wrapper functions, hereinafter named TM_GetFieldBounds(),
TM_GetFieldOffset(), TM_GetFieldUnits(), and TM_GetFieldDescription(), could be
provided in order to access the corresponding field in ET Field 100. Corresponding ‘set’

functions (which are similar) could also be provided.

The function TM_ForAllFieldsLoop() is also provided that will iterate through all
fields (and sub-fields) of a type invoking the specified procedure. This behavior is
commonplace in a number of situations involving scanning the fields of a type. In the

preferred embodiment, the scanning process should adhere to a common approach and as a

86

WO 03/065177 PCT/US03/03151

result a function, such as this one, should be used for that purpose. A field action function

takes the following form:

Boolean myActionFn (// my field action function

ET TypeDBHdl aTypeDBHd], //'1: Type DB (NULL to default)

ET TypelD 104 aTypelD, /[1: The type ID

ET TypelD 104 aContainingTypelID, //I: containing Type ID of field

anonPtr aDataPtr, /1 T: The type data pointer

anonPir context, /1 10:Use to pass custom context

charPtr fieldPath, // I:Field path for field

ET TypelD 104 aFieldTypelD, // I:Type ID for field

int32 dimensionl, // I:Field array bounds 1 (0 if
N/A)

nt32 dimension2, // I:Field array bounds 2 (0 if
N/A)

int32 fieldOffset, [I:Offset of start of field

int32 options, // T:Options flags

anonPtr internalUseOnly // I:For internal use only

) // R:TRUE for success

In this example, fields are processed in the order they occur, sub-field calls (if
appropriate) occur after the containing field call. If this function encounters an array field (1

or 2 dimensional), it behaves as follows:

a) The action function is first called once for the entire field with no field indexing

specified in the path.

b) If the element type of the array is a structure (not a union), the action function will
be invoked recursively for each element with the appropriate element index(es)
reflected in the 'fieldPath' parameter, the appropriate element specific value in
'fieldOffset', and 0 for both dimension! and dimension2.

This choice of behavior for array fields offers the simplest functional interface to the

action function. Options are:

kRecursiveLoop -- If set, recurses through sub-fields, otherwise one-level only

87

WO 03/065177 PCT/US03/03151

kDataPtrIsViewRef -- The 'aDataPtr' is the address of an ET_ViewRef

designating a collection element

A function, hereinafter referred to as TM_FieldNameExists(), could be used to
determine if a field with the given name is in the given type, or any of the type's ancestral
types. If the field is found return it returns TRUE, otherwise it returns FALSE.

A function, hereinafter referred to as TM_GetNumberOfFields(), may be used to
return the number of fields in a given structured type or a -1 in the case of an error. In the
preferred embodiment, this number is the number of direct fields within the type, if the type
contains sub-structures, the fields of these sub-structures are not counted towards the total
returned by this function. One could use another function, such as
TM._ForAllFieldsLoop(),to count fields regardless of level with 'kRecursiveLoop' set true and
a counting function passed for 'aFieldFn' (see TM_GetTypeMaxFlagindex).

Another function, referred to as TM_GetFieldFlagIndex(), can provide the 'flag
index' for a given field within a type. The flag index of a field is defined to be that field's
index in the series of calls that are made by the function TM_ForAllFieldsLoop() (described
above) before it encounters the exact path specified. This index can be utilized as an index
into some means of storing information or flags specific to that field within the type. In the
preferred embodiment, these indeces include any field or type arrays that may be within the
type. This function may also be used internally by a number of collection flag based APIs
but may also be used by external code for similar purposes. In the event that
TM_ForAllFieldsLoop() calls back for the enclosing structure field before it calls back for
the fields within this enclosing structure, the index may be somewhat larger than the count of
the 'elementary' fields within the type. Additionally, because field flag indeces can be easily
converted to/from the corresponding field path (see TM_FlagIndexToFieldPath), they may be
a useful way of referring to a specific field in a variety of circumstances that would make
maintaining the field path more cumbersome. Supporting functions include the following:
TM_ FieldOffsetToFlagIndex() is a function that converts a field offset to the corresponding
flag index within a type; TM_FlagIndexToFieldPath() is a function that converts a flag
index to the corresponding field path within a type; and the function
TM_GetTypeMaxFlagIndex() returns the maximum possible value that will be returned by
TM_GetFieldFlagIndex() for a given type. This can be used for example to allocate memory
for flag storage.

88

WO 03/065177 PCT/US03/03151

Another function, referred to as TM_FieldNamesToIndeces(), converts a comma
seperated list of field names/paths to the corresponding zero terminated list of field indeces. It
is often the case that the 'fieldNames' list references fields within the structure that is actually
referenced from a field within the structure identified by 'aTypelD'. In this case, the index
recorded in the index list will be of the referencing field, the remainer of the path is ignored.
For this reason, it is possible that duplicate field indeces might be implied by the list of
'fieldNames' and as a result, this routine can also be programmed to automatically eliminate

duplicates.

A function, hereinafter name TM_GetTypeProxy(), could be used to obtain a proxy
type that can be used within collections in place of the full persistent type record and which
contains a limited subset of the fields of the original type. While TM_GetTypeProxy() could
take a list of field indeces, the function TM_MakeTypeProxyFromFields() could be used to
take a comma separated field list. Otherwise, both functions would be identical. Proxy types
are all descendant of the type ET_Hit and thus the first few fields are identical to those of
ET_Hit. By using these fields, it is possible to determine the original persistent value to
which the proxy refers. The use of proxys enables large collections and lists to be built up
and fetched from servers without the need to fetch all the corresponding data, and without the
memory requirements implied by use of the referenced type(s). In the preferred embodiment,
proxy types are formed and used dynamically. This approach provides a key advantage of the
type system of this invention and is crucial to efficient operation of complex distributed
systems. Proxy types are temporary, that is, although they become known throughout the
application as soon as they are defined using this function, they exist only for the duration of
a given run of the application. Preferably, proxy types are actually created into type database
'E' which is reserved for that purpose (see above). Multiple proxys may also be defined for
the same type having different index lists. In such a case, if a matching proxy already exists
in 'E', it is used. A proxy type can also be used in place of the actual type in almost all
situations, and can be rapidly resolved to obtain any additional fields of the original type. In

one embodiment, proxy type names are of the form:
typeName_Proxy n

Where the (hex) value of 'n' is a computed function of the field index list.

89

WO 03/065177 PCT/US03/03151

Another function that may be provided as part of the API, hereinafter called
TM_MakeTypeProxyFromFilter(), can be used to make a proxy type that can be used
within collections in place of the full persistent type record and which contains a limited
subset of the fields of the original type. Preferably, the fields contained in the proxy are those
allowed by the filter function, which examines ALL fields of the full type and returns TRUE
to include the field in the proxy or FALSE to exclude the field. For more information
concerning proxy types, see the discussion for the function
TM_MakeTypeProxyFromFields(). The only difference between this function and the
function TM_MakeTypeProxyFromFields() is that TM_MakeTypeProxyFromFields()
expects a commma separated field list as a parameter instead of a filter function. Another
function, TM_IsTypeProxy(), could be used to determine if a given type is a proxy type and
if so, what original persistent type it is a proxy for. Note that proxy type values start with the
fields of ET_Hit and so both the unique ID and the type ID being referenced may be obtained
more accurately from the value. The type ID returned by this function may be ancestral to
the actual type ID contained within the proxy value itself. The type ET_Hit may be used to
return data item lists from servers in a form that allows them to be uniquely identified (via the
_system and _id fields) so that the full (or proxy) value can be obtained from the server later.
ET Hit is defined as follows:

typedef struct ET_Hit // list of query hits returned by a server
{

OSType _system; // system tag

unsInt64 _id; // local unique item ID

ET TypelD 104 _type; // type ID

int32 _relevance; /{ relevance value 0..100
} ET Hit;

The function TM_GetNthFieldType() gets the type of the Nth field in a structure.
TM_GetNthFieldName() obtains the corresponding field name and
TM_GetNthFieldOffset() the corresponding field offset.

Another function that may be included within the API toolset is a function called
TM_GetTypeChildren(). This function produces a list of type IDs of the children of the
given type. This function allocates a zero terminated array of ET_TypelD 104's and returns

920

WO 03/065177 PCT/US03/03151

the address of the array in 'aChildIDList'; the type ID's are written into this array. If
'aChildIDList' is specified as NULL then this array is not allocated and the function merely
counts the number of children; otherwise 'aChildIDList' must be the address of a pointer that
will point at the typelD array on exit. A negative number is returned in the case of an error.
In the preferred embodiment, various specialized options for omitting certain classes of child

types are supported.

A function, hereinafter referred to as TM_GetTypeAncestors(), may also be
provided that produces a list of type IDs of ancestors of the given type. This function
allocates a zero terminated array of ET_TypelD 104 and returns the address of the array in
‘ancestralIDs"; the type ID's are written into this array. If'ancestrallDs'is specified as NULL
then this array is not allocated and the function merely counts the number of ancestors;
otherwise 'ancestrallDs' must be the address of a pointer that will point at the typelD array on
exit. The last item in the list is a 0, the penultimate item is the primal ancestor of the given
type, and the first item in the list is the immediate predecessor, or parent, of the given type.
The function TM_GetTypeAncestorPath() produces a "' seperated type path from a given
ancestor to a descendant type. The path returned is exclusive of the type name but inclusive
of the descendant, empty if the two are the same or 'ancestorID' is not an ancestor or
'aTypelD'. The function TM_GetInheritanceChain() is very similiar to
TM_GetTypeAncestors() with the following exceptions:

(1) the array of ancestor type ids returned is in reverse order with the primal ancestor

being in element 0

(2) the base type from which the list of ancestors is determined is included in the array

and is the next to last element (array is 0 terminated)
(3) the count of the number of ancestors includes the base type

In the preferred embodiment, this function allocates a zero terminated array of
ET TypelD 104's and returns the address of the array in 'inheritanceChainIDs'; the type ID's
are written into this array. If 'inheritanceChainIDs' is specified as NULL then this array is not
allocated and the function merely counts the number of types in the inheritance chain;
otherwise 'inheritanceChainIDs' must be the address of a pointer that will point at the typelD
array on exit. The last item in the list is 0, element 0 is the primal ancestor of the base type,

and the next to last item in the list is the base type.

91

WO 03/065177 PCT/US03/03151

The API could also include a function, hereinafter called
TM_GetTypeDescendants(), that is able to create a tree collection whose root node is the
type specified and whose branch and leaf nodes are the descendant types of the root. Each
node in the tree is named by the type name and none of the nodes contain any data.
Collections of derived types can serve as useful frameworks onto which various instances of
that type can be 'hung' or alternatively as a navigation and/or browsing framework. The
resultant collection can be walked using the collections API (discussed in a later patent). The
function TM_GetTypeSiblings() produces a list of type IDs of sibling types of the given
type. This function allocates a zero terminated array of ET_TypelD 104's and returns the
address of the array in 'aListOSibs', the type ID's are written into this array. If 'aListOSibs'is
specified as NULL then this array is not allocated and the function merely counts the number
of siblings; otherwise ‘ancestralIDs' must be the address of a pointer that will point at the
typelD array on exit. The type whose siblings we wish to find is NOT included in the
returned list. The function TM_GetNthChildTypeID() gets the n’th child Type ID for the

passed in parent. The function returns 0 if successful, otherwise it returns an error code.

The function TM_BinaryToString() converts the contents of a typed binary value
into a C string containing one field per delimited section. During conversion, each field in
turn is converted to the equivalent ASCII string and appended to the entire string with the
specified delimiter sequence. If no delimiter is specified, a new-line character is used. The
handle, 'aStringHdl', need not be empty on entry to this routine in which case the output of
this routine is appended to whatever is already in the handle. If the type contains a variable
sized array as its last field (i.e., stuff[]), it is important that 'aDataPtr' be a true heap allocated
pointer since the pointer size itself will be used to determine the actual dimensions of the

array. In the preferred embodiment, the following specialized options are also available:
kUnsignedAsHex -- display unsigned numbers as hex
kCharArrayAsString -- display char arrays as C strings
kShowFieldNames -- prefix all values by fieldName:

kOneLevelDeepOnly -- Do Not go down to evaluate sub-structures:

92

WO 03/065177 PCT/US03/03151

An additional function, hereinafter referred to as TM_StringToBinary(), may also be
provided in order to convert the contents of a C string of the format created by

TM_BinaryToString() into the equivalent binary value in memory.

The API may also support calls to a function, hereinafter referred to as
TM_ LowestCommonAncestor(), which obtains the lowest common ancestor type ID for the
two type IDs specified. If either type ID is zero, the other type ID is returned. In the event

that one type is ancestral to the other, it is most efficient to pass it as the 'typeID2' parameter.

Finally, a function, referred to as TM_DefineNewType(), is disclosed that may be
used to define a new type to be added to the specified types database by parsing the C type
definition supplied in the string parameter. In the preferred embodiment, the C syntax
typedef string is preserved in its entirety and attached to the type definition created so that it
may be subsequently recalled. If no parent type ID is supplied, the newly created type is
descended directly from the appropriate group type (e.g., structure, integer, real, union etc.)
the typedef supplied must specify the entire structure of the type (i.e., all fields). If a parent
type ID is supplied, the new type is created as a descendant of that type and the typedef
supplied specifies only those fields that are additional to the parental type, NOT the entire
type. This function is the key to how new types can be defined and incorporated into the type
system at run time and for that reason is a critical algorithm to the present invention. The
implementation is based on the parser technology described in Claimed Parser patent
application and the lexical analyzer technology (the“Claimed Lexical Analyzer”) as provided
in Appendix 3. As set forth above, those pending applications are fully incorporated herein.
The reader is referred to those patents (as well as the Claimed Database patent application)
for additional details. The BNF specification to create the necessary types parser (which
interprets an extended form of the C language declaration syntax) is provided in Appendix A.

