wo 2015/057991 A1 |10 OO0 OO0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

23 April 2015 (23.04.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/057991 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 3/06 (2006.01) GO6F 11/20 (2006.01)
GO6F 11/08 (2006.01)

International Application Number:
PCT/US2014/060952

International Filing Date:
16 October 2014 (16.10.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/892,962 18 October 2013 (18.10.2013) US
14/298,791 6 June 2014 (06.06.2014) US

Applicant: INTELLIGENT INTELLECTUAL PROP-
ERTY HOLDINGS 2 LLC [US/US]; 1209 Orange Street,
Wilmington, Delaware 19801 (US).

Inventors: TALAGALA, Nisha; 1682 Prima Drive, Liver-
more, California 94550 (US). FLYNN, David;, 11222
Eagle View Drive, Sandy, Utah 84092 (US).

(74

(8D

SUNDARARAMAN, Swaminathan; 2874 Paseo Lane,
San Jose, California 95124 (US). SUBRAMANIAN, Sri-
ram; 1550 Technology Drive, Apt. 4087, San Jose, Cali-
fornia 95110 (US). NELLANS, David; 4403 Pasada Lane,
Round Rock, Texas 78681 (US). WIPFEL, Robert; 2229
Kodiak Court, Draper, Utah 84020 (US). STRASSER,
John; 52 Shadow Breeze Road, Kaysville, Utah 84037

(US).

Agent: HAWKINS, Joseph J.; STOEL RIVES LLP, 201
So. Main Street, Suite 1100, Salt Lake City, Utah 84111

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR DISTRIBUTED ATOMIC STORAGE OPERATIONS

(57) Abstract: An aggregation module combines a plurality of logical

20/38

address spaces to form a conglomerated address space. The logical ad-

dress spaces comprising the conglomerated address space may corres-
pond to different respective storage modules and/or storage devices. An

Translation nterface
e 134 131
searage)

Metadata
a5

138

Storage Corroller]

; Py
| Vector 16404

i|13|11||2|13 ;
! T :

|P1|P7|P3|P4| |FG|P7|PB|

1615A

16644

iy 1630 /
Py

Vector 18424 {

[o]zt[z=]z] | |[=]z]=
- :

)
[pe [rro]pre]pus] [Proo]eror]erez] [pr]re]re]ra] [Pe]rr]rs]

16158
X

Vot 18404

150 |1r:|*1l19|v3|

v : v 368
[po Jrro]piiTree] [Proo]r1otrroz] }m@
. y ;
1815C

FIG. 16A

atomic aggregation module coordinates atomic storage operations with-
in the conglomerated address space, and which span multiple storage
modules. The aggregation module may identity the storage modules
used to implement the atomic storage request, assign a sequence indic -
ator to the atomic storage request, and issue atomic storage requests
(sub-requests) to the storage modules. The storage modules may be con-
figured to store a completion tag comprising the sequence indicator
upon completing the sub-requests issued thereto. The aggregation mod-
ule may identify incomplete atomic storage requests based on the com-
pletion information stored on the storage modules.

WO 2015/057991 A1 AT 00T VTR A

84)

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2015/057991 PCT/US2014/060952

SYSTEMS AND METHODS FOR DISTRIBUTED ATOMIC STORAGE
OPERATIONS

TECHNICAL FIELD

[0001] This disclosure relates to storage systems and, in particular, to systems and methods
for distributed atomic storage operations.

SUMMARY

[0002] Disclosed herein are embodiments of a method for implementing atomic storage
operations on two or more storage devices. The disclosed method may include assigning a
completion sequence indicator to an atomic storage request pertaining to a conglomerate
address space associated with address spaces of respective storage modules, generating sub-
requests corresponding to the atomic storage request based on associations between
identifiers of the atomic storage request and address spaces of the respective storage modules,
and issuing the sub-requests to two or more of the storage modules, the sub-requests
comprising the completion sequence indicator. Embodiments of the disclosed method may
further comprise determining whether the sub-requests were completed by the two or more
storage modules based on completion sequence indicators stored by the two or more storage
modules, generating the completion sequence indicator in response to the atomic storage
request, and/or identifying the two or more storage modules based on associations between
identifiers of the conglomerate address space and address spaces of the storage modules.
[0003] In some embodiments, issuing the sub-requests comprises translating identifiers of the
conglomerate address space to logical identifiers of respective logical address spaces of the
storage modules. Determining whether the sub-requests were completed by the two or more
storage modules may comprise comparing completion sequence indicators from each of the
two or more storage modules.

[0004] The disclosed method may further include determining that a sub-request issued to a
first one of the two or more storage modules failed based on a completion sequence indicator
stored on the first storage module and/or determining that a sub-request issued to a first one
of the two or more storage modules failed based on a completion sequence indicator stored
on another one of the two or more storage modules. In response to an invalid shutdown, the
method may comprise requesting completion tags from each of the two or more storage
modules, identifying the two or more storage modules assigned sub-requests of the atomic
storage request by use of the requested completion tags, and determining whether the sub-

requests were successfully completed based on the requested completion tags. Alternatively,

1

WO 2015/057991 PCT/US2014/060952

or in addition, in response to an invalid shutdown, the method may comprise receiving
respective completion tags stored by the two or more storage layers, identifying a number of
storage modules assigned sub-requests of the atomic storage request by use of the received
completion tags, and determining whether the sub-requests of the atomic storage request were
successfully completed based on the received completion tags.

[0005] Disclosed herein are embodiments of an apparatus for servicing atomic storage
requests on two or more storage modules. The disclosed apparatus may comprise an atomic
aggregation module configured to generate a transaction completion tag in response to an
atomic storage request associated with two or more storage modules, and an aggregation
storage module configured to assign respective atomic storage operations of the atomic
storage request to the two or more storage modules, and to provide the two or more storage
modules with the completion tag, wherein the two or more storage modules are configured to
store the completion tag in response to completing the assigned atomic storage operations.
The atomic storage request may correspond to identifiers of an aggregate address space
corresponding to a plurality of logical address spaces of respective storage modules, and the
atomic aggregation module may be configured to identify the two or more storage layers
based on associations between the identifiers of the atomic storage request and the logical
address spaces of the respective storage modules. The transaction completion tag may
indicate a number of storage modules assigned atomic storage operations of the atomic
storage request. Alternatively, or in addition, the completion tag may comprise a transaction
sequence indicator associated with the atomic storage request. Each of the storage modules
may comprise an atomic storage module configured to identify and/or invalidate data of
failed atomic storage operations performed on the storage module.

[0006] The disclosed apparatus may include a recovery agent configured to determine
whether the atomic storage operations assigned to the two or more storage modules were
successfully completed based on completion tags stored on storage media of the respective
two or more storage modules. The recovery agent may be configured to determine the
storage modules assigned atomic storage operations of the atomic storage request in response
to a completion tag stored on a storage medium of one of the storage modules. The recovery
agent may be configured to inform one of the two or more storage modules that the atomic
storage request is incomplete in response to another one of the two or more storage modules
failing to store the completion tag. In some embodiments, the recovery agent is configured to
access information pertaining to completion tags stored on the storage modules and to

determine whether the atomic storage request was fully completed based on the accessed

2

WO 2015/057991 PCT/US2014/060952

information pertaining to the completion tags. Alternatively, or in addition, the recovery
agent configured determine that the atomic storage request was completed on the two or more
storage modules in response to determining that each of the two or more storage modules
stored the completion tag on a respective storage device.

[0007] Disclosed herein are further embodiments of operations for servicing atomic storage
requests. The disclosed operations may comprise forming a virtual address space comprising
a plurality of virtual identifiers by combining a plurality of logical address spaces of
respective storage modules, selecting two or more of the storage modules to implement
respective portions of an atomic storage request based on mappings between virtual
identifiers of the atomic storage request and the storage modules, and providing completion
information comprising a completion sequence number corresponding to the atomic storage
request to the selected storage modules, wherein the selected storage modules are configured
to write the completion information to persistent storage in response to completing the
respective portions of the atomic storage request. The completion information may comprise
one or more of a count of the two or more selected storage modules, and identifiers of the two
or more storage modules. Configuring the sclected storage modules may comprise
translating virtual identifiers of the atomic storage request to logical identifiers of logical
address spaces of the respective storage modules.

[0008] In some embodiments, the disclosed operations may further comprise identifying the
two or more designated storage modules by use of completion information stored on one of
the two or more designated storage modules, issuing the atomic sub-requests to the
designated storage modules, wherein each of the designated storage modules is configured to
store the completion information in response to completing a respective atomic sub-request,
and/or determining whether the atomic storage request was fully completed based on
completion information stored on the designated storage modules.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1A is a block diagram of one embodiment of a system for open-to-close
consistency;

[0010] Fig. 1B depicts embodiments of storage metadata;

[0011] Fig. 1C is a block diagram depicting one embodiment of a storage array;

[0012] Fig. 1D depicts one embodiment of a data packet format;

[0013] Fig. 1E depicts one embodiment of a storage log;

[0014] Fig. 2 is a block diagram of another embodiment of a system for open-to-close

consistency;

WO 2015/057991 PCT/US2014/060952

[0015] Figs. 3A is a block diagram of one embodiment of a system comprising a storage
module configured to efficiently implement range clone, move, merge, and other higher-level
storage operations;

[0016] Fig. 3B depicts embodiments of range clone operations;

[0017] Fig. 3C depicts further embodiments of range clone operations;

[0018] Fig. 3D depicts further embodiments of range clone operations;

[0019] Fig. 3E depicts further embodiments of range clone operations;

[0020] Fig. 4A is a block diagram of another embodiment of a system for open-to-close
consistency;

[0021] Fig. 4B depicts embodiments of range clone operations implemented by use of a
reference map;

[0022] Fig. 4C depicts further embodiments of range clone operations implemented by use of
a reference map;

[0023] Fig. 4D depicts further embodiments of range clone operations implemented by use of
a reference map;

[0024] Fig. 4E depicts further embodiments of range clone operations implemented by use of
a reference map;

[0025] Fig. 5A is a block diagram of one embodiment of a system comprising an aggregation
module;

[0026] Fig. 5B depicts embodiments of range clone operations implemented by use of an
aggregation module;

[0027] Fig. 6 depicts embodiments of deduplication operations;

[0028] Fig. 7 is a block diagram depicting one embodiment of a system comprising a storage
module configured to efficiently implement snapshot operations;

[0029] Figs. 8A-E depict embodiments of range move operations;

[0030] Fig. 9A is a block diagram of a system comprising a storage module configured to
implement efficient file management operations;

[0031] Fig. 9B depicts one embodiment of a storage module configured to implement mmap
checkpoints;

[0032] Fig. 9C depicts embodiments of range clone and range merge operations implemented
by a storage module;

[0033] Fig. 9D depicts further embodiments of range clone and range merge operations;

[0034] Fig. 9E depicts further embodiments of range clone and range merge operations;

WO 2015/057991 PCT/US2014/060952

[0035] Fig. OF is a block diagram of one embodiment of a system comprising a storage
module configured to implement efficient open-to-close file consistency;

[0036] Fig. 9G depicts further embodiments of close-to-open file consistency;

[0037] Fig. 10 is a flow diagram of one embodiment of a method for managing a logical
interface of data storage in a contextual format on a non-volatile storage media;

[0038] Fig. 11 is a flow diagram of one embodiment of a method for managing a logical
interface of contextual data;

[0039] Fig. 12 is a flow diagram of another embodiment of a method for managing a logical
interface of contextual data;

[0040] Fig. 13 is a flow diagram of one embodiment of a method for managing range merge
operations;

[0041] Fig. 14 is a flow diagram of another embodiment of a method for managing range
clone operations;

[0042] Fig. 15 is a flow diagram of another embodiment of a method for managing range
merge operations;

[0043] Fig. 16A depicts one embodiment of a system comprising a storage module
configured to implement atomic storage operations;

[0044] Fig. 16B depicts embodiments of atomic storage operations;

[0045] Fig. 17 is a flow diagram of one embodiment of a method atomic storage operations;
[0046] Fig. 18 is a flow diagram of another embodiment of a method for atomic storage
operations;

[0047] Fig. 19 is a flow diagram of another embodiment of a method for atomic storage
operations;

[0048] Fig. 20A depicts one embodiment of a system comprising an aggregation module
configured to implement atomic storage operations;

[0049] Fig. 20B depicts embodiments of aggregation translation mappings; and

[0050] Fig. 20C depicts embodiments of atomic storage operations that span two or more
logical address spaces.

DETAILED DESCRIPTION

[0051] Fig. 1A is a block diagram of one embodiment of a computing system 100 comprising
a storage module 130 configured to provide storage services to one or more storage clients
106. The storage module 130 may be configured to provide open-to-close file services, as
disclosed in further detail herein. The computing system 100 may comprise any suitable

computing device, including, but not limited to, a server, desktop, laptop, embedded system,

5

WO 2015/057991 PCT/US2014/060952

mobile device, and/or the like. In some embodiments, the computing system 100 may
include multiple computing devices, such as a cluster of server computing devices. The
computing system 100 may comprise processing resources 101, volatile memory resources
102 (e.g., random access memory (RAM)), non-volatile storage resources 103, and a
communication interface 104. The processing resources 101 may include, but are not limited
to, general purpose central processing units (CPUs), application-specific integrated circuits
(ASICs), and programmable logic elements, such as field programmable gate arrays
(FPGAs), programmable logic arrays (PLGs), and the like. The non-volatile storage
resources 103 may comprise a non-transitory machine-readable storage medium, such as a
magnetic hard disk, solid-state storage medium, optical storage medium, and/or the like. The
communication interface 104 may be configured to communicatively couple the computing
system 100 to a network 105. The network 105 may comprise any suitable communication
network including, but not limited to, a Transmission Control Protocol/Internet Protocol
(TCP/IP) network, a Local Area Network (LAN), a Wide Area Network (WAN), a Virtual
Private Network (VPN), a Storage Area Network (SAN), a Public Switched Telephone
Network (PSTN), the Internet, and/or the like.

[0052] The computing system 100 may comprise a storage module 130, which may be
configured to provide storage services to one or more storage clients 106. The storage clients
106 may include, but are not limited to, operating systems (including bare metal operating
systems, guest operating systems, virtual machines, virtualization environments, and the
like), file systems, database systems, remote storage clients (e.g., storage clients
communicatively coupled to the computing system 100 and/or storage module 130 through
the network 105), and/or the like.

[0053] The storage module 130 (and/or modules thereof) may be implemented in software,
hardware, or a combination thereof. In some embodiments, portions of the storage module
130 are embodied as executable instructions, such as computer program code, which may be
stored on a persistent, non-transitory storage medium, such as the non-volatile storage
resources 103. The instructions and/or computer program code may be configured for
execution by the processing resources 101. Alternatively, or in addition, portions of the
storage module 130 may be embodied as machine components, such as general and/or
application-specific components, programmable hardware, FPGAs, ASICs, hardware
controllers, storage controllers, and/or the like.

[0054] The storage module 130 may be configured to perform storage operations on a storage

medium 140. The storage medium 140 may comprise any storage medium capable of storing

6

WO 2015/057991 PCT/US2014/060952

data persistently. As used herein, “persistent” data storage refers to storing information on a
persistent, non-volatile storage medium. The storage medium 140 may include non-volatile
storage media such as solid-state storage media in one or more solid-state storage devices or
drives (SSD), hard disk drives (e.g., Integrated Drive Electronics (IDE) drives, Small
Computer System Interface (SCSI) drives, Serial Attached SCSI (SAS) drives, Serial AT
Attachment (SATA) drives, etc.), tape drives, writable optical drives (e.g., CD drives, DVD
drives, Blu-ray drives, etc.), and/or the like.

[0055] In some embodiments, the storage medium 140 comprises non-volatile solid-state
memory, which may include, but is not limited to, NAND flash memory, NOR flash memory,
nano RAM (NRAM), magneto-resistive RAM (MRAM), phase change RAM (PRAM),
Racetrack memory, Memristor memory, nanocrystal wire-based memory, silicon-oxide based
sub-10 nanometer process memory, graphene memory, Silicon-Oxide-Nitride-Oxide-Silicon
(SONOS), resistive random-access memory (RRAM), programmable metallization cell
(PMC), conductive-bridging RAM (CBRAM), and/or the like. Although particular
embodiments of the storage medium 140 are disclosed herein, the teachings of this disclosure
could be applied to any suitable form of memory including both non-volatile and volatile
forms. Accordingly, although particular embodiments of the storage module 130 are
disclosed in the context of non-volatile, solid-state storage devices 140, the storage module
130 may be used with other storage devices and/or storage media.

[0056] In some embodiments, the storage medium 140 includes volatile memory, which may
include, but is not limited to, RAM, dynamic RAM (DRAM), static RAM (SRAM),
synchronous dynamic RAM (SDRAM), etc. The storage medium 140 may correspond to
memory of the processing resources 101, such as a CPU cache (e.g., L1, L2, L3 cache, etc.),
graphics memory, and/or the like. In some embodiments, the storage medium 140 is
communicatively coupled to the storage module 130 by use of an interconnect 127. The
interconnect 127 may include, but is not limited to, peripheral component interconnect (PCI),
PCI express (PCl-¢), serial advanced technology attachment (serial ATA or SATA), parallel
ATA (PATA), small computer system interface (SCSI), IEEE 1394 (FireWire), Fiber
Channel, universal serial bus (USB), and/or the like. Alternatively, the storage medium 140
may be a remote storage device that is communicatively coupled to the storage module 130
through the network 105 (and/or other communication interface, such as a Storage Area
Network (SAN), a Virtual Storage Area Network (VSAN), and/or the like). The interconnect

127 may, therefore, comprise a remote bus, such as a PCE-e bus, a network connection (e.g.,

WO 2015/057991 PCT/US2014/060952

Infiniband), a storage network, Fibre Channel Protocol (FCP) network, HyperSCSI, and/or
the like.

[0057] The storage module 130 may be configured to manage storage operations on the
storage medium 140 by use of, inter alia, a storage controller 139. The storage module 130
and/or storage controller 139 may comprise software and/or hardware components including,
but not limited to, one or more drivers and/or other software modules operating on the
computing system 100, such as one or more drivers, storage drivers, I/O drivers, filter drivers,
services, kernel-level modules, user-level modules, libraries, and/or the like; hardware
components, such as hardware controllers, communication interfaces, and/or the like; and so
on. The storage medium 140 may be embodied on a storage device 141. Portions of the
storage module 130 (e.g., storage controller 139) may be implemented as hardware and/or
software components (e.g., firmware) of the storage device 141.

[0058] The storage controller 139 may be configured to implement storage operations at
particular storage locations of the storage medium 140. As used herein, a storage location
refers to a unit of storage of a storage resource (e.g., a storage medium and/or device) that is
capable of storing data persistently; storage locations may include, but are not limited to,
pages, groups of pages (e.g., logical pages and/or offsets within a logical page), storage
divisions (e.g., physical erase blocks, logical erase blocks, etc.), sectors, locations on a
magnetic disk, battery-backed memory locations, and/or the like. The storage locations may
be addressable within a storage address space 144 of the storage medium 140. Storage
addresses may correspond to physical addresses, media addresses, back-end addresses,
address offsets, and/or the like. Storage addresses may correspond to any suitable storage
address space 144, storage addressing scheme, and/or arrangement of storage locations.
[0059] The storage module 130 may comprise an interface 131 through which storage clients
106 may access storage services provided by the storage module 130. The storage interface
131 may include one or more of a block device interface, an object storage interface, a file
storage interface, a key-value storage interface, a virtualized storage interface, one or more
virtual storage units (VSUSs), an object storage interface, a database storage interface, and/or
other suitable interface and/or an Application Programming Interface (API), and the like.
[0060] The storage module 130 may provide for referencing storage resources through a
front-end storage interface. As used herein, a “front-end storage interface” refers to an
interface and/or namespace through which storage clients 106 may refer to storage resources
of the storage module 130. A storage interface may correspond to a logical address space

(LAS) 132. The logical address space 132 may comprise a group, set, collection, range,

8

WO 2015/057991 PCT/US2014/060952

and/or extent of identifiers. As used herein, a “identifier” or “logical identifier” (LID) refers
to an identifier for referencing a source resource; LIDs may include, but are not limited to,
names (e.g., file names, distinguished names, and/or the like), data identifiers, references,
links, front-end identifiers, logical addresses, logical block addresses (LBAs), storage unit
addresses, virtual storage unit (VSU) addresses, logical unit number (LUN) addresses, virtual
unit number (VUN) addresses, virtual logical unit number (VLUN) addresses, virtual storage
addresses, storage addresses, physical addresses, media addresses, back-end addresses,
unique identifiers, globally unique identifiers (GUIDs), and/or the like.

