wo 2014/122295 A2 |[IN I N0FO 0O OO O O Y O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

14 August 2014 (14.08.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/122295 A2

(51
eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification: Not classified

International Application Number:
PCT/EP2014/052494

International Filing Date:
7 February 2014 (07.02.2014)

Filing Language: English
Publication Language: English
Priority Data:
PCT/EP2013/052476

7 February 2013 (07.02.2013) EP
1302415.3 12 February 2013 (12.02.2013) GB

Applicant: QATAR FOUNDATION [QA/QA]; PO Box
5825, Doha (QA).

Inventors: HOARTON, Lloyd; Forresters, Sherborne
House, 119-121 Cannon Street, London Greater London
EC4N 5AT (GB). TANG, Nan; Qatar Foundation, PO Box
5825, Doha (QA). WANG, Jiannan; Qatar Foundation,
PO Box 5825, Doha (QA).

Agent: HOARTON, Lloyd; Forresters, Sherborne House,
119-121 Cannon Street, London Greater London EC4N
SAT (GB).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: METHODS AND SYSTEMS FOR DATA CLEANING

(57) Abstract: A method for cleaning data stored in a database, the method comprising providing a set of fixing rules. Each fixing
rule incorporates a set of attribute values that capture an error in a plurality of semantically related attribute values, and a determin -
istic correction which is operable to replace one of the set of attribute values with a correct attribute value to correct the error. The
method further comprises comparing at least two of the fixing rules with one another to check that the error correction carried out by
one fixing rule is consistent with the error correction carried out by another fixing rule.

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

Title: Methods and Systems for Data Cleaning

The present invention relates to methods and systems for data cleaning and
more particularly relates to methods and systems for repairing errors in
attribute values in a database.

There are numerous known methods and systems for cleaning data in a
database. The term “cleaning” is used herein to mean correcting or repairing
errors in values or attribute values which are stored as information in a

database.

The following examples illustrate the drawbacks of the state-of-the-art work in
the area of data cleaning.

Consider a database D of travel records. The database is specified by the

following schema:

travel (hame,country,capital,city,conf)
Here a travel tuple specifies a person, identified by name, has travelled to
conference (conf), held at the city of the country and its capital. Example

instances of travel are shown in figure 1 of the accompanying drawings.

The following four techniques may be used to detect and repair errors in the
database of figure 1.

(1) Integrity constraints

A functional dependency (FD) is used to specify the consistency of travel data
D as:

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

¢@1: travel([country] — [capital])

where @1 asserts that country uniquely determines capital.

The FD @1 detects that in the database in figure 1, the two tuples (r1,r2)
violate 1, since they have the same country values but different capital
values, so do (r1,r3) and (r2,r3). However, @1 does not tell us which attributes

are wrong and what values they should be changed to.

Other constraints, such as conditional functional dependencies (CFDs) or
denial constraints may also be introduced to detect various errors. However,

these other constraints are also not able to repair data.
Using such integrity constraints, existing heuristic based approaches may
choose any of the three values, Beijing, Shanghai, or Tokyo to update

r1[capital]-r3[capital].

(2) User gquided repairs

It is known to clean data using repairs which are guided by users. Assuming
that the three violations among tuples r1—r3 have been detected as in (1), a
typical user guided repair raises a question to users such as: Which is the
capital of China: Beijing, Shanghai, or Tokyo?

One can assume that the users pick Beijing as the capital of China. This
corrects the erroneous value r2[capital], from Shanghai to Beijing. However,
the error in r3 should be r3[country], which should be Japan instead of China.
The response from the users is therefore not helpful to fix the error in r3.
Worse still, the change prompted by the uses will introduce a new error as it
changes r3[capital] from Tokyo to Beijing.

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

(3) Editing rules

Editing rules can be used to capture and repair errors. Master data stores
correct information about countries and their capitals. The schema of the
master data is:

cap (country,capital).

A master relationship between the attributes in the data in figure 1 is shown in
figure 2 of the accompanying drawings.

A conventional editing rule w1 is defined on two relations (travel,cap) as:

w1 : ((country,country) — (capital,capital),tp1[country] = ())

The editing rule w1 states that: for a tuple r in the travel database of figure 1, if
rf[country] is correct and it matches a tuple s in relation cap, r[capital] can be
updated using the value s[capital] drawn from the master data cap.

For instance, to repair r2 in the database of figure 1, r2 is initially matched to
s1in the master data. Users are then asked to verify that r2[country] is indeed
China, and the rule then updates r2[capital] to Beijing. Similarly, r4[capital] can
be corrected to be Ottawa by using w1 and s2 in Dm, if users verify that
r4[country] is Canada. The case for r3 is more complicated since r3[country] is
Japan and not China. Therefore, more effort is required to correct r3.

(4) Extract Transform Load (ETL) rules

A typical task in an ETL rule is a lookup operation, assuming the presence of a
dictionary (e.g., the master data Dm in figure 2). For each tuple r in D in the
database of figure 1, assuming attribute country is correct, the rule will lookup
Dm and update the attribute values of capital in D. In this case, the rule
corrects r2[capital] (resp. r4[capital]) to Beijing (resp. Ottawa). However, the

3

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

rule then introduces a new error also messes by changing the value of
r3[capital] from Tokyo to Beijing, similar to the case (2) above.

The above four repair examples illustrate the following problems with such

conventional techniques:

(@) Heuristic methods for repairing data based on integrity constraints do not
guarantee to find correct fixes. Worse still, they may introduce new errors

when trying to repair the data, as in case (1) above.

(b) It is reasonable to assume that users may provide correct answers to verify
data. However, new errors can still be introduced by using user provided

answers, such as in case (2) above.

(c) Master data (or a dictionary) that is guaranteed correct is a feasible repair
option. However, it is prohibitively expensive to involve users for each data
tuple correction (case (3)), or to ensure that certain columns are correct
(case (4)).

There is therefore a need for improved data cleaning rules which seek to

overcome the above problems.

According to one aspect of the present invention, there is provided, a method
for cleaning data stored in a database, the method comprising providing a set
of fixing rules, each fixing rule incorporating a set of attribute values that
capture an error in a plurality of semantically related attribute values, and a
deterministic correction which is operable to replace one of the set of attribute
values with a correct attribute value to correct the error, wherein the method
further comprises comparing at least two of the fixing rules with one another to
check that the error correction carried out by one fixing rule is consistent with

the error correction carried out by another fixing rule.

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

Preferably, the method comprises comparing all fixing rules in the set of fixing

rules pairwise with one another.

Conveniently, the method comprises applying at least two of the fixing rules to
a tuple of attribute values to check whether the at least two fixing rules apply
different corrections to the tuple, thereby indicating that the at least two fixing

rules are not consistent with one another.

Advantageously, the method comprises identifying a tuple of attribute values
that satisfies two of the fixing rules and applying the two fixing rules to the
tuple alternately in different orders to determine if the two fixing rules apply
different error corrections to the tuple when the fixing rules are applied to the
tuple in different orders, thereby indicating that the fixing rules are not

consistent with one another.

Preferably, the method further comprises combining at least part of two
inconsistent fixing rules with one another to produce one or more modified

fixing rules which are consistent with one another.

Conveniently, the method comprises repeating the comparison between at
least two of the fixing rules until the method identifies that all of the fixing rules

in the set of fixing rules are consistent with one another.

Advantageously, the method comprises outputting at least two fixing rules that
are not consistent with one another to a user so that the user can amend or

delete at least one of the fixing rules to remove the inconsistency.

Preferably, the method further comprises applying at least one of the fixing
rules to a plurality of tuples stored in a database to detect if at least one of the
tuples comprises the respective set of attribute values that captures the error
and, if the respective set of attribute values is detected, applying the

deterministic correction to correct the error in the at least one tuple.

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

According to another aspect of the present invention, there is provided a
method for providing a set of fixing rules, each fixing rule incorporating a set of
attribute values that capture an error in a plurality of semantically related
attribute values, and a deterministic correction which is operable to replace
one of the set of attribute values with a correct attribute value to correct the
error, wherein the method comprises applying at least one of the fixing rules to
a plurality of tuples stored in a database to detect if at least one of the tuples
comprises the respective set of attribute values that captures the error and, if
the respective set of attribute values is detected, applying the deterministic
correction to correct the error in the at least one tuple.

Preferably, the method comprises applying a plurality of the fixing rules to the
tuples stored in the database, the method applying each fixing rule only once

to a respective tuple.

Conveniently, the method comprises allocating an attribute to each tuple which
indicates each fixing rule that has been applied to the tuple.

Advantageously, the method comprises incrementing at least one counter to

record when a fixing rule is applied to a tuple.

Preferably, each counter is a hash counter which records the number of tuples
that correspond to each fixing rule.

Conveniently, the method further comprises generating an inverted list of a
plurality of fixing rules, the inverted list comprising the plurality of fixing rules
indexed according to at least one attribute value of each respective fixing rule.

Advantageously, the method comprises generating the inverted list only once
during the operation of the method.

Preferably, the fixing rule comprises at least one similarity operator which is
operable to detect variants of attribute values.

6

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

Conveniently, the fixing rule is operable to use a wildcard attribute value in the
set of attribute values.

Advantageously, the fixing rule is operable to detect the negation of an

attribute value.