The corresponding lexical analyzer specification is also provided in Appendix A.

As can be seen from the specifications in Appendix A, the types acquisition parser is
designed to be able to interpret any construct expressible in the C programming language but
has been extended to support additional features. The language symbols associated with

these extensions to to C are as follows:
script -- used to associate a script with a type or field

annotation - used to associate an annotation with a type or field

93

WO 03/065177 PCT/US03/03151

@ -- relative reference designator (like “*’ for a pointer)
@@ -- collection reference designator

-- persistent reference designator

<on> -- script and annotation block start delimiter

<no> -- script and annotation block end delimiter

>< - echo field specification operator

In order to complete the types acquisition process, a ‘resolver’ function and at least
one plug-in are provided. A pseudo code embodiment of one possible resolver is set forth in
Appendix A. Since most of the necessary C language operations are already provided by the
built-in parser plug-in zero, the only extention of this solution necessary for this application is
the plug-in functionality unique to the type parsing problem itself. This will be referred to as

plug-in one and the pseudo code for such a plug in is also provided in Appendix A.

The foregoing description of the preferred embodiments of the invention has been
presented for the purposes of illustration and description. For example, although described
with respect to the C programming language, any programming language could be used to
implement this invention. Additionally, the claimed system and method should not be limited
to the particular API disclosed. The descriptions of the header structures should also not be
limited to the embodiments described. While the sample pseudo code provides examples of
the code that may be used, the plurality of implementations that could in fact be developed is
nearly limitless. For these reasons, this description is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are possible in
light of the above teaching. It is intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended hereto.

94

WO 03/065177 PCT/US03/03151

SYSTEM AND METHOD FOR AUTOMATIC
GENERATION OF SOFTWARE PROGRAMS
Inventor: John Fairweather

BACKGROUND OF THE INVENTION

. In any complex information system that accepts unstructured or semi-structured input
(such as an intelligence system) for the external work, it is obvious that change is the norm,
not the exception. Media and data streams are often modified and otherwise constantly
change making it difficult to monitor them. Moreover, in any system involving multiple
users with divergent requirements, even the data models and requirements of the system itself
will be subject to continuous and pervasive change. By some estimates, more than 90% of
the cost and time spent on software is devoted to maintenance and upgrade of the installed
system to handle the inevitability of change. Even our most advanced techniques for
software design and implementation fail miserably as the system is scaled or is otherwise
changed. The reasons for this failure arise, at least in part, from the very nature of accepted

software development practice/process.

Referring now to Figure 1, the root of the problem with the current software
development process, which we shall call the “Software Bermuda Triangle” effect, is shown.
Conventional programming wisdom holds that during the design phase of an information
processing application, programming teams should be split into three basic groups. The first
group is labeled DBA (for Database Administrator) 105. These individuals 105 are experts in
database design, optimization, and administration. This group 105 is tasked with defining the
database tables, indexes, structures, and querying interfaces based initially on requirements,
and later, on requests primarily from the applications group. These individuals 105 are
highly trained in database techniques and tend naturally to pull the design in this direction, as
illustrated by the small outward pointing arrow. The second group is the Graphical User
Interface (GUIL) grouﬁ 110. The GUI group 110 is tasked with implementing a user interface
to the system that operates according the customer’s expectations and wishes and yet
complies exactly with the structure of the underlying data (provided by the DBA group 105)
and the application(s) behavior (as provided by the Apps group 115). The GUI group 110
will have a natural tendency to pull the design in the direction of richer and more elaborate
user interfaces. Finally the applications group 115 is tasked with implementing the actual
functionality required of the system by interfacing with both the DBA and the GUI and
related Apf)lications Programming Interfaces (APIs). This group 115, like the others 105,110

APPENDIX 4

95

WO 03/065177 PCT/US03/03151

" tends to pull things in the direction or more elaborate system specific logic. Each of these
groups tends to have no more than a passing understanding of the issues and needs of the
other groups. Thus during the initial design phase, assuming a strong project and software
management process rigidly enforces design procedures, a relatively stable triangle is formed
where the strong connections 120, 125, 130 enforced between each group by management are
able to overcome the outward pull of each member of the triangle. Assuming a stable and
unchanging set of requirements, such a process stands a good chance of delivering a system

to the customer on time.

The problem, however, is that while correct operation has been achieved by each of
the three groups 110, 105, 115 in the original development team, significant amounts of '
undocumented application, GUI, and Database specific knowledge has likely been embedded
into all three of the major software components. In other words, this process often produces a
volatile system comprised of these subtle and largely undocumented relationships just
waiting to be triggered. After delivery (the bulk of the software life cycle), in the face of the
inevitable changes forced on the system by the passage of time, the modified system begins
to break down to yield a new "triangle" 150. Unfortunately, in many cases, the original team
that built the system has disbanded and knowledge of the hidden dependencies is gone.
Furthermore, system management is now in a monitoring mode only meaning that instead of
having a rigid framework, each component of the system is now more likely to "drift". This
drift is graphically represented by the dotted lines 155, 160, 165. During maintenance and
upgrade phases, each change hits primarily one or two of the three groups. Time pressures,
and the new development environment, mean that the individual tasked with the change
(probably not an original team member) tends to be unaware of the constraints and naturally
pulls outward in his particular direction. The binding forces have now become much weaker
and more elastic while the forces pulling outwards have become much stronger. A steady
" supply of such changes impacting this system could well eventually break it apart. In such a
scenario, the system will grind to a halt or become unworkable or un-modifiable. The
customer must either continue to pay progressively more and more outrageous maintenance
costs (swamping the original development costs), or must start again from scratch with a new
system and repeat the cycle. The latter approach is oﬁen much cheaper than the former. This
effect is central to why software systems are so expensive. Since change of all kinds is
particularly pervasive in an intelligence system, any architecture for such systems would

preferably address a way to eliminate this "Bermuda Triangle" effect.

96

WO 03/065177 PCT/US03/03151

Since application specific logic and it’s implementation cannot be eliminated, what is

needed is a system and environment in which the ‘data’ within the system can be defined and

manipulated in terms of a world model or Ontology, and for which the DBA and GUI

portions of the programming tasks can be specified and automatically generated from this

Ontology thereby eliminating the triangle effect (and the need for the associated

programming disciplines). Such an approach would make the resultant system robust and

adaptive to change.

SUMMARY OF INVENTION

The present invention provides a system capable of overcoming this effect and

provides a system that is both robust and adaptive to change. The preferred base language

upon which this system is built is the C programming language although other languages may

be used. In the standard embodiment using the C programing language, the present invention

is composed of the following components:

2)

Extensions to the language that describe and abstract the logic associated with
interacting with external ‘persistent’ storage (i.e., non-memory based). Standard

programming languages do not provide syntax or operators for manipulating

A persistent storage and a formalization of this capability is desirable. This

b)

invention provides these extensions and the "extended" language is henceforth
referred to as C*. C*, in addition to being a standard programming language, is

also an ontology definition language (ODL).

Extensions to the C* language to handle type inheritance. In an ontology based
system, the world with which the system interacts is broken down based on the
kinds of things that make up that world, and by knowledge of the kind of thing
involved, it becomes possible to perform meaningful calculations on that object
without knowledge of the particulars of the descendant type. Type inheritance in
this context therefore more accurately means ancestral field inheritance (as will be

described later).

Extensions to the C* language to allow specification of the GUI content and

layout.

97

WO 03/065177 PCT/US03/03151

d

e)

Extensions to the C* language to allow specification and inheritance of scriptable
actions on a per-field and per-type basis. Similar extensions to allow arbitrary

annotations associated with types and fields are also provided.

A means whereby the data described in the C* language can be translated
automatically into generating the corresponding tables and fields in external
databases and the queries and actions necessary to access those databases and
read/write to them. This aspect of the invention enables dynamic creation of

databases as data is encountered

A high level ontology designed to facilitate operation of the particular application

being developed. In the examples below and in the preferred embodiment, the

“application being developed will address the problem of ‘intelligence’ i.e., the

understanding of ‘events’ happening in the world in terms of the entities involved,

their motives, and the disparate information sources from which reports are

. obtained.

)

A means to tie types and their access into a suite of federated type or

container/engine specific servers responsible for the actual persistence of the data.

A necessary prerequisite for tackling the triangle problem is the existence of a run-

time accessible (and modifiable) types system capable of describing arbitrarily complex

binary structures and the references between them. In the preferred embodiment, the

invention uses the system has been previously described in Appendix 1 (hereinafter, the

"Types Patent"). Another prerequisite is a system for instantiating, accessing and sharing

aggregates of such typed data within a standardized flat memory model and for associating

inheritable executable and/or interpreted script actions with any and all types and fields

within such data. In the preferred embodiment, the present invention uses the system and

method that is described in Appendix 2 (hereinafter, the "Memory Patent"). The material

presented in these two patents are expressly incorporated herein. Additional improvements

and extensions to this system will also be described below and many more will be obvious to
those skilled in the art.

98

WO 03/065177 PCT/US03/03151

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the root of the problem with the current software development

process, which we shall call the “Software Bermuda Triangle” effect.
Figure 2 shows a sample query-building user interface (UI).

Figure 3 shows a sample user interface providing access to the fields within the type

"country."

Figure 4 shows a sample user interface providing access to a free format text field

within the type "country."

Figure 5 shows a sample user interface providing access to a fixed sized text field

within the type "country."

Figure 6A shows an example of how a short text field or numeric field (such as those

handled by the RDBMS container described above) might be displayed in a control group.
Figure 6B shows one method for displaying a date in a control group.
Figure 6C shows an example of an Islamic Hijjrah calendar being displayed.

Figure 7A shows the illustrated control group of how one might display and interact

with a persistent reference field (‘#°).

Figure 7B shows an example of one way that a collection reference field (‘@@’)

might be displayed in an auto-generated user interface.

Figure 8 shows one possible method for displaying variable sized text fields

(referenced via the char @ construct).

Figure 9 shows the manner in which an image reference (Picture @picture) field

could be displayed in an auto-generated user interface.

Figure 10 shows a sample screen shot of one possible display of the Country record in

the same UI layout theme described above (most data omitted).

Figure 11 shows a sample embodiment of the geography page within Country.

929

WO 03/065177 PCT/US03/03151

Figure 12 shows a sample embodiment of the second sub-page of the geography page

within country.

Figure 13 shows an example of one part of a high-level ontology targeted at

intelligence is shown.

100

WO 03/065177 PCT/US03/03151

DETAILED DESCRIPTION OF THE INVENTION

As described above, a necessary prerequisite for tackling the triangle problem is the
existence of a run-time accessible (and modifiable) types system capable of describing
arbitrarily complex binary structures and the references between them. In the preferred
embodiment, the invention uses the system described in the Types Patent. Another
prerequisite is a system for instantiating, accessing and sharing aggregates of such typed data
within a standardized flat memory model and for associating inheritable executable and/or
interpreted script actions with any and all types and fields within such data. In the preferred
embodiment, the present invention uses the system and method that is described in the
Memory Patent. The material presented in these two patents are expressly incorporated
herein and the functions and features of these two systems will be assumed for the purposes

of this invention..

As an initial matter, it is important to understand some of the langauge extentions that
are needed in order to create an Ontology Descﬁption Language (ODL). In the preferred
embodiment, the following operators/symbols are added to the basic C language (although
'other symbols and syntax are obviously possible without changing the basic nature of the

approach) in order to provide basic support for the items described herein:

script -- used to associate a script with a type or field
annotation -- used to associate an annotation with a type or field
@ -- relative reference designator (like ‘*’ for a pointer)
@@ -~ collection reference designator
-- persistent reference designator
<on> -- script and annotation block start delimiter
<no> -~ script and annotation block end delimiter
>< -- echo field specification operator

-- type inheritance

Additionally, the syntax for a C type definition has been extended to include

specification of the “key data-type” associated with a given ontological type as follows:

typedef struct X XXXX' { ... };

101

WO 03/065177 PCT/US03/03151

Where the character constant ‘XXXX’ specifies the associated key data-type. The
persistent reference designator ‘4’ implies a singular reference to an item of a named type
held in external storage. Such an item can be referenced either by name or by unique system-
wide ID and given this information, the underlying substrate is responsible for obtaining the
actual data referenced, adding it to the collection, and making the connection between the
referencing field and the newly inserted data by means of a relative reference embedded
within the persistent reference structure. Preferably, the binary representation of a persistent

reference field is acomplished using a structure of type ‘ET_PersistentRef” as defined below:

typedef struct ET UniquelD

{

OSType system; // system id is 32 bits
unsInté64 id; // local id is 64 bits
} ET UniquelID;

typedef struct ET PersistentRef

{
ET CollectionHdl members; // wember collection
charHdl stringH; // String containing mined
text
ET_TypeID aTypelD; // type ID
ET_Offset elementRef; // rel. ref. to data (NULL

if 1fetched)

ET Offset memberRef ; // rel. ref. to member
coll. (or NULL)

anonPtr memoryRef; // pointer to type data
(NULL if N/A)

ET_UnigquelID id; // unique ID

char name [kPersRefNameSize]; // name of reference

} ET_PersistentRef, *ET PersistentRefPtr;

The type ET_UniquelD consists of a two part 96-bit reference where the 64-bit ‘id’
field refers to the unique ID within the,; local ‘system’ which would normally be a single
logical installation such as for a particular corporation or organization. Multiple systems can
éxchange data and reference between each other by use of the 32-bit ‘system’ field of the
unique ID. The ‘members’ field of an ET PersistentRef is used by the system to instantiate a

collection of the possible items to which the reference is being made and this is utilized in the

102

WO 03/065177 PCT/US03/03151

user interface to allow the user to pick from a list of possibilities. Thus for example if the
persistent reference were “Country #nationality” then the member collection if retrieved
would be filled with the names of all possible countries from which the user could pick one
which would then result in filling in the additional fields required to finalize the persistent

reference.