[0061] The logical capacity of the logical address space 132 may correspond to the number
of LIDs in the logical address space 132 and/or the size and/or granularity of the storage
resources referenced by the LIDs. In some embodiments, the logical address space 132 may
be “thinly provisioned.” As used herein, a thinly provisioned logical address space 132 refers
to a logical address space 132 having a logical capacity that exceeds the physical storage
capacity of the underlying storage resources (e.g., exceeds the storage capacity of the storage
medium 140). In one embodiment, the storage module 130 is configured to provide a 64-bit
logical address space 132 (e.g., a logical address space comprising 226 unique LIDs), which
may exceed the physical storage capacity of the storage medium 140. The large, thinly-
provisioned logical address space 132 may allow storage clients 106 to efficiently allocate
and/or reference contiguous ranges of LIDs, while reducing the chance of naming conflicts.
[0062] The translation module 134 of the storage module 130 may be configured to map
LIDs of the logical address space 132 to storage resources (e.g., data stored within the storage
address space 144 of the storage medium 140). The logical address space 132 may be
independent of the back-end storage resources (e.g., the storage medium 140); accordingly,
there may be no set or pre-determined mappings between LIDs of the logical address space
132 and the storage addresses of the storage address space 144. In some embodiments, the
logical address space 132 is sparse, thinly provisioned, and/or over-provisioned, such that the
size of the logical address space 132 differs from the storage address space 144 of the storage
medium 140.

[0063] The storage module 130 may be configured to maintain storage metadata 135
pertaining to storage operations performed on the storage medium 140. The storage metadata
135 may include, but is not limited to, a forward map comprising any-to-any mappings
between LIDs of the logical address space 132 and storage addresses within the storage
address space 144, a reverse map pertaining to the contents of storage locations of the storage

medium 140, validity bitmaps, reliability testing and/or status metadata, status information

9

WO 2015/057991 PCT/US2014/060952

(e.g., error rate, retirement status, and so on), cache metadata, and/or the like. Portions of the
storage metadata 135 may be maintained within the volatile memory resources 102 of the
computing system 100. Alternatively, or in addition, portions of the storage metadata 135
may be stored on non-volatile storage resources 103 and/or the storage medium 140.

[0064] Fig. 1B depicts one embodiment of any-to-any mappings 150 between LIDs of the
logical address space 132 and back-end identifiers (e.g., storage addresses) within the storage
address space 144. The any-to-any mappings 150 may be maintained in one or more data
structures of the storage metadata 135. As illustrated in Fig. 1B, the translation module 134
may be configured to map any storage resource identifier (any LID) to any back-end storage
location. As further illustrated, the logical address space 132 may be sized differently than
the underlying storage address space 144. In the Fig. 1B embodiment, the logical address
space 132 may be thinly provisioned, and, as such, may comprise a larger range of LIDs than
the range of storage addresses in the storage address space 144.

[0065] As disclosed above, storage clients 106 may reference storage resources through the
LIDs of the logical address space 132. Accordingly, the logical address space 132 may
correspond to a logical interface 152 of the storage resources, and the mappings to particular
storage addresses within the storage address space 144 may correspond to a back-end
interface 154 of the storage resources.

[0066] The storage module 130 may be configured to maintain the any-to-any mappings 150
between the logical interface 152 and back-end interface 154 in a forward map 160. The
forward map 160 may comprise any suitable data structure, including, but not limited to, an
index, a map, a hash map, a hash table, a tree, a range-encoded tree, a b-tree, and/or the like.
The forward map 160 may comprise entries 162 corresponding to LIDs that have been
allocated for use to reference data stored on the storage medium 140. The entries 162 of the
forward map 160 may associate LIDs 164A-D with respective storage addresses 166A-D
within the storage address space 144. The forward map 160 may be sparsely populated, and
as such, may omit entries corresponding to LIDs that are not currently allocated by a storage
client 106 and/or are not currently in use to reference valid data stored on the storage medium
140. In some embodiments, the forward map 160 comprises a range-encoded data structure,
such that one or more of the entries 162 may correspond to a plurality of LIDs (e.g., a range,
extent, and/or set of LIDs). In the Fig. 1B embodiment, the forward map 160 includes an
entry 162 corresponding to a range of LIDs 164A mapped to a corresponding range of
storage addresses 166A. The entries 162 may be indexed by LIDs. In the Fig. 1B

embodiment, the entries 162 are arranged into a tree data structure by respective links. The

10

WO 2015/057991 PCT/US2014/060952

disclosure is not limited in this regard, however, and could be adapted to use any suitable data
structure and/or indexing mechanism.

[0067] Referring to Fig. 1C, in some embodiments, the storage medium 140 may comprise a
solid-state storage array 115 comprising a plurality of solid-state storage clements 116A-Y.
As used herein, a solid-state storage array (or storage array) 115 refers to a set of two or more
independent columns 118. A column 118 may comprise one or more solid-state storage
clements 116A-Y that are communicatively coupled to the storage module 130 in parallel
using, inter alia, the interconnect 127. Rows 117 of the array 115 may comprise physical
storage units of the respective columns 118 (solid-state storage elements 116A-Y). As used
herein, a solid-state storage element 116A-Y includes, but is not limited to, solid-state storage
resources embodied as a package, chip, die, plane, printed circuit board, and/or the like. The
solid-state storage elements 116A-Y comprising the array 115 may be capable of independent
operation. Accordingly, a first one of the solid-state storage elements 116A may be capable
of performing a first storage operation while a second solid-state storage eclement 116B
performs a different storage operation. For example, the solid-state storage element 116A
may be configured to read data at a first physical address, while another solid-state storage
clement 116B reads data at a different physical address.

[0068] A solid-state storage array 115 may also be referred to as a logical storage element
(LSE). As disclosed in further detail herein, the solid-state storage array 115 may comprise
logical storage units (rows 117). As used herein, a “logical storage unit” or row 117 refers to
combination of two or more physical storage units, each physical storage unit on a respective
column 118 of the array 115. A logical erase block refers to a set of two or more physical
erase blocks, a logical page refers to a set of two or more pages, and so on. In some
embodiments, a logical erase block may comprise erase blocks within respective logical
storage elements 115 and/or banks. Alternatively, a logical erase block may comprise erase
blocks within a plurality of different arrays 115 and/or may span multiple banks of solid-state
storage elements.

[0069] Referring back to Fig. 1A, the storage module 130 may further comprise a log storage
module 136 configured to store data on the storage medium 140 in a log structured storage
configuration (e.g., in a storage log). As used herein, a “storage log” or “log structure” refers
to an ordered arrangement of data within the storage address space 144 of the storage
medium 140. Data in the storage log may comprise and/or be associated with persistent
metadata. Accordingly, the storage module 130 may be configured to store data in a

contextual, self-describing format. As used herein, a contextual or self-describing format

11

WO 2015/057991 PCT/US2014/060952

refers to a data format in which data is stored in association with persistent metadata. In
some embodiments, the persistent metadata may be configured to identify the data, and as
such, may comprise and/or reference the logical interface of the data (e.g., may comprise the
LID(s) associated with the data). The persistent metadata may include other information,
including, but not limited to, information pertaining to the owner of the data, access controls,
data type, relative position or offset of the data, information pertaining to storage operation(s)
associated with the data (e.g., atomic storage operations, transactions, and/or the like), log
sequence information, data storage parameters (e.g., compression algorithm, encryption, etc.),
and/or the like.

[0070] Fig. 1D illustrates one embodiment of a contextual data format. The packet format
110 of Fig. 1D comprises a data segment 112 and persistent metadata 114. The data segment
112 may be of any arbitrary length and/or size. The persistent metadata 114 may be
embodied as one or more header fields of the data packet 110. As disclosed above, the
persistent metadata 114 may comprise the logical interface of the data segment 112, and as
such, may include the LID(s) associated with the data segment 112. Although Fig. 1D
depicts a packet format 110, the disclosure is not limited in this regard and could associate
data (e.g., data segment 112) with contextual metadata in other ways including, but not
limited to, an index on the storage medium 140, a storage division index, and/or the like.
Data packets 110 may be associated with sequence information 113. The sequence
information may be used to determine the relative order of the data packets within the storage
log. In some embodiments, data packets are appended sequentially within storage divisions
of the storage medium 140. The storage divisions may correspond to erase blocks, logical
erase blocks, or the like. Each storage division may be capable of storing a large number of
data packets 110. The relative position of the data packets 110 within a storage division may
determine the order of the packets within the storage log. The order of the storage divisions
may be determined, inter alia, by storage division sequence information 113. Storage
divisions may be assigned respective sequence information 113 at the time the storage
division is initialized for use (e.g., erased), programmed, closed, or the like. The storage
division sequence information 113 may determine an ordered sequence of storage divisions
within the storage address space 144. Accordingly, the relative order of a data packet 110
within the storage log may be determined by: a) the relative position of the data packet 110
within a particular storage division and b) the order of the storage division relative to other

storage divisions in the storage address space 144.

12

WO 2015/057991 PCT/US2014/060952

[0071] In some embodiments, the storage module 130 may be configured to manage an
asymmetric, write-once storage medium 140, such as a solid-state storage medium, flash
storage medium, or the like. As used herein, a “write once” storage medium refers to a
storage medium that is reinitialized (e.g., ecrased) each time new data is written or
programmed thereon. As used herein, an “asymmetric” storage medium refers to a storage
medium that has different latencies for different types of storage operations. In some
embodiments, for example, read operations may be faster than write/program operations, and
write/program operations may be much faster than erase operations (e.g., reading the media
may be hundreds of times faster than erasing, and tens of times faster than programming the
storage medium). The storage medium 140 may be partitioned into storage divisions that can
be erased as a group (e.g., erase blocks). As such, modifying a single data segment “in-
place” may require erasing the entire erase block comprising the data and rewriting the
modified data to the erase block, along with the original, unchanged data. This may result in
inefficient “write amplification,” which may excessively wear the media. In some
embodiments, therefore, the storage module 130 may be configured to write data “out-of-
place.” As used herein, writing data “out-of-place” refers to updating and/or overwriting data
at different storage location(s) rather than overwriting the data “in-place” (e.g., overwriting
the original physical storage location of the data). Updating and/or overwriting data out-of-
place may avoid write amplification, since existing, valid data on the erase block with the
data to be modified need not be erased and recopied. Moreover, writing data out-of-place
may remove erasure from the latency path of many storage operations, such that erasure
latency is not part of the “critical path” of write operations.

[0072] The storage module 130 may be configured to perform storage operations out-of-
place by use of, inter alia, the log storage module 136. The log storage module 136 may be
configured to append data at a current append point within the storage address space 144 in a
manner that maintains the relative order of storage operations performed by the storage
module 130, forming a “storage log” on the storage medium 140. Fig. 1E depicts one
embodiment of append-only storage operations performed within the storage address space
144 of the storage medium 140. As disclosed above, the storage address space 144 comprises
a plurality of storage divisions 170A-N (e.g., erase blocks, logical erase blocks, or the like),
cach of which can be initialized for use in storing data (e.g., erased). The storage divisions
170A-N may comprise respective storage locations, which may correspond to pages, logical
pages, and/or the like, as disclosed herein. The storage locations may be assigned respective

storage addresses (e.g., storage address 0 to storage address N).

13

WO 2015/057991 PCT/US2014/060952

[0073] The log storage module 136 may be configured to store data sequentially from an
append point 180 within the physical address space 144. In the Fig. 1E embodiment, data
may be appended at the append point 180 within storage location 182 of storage division
170A and, when the storage location 182 is filled, the append point 180 may advance 181 to a
next available storage location. As used herein, an “available” storage location refers to a
storage location that has been initialized and has not yet been programmed (e.g., has been
erased). As disclosed above, some types of storage media can only be reliably programmed
once after erasure. Accordingly, an available storage location may refer to a storage location
within a storage division 170A-N that is in an initialized (or erased) state.

[0074] In the Fig. 1E embodiment, the logical erase block 170B may be unavailable for
storage due to, inter alia, not being in an erased state (e.g., comprising valid data), being out-
of service due to high error rates, or the like. Therefore, after filling the storage location 182,
the log storage module 136 may skip the unavailable storage division 170B, and advance the
append point 180 to the next available storage division 170C. The log storage module 136
may be configured to continue appending data to storage locations 183-185, at which point
the append point 180 continues at a next available storage division 170A-N, as disclosed
above.

[0075] After storing data on the “last” storage location within the storage address space 144
(e.g., storage location N 189 of storage division 170N), the log storage module 136 may
advance the append point 180 by wrapping back to the first storage division 170A (or the
next available storage division, if storage division 170A is unavailable). Accordingly, the log
storage module 136 may treat the storage address space 144 as a loop or cycle.

[0076] As disclosed above, sequentially appending data within the storage address space 144
may generate a storage log on the storage medium 140. In the Fig. 1E embodiment, the
storage log may comprise the ordered sequence of storage operations performed by
sequentially storing data packets (and/or other data structures) from the append point 180
within the storage address space 144. The append-only storage format may be used to
modify and/or overwrite data out-of-place, as disclosed above. Performing storage
operations out-of-place may avoid write amplification, since existing valid data on the
storage divisions 170A-N comprising the data that is being modified and/or overwritten need
not be erased and/or recopied. Moreover, writing data out-of-place may remove erasure from
the latency path of many storage operations (the erasure latency is no longer part of the

“critical path” of a write operation).

14

WO 2015/057991 PCT/US2014/060952

[0077] In the Fig. 1E embodiment, a data segment X0 corresponding to LID A may be stored
at storage location 191. The data segment X0 may be stored in the self-describing packet
format 110, disclosed above. The data segment 112 of the packet 110 may comprise the data
segment X0, and the persistent metadata 114 may comprise the LID(s) associated with the
data segment (e.g., the LID A). A storage client 106 may request an operation to modify
and/or overwrite the data associated with the LID A, which may comprise replacing the data
segment X0 with data segment X1. The storage module 130 may perform this operation out-
of-place by appending a new packet 110 comprising the data segment X1 at a different
storage location 193 on the storage medium 144, rather than modifying the existing data
packet 110, in place, at storage location 191. The storage operation may further comprise
updating the storage metadata 135 to associate the LID A with the storage address of storage
location 193 and/or to invalidate the obsolete data X0 at storage location 191. As illustrated
in Fig. 1E, updating the storage metadata 135 may comprise updating an entry of the forward
map 160 to associate the LID A 164E with the storage address of the modified data segment
XI.

[0078] Performing storage operations out-of-place (e.g., appending data to the storage log)
may result in obsolete or invalid data remaining on the storage medium 140 (e.g., data that
has been erased, modified, and/or overwritten out-of-place). As illustrated in Fig. 1E,
modifying the data of LID A by appending the data segment X1 to the storage log as opposed
to overwriting and/or replacing the data segment X0 in place at storage location 191 results in
keeping the obsolete version of the data segment X0 on the storage medium 140. The
obsolete version of the data segment X0 may not be immediately removed from the storage
medium 140 (e.g., erased), since, as disclosed above, erasing the data segment X0 may
involve erasing an entire storage division 170A and/or relocating valid data on the storage
division 170A, which is a time-consuming operation and may result in write amplification.
Similarly, data that is no longer is use (e.g., deleted or subject to a TRIM operation) may not
be immediately removed. As such, over time, the storage medium 140 may accumulate a
significant amount of “invalid” data.

[0079] The storage module 130 may identify invalid data, such as the data segment X0 at
storage location 191, by use of the storage metadata 135 (e.g., the forward map 160). The
storage module 130 may determine that storage locations that are not associated with valid
identifiers (LIDs) in the forward map 160 comprise data that does not need to be retained on
the storage medium 140. Alternatively, or in addition, the storage module 130 may maintain

other storage metadata 135, such as validity bitmaps, reverse maps, and/or the like to

15

WO 2015/057991 PCT/US2014/060952

efficiently identify data that has been deleted, has been TRIMed, is obsolete, and/or is
otherwise invalid.

[0080] The storage module 130 may be configured to reclaim storage resources occupied by
invalid data. The storage module 130 may be further configured to perform other media
management operations including, but not limited to, refreshing data stored on the storage
medium 140 (to prevent error conditions due to data degradation, write disturb, read disturb,
and/or the like), monitoring media reliability conditions, and/or the like. As used herein,
reclaiming a storage resource, such as a storage division 170A-N, refers to erasing the storage
division 170A-N so that new data may be stored/programmed thereon. Reclaiming a storage
division 170A-N may comprise relocating valid data on the storage division 170A-N to a new
storage location. The storage module 130 may identify storage divisions 170A-N for
reclamation based upon one or more factors, which may include, but are not limited to, the
amount of invalid data in the storage division 170A-N, the amount of valid data in the storage
division 170A-N, wear levels (e.g., number of program/erase cycles), time since the storage
division 170A-N was programmed or refreshed, and so on.

[0081] The storage module 130 may be configured to reconstruct the storage metadata 135,
including the forward map 160, by use of contents of the storage log on the storage medium
140. In the Fig. 1E embodiment, the current version of the data associated with LID A may
be determined based on the relative log order of the data packets 110 at storage locations 191
and 193, respectively. Since the data packet at storage location 193 is ordered after the data
packet at storage location 191 in the storage log, the storage module 130 may determine that
storage location 193 comprises the most recent, up-to-date version of the data corresponding
to LID A. The storage module 130 may reconstruct the forward map 160 to associate the
LID A with the data packet at storage location 193 (rather than the obsolete data at storage
location 191).

[0082] Fig. 2 depicts another embodiment of a system 200 comprising a storage module 130.
The storage medium 140 may comprise a plurality of independent banks 119A-N, each of
which may comprise one or more storage arrays 115A-N. Each independent bank 119A-N
may be coupled to the storage controller 139 via the interconnect 127.

[0083] The storage controller 139 may comprise a storage request receiver module 231
configured to receive storage requests from the storage module 130 via a bus 127. The
storage request receiver 231 may be further configured to transfer data to/from the storage

module 130 and/or storage clients 106. Accordingly, the storage request receiver module 231

16

WO 2015/057991 PCT/US2014/060952

may comprise one or more direct memory access (DMA) modules, remote DMA modules,
bus controllers, bridges, buffers, and so on.

[0084] The storage controller 139 may comprise a write module 240 that is configured to
store data on the storage medium 140 in response to requests received via the request module
231. The storage requests may comprise and/or reference the logical interface of the data
pertaining to the requests. The write module 240 may be configured to store the data in a
self-describing storage log, which, as disclosed above, may comprise appending data packets
110 sequentially within the storage address space 144 of the storage medium 140. The data
packets 110 may comprise and/or reference the logical interface of the data (e.g., may
comprise the LID(s) associated with the data). The write module 240 may comprise a write
processing module 242 configured to process data for storage. Processing data for storage
may comprise one or more of: a) compression processing, b) encryption processing,)
encapsulating data into respective data packets 110 (and/or other containers), d) performing
error-correcting code (ECC) processing, and so on. The write buffer 244 may be configured
to buffer data for storage on the storage medium 140. In some embodiments, the write buffer
244 may comprise one or more synchronization buffers configured to synchronize a clock
domain of the storage controller 139 with a clock domain of the storage medium 140 (and/or
interconnect 127).

[0085] The log storage module 136 may be configured to select storage location(s) for data
storage operations and may provide addressing and/or control information to the storage
arrays 115A-N of the independent banks 119A-N. As disclosed herein, the log storage
module 136 may be configured to append data sequentially in a log format within the storage
address space 144 of the storage medium 140.

[0086] Storage operations to write data may comprise: a) appending one or more data packets
to the storage log on the storage medium 140 and b) updating storage metadata 135 to
associate LID(s) of the data with the storage addresses of the one or more data packets. In
some embodiments, the storage metadata 135 may be maintained on memory resources of the
storage controller 139 (e.g., on dedicated volatile memory resources of the storage device 141
comprising the storage medium 140). Alternatively, or in addition, portions of the storage
metadata 135 may be maintained within the storage module 130 (e.g., on a volatile memory
112 of the computing device 110 of Fig. 1A). In some embodiments, the storage metadata
135 may be maintained in a volatile memory by the storage module 130, and may be

periodically stored on the storage medium 140.