Preferably, the method comprises providing a plurality of fixing rules and
applying at least one of the plurality of fixing rules to the database.

According to another aspect of the present invention, there is provided a
system for cleaning data stored in a database, the system being operable to
perform the method of any one of claims 1 to 19 defined hereinafter.

According to a further aspect of the present invention, there is provided a
tangible computer readable medium storing instructions which, when

executed, perform the method of any one of claims 1 to 19 defined hereinafter.
So that the present invention may be more readily understood, embodiments
of the present invention will now be described, by way of example, with

reference to the accompanying drawings, in which:

Figure 1 is a table showing data in an example database D for an instance of

schema Travel,

Figure 2 is a table showing data in an example database Dy, for an instance of
schema Cap,

Figure 3 is a table showing an example of two fixing rules,

Figure 4 is a workflow diagram illustrating a method for ensuring the

consistency in fixing rules,

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

Figure 5 is an algorithm for checking the consistency of fixing rules using rule

characterisation,

Figure 6 is a table illustrating the resolution of conflicts in fixing rules,

Figure 7 is a chase-based repairing algorithm,

Figure 8 is a linear repairing algorithm,

Figure 9 is a diagram illustrating an example of the operation of a linear

repairing algorithm,

Figure 10 is a table of example functional dependencies,

Figures 11 (a-b) are graphs showing a comparison between errors corrected

by fixing rules and conventional editing rules,

Figures 12 (a-b) are graphs showing the efficiency of the fixing rule

consistency check,

Figures 13 (a-h) are graphs showing the accuracy of data repair, and

Figures 14 (a-b) are graphs showing the efficiency of data repair.

2. Fixing Rules

An embodiment of the present invention utilises a set of data cleaning rules
that not only detect errors from semantically related attribute values, but also
automatically correct these errors without necessarily using any heuristics or

interacting with users.

A data fixing rule of an embodiment of the invention contains an evidence

pattern, a fact and a set of negative patterns. When a given tuple matches

8

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

both the evidence pattern and the negative pattern of the rule, it is identified as
an error, and the fixing rule will use the fact to correct the tuple.

This is possible by combining an evidence pattern, negative patterns and a
fact into a single data fixing rule. The evidence pattern is a set of values with
each value for one attribute. The negative patterns are a set of attribute values
that capture an error on one attribute from semantically related values. The

fact specifies a deterministic way to correct the error.

Consider a tuple t in relation travel, an example fixing rule @1 is: for t, if its

country is China and its capital is Shanghai or Hong Kong, t[capital] should be

updated to Beijing.

This rule makes corrections to attribute t[capital], by taking the value from 1,

if t is identified by @1 that current value t[capital] is wrong.

Another fixing rule @2 is: for t in travel, if its country is Canada and its capital is

Toronto, t[capital] should be updated to Ottawa.

Consider the database in figure 1.

e Fixing rule @1 detects that r2[capital] is wrong, since r2[country] is
China, but r2[capital] is Shanghai. Rule @1 will then update t2[capital] to
Beijing.

e Fixing rule @2 detects that r4[capital] is wrong, and then corrects it to

Ottawa.

Fixing rules @1 and @2 are summarised in figure 3 of the accompanying

drawings.

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

After applying @1-@2, two errors (r2[capital], r4[capital]) have been fixed,

while one remains (r3[capital]).

The above example indicates that:

(a) Fixing rules make dependable fixes, which do not introduce errors as in the
heuristics rule in case (1) described above.

(b) Fixing rules do not claim to correct all errors, e.g., the combination (China,
Tokyo). This combination may even be difficult for users to correct.

(c) Fixing rules neither require master data (3,4), or assume some attributes to
be correct (2,4), nor interact with the users (2,3).

Fixing Rules - Syntax

A fixing rule @ defined on a relation R is of the form (((X,tp[X]),(B,-Tp[B])) —
+tp[B]) where:

1. X is a set of attributes in attr(R), and B is an attribute in attr(R) \ X. Here, the

symbol '\' represent set minus;

2. tp[X] is a set of attribute values in X, referred to as the evidence pattern. For

each A € X, tp[A] is a constant in dom(A);

3. -Tp[B] is a finite set of constant values in dom(B), referred to as the negative
patterns of B; and

4. +tp[B] is a constant value in dom(B) \ -Tp[B], referred to as the fact of B.

Intuitively, the evidence pattern tp[X] of X, together with the negative patterns -

Tp[B] of B impose the condition to determine whether a tuple contains an error

10

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

on attribute B, and the fact +tp[B] of B indicates how to correct the error on
attribute B.

Note that the above condition 4 enforces that the correct value (i.e., the fact) is

different from any known wrong values (i.e., negative patterns).

A tuple t of R matches a rule @ : (((X,tp[X]),(B,-Tp[B])) — +tp[B)), if
(i) t{X] = Tp[X], and
(ii) t{B] € -Tp[B].
Consider the fixing rules described in the above example. The rules can be

formally expressed as follows:

@1: ((([country],[China]),(capital,{Shanghai,Hong Kong}))— Beijing)

@2: ((([country],[Canadal]),(capital,{Toronto})) — Ottawa)

In both 1and @2, X consists of country, B is capital. The pattern of @1 states

that, for a tuple, if its country is China and its capital value is in the set
{Shanghai, Hong Kong}, its capital value should be updated to Beijing.

Consider the database D in figure 1. Tuple r1 does not match rule 1, since

ri[country] = China, but r1[capital] €{Shanghai, Hong Kong}. On the contrary,

tuple r2 matches rule @1, since 2[country] = China, and r2[capital] €

{Shanghai, Hong Kong}. Similarly, we have r3 matches @1 and r4 matches

Q2.

Fixing Rules — Semantics

A fixing rule @ applies to a tuple t, denoted by t —» t', if

(1) t matches @, and

11

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

(2) t' is obtained by the update t[B] := +tp[B].

That is, if {{X] agrees with tp[X] and t[B] appears in the set -Tp[B], then +tp[B]
is assigned to t[B]. Intuitively, if {{X] matches tp[X] and t[B] matches some
value in -Tp[B], it is dependable to judge that t[B] is erroneous and hence, it is
reliable to update t[B] to +tp[B]. This yields an updated tuple t' with t'[B] =
+tp[B] and t[R \ {B}] = t[R \ {B}].

Fixing rules are quite different from integrity constraints, such as CFDs.
Integrity constraints have static semantics: they only detect data violations for
given constraints, but they do not tell how to change resolve them. In contrast,

a fixing rule @ specifies an action: applying @ to a tuple t yields an updated t'.

Editing rules have a dynamic semantics. In contrast to them, fixing rules (a)
neither require the presence of master data or confidence values placed on

attributes, and (b) nor interact with the users.

Fixing rules are different from Extract Transform Load (ETL) rules which refer
to a process in database usage and especially in data warehousing that
involves: (a) Extracting data from outside sources, (b) Transforming it to fit
operational needs (which can include quality levels), and (c) Loading it into the
end target e.g., database. Fixing rules, on the other hand, focus on detect
errors from attribute values that depend on each other. Fixing rules can

capture errors that ETL rules fail to detect.

In one embodiment, ETL rules are used to extract data from a source and
fixing rules are then used to clean the extracted data.

Heuristic solutions, which use integrity constraints, may be used in addition to

fixing rules. That is, fixing rules can be used initially to find dependable fixes
and then heuristic solutions can be used to compute a consistent database.

12

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

Editing rules and fixing rules should be used for different targets. Editing rules
are used for critical data, which needs heavy involvement of experts to ensure,
for each tuple, that the attributes are correct. Fixing rules, on the other hand,
can be used for more general data cleaning applications that cannot afford to

involve users to clean each tuple.

Fixing Rule Algorithm

Recall that when applying a fixing rule @ to a tuple t, t[B] is updated with the

value +tp[B]. To ensure that the change makes sense, the values that have
been validated to be correct should remain unchanged in the following

process. That is, after applying @ to t, the set X U {B} of attributes should be

marked as correct for tuple t.

The following algorithm is based on the above observation.

Algorithm. ApplyFixingRules
input: a set Z of fixing rules, and a tuple t
output: a repaired tuple t'

(let V denote the set of attributes that are validated to be correct, initially
empty)
step1: find a rule @ in Zthat can be applied to t;

step2: if such rule @ exists, update t to t' using @, extend V to include
validated attributes w.r.t. @, and go back to step (1);

step3: if no such rule @ exists, return t'.

Note that the above algorithm will terminate, since the number of validated
attributes in V will increase monotonically, up to the total number of attributes
in relation R.

Data Fixing Rule Extensions

13

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

(1) Similarity operators

Domain-specific similarity functions are used in one embodiment to replace all
equality comparisons. This makes it easier to capture typographical errors
(e.g., Ottawo) and different spelling variants (e.g., Hong Kong and Peking), as
opposed to including them as negative patterns in fixing rules.

(2) Wildcard
The wildcard " may be allowed in the pattern. For instance, a fixing rule can
be extended as:

@":((([country],[China]),(capital, *)) — Beijing)

Intuitively, the rule @' assumes that for a tuple t, tfcountry] is correct, if

tfcountry] is China. No matter what value that t[capital] takes, @' will update

t[capital] to Beijing. This is equivalent to the ETL lookup operations.

(3) Negation
In one embodiment, negations are added to the match conditions. Intuitively, a
tuple can match a rule only when certain conditions are not satisfied. For

instance, certain fixing rules can be applied when the country is not China.