In normal operation, either the name or ID and type is known initially and this is
sufficient to determine the actual item in persistent storage that is being referenced which can
then be fetched, instantiated in the collection and then referenced using the ‘elementRef
field. The contents of the ‘stringH’ field are used during data mining to contain additional
informating relating to resolving the reference. The ‘aTypelD’ field initially takes on the
same value as the field type ID from which the refefence is being made, however, once the
matching item has been found, a more specific type ID may be assigned to this field. For
example if the referencing field were of the form “Entity #owner” (a reference to an owning
entity which might be a person, organization, country etc.) then after resolution, the
‘aTypelD’ field would be altered to reflect the actual sub-type of entity, in this case the actual
owning entity. The ‘memoryRef field might contain a heap data reference to the actual
value of the referenced 6bject in cases where the referenced value is not to become part of the

containing collection for some reason. Normally however, this field is not needed.

As an example of how the process of generating and then resolving a persistent
reference operates, imagine the system has just received a news story referring to an
.individual who’s name is “X”, additionally from context saved during the mining process, the
system méy know such things as where “X” lives and this information could be stored in the
‘stringH’ field. At the time the reference to “X” is instantiated into persistent storage, a
search is made for a person named “X” and, should multiple people called “X” be found in
the database, the information in ‘stringH’ would be used in a type dependant manner to prune
the list down to the actual “X” that is being referenced. At this point the system-wide ID for
the specific individual “X” is known (as is whatever else the system knows about X) and thus
the ‘id” field of the reference can be filled out and the current data for “X” returned and
referenced via “elementRef”. If no existing match for “X” is found, a new “Person” record
for “X” is created and the unique ID assigned to that record is returned. Thus it can be seen

that, unlike a memory reference in a conventional programming language, a persistent

103

WO 03/065177 PCT/US03/03151

reference may go through type specific resolution processes before it can be fully resolved.

This need for a ‘resolution’ phase is characteristic of all references to persistent storage.

Like a persistent reference, the collection reference ‘@@’ involves a number of steps
during instantiation and retrieval. In the preferred embodiment, a collection reference is
physically (and to the C* user transparently) mediated via the ‘ET_CollectionRef type as set
forth below:

typedef struct ET_CollectionRef

{
ET CollectionHdl collection; // member collection
charHdl stringH; // String containing mined text
ET TypelD aTypelD; // collection type ID (if any)
ET_Offset elementRef; /1 relative reference to collection root
ET_StringlList cList; // collection member list (used for UT)

} ET_CollectionRef, *ET CollectionRefPtr;

The first four fields of this structure have identical types and purposes to those of the
ET PersistentRef structure, the only difference being that the ‘collection’ field in this
structure references the complete set of actual items that form part of the collection. The
‘cList’ field is used internally for user interface purposes. The means whereby the collections
associated with a particular reference can be distinguished from those relating to other similar
references is related to the meaning and use of the ‘echo field’ operator “><’. The following
extracts from an actual ontology based on this system serve to reveal the relationship between

the “><’ operator and persistent storage references:

typedef struct Datum 'DTUM' // Ancestral type of all
pers. storage
{

NumericID hostID; // unique Host system ID
(6=1ocal)

unsInte64 id; // unigue ID

char name [256] ; // £ull name of this
Datum

‘char datumType [32] ; // the type of the datum

NumericID securitylLevel; // security level

104

WO 03/065177 PCT/US03/03151
char updatedBy [30] ; // person
updating/creating this Datum
Date dateEntered; // date first entered
Date dateUpdated; // date of last update
Feed #source; // information source
for this Datum
Language #language; // language for this
Datum record
struct
{
NoteRegarding @@notes >< regarding; // Notes regarding this
Datum
NoteRelating @@relatedTo >< related; // Items X-referencing
this Datum
NoteRelating @@relatedFrom >< regarding;// Items X-referencing
this Datum
GroupRelation @@relatedToGroup >< related;// Groups X-referencing

this Datum
GroupRelation

referencing Datum

Delta @@history >< regarding; // Time history of
changes to Datum
Category @@membership; // Groupings Datum is a
member of
char @sourceNotes; // notes information
source(s)
unsInté4 sourcelDref; // ID reference in
original source
} notes;
Symbology #symbology; ’ // symbology used
Place #place; // 'where' for the datum
(if known)
} Datum , *DatumPtr;
typedef struct NoteRelating:Observation 'CXRF'! // Relationship between
two datums R
{
Datum firegarding >< notes.relatedFrom; // ‘'source' item
char itemType [64]; // Datum type for
regarding item ‘
Datum #related >< notes.relatedTo; // ‘'target' item

@@relatedFromGroup >< regarding;// Groups X-

105

WO 03/065177 PCT/US03/03151

char relatedType [64] ; // Datum type for
related item

RelationType #relationType; // The type of the
relationship

Percent relevance; // strength of

relationship (1..100)

char author [128] ; // Author of the StickIt
Relating note

char title[256]; // Full Title of StickIt
Relating note

char @text; // descriptive text and
notes

} NoteRelating;

In the preferred embodiment, ‘Datum’ is the root type of all persistent types. That is,
every other type in the ontology is directly or indirectly derived from Datum and thus inherits
all of the fields of Datum. The type ‘NoteRelating’ (a child type of Observation) is the
ancestral type of all notes (imagine them as stick-it notes) that pertain to any other datum.
Thus an author using the system may at any time create a note with his observations and
opinions regarding any other item/datum held in the system. The act of creating such a note
causes the relationships between the note and the datum to which it pertains to be written to
and persisted in external storage. As can be seen, every datum in the system contains within
its ‘notes’ field a sub-field called ‘relatedFrom’ declared as “NoteRelating @@relatedFrom
><regarding”. This is interpreted by the system as stating that for any datum, there is a
collection of items of type ‘NoteRelating’ (or a derived type) for which the ‘regarding’ field
of each ‘NoteRelating’ item is a persistent reference to the particular Datum involved.
Within each such ‘NoteRelating’ item there is a field ‘relating’ which contains a reference to
some other datum that is the original item that is related to the Datum in question. Thus the
‘NoteRelating’ type is serving in this context as a bi-directional link relating any two items in
the system as well as associating with that relationship a ‘direction’, a relevance or strength,
and additional information (held in the @text field which can be used to give an arbitrary
textual description of the exact details of the relationship). Put another way, in order to
discover all elements in the ‘relatedFrom’ collection for a given datum, all that is necessary is
to query storagé/database for all ‘NoteRelating’ items having a ‘regarding’ field which

contains a reference to the Datum involved. All of this information is directly contained

106

WO 03/065177 PCT/US03/03151

within the type definition of the item itself and thus no external knowledge is required to
make connections between disparate data items. The syntax of the C* declaration for the
field, therefore, provides details about exactly how to construct and execute a query to the
storage container(s)/database that will retrieve the items required. Understanding the
expressive power of this syntax is key to understanding how it is possible via this
methodology to eliminate the need for a conventional database administrator and/or database
group to be involved in the construction and maintenance of any system built on this

methodology.

As can be seen above, the ‘regarding’ field of the ‘NoteRelating’ type has the reverse
‘echo’ field, i.e., “Datum #regarding >< notes.relatedFrom;”. This indicates that the
reference is to any Datum or derived type (i.e., anything in the ontology) and that the
“notes.relatedFrom” collection for the referenced datum should be expected to contain a
reference to the NoteRelating record itself. Again, it is clear how, without any need for
conventional database considerations, it is possible for the system itself to perform all
necessary actions to add, reference, and query any given ‘NoteRelating’ record and the items
it references. For example, the ‘notes.relatedTo’ field of any datum can reference a
collection of items that the current datum has been determined to be related to. This is the
other end of the ‘regarding’ link discussed above. As the type definitions above illustrate,
each datum in the present invention can be richly cross referenced from a number of different

types (or derivatives). More of these relationship types are discussed further herein.

For the purposes of illustrating how this syntax might translate into a concrete system
for handling references and queries, it will assumed in the discussion below that the actual
physical storage of the data occurs in a conventional relational database. It is important to
understand, however, that nothing in this approach is predicated on or implies, the need for a
relational database. Indeed, relational databases are poorly suited to the needs of the kinds of
system to which the technology discussed is targeted and are not utilized in the preferred
embodiment. All translation of the syntax discussed herein occurs via registered script
functions (as discussed further in the Collections Patent) and thus there is no need to hard
code this system to any particular data storage model so that the system can be customized to
any data container or federation of such containers. For clarity of description, hoWever, the
concepts of relational database management systems (RDBMS) and how they work will be

used herein for illustration purposes.

107

WO 03/065177

PCT/US03/03151

Before going into the details of the behavior of RDBMS plug-in functions, it is worth

examining how the initial connection is made between these RDBMS algorithms and

functions and this invention. As mentioned previously, this connection is preferably

established by registering a number of logical functions at the data-model level and also at

the level of each specific member of the federated data container set. The following provides

a sample set of function prototypes that could apply for the various registration processes:

Boolean DB SpecifyCallBack (
callback

short
function

ProcPtr
function
otherwise

#idefine kFnFillCollection

list
#define kFnFetchRecords

colln.
#define kFnGetNextUnigqueID

storage

f#define kFnStoreParsedDatums
#define kFnWriteCollection
#define kFnDoesIdExist

persistent storage
#define kFnRegisterID

#define kFnRemovelD

registery
#define kFnFetchRecordToColl

colln.
#define kFnFetchField

record

// Specify a persistent storage

aFuncSelector, // I:Selector for the logical
aCallBackFn // I:Address of the callback
) // R:TRUE for success, FALSE
1 // ET_FillCollectionFn -

// Fn. to £ill collection with data for a given a hit

2 // ET_FetchRecordsFn -
// Fn. to query storage and fetch matching records to

3 // ET_GetUniqueIdFn -

// Fn. to get next unique ID from local persistent

4 // ET_StoreParsedDatumsFn -

// Fn. to store alllextracted data in a collection-
5 // ET_WriteCollectionFn -

// Fn. to store all extracted data in a collection
6 // ET_DoesIdExistFn —

// Fn. to determine if a given ID exists in

7 // ET_RegisterIDFn -

// Fn. to register an ID to persistent storage
8 // ET_RemoveIDFn -

// Fn. to remove a given ID from the ID/Type

9 // ET_FetchRecordToCollFn -

// Fn. Fetch a given persistent storage item into a

10 // ET_FetchFieldFn -
// Fn. Fetch a single field from a single persistent

i

108

WO 03/065177

PCT/US03/03151

#define kFnApplyChanges

#define kFnCancelChanges

#define kFnCountTypeltems

types)
#define kFnFetchToElements

elements/nodes

#define kFnRersvHitListQuery

descendants

#define kFnGetNextValidID
ID

Boolean DB_DefineContainer (
container

.charPtr

error)

colln.

//

/7

/7

//

/7

/7

Boolean DB_DefinePluginFunction({

11

Fn.

12

Fn.

13

Fn.

14

Fn.

15

Fn.

16

Fn.

fn.
charPtr name, // I: Name of container
int32 functionType, // I: Which function type
ProcPtr functionAddress // I: The address of the function
)i // R: Void
f#define kCreateTypeStorageFunc 29 // Create storage for a container
#define kInsertElementsFunc 30 // insert container data
#define kUpdateRecordsFromElementsFunc 31 // update container from data
#define kDeleteElementsFunc 32 // delete elements from
container
#define kFetchRecordsToElementsFunc 33 // fetch container data
#define kInsertCollectionRecordFunc 34 // insert container data to
elements
#define kUpdateCollectionRecordFunc 35 // update collection from
container
fidefine kDeleteCollectionRecordFunc . 36 // delete collection record
#define kFetchRecordsToCollectionFunc 37 // fetch container record to

// ET ApplyChangesFn -
to apply changes

// ET_CancelChangesFn —
to cancel changes

// ET_CountItemsFn -

to count items for a type (and descendant

// ET_FetchToElementsFn -

to fetch values into a specified set of

// ET_RecrsvHitListQueryFn —

create a hit list from a type and it's

// ET_GetNextValidIDFn -

to find next valid ID of a type after a given

// Defines a federated

name // I: Name of container

// R: Exror code (0 = no

// Defines container plugin

109

WO 03/065177 PCT/US03/03151

#define kCheckFieldType 38 // determine if field is

container’s

In this embodiment, whenever the environment wishes to perform any of the logical
actions indicated by the comments above, it invokes the function(s) that have been registered
using the function DB_SpecifyCallBack() to handle the logic required. This is the first and
most basic step in disassociating the details of a pzirticular implementation from the necessary
logic. At the level of specific members of a federated collection of storage and querying
containers, another similar API allows container specific logical functions to be registered for
each container type that is itself registered as part of the federation. So for example, if one of
the registered containers were a relational database system, it would not only register a
‘kCreateTypeStorageFunc’ function (which would be responsible for creating all storage
tables etc. in that container that are necessary to handle the types defined in the ontology
given) but also a variety of other functions. The constants for some of the more relevant
plug-ins at the container level are given above. For example, the ‘kCheckFieldType’ plug-in
could be called by the environment in order to determine which container in the federation
will be responsible for the storage and retrieval of any given field in the type hierarchy. If we
assume a very simple federation consisting of just two containers, a relational database, and
an inverted text search engine, then we could imagine that the implementation of the