17

WO 2015/057991 PCT/US2014/060952

[0087] The storage controller 139 may further comprise a data read module 241 configured
to read data from the storage log on the storage medium 140 in response to requests received
via the storage request receiver module 231. The requests may comprise LID(s) of the
requested data, a storage address of the requested data, and/or the like. The read module 241
may be configured to: a) determine the storage address(es) of the data packet(s) 110
comprising the requested data by use of, inter alia, the forward map 160, b) read the data
packet(s) 110 from the determined storage address(es) on the storage medium 140, and c)
processing data for use by the requesting entity. Data read from the storage medium 140 may
stream into the read module 241 via the read buffer 245. The read buffer 245 may comprise
one or more read synchronization buffers for clock domain synchronization, as described
above. The read processing module 243 may be configured to processes data read from the
storage medium 144, which may include, but is not limited to, one or more of: a)
decompression processing, b) decryption processing, ¢) extracting data from one or more data
packet(s) 110 (and/or other containers), d) performing ECC processing, and so on.

[0088] The storage controller 139 may further comprise a bank controller 252 configured to
selectively route data and/or commands of the write module 240 and/or read module 241
to/from particular independent banks 119A-N. In some embodiments, the storage controller
139 is configured to interleave storage operations between the independent banks 119A-N.
The storage controller 139 may, for example, read from the storage array 115A of bank 119A
into the read module 241 while data from the write module 240 is being programmed to the
storage array 115B of bank 119B. Further embodiments of multi-bank storage operations are
disclosed in U.S. Patent Application Serial No. 11/952,095, entitled, “Apparatus, System, and
Method for Managing Commands for Solid-State Storage Using Bank Interleave,” filed
December 12, 2006 for David Flynn et al., which is hereby incorporated by reference.

[0089] The write processing module 242 may be configured to encode data packets 110 into
ECC codewords. As used herein, an ECC codeword refers to data and corresponding error
detection and/or correction information. The write processing module 242 may be
configured to implement any suitable ECC algorithm and/or generate ECC codewords of any
suitable type, which may include, but are not limited to, data segments and corresponding
ECC syndromes, ECC symbols, ECC chunks, and/or other structured and/or unstructured
ECC information. ECC codewords may comprise any suitable error-correcting encoding,
including, but not limited to, block ECC encoding, convolutional ECC encoding, Low-
Density Parity-Check (LDPC) encoding, Gallager encoding, Reed-Solomon encoding,

Hamming codes, Multidimensional parity encoding, cyclic error-correcting codes, BCH

18

WO 2015/057991 PCT/US2014/060952

codes, and/or the like. The write processing module 242 may be configured to generate ECC
codewords of a pre-determined size. Accordingly, a single packet may be encoded into a
plurality of different ECC codewords and/or a single ECC codeword may comprise portions
of two or more packets. Alternatively, the write processing module 242 may be configured
to generate arbitrarily sized ECC codewords. Further embodiments of error-correcting code
processing are disclosed in U.S. Patent Application Serial No. 13/830,652, entitled, “Systems
and Methods for Adaptive Error-Correction Coding,” filed March 14, 2013 for Jeremy
Fillingim et al., which is hereby incorporated by reference.

[0090] In some embodiments, the storage module 130 leverages the logical address space
132 to efficiently implement high-level storage operations. The storage module 130 may be
configured to implement “clone” or “logical copy” operations. As used herein, a “clone” or

2

“logical copy” refers to operations to efficiently copy or replicate data managed by the
storage module 130. A clone operation may comprise creating a set of “cloned” LIDs that
correspond to the same data as a set of “original” LIDs. A clone operation may, therefore,
comprise referencing the same set of storage locations using two (or more) different logical
interfaces (e.g., different sets of LIDs). A clone operation may, therefore, modify the logical
interface of one or more data packets 110 stored on the storage medium 140. A “logical
move” may refer to an operation to modify the logical interface of data managed by the
storage module 130. A logical move operation may comprise changing the LIDs used to
reference data stored on the storage medium 140. A “merge” operation may comprise
merging different portions of the logical address space 132. As disclosed in further detail
herein, clone and/or move operations may be used to efficiently implement higher-level
storage operations, such as deduplication, snapshots, logical copies, atomic operations,
transactions, and/or the like.

[0091] Referring to Fig. 3A, the storage module 130 may comprise a logical interface
management module 334 that is configured to manage logical interface operations pertaining
to data managed by the storage module 130, such as clone operations, move operations,
merge operations, and so on. Cloning LIDs may comprise modifying the logical interface of
data stored in the storage medium 140 in order to, inter alia, allow the data to be referenced
by use of two or more different sets of LIDs. Accordingly, creating a clone may comprise: a)
allocating a set of LIDs in the logical address space 132 (or dedicated portion thereof) and b)
associating the allocated LIDs with the same storage location(s) as an “original” set of LIDs

by use of, inter alia, the storage metadata 135. Creating a clone may, therefore, comprise

19

WO 2015/057991 PCT/US2014/060952

adding one or more entries to a forward map 160 configured to associate the new set of
cloned LIDs with a particular set of storage locations.

[0092] The logical interface management module 334 may be configured to implement clone
operations according to a clone synchronization policy. A clone synchronization policy may
be used to determine how operations performed in reference to a first one of a plurality of
clones or copies is propagated to the other clones or copies. For example, clones may be
synchronized with respect to allocation operations, such that a request to expand one of the
clones comprises expanding the other clones and/or copies. As used herein, expanding a file
(or other data segment) refers to increasing a size, range, and/or extent of the file, which may
include adding one or more logical identifiers to the clone, modifying one or more of the
logical identifiers allocated to the clone, and/or the like. The clone synchronization policy
may comprise a merge policy, which may, inter alia, determine how differences between
clones are managed when the clones are combined in a merge and/or fold operation
(disclosed in additional detail below).

[0093] Fig. 3A depicts one embodiment of a range clone operation implemented by the
storage module 130. The range clone operation of Fig. 3A may be implemented in response
to a request from a storage client 106. In some embodiments, the interface 131 of the storage
module 130 may be configured to provide interfaces and/or APIs for performing clone
operations. Alternatively, or in addition, the range clone operation may be performed as part
of a higher-level operation, such as an atomic operation, transaction, snapshot, logical copy,
file management operation, and/or the like.

[0094] As illustrated in Fig. 3A, the forward map 160 of the storage module 130 comprises
an entry 362 configured to bind the LIDs 1024-2048 to media storage locations 3453-4477.
Other entries are omitted from Fig. 3A to avoid obscuring the details of the depicted
embodiment. As disclosed herein, the entry 362, and the bindings thercof, may define a
logical interface 311A through which storage clients 106 may reference the corresponding
data (e.g., data segment 312); storage clients 106 may access and/or reference the data
segment 312 (and/or portions thereof) through the storage module 130 by use of the LIDs
1024-2048. Accordingly, the LIDs 1024-2048 define, inter alia, the logical interface 311A
of the data segment 312.

[0095] As disclosed herein, the storage module 130 may be configured to store data in a
contextual format on a storage medium 140 (e.g., packet format 110). In the Fig. 3A
embodiment, the data packet 310 at storage locations 3453-4477 comprises a data segment

312. The data packet 310 further includes persistent metadata 314 that indicates the logical

20

WO 2015/057991 PCT/US2014/060952

interface of the data segment 312 (e.g., associates the data segment 312 with LIDs 1024-
2048). As disclosed above, storing data in association with descriptive, persistent metadata
may enable the storage module 130 to rebuild the forward map 160 (and/or other storage
metadata 135) from the contents of the storage log. In the Fig. 3A embodiment, the entry 362
may be reconstructed by associating the data stored at storage addresses 3453-4477 with the
LIDs 1024-2048 referenced by the persistent metadata 314 of the packet 310. Although Fig.
3A depicts a single packet 310, the disclosure is not limited in this regard. In some
embodiments, the data of the entry 362 may be stored in multiple, different packets 310, each
comprising respective persistent metadata 314 (e.g., a separate packet for each storage
location, etc.).

[0096] The logical interface management module 334 may be configured to clone the entry
362 by, inter alia, allocating a new set of LIDs corresponding to the original LIDs to be
cloned and binding the new LIDs to the storage locations of the original, source LIDs. As
illustrated in Fig. 3B, creating the clone of the LIDs 1024-2048 may comprise the logical
interface management module 334 allocating an equivalent set of LIDs 6144-7168 and
binding the cloned set of identifiers to the storage addresses 3453-4477. Creating the clone
may, therefore, comprise modifying the storage metadata 135 to expand the logical interface
311B of the data segment 312 to include LIDs 6144-7168 without requiring the underlying
data segment 312 to be copied and/or replicated on the storage media 140.

[0097] The modified logical interface 311B of the data segment 312 may be inconsistent with
the contextual format of the corresponding data packet 310 stored at storage locations 3453-
4477. As disclosed above, the persistent metadata 314 of the data packet 310 references
LIDs 1024-2048, but does not include and/or reference the cloned LIDs 6144-7168. The
contextual format of the data segment 312 may be updated to be consistent with the modified
logical interface 311B (e.g., updated to associate the data with LIDs 1024-2048 and 6144-
7168, as opposed to only LIDs 1024-2048), which may comprise rewriting the data segment
in a packet format that associates the data segment with both sets of LIDs. If the storage
device 141 is a random-access, write-in-place storage device, the persistent metadata 314
may be updated in place. In other embodiments comprising a write-once, asymmetric storage
medium 140, such in-place updates may be inefficient. Therefore, the storage module 130
may be configured to maintain the data in the inconsistent contextual format until the data is
relocated in a media management operation, such as storage recovery, relocation, and/or the
like (by the media management module 370). Updating the contextual format of the data

segment 312 may comprise relocating and/or rewriting the data segment 312 on the storage

21

WO 2015/057991 PCT/US2014/060952

medium 140, which may be a time-consuming process and may be particularly inefficient if
the data segment 312 is large and/or the clone comprises a large number of LIDs. Therefore,
in some embodiments, the storage module 130 may defer updating the contextual format of
cloned data segment 312 and/or may update the contextual format in one or more background
operations. In the meantime, the storage module 130 may be configured to provide access to
the data segment 312 while stored in the inconsistent contextual format (data packet 310).
[0098] The storage module 130 may be configured to acknowledge completion of clone
operations before the contextual format of the corresponding data segment 312 is updated.
The data may be subsequently rewritten (e.g., relocated) in the updated contextual format on
the storage medium 140. The update may occur outside of the “critical path” of the clone
operation and/or other foreground storage operations. In some embodiments, the data
segment 312 is relocated by the media management module 370 as part of one or more of a
storage recovery process, data refresh operation, and/or the like. Accordingly, storage clients
106 may be able to access the data segment 312 through the modified logical interface 311B
(e.g., in reference to LIDs 1024-2048 and/or 6144-7168) without waiting for the contextual
format of the data segment 312 to be updated in accordance with the modified logical
interface 311B.

[0099] Until the contextual format of the data segment 312 is updated on the storage medium
140, the modified logical interface 311B of the data segment 312 may exist only in the
storage metadata 135 (e.g., map 160). Therefore, if the forward map 160 is lost due to, inter
alia, power failure or data corruption, the clone operation may not be reflected in the
reconstructed storage metadata 135 (the clone operation may not be persistent and/or crash
safe). As illustrated above, the persistent metadata 314 of the data packet 310 indicates that
the data segment 312 is associated only with LIDs 1024-2048, not 6144-7168. Therefore,
only entry 362 will be reconstructed (as in Fig. 3A), and entry 364 will be omitted; as a
result, subsequent attempts to access the data segment 312 through the modified logical
interface 311B (e.g., through 6144-7168) may fail.

[0100] In some embodiments, the clone operation may further comprise storing a persistent
note on the storage medium 140 to make a clone operation persistent and/or crash safe. As
used herein, a "persistent note" refers to metadata stored on the storage medium 140.
Persistent notes 366 may correspond to a log order and/or may be stored in a packet format,
as disclosed herein. The persistent note 366 may comprise an indication of the modified
logical interface 311B of the data segment 312. In the Fig. 3B embodiment, the persistent

note 366 corresponding to the depicted clone operation may be configured to associate the

22

WO 2015/057991 PCT/US2014/060952

data stored at storage addresses 3453-4477 with both ranges of LIDs 1024-2048 and 6144-
7168. During reconstruction of the forward map 160 from the contents of the storage
medium 140, the persistent note 366 may be used to reconstruct both entries 362 and 364, to
associate the data segment 312 with both LID ranges of the updated logical interface 311B.
In some embodiments, the storage module 130 may acknowledge completion of the clone
operation in response to updating the storage metadata 135 (e.g., creating the entry 364) and
storing the persistent note 366 on the storage medium 140. The persistent note 366 may be
invalidated and/or marked for removal from the storage medium 140 in response, updating
the contextual format of the data segment 312 to be consistent with the updated logical
interface 311B (e.g., relocating and/or rewriting the data segment 312, as disclosed above).
[0101] In some embodiments, the updated contextual format of the data segment 312 may
comprise associating the data segment 312 with both LID ranges 1024-2048 and 6144-7168.
Fig. 3C depicts one embodiment of an updated contextual format (data packet 320) for the
data segment 312. As illustrated in Fig. 3C, the persistent metadata 324 of the data packet
320 associates the data segment 312 with both LID ranges 1024-2048 and 6144-7168 of the
updated logical interface 311B. The data packet 320 may be written out-of-place, at different
storage addresses (64432-65456) than the original data packet 310, which may be reflected in
updated entries 362 and 364 of the forward map 160. In response to appending the data
packet 320 to the storage log, the corresponding persistent note 366 (if any) may be
invalidated (removed and/or marked for subsequent removal from the storage medium 140).
In some embodiments, removing the persistent note 366 may comprise issuing one or more
TRIM messages indicating that the persistent note 366 no longer needs to be retained on the
storage medium 140. Alternatively, or in addition, portions of the forward map 160 may be
stored in a persistent, crash safe storage location (e.g., non-transitory storage resources 103
and/or the storage medium 140). In response to persisting the forward map 160 (e.g., the
entries 362 and 364), the persistent note 366 may be invalidated, as disclosed above, even if
the data segment 312 has not yet been rewritten in an updated contextual format.

[0102] The logical interface management module 334 may be configured to implement clone
operations according to one or more different modes, including a “copy-on-write mode.” Fig.
3D depicts one embodiment of a storage operation performed within a cloned range in a
copy-on-write mode. In a copy-on-write mode, storage operations that occur after creating a
clone may cause the clones to diverge from one another (e.g., the entries 362 and 364 may
refer to different storage addresses, ranges, and/or extents). In the Fig. 3D embodiment, the

storage module 130 has written the data segment 312 in the updated contextual data format

23

WO 2015/057991 PCT/US2014/060952

(packet 320) that is configured to associate the data segment 312 with both LID ranges 1024-
2048 and 6144-7168 (as depicted in Fig. 3C). A storage client 106 may then issue one or
more storage requests to modify and/or overwrite data corresponding to the LIDs 6657-7168.
In the Fig. 3D embodiment, the storage request comprises modifying and/or overwriting data
of the LIDs 6657-7168. In response, the storage module 130 may store the new and/or
modified data on the storage medium 130, which may comprise appending a new data packet
340 to the storage log, as disclosed above. The data packet 340 may associate the data
segment 342 with the LIDs 6657-7424 (e.g., by use of persistent metadata 344 of the packet
340). The forward map 160 may be updated to associate the LIDs 6657-7424 with the data
segment 342, which may comprise splitting the entry 364 into an entry 365 configured to
continue to reference the unmodified portion of the data in the data segment 312 and an entry
367 that references the new data segment 342 stored at storage addresses 78512-79024. In
the copy-on-write mode depicted in Fig. 3D, the entry 362 corresponding to the LIDs 1024-
2048 may be unchanged, and continue to reference the data segment 312 at storage addresses
64432-65456. Although not depicted in Fig. 3D, modifications within the range 1024-2048
may result in similar diverging changes affecting the entry 362. Moreover, the storage
request(s) are not limited to modifying and/or overwriting data. Other operations may
comprise expanding the set of LIDs (appending data), removing LIDs (deleting, truncating,
and/or trimming data), and/or the like.

[0103] In some embodiments, the storage module 130 may support other clone modes, such
as a “synchronized clone” mode. In a synchronized clone mode, changes made within a
cloned range of LIDs may be reflected in one or more other, corresponding ranges. In the
Fig. 3D embodiment, implementing the described storage operation in a ‘“synchronized
clone” mode may comprise updating the entry 362 to reference the new data segment 342, as
disclosed herein, which may comprise, inter alia, splitting the entry 362 into an entry
configured to associate LIDs 1024-1536 with portions of the original data segment 312 and
adding an entry configured to associate the LIDs 1537-2048 with the new data segment 342.
[0104] Referring back to the copy-on-write embodiment of Fig. 3D, the logical interface
management module 334 may be further configured to manage clone merge operations. As
used herein, a “merge” or “clone merge” refers to an operation to combine two or more
different sets and/or ranges of LIDs. In the Fig. 3D embodiment, a range merge operation
may comprise merging the entry 362 with the corresponding cloned entries 365 and 367. The
logical interface management module 334 may be configured to implement range merge

operations according to a merge policy, such as: a write-order policy in which more recent

24

WO 2015/057991 PCT/US2014/060952

changes override earlier changes; a priority-based policy based on the relative priority of
storage operations (e.g., based on properties of the storage client(s) 106, applications, and/or
users associated with the storage operations); a completion indicator (e.g., completion of an
atomic storage operation, failure of an atomic storage operation, or the like); fadvise
parameters; ioctrl parameters; and/or the like.

[0105] Fig. 3E depicts one embodiment of a range merge operation. The range merge
operation of Fig. 3E may comprise merging the range 6144-6656 into the range 1024-2048.
Accordingly, the range merge operation may comprise sclectively applying changes made
within the LID range 6144-6656 to the LID range 1024-2048 in accordance with the merge
policy. The range merge operation may, therefore, comprise updating the LID range 1024-
2048 to associate LIDs 1537-2048 with the storage addresses 78512-79024 comprising the
new/modified data segment 342. The update may comprise splitting the entry 362 in the
forward map 160; the entry 372 may be configured to associate the LIDs 1024-1536 with
portions of the original data segment 312, and entry 373 may be configured to associate LIDs
1537-2048 with the new data segment 342. Portions of the data segment 312 that are no
longer referenced by the LIDs 1537-2048 may be invalidated, as disclosed herein. The LID
range 6144-7168 that was merged into the original, source range may be deallocated and/or
removed from the forward map 160.

[0106] The range merge operation illustrated in Fig. 3E may result in modifying the logical
interface 311C to portions of the data. The contextual format of the data segment 342 (the
data packet 340) may associate the data segment 342 with LIDs 6657-7168, rather than the
merged LIDs 1537-2048. As disclosed above, the storage module 130 may provide access to
the data segment 342 stored in the inconsistent contextual format. The storage module 130
may be configured to store the data segment 342 in an updated contextual format, in which
the data segment 342 is associated with the LIDs 1537-2048 in one or more background
operations (e.g., storage recovery operations). In some embodiments, the range merge
operation may further comprise storing a persistent note 366 on the storage medium 140 to
associate the data segment 342 with the updated logical interface 311C (e.g., associate the
data segment 342 at storage addresses 78512-79024 with the LIDs 1537-2048). As disclosed
above, the persistent note 366 may be used to ensure that the range merge operation is
persistent and crash safe. The persistent note 366 may be removed in response to relocating
the data segment 342 in a contextual format that is consistent with the logical interface 311C
(e.g., associates the data segment 342 with the LIDs 1537-2048), persisting the forward map
160, and/or the like.

25

WO 2015/057991 PCT/US2014/060952

[0107] The clone operations disclosed in conjunction with Figs. 3A-E may be used to
implement other logical operations, such as a range move operation. Referring back to Figs.
3A-C, a clone operation to replicate entry 362 of the forward map 160 may comprise
modifying the logical interface associated with the data segment 312 to associate the data
segment 312 with both the original set of LIDs 1024-2048 and a new set of cloned LIDs
6144-7168 (of entry 364). The clone operation may further include storing a persistent note
366 indicating the updated logical interface 311B of the data segment 312 and/or rewriting
the data segment 312 in accordance with the updated logical interface 311B in one or more
background storage operations.

[0108] The logical interface management module 334 may be further configured to
implement “range move” operations. As used herein, a “range move” operation refers to
modifying the logical interface of one or more data segments to associate the data segments
with different sets of LIDs. A range move operation may, therefore, comprise updating
storage metadata 135 (e.g., the forward map 160) to associate the one or more data segments
with the updated logical interface, storing a persistent note 366 on the storage medium 140
indicating the updated logical interface of the data segments, and rewriting the data segments
in a contextual format (packet format 310) that is consistent with the updated logical
interface, as disclosed herein. Accordingly, the storage module 130 may implement range
move operations using the same mechanisms and/or processing steps as those disclosed
above in conjunction with Figs. 3A-E.