The clear advantage of fixing rules, compared with the prior art, is that they
can automatically detect errors and derive dependable repairs without
interacting with the users, and without the assumption that some values have
been validated to be correct. In contrast, all conventional techniques either (1)
use heuristic approaches to compute a consistent database by making
minimum number of changes, or (2) to consult the users, or use master data,

or assume some attributes are correct, in order to derive dependable fixes.

Data fixing rules can be employed easily in many products to detect errors and
perform dependable data repairing. Data fixing rules can be used to carry out

14

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

more dependable data repairs than tools that are currently widely employed in
industry (i.e., ETL tools) for name standardization, address check, etc.

Data has become an important asset in today’s economy. Extracting values
from large amounts of data to provide services and to guide decision making
processes has become a central task in all data management stacks. The
quality of data becomes one of the differentiating factors among businesses
and the first line of defence in producing value from raw input data. As data is
born digitally and is fed directly into stacks of information extraction, data
integration, and transformation tasks, ensuring the quality of the data with
respect to business and integrity constraints have become more important

than ever.
2.2 Repairing Semantics with Fixing Rules
We next describe in more detail the semantics of applying a set of fixing rules.

Notations. For convenience, we use the following notations. Given fixing
rule ¢: ((X, t[X]), (B,T, [B])) —t;[B], we denote by X,, the set X of attributes in

. Similarly, we write t,[X,], B, T, [B,,] and & [B,] ,relative to ¢.

Note that when applying a fixing rule ¢ to a tuple t, we update t,[B,] with
t7[B,]- To ensure that the change makes sense, the values that have been
used and corrected should remain unchanged in the following process. That
is, after applying ¢ to ¢, the set X, U {Bq)} of attributes should be marked as

correct for tuple &

In order to keep track of the set of attributes that has been marked correct, we
introduce the notion assured attributes to represent them, denoted by
A, relative to tuple t. We simply write A4 when t is clear from the context.

Consider a fixing rule @. We say that ¢ is properly applied to a tuple tw.r.t. the

15

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

assured attributes A, denoted by t — (4, t, if (i) t matches ¢, and (ii)

B, & A .

That is, it is justified that to apply ¢ to t, for those t match ¢, is correct. As A

has been assured, we do not allow it to be changed by enforcing B, ¢ A (the

(i) above).

Example 1: Consider the fixing rule ¢, in Fig. 3 and the tuple r, in Fig. 1.
Initially, A, = @. The rule ¢, can be properly applied to r, w.r.t. A, , since
ry[country] = China and r, [capital] = Shanghai € {Shanghai, Hong Kong}
(i.e., , matches ¢,); and moreover, capital € A,, . This yields an updated

tuple r, where r; [capital] = Beijing.

Observe that if -4, t', then X, and B, will also be marked correct. Thus,

the assured attributes A4 should be extended as well, to become AU X, U

{By}

Example 2: Consider Example 1. After ¢, is applied to r,, the assured
attribute A, will be expanded correspondingly, by including X, (i.e.,
{country}) and B, (i.e., {capital}), which results in an expanded assured
attribute set A, = {country, capital}.

We write t 544 t if @ cannot be properly applied to ¢, i.e., tis unchanged by
@ relative to A, if either t does not match ¢, or B, € A .

Consider a set Z of fixing rules defined on R. Given a tuple t of R, we want a
unique fix of tby using 2. That is, no matter in which order the fixing rules of
are properly applied, Z yields a unique by ¢’ updating t.

To formalize the notion of unique fixes, we first recall the repairing semantics

of fixing rules. Notably, if ¢ is properly applied to t via t >4 t" W.r.t.
assured attributes A, it yields an updated ' where t[B,] € T, [B,] and
t'[B,] = t5[B,]. More specifically, the fixing rule ¢ first identifies ¢[B,] as

incorrect, and as a logical consequence of the application of ¢, t[Bq)] will be

16

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

updated to t;[B,], as a validated correct value in t'. Once an attribute value
t'[B] is validated, we do not allow it to be changed, together with the attributes

X, that are used as the evidence to assert that t[B,] is incorrect.

Fixes. We say that a tuple t’is a fix of t w.r.t. a set X of fixing rules, denoted

byt~

A t', if there exists a finite sequence t=1ty, t;, ..., tx =t of tuples of

R such that for each i € [1, K], there exists a ¢; € Z such that

1. ti1 = (ayep ti, Where Ay = 0, A; = A;; UX, U{B,,} ;

2.forany ¢ €, t' S0t

Condition (1) ensures that each step of the process is justified, i.e., a fixing
rule is properly applied. Condition (2) ensures that t’is a fixpoint and cannot be

further updated.

Unique fixes. We say that an R tuple t has a unique fix by a set ¥ of fixing

rules if there exists a unique t’such that ti(@ 5 t'.

Example 3: Consider Example 1. Indeed, r; is a fix of » w.r.t. properly applied
to r, rules ¢, and ¢, in Example 3, since no rule can be properly applied to r,

given the assured attributes to be {country, capital}.

Moreover, r, is also a unique fix, since one cannot get a tuple different from r,

when trying to apply rules ¢, and ¢, on tuple r, in other orders.

3. OVERCOMING FIXING RULE PROBLEMS

We next identify possible problems associated with fixing rules, and establish
their complexity.

Termination. One natural question associated with rule based data repairing
processes is the termination problem. It is to determine that whether a rule-
based process will stop. In fact, it is readily to verify that for the fix process
(see Section 2.2) by applying fixing rules, it always terminates.

17

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

Consider the following. For a sequence of updates t, = (4, ¢,) t1 (a0, bi =
each time when a fixing rule ¢;(i = 1) is applied as t;_; =4, 0, ti ,» the
number of validated attributes in A is strictly increasing, up to |R|, the
cardinality of schema R.

Consistency. The problem is to decide whether a set Z of fixing rules do not
have conflicts. We say that Z is consistent if for any input tuple t of R, thas a
unique fix by %.

Example 4: Consider a fixing rule ¢; by adding a negative pattern to the ¢, in
the fixing rules in figure 3 as the following:

@1: (([country], [China)), (capital, {Shanghai, Hongkong, Tokyo})) — Beijing
The revised rule ¢ states that, for a tuple, if its country is China and its capital
value is Shanghai, Hongkong or Tokyo, its capital is wrong and should be
updated to Beijing.

Consider another fixing rule @5 as: for tin relation Travel, if the conf is ICDE,
held at city Tokyo and capital Tokyo, but the country is China, its country
should be updated to Japan. This fixing rule can be formally expressed below:
@5 : (([capital, city, conf], [Tokyo, Tokyo, ICDE]), (country, {China})) — Japan
We show that these two fixing rules, @] and @3, are inconsistent. Consider the
tuple 3 in Fig. 1. Both ¢] and @5 can be applied to r;. It has the following two
fixes:

(1) 13 =001 rs : it will change attribute r; [capital] from Tokyo to Beijng. This

will result in an updated tuple as: r; : (Peter, China, Beijing Tokyo, ICDE).

It also marks attributes {country, capital} as assured, such that ¢; cannot be

properly applied, i.e., r3 is a fixpoint.

(2) 13 (g0, 15 - it Will update 73 [country] from China to Japan. This will yield

another updated tuple as: ry': (Peter, | Japan, Tokyo|Japan, Tokyo, ICDE).

The attributes {country, capital, conf} will be marked as also a fixpoint.
Observe that the above two fixes (i.e., r3 and r3') will lead to different fixpoints,

18

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

where the difference is highlight above. Therefore, ¢; and ¢ are inconsistent.

Indeed, r; contains errors while r3" is correct.

The consistency problem is to determine, given a set Z of fixing rules defined
on R, whether 2 is consistent. Intuitively, this is to determine whether the rules
in Z are dirty themselves. The practical need for the consistency analysis is
evident: we cannot apply these rules to clean data before ¥ is ensured
consistent itself.

This problem has been studied for CFDs, MDs, and editing rules. It is known
that the consistency problem for MDs is trivial: any set of MDs is consistent.
They are NP-complete (resp. coNP-complete) for CFDs (resp. editing rules).
We shall show that the problem for fixing rules is PTIME, lower than their

editing rules counterparts.

Theorem 1: The consistency problem of fixing rules is PTIME.

We prove Theorem 1 by providing a PTIME algorithm for determining whether
a given set of fixing rules is consistent (see Section 4.2).

The low complexity from the consistency analysis tells us that it is feasible to
efficiently find consistent fixing rules.

Implication. Given a set Z of consistent fixing rules, and another fixing rule @
that is not in %, we say that ¢ is implied by Z, denoted by % |=¢, if:
(i) 2 U {¢}is consistent; and

(iiy foranyinputtwheret” t'. andt” t"’,t" ,and t" are the same.
e ~Zu{e})

Condition (i) says that £ and ¢ must agree on each other.

Condition (ii) ensures that for any tuple t, applying % or £ U { ¢} will result in
the same updated tuple, which means that ¢ is redundant.

The implication problem is to decide, given a set ¥ of consistent fixing rules,
and another fixing rule ¢, whether % implies ¢.

19

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

Intuitively, the implication analysis helps us find and remove redundant rules
from Z, i.e., those that are a logical consequence of other rules in %, to
improve performance.