‘kCheckFieldType’ function for these two would be something like that given below:

// Inverted file text engine:

Boolean DTX_CheckFieldType (// Field belongs
to ‘TEXT” 2
ET_TypelD aTypelD, // I: Type ID
charPtr fieldname // I: Field name
) // R: Brror code
(0 = no error)
{
ET_TypeID fType,baseType;
int32 rType;
Boolean ret;

fType = TM_GetFieldTypelD(NULL, aTypeID, fieldName) ;
ret = NO;
if (TM_TypelIsReference (NULL, EType, &rType, &baseType) && baseType ==

kInt8Type &&

110

WO 03/065177 PCT/US03/03151

(rType == kPointerRef || rType == kHandleRef || rType ==

kRelativeRef))
ret = YES;

return ret;

// Relational database:

Boolean DSQ_CheckFieldType (// Field belongs
to ‘RDBM’ *?
ET_TypelID aTypelD, // I: Type ID
charPtr fieldname // I: Field name

) // R: Error code

(0 = no exrror)

{
ET_TypelD fType, baseT;
int32 refT;
Boolean ret;

fType = TM_GetFieldTypelD (NULL, aTypelD, fieldname);

ref = TM_TypelsReference (NULL, £Type, &refT, &baseT) ;

ret = NO;

1f (ref && refT == kPersistentRef) // We'll handle

pers. Refs.

ret = YES;

else if (!ref && (// We do:
TM_IsTypeDescendant (NULL, fType, kInt8Type) || // char arrays,’
fType == TM_GetTypeID(NULL, "Date") || // Dates,
TM_IsTypeDescendant (NULL, £Type, kIntegerNumbersType) I //

Integers and

TM_IsTypeDescendant (NULL, £Type, kRealNumbersType))) //
Floating point #’s .

ret = YES;

return ret;

As the pseudo-code above illustrates, in this particular federation, the inverted text

engine lays claim to all fields that are references (normally ‘@) to character strings (but not

111

WO 03/065177 PCT/US03/03151

fixed sized arrays of char) while the relational container lays claim to pretty much everything
else including fixed (i.e., small sized) character arrays. This is just one possible division of
responsibility is such a federation, and many others are possible. Other containers that may
be members of such federations include video servers, image servers, map engines, etc. and
thus a much more complex division of labor between the various fields of any given type will
occur in practice. This ability to abstract away the various containers that form part of the
persistent storage federation, while unifying and automating access to them, is a key benefit

of the system of this invention.

Returning to the specifics of an RDBMS federation member, the logic associated with
the ‘kCreateTypeStorageFunc’ plug-in for such a container (assuming an SQL database

engine such as Oracle) might look similar to that given below:

static EngErr DSQ_CreateTypeStorage (// Build SQL
tables
ET_TypelD theType // I: The type
) // R: Error Code

(0 = no error)

{ .

char sqlStatement [256], filter[256];

err = DSQ CruiseTypeHierarchy (theType,DSQ CreateTypeTable) ;
sprintf (filter, // does linkage
table exist?
"owner=(select username from all_users where user id=uid) and "

"table name='LINKAGE TABLESS'") ;

if (#records found("all_tables", filter)) // If not, then
create it!
{
sprintf(sqlStatement, “create table LINKAGE TABLESS
(DYN_NAME varchar2(50),ACT_NAME varchar2(50)) tablespace data");
err = SQL ExecuteStatement (0, sglStatement, NULL, 0, NULL);
}
err = DSQ_CruiseTypeHierarchy (theType, DSQ CreateLinkageTables) ;
... any other logic required

return (err);

112

WO 03/065177 PCT/US03/03151

In this example, the function DSQ_CruiseTypeHierarchy() simply recursively walks
the type hierarchy beginning with the type given down and calls the function specified. The
function DSQ_CreateTypeTable() simply translates the name of the type (obtained from
TM_GetTypeName) into the corresponding Oracle table name (possibly after adjusting the
name to comply with constraints on Oracle table names) and then loops through all of the
ﬁeids in the type determining if they belong to the RDBMS container and if so generates the
corresponding table for the field (again after possible name adjustment). The function
DSQ_CreateLinkageTables() creates anonymous linkage tables (based on field names
involved) to handle the case where a field of the type is a collection reference, and the
reference is to a field in another type that is also a collection reference echoing back to the
original field. After this function has been run for all types in the ontology, it is clear that the
external relational database now contains all tables and linkage tables necessary to implement
any storage, retrieval and querying that may be implied by the ontology. Other registered
plug-in functions for the RDBMS container such as query functions can utilize knowledge of
the types hierarchy in combination with knowledge of the algorithm used by
DSQ_CreateTypeStorage(), such as knowledge of the name adjustment strategy, to reference

and query any information automatically based on type.

Note that some of the reference fields in the example above do not contain a ‘><’
operator which implies that the ontology definer does not wish to have the necessary linking
tables appear in the ontology. An example of such a field (as set forth above) is “Category
@@membership”. This field can be used to create an anonymous linkage table based on the
type being referenced and the field name doing the referencing (after name adjustment). The
linkage table would contain two references giving the type and ID of the objects being linked.
When querying such an anonymous table, the plug-ins can deduce its existence entirely from
the type information (and knowledge of the table creation algorithm) and thus the same
querying power can be obtained even without the explicit definition of the linking table (as in
the example above). Queries from the C* level are not possible directly on the fields of such
a linkage table because it does not appear in the ontology, however, this technique is

preferably used when such queries would not necessarily make sense.

By using this simple expedient, a system is provided in which external RDBMS

storage is created automatically from the ontology itself, and for which subsequent access and

113

WO 03/065177 PCT/US03/03151

querying can be handled automatically based on knowledge of the type hierarchy. This has
effectively eliminated the need for a SQL database administrator or database programming
staff. Since the same approach can be adopted for every container that is a member of the
federation, these same capabilities can be accomplished simultaneously for all containers in
the federation. As a result, the creator of a system based on this technology can effectively
ignore the whole database issue once the necessary container plug-ins have been defined énd
registered. This is an incredibly powerful capability, and allows the system to adapt in an
automated manner to changes in ontology without the need to consider database impact, thus
greatly increasing system flexibility and robustness to change. Indeed, whole new systems
based on this technology can be created from scratch in a matter of hours, a capability has
been up until now unheard of. Various other plug-in functions may also be implemented,

which can be readily deduced from this description.

The process of assigning (or determining) the unique ID associated with instantiating
a persistent reference resulting from mining a datum from an external source (invoked via the
$UniquelD script as further described in the Collections Patent) deserves further examination
since it is highly dependant on the type of the data involved and because it further illustrates
the systems ability to deal with such real-world quirks. In the simple federation described
above, the implementation of the $UniqueID script for Datum (from which all other types
will by default inherit) might be similar to that given below:

static EngErr PTS_AssignUniquelID(// $UniquelID script
registered with Datum

ET_TypeDBHA1 aTypeDBHdl, // I:Type DB handle (NULL
to default)

ET_TypelD typelID, // I:Type ID

charPtr fieldName, // I:Field name/path (else
NULL) ‘

charPtr action, // I:The script action
being invoked

charPtr script, // I:The script text

anonPtr dataPtr, // I:Type data pointer

ET CollectionHdl aCollection,// I:The collection handle

ET_Offset offset, // I:Collection element
reference

int32 . options, // I:Various logical
options

114

WO 03/065177 PCT/US03/03151

ET_TypelID fromWho, // I:Type ID, 0 for field
or unknown

va_list ap // I:va_list for additional
parameters

) // R:0 for success, else
error #
{
ET_UniqueID uniquelD;

TC_GetUniqueID(aCollection, 0,o0ffset, suniquelDd) ;

TC_GetCStringFieldValue(aCollection, 0,0, offset,name, sizeof (name), "name")

~

elemTypeID = TC GetTypeID(aCollection,0,offset);

TM_BreakUnigueID(uniquelID, &locallD, &sys) ;

if (locallID) return 0; // we've already got an
ID,we're done!

scrubbedStrPtr = mangle name according to SQL name mangling algorithm

force scrubbedStrPtr to upper case

sprintf(filterText, kStartQueryBlock kRelationalDB ":upper (name) = '$s'"

kEndQueryBlock, scrubbedStrPtr); // Create the filter

criteria

hitList = construct hit list of matches

count = # hits in hitList; // how many hits did we get

// Should issue a warning or dialog if more than one hit here

if (hitList && hitList([0]._id)

{
unigquelD = TM_MakeUniquelID (hitList {0] ._id, hitList[0] . system);
existingElemTypeID = hitList[0]._ type;
exists = TRUE;

}

if (luniquelID.id)

uniqueID = TM_MakeUniqueID (DB_GetNextLocalUniqueID(),O0) ;
if (!TC_HasDirtyFlags(aCollection, 0, 0, offset))

call TC_EstablishEmptyDirtyState(aCollection,0,0,offget,NO))
TC_SetUniquelID(aCollection, 0,offset,uniqueID);// set the id

return err;

This is a simple algorithm and merely queries the external RDBMS to determine if an

item of the same name already exists and if so uses it, otherwise it creates a new ID and uses

115

WO 03/065177 PCT/US03/03151

that. Suppose that the item involved is of type “Place”. In this case, it would be helpful to be
more careful when determining the unique ID because place names (such as cities) can be
repeated all over the world (indeed there may be multiple cities or towns with the same
within any given country). In this case, a more specific $UniquelD script could be registered
with the type Place (the ancestral type of all places such as cities, towns, villages etc.) that

might appear more like the algorithm given below:

static EngErr PTS AssignPlaceUniqueID(// $UniquelD script
registered with Place

ET_TypeDBHAl aTypeDBHAl, // I:Type DB handle (NULL
to default)

ET_TypelD typelD, // I:Type ID

charPtr fieldName, // I:Field name/path\(else
NULL)

charPtr action, // I:The script action
being invoked

charPtr seript, // I:The script text

anonPtr dataPtr, // I:Type data pointer

ET_CollectionHdl aCollection,// I:The collection handle

ET Offset offset, // I:Collection element
reference '

int32 options, // I:Various logical
options

ET_TypelD fromwho, // I:Type ID, 0 for field
or unknown

va_list ap // I:va_list for additional
parameters

) // R:0 for success, else
error #
{
ET_UniqueID uniquelD;

TCLGetUniqueID(aCollection,o,offset,&uniqueID);

TC_GetCStringFieldvalue(acollection,o,O,offset,name,sizeof(name),"name")

~

TC_GetCStringFieldvalue(aCollection,0,0,offset,thisPlace,128,"placeType"

TC_GetFieldValue(aCollection,0,0,0ffset,&thisLon,"location.longitude");
TC_GetFieldValue(aCollection,0,0,offset,&thisLat,"1ocation.latitude");

116

WO 03/065177 PCT/US03/03151

elemTypeID = TC GetTypeID(aCollection, 0,offset) ;
pT = TM_IsTypeProxy (elemTypelD) ;
if (pT) elemTypeID = pT;

TM_BreakUniqueID (uniquelID, &localID, NULL) ;
if (localID) return 0; // we've already got an

ID,we're done!

scrubbedStrPtr = mangle name according to SQL name wmangling algorithm
force scrubbedStrPtr to upper case
sprintf (filterText, kStartQueryBlock kRelationalDB ":upper (name) = '%g'"V
kEndQueryBlock, scrubbedStrPtr);
sprintf (fieldList, "placeType, location, countxy") ;
tmpCollection = fetch all matching items to a collection
TC_Count (tmpCollection, kValuedNodesOnly, rootElem, &count) ;
// if we got one orAmore we need further study to see if it is in fact
this place
// a place is unique if the place type, latitude and longitude are the
same |
placeTypeld = TM_KeyTypeToTypeID ('PLCE',NULL) ;
pplaceTypeld = TM_KeyTypeToTypeID('POPP', NULL) ;
if (count)
{
anElem =0;
while (tmpCollection && TC Visit (tmpCollection,kRecursiveOperation +

kValuedNodesOnly, 0, &anElem, false))

if (TM_TypesAreCompatible (NULL, TC_GetTypeID(tmpCollection, O,
anElem)
,pplaceTypeld) &&
TM_TypesAreCompatible (NULL, elemTypelD, pplaceTypeld))
{ // both populated places,
check country
TC GetFieldValue (tmpCollection,0,0,anElem, &prfl, "countxy") ;
TC_GetFieldValue(aCollection, 0,0,0ffset, &prf2, "country") ;
if (strcmp(prfl.name,prf2.name)) // different country!

continue;

TC_GetCStringFieldvalue (tmpCollection, 0,0, anElem, &placeType, 128, "placeTy
pe");
if (!strcmp(thisPlace,placeType)) // same type

117

WO 03/065177 PCT/US03/03151

if (

TC_IsFieldEmpty (tmpCollection, 0, 0,anElem, "location.longitude"))

{ // this is the same place!
TC_GetUniqueID(tmpCollection, 0,anElem, &uniquelID) ;
TM_BreakUniqueID(uniguelID, &localID,NULL) ;
existingElemTypeID =

TC_GetTypelID(tmpCollection,0,anElem) ;
exists = (existingElemTypelD != 0);
break;

} else

{

TC_GetFieldValue (tmpCollection, 0, 0, anElem, &longitude,
"location.longitude®} ;
if (ABS(thisLon - longitude) < 0.01)
{ // at similar longitude
TC_GetFieldValue (tmpCollection, 0,0, anElem,
&latitude,
"location.latitude");

if (aBS(thisLat - latitude) < 0.01)

{ // and similar latitude!
TC_GetUniquelID(tmpCollection,0,anElem, &uniquelID) ;
TM_BreakUniqueID (uniquelID, &localID,NULL) ;
existingElemTypeID =

TC_GetTypeID(tmpCollection, 0,anElen) ;
exists = (existingElemTypeID != 0);

break;

if (!localID)
uniqueID = TM MakeUniquelD (DB_GetNextLocalUniqueID(),0);
else
uniqueID = TM MakeUniqueID(locallID,0) ;
if (!TC_HasDirtyFlags(aCollection, 0, 0, offset))

call TC EstablishEmptyDirtyState (aCollection,0,0,offset,NO))

118

WO 03/065177 PCT/US03/03151

TC_SetUniqueID(aCollection, 0,0ffset,uniquelID);// set the id

return err;

This more sophisticated algorithm for determining place unique IDs attempts to
compare the country fields of the Place with known places of the same name. If this does not
distinguish the places, the algorithm then compares the place type, latitude and longitude, to
further discriminate. Obviously many other strategies are possible and completely
customizable within this framework and this example is provided for illustration purposes
only. The algorithm for a person name, for example, would be completely different, perhaps

based on age, address, employer and many other factors.