[0109] The clone and/or range move operations disclosed in Figs. 3A-E may impose certain
limitations on the storage module 130. As disclosed above, storing data in a contextual
format may comprise associating the data with each LID that references the data. In the Fig.
3C embodiment, the persistent metadata 324 comprises references to both LID ranges 1024-
2048 and 6144-7168. Increasing the number references to a data segment may, therefore,
impose a corresponding increase in the overhead of the contextual data format (e.g., increase
the size of the persistent metadata 324). In some embodiments, the size of the persistent
metadata 314 may be limited, which may limit the number of references and/or clones that
can reference a particular data segment 312. Moreover, inclusion of multiple references to
different LID(s) may complicate storage recovery operations. The number of forward map
entries that need to be updated when a data segment 312 is relocated may vary in accordance
with the number of LIDs that reference the data segment 312. Referring back to Fig. 3C,
relocating the data segment 312 in a grooming and/or storage recovery operation may

comprise updating two separate entries 362 and 364. Relocating a data segment referenced

26

WO 2015/057991 PCT/US2014/060952

by N different LIDs (e.g., N different clones) may comprise updating N different entries in
the forward map 160. Similarly, storing the data segment may comprise writing N entries
into the persistent metadata 314. This variable overhead may reduce the performance of
background storage recovery operations and may limit the number of concurrent clones
and/or references that can be supported.

[0110] In some embodiments, the logical interface management module 334 may comprise
and/or leverage an intermediate mapping layer to reduce the overhead imposed by clone
operations. The intermediate mapping layer may comprise “reference entries” configured to
facilitate efficient cloning operations (as well as other operations, as disclosed in further
detail herein). As used herein, a “reference entry” refers to an entry of a mapping data
structure that is used to reference other entries within the forward map 160 (and/or other
storage metadata 135). A reference entry may only exist while it is referenced by one or
more other entries within the logical address space 132. In some embodiments, reference
entries may not be accessible to the storage clients 106 and/or may be immutable. The
storage module 130 may leverage reference entries to allow storage clients to reference the
same set of data through multiple, different logical interfaces via a single reference entry
interface. The contextual format of data on the storage medium 140 (data that is referenced
by multiple LIDs) may be simplified to associate the data with the reference entries which, in
turn, are associated with N other logical interface(s) through other persistent metadata (e.g.,
persistent notes 366). Relocating cloned data may, therefore, comprise updating a single
mapping between the reference entry and the new storage address of the data segment.

[0111] Fig. 4A is a block diagram of another embodiment of a system 400 for efficient open-
to-close consistency. The system 400 includes a storage module 130 that is configured to
implement range clone operations by use of an intermediate mapping layer. The storage
metadata 135 may comprise a forward map 160 pertaining to the logical address space 132.
The forward map 160 (and/or other storage metadata 135) may include information
pertaining to allocations of the logical address space by the storage clients 106, bindings
between LIDs and storage addresses within the storage address space 144, and so on, as
disclosed above.

[0112] In the Fig. 4A embodiment, the logical interface management module 334 may
comprise a reference module 434 configured to manage clone operations by use of a
reference map 460. The reference map 460 may comprise reference entries that correspond
to data that is being referenced by one or more logical interfaces of the logical address space

132 (e.g., one or more sets of LIDs). The reference module 434 may be configured to

27

WO 2015/057991 PCT/US2014/060952

remove reference entries that are no longer being used to reference valid data and/or are no
longer being referenced by entries within the forward map 160. As illustrated in Fig. 4A,
reference entries may be maintained separately from the forward map 160 (e.g., in a separate
reference map 460). The reference entries may be identified by use of reference identifiers,
which may be maintained in a separate namespace than the logical address space 132.
Accordingly, the reference entries may be part of an intermediate, “virtual” or “reference”
address space 432 that is separate and distinct from the logical address space 132 that is
directly accessible to the storage clients 106 through the storage module interface 131.
Alternatively, in some embodiments, reference entries may be assigned LIDs selected from
pre-determined ranges and/or portions of the logical address space 132 that are not directly
accessible by the storage clients 106.

[0113] The logical interface management module 334 may be configured to implement clone
operations by linking one or more LID entries in the forward map 160 to reference entries in
the reference map 460. The reference entries may be bound to the storage address(es) of the
cloned data. Accordingly, LIDs that are associated with cloned data may reference the
underlying data indirectly through the reference map 460 (e.g., the LID(s) may map to
reference entries which, in turn, map to storage addresses). Accordingly, entries in the
forward map 160 corresponding to cloned data may be referred to as “indirect entries.” As
used herein, an “indirect entry” refers to an entry in the forward map 160 that references
and/or is linked to a reference entry in the reference map 460. Indirect entries may be
assigned a LID within the logical address space 132, and may be accessible to the storage
clients 106.

[0114] As disclosed above, after cloning a particular set of LIDs, the storage clients 106 may
perform storage operations within one or more of the cloned ranges, which may cause the
clones to diverge from one another (in accordance with the clone mode). In a “copy-on-
write” mode, changes made to a particular clone may not be reflected in the other cloned
ranges. In the Fig. 4A embodiment, changes made to a clone may be reflected in “local”
entries associated with an indirect entry. As used herein, a “local entry” refers to a portion of
an indirect entry that is directly mapped to one or more storage addresses of the storage
medium 140. Accordingly, local entries may be configured to reference data that has been
changed in a particular clone and/or differs from the contents of other clones. Local entries
may, therefore, correspond to data that is unique to a particular clone.

[0115] The translation module 134 may be configured to access data associated with cloned

data by use of, inter alia, the reference map 460 and/or reference module 434. The

28

WO 2015/057991 PCT/US2014/060952

translation module 134 may implement a cascade lookup, which may comprise traversing
local entries first and, if the target front-identifier(s) are not found within local entries,
continuing the traversal within the reference entries to which the indirect entry is linked.
[0116] The log storage module 136 and media management module 370 may be configured
to manage the contextual format of cloned data. In the Fig. 4A embodiment, cloned data
(data that is referenced by two or more LID ranges within the forward map 160) may be
stored in a contextual format that associates the data with one or more reference entries of the
reference map 460. The persistent metadata stored with such cloned data segments may
correspond to a single reference entry, as opposed to identifying each LID associated with the
data segment. Creating a clone may, therefore, comprise updating the contextual format of
the cloned data in one or more background operations by use of, infer alia, the media
management module 370, as disclosed above.

[0117] Fig. 4B depicts one embodiment of a clone operation using a reference map 460. In
state 413A, an entry corresponding to LID 10 extent 2 in the logical address space 132
(denoted 10,2 in Fig. 4B) may directly reference data at storage address 20000 on the storage
medium 140. Other entries are omitted from Fig. 4B to avoid obscuring the details of the
disclosed embodiment. In state 413B, the storage module 130 implements an operation to
clone the range 10,2. Cloning the range 10,2 may comprise: a) allocating a new range of
LIDs (denoted 400,2 in Fig. 4B) in the logical address space 132 and b) allocating reference
entries in the reference map 460 through which the entries 10,2 and 400,2 may reference the
cloned data at storage address 20000 (denoted 100000,2 in Fig. 4B). The clone operation
may further comprise associating the entries 10,2 and 400,2 with the reference entry
100000,2 as illustrated at state 413C. As disclosed above, associating the entries 10,2 and
400,2 with the reference entry 100000,2 may comprise indicating that the entries 10,2 and
400,2 are indirect entries. State 413C may further comprise storing a persistent note 366 on
the storage medium 140 to associate the data at storage address 20000 with the reference
entry 100000,2 and/or to associate the entries 10,2 and 400,2 with the reference entry
100000,2 in the reference map 460.

[0118] The storage module 130 may provide access to the data segment at storage address
20000 through either LID 10 or 400 (through the reference entry 100000,2). In response to a
request pertaining to LID 10 or 400, the translation module 134 may determine that the
corresponding entry in the forward map 160 is an indirect entry that is associated with an

entry in the reference map 460. In response, the reference module 434 performs a cascade to

29

WO 2015/057991 PCT/US2014/060952

determine the storage address by use of local entries within the forward map 160 (if any) and
the corresponding reference entries in the reference map 460 (e.g., reference entry 100000,2).
[0119] Creating the clone at step 413C may comprise modifying the logical interface of the
data segment stored at step 20000 to associate the data with both LID ranges 10,2 and 400,2.
The contextual format of the data, however, may only associate the data with LIDs 10,2. As
disclosed above, creating the clone may further comprise storing a persistent note 366 on the
storage medium 140 to associate the data segment with the LIDs 10,2 and 400,2 through the
reference entry 100000,2. The data segment may be rewritten in an updated contextual
format in one or more background operations performed by the media management module
370. The data may be stored with persistent metadata 314 that associates the data segment
with the reference entry 100000,2 as opposed to the separate LID ranges 10,2 and 400,2.
Therefore, relocating the data segment (as shown in state 413D) may only require updating a
single entry in the reference map 460 as opposed to multiple entries corresponding to each
LID range that references the data (e.g., multiple entries 10,2 and 400,2). Moreover, any
number of LID ranges in the forward map 160 may reference the data segment, without
increasing the size of the persistent metadata 314 associated with the data on the storage
medium 140 and/or complicating the operation of the media management module 370.

[0120] Fig. 4C depicts another embodiment of a clone operation implemented using
reference entries. In response to a request to create a clone of the LIDs 1024-2048 and/or
data segment 312, the logical interface management module 334 may be configured to
allocate a reference entry 482 in the reference map 460 to represent the data segment 312.
Any number of LID(s) in the forward map 160 may reference the data through the reference
entry 482, without increasing the overhead of the persistent metadata associated with the data
segment 312 and/or complicating the operation of the media management module 370. As
depicted in Fig. 4C, the reference entry 482 may be bound to the storage addresses of the data
segment 312 (storage addresses 64432-65456). The entries 462 and 472 in the forward map
160 may reference the storage addresses indirectly, through the reference entry 482 (e.g., may
be linked to the reference entry 482 as illustrated in Fig. 4C).

[0121] In the Fig. 4C embodiment, the reference entry 482 is assigned identifiers 0Z-1024Z.
The identifier(s) of the reference entry 482 may correspond to a particular portion of the
logical address space 132 or may correspond to a different, separate namespace. The storage
module 130 may link the entries 462 and 472 to the reference entry 482 by use of, inter alia,
metadata associated with the entries 462 and/or 472. Alternatively, or in addition, the

indirect entries 462 and/or 472 may replace storage address metadata with references and/or

30

WO 2015/057991 PCT/US2014/060952

links to the reference entry 482. The reference entry 482 may not be directly accessible by
storage clients 106 via the storage module 130.

[0122] The clone operation may further comprise modifying the logical interface 311D of the
data segment 312; the modified logical interface 311D may allow the data segment 312 to be
referenced through the LIDs 1024-2048 of the indirect entry 462 and/or 6144-7168 of the
indirect entry 472. Although the reference entry 482 may not be accessible to the storage
clients 106, the reference entry 482 may be used to access the data by the translation module
134 (through the indirect entries 462 and 472), and as such, may be considered to be part of
the modified logical interface 311B of the data segment 312.

[0123] The clone operation may further comprise storing a persistent note 366A on the
storage medium 140. As disclosed above, storage of the persistent note(s) 366A and/or 366B
may ensure that the clone operation is persistent and crash safe. The persistent note 366A
may be configured to identify the reference entry 482 associated with the data segment 312.
Accordingly, the persistent note 366A may associate the storage addresses 64432-65456 with
the reference entry identifier(s) 0Z-1024Z. The clone operation may further comprise storing
another persistent note 366B configured to associate the LIDs of the entries 462 and/or 472
with the reference entry 482. Alternatively, metadata pertaining to the association between
entries 462, 472, and 482 may be included in a single persistent note. The persistent notes
366A and/or 366B may be retained on the storage medium 140 until the data segment 312 is
relocated in an updated contextual format and/or the forward map 160 (and/or reference map
460) is persisted.

[0124] The modified logical interface 311D of the data segment 312 may be inconsistent
with the contextual format original data packet 410A; the persistent metadata 314A may
reference LIDs 1024-2048 rather than the reference entry 482 and/or the cloned entry 472.
The storage module 130 may be configured to store the data segment 312 in an updated
contextual format (packet 410B) that is consistent with the modified logical interface 311D;
the persistent metadata 314B may associate the data segment 312 with the reference entry
482, as opposed to separately identifying the LID(s) within each cloned range (e.g., entries
462 and 472). Accordingly, the use of the indirect entry 482 allows the logical interface
311D of the data segment 312 to comprise any number of LIDs, independent of size
limitations of the persistent metadata 314A-B. Moreover, additional clones of the reference
entry 482 may be made without updating the contextual format of the data segment 312; such
updates may be made by associating the new LID ranges with the reference entry 482 in the

forward map 160 and/or by use of, inter alia, persistent notes 366.

31

WO 2015/057991 PCT/US2014/060952

[0125] As disclosed above, the indirect entries 462 and/or 472 may initially reference the
data segment 312 through the reference entry 482. Storage operations performed subsequent
to the clone operation may be reflected by use of local entries within the forward map 160.
After completion of the clone operation, the storage module 130 may modify data associated
with one or more of the cloned LID(s). In the Fig. 4D embodiment, a storage client 106
modifies and/or overwrites data corresponding to LIDs 1024-1052 of the indirect entry 462,
which may comprise appending a new data segment 412 to the storage log (in data packet
420 at storage addresses 7823-7851).

[0126] The data segment 412 may be stored in a contextual format (data packet 420)
comprising persistent metadata 414A configured to associate the data segment 412 with LIDs
1024-1052. The storage module 130 may be configured to associate the data segment 412
with the LIDs 1024-1052 in a local entry 465. The local entry 465 may reference the updated
data directly, as opposed to referencing the data through the indirect entry 462 and/or
reference entry 482.

[0127] In response to a request pertaining to data 1024-1052 (or subset thereof), the logical
interface management module 334 may search for references to the requested LIDs in a
cascade lookup operation, which may comprise searching for references to local entries (if
available) followed by the reference entries. In the Fig. 4D embodiment, the local entry 465
may be used to satisfy requests pertaining to the LID range 1024-1052 (storage addresses
7823-7851) rather than 64432-64460 per the reference entry 462. Requests for LIDs that are
not found in a local entry (e.g., LIDs 1053-2048) may continue to be serviced through the
reference entry 482. The logical interface 311E of the data pertaining to the range 1024-2048
may, therefore, comprise one or more local entries 465, one or more indirect entries 462,
and/or one or more reference entries 482.

[0128] In a further embodiment, illustrated in Fig. 4E, a storage module 130 may modify data
of the clone through another one of the LIDs of the logical interface 311E (e.g., LIDs 6144-
6162); the logical interface delimiters are not shown in Fig. 4E to avoid obscuring the details
of the illustrated embodiment. The modified data may be referenced using a local entry 475,
as disclosed above. In the Fig. 4E embodiment, cach of the ranges 462 and 472 has its own,
respective local version of the data formerly referenced through identifiers 0Z-52Z of the
reference entry 482. As such, neither entry 462 nor 472 includes a reference to the range 0Z-
527. The reference module 434 may determine that the corresponding data (and reference
identifiers) is no longer being referenced, and as such, may be marked for removal from the

storage medium 140 (e.g., invalidated). As depicted in Fig. 4E, invalidating the data may

32

WO 2015/057991 PCT/US2014/060952

comprise removing references to the data from the reference map 460 by, inter alia,
modifying the reference entry 482 to remove the range 0Z-52Z. Invalidating the data may
further comprise updating other storage metadata 135, such as a reverse map, validity
bitmaps, and/or the like (e.g., to indicate that the data stored at storage addresses 64432-
64484 does not need to be retained). The ranges of entries 462 and 472 may continue to
diverge, until neither references any portion of the reference entry 482, at which point the
reference entry 482 may be removed and the data referenced thereby may be invalidated, as
disclosed above.

[0129] Although Figs. 4D and 4E depict local entries 465 and 475 that comprise overlapping
LID ranges with the corresponding indirect entries 462 and 472, the disclosure is not limited
in this regard. In some embodiments, the storage operation of Fig. 4D may be reflected by
creating the local entry 465 and modifying the indirect entry 462 to reference only the LIDs
1053-2048. Similarly, the operation of Fig. 4E may comprise creating the local entry 475 and
modifying the indirect entry 472 to reference a truncated LID range 6163-7168.

[0130] Referring back to Fig. 4A, the reference module 434 may be configured to manage or
“groom” the reference map 460. In some embodiments, each entry in the reference map 460
comprises metadata that includes a reference count. The reference count may be incremented
as new references or links to the reference entry are added, and may be decremented in
response to removing references to the entry. In some embodiments, reference counts may be
maintained for each reference identifier in the reference map 460. Alternatively, reference
counts may be maintained for reference entries as a whole. When the reference count of a
reference entry reaches 0, the reference entry (and/or a portion thereof) may be removed from
the reference map 460. Removing a reference entry (or portion of a reference entry) may
comprise invalidating the corresponding data on the storage medium 140, as disclosed herein
(indicating that the data no longer needs to be retained).

[0131] In another embodiment, the reference module 434 may remove reference entries using
a “mark-and-sweep” approach. The reference module 434 (or other process, such as the
translation module 134) may periodically check references to entries in the reference map
460 by, inter alia, following links to the reference entries from indirect entries (or other types
of entries) in the forward map 160. Reference entries that are not accessed during the mark-
and-sweep may be removed, as disclosed above. The mark-and-sweep may operate as a
background process, and may periodically perform a mark-and-sweep operation to identify

and remove reference entries that are no longer in use.

33

WO 2015/057991 PCT/US2014/060952

[0132] In some embodiments, the reference map 460 disclosed herein may be created on
demand (e.g., in response to creation of a clone, or other indirect data reference). In other
embodiments, all data storage operations may be performed through intermediate mappings.
In such embodiments, storage clients 106 may allocate indirect, virtual identifiers (VIDs) of a
virtual address space (VAS), which may be linked to and/or reference storage addresses
through an intermediate mapping layer, such as the logical address space 132. The VAS may
add an intermediate mapping layer between storage clients 106 and the storage medium 140.
Storage clients 106 may reference data using VIDs of a virtualized address space that map to
logical identifiers of the logical address space 132, and which, in turn, are associated with
storage addresses on respective storage device(s) 141 and/or storage medium 140. As used
herein, a VAS may include, but is not limited to, a LUN address space, a virtual LUN
(VLUN) address space, and/or the like.

[0133] Fig. 5A depicts one embodiment of an aggregation module 530 configured to
implement, inter alia, efficient range clone operations using a virtualized address space 532.
The aggregation module 530 may comprise software and/or hardware components including,
but not limited to, one or more drivers and/or other software modules operating on the
computing system 100, such as one or more drivers, storage drivers, I/O drivers, filter drivers,
services, kernel-level modules, user-level modules, libraries, and/or the like; hardware
components, such as hardware controllers, communication interfaces, and/or the like; and so
on.

[0134] The aggregation module 530 may be configured to present a VAS 532 to the storage
clients 106 through an interface 531. Like the interface 131 disclosed herein, the interface
531 may comprise one or more of a block device interface, virtual storage interface, cache
interface, and/or the like. Storage clients 106 may perform storage operations pertaining to
storage resources managed by the aggregation module 530 by reference to VIDs of the VAS
532 through the interface 531.

[0135] The aggregation module 530 may further comprise a VAS translation module 534
configured to map VIDs to storage resources through one or more intermediary storage
modules (e.g., storage module 130). Accordingly, the VAS metadata 535 of the aggregation
module 530 may include a VAS forward map 560 comprising any-to-any mappings between
VIDs of the VAS 532 and LIDs of the VAS 532. Although not depicted in Fig. SA, the VAS
translation module 534 and/or VAS forward map 560 may be configured to aggregate a
plurality of logical address spaces 132 of a plurality of different storage modules 130 into a
single VAS 532. Accordingly, in some embodiments, a VAS 532 may correspond to a

34

WO 2015/057991 PCT/US2014/060952

plurality of different logical address spaces 132, each comprising a separate set of LIDs, and
each corresponding to a respective storage module 130, storage device 141, and/or storage
medium 140.

[0136] Although Fig. 5A depicts the aggregation module 530 separately from the storage
module 130, the disclosure is not limited in this regard. In some embodiments, VAS 532,
VAS forward map 560, VAS translation module 534, and/or other modules of the
aggregation module 530 may be implemented as part of the storage module 130.

[0137] The aggregation module 530 may be configured to leverage the intermediary virtual
address space provided by the VAS 532 to, inter alia, implement efficient range clone, move,
merge, and/or other high-level operations. Alternatively, or in addition, the intermediary
mapping layer(s) may be leveraged to enable efficient clone operations on random access,
write-in-place storage devices, such as hard disks and/or the like.