No matter how desirable to remove redundant rules, unfortunately, the
implication problem is coNP-complete.

Theorem 2: The implication problem of fixing rules is coNP-complete. It
is down to PTIME when the relation schema R is fixed.

Proof sketch: (A) General case. Lower bound. We show the

implication problem is coNP-hard by reduction from the 3SAT problem, which
is NP-complete [23], to the complement of the implication problem.

Upper bound. To show it is in coNP, we first establish a small model property:
a set 2 of fixing rules is consistent if and only if for any tuple t of R consisting
of values appeared in Z, t has a unique fix by 2. We then give an NP
algorithm to its complement problem that first guesses a tuple t with values
appear in ¥ and then checks whether t has a unique fix by % in PTIME.

(B) Special case: when R is fixed. We show that for fixed R, only
polynomially number of tuples need to be guessed and checked with a PTIME
algorithm. Thus it is down to PTIME in this special case.

Determinism. The determinism problem asks whether all terminating
cleaning processes end up with the same repair. From the definition of
consistency of fixing rules, it is trivial to get that, if a set ¥ of fixing rules is
consistent, for any t of R, applying Z to t will terminate, and the updated t’ is

deterministic (i.e., a unique result).

4. ENSURING CONSISTENCY

The following description covers methods for identifying consistent rules. We
first describe the workflow for obtaining a set of consistent fixing rules (Section
4.1). We then present algorithms to check whether a given set of rules is
consistent (Section 4.2). We also discuss how to resolve inconsistent fixing
rules, and ensure the workflow terminates (Section 4.3).

Overview

20

5

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

Given a set 2 of fixing rules, our workflow contains the following three steps to
obtain a set 2’ of fixing rules that is ensured to be consistent. The workflow is
illustrated in figure 4 of the accompanying drawings.

Step 1: It checks whether the given Z of fixing rules is consistent. |If it is
inconsistent, it goes to step (2). Otherwise, it goes to step (3).

Step 2: We allow either an automatic algorithm or experts to examine and
resolve inconsistent fixing rules. After some rules are revised, it will go back to
step (1).

Step 3: It terminates when the set %' of (possibly) modified fixing rules is
consistent.

It is desirable that the users are involved in step (2) when resolving
inconsistent rules, in order to obtain high quality fixing rules.

4.2 Checking Consistency

We first present a proposition, which is the pivot of designing efficient
algorithms for checking consistency.

Proposition 3: For a set Z of fixing rules, is consistent, iff (if and only if) any

two fixing rules ¢; and ¢; in X are consistent.

Proof sketch: Let n be the number of rules in ¥. When n = 1, Z is trivially
consistent. When n = 2, 2 is consistent is the same as ¢; and ¢; are

consistent

i #j. When n = 3, we prove by contradiction.

Suppose that although the fixing rules are pairwise consistent, when putting
together, they are inconsistent. In other words, they may lead to (at least) two
different fixes, i.e., the fixes are not unique. More concretely, there exist (at

least) two non-empty sequences of fixes as follows:

. — !
St =10 @) U DAy 0) L D Aperom) tm = L
Soit =t) (g bl 2 b2 o)t =t

0 (@;(p1) 1 (cﬂj_l,(pj)] (C’qn—p(pn) n

(i) Am N Ay = 0;
21

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

(i) A VA #= @ and t'[A,, N Ay = t"'[A,, N A} and
(i) A N Ay # 0 and t'[Ay, N Ayl #= " [Ap N Ay, where
Am = Apm_1UXy, U{ By, } and A, = A;,_,UX,: U{ B, }.

For cases (i)(ii), we prove that either S; or S, does not reach a fixpoint, i.e., it
is not a fix. For case (iii), we show that there must exist a ¢; (in sequence Sy)
and a ¢; sequence Sp) that are inconsistent.

Putting all contradicting cases (i,ii,iii) together, it suffices to see that we were
wrong to assume that is inconsistent.

Assume there exist inconsistent ¢; and ¢;. We show that for any tuple t that
leads to different fixes by ¢; and ¢;, we can construct two fixes §; and S, on ¢
by using the rulesin . In S; , @, is applied first; whilein S; , ¢; is applied
first. We prove that these two fixes must yield two different fixpoints. This
suffices to show that we were wrong to assume that there exist inconsistent ¢;
and ¢;.

The Appendix section below shows a detailed proof.

Proposition 3 tells us that to determine whether Z is consistent, it suffices to
only check them pairwise. This significantly simplifies the problem and
complexity of checking consistency. Next, we describe two algorithms to
check the consistency of two fixing rules, by using the result from Proposition
3. One algorithm is based on tuple enumeration, while the other is via rule

characterization.

4.2.1 Tuple enumeration

Consider that although there may exist infinitely many t, whether there exists a
finite set of tuples such that it suffices to inspect those t only for two rules ¢;
and ¢;. In other words, for the other tuples, neither ¢; and ¢; can be applied.
To begin an algorithm for tuple enumeration, we describe what tuples are
necessary to be enumerated, and in which case that tuple enumeration can be
avoided.

Lemma 4: Fixing rules ¢; and ¢;are consistent, if there does not exist any

tuple tthat matches both ¢; and ¢;.

22

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

Proof. If At such that t - ¢; and + ¢; , for any ¢, there are two cases: either

no rule can be applied, or there exists a unique sequence of applying both
rules. Either case will not cause different fixes, i.e., ¢; and ¢; are consistent.

Note that Lemma 4 is for “if ” but not “iff ”, which tells us that only tuples that
draw values from evidence pattern and negative patterns can (possibly) match
both rules at the same time. Next we illustrate the tuples that are needed to

be generated by an example.

Example 1: Consider rules ¢; and ¢; in shown in figure 3. We have two
constants in the evidence pattern as {China, Canada}, and three constants in
the negative patterns as {Shanghai, Hongkong, Toronto}. Hence, we only
need to enumerate 2 x 3 = 6 tuples for relation Travel as follows:

(e, China, Shanghai, ¢, °), (>, China, Hongkong, °, °) (¢, China, Toronto, °,), (e,
Canada, Shanghai, °, °) (¢, Canada, Hongkong, °, °), (e, Canada, Toronto, °,)
where ‘" is a special character that is not in any active domain, i.e., it does not
match any constant. One can verify that no other tuples can both match ¢;

and ¢;.

Let {A+, ..., Am } be all attributes appearing in ¢; and appear either in

evidence pattern or negative patterns of ¢; . Let V(pij(A) denote the set of

constant values of A that ¢; and ¢;. The total number of tuples to be

enumerated is Hle[l’m](|Vq, (Al)|) , where [] indicates a product and

ij
|V¢U. (Al)| denotes the cardinality of Vioi; (4).

Given a set Z of fixing rules, we check them pairwise (see Example 4). If any
pair of rules is inconsistent, we judge that ¥ is inconsistent; otherwise, % is

consistent. The algorithm is shown in figure 5 and referred to as isConsist".

4.2.2 Rule characterization

The following description covers analysis by characterizing the fixing rules.

23

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

Also based on Lemma 4, let us focus on the cases of ¢; and ¢; that there

exists some t that can match both fixing rules, where these rules are

represented as follows:
o1 ((Xoty, [X.1), (Bu Ty [B.1)) = ¢5,1B1]

JE <(Xj» ty, 1), (B Ty [B;)) - t5.[5]

Note that a tuple t matching ¢; and ¢; implies that the following conditions
hold: t[X;] = t,[X] and t[X;]=¢,[X;] .Hence, we have t,[X;nX;]=
tp;[Xi N X;] , where a special case is X; N X; =@. We consider two cases:
B; = B; and B; # B;.

Case 1: B; = B;. Let B = B; = B;. There is a conflict only when (i) there exists a
tuple t that matches both ¢; and ¢;, and (i) ¢; and ¢; will update t to different
values. From (i) we have t[B] € T, [B] and t[B] € Tp‘j[B], which gives T, [B] N
Tp‘j[B] # @ i.e., they can be applied at the same time. From (ii) we have

ty [B] # t;;j[B],, i.e., they lead different fixes. From (i) and (ii), the extra
condition that ¢; and ¢; are inconsistent under such case T,,[B] N Ty, [B] # 0

and t; [B] # t;;j [B].

Case 2. B; # B; - Again, we consider four cases:
(@) B;eXx; andB; ¢ X;, (b) B, ¢ X; and B, € X;, (C) B; € X; and B, € X; ,

and (d) B; ¢ X; and B; ¢ X; -

(@) B; €X; and B; ¢ X;- If a tuple t matches ¢, and @ then (i)
t[B;] € T,;[B;] (to match ¢,), and (i) [B;] € Tp_j[Bj] (to match ¢;).
Observe the following: if @; is applied to tfirst, since B, € X;, it will keep
t[B;] unchanged, whereas if ¢; is applied first, it will update ¢[B;]to a
different value (ie., t;[B;])- This will cause different fixes. Hence , ¢,
and ¢;, are inconsistent only when ¢,,.[B;] € T, [B;] (by merging (i) and

(ii)).

24

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

(b) B;¢X; and B; € X;. This is symmetric to case (a). Therefore, ¢;

and ¢; are inconsistent only when tpi[Bj] € Tp_,- [Bj]'

(c) B, eX; and B; € X;. This is the combination of cases (a) and (b).