It is clear from the discussion above that a query-building interface can be constructed
that through knowledge of the types hierarchy (ontology) alone, together with registration of
the necessary plug-ins by the various containers, can generate the Ul portions necessary to
express the queries that are supported by that plug-in. A generic query-building interface,
therefore, need only list the fields of the type selected for query and, once a given field is
chosen as part of a query, it can display the Ul necessary to specify the query. Thereafter,
using plug-in functions, the query-building interface can generate the necessary query in the

native language of the container involved for that field.

Referring now to Figure 2, a sample query-building user interface (UI) is shown. In
this sample, the user is in the process of choosing the ontological type that he wishes to
query. Note that the top few levels of one possible ontological hierarchy 210, 215, 220 are
visible in the menus as the user makes his selection. A sample ontology is discussed in more
detail below. The Ul shown is one of many possibly querying interfaces and indeed is not
that used in the preferred émbodiment but has been chosen because it clearly illustrates the

connections between containers and queries.

Referring now to Figure 3, a sample user interface providing access to the fields
within the type "country” is shown. Having selected Country from the query-building Ul
illustrated in Figure 2, the user may then chose any of the fields of the type country 310 on
which he wishes to query. In this example, the user has picked the field ‘dateEntered’ 320
which is a field that was inherited by Country from the base persistent type Datum. Once the

field 320 has been selected, the querying interface can determine which member of the

119

WO 03/065177 PCT/US03/03151

container federation is responsible for handling that field (not shown). Through registered
plug-in functions, the querying language can determine the querying operations supported for
that type. In this case, since the field is a date (which, in this example, is handled by the
RDBMS container), the querying environment can determine that the available query

operations 330 are those appropriate to a date.

Referring now to Figure 4, a sample user interface providing access to a free format
text field within the type "country" is shown. In this figure, the user has chosen a field
supported by the inverted text file container. Specifically, the field “notes.sourceNotes” has
been chosen (which again is inherited from Datum) and thus the available querying operators
410 (as registered by the text container) are those that are more appropriate to querying a free

format text field.

Referring now to Figure 5, a sample user interface providing access to a fixed sized
text field within the type "country" is shown. In this figure, the user has chosen the field
“geography.landAreaUnits” 510, which is a fixed sized text field of Country. Again, in the
above illustration, this field is supported by the RDBMS container so the Ul displays the

querying operations 520 normally associated with text queries in a relational database.

The above discussion illustrated how container specific storage could be created from
the ontology, how to query and retrieve data from individual containers in the federation, and
how the user interface and the queries themselves can be generated directly from the ontology
specification without requiring custom code (other than an application independent set of
container plug-ins). The other aspects necessary to create a completely abstracted federated
container environment relate to three issues: 1) how to distribute queries between the
containers, 2) how to determine what queries are possible, and 3) how to reassemble query
results returned from individual containers back into a complete record within a collection as
defined by the ontology. The portion of the system of this invention that relates to defining
individual containers, the querying languages that are native to them, and how to construct
(both in UI terms and in functional terms) correct and meaningful queries to be sent to these
containers, is hereinafter known as MitoQuest™. The portion of the system that relates to
distributing (federating) queries to various containers and combining the results from those
containers into a single unified whole, is hereinafter known as MitoPlex™. The federated
querying system of this invention thus adopts a two-layer approach: the lower layer

(MitoQuest™) relates to container specific querying, the upper layer (MitoPlex™) relates to

120

WO 03/065177 PCT/US03/03151

distributing queries between containers and re-combining the results returned by them. Each

will be described further below (in addition to the patent application referenced herein).

Each container, as a result of a container specify query, constructs and returns a hit-
list of results that indicate exactly which items match the container specific query given. Hit
lists are zero terminated lists that, in this example, are constructed from the type ET_Hit,

which is defined as follows:

typedef struct ET_Hit /1 list of query hits returned by a server
{

OSType _systemy; // system tag

unslnt64 _id; /I local unique item ID

ET TypelD _type; /I type ID

int32 _relevance; /I relevance value 0..100
} ET Hit; "

As can be seen, an individual hit specifies not only the globally unique ID of the item
that matched, but also the specific type involved and the relevance of the hit to the query.
The specific type involved may be a descendant of the type queried since any query applied
to a type is automatically applied to all its descendants since the descendants "inherit" every
field of the type specified and thus can support the query given. In this embodiment,
relevance is encoded as an integer number between 0 and 100 (i.e., a percentage) and its
computation is a container specific matter. For example, this could be calculated by plug-in
functions within the server(s) associated with the container. It should be noted that the type
ET_Hit is also the parent type of all proxy types (as further discussed in the Types Patent)
meaning that all proxy types contain sufficient information to obtain the full set of item data

if required.

When constructing a multi-container query in MitoPlex™, the individual results (hit

lists) are combined and re-assembled via the standard logical operators as follows:

AND - For a hit to be valid, it must occur in the hit list for the container specific
query occurring before the AND operator and also in the hit list for the container

specific query that follows the AND.

121

WO 03/065177 PCT/US03/03151

OR - For a hit to be valid, it must occur in either the hit list before the operator, or the

one after the operator (or both).

AND THEN — This operator has the same net effect as the AND operator but the hit-
list from before the operator is passed to the container executing the query that
follows the operator along with the query itself. This allows the second container to
locally perform any pruning implied by the hit list passed before returning its results.
This operator therefore allows control over the order of execution of queries and
allows explicit optimization of performance based on anticipated results. For example
if one specified a mixed container query of the form “[RDBMS:date is today] AND
THEN [TEXT:text contains “military”]” it is clear that the final query can be
performed far quicker than the effect of performing the two queries separately and
then recombining the results since the first query pre-prunes the results to only those
occurring on a single day and since the system may contain millions of distinct items
where the text contains “military”. For obvious reasons, this approach is considerably

more efficient.

AND {THEN} NOT — This operator implies that to remain valid, a hit must occur in
the hit-list for the query specified before the operator but not in the hit-list for the

query after the operator.

Additional logical operators allow one to specify the maximum number of hits to be
returned, the required relevance for a hit to be considered, and many other parameters could
also be formulated. As can be seen, the basic operations involved in the query combination
process involve logical pruning operations between hit lists resulting from MitoQuest™
queries. Some of the functions provided to support these processes may be exported via a

public API as follows:

Boolean DB NextMatchInHitList (// Obtain the next match in
a hit list
ET Hit* aMatchvalue, // I:Hit value to match
ET_HitList *gHitList, // I0:Pointer into hit list
int32 options // I: options as for
DB_PruneHitList ()

122

WO 03/065177

PCT/US03/03151

found, else FALSE

Boolean DB_BelongsInHitList

hit 1list?

ID term.

otherwise

ET Hit*
ET HitList

int32

ET _HitList DB_PruneHitList

ID terminated

ID term.

return (or 0)

ID term.

ET HitList

ET HitList

int32
int32

(

aHit,

aPrunelist,

options

aHitList,

aPrunelist,

options,

maxHits

//

//

/!
/!

/!

//

/!

/7

/7

//
//

/7

R:TRUE if match

Should hit be added to a

I:Candidate hit

I:Pruning hit list, =zero

I:pruning options woxd

R:TRUE to add hit, FALSE

prunes two hit lists

I:Input hit list, zero

I:Pruning hit list, zero

I:pruning options word

I:Maximum # hits to

R:Resultant hit list, 0

In the code above, the function DB_NextMatchInHitList () would return the next

match according to specified sorting criteria within the hit list given. The matching options

are identical to those for DB _PruneHitList(). The function DB_BelongsInHitList() can be

used to determine if a given candidate hit should be added to a hit list being built up

according to the specified pruning options. This function may be used in cases where the

search engine returns partial hit sets in order to avoid creating unnecessarily large hit lists

only to have them later pruned. The function DB_PruneHitList() can be used to

prune/combine two hit lists according to the specified pruning options. Note that by

exchanging the list that is passed as the first parameter and the list that is passed as the second

parameter, it is possible to obtain all possible behaviors implied by legal combinations of the
MitoPlex™ AND, OR, and NOT operators. Either or both input hit lists may be NULL

which means that this routine can be used to simply limit the maximum number of hits in a

123

WO 03/065177 PCT/US03/03151

hit list or alternatively to simply sort it. In the preferred embodiment, the following pruning

options are provided:

kLimitToPruneList - limit returned hits to those in prune list (same as
MitoPlex™ AND)

kExclusiveOfPruneList - remove prune list from 'hits' found (same as
MitoPlex™ AND NOT)

kCombineWithPruneList - add the two hit lists together (default - same as
MitoPlex™ OR)

The following options can be used to control sorting of the resultant hit list:

kSortByTypelD -- sort resultant hit list by type ID
kSortByUniqueID -- sort resultant hit list by unique ID
kSortByRelevance -- sort resultant hit list by relevance
kSortInIncreasingOrder -- Sort in increasing order

In addition to performing these logical operations on hit lists, MitoPlex™ supports the
specification of registered named MitoQuest™ functions in place of explicit MitoQuest™
queries. For example, if the container on one side of an operator indicates that it can execute
the named function on the other side, then the MitoPlex™ layer, instead of separately
launching the named function and then combining results, can pass it to the container
involved in the other query so that it mz\ty be evaluated locally. The use of these ‘server-
based’ multi-container queries is extremely useful in tuning system performance. In the
preferred embodiment of the system based on this invention, virtually all containers can
locally support interpretaﬁon of any query designed for every other container (since they are
all implemented on the same substrate) and thus all queries can be executed in parallel with
maximum efficiency and with pruning occurring in-line within the container query process.
This approach completely eliminates any overhead from the federation process. Further
details of this technique are discussed in related patent applications that have been

incorporated herein.

It is clear from the discussion above that the distribution of compound multi-container
queries to the members of the container federation is a relatively simple process of
identifying the containers involved and launching each of the queries in parallel to the

server(s) that will execute it. Another optimization approach taken by the MitoPlex™ layer

124

WO 03/065177 PCT/US03/03151

is to identify whether two distinct MitoQuest™ queries involved in a full MitoPlex™ query
relate to the same container. In such a case, the system identifies the logic connecting the
results from each of these queries (via the AND, OR, NOT etc. operators that connect them)
and then attempts to re-formulate the query into another form that allows the logical
combinations to instead be performed at each container. In the preferred embodiment, the
system performs this step by combining the separate queries for that container into a single
larger query combined by a container supplied logical operator. The hit-list combination
logic in the MitoPlex™ layer is then altered to reflect the logical re-arrangements that have
occurred. Once again, all this behavior is possible by abstract logic in the MitoPlex™ layer
that has no specific dependency on any given registered container but is simply able to
perform these manipulations by virtue of the plug-in functions registered for each container.
These registered plug-in functions inform the MitoPlex™ and MitoQuest™ layers what
functionality the container can support and how to invoke it. This approach is therefore
completely open-ended and customizable to any set of containers and the functionality they
support. Examples of other container functionality might be an image server that supports
such querying behaviors as ‘looks like’, a sound/speech server with querying operations such
as ‘sounds like’, a map server with standard GIS operations, etc. All of these can be

integrated and queried in a coordinated manner through the system described herein.

The next issue to address is the manner in which the present invention auto-generates
and handles the user interface necessary to display and interact with the information defined
in the ontology. At the lowest level, all compound structures eventually resolve into a set of
simple building-block types that are supported by the underlying machine architecture. The
same is true of any type defined as part of an ontology and so the first requirement for auto-
generating user interface based on ontological specifications is a GUI framework with a set of
‘controls’ that can be used to represent the various low level building blocks. This is not
difficult to achieve with any modern GUI framework. The following images and descriptive
text illustrate just one possible set of such basic building blocks and how they map to the low

level type utilized within the ontology:

Referring now to Figure 6A, an example of how a short text field or numeric field
(such as those handled by the RDBMS container described above) might be displayed ina
control group.

125

WO 03/065177 PCT/US03/03151

Referring now to Figure 6B, one method for displaying a date in a control group is
shown. In this Figure, the date is actually being shown in a control that is capable of
displaying dates in multiple calendar systems. For example, the circle shown on the control
could be displayed in yellow to indicate the current calendar is Gregorian. Referring now to
Figure 6C, an example of an Islamic Hijjrah calendar being displayed is provided. The UI

layout can be chosen to include the calendar display option, for example.