[0138] Storage clients 106 may perform storage operations in reference to VIDs of the VAS
532. Accordingly, storage operations may comprise two (or more) translation layers. The
VAS forward map 560 may comprise a first translation layer between VIDs of the VAS 532
and identifiers of the logical address space 132 of the storage module 130. The forward map
160 of the storage module 130 may implement a second translation layer between LIDs and
storage address(es) on the storage medium 140.

[0139] The aggregation module 530 may be configured to manage allocations within the
VAS 532 by use of, inter alia, the VAS metadata 535, VAS forward map 560, and/or VAS
translation module 534. In some embodiments, allocating a VID in the VAS 532 may
comprise allocating one or more corresponding LIDs in the logical address space 132 (and/or
identifiers of one or more other storage modules). Accordingly, each VID allocated in the
VAS 532 may correspond to one or more LIDs of the logical address space 132. The any-to-
any mappings between the VIDs of the aggregation module 530 and the logical address space
132 may be sparse and/or any-to-any, as disclosed herein. Moreover, in some embodiments,
the aggregation module 530 may be configured to maintain any-to-any and/or range managed
mappings between VIDs and a plurality of different logical address spaces 132. Accordingly,
the aggregation module 530 may aggregate and/or combine the logical address spaces 132 of
a plurality of different storage devices 141 managed by different respective storage modules
130 into a single, aggregate VAS 532.

[0140] In the Fig. 5A embodiment, the logical address space 132 may not be directly
accessible, and as such, storage clients 106 may reference storage resources using VIDs

through the interface 531. Therefore, performing a storage operation through the aggregation

35

WO 2015/057991 PCT/US2014/060952

module 530 in reference to one or more VIDs may comprise: a) identifying the storage
module 130 corresponding to the VIDs, b) determining the LID(s) of the storage module 130
that are mapped to the VIDs by use of the VAS translation module 534 and/or VAS forward
map 560; and c¢) implementing the storage operation by use of the storage module 130 in
reference to the determined LID(s).

[0141] Fig. 5B depicts one embodiment of a clone operation implemented by use of the
aggregation module 530. As disclosed above, the VAS forward map 560 may correspond to
a VAS 532 that is indirectly mapped to storage addresses through a logical address space 132
of a storage module 130. Fig. 5B illustrates the addressing layers used to implement storage
operations through the aggregation module 530. The VIDs of the VAS 532 may comprise the
top-level addressing layer that is accessible to storage clients 106 through, inter alia, the
interface 531 of the aggregation module 530. The logical address space 132 of the storage
module 130 may comprise an intermediary addressing layer. The VAS forward map 560
may comprise any-to-any mappings between VIDs and LIDs. The LIDs may be mapped to
storage addresses within the storage address space 144 by use of the forward map 160.
Accordingly, VIDs may be mapped to the storage address space 144 through the intermediate
logical address space of the storage module 130.

[0142] As illustrated in Fig. 5B, in state 563A, the VAS forward map 560 may comprise an
entry 10,2 that represents two VIDs (10 and 11) in the VAS 532. The VAS forward map 560
associates the VID entry 10,2 with LIDs of the logical address space 132. In the Fig. 5B
embodiment, the VAS forward map 560 binds the VID entry 10,2 to LIDs 100000 and
100001 (entry 100000,2). The entry 10,2 may be allocated to a particular storage client 106,
which may perform storage operations in reference to the VIDs. In state 563A, the storage
module 130 may be configured to map the entry 100000,2 to one or more storage addresses
on the storage medium 140 (storage address 20000).

[0143] In state 536B, the aggregation module 530 may implement a clone operation to clone
the VID entry 10,2. The clone operation may comprise: a) allocating a new VID entry 400,2
and b) associating the new VID entry 400,2 with the corresponding entry 100000,2 in the
VAS forward map 560. The corresponding entry 100000,2 in the forward map 160 may
remain unchanged. Alternatively, a reference count (or other indicator) of the entry 100000,2
in the forward map 160 may be updated to indicate that the entry is being referenced by
multiple VID ranges. The contextual format of the data stored at storage address 20000 may
be left unchanged (e.g., continue to associate the data with the logical interface 100000,2).

The clone operation may further comprise storing a persistent note 366 on the storage

36

WO 2015/057991 PCT/US2014/060952

medium 140 to indicate the association between the VID entry 400,2 and the entry 100000,2
in the forward map 160. Alternatively, or in addition, the clone operation may be made
persistent and/or crash safe by persisting the VAS forward map 560 (and/or portions thereof).
[0144] In state 536C, the data at storage address 20000 may be relocated to storage address
40000. The relocation may occur in a standard storage media maintenance operation, and not
to update the contextual format of the cloned data. Relocating the data may comprise
updating a single entry in the forward map 160. The VAS forward map 560 may remain
unchanged. Modifications to the different versions of the VID ranges 10,2 and 400,2 may be
managed through the intermediary, logical address space 132. A modification to VID 10 may
comprise: a) allocating a new LID in the logical address space 132, b) storing the modified
data in association with the new LID, and c¢) mapping the new LID to VID 10 in the VAS
forward map 560.

[0145] The embodiments for implementing range clone, move, and/or merge operations
disclosed herein may be used to efficiently implement other, higher-level storage operations,
such as snapshots, deduplication, atomic operations, transactions, file-system management
functionality, and/or the like. Referring back to Fig. 4A, the storage module 130 may
comprise a deduplication module 374 configured to identify duplicate data on the storage
medium 140. Duplicate data may be identified using any suitable mechanism. In some
embodiments, duplicate data is identified by: a) scanning the contents of the storage medium
140, b) generating signature values for various data segments, and c¢) comparing data
signature values to identify duplicate data. The signature values may include, but are not
limited to, cryptographic signatures, hash codes, cyclic codes, and/or the like. Signature
information may be stored within storage metadata 135, such as the forward map 160 (e.g., in
metadata associated with the entries), and/or may be maintained and/or indexed in one or
more separate datastructures of the storage metadata 135. The deduplication module 374
may compare data signatures and, upon detecting a signature match, may perform one or
more deduplication operations. The deduplication operations may comprise verifying the
signature match (e.g., performing a byte-by-byte data comparison) and performing one or
more range clone operations to reference the duplicate data through two or more LID ranges.
[0146] Fig. 6 depicts one embodiment of a deduplication operation. The forward map 160
may comprise entries 662 and 672, which may reference duplicated data stored at different
respective storage addresses 3453-4477 and 7024-8048. The entries 662 and 672 may
correspond to different, respective logical interfaces 663 and 673 corresponding to LIDs

1024-2048 and 6144-6656, respectively. The duplicated data segment (data segment 612)

37

WO 2015/057991 PCT/US2014/060952

may be identified and/or verified by the deduplication module 374, as disclosed above.
Alternatively, the duplicated data may be identified as data is received for storage at the
storage module 130. Accordingly, the data may be deduplicated before an additional copy of
the data is stored on the storage medium 140.

[0147] In response to identifying and/or verifying that the entries 662 and 672 reference
duplicate data, the storage module 130 may be configured to deduplicate the data, which may
comprise creating one or more range clones to reference a single copy of the duplicate data
through two different sets of LIDs. As disclosed above, creating a range clone may comprise
modifying the logical interface(s) 663 and 673 of a data segment. In the Fig. 6 embodiment,
the duplicated data is stored as a data segment 612 within a packet 610 at storage locations
3453-4477 and 7024-8048, respectively. The clone operation may comprise modifying the
logical interface of one of the data segments (or a new version and/or copy of the data
segment), such that the data segment can be referenced by both entries 663 and 673.

[0148] The range clone operation may be implemented using any of the clone embodiments
disclosed herein including the range clone embodiments of Figs. 3A-E, the reference entry
embodiments of Figs. 4A-E, and/or the intermediate mapping embodiments of Figs. SA-B.
In the de-deduplication embodiment of Fig. 6, both LID ranges 1024-2048 and 6144-7168
may be modified to reference a single version of the data segment 612 (the other data
segment may be invalidated) through a reference entry 682. As such, the deduplication
operation may comprise creating a reference entry 682 to represent the deduplicated data
segment 612 (reference the packet 610). The deduplication operation may further comprise
modifying and/or converting the entries 662 and 672 into respective indirect entries 665 and
675, which may be mapped to the data segment 612 through the reference entry 682, as
disclosed above. The deduplication operations may further comprise modifying the logical
interface 669 of the data segment 612 to associate the data segment 612 with both sets of
LIDs 1024-2048 and 6144-7168 (as well as the reference entry 682). The deduplication
operations may further comprise storing a persistent note 366 on the storage medium 140, as
disclosed above.

[0149] The deduplication operation may further comprise updating the contextual format of
the data segment 612 to be consistent with the modified logical interface 669, as disclosed
above. Updating the contextual format may comprise appending the data segment 612 in an
updated contextual format (data packet 610) to the storage log (e.g., at storage locations
84432-85456) in one or more background operations. The updated data packet 610 may

comprise persistent metadata 614 that associates the data segment 612 with the updated

38

WO 2015/057991 PCT/US2014/060952

logical interface 669 (e.g., LIDs 1024-2048 and 6144-6656 through reference identifiers 0Z-
10237).

[0150] Although Fig. 6 illustrates cloning and/or deduplicating a single entry or range of
LIDs, the disclosure is not limited in this regard. In some embodiments, a plurality of front-
identifier ranges may be cloned in a single clone operation. This type of clone operation may
be used to create a “snapshot” of an address range (or entire logical address space 132). As
used herein, a snapshot refers to the state of a storage device (or set of LIDs) at a particular
point in time. The snapshot may maintain an “original” state of a LID range regardless of
changes that occur within the range after completing the snapshot operation.

[0151] Fig. 7 is a block diagram depicting one embodiment of a system 700 comprising a
storage module 130 configured to efficiently implement snapshot operations. The Fig. 7
embodiment pertains to an address range within a logical address space 132. The disclosure
is not limited in this regard, however, and could be adapted for use with other types of
address ranges, such as ranges and/or extents within a VAS 532, as disclosed above. The
storage module 130 may comprise a snapshot module 736 and timing module 738 configured
to implement snapshot operations as disclosed herein.

[0152] In state 773A, the storage module 130 may be configured to create a snapshot of a
LID range FR1. Creating the snapshot may comprise preserving the state of the LID range
FR1 at a particular time. The snapshot operation may further comprise preserving the LID
range FR1 while allowing subsequent storage operations to be performed within the LID
range.

[0153] As disclosed above, the storage module 130 may be configured to store data in a
storage log on the storage medium 140 by use of, inter alia, the log storage module 136. The
log order of storage operations may be determined using sequence information associated
with data packets, such as sequence indicators 113 on storage divisions 170A-N and/or
sequential storage locations within the storage address space 144 of the storage medium 144
(as disclosed in conjunction with Figs. 1D and 1E).

[0154] The storage module 130 may be further configured to maintain other types of ordering
and/or timing information, such as the relative time ordering of data in the log. However, in
some embodiments, the log order of data may not accurately reflect timing information due
to, inter alia, data being relocated within the storage device in media management operations.
Relocating data may comprise reading the data from its original storage location on the
storage medium 140 and appending the data at a current append point within the storage log.

As such, older, relocated data may be stored with newer, current data in the storage log.

39

WO 2015/057991 PCT/US2014/060952

Therefore, although the storage log may preserve the relative log order of data operations
pertaining to particular LIDs, the storage log may not accurately reflect absolute timing
information.

[0155] In some embodiments, the log storage module 136 is configured to associate data with
timing information, which may be used to establish relative timing information of the storage
operations performed on the storage medium 130. In some embodiments, the timing
information may comprise respective timestamps (maintained by the timing module 738),
which may be applied to each data packet stored on the storage medium 140. The
timestamps may be stored within persistent metadata 314 of the data packets 310.
Alternatively, or in addition, the timing module 738 may be configured to track timing
information at a coarser level of granularity. In some embodiments, the timing module 738
maintains one or more global timing indicators (an epoch identifier). As used herein, an
“epoch identifier” refers to an identifier used to determine relative timing of storage
operations performed through the storage module 130. The log storage module 136 may be
configured to include an epoch indicator 739 in data packets 710. The epoch indicator 739
may correspond to the current epoch (e.g., global timing indicator) maintained by the timing
module 738. The epoch indicator 739 may correspond to the epoch in which the
corresponding data segment 712 was written to the storage log. The epoch indicator 739 may
be stored within the persistent metadata 714 of the packet 710, and as such, may remain
associated with the data packet 710 during relocation operations. The timing module 738
may be configured to increment the global epoch identifier in response to certain events, such
as the creation of a new snapshot, a user request, and/or the like. The epoch indicator 739 of
the data segment 712 may remain unchanged through relocation and/or other media
maintenance operations. Accordingly, the epoch indicator 739 may correspond to the
original storage time of the data segment 712 independent of the relative position of the data
packet 710 in the storage log.

[0156] A snapshot operation may comprise preserving the state of a particular LID range
(FR1) at a particular time. A snapshot operation may, therefore, comprise preserving data
pertaining to FR1 on the storage medium 140. Preserving the data may comprise: a)
identifying data pertaining to a particular timeframe (epoch) and b) preserving the identified
data on the storage medium 140 (e.g., preventing the identified data being removed from the
storage medium 140 in, inter alia, storage recovery operations). Data pertaining to a
snapshot may be retained despite being invalidated by subsequent storage operations (e.g.,

operations that overwrite, modify, TRIM, and/or otherwise obviate the data). Data that needs

40

WO 2015/057991 PCT/US2014/060952

to be preserved for a particular snapshot may be identified by use of the epoch indicators 739
disclosed above.

[0157] In state 773A (time t1, denoted by epoch indicator ¢0), the storage module 130 may
receive a request to implement a snapshot operation. In response to the request, the snapshot
module 736 may determine the current value of the epoch identifier maintained by the timing
module 738. The current value of the epoch identifier may be referred to as the current
“snapshot epoch.” In the Fig. 7 embodiment, the snapshot epoch is 0. The snapshot module
736 may be further configured to cause the timing module 738 to increment the current,
global epoch indicator (e.g., increment the epoch identifier to 1). Creating the snapshot may
further comprise storing a persistent note 366 on the storage medium configured to indicate
the current, updated epoch indicator. The persistent note 366 may be further configured to
indicate that data pertaining to the snapshot epoch is to be preserved (e.g., identify the
particular range of LIDs FR1 to be preserved in the snapshot operation). The persistent note
366 may be used during metadata reconstruction operations to: a) determine the current
epoch identifier and/or b) configure the snapshot module 736 and/or media management
module 370 to preserve data associated with a particular snapshot epoch (e.g., epoch ¢0).
[0158] The snapshot module 736 may be further configured to instruct the media
management module 370 to preserve data associated with the snapshot epoch. In response,
the media management module 370 may be configured to: a) identify data to preserve for the
snapshot (snapshot data), and b) prevent the identified data from being removed from the
storage medium 140 in, inter alia, storage recovery operations. The media management
module 370 may identify snapshot data by use of the epoch indicators 739 of the data packets
710. As disclosed in conjunction with Fig. 1E, data may be written out-of-place on the
storage medium 140. The most current version of data associated with a particular LID may
be determined based on the order of the corresponding data packets 710 within the log. The
media management module 370 may be configured to identify the most current version of
data within the snapshot epoch as data that needs to be preserved. Data that has been
rendered obsolete by other data in the snapshot epoch may be removed. Referring to the Fig.
1E embodiment, if the data X0 and X1 (associated with the same LID A) were both marked
with the snapshot epoch 0, the media management module 370 would identify the most
current version of the data in epoch 0 as X1, and would mark the data X0 for removal. If,
however, data X0 were marked with snapshot epoch 0 and X1 where marked with a later
epoch (e.g., epoch 1, after the snapshot operation), the media management module 370 may

preserve the data X0 on the storage medium 140 in order to preserve the data of the snapshot.

41

WO 2015/057991 PCT/US2014/060952

[0159] In state 773B, the snapshot module 738 may be configured to preserve data pertaining
to the snapshot FR1 (data associated with epoch ¢0), while allowing storage operations to
continue to be performed during subsequent epochs (e.g., epoch el). Preserving FR1 may
comprise cloning FR1 to preserve the original status of the LID range at epoch ¢0 (FR1 (¢0)),
while allowing storage operations to continue with reference to FR1. The clone operation
may be implemented as disclosed above using one or more of duplicated entries, reference
entries, and/or an intermediate mapping layer. The storage operations may comprise
appending data to the storage log on the storage medium 140 in reference to the LIDs FRI1.
The cloned LIDs corresponding to the snapshot FR1 (¢0) may be immutable. Accordingly,
the snapshot of FR1 (¢0) may be preserved despite changes to the LID range. Data stored in
state 773B may be stored with an epoch indicator 739 of the current epoch (el). The
snapshot module 736 may be configured to preserve data that is rendered obsolete and/or
invalidated by storage operations performed during epoch el (and subsequent epochs).
Referring back to the Fig. 1E embodiment, the media management module 370 may identify
data X0 as data to preserve for the snapshot FR1 (the data X1 may have been stored after the
snapshot operation was performed). The snapshot module 738 and/or media management
module 370 may be configured to preserve the data X0 even through the data was
subsequently made obsolete by data X1 in epoch el. The data X0 may be retained even if the
LID A is deleted, TRIMed, or the like.

[0160] The snapshot of FR1 (¢0), including the LID range FR1 (e0) and the data marked with
epoch indicator €0, may be preserved until the corresponding snapshot is deleted. The
snapshot may be deleted in response to a request received through the interface 131. As
indicated in state 773C, the epoch 0 may be retained on the storage medium 140 even after
other, intervening epochs (epochs el-eN) have been created and/or deleted. Deleting the
epoch ¢0 may comprise configuring the snapshot module 738 and/or media management
module 370 to remove invalid/obsolete data associated with the epoch ¢0.

[0161] Storage operations performed after creating the snapshot at state 773A may modify
the logical address space 132 and specifically the forward map 160. The modifications may
comprise updating storage address bindings in response to appending data to the storage
medium 140, adding and/or removing LIDs to FR1, and so on. In some embodiments, the
snapshot module 736 is configured to preserve the snapshot range FR1 (e0) within separate
storage metadata 135, such as a separate region of the logical address space 132, in a separate
namespace, in a separate map, and/or the like. Alternatively, the snapshot module 736 may

allow the changes to take place in the forward map 160 without preserving the original

42

WO 2015/057991 PCT/US2014/060952

version of FR1 at time ¢0. The snapshot module 736 may be configured to reconstruct the
forward map 160 for e0 (time t1) using the snapshot data preserved on the storage medium
140. The forward map 160 at time t1 may be reconstructed, as disclosed above, which may
comprise sequentially accessing data stored on the storage medium 140 (in a log-order) and
creating forward map entries based on persistent metadata 714 associated with the data
packets 710. In the Fig. 7 embodiment, forward map 160 corresponding to epoch ¢0 may be
reconstructed by referencing data packets 710 that are marked with the epoch indicator 739
¢0 (or lower). Data associated with epoch indicators 739 greater than ¢0 may be ignored
(since such data corresponds to operations after creation of the snapshot FR1 (¢0) was
created).

[0162] The storage module 130 disclosed herein may be further configured to implement
efficient range move operations. Fig. 8A depicts one embodiment of a move operation
implemented by the storage module 130 disclosed herein. The forward map 160 includes
entries 862 configured to bind LIDs 1023-1025 to respective data segments on the storage
medium 140. The entries 862 are depicted separately to better illustrate details of the
embodiment; however, the entries 862 could be included in a single entry comprising the full
range of LIDs 1023-1025. The entries 862 may define a logical interface 863 of the data
stored at storage addresses 32, 3096, and 872. As disclosed above, the data stored at storage
addresses 32, 3096, and 872 may be stored in a contextual format that associates the data with
the corresponding LID(s) 1023, 1024, and 1025.

[0163] The storage module 130 may be configured to move the entries 862 to LIDs 9215-
9217 by, inter alia, replacing the association between the LIDs 1023, 1024, and 1025 and the
data at the respective media storage locations 32, 3096, and 872 with a new logical interface
863B corresponding to the new set of LIDs (e.g., 9215, 9216, and 9217). The move
operation may be performed in response to a request received via the interface 131 and/or as
part of a higher-level storage operation (e.g., a request to rename a file, operations to balance
and/or defragment the forward map 160, or the like).