Thus, Qi and Qj are inconsistent when tpi[Bj] S Tp_][B]] and tpj [Bl] € Tp_l [Bl]

(d) B;¢x; and B; ¢ X;. For any tuple t that matches both ¢, and ¢;,
rule ¢; (resp. ¢;) will deterministically update t[B;] (resp. t[B;]) to t; [B;]

(resp. ¢} [B;])- Thatis, ¢; and ¢, are always consistent in this case.

Example 2: Consider ¢; and ¢, in Example 8 and ¢, in the fixing rules
shown in figure 3.

Since @] (resp. ¢,) is only applied to a tuple whose country is China (resp.
Canada), there does not exist any tuple that can match both rules at the same
time. Therefore, based on Lemma 4, we have ¢; and ¢, are consistent.

Also, it can be verified that ¢; and ¢, are inconsistent Consider the following:

(1) By, € Xyt (L.e., country € {country, capital}),

(i) ty, [Bq)g] € Ty, [By,] (i.e., China € {China}),

(if) B, € Xy, (i.e., capital € {capital, city, conf}), and

(iV) tp,[B 1 1 € Ty, [Byy] (i.e., Tokyo € {Shanghai, Hongkong, Tokyo}).

Hence, these two rules will lead to different fixes, which is captured by case
2(c).

Algorithm. The algorithm to check whether a set of fixing rules is consistent

via rule characterization, referred to as isConsist/, is given in figure 5 of the
accompanying drawings. It takes 2 as input, and returns a boolean value,
where true indicates that ¥ is consistent and false otherwise.

25

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

It enumerates all pairs of distinct rules (lines 1-11). If any pair is inconsistent, it
returns false (lines 5,7,9,11); otherwise, it reports that 2 is consistent (line 12).
It covers all cases that two rules can be inconsistent, i.e., case 1 (lines 2-

5), case 2(a) (lines 6-7), case 2(b) (lines 8-9) and case 2(c) (lines 10-11). Note
that in case 2(d), two rules are trivially consistent. Hence, there is no need to

capture such case.
Correctness & complexity. Its correctness is ensured by Proposition 3 and

Lemma 4. From the analysis above, Algorithm isConsist” covers all cases

that two rules can be inconsistent. That is, the two rules ¢, and ¢; are

consistent for all other cases. We use a hash table to check that whether a

constant matches some negative pattern in constant time. To summarize, it

enumerates all pairs of rules, and runs in O(size(Z)‘2) time, where size() is

the size of 2.

4.3 Resolving Inconsistent Rules

When inconsistency of fixing rules is detected, this inconsistency has to be

resolved, before these rules can be used.

Consider Example 2 that two rules ¢; and ¢z are inconsistent, which is
depicted in figure 6 of the accompanying drawings, where the conflicts come
from the two highlighted Tokyo’s and China’s. A conservative algorithm
removes all rules that are in conflict. This process ensures termination since
the number of rules is strictly decreasing, until the set of rules is consistent or
becomes empty. Although the remaining rules are consistent, the problem is
that this will also remove some useful rules (e.g., ¢3). It is difficult for

automatic algorithms to solve such semantic problems well.

Hence, in order to obtain high quality rules, the system requests an expert to
examine rules that are in conflict manually. For example, the expert can
naturally remove Tokyo from the negative patterns of @i, since one cannot
judge, given (China, Tokyo), which attribute is wrong. This will result in a
modified rule ¢, (see the fixing rules in figure 3), which is consistent with ¢s.
Note that in order to ensure this process terminates, we only allow to remove

26

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

some negative patterns (e.g., from ¢; and ¢;), or remove some fixing rules,

without adding values.

5. REPAIRING WITH FIXING RULES

We now describe how to use the fixing rules to repair data.
In the following, we first present a chase-based algorithm to repair one tuple
(Section 5.1), with time complexity in O(size(Z)|R|). We also present a fast

algorithm (Section 5.2) running in O(size(Z)) time for repairing one tuple.

5.1 Chase-based Algorithm

Note that, given a tuple tand a set Z of fixing rules, if is consistent, it has the
Church-Rosser property, i.e., all the chase sequences using Z lead to a unique
fix, no matter in what orders these rules are applied.

We next present the algorithm, by using a chase process.

Algorithm. The algorithm, referred to as cRepair, is shown in figure 7 of the
accompanying drawings. It takes as input a tuple t and a set Z of consistent
fixing rules. It returns a repaired tuple t’ w.r.t. Z.

The algorithm first initializes a set of assured attributes, a set of fixing rules that
can be possibly applied, a tuple to be repaired, and a flag to indicate whether
the tuple has been changed (line 1). It then iteratively examines and applies
the rules to the tuple (lines 2-7). If there is a rule that can be properly applied
(line 5), it updates the tuple (line 6), maintains the assured attributes and rules
that can be used correspondingly, and flags this change (line 7). It terminates
when no rule can be further properly applied (line 2), and the repaired tuple will
be returned (line 8).

Correctness & complexity. The correctness of cRepair is inherently ensured
by the Church-Rosser property, since % is consistent. For the complexity,
observe the following. The outer loop (lines 2-7) iterates at most |R| times. For
each loop, it needs to scan each unused rule, and checks whether it can be
properly applied to the tuple. From these it follows that Algorithm 6 runs in
O(size(2)|A|) time.

27

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

5.2 A Fast Repairing Algorithm

We now describe how to improve the chase-based procedure. One way is to
consider how to avoid repeatedly checking whether a rule is applicable, after
each update of the tuple being examined.

Note that a property of employing fixing rules is that, for each tuple, each rule
can be applied only once. After a rule is applied, in consequence, it will mark
the attributes associated with this rule as assured, and does not allow these
attributes to be changed any more (see Section 2.2).

Hence, after each value update, to (i) efficiently identify the rules that cannot
be applied, and (ii) determine unused rules that can be possibly applied.

We employ two types of indices in order to perform the above two targets.
Inverted lists are used to achieve (i), and hash counters are employed for (ii).
Before describing how to use these indices to design a fast algorithm, we shall

define these indices to assist in understanding the algorithm.

Inverted lists. Each inverted list is a mapping from a key to a set Y of fixing

rules. Each key is a pair (A, a) where A is an attribute and a is a constant
value. Each fixing rule ¢ in the set Y satisfies A € X, and 1, [A] = a.
For example, an inverted list w.r.t. ¢, in Fig. 3 is as:

country, China — ¢4

Intuitively, when the country of some tuple is China, this inverted list will help to

identify that ¢; might be applicable.

Hash counters. It uses a hash map to maintain a counter for each rule. More

concretely, for each rule and and ¢, the counter c(¢) is a nonnegative integer,
denoting the number of attributes that a tuple agrees with £, [X,].

For example, consider ¢, in Example 3 and r, in Fig. 1. We have c(¢1) =1
w.r.t. tuple r, , since both r, [country] and t,, [country] are China. As another
example, consider r, in Fig. 1, we have c(¢1) =0 w.r.L. tuple r, , since r,
[country] = Canada but t,, [country] = China.

We now describe a fast algorithm by using the two indices introduced above.

Note that inverted lists are built only once for a given %, and keep unchanged
28

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

for all tuples. The hash counters will be initialized to zero for the process of
repairing each new tuple.

Algorithm. The algorithm IRepair is shown in figure 8 of the accompanying
drawings. It takes as input a tuple t, a set of consistent fixing rules, and
inverted lists 1. It returns a repaired tuple t’ w.r.t. Z. It first initializes a set of
assured attributes, a set of fixing rules to be used, and a tuple to be repaired
(line 1). It also clears the counters for all rules (line 2). It then uses inverted
lists to initialize the counters (lines 3-5). After the counters are initialized, it
checks and maintains that which rules might be used (lines 6-7), and uses a
chase process to repair the tuple (lines 8-16), and returns the repaired tuple
(line 17).

During the process (lines 8-16), it first randomly picks a rule that might be used
(line 9). The rule will be applied if it is verified to be applicable (lines 10-11).
The set of attributes that is assured correct is increased correspondingly (line
12). The counters will be recalculated (lines 13-14). Moreover, if new rules
might be used due to this update, it will be identified (line 15). The rule that has
been checked will be removed (line 16), no matter it is applicable or not.

Observe the following two cases. (i) If a rule is removed after being applied at
line 16 (i.e., line 10 gives a frue), it cannot be used again and will not be
checked at lines 13-15. (ii) If arule ¢ is removed without being applied at
line 16 (i.e., line 10 gives a false), it cannot be used either at lines 13-15. The

reason is that: for any rule ¢, if ¢ cannot be properly applied to t, any update
on attribute B, will mark it as assured, such that ¢ cannot be properly applied

afterwards. From the above (i) and (ii), it follows that it is safe to remove a

rule from T, after it has been checked, once and for all.

Correctness. Note that X is consistent, we only need to prove the repaired
tuple t’is a fix of t. This can be proved based on (1) at any point, T includes
all fixing rules that might match the given tuple; and (2) each fixing rule is
added into T' at most once. Hence, the algorithm terminates until it reaches a

fixpoint when T is empty.

29

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

Complexity. It is clear that the three loops (line 2, lines 3-5 and lines 6-7) all
run in time linear to size(2). Next let us consider the while loop (lines 8-16).
Observe that each rule ¢ will be checked in the inner loop (lines 13-15) up
to |X, | times, by using the inverted lists and hash counters, independent of
the number of outer loop iterated. The other lines of this while loop can be
done in constant time. Putting together, the total time complexity of the
algorithm is O(size(Z)).