Referring now to Figure 7A, the illustrated control group is an example of how one
might display and interact with a persistent reference field (‘4°). The text portion 705 of the
grouping displays the name field of the reference, in this case ‘InsuregencyAndTerrorism’,
while the list icon 710 allows the user to pop up a menu of the available values (see the
‘members’ field discussion under ET_PersistentRef above), and the jagged arrow icon 715

allows the user to immediately navigate to (hyperlink to) the item being referenced.

Referring now to Figure 7B, 7B provides an example of one way that a collection
reference field (‘@@’) might be displayed in an auto-generated user interface. In this case
the field involved is the ‘related’ field within the notes field of Datum. Note also that the
collection in this case is hierarchical and that the data has been organized and can be

navigated according to the ontology.

Referring now to Figure 8, one possible method for displaying variable sized text
fields (referenced via the char @ construct) is shown. Note that in this example, automatic
UI hyperlink generation has been turned on and thus any known item within the text (in this
case the names of the countries) is automatically hyperlinked and can be used for navigation
simply by clicking on it (illustrated as an underline). This hyperlinking capability will be
discussed further in later patents but the display for that capability may be implemented in
any number of ways, including the manner in which hyperlinks are displayed by web

browsers.

Referring now to Figure 9, this figure illustrates the manner in which an image

reference (Picture @picture) field could be displayed in an auto-generated user interface.

Many other basic building blocks are possible and each can of course be registered
with the system via plug-ins in a manner very similar to that described above. In all cases,
the human-readable label associated with the control group is generated automatically from

the field name with which the control group is associated by use of the function

126

WO 03/065177 PCT/US03/03151

TM_CleanFieldName() described in the Types Patent. Because the system code that is
generating and handling the user interface in this manner has full knowledge of the type
being displayed and can access the data associated with all fields within using the APIs
described previously, it is clear how it is also possible to automatically generate a user
interface that is capable of displaying and allowing data entry of all types and fields defined
in the ontology. The only drawback is the fact that user interfaces laid out in this manner
may not always look “professional’ because more information is required in order to group
and arrange the layout of the various elements in a way that makes sense to the user and is
organized logically. The system of this invention overcomes this limitation by extracting the
necessary additional information from the ontological type definition itself. To illustr;te this
behavior, a listing is provided in Appendix A that gives the pseudo-code ontological type
definition for the type Country (which inherits from Entity and thereby from Datum

described above) in the example ontology.

As can be seem from the listing above, the ontology creator has chosen to break down
the many fields of information available for a country into a set of introductory fields

followed by number of top-level sub-structures as follows:

geography - Information relating to the country’s geography

people - Information relating to the country’s people
government - Information relating to the country’s government
economy - Information about the country’s economy

communications- Information on communications capabilities

transport - Transport related information

military - Information about the country’s military forces
medical - Medical information

education - Education related information

issues - Current and past issues for the country involved

Because the code that generates the Ul has access to this information, it can match the

logical grouping made in the ontology.

Referring now to Figure 10, a sample screen shot of one possible display of the
Country record in the same UI layout theme described above (most data omitted) is provided.

In the illustrated layout the first page of the country display shows the initial fields given for

127

WO 03/065177 PCT/US03/03151

country in addition to the basic fields inherited from the outermost level of the Datum
definition. The user is in the process of pulling down the ‘page’ navigation menu 1020 which
has been dynamically built to match the ontology definition for Country given above. In
addition, this menu contains entries 1010 for the notes sub-field within Datum (the ancestral
type) as well as entries for the fields 1030 that country inherits from its other ancestral types.
In the first page, the UI layout algorithm in this example has organized the fields as two
columns in order to make best use of the space available given the fields to be displayed.
Since UI layout is registered with the environment, it is possible to have many different
layout strategies and appearances (known as themes) and these things are configurable for

each user according to user preferences.

Referring now to Figure 11, a sample embodiment of the geography page within
Country is shown. Presumably, the user has reached this page using the page navigation
menu 1020 described above. In this case, the UI does not have sufficient space to display all
fields of geography on a single page, so for this theme it has chosen to provide numbered
page navigation buttons 1110, 11120, 1130 to allow the user to select the remaining portions
of the geography structure content. Once again, different themes can use different strategies
to handle this issue. The theme actually being shown in this example is a Macintosh OS-9
appearance and the layout algorithms associated with this theme are relatively primitive

compared to others.

Referring now to Figure 12, a sample embodiment of the second sub-page of the
geography page within country is shown. As shown, the natural resources collection field
1210 is displayed as a navigable list within which the user may immediately navigate to the
item displayed simply by double-clicking on the relevant list row. More advanced themes in
the system of this invention take additional measures to make better use of the available
space and to improve the appearance of the user interface. For example, the size of the fields
used to display variable sized text may be adjusted so that the fields are just large enough to
hold the amount of text present for any given record. This avoids the large areas of white
space that can be seen in Figure 12 and gives the appearance of a custom UI for each and
every record displayed. As the window itself is resized, the Ul layout is re-computed
dynamically and a new appearance is established on-the-fly to make best use of the new

window dimensions. Other tactics include varying the number of columns on each page

128

WO 03/065177 PCT/US03/03151

depending on the information to be displayed, packing small numeric fields two to a column,
use of disclosure tabs compact content and have it pop-up as the mouse moves over the tab
concerned, etc. The possibilities are limited only by the imagination of the person registering
the plug-ins. To achieve this flexibility, the UI layout essentially treats each field to be
displayed as a variable sized rectangle that through a standard interface can negotiate to
change size, move position or re-group itself within the UL The code of the UI layout
module allows all the UI components to compete for available UI space with the result being
the final layout for a given ontological item. Clearly the matter of handling user entry into
fields and its updating to persistent storage is relatively straightforward given the complete

knowledge of the field context and the environment that is available in this system.

Referring now to Figure 13, an example of one part of a high-level ontology targeted
at intelligence is shown. This ontology has been chosen to facilitate the extraction of
meaning from world events; it does not necessarily correspond to any functional, physical or
logical breakdown chosen for other purposes. This is only an example and in no way is such
ontology mandated by the system of this invention. Indeed, the very ability of the system to
dynamically adapt to any user-defined ontology is one of the key benefits of the present
invention. The example is given only to put some of the concepts discussed previously in
context, and to illustrate the power of the ontological approach in achieving data organization
for the purposes of extracting meaning and knowledge. For simplicity, much detail has been
omitted. The key to developing an efficient ontology is to categorize things according to the
semantics associated with a given type. Computability must be independent of any concept
of a 'database' and thus it is essential that these types automatically drive (and conceal) the
structure of any relational or other databases used to contain the fields described. In this way,
the types can be used by any and all code without direct reliance on or knowledge of a

particular implementation.
Datum 1301 -- the ancestral type of all persistent storage.

Actor 1302 -- actors 1302 participate in events 1303, perform actions 1305 on stages
1304 and can be observed 1306.

Entity 1308-- Any 'unique' actor]302 that has motives and/or behaviors, i.e., that is not

passive

129

WO 03/065177 PCT/US03/03151

Country 1315-- a country 1315 is a unique kind of meta-organization with semantics of
its own, in particular it defines the top level stage 1304 within which events 1303 occur

(stages 1304 may of course be nested)

Organization 1316-- an organization 1316 (probably hierarchical)

Person 1317-- a personi317

SystemUser 1325-- a person 1317 who is a user of the system

Widget 1318-- an executable item (someone put it there for a purpose/motive!)

Object 1309-- A passive non-unique actor 1302, i.e., a thing with no inherent drives or

motives

Equipment 1319-- An object 1309 that performs some useful function that can be
described and which by so doing increases the range of actions 1305 available to an

Entity1308.

Artifact 1320-- An object 1309 that has no significant utility, but is nonetheless of value

for some purpose.

Stage 1304-- This is the platform or environment where events 1303 occur, often a
physical location. Stages 1304 are more that just a place. The nature and history of a
stage 1304 determines to a large extent the behavior and actions 1305 of the Actors 1302

within it. What makes sense in one stage 1304 may not make sense in another.

Action -- actions 1305 are the forces that Actors 1302 exert on each other during an event
1303. All actions 1305 act to move the actor(s) 1302 involved within a multi-
dimensional space whose axes are the various motivations that an Entity 1308 can have
(greed, power, etc.). By identifying the effect of a given type of action 1304 along these
axes, and, by assigning entities 1308 'drives' along each motivational axis and strategies

to achieve those drives, we can model behavior.

Observation — an observation 1306 is a measurement of something about a Datum 1301,

a set of data or an event 1303. Observations 1306 come from sources 1307.

General 1310-- A general observation 1301 not specifically tied to a given datum 1301.

130

WO 03/065177 PCT/US03/03151
Report 1321-- a report 1321 is a (partial) description from some perspective generally
relating to an Event1303.

Story 1326-- a news story describing an event 1303.

Image 1327-- a still image of an event 1303.

Sound 1329-- a sound recording of an event 1303.

Video 1328-- a video of an event 1303.

Map 1330-- a map of an event 1303, stage 1304, or entity 1308.
Regafding 1311-- an observation regarding a particular datum 1301.
Note 1322-- a descriptive text note relating to the datum 1301.

CrossRef 1323-- an explicit one-way cross-reference indicating some kind of named
'relationship' exists between one datum 1301 and another, preferably also specifying

‘weight’ of the relationship.

Delta 1324-- an incremental change to all or part of a datum 1301, this is how the effect

of the time axis is handled (a delta 1324 of time or change in time).

Relating 1312-- A bi-directional link connecting two or more data together with

additional information relating to the link.
Source 1307-- A source is a logical source of observations 1306 or other Data.

Feed 1313-- Most sources 1307 in the system consist of Client/Server servers that are
receiving one or more streams of observations 1306 of a given type, that is; a newswire
server is a source that outputs observations 1306 of type Story. In the preferred

embodiment, feed sources 1313 are set up and allowed to run on a continuous basis.

Query 1314-- sub-type of source 1307 that can be issued at any time, returning a
collection of observations 1306 (or indeed any Datum 1301 derived type). The Query

source type corresponds to one's normal interpretation of querying a database.

131

WO 03/065177 PCT/US03/03151

Event 1303-- An event is the interactions of a set of actors 1302 on a stage 1304. Events
1303 must be reconstructed or predicted from the observations 1306 that describe them.
It is the ability to predict events 1303 and then to adjust actions 1305 based on motives
(not shown) and strategies that characterizes an entity 1308. It is the purpose of an
intelligence system to discover, analyze and predict the occurrence of events 1303 and to
present those results to a decision maker in order that he can take Actions 1305. The
Actions 1305 of the decision maker then become a 'feed' to the system allowing the model
for his strategies to be refined and thus used to better find opportunities for the beneficial

application of those strategies occurring in the data stream impinging on the system.

Once the system designer has identified the ontology that is appropriate to allow the
system to understand and manipulate the information it is designed to access (in the example
above — understanding world events), the next step is to identify what sources of information,
published or already acquired, are available to populate the various types defined in the
system ontology. From these sources and given the nature of the problem to be solved, the
system designed can then define the various fields to be contained in the ontology and the
logical relationships between them. This process is expressed through the C* ontology
definition and the examples above illustrate how this is done. At the same time, awareness of
the desired user interface should be considered when building an ontology via the C*
specifications. The final step is to implement any ontology-specific scripts and annotations
as described in the Collections Patent. Once all this is done, all that is necessary is to auto-
generate all storage tables necessary for the system as described and then begin the process of

mining the selected sources into the system.

Having mined the information (a very rapid process), the system designer is free to
evolve this ontology as dictated by actual use and by the needs of the system users. Because
such changes are automatically and instantaneously reflected throughout the system, the
system is now free to rapidly evolve without any of the constraints implied by the Bermuda
Triangle problem experienced in the prior art. This software environment can be rapidly
changed and extended, predominantly without any need for code modification, according to
requirements, and without the fear of introducing new coding errors and bugs in the process.
Indeed system modification and extension in this manner is possible by relatively un-skilled
(in software terms) customer staff themselves meaning that it no longer requires any

involvement from the original system developer. Moreover, this sytem can, through the

132

WO 03/065177 PCT/US03/03151

ontology, unify data from a wide variety of different and incompatible sources and databases
into a single whole wherein the data is unified and searchable without consideration of
source. These two capabilities have for years been the holy grail of all software development

processes, but neither has been achieved—until now.

The foregoing description of the preferred embodiments of the invention has been
presented for the purposes of illustration and description. For example, although described
with respect to the C programming language, any programming language could be used to
implement this invention. Additionally, the claimed system and method should not be limited
to the particular API disclosed. The descriptions of the header structures should also not be
limited to the embodiments described. While the sample pseudo code provides examples of
the code that may be used, the plurality of implementations that could in fact be developed is
nearly limitless. For these reasons, this description is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are possible
in light of the above teaching. It is intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended hereto.

133

WO 03/065177

APPENDIX A

PCT/US03/03151

typedef struct

{

ET_DBInvokeRec

int32 options;

OSType dataType;
involved

OSType droneType;
(1f any)

int32 caller;
caller

ET_UniquelID anItemID;

char IPname [256] ;
name

PicHandle picH;
handle

char action[32];
invoker

char dataItemType [64];
ldataType)

char name [2561] ;

void* aDBSdatalIDptr;
record

void#* dataPtr;
data/fields

void#** dataHdl;
data/fields

ET Offset element;
reference

} ET DBInvokeRec;

//
/!

/!
//

//
//

/!
/!
/!

/!
/!