[0164] The move operation may be implemented in accordance with one or more of the
cloning embodiments disclosed above. In some embodiments, the move operation may
comprise associating the storage addresses mapped to LIDs 1023, 1024, and 1025 with the
destination LIDs 9215, 9216, and 9217, which may result in modifying the logical interface
863A of the data in accordance with the move operation. The move operation may further
comprise storing a persistent note 366 on the storage medium 140 to ensure that the move

operation is persistent and crash safe. The data stored at storage addresses 32, 872, and 3096

43

WO 2015/057991 PCT/US2014/060952

may be rewritten in accordance with the updated logical interface 863B in one or more
background operations, as disclosed above.

[0165] Fig. 8B depicts another embodiment of a move operation. As above, the move
operation may comprise moving the data associated with LIDs 1023-1025 to LIDs 9215-
9217. The move operation of Fig. 8B may utilize the reference entries as disclosed in
conjunction with Figs. 4A-E. Accordingly, the move operation may comprise creating
reference entries 882 in a reference map 460 to represent the move operation. The move
operation may further comprise allocating new indirect entries 866 to reference the data
through the reference entries 882. reference entries 882 may comprise the pre-move LIDs
1023, 1024, and 1025, which may be associated with the addresses 32, 3096, and 872. The
new logical interface 863C of the data may, therefore, comprise the indirect entries 866 and
the corresponding reference entries 882. The move operation may further comprise storing a
persistent note 366 on the storage medium to ensure that the move operation is persistent and
crash safe, as disclosed above.

[0166] The contextual format of the data stored at storage addresses 32, 3096, and 872 may
be inconsistent with the updated logical interface 863C; the contextual format of the data may
associate the respective data segments with LIDs 1023, 1024, and 1025 as opposed to 9215,
9216, and 9217 (and/or the reference entries). The persistent note 366 may comprise the
updated logical interface 863C of the data, so that the storage metadata 135 (e.g., forward
map 160 and/or reference map 460) can be correctly reconstructed if necessary.

[0167] The storage module 130 may provide access to the data in the inconsistent contextual
format through the modified logical interface 863C (LIDs 9215, 9216, and 9217). The data
may be rewritten and/or relocated in a contextual format that is consistent with the modified
logical interface 863C subsequent to the move operation (outside of the path of the move
operation and/or other storage operations). In some embodiments, the data at storage
addresses 32, 3096, and/or 872 may be rewritten by a media management module 370 in one
or more background operations, as described above. Therefore, the move operation may
complete (and/or return an acknowledgement) in response to updating the forward map 160
and/or storing the persistent note 366.

[0168] As illustrated in Fig. 8C, the forward map 160 and/or other storage metadata 135 may
be updated in response to rewriting data of the move operation. In the Fig. 8C embodiment,
the data segment 812A stored at media storage location 32 may be relocated in a storage
recovery operation, which may comprise storing the data in a contextual format (data packet

810A) that is consistent with the modified logical interface 863C. The data packet 810A may

44

WO 2015/057991 PCT/US2014/060952

comprise persistent metadata 814A that associates the data segment 812A with LID 9215.
The forward map 160 may be updated to reference the data in the updated contextual format,
which may comprise modifying the indirect entry of the LID 9215 to directly reference the
data packet 810A rather than the reference entry. The entry corresponding to LID 9215 may
revert from an indirect entry to a standard, local entry, and the reference entry for LID 1023
may be removed from the reference map 460.

[0169] Referring to Fig. 8D, a storage client 106 may modify data associated with LID 9217,
which may comprise storing a data segment out-of-place (e.g., at storage address 772). The
data segment may be written in a contextual format that is consistent with the modified
logical interface 863C (e.g., associates the data with LID 9217). In response, the forward
map 160 may be updated to associate the entry for LID 9217 with the storage address of the
data segment (e.g., storage address 772) and to remove the reference entry for LID 1025 from
the reference map 460, as disclosed above.

[0170] In some embodiments, the reference map 460 may be maintained separately from the
forward map 160, such that the entries therein (e.g., entries 882) cannot be directly referenced
by storage clients 106. This segregation may allow storage clients 106 to operate more
efficiently. For example, rather than stalling operations until data is rewritten and/or
relocated in the updated contextual format, data operations may proceed while the data is
rewritten in one or more background processes. Referring to Fig. 8E, following the move
operation disclosed above, a storage client 106 may store data in connection with the LID
1024. The reference entry 882 corresponding to the LID 1024 may be included in the
reference map 460, due to, inter alia, the data at storage address 3096 not yet being rewritten
in the updated contextual format. However, since the reference map 460 is maintained
separately from the forward map 160, a name collision may not occur and the storage
operation may complete. The forward map 160 may include a separate entry 864 comprising
the logical interface for the data stored at media storage location 4322, while continuing to
provide access to the data formerly bound to LID 1024 through the logical interface 863C
(and reference map 460).

[0171] In the disclosed move operation, when the indirect entries are no longer linked to
reference entries of the reference map 460 due to, inter alia, rewriting, relocating, modifying,
deleting, and/or overwriting the corresponding data, the reference entries may be removed,
and the indirect entries may revert to direct, local entries. In addition, the persistent note 366
associated with the move operation may be invalidated and/or removed from the storage

medium 140, as disclosed above.

45

WO 2015/057991 PCT/US2014/060952

[0172] Referring back to Fig. 1A, the interface 131 of the storage module 130 may be
configured to provide APIs and/or interfaces for performing the storage operations disclosed
herein. The APIs and/or interfaces may be exposed through one or more of the block
interface, an extended storage interface, and/or the like. The block interface may be extended
to include additional APIs and/or functionality by use of interface extensions, such as fadvise
parameters, 1/O control parameters, and the like. The interface 131 may provide APIs to
perform range clone operations, range move operations, range merge operations,
deduplication, snapshot, and other, higher-level operations disclosed herein. The interface
131 may allow storage clients 106 to apply attributes and/or metadata to LID ranges (e.g.,
freeze a range), manage range snapshots, and so on. As disclosed herein, a range clone
operation comprises creating a logical copy of a set of one or more source LIDs. Range
clone, move, and/or merge operations may be implemented using any of the embodiments
disclosed herein including, but not limited to, the range clone embodiments depicted in Figs.
3A-E, the reference entry embodiments of Figs. 4A-E, and/or the intermediate mapping layer
embodiments of Figs. SA-B.

[0173] The range clone, move, and/or merge operations disclosed herein may be used to
implement higher-level operations, such as deduplication, snapshots, efficient file copy
operations (logical file copies), file consistency management, address space management,
mmap checkpoints, atomic writes, and the like. These higher-level operations may also be
exposed through the interface 131 of the storage module 130. The disclosed operations may
be leveraged by various different storage clients 106, such as operations systems, file
systems, data base services, and/or the like.

[0174] Fig. 9A depicts one embodiment of a system 900A comprising a storage module 130
configured to implement file management operations. The system 900A may comprise a file
system 906 that may be configured to leverage functionality of the storage module 130 to
reduce complexity, overhead, and the like. The file system 906 may be configured to
leverage the range clone, move, move, snapshot, deduplication, and/or other functionality
disclosed herein to implement efficient file-level snapshot and/or copy operations. The file
system 906 may be configured to implement such operations in response to client requests
(e.g., a copy command, a file snapshot ioctrl, or the like). The file system 906 may be
configured to implement efficient file copy and/or file-level snapshot operations on a source
file by, inter alia, a) flushing dirty pages of the source file (if any), b) creating a new

destination file to represent the copied file and/or file-level snapshot, and c) instructing the

46

WO 2015/057991 PCT/US2014/060952

storage module 130 to perform a range clone operation configured to clone the source file to
the destination file.

[0175] Fig. 9A depicts various embodiments for implementing range clone operations for a
file system 906. In some embodiments, and as depicted in state 911A, the storage module
130 may be configured to maintain a logical address space 132 in which LIDs of the source
file (the file to be cloned) are mapped to file data on the storage medium by use of the
forward map 160. The corresponding range clone operation depicted in state 911B may
comprise: a) allocating a set of LIDs for the destination file, and b) mapping the LIDs of the
source file and the destination file to the file data on the storage medium 140. The range
clone operation may further comprise storing a persistent note 366 on the storage medium
140 to indicate that the file data is associated with both the source file and destination file
LIDs. The range clone operation may further comprise rewriting the file data in accordance
with the updated contextual format, as disclosed herein.

[0176] In other embodiments, the storage module 130 may leverage a reference map 460 to
implement range clone operations (e.g., as disclosed in Figs. 4A-E). Before the range clone
operation, in state 911C, the LIDs of the source file may be directly mapped to the
corresponding file data in the forward map 160. Creating the range clone in state 911D may
comprise associating one or more reference entries in the reference map 460 with the file
data, and linking indirect entries corresponding to the source file LIDs and the destination file
LIDs to the reference entry. The range clone operation may further comprise storing a
persistent note 366 on the storage medium 140 and/or updating the contextual format of the
file data, as disclosed herein.

[0177] In some embodiments, the storage module 130 may be configured to implement range
clone operations using an intermediate layer mapping layer (e.g., as disclosed in Figs. 5SA-B).
As indicated in state 911E, the source file may correspond to a set of VIDs of a VAS 532,
which may be mapped to file data on the storage medium 140 through an intermediary
address space (e.g., logical address space 132 of the storage module 130). Performing the
range clone operation may comprise: a) allocating VIDs in the VAS 532 for the destination
file, and b) associating the VIS of the destination file with the LIDs of the intermediate
mapping layer (e.g., the same set of LIDs mapped to the source file VIDs). The range clone
operation may further comprise storing a persistent note 366 on the storage medium 140
indicating that the destination VIDs are associated with the file data LIDs. Since the file data
is already bound to the intermediate identifiers, the contextual format of the file data may not

need to be updated.

47

WO 2015/057991 PCT/US2014/060952

[0178] The file system 906 may be further configured to leverage the storage module 130 to
checkpoint mmap operations. As used herein, an “mmap” operation refers to an operation in
which the contents of files are accessed as pages of memory through standard load and store
operations rather than the standard read/write interfaces of the file system 906. An “msync”
operation refers to an operation to flush the dirty pages of the file (if any) to the storage
medium 140. The use of mmap operations may make file checkpointing difficult. File
operations are performed in memory and an msync is issued when the state has to be saved.
However, the state of the file after msync represents the current in-memory state and the last
saved state may be lost. Therefore, if the file system 906 were to crash during an msync, the
file could be left in an inconsistent state.

[0179] In some embodiments, the file system 906 is configured to checkpoint the state of an
mmap-ed file during calls with msync. Checkpointing the file may comprise creating a file-
level snapshot (and/or range clone), as disclosed above. The file-level snapshot may be
configured to save the state of the file before the changes are applied. When the msync is
issued, another clone may be created to reflect the changes applied in the msync operation.
As depicted in Fig. 9B, in state 913A (prior to the mmap operation), file 1 may be associated
with LIDs 10-13 and corresponding storage addresses P1-P4 on the storage medium 140. In
response to the mmap operation, the file system 906 may perform a range clone operation
through the interface 131 of the storage module 130, which may comprise creating a clone of
file 1 (denoted file 1.1). The file 1.1 may be associated with a different set of LIDs 40-43
that reference the same file data (e.g., the same storage addresses P1-P4). In other
embodiments, file 1 may be cloned using a reference map 460 and/or an intermediate
translation layer, as disclosed above.

[0180] In response to an msync call, the file system 906 may perform another range clone
operation (by use of the storage module 130). As illustrated in state 913C, the range clone
operation associated with the msync operation may comprise updating the file 1 with the
contents of one or more dirty pages (storage addresses P5 and P6) and cloning the updated
file 1 as file 1.2. The file 1.1 may reflect the state of the file before the msync operation.
Accordingly, in the event of a failure, the file system 906 may be capable of reconstructing
the previous state of the file 1.

[0181] As disclosed above, storage module 130 may be configured to implement range clone
and range merge operations, which may be leveraged to implement higher-level operations
such as file consistency (e.g., close-to-open file consistency, as disclosed in further detail

herein), atomic operations, and the like. These operations may comprise: a) cloning a

48

WO 2015/057991 PCT/US2014/060952

particular region of the logical address space 132, b) performing storage operations within the
cloned region, and c) selectively merging and/or folding the cloned region into another
portion of the logical address space 132. As used herein, merging and/or folding regions of
the logical address space 132 refers to combining two or more LID ranges by, inter alia,
incorporating changes implemented in one of the ranges into one or more other ranges. A
merge operation may be implemented according to a merge policy, which may be configured
to resolve conflicts between different LID ranges. The merge policy may include, but is not
limited to, an “overwrite” mode, in which the contents of one of one LID range “overwrites”
the contents of another LID range; an “OR” mode, in which the contents of the LID ranges
are combined together (e.g., in a logical OR operation); a copy-on-conflict mode in which
conflicts are resolved by creating separate independent copies of one or more LID ranges;
and/or the like. In the overwrite mode, the LID range that overwrites the contents of the one
or more other LID ranges may be determined based on any suitable criteria including, but not
limited to, commit time (e.g., more recent operations overwrite earlier operations), priority,
and/or the like.

[0182] Fig. 9C depicts embodiments of range merge operations implemented by use of the
storage module 130. In the Fig. 9C embodiment, the storage module 130 may be configured
to clone the identifier range 914, which may be represented by one or more entries within the
forward map 160. The LIDs 072-083 within the range 914 may be bound to storage
addresses 95-106. The range clone and/or merge operations disclosed herein may be
implemented using any of the range clone and/or move embodiments of Figs. 3A-E, the
reference entry embodiments of Figs. 4A-E, and/or the intermediate mapping layer
embodiments of Figs. SA-B. Accordingly, in some embodiments, the LIDs 072-083 may be
bound to the storage addresses 95-106 through one or more reference entries and/or
intermediate mapping layers.

[0183] The storage module 130 may be configured to clone the range 914, which, as
illustrated at state 941A, may comprise binding a new range of LIDs 924 to the storage
addresses 95-106. The ranges 914 and/or 924 may comprise respective metadata 984 and/or
994 configured to indicate that the ranges 914 and 924 are related (e.g., bound to the same set
of storage addresses). The metadata 984 and/or 994 may be configured to link the LIDs 072-
083 to 972-983 such that modifications pertaining to one of the LID ranges can be correlated
to LIDs in the other range (e.g., data written in association with LID 972 can be associated
with the corresponding LID 072, and so on). The metadata 984 and/or 994 may indicate a

synchronization policy for the cloned LID ranges which, as disclosed above, may indicate

49

WO 2015/057991 PCT/US2014/060952

whether allocation operations between clones are to be synchronized. The metadata 984
and/or 994 may further comprise and/or reference a merge policy, which may specify how
merge conflicts are to be managed. The merge policy may be specified through the interface
131 of the storage module 130, may be determined based on a global and/or default merge
policy, may be specified through request parameters (e.g., fadvise, ioctrl, etc.), and/or the
like. The clone operation may further comprise appending a persistent note 366 to the
storage medium 140 that is configured to associate the data at storage addresses 95-106 with
the LID range 972-983 (and/or rewriting the data in an updated contextual format), as
disclosed above.

[0184] The storage module 130 may perform storage operations within one or more of the
ranges 914 and/or 924 in response to storage requests from one or more storage clients 106.
As illustrated in state 941B, a storage operation may modify data associated with the LIDs
972-973, which may comprise associating the identifiers 972-973 with a new set of storage
addresses 721-722. Following the storage operation(s) of state 941B, the storage module 130
may perform a range merge operation to merge the LID range 972-983 with the range 072-
083. The range merge operation may comprise incorporating the modifications made in
reference to the LID range 924 into the LID range 914 in accordance with a merge policy.
The merge policy may specify that modifications made in the cloned range 924 overwrite
data within the source range 914. Accordingly, the result of the merge operation illustrated in
state 941C may comprise binding LIDs 072-073 of the source range 914 to the modified data
at storage addresses 721-722. The range merge operation may further comprise deallocating
the cloned LID range 972-983, storing a persistent note 366 configured to associate the data
at storage addresses 756-757 with LIDs 072-073, and/or rewriting the data at storage
addresses 721-722 in an updated contextual format, as disclosed herein. Data stored at
storage addresses 95-96 that has been obviated by the new data at 721-722 may be
invalidated, as disclosed above.

[0185] Storage operations performed within the ranges 914 and/or 924 may result in
conflicts. In some embodiments, the merge policy associated with the LID ranges may
preempt conflicts. As disclosed in further detail herein, in an atomic storage operation, the
storage module 130 may lock one or more LID ranges while atomic storage operations are
completed in one or more corresponding ranges. In other implementations, however, the
storage module 130 may allow storage operations to be performed concurrently within cloned
ranges. In state 941D, the storage module 130 may implement storage operation(s)

configured to overwrite and/or modify data associated with the LIDs 972-973 and 982-983 in

50

WO 2015/057991 PCT/US2014/060952

the range 924. The storage module 130 may implement other storage operation(s) configured
to overwrite and/or modify data associated with LIDs 072-073 of range 914. The storage
operation(s) pertaining to the LIDs 072-073 and 972-973 may create a merge conflict
between the ranges 914 and 924. The merge conflict may be resolved according to a merge
policy, as disclosed above. In some embodiments, the merge policy may comprise applying
the most recent modification, based on, inter alia, the relative order of the storage operations
in the storage log. In other implementations, the merge policy may resolve conflicts based on
relative priority of the storage clients 106 (processes, applications, and/or the like) that
requested the respective storage operations. In another implementation, the merge policy
may resolve conflicts by creating two (or more) versions of the ranges 914 and/or 924 to
represent the different, conflicting versions.

[0186] State 941E depicts one embodiment of a result of a merge operation configured to
incorporate the operations operation(s) associated with LIDs 072-073 instead of the
conflicting modifications associated with LIDs 972-973. Therefore, in state 941E, the LIDs
072-073 are bound to the storage addresses 756-757 corresponding to the storage operation(s)
performed in reference to the LIDs 072-073, rather than storage addresses 721-722
corresponding to the storage operation(s) performed in reference to the LIDs 972-973.

[0187] State 941F depicts one embodiment of a result of a merge operation configured to
incorporate the modifications of the range 972-973 instead of the conflicting modifications
made in reference to the LIDs 072-073. Accordingly, in state 941F, the identifiers 072-073
are bound to the storage addresses 721-722 corresponding to the storage operation(s)
performed in reference to the LIDs 972-973, rather than the storage addresses 756-757
associated with the LIDs 072-073.

[0188] State 941G depicts one embodiment of a result of a merge operation configured to
manage merge conflicts by creating separate range copies or versions. The range 914 may
incorporate the non-conflicting modifications made in reference to identifiers 982-983 and
may retain the result of the conflicting storage operations pertaining to identifiers 072-073
(rather than incorporating storage addresses 721-722). The other LID range 924 may retain
the modifications of state 941D without incorporating the results of the conflicting storage
operation(s) made in reference to identifiers 072-073. Although state 941G depicts the copies
using the original cloned LID ranges 072-083 914 and 974-981 924, the disclosure is not
limited in this regard and could be configured to create the range copies and/or versions
within any region of the logical address space 132. The range merge operations disclosed in

reference to states 941E-G may further comprise appending one or more persistent notes 366

51

WO 2015/057991 PCT/US2014/060952

to the storage medium 140 to associate the data stored at storage addresses 721-722, 756-757,
and/or 767-768 with the corresponding LIDs and/or rewriting the data in one or more
background storage operations, as disclosed herein.

[0189] In some embodiments, operations within one or more of the cloned LID ranges 914
and/or 924 may comprise modifying the LID ranges 914 and/or 924 by, inter alia, expanding
the ranges 914 and/or 924, contracting the ranges 914 and/or 924, or the like. Extending one
of the ranges 914 and/or 924 may comprise a corresponding extension to the other range, and,
as such, allocation operations may be predicated on allocating additional LID(s) in both
ranges 914 and 924.

[0190] The range merge operations disclosed herein may be implemented using any of the
range clone and/or move embodiments of Figs. 3A-E, the reference entry embodiments of
Figs. 4A-E, and/or the intermediate mapping embodiments of Figs. SA-B. Fig. 9D depicts an
embodiment of a range merge operation using a reference map 460. As depicted in state
943A, cloning the range 914 may comprise allocating a LID range 924 in the logical address
space 132, linking the ranges 914 and 924 (using, inter alia, metadata 984 and/or 994), and
associating the ranges 914 and 924 with the reference identifiers 934 in the reference map
460. The range clone operation may further comprise storing a persistent note 366 on the
storage medium 140 configured to associate the range 934 in the reference map 460 with the
indirect ranges 914 and/or 924, as disclosed above. The range 934 within the reference map
460 may be bound to the storage addresses 95-106. Accordingly, both ranges 914 and 924
may indirectly reference the same data at the same storage addresses.