We next show by example how Algorithm IRepair works.

Example 5: Consider Travel data D in figure 1, rules @1, @2 in figure 3 and rule

®3. In order to better understand the chase process, we introduce another rule:

®4: (([capital, conf], [Beijing, ICDE]), (city, {Hongkong}) — Shanghai

Rule ¢4 states that: for tin relation to Travel, if the conf is ICDE, held at some
country whose capital is Beijing, but the city is Hongkong, its city should be
Shanghai. This holds since ICDE was held in China only once at 2009, in
Shanghai but never in Hongkong.

Given the four fixing rules 1 - ¥4, the corresponding inverted lists are given in

Fig. 9(a). For instance, the third key (conf , ICDE) links to rules ¢3 and ¢a,

since conf € X,, (ie., {capital, city, conf }) and t, [conf] = ICDE; and

moreover, conf € X,, (i.e., {capital, conf }) and t,, [conf] = ICDE. The other

inverted lists are built similarly.

Now we show how the algorithm works over tuples ry to r,, which is also
depicted in figure 9 of the accompanying drawings. Here, we highlight these
tuples in two hatched boxes, where one hatched box indicates that the tuple is
clean (i.e., ry), while the other hatched box indicates that the tuples contain

errors (i.e., r,, r; and ry).

ri: The algorithm initializes (lines 1-7) and finds that ¥1 may be applied,

maintained in T. In the first iteration (lines 8-16), it finds that ¢1 cannot be

applied, since r, [capital] is Beijing, which is not in the negative patterns
30

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

{Shanghai, Hongkong} of ¥1. Also, no other rules can be applied. It terminates
with tuple r; unchanged. Actually, r; is a clean tuple.

r: The algorithm initializes and finds that ¢1 might be applied. In the first
iteration (lines 8-16), rule @1 is applied to r, and updates r, [capital] to Beijing.
Consequently, it uses inverted lists (line 13) to increase the counter of ¢4 (line
14) and finds that ¢+ might be used (line 15). In the second iteration, rule ®1 is
applied and updates r, [city] to Shanghai. It then terminates since no other

rules can be applied.

rs: The algorithm initializes and finds that ¥3 might be applied. In the first
iteration, rule ¢3 is applied and updates r; [country] to Japan. It then

terminates, since no more applicable rules.

r4: The algorithm initializes and finds that ¥4 might be applied. In the first
iteration, rule ¥z is applied and updates r, [capital] to Ottawa. It will then

terminate.

At this point, we see that all the four errors shown in figure 1 have been

corrected.

6. EXPERIMENTAL STUDY

We conducted experiments with both real-life and synthetic data to examine
our algorithms. Specifically, we evaluated (1) the efficiency of consistency
checking for fixing rules; (2) the accuracy of our data repairing algorithms with
fixing rules; and (3) the efficiency of data repairing algorithms using fixing
rules.

It is worth noting that the purpose of these experiments is to test, when given
high quality fixing rules, how they can be used to automatically repair data with
high dependability.

6.1 Experimental Setting
Experimental data. We used real-life and synthetic data. (1) HOSP was

31

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

taken from us Department of Health & Human Services
(http://www.hospitalcompare.hhs.gov/). It has 115K records with the
following attributes: Provider Number (PN), Hospital Name (HN), addresst,
address2, address3, city, state, zip, county, Phone Number (phn),
HospitalType (ht), HospitalOwner (ho), EmergencyService (es) Measure Code
(MC), Measure Name (MN), condition, and stateAvg.

(2) UIS data was generated by a modified version of the UIS Database

generator (http://www.cs.utexas.edu/users/mI/riddle/data.html). It produces a
mailing list that has the following schema: RecordID, ssn, FirstName (fname),

Middlelnit (minit), LastName (Iname), sthum, stadd, apt, city, state, zip.

Dirty data generation. We treated clean datasets as the ground truth. Dirty
data was generated by adding noise only to the attributes that are related to
some integrity constraints, which is controlled by noise rate (10% by default).
We introduced two type of noises: typos and errors from the active domain.

Fixing rules generation from samples. Note that fixing rules are instance
based, i.e., all values for identifying and correcting errors are encoded inside

fixing rules, one natural question is that how fixing rules were obtained.

Sample generation. Since each fixing rule is defined on semantically related

attributes, we start with known data dependencies (e.g., functional
dependencies for our testing). We first detect violations of given functional
dependencies (FDs), and present them to the experts. The experts produced
several fixing rules as samples, based on their understanding of these

violations.

Rule generation. Given sample fixing rules, we enrich them by only enlarging

their negative patterns, via extracting new negative patterns from other tables
in the same domain. For instance, consider the fixing rules shown in figure 3. If
users provide a fixing rule that takes China as the evidence pattern, and some
Chinese cities (e.g., Shanghai, Hong Kong) other than Beijing as negative
patterns, one can enlarge its negative patterns by extracting large cities from a
table about Chinese cities.

32

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

We generated 100 fixing rules for HOSP data, and 1000 fixing rules for UIS
data. Note that the purpose of fixing rules generation is not to use them for
some specific dataset. It is, by collecting expert knowledge for specific errors,
to learn high quality domain related rules that can be used to automatically
detect and repair data for other datasets in the same domain.

Measuring quality. To assess the accuracy of data cleaning algorithms, we
use precision and recall, where precision is the ratio of corrected attribute
values to the number of all the attributes that are updated, and recall is the
ratio of corrected attribute values to the number of all erroneous attribute
values.

We mainly compare automated data cleaning techniques. Note that they are
designed for a slightly different target: computing a consistent database. We
consider it a relative fair comparison, since all fixing rules we generated are
from FD violations. In other words, the fixing rules and the FDs used are
defined on exactly the same set of attributes. We employed the FDs shown in

figure 10 of the accompanying drawings for HOSP and UIS data, respectively.

(2) Editing rules. We also compared our approach with editing rules. Although
editing rules can repair data that is guaranteed to be correct, they are
measured by the number of user interactions per tuple. That is, for each tuple
and for each editing rule to be applied, the users have to be asked. To this
purpose, we evaluated the number of errors that can be corrected by every
fixing rule (see Fig. 9(a)) using HOSP data with 100 rules and 10% dirty rate,
where the x-axis is for fixing rules and the y-axis is the number of errors they
can correct. The experiment shows that a single fixing rule was able to repair
errors in more than fifty tuples, but if we employ editing rules to repair these
errors, the approach has to interact with users over fifty times.

Moreover, we encoded data values from master data into editing rules, to
make it an automated rule. Note that error information is not in master data,
e.g., the negative patterns in fixing rules, which cannot be encoded. Hence, we
removed negative patterns in fixing rules, to simulate editing rules. Specifically,
each time when seeing an evidence pattern, it simulated users by saying yes,

33

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

and then updated the right hand side value to the fact. The experimental
results are shown in Fig. 9(b). The reason that fixing rules have better
precision and recall is that, if we have errors in the right hand side of such
rules, (automated) editing rules can correct them. However, if there are errors
in the left hand side, they will introduce new errors by treating these errors as
correct values, resulting in lower precision and in consequence, lower recall.
Note that the purpose of designing editing rules is for critical data at entry point
by interacting with the users. Hence, we don’t compare with them in later of
this section.

Algorithms. We have implemented the following algorithms in C++: (1)
isConsist: the algorithm for checking consistency based on tuple
enumeration (Section 4.2); (2) isConsist” : the algorithm for checking
consistency based on rule characterization (Fig. 5 in Section 4.2); (3) cRepair:
the basic chase-based algorithm for repairing with fixing rules (see Fig. 7);
and (4) IRepair: the fast repairing algorithm (see Fig. 8). Moreover, for
comparison, we obtained the implementation of two algorithms for FD
repairing, a cost-based heuristic method, referred to as Heu, and an approach
for cardinality set minimal, referred to as Csm. Both approaches were
implemented in Java. All experiments were conducted on a Windows machine
with a 3.0GHz Intel CPU and 4GB of memory.

6.2 Experimental Results
We next report our findings from the experimental study.

Exp-1: Efficiency of checking consistency. We evaluated the efficiency of
checking consistency by varying the number of rules employed. The results
for HOSP and UIS are shown in figure 11(a) and figure 11(b), respectively.
The x-axis is the number of rules multiplied by 100 (resp. 10) for HOSP (resp.
UIS), and the y-axis is the running time in millisecond (msec).

For either isConsist’ or isConsist’, we plotted its worst case, i.e., checking

all pairs of rules, as well as its 10 real cases where it terminated when some

pair was detected to be inconsistent. For example, in figure 11(a), the big
34

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

circle for x = 2 was for checking 200 rules in the worst case, while the 10 small
circles below it were for real cases. In figure 11(b), real cases are the same
as the worst case, since the 100 rules are consistent and all pairs of distinct

rules have to be checked.

These figures show that to check consistency of fixing rules, the algorithm
with tuple enumeration (isConsist)) is slower, as expected. The reason is
that enumerating tuples for two rules is more costly than characterizing two

rules.