/!
/7
/7

invocation options
The data type

drone type involved
widget ID of original

globally unique ID
optional identifying

possible picture
action requested by
data type name (if

data item/event name
pointer to DB data

type specific
type specific

offset if collection

typedef void (*ET SymbolicFunc) (charPtr,void *,int32,int32);
typedef void (*ET_SymbolicReply) (charPtr,void *,int32,int32);

#define kGlobalSCOPE
#define kViewLParentSCOPE
launched us

#define kViewPackSCOPE
#define kLocalViewSCOPE
enclosing view

#define kThisWidgetSCOPE
widget

#define kWidgetParentSCOPE
widget's parent

Boolean OC_RegisterFunction
function

~32768

/7
//

/7
/7

/7
//

//

Global scope
Scope=view that

View pack scope
Scope is the

Scope is the current

Scope is this

Register a symbolic

int32 aWidgetID, // I:ID of defining
widget

charPtr aFuncName, // I:symbolic function
name

charbPtr aFuncDesc, // I:description of
function

short ancestorSpec, // I:scope:See notes

ET SymbolicFunc aFunctionPtr, // I:Function address

A-1

134

WO 03/065177

PCT/US03/03151

int32 options // I:various logical
options
); // R:TRUE for success
#define kFarFunction 0x00000001 // Far function (i.e.,
not near)
#define kNearFunction 0x00000000 // Near function (i.e.,
not far)
#define kDistinguishFuncPtrs 0x00000002 // Allow multiple
registrations
Boolean OC_DeRegisterFunction (// Remove fn. from
registry
int32 aWidgetID, // I:ID of defining
widget
charPtr aFuncName, // I:symbolic fn. name
short ancestorSpec, // 1:scope:see notes
ET_SymbolicFunc aMatchFuncAddr // I:Matching fn.
address or NULL
) ; // R:TRUE for success
Boolean OC DisableFunction (// Disable symbolic fn.
int32 aWidgetID, // I:defining widget ID
charPtr aFuncName, // I:symbolic fn. name
short ancestorSpec // I:scope:see notes
) ; // R:TRUE for success
Boolean OC_EnableFunction (// Enable symbolic
function
int32 aWidgetID, // I:defining widget ID
charPtr aFuncName, // I:symbolic fn. name
short ancestorSpec // I:scope:see notes
) ; // R:TRUE if state
changed
Boolean OC_FunctionIsDisabled (// Is function disabled?
int32 aWidgetID, // I:Defining widget ID
charPtr aFuncName, // I:Symbolic fn. name
short ancestorSpec // I:scope:see notes
) ; // R:TRUE if disabled
Boolean OC_DeRegisterAllFuncs (// Remove all widget
registrations
int32 aWidgetID // I:Widget ID (0 =
current)
) // R:TRUE for success
Boolean OC_CallSymbolicFunction (// call a symbolic
function
charPtr aFuncName, // I:symbolic fn. name
void *gFuncParameter, // I:fn. parameter (or
NULL)
ET_SymbolicReply aReplyFunc, // I:reply fn. address
(or NULL)
int32 aMatchWidgetID, // I:Matching widget ID
or 0
A-2

135

WO 03/065177

PCT/US03/03151

ET_SymbolicFunc aMatchFuncaAddr, // I:Matching fn. addr.
(or NULL)
int32 optilons // I:Various logical
options
) ; // R:TRUE for success
#define kRsrvdSymbOptsMask 0XFFF00000 // reserved options mask
#define kNoParameterDelete 0x10000000 // 'delete parameter
after calls
#define kNoNameAndIdOverride 0x20000000 // !'name and ID override
#define kNoNameOverride 0x40000000 // !'name override (see
CS_Invoke)
#define kPreferNearBehavior 0x08000000 // caller prefers a
near/modal
#define kNoGlobalSearch 0x04000000 // l!examine
globalregistry
#define kSymbParamTypeMask 0x00F00000 // param type mask
#define kSymbParamTypeInvRec 0x00100000 // parameter is
ET_IPInvokeRecPtr
#define kSymbParamTypeInteger 0x00200000 // parameter is a &long
#define kSymbParamTypeString 0x00300000 // parameter is a C
string
#define kSymbParamTypeHandle 0x00400000 // parameter is typed
handle
#define kSymbParamTypeViewRef 0x00500000 // parameter is a view
ref
int32 OC_CountSymbolicFunctions (// count functions
@scope
int32 aWidgetID, // I:defining widget ID
charPtr aFuncName, // I:symbolic function
name
int32Hdl *widgetIDs, // O:zero term. widget
ID list
Boolean includeSupressed // I:TRUE to include
disabled fns.
) ; // R:# widgets
registered
ET_SymbolicFunc OC_ResolveSymbolicFunction (// Get function address
int32 *aWidgetID, // I0:widget ID
int32 *aScopelD, // 0:ID of scope
widget (0 global)
Boolean *farFunction, // O:TRUE/FALSE far/near
charPtr aFuncName, // I:symbolic function
name
int32 aMatchWidgetID, // I:Matching widget ID
(or 0)
ET_SymbolicFunc aMatchFuncAddr, // I:Matching fn.
address or NULL
Boolean includeSupressed // I:TRUE includes
disabled fns.
) // R:Function pointer or
NULL
A-3

136

WO 03/065177

PCT/US03/03151

EngErr OC_SetSymbolicFuncData (// Set symb. fn. data
type
int32 aWidgetID, // I:defining widget ID
charPtr aFuncName, // I:name of the
symbolic function

Handle aDataHandle, // I:Handle for data to
be set

OSType aDataType, // I:The type of the
data to be set

ET_SymbolicFunc aMatchFuncAddr // I:Matching fn.addr.
or NULL

); // R:0 for success, else
error#
EngErr OC_GetSymbolicFuncData // Get function type &
info
int32 aWidgetID, // I:defining widget ID
charpPtr aFuncName, // I:name of the
symbolic function

Handle *aDataHandle, // O:Handle for attached
data

OSType *aDataType, // 0:The type of the

data .
int32 aMatchWidgetID, // I:Matching widget ID

or 0
ET_SymbolicFunc aMatchFuncAddr // I:Matching fn.addr.

(or NULL)

) ; // R:0 for success,else

Error #

EngErr OC_SetSymbolicFuncFlags (// Set function flags
int32 aWidgetID, // I:defining widget ID
charPtr aFuncName, // I:symbolic function

name
int32 theFlags, // I:flags value
int32 aMatchWidgetID, // I:Matching widget ID

or 0
ET_SymbolicFunc aMatchFuncAddr // I:Matching fn.addr.

(or NULL)

) ; // R:0 for success,else
error#

EngErr OC_GetSymbolicFuncFlags (// Get function flags

word
int32 aWidgetiID, // I:defining widget ID
charPtr aFuncName, // I:symbolic function

name
int32 *theFlags, // 0O:Flags word
int32 aMatchWidgetID, // I:Matching widget ID

or 0
ET_SymbolicFunc aMatchFuncAddr // I:Matching fn.addr.

(or NULL)

) // R:0 for success,else
error#
A-4

137

WO 03/065177

PCT/US03/03151

charHdl OC_GetSymbolicFuncDesc (// Get function
description
int32 aWidgetID, // I:defining widget ID
charPtr aFuncName, // I:symbolic function
name
int32 aMatchWidgetID, // I1:Matching widget ID
or 0
ET_SymbolicFunc aMatchFuncAddr // I:Matching £n.addr.
(or NULL)
) ; // R:descriptive text or
NULL
charHdl OC ListSymbolicFunctions (// get alphabetized fn.
list
int32 aWidgetID, // I:defining widget ID
short ancestorSpec, // I:scope:see notes
int32 *count // O:count of functions
Y // R:symbolic fn. list,
or NULL
Boolean OC_WidgetIDtoAncestorSpec (// widget ID to ancestor
Spec
int32 ownWidgetID, // I:ID of defining
widget
int32 aWidgetID, // I:ID of potential
ancestor
short *ancestorSpec // O:corresponding
ancestor spec
) // R:TRUE if ancestor
found
int32 OC_AncestorSpecToWidgetID (// ancestor spec to
widget ID
int32 aWidgetID, // 1:ID of defining
widget
short ancestorsSpec // I:Scope:see notes
) ; // R:Ancestor widget ID,
or 0
int32 OC_LowestCommonAncestor (// Find lowest shared
ancestor ID
int32 awidgetID1, // I:ID of first widget
int32 aWidgetID2 // I:ID of second widget
)i // R:widget ID or 0
Boolean DB _DefineHyperlinkDomain (// Define a hyperlink
domain
0SType aDataType, // I:The data type for
the domain
charPtr aDomainName, // I:C string for the
domain name
charPtr hyperlinkAction, // I:Action to invoke
int32 options // I:various logical
options
) ; // R:TRUE for success
A-5

138

WO 03/065177 PCT/US03/03151
#define kIsSystemDomain 0x00000001 // options - system
domain
#define kCaseInsensitiveDomain 0x00000002 // options - case
insensitive
#define kNoRecalcDomains 0x00000004 // options - suppress
recalculation
Boolean DB_UnDefineHyperlinkDomain (// Undefine a hyperlink
domain

charPtr aDomainName // I:domain name
) ; // R:TRUE for success
EngErr DB_AddToDomainDictionary (// BAdd a new target to a
domain
charbPtr aDomainName, // I:Domain name C
string
charPtr aTargetName, // I:Case insensitive
name
ET UniqueID aUniquelD, // I:A unique ID for
invoke
int32 options // I:Various logical
options
); // R:Zero for success,
else error#
#define kNoSaveDomainToFile 0x0001 // options - !save
domain to file
EngErr DB_SubFromDomainDictionary (// Remove a target from
domain
charPtr aDomainName, // I:Domain name C
string
charPtr aTargetName, // I:Case insensitive
name
int32 options // I:Various logical
options
); // R:0 for success, else
error#
void DB_NotifyHyperlinkChange (// Update UI to reflect
a change
void
) ; // R:void
Boolean DB_IsHyperlinkTarget (// Is string a hyperlink
target?
OSType *aDataType, // IO:See notes
charPtr aDomainName, // IO:See notes
charPtr aTargetName, // I:possible target
name
charPtr anAction, // IO:If INULL,
hyperlink action
ET_UniqueIDPtr aUniquelID, // I0:If INULL, holds
unique ID
int32Ptr numChars, // I0:If INULL, holds #
of chars
A-6

139

WO 03/065177 PCT/US03/03151
int32Ptr tokenSize, // I0:If INULL, holds
token size
int32 maxChar // I:Maximum char# to
examine, 0
) ; // R:TRUE if target
found
Boolean DB _HyperlinkToTarget (// Hyperlink to a target
OSType aDataType, // I:Data type (if
known), 0 all
charPtr aDomainName, // I:The domain or NULL
for all
charPtr aTargetName // I:possible target
) ; // R:TRUE if hyperlink
occurred
0SType DB_IsKnownDomain (// Is hyperlink domain
known?
charPtr aDomainName, // I:Domain name
Boolean *igSysDomain, // IO:TRUE if a system
domain
Boolean *jgheafDomain, // IO:TRUE if a leaf
domain
Boolean *igAutoActivate, // IO:TRUE if domain
auto-activates
Boolean *1sAutoCompact // IO:TRUE if domain
compacts
) ; // R:domain data type,0
otherwise
ET_LexHdl DB_IsActiveDomain (// Is hyperlink domain
active?
charPtr aDomainName // I:Domain name C
string
)i // R:domain dictionary,
else NULL
Boolean DB _ActivateDomain (// Activate a hyperlink
domain
charPtr aDomainName, // I:Domain name
(possibly partial)
Boolean compact // I:set TRUE to compact
) ; // R:TRUE for success
Boolean DB_DeActivateDomain (// Deactivate hyperlink
domain
charPtr aDomainName // I:Domain name
(possibly partial)
); // R:TRUE for success
Boolean DB_GetDomainAction (// Obtain the domain
taction'
charPtr aDomainName, // I:Domain name C
string
charPtr hyperlinkAction // 0:Holds the domain
'action'
) // R:TRUE for success
A-7

140

WO 03/065177

PCT/US03/03151

Boolean DB_SetDomainAutoFlags (

flags

charPtr aDomainName,
string

Boolean autoActivate,
activate @start

Boolean autoCompact
@activate

)i

/7
//
//
//
//

Set/Clear domain
I:Domain name C
I:TRUE to auto-
I:TRUE to compact

R:TRUE for success

typedef EngErr (*ET DomainPopFunc) (0SType,charPtr,charPtr, long) ;

Boolean DB_SpecifyDomalnPopulator (
populator fn.

//

Specify a domain

charPtr aDomainName, // I:Domain name C
string
ET DomainPopFunc aPopulatorFunc, // I:The domain
populator fn.
charPtr populatorDesc // I:Description of fn.
) ; // R:TRUE for success
EngErr DB_CallDomainPopulator (// Call the domain
'populator’
charPtr aDomainName, // I:Domain name C
string
long aParam // I:pass custom
parameter
) ; // R:0 success, else
error #
Boolean DB_UseDefaultDomainPopulator (// use default domain
populator
charPtr aDomainName // I:Domain name C
string
) ; // R:TRUE for success
Boolean DB_FindNextHyperlinkInText (// Find next hyperlink
in text
OSType aDataType, // I:Data type, 0 = all
active
charPtr aDomainName, // I:Domain name, NULL
for all
charPtr text, // I:Text being scanned
int32Ptr context, // I0:Context storage
location
int32Ptr startChar, // I0:holds starting
char #
int32Ptr tokenSize, // I0:holds # of chars
in name
int32 maxChar // I:Maximum char#, O
for all
) // R:TRUE if hyperlink
found
ET LexHdl DB_ListKnownDomains (// Get Lex DB of known
domains
A-8

141

WO 03/065177

PCT/US03/03151

Boolean systemDomains // I:TRUE/FALSE =
system/user
)Y // R:Lex DB of domains,
else NULL
charHdl DB ListActions (// get list of all
invoker actions
OSType aDataType, // I:The data type (or
0)
charPtr aDatalItemType // I:data type name,
NULL = all
) // R:action list, NULL
if error
Boolean DB_DataTypeToName (// obtain the full data
type name
OSType aDataType, // I:Data type
charPtr aBuffer // I0:Contains full name
) ; // R:TRUE for success
OSType DB_NameToDataType (// get data type from
[alt.] name
charpPtr aDataTypeString, // I:Full data type/alt.
name
Boolean noResolveAlts // 1I:TRUE suppresses
alt. names
)Y // R:data type, else 0
voild DB_O0STypeToString (// Convert long to
O0SType string
long anOStype, // I:A long to be
converted
charPtr cp // O:Buffer to contain
output
) ; // R:void
Boolean DB OverrideForTypeAndItemExists (// overridden for type &
itemID?
OSType aDataType, // I:data type(0 use
aDataItemType)
charPtr aDataItemType, // I:data type string
(or NULL)
charPtr action, // I:Action (NULL =
"Display")
ET SymbolicFunc *aFunction, // O:function address on
exit
int32 *ancestorSpec, // O:ancestor spec on
exit
Handle *aFuncDataHandle, // O:symb. fn. data
Handle
OSType *aFuncDataType, // O:Fn. associated data
type
int32 *aFuncFlags, // O:function flags word
ET UniqueID anItemID // I:The unique item ID
) ; // R:TRUE if override
exists
A-9

142

WO 03/065177

PCT/US03/03151

Boolean DB_OverrideForTypeAndItem (// Register type & ID
override
OSType aDataType, // I:The data type or 0
charPtr aDataIltemType, // I:data type name or
NULL
charPtr action, // I:Action (NULL =
"Display")
short ancestorSpec, // I:scope:see notes
ET_ SymbolicFunc aSymbFuncToCall, // I:Symbolic function
to call
ET UniqueID anItemID, // I1:The unique item ID
Boolean farFunction," // .
I:TRUE/FALSE'far'/'near’ fn.
Handle aFuncDataHandle, // I:Associated fn. data
handle
OSType aFuncDataType, // I:Data type of
‘aFuncDataHandle’
int32 aFuncFlags // I:Flags for symbolic
function
) ; // R:TRUE for success
Boolean DB_UndoOverrideForTypeAndItem (// Undo type & ID
override
0SType abDataType, // I:The data type or 0
charbPtr aDataltemType, // I:data type name, or
NULL
charPtr action, // I:Action (NULL is
"Display")
short ancestorSpec, // I:scope:see notes
ET UniqueID anItemID // I:unique item ID (0 =
all)
) // R:TRUE for success
Boolean DB DisableOverrideForTypeAndItem (// Disable by type,ID &
scope
0SType aDataType, // I:The data type or 0
charPtr aDataltemType, // I:Data type name or
NULL
charPtr action, // I:Action (NULL is
"Display")
short ancestorSpec, // I:scope:see notes
ET _UniqueID anTtemID // I:Unique item ID
(0=all)
) ; // R:TRUE for success
Boolean DB_EnableOverrideForTypeAndItem (// Enable by type, ID
and scope
OSType aDataType, // 1:The data type or 0
charPtr aDataItemType, // I:Data type name or
NULL
charprtr action, // I:Action (NULL is
"Display™")
short ancestorSpec, // I:scope:see notes
ET_UniquelID anItemID // I:The unique item ID
)i // R:TRUE if disabled
A-10

143

WO 03/065177

PCT/US03/03151

Boolean DB_OverrideForType // Override by action &
type
0SType aDataType, // I:The data type or 0
charPtr aDataltemType, // I:Data type name or
NULL
charPtr action, // I:Action (NULL is
"Display")
short ancestorSpec, // I:scope:see notes
ET_SymbolicFunc aSymbFuncToCall, // I:Symbolic function
Boolean farFunction, // I:TRUE/FALSE far/near
fn.
Handle aFuncDataHandle, // I:Function data
handle
0SType aFuncDataType, // I:data handle type
int32 aFuncFlags // I:Function flags
// R:TRUE for success
Boolean DB_UndoOverrideForType (// undo override by
action & type
0SType aDataType, // I:Data type or 0
charPtr aDataIltemType, // I:Data type name or
NULL
charPtr action, // L:Action (NULL is
"Display")
short ancestorSpec // I:scope:see notes
// R:TRUE for success
Boolean DB_DisableOverrideForType (// Disable by type &
action
0SType aDataType, // I:The data type or 0
charPtr aDataItemType, // I:Data type name or
NULL
charPtr action, // I:Action (NULL is
"Display")
short ancestorSpec // I:scope:see notes
// R:TRUE for success
Boolean DB_EnableOverrideForType (// Enb. override by type
& action
0SType aDataType, // I:The data type or O
charPtr aDataltemType, // I:Data type name or
NULL
charPtr action, // I:Action (NULL is
"Display")
short ancestorSpec // I:scope:see notes
// R:TRUE if disabled
Boolean DB_OverridesForTypeDisabled (// Overrides by type
disabled?
0SType aDataType, // I:Data type or 0
charPtr aDataltemType, // I:Data type name or
NULL
charPtr action, // I:The action (NULL is
"Display")
short ancestorSpec // I:scope (see notes)
// R:TRUE if disabled
A-11

144

WO 03/065177

PCT/US03/03151

Boolean DB OverridesForTypeAndItemDisabled (// Type & ID overrides
disabled?
OSType aDataType, // I:The data type or 0
charPtr aDataltemType, // I:Data type name or
NULL
charPtxr action, // I:Action (NULL is
"Display")
short ancestorSpec, // I:scope:see notes
ET UniqueID anTtemID // I:The unique item ID
// R:TRUE if disabled
Boolean DB_OverrideForTypeExists (// type overridden ?
0SType aDataType, // I:The data type or 0
charPtr aDataIltemType, // 1:Data type name or
NULL
charPtr action, // I:Action (NULL is
"Display")
ET SymbolicFunc *aFunction, // O:function address on
exit
int32 *ancestorSpec, // O:ancestor spec on
exit
Handle *aFuncDataHandle, // O:attached data
0SType *aFuncDataType, // O:type of
‘aFuncDataHandle’
int32 *aFuncFlags // O:function flags word
// R:TRUE if override
exists
Boolean DB_DefineInvoker // define type Invoker
0SType aDataType, // I:Data type
charPtr actionName, // I:Action name
ET_dbvViewInvoker anInvokerFn // I:function to call
// R:TRUE for success
ET _ViewHdl DB_Invoke // Invoke action handler
0SType aDataType, // I:Data type
charPtr actionName, // I:Action name or NULL
ET DBInvokeRecPtr iR, // I0:The invoker record
int32 options // I:Various logical
options
// R:View handle or NULL
ET dbViewInvoker DB DoesInvokerExist (// Does an invoker
exist?
OSType aDataType, // I:Data type
charPtr actionName // I:Action name
// R:Invoker function
address
Boolean DB_UnDefineInvoker // remove existing
invoker £n.
OSType aDataType, // I:Data type
charPtr actionName // I:Action name
// R:TRUE if invoker
removed
A-12

145

WO 03/065177

PCT/US03/03151

int32 PU_CursorToHyperlink (
hyperlink

// Cursor position to

OSType *aDataType, // IO:data type if a
hyperlink

charPtr aDomainName, // I0:domain name if
hyperlink

charPtr aTargetName, // I0:target string if
hyperlink

charPtr anAction, // IO:action if
hyperlink

ET_UniqueIDPtr aUniquelID, // IO:unique ID if
hyperlink

Boolean selectHyperlink // I:If TRUE, selects
hyperlink

) ; // R:text hyperlink
index or 0
void PU NotifyHyperlinkChange (// Update any UI for
hyperlinks
void
)i // R:void
60092186_2.DOC
A-13

146

WO 03/065177 PCT/US03/03151

CLAIMS

1) A system supporting synchronous and asynchronous, inter-thread function calls

comprising:

a threaded environment, wherein such threaded environment associates arbitrary data
with one or more threads and includes a hierarchical nesting of thread contexts with
one or more corresponding Ul context relationships;

one or more function registries, wherein such registries are associated with one or
more contexts in the threaded environment; and

an API, wherein such API is capable of invoking functions by name with the

parameters supplied by a caller.

2) The system of claim 1, wherein the threaded environment associates function registries

with one or more threads.
3) The system of claim 1, wherein each function registry includes an ancestral scope.

4) The system of claim 3, wherein the function registries further include a global registry has

an ancestral scope that incorporates all other function registries.

5) The system of claim 1, wherein the function registries are capable of registering one or

more functions by name.

6) The system of claim 5, wherein the function registries are capable of registering one or
more functions at a given ancestral scope and associating such functions with one or more

threads.

7) The system of claim 1, wherein the threaded environment is capable of passing events

containing messages between threads.

8) The system of claim 1, wherein the threaded environmet is capable of retrieving threads

based on a unique thread identifier.
9) The system of claim 6, wherein the API supports searches of the registered functions.

10) The system of claim 9, wherein the API supports searches of the registered functions in

an order determined by the ancestral scope of such functions.

147

WO 03/065177 PCT/US03/03151

11) The system of claim 10, wherein the API supports execution of the registered function(s)

located responsive to the search.

12) The system of claim 6, wherein the API associates arbitrary data and logical flags with

registered functions.

13) The system of claim 11, wherein the API associates arbitrary data and logical flags with

registered functions by direct calls to functions included in such APL

14) The system of claim 11, wherein the API associates arbitrary data and logical flags with

registered functions in response to an event.

15) The system of claim 11, further comprising a reply system, wherein such reply system
returns any results obtained from executing one or more registered functions to the calling

context in a synchronous manner.

16) The system of claim 11, further comprising a reply system, wherein such reply system
returns any results obtained from executing one or more registered functions to the calling

context in a asynchronous manner.

17) The system of claim 11, wherein the API includes the ability to inhibit or enable

execution of one more registered functions by ancestral scope.
18) The system of claim 1, further comprising one or more widgets.

19) The system of claim 18, wherein the widgets include one or more widgets nested into

another widget.

20) The system of claim 19, wherein the widgets include one more widgets that can cause

another widget to be executed.

21) The system of claim 19, wherein one widget is nested into another widget up to an

arbitrary depth, wherein such depth does not to exceed 32767.
22) The system of claim 19, further comprising a User Interface for displaying data to a user.

23) The system of claim 22, wherein the User Interface includes one or more hyperlinks to a

target.

148

WO 03/065177 PCT/US03/03151

24) The system of claim 23, wherein the hyperlinks target data stored within an ontological

framework.

25) The system of claim 24, further comprising a display handler for displaying the target
when the hyperlink is selected.

26) The system of claim 25, wherein the display handler is capable of calling one or more

widgets when the hyperlink is selected.

27) The system of claim 22, further comprising system-wide and user-specific hyperlink

domains.

28) The system of claim 27, wherein the system-wide and user-specific hyperlink domains

are created using the lexical analyzer claimed in the Lexical Patent.

29) A method for providing a user-driven user interface to system data stored according to a

system ontology, comprising the steps of:
registering one or more functions with a thread,;
defining a scope for such registered functions;
searching for a set of named functions based on the scope assigned to such functions;

altering the characteristics of any text or text portion displayed within the user

interface based on one more more hyperlink dictionary(s);

linking such text or text portion, as defined in the hyperlink dictionary(s), to system

data stored using the system ontology, and
responsive to user selection of a hyperlink:
executing one or more functions located responsive to the step of searching; and
navigating to a display handler for display of the associated system data.

30) The method of claim 29, further comprising the step of overriding the execution of one or

more functions located responsive to the step of searching.

149

WO 03/065177 PCT/US03/03151

31) The method of claim 30, wherein the step of overriding the execution of one or more

functions is based on the scope of such functions.

32) The method of claim 29, further comprising the step of associating a type with each

registered function.

33) The method of claim 32, further comprising the step of associating a unique system ID

with each registered function.

34) The method of claim 33, further comprising the step of adding a type dependant wrapper

layer to one or more registered functions.

35) The method of claim 34, wherein the step of overriding the execution of one or more

functions is based on the type associated with such functions.

36) The method of claim 34, wherein the step of overriding the execution of one or more

functions is based on the unique system ID associated with such functions.

37) The method of claim 29, wherein the step of altering the characteristics of text or text

portion is based on a system-wide hyperlink dictionary.

38) The method of claim 29, wherein the step of altering the characteristics of text or text

portion is based on a user hyperlink dictionary.

39) The method of claim 34, wherein the step of executing one or more functions includes

executing a function associated with a specific system ID when present at a given scope.

40) The method of claim 29, further comprising the step of creating one or more hyperlink

dictionary(s) by traversing one or more hierarchical databases.

41) The method of claim 40, further comprising the step of activating one or more hyperlink
dictionary(s).

42) The method of claim 41, wherein the step of altering the characteristics of text only

includes using active hyperlink dictionary(s).

43) The method of claim 42, wherein the step of activating one or more hyperlink
dictionary(s) includes activating hyperlink dictionary(s) based on user input to the user

interface.

150

WO 03/065177 PCT/US03/03151

44) The method of claim 29, further comprising the step of invoking other named logical

actions responsive to input to the user interface.

151

	Abstract
	Bibliographic
	Description
	Claims