[0191] A storage operation within the range 924 configured to modify data corresponding to
LIDs 982-983 may comprise allocating new LIDs within the range 924 and binding the new
local entry 982-983 to the corresponding storage addresses 767-768, as depicted in state
943B. Merging the ranges 914 and 924 may comprise incorporating the modified data at
storage addresses 767-768 into the range 914 in accordance with a merge policy, as disclosed
above. In the Fig. 9D embodiment, the range merge operation of state 943C may comprise
removing the reference entry 934 and updating the LIDs 081-083 of range 914 to reference
the updated data at storage addresses 767-768. The merge operation may further comprise
storing a persistent note 366 and/or rewriting the data at storage addresses 767-768 in an
updated contextual format, as disclosed above.

[0192] Fig. 9E depicts further embodiments of range clone and range merge operations
implemented by the storage module 130. Fig. 9E illustrates range clone and range merge

operations in embodiments comprising an intermediary address space, as disclosed in

52

WO 2015/057991 PCT/US2014/060952

conjunction with Figs. SA-B. In state 947A, the VID range 914 comprising VIDs 072-083
are indirectly bound to storage addresses 95-106 through intermediary identifiers 272Z-283Z
in the VAS forward map 560. The intermediary identifiers may be part of a separate,
intermediate address space 2136 (e.g., the logical address space 132 of the storage module
130).

[0193] As illustrated in state 947B, cloning the VID range 914 may comprise allocating a
new VID range 924 comprising VIDs 972-983 and associating the range 924 with the
intermediary identifiers 272Z-283Z in the VAS forward map 560. The clone operation may
further comprise storing a persistent note 366 on the storage medium 140 that is configured to
associate the VID range 924 with the intermediary addresses 272Z-283Z. Storage operations
may be performed in reference to the VID ranges 914 and/or 924, as disclosed herein.
Modifications to the VID ranges 914 and/or 924 may be reflected in updated mappings
between the respective VID ranges 914 and/or 924 and the intermediate address space 2136.
In state 947C, a storage operation modifying data of VIDs 982-983 is reflected in updated
mappings between VIDs 982-983 and intermediate identifiers 984Z-985Z, and storage
addresses 456-457. Merging the VID ranges 914 and 924 may comprise updating the VID
mappings of range 914 to reference the updated data (through the intermediary addresses
9847-985Z), as illustrated in state 947D. The merge operation may further comprise
resolving merge conflicts (if any), as disclosed above. The merge operation may further
comprise appending one or more persistent notes 366 to the storage medium 140 to associate
the VIDs 082-083 with the intermediate addresses 984Z-985Z.

[0194] In some embodiments, the storage module 130 may leverage the range clone, move,
and/or merge operations disclosed herein to provide file consistency functionality for storage
clients 106, such as file systems, databases, and/or the like. Referring to Fig. 9F, a file
system 906 may leverage the storage module 130 to implement a close-to-open file
consistency model per the Network File System (NFS) version 3 protocol and/or other file
system implementations and/or protocols. The close-to-open file consistency model may be
configured to allow multiple processes and/or applications (file system clients) to operate on
the same file concurrently. File modifications are committed at the time the file is closed;
other clients operating on the file in parallel do not see the changes until the next time the file
is opened. Accordingly, the state of the file is set at the time the file is opened and changes
implemented in parallel by other clients are not applied until the file is re-opened.

[0195] In some embodiments, the file system 906 may leverage the storage module 130 to

preserve the “original” data of the file (e.g., a consistent version of the file) while

53

WO 2015/057991 PCT/US2014/060952

modifications are made within the working, cloned range. As used herein, preserving the
“original” data of the file and/or a consistent version of the file refers to maintaining the file
data in a state corresponding to the time the file was opened and/or keeping a log of file
modifications from which the state of the file data in its original, unmodified state can be
reconstructed.

[0196] Fig. 9F depicts one embodiment of a system 900F comprising storage module 130
configured to implement a close-to-open file consistency model. The file system 906 (and/or
other storage client(s) 106) may leverage the storage module 130 to efficiently implement
close-to-open file consistency. The storage module 130 may be configured to: a) clone files
in response to file open requests of the file system clients 926A-N, resulting in a “primary” or
“consistent” version of the file and a “working” version of the file; b) perform storage
operations in reference to the working version of the file; and ¢) merge the working version
of the file into the primary version of the file in response to file closure. The storage module
130 may be configured to clone the file data in one or more range clone operations, as
disclosed herein (e.g., using the range clone embodiments of Figs. 3A-E, 4A-E, 5A-B, and/or
the like). The storage module 130 may be further configured to merge the working version of
the file and the primary or consistent version of the file using one or more range merge and/or
fold operations, as disclosed herein. The working version of the file may represent the state
of the file at the time the file was opened by a particular storage client 926A-N. The storage
client 926 A-N may have exclusive access to the working version of the file, and, as such, the
working version of the file may be isolated from file modifications made by other clients
926A-N. The storage module 130 may be configured to maintain the original, unmodified
file data in reference to the “primary” or “consistent” logical interface of the file, which may
comprise maintaining the associations between the file data and the consistent logical
interface while storage operations are performed in reference to the working logical interface
of the file. Conflicts between file modifications made by different storage clients 926 A-N
may be resolved according to conflict resolution policy or merge policy, such as last write
(e.g., last write in time overwrites previous writes); copy on conflict (e.g., create separate
versions of the file); priority based on client 926A-N, application, process, and/or the like;
and so on.

[0197] In the Fig. 9F embodiment, at state 953A, the translation module 134 comprises
mappings 951A between the LIDs of a file (file LIDs 950A) and data of the file 952A on the
storage medium 140 at storage addresses PO-P3. The mappings 951A may be implemented

54

WO 2015/057991 PCT/US2014/060952

using the forward map 160 disclosed herein and/or one or more intermediate mapping layers
as disclosed in conjunction with Figs. 5SA-B.

[0198] In state 953B, the storage module 130 may be configured to clone the file in response
to a file open request of a storage client (storage client 926B). The request may be received
through the interface 131 as an explicit request, a request parameter (e.g., fadvise, ioctrl, etc.),
and/or the like. The clone operation may comprise one or more range clone operations,
which, as disclosed herein, may comprise allocating a new set of “cloned” file LIDs 950B
corresponding to the working version file and associating the set of cloned identifiers 950B
with the same file data 952A as the LIDs 950A of the primary version of the file (the original,
or consistent set of logical identifiers 950A). The range clone operation may further
comprise storing a persistent note 366 on the storage medium 140 to associate the file data
952A with both the primary file LIDs 950A and the working version of the file LIDs 950B,
as disclosed above.

[0199] In some embodiments, the storage module 130 and/or file system 906 may be
configured to direct file operations performed by the storage client 926B to the working
version of the file (the working set of LIDs 950B). Accordingly, modifications made by the
storage client 926B may be made in reference to the cloned file LIDs 950B. Such
modifications may not affect the state of the original, primary version of the file LIDs 950A.
Therefore, the storage client 926B may modify the working version of the file in reference to
the LIDs 950B without changing the LIDs 950A of the original, primary version of the file.
[0200] In state 953C, the storage client 926B has performed a storage operation (through the
storage module 130) to modify data of the file stored at storage address P3; the modified data
may be appended to the storage log at storage address P64. In response, the translation
module 134 may update mappings 951B to bind the LIDs of the cloned, working version of
the file 950B to the modified file data 952B at storage address P64. Other LID(s) not
modified by the storage client 926B may continue to be bound to the original, unmodified file
data 952A. The storage module 130 is configured to preserve the original mappings 951A
between the identifiers 950A of the primary version of the file and the unmodified file data
952A at storage addresses P0-3.

[0201] Another storage client 926N may issue a request to open the file before the storage
client 926B has closed the file. In response, and as depicted in state 953D, the storage
module 130 may create another clone of the primary file (clone the primary file identifiers
950A). The cloned LIDs (FIDs 950C) may correspond to the original state of the file without

the modifications made by storage client 926B in reference to the cloned identifier range

55

WO 2015/057991 PCT/US2014/060952

950B. Accordingly, the cloned LIDs 950C may be mapped 951C to the original, unmodified
file data 952A at storage addresses P0-3. The storage client 926N may perform storage
operations in reference to the new cloned file identifier range 950C in parallel with the
storage client 926B. Changes made by the clients 926B and 926N may be isolated within
their respective LID ranges 950B and 950C, and, as such, may not be applied to the primary
version of the file (LIDs 950A and/or one another).

[0202] State 953E illustrates the result of the storage client 926B closing the file. In response
to a request to close the file of storage client 926B, the storage module 130 may be
configured to merge the contents of the corresponding range (FIDs 950B) into the primary
version of the file (LIDs 950A) in one or more range merge operations. The changes may
not, however, be merged into the version of the file in use by storage client 926N (FIDs
950C); the storage client 926N may not have access to the modifications until the client 926N
re-opens the file. Incorporating the modifications may comprise one or more range merge
operations, as disclosed herein. The range merge operations may be configured to merge the
modifications made in reference to the cloned LID range 950B into the LID range 950A of
the primary version of the file. In the Fig. 9F embodiment, the range merge operation
comprises updating the mappings 951A of the primary file LIDs 950A to reference the
modified file data 952B at storage address P64. The data that was not modified by the client
924B may remain bound to the original, unmodified file data 952A at PO-3.

[0203] As disclosed herein, in some embodiments, the modified file data 952B may include
persistent metadata configured to associate the modified file data 952B at storage address P64
with one or more of the LIDs 950B (as opposed to the LIDs 950A associated with the
primary version of the file). The range merge operation may, therefore, further comprise
appending a persistent note 366 to the storage medium 140 configured to associate one or
more of the range of LIDs 950A with the modified file data 952B at storage address P64.
The data at storage address P64 may be rewritten with updated persistent metadata in one or
more background operations. Following the file close operation (and corresponding range
merge operations), the translation module 134 may be configured to deallocate the LIDs of
range 950B.

[0204] The client 926N may modify the file in reference to the cloned file identifiers 950C.
As depicted in state 953F of Fig. 9G, the storage client 926N may perform one or more
operations that conflict with the modifications implemented by the client 926B. The
modifications may occur before the client 950B has closed the file (before the modifications

of client 926B have been applied to the LIDs 950A of the primary version of the file as in

56

WO 2015/057991 PCT/US2014/060952

state 953E). As such, the LIDs 950A are mapped 951A to the original, unmodified file data
952A, one or more of the identifiers of the range 950B allocated to storage client 926B are
mapped to modified file data 952B, and one or more of the identifiers of range 950C
allocated to storage client 926N are mapped to conflicting file data 952C. The LIDs 950B
and 950C that correspond to unmodified data may continue to reference the original,
unmodified file data 952A.

[0205] The clients 926B and 926C may eventually close their respective files, which may
comprise merging the modifications made in reference to the respective LID ranges 950B and
950C into the range 950A of the primary version of the file. The storage module 130 may be
configured to resolve conflicts between the ranges 950B and 950C according to a merge
policy 944. In some embodiments, the merge policy 944 may be based on the order in which
the storage clients 926B and 926C closed the files; the modifications of the last file closed
may overwrite previously applied modifications (e.g., the modifications may be serialized).
As illustrated in state 953G, the storage client 950B may issue the file close request before
the storage client 950C. After the client 950B closes the file, the storage module 130 may
merge modifications made in reference to the range 950B into the range 950A of the primary
version of the file (as illustrated, in state 953E of Fig. 9F). Closure of the file by client 926C
may result in overwriting some of the modifications made by storage client 950B (modified
data 952B) with data 952C, as illustrated in state 953G of Fig. 9G. The data at P3 and P64
may be marked for removal from the storage medium 140 since it is no longer referenced by
the primary file or a current, working version of the file. As disclosed above, the storage
module 130 may be configured to implement other merge policies, such as a priority based
merge policy 944. A priority based merge policy may resolve conflicts based on relative
priorities of the storage clients 926B and/or 926C. In state 953H, the storage client 926C
may close the file after the storage client 926B; however, the modifications of storage client
926B may be retained due to the merge policy 944 indicating that the modifications of
storage client 926B have a higher priority than conflicting modifications of storage client
926C. Accordingly, the LIDs 950A of the primary version of the file may continue to
reference the modified file data 952B of storage client 926B, and the conflicting file data of
storage client 926C (data 952C at P96) may be marked for garbage collection along with the
obsolete file data 952A at P3. In other embodiments, the merge policy 944 may comprise a
copy-on-conflict policy that results in creating two primary versions of the file. In such
embodiments, and as illustrated in state 9531, the storage module 130 may be configured to

incorporate the modifications of storage client 926B into the primary file (using primary file

57

WO 2015/057991 PCT/US2014/060952

LIDs 950A), and may incorporate the conflicting modifications of storage client 926C into a
new version of the file (file identifiers 950D).

[0206] Although particular embodiments of a merge policy 944 are described herein, the
disclosure is not limited in this regard and could implement and/or incorporate any suitable
merge policy 944. The merge policy 944 may be implemented within the storage module 130
and/or file system 906. In some embodiments, the merge policy 944 of the storage module
130 and/or file system 906 may be configured through the interface 131 of the storage
module 130. The merge policy 944 may apply to all file operations performed through the
storage module 130. Alternatively, or in addition, the merge policy 944 may be set on a per-
file and/or per-conflict basis through, inter alia, file system API calls, fadvise, ioctrl, and/or
the like, as disclosed above.

[0207] Fig. 10 is a flow diagram of one embodiment of a method 1000 for managing a
logical interface of data stored in a contextual format on a non-volatile storage medium.
[0208] Step 1020 may comprise modifying a logical interface of data stored in a contextual
format on a non-volatile storage media. The logical interface may be modified at step 1020
in response to performing an operation on the data, which may include, but is not limited to, a
clone operation, a deduplication operation, a move operation, or the like. The request may
originate from a storage client 106, the storage module 130 (e.g., deduplication module 374),
or the like.

[0209] Modifying the logical interface may comprise modifying the LID(s) associated with
the data, which may include, but is not limited to, referencing the data using one or more
additional LIDs (e.g., clone, deduplication, etc.), changing the LID(s) associated with the data
(e.g., a move), or the like. The modified logical interface may be inconsistent with the
contextual format of the data on the storage medium 140, as described above.

[0210] Step 1020 may further comprise storing a persistent note on the storage medium 140
that identifies the modification to the logical interface. The persistent note may be used to
make the logical operation persistent and crash safe, such that the modified logical interface
(e.g., storage metadata 135) of the data may be reconstructed from the contents of the storage
medium 140 (if necessary). Step 1020 may further comprise acknowledging that the logical
interface has been modified (e.g., returning from an API call, returning an explicit
acknowledgement, or the like). The acknowledgement (and access through the modified
logical interface at step 1030) occurs before the contextual format of the data is updated on
the storage medium 140. Accordingly, the logical operation may not wait until the data is

rewritten and/or relocated; as disclosed herein, updating contextual format of the data may be

58

WO 2015/057991 PCT/US2014/060952

deferred and/or implemented in a process that is outside of the “critical path” of the method
1000 and/or the path for servicing other storage operations and/or requests.

[0211] Step 1030 may comprise providing access to the data in the inconsistent contextual
format through the modified logical interface of step 1020. As described above, updating the
contextual format of the data to be consistent with the modified contextual interface may
comprise rewriting and/or relocating the data on the non-volatile storage media, which may
impose additional latency on the operation of step 1020 and/or other storage operations
pertaining to the modified logical interface. Therefore, the storage module 130 may be
configured to provide access to the data in the inconsistent contextual format while (or
before) the contextual format of the data is updated. Providing access to the data at step 1030
may comprise referencing and/or linking to one or more reference entries corresponding to
the data (via one or more indirect entries), as described above.

[0212] Step 1040 may comprise updating the contextual format of the data on the storage
medium 140 to be consistent with the modified logical interface of step 1020. Step 1040 may
comprise rewriting and/or relocating the data to another media storage location on the storage
medium 140. As described above, step 1040 may be implemented using a process that is
outside of the critical path of step 1020 and/or other storage requests performed by the
storage module 130; step 1040 may be implemented by another, autonomous module, such as
media management module 370, deduplication module 374, or the like. Accordingly, the
contextual format of the data may be updated independent of servicing other storage
operations and/or requests. As such, step 1040 may comprise deferring an immediate update
of the contextual format of the data and updating the contextual format of the data in one or
more “background” processes, such as a media management process. Alternatively, or in
addition, updating the contextual format of the data may occur in response to (e.g., along
with) other storage operations. For example, a subsequent request to modify the data may
cause the data to be rewritten out of place and in the updated contextual format.

[0213] Step 1040 may further comprise updating storage metadata 135 as the contextual
format of the data is updated. As data is rewritten and/or relocated in the updated contextual
format, the storage module 130 may update the storage metadata 135 (e.g., forward map 160)
accordingly. The updates may comprise removing one or more links to reference entries in a
reference map 460 and/or replacing indirect entries with local entries, as described above.
Step 1040 may further comprise invalidating and/or removing a persistent note from the
storage medium 140 in response to updating the contextual format of the data and/or

persisting the storage metadata 135, as disclosed above.

59

WO 2015/057991 PCT/US2014/060952

[0214] Fig. 11 is a flow diagram of another embodiment of a method 1100 for managing a
logical interface of data stored in a contextual format on a non-volatile storage media. The
method 1100 may be implemented by one or more modules and/or components of the storage
module 130, as disclosed herein.

[0215] Step 1120 comprises selecting a storage division for recovery, such as an erase block
or logical erase block. As described above, the selection of step 1120 may be based upon a
number of different factors, such as a lack of available storage capacity, detecting a
percentage of data marked as invalid within a particular logical erase block reaching a
threshold, a consolidation of wvalid data, an error detection rate reaching a threshold,
improving data distribution, data refresh, or the like. Alternatively, or in addition, the
selection criteria of step 1120 may include whether the storage division comprises data in a
contextual format that is inconsistent with a corresponding logical interface thereof, as
described above.

[0216] As disclosed above, recovering (or reclaiming) a storage division may comprise
erasing the storage division and relocating valid data thereon (if any) to other storage
locations on the non-volatile storage media. Step 1130 may comprise determining whether
the contextual format of data to be relocated in a grooming operation should be updated (e.g.,
is inconsistent with the logical interface of the data). Step 1130 may comprise accessing
storage metadata 135, such as the forward map 160, reference map 460, and/or intermediary
address space, as described above, to determine whether the persistent metadata (e.g., logical
interface metadata) of the data is consistent with the storage metadata 135 of the data. If the
persistent metadata is not consistent with the storage metadata 135 (e.g., associates the data
with different LIDs, as described above), the flow continues at step 1140; otherwise, the flow
continues at step 1150.

[0217] Step 1140 may comprise updating the contextual format of the data to be consistent
with the logical interface of the data. Step 1140 may comprise modifying the logical
interface metadata to reference a different set of LIDs (and/or reference entries), as described
above.

[0218] Step 1150 comprises relocating the data to a different storage location in a log format
that, as described above, preserves an ordered sequence of storage operations performed on
the non-volatile storage media. Accordingly, the relocated data (in the updated contextual
format) may be identified as the valid and up-to-date version of the data when reconstructing
the storage metadata 135 (if necessary). Step 1150 may further comprise updating the

storage metadata 135 to bind the logical interface of the data to the new media storage

60

WO 2015/057991 PCT/US2014/060952

locations of the data, remove indirect and/or reference entries to the data in the inconsistent
contextual format, and so on, as disclosed herein.

[0219] Fig. 12 is a flow diagram of another embodiment of a method 1200 for managing
logical interfaces of data stored in a contextual format. Step 1215 may comprise identifying
duplicate data on one or more storage devices 120. Step 1215 may be performed by a
deduplication module 374 operating within the storage module 130. Alternatively, step 1220
may be performed by the storage module 130 as storage operations are performed.

[0220] Step 1215 may comprise determining and/or verifying that the storage medium 140
comprises duplicate data (or already comprises data of a write and/or modify request).
Accordingly, step 1220 may occur within the path of a storage operation (e.g., as or before
duplicate data is written to the storage medium 140) and/or may occur outside of the path of
servicing storage operations (e.g., identify duplicate data already stored on the storage
medium 140). Step 1220 may comprise generating and/or maintaining data signatures in
storage metadata 135 and using the signatures to identify duplicate data.

[0221] In response to identifying the duplicate data at step 1215, the storage module 130 (or
other module, such as the deduplication module 374) may modify a logical interface of a
copy of the data, such that a single copy may be referenced by two (or more) sets of LIDs.
The modification to the logical interface at step 1220 may comprise updating storage
metadata 135 and/or storing a persistent note on the non-volatile storage media 135, as
described above. Step 1220 may further comprise invalidating and/or removing other copies
of the data on the non-volatile storage media, as described above.

[0222] The contextual format of the data on the storage medium 140 may be inconsistent
with the modified logical interface. Therefore, steps 1230 and 1240 may comprise providing
access to the data in the inconsistent contextual format through the modified logical interface
and updating the contextual format of the data on the storage medium 140, as described
above.

[0223] Fig. 13 is a flow diagram of one embodiment of a range merge operation implemented
by the storage module 130 disclosed herein. Step 1310 may comprise cloning a set of LIDs
within a logical address space 132. Cloning the LIDs may comprise referencing the same set
of data on the storage medium 140 (e.g., the same storage locations and/or storage addresses)
through two or more different sets of LIDs. The two or more sets may include a working set
of LIDs and an original, consistency set of LIDs. The working set of LIDs may be used to
perform file modification operations, and the original, consistency set of LIDs may be

configured to maintain an original, unmodified state of the data.

61

WO 2015/057991 PCT/US2014/060952

[0224] As disclosed above, the data cloned at step 1310 may be referenced by a set of LIDs,
which may be bound to storage locations of the data on the storage medium 140. Step 1310
may comprise allocating one or more other sets of LIDs within the logical address space 132
and/or within a separate address space. The one or more other sets of LIDs may comprise a
logical capacity that is equivalent to the logical capacity of the original set of LIDs (e.g,,
include the same number of LIDs and/or correspond to the same amount of storage capacity).
Step 1310 may further comprise associating and/or binding the logical identifiers of the one
or more other sets of LIDs with the same data referenced by the original set of LIDs.
Accordingly, step 1310 may comprise modifying the logical interface to the data to associate
the data with a two or more different sets of LIDs. In some embodiments, step 1310
comprises allocating one or more sets of LIDs within the logical address space 132, and
binding the LIDs to the same set of storage addresses. Alternatively, or in addition, step 1310
may comprise creating one or more reference entries within a reference map 460 to indirectly
link the LIDs of the two or more different sets of LIDs to the storage addresses through one
or more reference entries, as disclosed in conjunction with Figs. 4A-E. Alternatively, step
1310 may be implemented by use of one or more intermediate mapping layerss (e.g., as
disclosed in conjunction with Figs. 5A-B). Step 1310 may further comprise linking the two
or more sets of LIDs through, infer alia, metadata 984 and/or 994 associated with the LIDs.
The metadata 984 and/or 994 may be configured to indicate that the LID sets represent clones
of the same storage entity (e.g., versions of the same file). The metadata 984 and/or 994 may
be further configured to specify and/or reference a merge policy for the two or more sets of
LIDs, as disclosed above.

[0225] Step 1310 may further comprise storing a persistent note 366 on the storage medium
140 configured to make the clone operation of step 1310 persistent and crash safe. The
persistent note 366 may be configured to indicate the modified logical interface of the data
(e.g., associate the data with the two or more sets of LIDs), indicate a merge policy of the
clone operation, and the like.

[0226] Step 1320 may comprise performing storage operations within one or more of
different LID ranges of step 1310. The storage operations may be performed in response to
requests received through the interface 131 from one or more storage clients 106. The
storage operations may comprise appending data to the storage medium 140. The storage
operations may, therefore, comprise modifying the associations and/or bindings between
LIDs in one or more of LID sets and storage locations on the storage medium 140.

Modifying the associations and/or bindings may further comprise mapping LIDs in one or

62

WO 2015/057991 PCT/US2014/060952

more of the LID sets to the appended data directly and/or through one or more indirect
references and/or mapping layers.

[0227] Step 1330 may comprise merging the LID sets, as disclosed above. Merging LID sets
may comprise incorporating modifications made in one of the LID ranges into one or more of
the LID sets, as disclosed above. Step 1330 may further comprise resolving one or more
merge conflicts in accordance with a merge policy. In some embodiments, merging
comprises deleting (e.g., invalidating) one or more of the LID sets, which may comprise
removing entries from the forward map 160, removing shared references to storage locations
from a reference count datastructure, removing reference entries from a reference map 460,
removing references in an intermediate mapping layer, and/or the like. Step 1330 may
further comprise modifying a logical interface of the merged data, as disclosed above. The
modified logical interface may update the LIDs used to reference data that was originally
stored in reference to one or more of the LID sets. The modified logical interface may be
inconsistent with the contextual format of the data on the storage medium 140. Therefore,
step 1330 may comprise appending one or more persistent notes 366 on the storage medium
140 to associate merged data with an updated logical interface of the data (e.g., associate data
originally stored in association with LIDs in the second set with LIDs in the first set). Step
1330 may further comprise providing access to the data in the inconsistent contextual format
and/or updating the contextual format of the data in one or more background operations, as
disclosed above.

[0228] Fig. 14 is a flow diagram of another embodiment of a method 1400 for range merge
operations. Step 1420 may comprise receiving a request to create a logical copy of a LID
range. The request may be received from a storage client 106 through an interface 131 and/or
may be part of a higher-level API provided by the storage module 130. The request may
include an “operational mode” of the clone, which may include, but is not limited to, how the
clones are to be synchronized, if at all; how merging is to occur (merge policy); whether the
logical copy is to be designated as ephemeral; and so on.

[0229] Step 1430 may comprise allocating LIDs in the logical address space 132 to service
the request. The allocation of step 1430 may further comprise reserving physical storage
space to accommodate changes to the cloned LID range. The reservation of physical storage
space may be predicated on the operational mode of the clone. For instance, if all changes
are to be synchronized between the clone and the original address range, a small portion (if
any) of physical storage space may be reserved. Alternatively, the storage module 130 may

reserve additional physical storage capacity for logical copy operations having a copy-on-

63

WO 2015/057991 PCT/US2014/060952

conflict merge policy. Step 1430 may further comprise allocating the clone within a
designated portion or segment of the logical address space 132 (e.g., a range dedicated for use
with logical copy and/or clone operations). Accordingly, step 1430 may comprise allocating
a second, different sect of LIDs to clone a first set of LIDs.

[0230] Step 1440 may comprise updating the logical interface of data corresponding to the
clone to reference both the original LIDs bound to the data as well as the cloned LIDs
allocated at step 1430. Step 1440 may comprise storing a persistent note 366 on the storage
medium 140, as disclosed above.

[0231] Step 1450 comprises receiving a storage request and determining if the storage
request pertains to a LID in the first and/or second sets (cloned LID range). If so, the flow
continues at step 1460; otherwise, the flow remains on step 1450.

[0232] Step 1460 may comprise determining what (if any) operations are to be taken on the
other associated LID ranges (e.g., synchronize allocation operations, etc.). The determination
of step 1460 may comprise accessing metadata 984 and/or 994, which may comprise and/or
reference the synchronization policy of the clone.

[0233] Step 1470 may comprise performing the operations (if any) determined at step 1460
along with the requested storage operation. If one or more of the synchronization operations
cannot be performed (e.g., additional logical address space 132 for one or more of the clones
cannot be allocated), the underlying storage operation may fail.

[0234] Fig. 15 is a flow diagram of another embodiment of a method 1500 for implementing
range clone and/or range merge operations. Step 1510 may comprise cloning a LID range, as
disclosed above. Step 1510 may comprise cloning a set of LIDs associated with data stored
on the storage medium 140 at respective storage addresses. Step 1510 may, therefore,
comprise associating two or more different sets of LIDs with the same set of storage locations
(e.g., the same data). Step 1510 may further comprise storing one or more persistent notes
366 on the storage medium 140 and/or rewriting the data in an updated contextual format, as
disclosed above. Step 1510 may include linking the two or more sets of LIDs through, inter
alia, metadata 984 and/or 994. The metadata 984 and/or 994 may comprise and/or reference
a clone synchronization policy, merge policy, and/or the like, as disclosed above.

[0235] Step 1520 may comprise performing storage operations in reference to one or more of
the two or more cloned LID ranges. Step 1520 may comprise synchronizing allocation
operations between the cloned ranges. The storage operations of step 1520 may comprise
appending data to the storage medium 140 and/or associating the appended data with LIDs of

one or more of the different LID ranges.

64

WO 2015/057991 PCT/US2014/060952

[0236] Step 1530 comprises receiving a request to merge the two or more LID ranges of step
1510. The merge request may be received through the interface 131 and/or may be part of
another, higher-level operation, such as an atomic storage operation or the like.

[0237] Step 1540 may comprise identifying merge conflicts between the two or more sets of
LIDs (if any). Identifying merge conflicts may comprise identifying LIDs that were modified
within more than one of the two or more cloned LID ranges. Referring back to Fig. 9C, step
1540 may comprise identifying a merge conflict in state 941D in response to determining that
the LIDs 072-073 in range 914 were modified, as were the corresponding LIDs 972-973 in
range 924. As such, step 1540 may comprise comparing modifications within the LID clones
to identify cases where conflicting modifications would map to the same LID in the merge
operation.

[0238] Step 1550 may comprise resolving merge conflicts identified at step 1540. Step 1550
may comprise determining an applicable merge policy, which, as disclosed above, may
determine how merge conflicts are to be resolved. The merge policy may specify which
version of a LID is included in the merged LID range and/or whether conflicts are resolved
by maintaining separate copies of the LID ranges. Step 1550 may further comprise merging
the LID ranges in accordance with the resolved merge conflicts, as disclosed above.

[0239] The storage module 130 may be further configured to implement efficient atomic
storage operations. Fig. 16A is a block diagram of one embodiment of a system 1600A
comprising a storage module 130 configured to implement atomic storage operations. As
used herein, an atomic storage operation refers to a storage operation that is either fully
completed as a whole or is rolled back. Accordingly, atomic storage operations may not be
partially completed; the storage module 130 may be configured to invalidate and/or remove
data of incomplete atomic storage operations. Implementing atomic storage operations, and
particularly atomic storage operations comprising multiple steps and/or pertaining to multiple
different identifier ranges or 1/O vectors, may impose high overhead costs. For example,
some database systems implement atomic storage operations using multiple sets of redundant
write operations.

[0240] The storage module 130 may comprise a transaction module 1636 configured to
implement storage transactions. The transaction module 1636 may comprise an atomic
storage module 1668 to leverage the range clone, range move, and/or other operations
disclosed herein to increase the efficiency of atomic storage operations. In some
embodiments, the interface 131 provides APIs and/or interfaces for performing vectored

atomic storage operations. A vector may be defined as a data structure, such as:

65

WO 2015/057991 PCT/US2014/060952

struct iovect {

uint64 iov_base; // Base address of memory region for input or output
uint32 iov_len; // Size of the memory referenced by iov_base
uint64 dest lid; // Destination logical identifier

}

[0241] The iov_base parameter may reference a memory or buffer location comprising data
of the vector, iov_len may refer to a length or size of the data buffer, and dest lid may refer
to the destination logical identifier(s) for the vector (e.g., base logical identifier with the
length of the range being implied and/or derived from the input buffer iov_len).
[0242] A vector storage request to write data to one or more vectors may, therefore, be
defined as follows:
vector write (

int fileids,

const struct 1ovect *iov,

uint32 iov_cnt,

uint32 flag)
[0243] The vector write operation above may be configured to gather data from each of the
vector data structures referenced by the *iov pointer and/or specified by the vector count
parameter (iov_cnt) and write the data to the destination logical identifier(s) specified in the
respective iovect structures (e.g., dest lid). The flag parameter may specify whether the
vector write operation should be implemented as an atomic vector operation.
[0244] As illustrated above, a vector storage request may comprise performing the same
operation on ecach of a plurality of vectors (e.g., implicitly perform a write operation
pertaining to one or more different vectors). In some embodiments, a vector storage request
may specify different 1/O operations for each constituent vector. Accordingly, each iovect
data structure may comprise a respective operation indicator. In some embodiments, the
iovect structure may be extended as follows:

struct iovect {

uint64 iov_base; // Base address of memory region for input or output
uint32 iov_len; // Size of the memory referenced by iov_base

uint32 iov_flag; // Vector operation flag

uint64 dest lid; // Destination logical identifier

66

WO 2015/057991 PCT/US2014/060952

[0245] The iov_flag parameter may specify the storage operation to perform on the vector.
The iov_flag may specify any suitable storage operation, which includes, but is not limited to,
a write, a read, an atomic write, a trim or discard request, a delete request, a format request, a
patterned write request (e.g., a request to write a specified pattern), a write zero request, or an
atomic write operation with verification request, allocation request, or the like. The vector
storage request interface described above may be extended to accept vector structures:
vector_request(

int fileids,

const struct 1ovect *iov,

uint32 iov_cnt,

uint32 flag)
[0246] The flag parameter may specify whether the vector operations of the vector request
are to be performed atomically. Further embodiments of atomic storage operations are
disclosed in U.S. Patent Application Serial No. 13/725,728, entitled, “Systems, Methods, and
Interfaces for Vector Input/Output Operations,” filed on December 21, 2012 for Ashish
Batwara et al., and which is hereby incorporated by reference.
[0247] The transaction module 1636 may comprise an atomic storage module 1668
configured to implement atomic storage operations within the storage module 130. The
atomic storage module 1668 may be configured to implement storage operations of an atomic
storage request in reference to a different set of identifiers than the target or destination
identifiers of the request. After the atomic storage operations are complete, the atomic
storage module 1668 may be configured to move the data to the respective target or
destination identifier(s) of the atomic storage request, as disclosed herein.
[0248] In some embodiments, the atomic storage module 1668 implements atomic storage
operations directed to a first set of logical identifiers in reference to a second set of
identifiers. The second set of identifiers may be considered to be ephemeral, temporary,
working, or in-process identifiers. The second set of identifiers may not be directly
accessible to storage clients 106. The second set of identifiers may correspond to a particular
region of the logical address space 132, a particular virtual address space (e.g., a VAS 532), a
separate namespace, and/or the like. After completing the storage operations of the atomic
storage request, the atomic storage module 1668 may implement a range move operation
configured to associate data of the atomic storage request with the first set of identifiers. The
data may be dis-associated from the second set of identifiers. As above, the second set of

identifiers may be distinguishable from LIDs of the logical address space 132 and/or VIDs of

67

WO 2015/057991 PCT/US2014/060952

a VAS 532. In the event of a failure condition, the reconstruction module 1637 may identify
data bound to such identifiers as pertaining to failed transactions (e.g., incomplete atomic
storage operations). The identified data may be invalidated during metadata reconstruction
operations and/or corresponding entries may be omitted from the storage metadata 135 (e.g.,
omitted from the forward map 160, VAS forward map 560, reference map 460, and/or the
like).

[0249] In some embodiments, the atomic storage module 1668 implements atomic storage
operations within a separate address space, such as the transaction address space 1662 of Fig.
16A. Although Fig. 16A describes use of a transaction address space 1662 the disclosure is
not limited in this regard, and could be adapted to use any suitable address range and/or
namespace including, but not limited to, a portion of the logical address space 132 (e.g., a
range, extent, and/or set of LIDs), a portion of a VAS 532, a reference map 460, an
intermediate address space, and/or the like. The identifiers of the transaction address space
1662 (transactional identifiers) may not be directly accessible to the storage clients 106.
[0250] The atomic storage module 1668 may perform atomic storage operations in reference
to the transaction address space 1662, and, after the atomic storage operations are complete,
may perform an atomic range move operation configured to move data of the atomic storage
operations from the transaction address space 1662 into the logical address space 132 (or
other destination or target namespace, such as a particular VAS 532). The atomic range
move operation may include updating bindings within the forward map 160, writing metadata
to the storage medium 140 (e.g., appending a persistent note 366 to the log), and/or the like,
as disclosed herein.

[0251] In the Fig. 16A embodiment, a storage client 106 issues an atomic storage request
pertaining to vectors 1640A and 1640B within the logical address space 132. As illustrated
in Fig. 16A, the vectors 1640A and 1640B may correspond to existing entries within the
forward map 160. Before the atomic storage operation is implemented (at state 1615A), the
LIDs 10-13 of vector 1640A may be bound to storage addresses P1-P4 and the LIDs 36-38 of
vector 1640B may be bound to storage addresses P6-8. In other embodiments, the atomic
storage request may pertain to LIDs that are not allocated and/or are not yet bound to storage
addresses and, as such, do not have corresponding entries within the forward map 160 (and/or
other mapping layers).

[0252] In response to the atomic storage request, the atomic storage module 1668 may access
a second set of identifiers within the transaction address space 1662, by use of, inter alia, a

redirection module 1634. The redirection module 1634 may be configured to allocate the

68

WO 2015/057991 PCT/US2014/060952

second set of identifiers within the transactional address space 1662. The transactional
identifiers may be used to implement portions of the atomic storage request (e.g., track in-
process portions of the atomic storage operations). The redirection module 1634 may be
further configured to link the second set of identifiers to the first set of LIDs (e.g., the target
LIDs of the atomic storage request) by use of, infer alia, the storage metadata 135, entries
within the forward map 160 and/or other index metadata, and/or the like. In some
embodiments, the atomic storage module 1668 may be further configured to perform range
clone operation(s) configured to bind the second set of identifiers to the same storage
addresses as the first set of identifiers (vectors 1640A and 1640B), as disclosed herein.

[0253] As illustrated in state 1615B, the redirection module 1634 may allocate a second set
of identifiers comprising vectors 1642A and 1642B, which include transactional identifiers
7Z0-3 and Z6-8. Bindings between transactional identifiers and storage locations may be
maintained in the storage metadata using, inter alia, an intermediate mapping layer, such as
the transaction map 1660. The transaction map 1660 may comprise mappings between
transactional identifiers and LIDs of the logical address space 132 (and/or VIDs of a VAS
532). In the Fig. 16A embodiment, the transaction map 1660 comprises links 1664A between
the transactional identifiers of vector 1642A and corresponding LIDs of vector 1640A (LIDs
10-13). The transaction map 1660 further includes links 1664B between the transactional
identifiers of vector 1642B and LIDs 36-38 of vector 1640B. The transaction map 1660 may
further include bindings between transactional identifiers and storage locations. State 1615B
depicts range clone operation(s) in the transaction map 1660, including bindings between
transactional identifiers of vector 1642A and the storage locations P1-4 of the LIDs in vector
1640A, and bindings between transactional identifiers of vector 1642B and the storage
locations P6-8 of the LIDs in vector 1640B.

[0254] The atomic storage module 1668 may implement atomic storage operations of the
atomic storage request within the transaction address space 1662, which may comprise
redirecting storage operations from the first set of LIDs (vectors 1640A and/or 1640B) to the
second set of identifiers (the transactional identifiers of vectors 1642A and 1642B).
Redirecting the storage operations may comprise translating references to LIDs in the atomic
storage request to the second set of transactional identifiers by use of, inter alia, the
transaction map 1660. For example, a storage operation pertaining to LID 10 may be
redirected to transactional identifier Z0 based on the mappings 1664 A of the transaction map
1660. Storage operations configured to allocate logical capacity may be redirected to (and

maintained within) the transactional address space 1662. For example, a request to extend

69

WO 2015/057991 PCT/US2014/060952

the vector 1640A to include LIDs 14-20 may comprise: a) allocating the LIDs in the logical
address space 132, b) allocating corresponding transactional identifiers in the transactional
address space 1662, and c) linking the allocated transactional identifiers and LIDs in the
transaction map 1660. A request to TRIM LIDs may comprise marking the corresponding
identifiers as invalid in the transaction map 1660. The corresponding LIDs in the logical
address space 132 may be TRIMed in response to the range move operation performed upon
completion of the atomic storage operations, as disclosed in further detail herein.

[0255] As illustrated in state 1615C, the storage operations of the atomic storage request may
comprise appending data to the storage medium 140 at storage locations P9-13 and P100-102.
The corresponding storage operations may be redirected to the transactional address space
1662, as disclosed herein. Accordingly, the data of the atomic storage request may be
associated with the transactional identifiers Z0-3 and Z6-8, which may comprise: a) binding
the storage locations P9-13 and P100-102 to the transactional identifiers Z0-3 and Z6-8 in the
transaction map 1660, and b) storing the data at P9-13 and P100-102 with persistent metadata
114 configured to associate the data with respective transactional identifiers Z0-3 and Z6-8.
[0256] Other storage operations may be performed concurrently with and/or interleaved
within the atomic vector operations. Accordingly, data of the atomic storage request need not
be stored at contiguous storage locations within the storage address space 144 of the storage
medium 140. Data of the atomic storage request may be distinguished from other data that is
not related to the atomic storage request based on, inter alia, the bi