In addition, this set of experiment validated that the consistency of fixing rules
can be checked efficiently. For example, it only needs 12 seconds to
check the consistency of 1000*1000 pairs of rules, ie., the top right point
in figure 11(a).

The results of this study indicate that it is feasible to check consistency for a

reasonably large set of fixing rules.

Exp-2: Accuracy. In this set of experiments, we will study the followings. (a)
The effect of different data errors (i.e., typos or errors from active domain) for
repairing algorithms. (b) The influence of fixing rules w.r.t. their sizes. We use
Fix to represent repairing algorithms with fixing rules.

(a) Noise from the active domain. Recall that noise was obtained by either
introducing typos to an attribute value or changing an attribute value to
another one from the active domain of that specific attribute. For example,
an error for Ottawa could be Ottawo (i.e., a typo) or Beijing (i.e., a value from

active domain).

Precision. We fixed the noise rate at 10%, and varied the percentage of typos
from 0% to 100% by a step of 10% (x-axis in both charts from Figs. 12(a) and
12(e) for HOSP and UIS, respectively). Both figures showed that our method
using fixing rules performed dependable fixes (i.e., high precision), and was
not sensitive to types of errors. While for the existing algorithms Heu and Csm,

they had lower precision when more errors were from the active domain. The
35

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

reason is that for such errors, heuristic methods would erroneously connect
some tuples as related to violations, which might link previously irrelevant
tuples and complicate the process when fixing the data. Indeed, however,
both Heu and Csm computed a consistent database, as targeted.

Note that fixing rules also made mistakes, e.g., the precision in Fig. 12(a) is not
100%, which means some changes were not correct. The reason is that,
when more errors are from the active domain (e.g., typo rate is 0in

Fig. 12(a)), it will mislead fixing rules to make decisions. For example,
consider the two rules in Fig. 3, if the correct (country, capital) values of some
tuple are (China, Shanghai) but were changed by using values from the
active domain to (Canada, Toronto), using fixing rules will make mistakes.

Recall. In order to better understand the behaviour of these algorithms, Figs.
12(b) and 12(f) show the recall corresponding to Figs. 12(a) and 12(e),
respectively. Not surprisingly, our algorithm did not outperform existing
approaches in terms of recall. This is because heuristic approaches would
repair some potentially erroneous values, but at the trade-off of decreasing
precision. Although our method was relatively low in recall, we did our best to
ensure the precision, instead of repairing as more errors as possible. Hence,
when recall is a major requirement for some system, existing heuristic
methods can be used after fixing rules being applied, to compute a consistent
database.

Fig. 12(f) shows that the recall is very low (below 8%) for all methods. The
reason is that, the UIS dataset generated has few repeated patterns w.r.t.
each FD. When noise was introduced, many errors cannot be detected, hence
no method can repair them. Note, however, that recall can be improved by
learning more rules, as discussed below.

(b) Varying the number of fixing rules. We studied the accuracy of our
repairing algorithms by varying the number of fixing rules. We fixed noise rate
at 10% and half of them are typos. For HOSP, we varied the number of rules
from 100 to 1000, and reported the recall and precision in Fig. 12(c) and Fig.
12(d), respectively. For UIS, we varied the number of rules from 10 to 100,

and reported the results in Fig. 12(g) and Fig. 12(h), respectively. For Heu
36

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

and Csm, as the typo rate was fixed, their precision and recall values were
horizontal lines.

The experimental results indicate that when more fixing rules are available,
our approach can achieve better recall, while keeping a good precision, as

expected.

(c¢) Number of tuples corrected. To further understand fixing rules, we next
study how many errors each fixing rule can repair. We used the real-life data,
i.e., HOSP, and calculated the number of errors that can be correctly repaired
by each rule. Fig. 10(a) plotted the top 100 rules with the highest numbers.
For each point, its x-coordinate corresponds to a rule, and its y-axis the
number of errors corrected by this rule.

We see that a fixing rule can be used to repair multiple errors (e.g., 52 errors
for the top left point), which shows its potential to be reused by other datasets

in the same domain.

Exp-3: Efficiency of repairing algorithms. In this last set of experiments,
we study the efficiency of our data repairing algorithms. As they are linear in
data size, we only evaluated their efficiency by varying the number of rules.

The results for HOSP and UIS are given in Fig. 13(a) and Fig. 13(b),
respectively. In both figures, the x-axis is for the number of rules and the y-
axis is for running time. These two figures show that algorithm IRepair is more
efficient. For example, it ran in less than 2 seconds to repair 115K tuples,
using 1000 rules (the bottom right node in Fig. 13(a)). In Fig. 13(b), cRepair
was faster only when the number of rules was very small (i.e., 10), where the
reason is that the extra overhead of using inverted lists and hash counters.
However, in general, IRepair was much faster, since it only examined the rules

that can be used instead of checking all rules.

Summary. We find the followings from the above experiments. (a) It is
efficient to detect whether a set of fixing rules is consistent (Exp-1). (b) Data
repairing using fixing rules is dependable, ie., they repair data errors with
high precision (Exp-2). (c) The recall of using fixing rules can be improved
when more fixing rules are available (Exp-2). (d) It is efficient to repair data via

fixing rules, which reveals its potential to be used for large datasets (Exp-3).
37

10

15

20

25

WO 2014/122295 PCT/EP2014/052494

We have proposed a novel class of data cleaning rules, namely, fixing rules,
that (1) compared with data dependencies used in data cleaning, are able
to find dependable fixes for input tuples, without using heuristic solutions; and
(2) differ from editing rules, are able to repair data automatically without any
user involvement. We have identified fundamental problems for deciding
whether a set of fixing rules is consistent or redundant, and established their
complexity bounds. We have proposed efficient algorithms for checking
consistency, and discussed strategies to resolve inconsistent fixing rules. We
have also presented dependable data repairing algorithms by capitalizing on
fixing rules. Our experimental results with real-life and synthetic data have
verified the effectiveness and efficiency of the proposed rules and the
presented algorithms. These yield a promising method for automated and
dependable data repairing.

When used in this specification and claims, the terms "comprises" and
"comprising" and variations thereof mean that the specified features, steps or
integers are included. The terms are not to be interpreted to exclude the
presence of other features, steps or components.

Techniques for implementing aspects of embodiments of the invention:

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. TPLP, 3(4-5), 20083.

[3] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and
Techniques. Springer, 2006.

[4] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and
query answering with matching dependencies and matching functions. In
ICDT, 2011.

38

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

[5] G. Beskales, I. F. llyas, and L. Golab. Sampling the repairs of functional

dependency violations under hard constraints. PVLDB, 3(1), 2010.

[6] G. Beskales, M. A. Soliman, I. F. llyas, and S. Ben-David. Modeling and
querying possible repairs in duplicate detection. In VLDB, 2009.

[7] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and
effective heuristic for repairing constraints by value modification. In SIGMOD,
2005.

[8] L. Bravo, W. Fan, and S. Ma. Extending dependencies with conditions. In
VLDB, 2007.

[9] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance
using tuple deletions. Inf. Comput., 197(1-2), 2005.

[10] X. Chu, P. Papotti, and I. llyas. Holistic data cleaning: Put violations into
context. In /ICDE, 2013.

[11] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:
Consistency and accuracy. In VLDB, 2007.

[12] W. Fan. Dependencies revisited for improving data quality. In PODS,
2008.

[13] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional

dependencies for capturing data inconsistencies. TODS, 33(2), 2008.

[14] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules.
PVLDB, 2(1), 2009.

[15] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record
matching and data repairing. In SIGMOD, 2011.

[16] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with
editing rules and master data. VLDB J., 21(2), 2012.

39

10

15

20

25

WO 2014/122295 PCT/EP2014/052494

[17] . Fellegi and D. Holt. A systematic approach to automatic edit and
imputation. J. American Statistical Association, 71(353), 1976.

[18] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The llunatic data-
cleaning framework. PVLDB, 6(9), 2013.

[19] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Quality and Record

Linkage Techniques. Springer, 2009.

[20] S. Kolahi and L. Lakshmanan. On approximating optimum repairs for
functional dependency violations. In /ICDT, 2009.

[21] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a database approach
for statistical inference and data cleaning. In SIGMOD, 2010.

[22] F. Naumann, A. Bilke, J. Bleiholder, and M. Weis. Data fusion in three
steps: Resolving schema, tuple, and value inconsistencies. IEEE Data Eng.
Bull., 29(2), 2006.

[23] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[24] V. Raman and J. M. Hellerstein. Potter's Wheel: An interactive data
cleaning system. In VLDB, 2001.

[25] R. Singh and S. Gulwani. Learning semantic string transformations from
examples. PVLDB, 5(8), 2012.

[26] J. Wijsen. Database repairing using updates. TODS, 30(3), 2005.

[27] M. Yakout, A. K. ElImagarmid, J. Neville, M. Quzzani, and I. F. llyas.
Guided data repair. PVLDB, 4(5), 2011.

40

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

CLAIMS:

1. A method for cleaning data stored in a database, the method
comprising:
providing a set of fixing rules, each fixing rule incorporating:
a set of attribute values that capture an error in a plurality
of semantically related attribute values, and
a deterministic correction which is operable to replace one
of the set of attribute values with a correct attribute value to
correct the error,
wherein the method further comprises:
comparing at least two of the fixing rules with one another to check that
the error correction carried out by one fixing rule is consistent with the error

correction carried out by another fixing rule.

2. The method of claim 1, wherein the method comprises comparing all

fixing rules in the set of fixing rules pairwise with one another.

3. The method of claim 1 or claim 2, wherein the method comprises
applying at least two of the fixing rules to a tuple of attribute values to check
whether the at least two fixing rules apply different corrections to the tuple,
thereby indicating that the at least two fixing rules are not consistent with one
another.

4. The method of any one of the preceding claims, wherein the method
comprises identifying a tuple of attribute values that satisfies two of the fixing
rules and applying the two fixing rules to the tuple alternately in different orders
to determine if the two fixing rules apply different error corrections to the tuple
when the fixing rules are applied to the tuple in different orders, thereby
indicating that the fixing rules are not consistent with one another.

5. The method of claim 4, wherein the method further comprises

combining at least part of two inconsistent fixing rules with one another to

41

WO 2014/122295 PCT/EP2014/052494

10

15

20

25

30

produce one or more modified fixing rules which are consistent with one

another.

6. The method of claim 5, wherein the method comprises repeating the
comparison between at least two of the fixing rules until the method identifies
that all of the fixing rules in the set of fixing rules are consistent with one

another.

7. The method of any one of the preceding claims, wherein the method
comprises outputting at least two fixing rules that are not consistent with one
another to a user so that the user can amend or delete at least one of the

fixing rules to remove the inconsistency.

8. The method of any one of the preceding claims, wherein the method
further comprises:

applying at least one of the fixing rules to a plurality of tuples stored in a
database to detect if at least one of the tuples comprises the respective set of
attribute values that captures the error and, if the respective set of attribute
values is detected, applying the deterministic correction to correct the error in

the at least one tuple.

9. A method for cleaning data stored in a database, the method
comprising:
providing a set of fixing rules, each fixing rule incorporating:
a set of attribute values that capture an error in a plurality
of semantically related attribute values, and
a deterministic correction which is operable to replace one
of the set of attribute values with a correct attribute value to
correct the error,
wherein the method comprises:
applying at least one of the fixing rules to a plurality of tuples stored in a
database to detect if at least one of the tuples comprises the respective set of
attribute values that captures the error and, if the respective set of attribute

42

10

15

20

25

30

WO 2014/122295 PCT/EP2014/052494

values is detected, applying the deterministic correction to correct the error in
the at least one tuple.

10. The method of claim 8 or claim 9, wherein the method comprises
applying a plurality of the fixing rules to the tuples stored in the database, the
method applying each fixing rule only once to a respective tuple.

11. The method of claim 10, wherein the method comprises allocating an
attribute to each tuple which indicates each fixing rule that has been applied to
the tuple.

12. The method of claim 11, wherein the method comprises incrementing at
least one counter to record when a fixing rule is applied to a tuple.

13. The method of claim 12, wherein each counter is a hash counter which

records the number of tuples that correspond to each fixing rule.

14. The method of any one of claims 8 to 13, wherein the method further
comprises generating an inverted list of a plurality of fixing rules, the inverted
list comprising the plurality of fixing rules indexed according to at least one
attribute value of each respective fixing rule.

15. The method of claim 14, wherein the method comprises generating the

inverted list only once during the operation of the method.
16. The method of any one of the preceding claims, wherein the fixing rule
comprises at least one similarity operator which is operable to detect variants

of attribute values.

17. The method of any one of the preceding claims, wherein the fixing rule
is operable to use a wildcard attribute value in the set of attribute values.

43

WO 2014/122295 PCT/EP2014/052494

10

15

18. The method of any one of the preceding claims, wherein the fixing rule

is operable to detect the negation of an attribute value.

19. The method of any one of the preceding claims, wherein the method
comprises providing a plurality of fixing rules and applying at least one of the
plurality of fixing rules to the database.

20. A system for cleaning data stored in a database, the system being

operable to perform the method of any one of claims 1 to 19.
21. A tangible computer readable storage medium comprising instructions

which, when executed, cause an apparatus to perform the method of any one
of claims 1 to 19.

44

WO 2014/122295

Coiuntey

~LRTELEL

AR e

China

Tan

e
<
[

Petor

gz | Mike

Country

117

{Being)
Tolyvo

£

PCT/EP2014/052494

IChE

IO

VLR

Figure 1

Lol

tapiia
Beipng

Lanada

Lt tawa

Japan

Tokyo

COUntEy

Figure 2

{rapital ™}

capital

xj_‘; 1: ohins

COURTEY

=harnghng
Honglone

ferpmng

capital ™

Canada

po:

Toronto

Figure 3

Lieawa

WO 2014/122295 PCT/EP2014/052494

2/7

e B

e i,
E—the' X‘)—No-.-(/step’?\‘) {:;zei?}:}—*ﬁ’

Figure 4
Algorithan sConsist™
Inpart: & s of fixing rdes.

Chugpmt: trae {consistent) or fméﬁr {mmmm S AN

distines

for any tw o
- fé{‘i{ ¥ ii;,q j{w }., K} d[}'

b R
e
bt

) i B, = B, do
1 if Ty, [Bi] 1175 (Bl # 0 and 1, [B] # t, [B] do

return filee
yoand By ¢ X; and tp, (B

.f’!“z

T |Bi]

5. : & Ty, [By]
a return false

1 slecif B; € X; and B; ¢ X,
andd tp, (8] & T,

11. return fm@

12, return frue;

5
?
i

Eﬂ

=
i1

3] € Ty, [B5)

Figure 5

country || {capital™} | capital®
vi}ilii 1o hana Shanghal | Bejing

city | conf || {country | country
Tokyo | ICDE || China | Japan

Figure 6

WO 2014/122295 PCT/EP2014/052494

3/7

Alporithm cHepair
Inputy a wapde £, 8 set 5 of consistent Bxing roles,
Chutput: a ropaired taple ¢,
A= e b i by updated o true;
while Mpdatﬁd du
updated ;
for each .

- ::.(iﬁ

G- O U A RS bD e

o updated 1— trus;
returs 1

Figure 7

Adgorithm Hepair
Inpmt: taple ¢ of K, o
Chatpuat: & repained 1
L A=p T)
for each ¢
far !E%ﬂ!:?h v*”l :

2 ¥, inverted lists 7.

= 1 75‘;” rwée

mfld hﬁ &f A then
nplyving i such that £ B
i

s

12.

T(E., 'B,]) do

@)+
Xl then ' =T U {p'}k

m:

17, return 7

Figure 8

WO 2014/122295 PCT/EP2014/052494

417

|'CDUHU1’5!'? ’Qlﬁlim:’f@l ~3| 574

-7

| country, Canada

itrd:) [countey]

| capital, Bﬁ‘ijiﬂg| M@

{a) Inverted lists

Figure 9

Flis lor oap

FM s HM, addressl, address?, address3, city, state, zip,
county, phn, ht, ho, es

phn —+ zip, city, state, addressl, address?, address3

MLC -~ MM, condition

PN, MC — statelvg

state, MC —+ statefivg

¥l bor

ssn - thame, minit, Iname, stnum, stadd, apt, city, state, zip
fname, minit iname — szn, sthum, stadd, apt, city, state, zZip
Zip -+ State, city

Figure 10

WO 2014/122295 PCT/EP2014/052494

5/7

T T T T 1
i Fix C—
é 08 Edit EEEE 1
% L ol -
e i
£ & 1 oat 1
"
o 4 ez}
1 1 1 1
@ ;4 81 B0 100 2 ‘
Top 100 miles Frecizion Eecall
fm) # of errovs corrected (b} Accuracy

Figure 11

5 .

]'ﬂ_ " alomiat (n:anfé:awf e i ﬁi iComdat § &wunt wsﬁl
- 1@3 ilnmsie’ (worst cassl) P I FreComsin’ faunt cansl
g 1*{!4 @mﬂ;}“@‘ PR § w% 3 _*W.J £ 3
B3 e T B o, B0k ®
S EE TEEREE L

al F S . R)

w o . 4 10

YA N I N 3
1{' & & d L F }.D" 1 1 1 1
123 43546788 1 2 3~ 4
. #of mle 5&*1%? " #of
{n) HOSP {varving (5] (b} v {w

Figure 12

PCT/EP2014/052494
6/7

WO 2014/122295

¢| ainbi4

{07 o) epa o g ajez-odi] apeT-odi],

ole g Lo s el [A N - A
.@_\k%

; 1 HD

T i s | e

B0

1o

esas s (F) frEsar i (1) uowmarnd s (2)
1

01 &

i L

oy

[[EEEE)
AT B

womimard 450 [Pl freser e {0 [rEssr asoH ()

(001 «) =Eago ¢ (00T +) BMIzo g | mmredig sierodil

nostoead 4508 {v)
18 8L %5 F 8 01 e 8L %6 F &0 1 Hm.mfh.ﬁ,m.w.m.m.mt@@
o
0
2EH
20

NS
]
p
k8

]

WO 2014/122295 PCT/EP2014/052494

717

st
[

e |
=
td

st
L)
]
ket
LA
g
B
¥
L]

Time {zer)
Thme { sec)
o)

I
&

£

=
=]
A

R O R <N O]

1 3 4 2 4 3
. #of mles ,*}ﬂﬁ% ‘ o #of mles (¥ 1
{n} BOsP (varving 2] (bl vis (varying |

Figure 14

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings

