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This application claims the benefit under Title 35, U.S.C. §119(e) of co-pending
U.S. Provisional Application Serial No. 60/169,145, filed December 6, 1999, entitled
“Method and Apparatus for Producing Software” by Sung-Hee Do, the contents of which

are incorporated herein by reference.

Field of the Invention

The invention relates generally to software systems, and more specifically to a

system and method for designing and producing software code.

Background
There are many different methods for producing software. Generally, software is

designed and produced manually by programmers. Programmers design and program
the software architecture in some type of programming language such as C, C++, Java,
or the like. There are problems with manual methods of software design, in that the
quality of manual methods generates flawed code because of human error. Further,
software design is not optimized because software design processes are performed by
humans using non-optimizing processes. For example, individuals may develop
individual modules of code that perform redundant functions, exchange unnecessary
information, or depend on other modules in an inefficient manner. Further, when these
modules are modified, the software design needs to be retested, as there is typically
relationships between modules that have been modified and other modules that access
them. Also, individuals may develop certain code modules that cannot be reused in later
projects.

Also, the design and production of quality software is a typically a long-term
process involving design, coding and testing periods. Because software production
cycles must decrease to meet shorter design schedules, it would be beneficial to have a
software system and method that produces code in an error-free, efficient, and expedient
manner. Also, it would be beneficial to be able to reuse software code between projects.

In summary, existing methods for producing software are non-optimal, resulting in
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increased cost of development, high maintenance costs, limited reusability, the need for

extensive debugging and testing, and poor documentation.

Summary

A system and method is provided which allows a programmer to design and
generate programs in an error-free and expedient manner, and allows software reuse.
According to one embodiment of the invention, a system and method is provided which
allows a programmer to apply axiomatic design principles to design and generate
software. More specifically, the system and method allows a programmer to define a set
of functional requirements (FRs) that describe what the software is to achieve. The
system allows the programmer to generate software based on design parameters (DPs)
that describe the software system such as inputs, hardware, ASICs (application specific
integrated circuits), software, or other aspects of the software system that meet the
functional requirements.

A relation between FRs and DPs can be described in a mathematical manner by a
design matrix. An uncoupled or decoupled design matrix may describe a system which
has no feedback loops, and therefore the software system is more easily changed,
because a change in one portion of the software does not have an unknown affect on
another portion of the software through feedback. Software code may be automatically
generated from the axiomatic design. Because the software system may be described and
generated in a systematic manner, software quality is improved. Also, the time for
producing the software is decreased because the quality is high, and there is less direct
coding by the programmer.

These and other advantages are provided by:

A digital information product comprising a computer-readable medium, and
stored on the computer-readable medium, computer program instructions defining a
software system that produces software code based on a set of functional requirements
provided by a programmer. According to one embodiment of the invention, the
computer program instructions, when executed, allow the programmer to define a design
matrix describing a relation between the set of functional requirements and the design
parameters. According to another embodiment of the invention, the computer program
instructions, when executed, allow a programmer to manipulate the desigh matrix into

lower triangular form. According to another embodiment of the invention, the computer
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program instructions, when executed, allow a programmer to determine an decoupled
design matrix. According to another embodiment of the invention, the computer
program instructions, when executed, allow a programmer to determine an uncoupled
design matrix.

According to another embodiment of the invention, the method comprises
defining a design matrix describing a relation between functional requirements of the
software system and design parameters; and generating software code based on the
design matrix. According to another embodiment of the invention, the method further
comprises a step of constructing functions using diagonal elements of the design matrix.
According to another embodiment of the invention, the method further comprises a step
of defining a flow description that describes a flow of the software system. According to
another embodiment of the invention, the method further comprises a step of defining a
software module corresponding to at least one functional requirement. According to
another embodiment of the invention, the software module is defined based upon the
flow description.

According to another embodiment of the invention, the method further comprises
a step of defining a plurality of software modules, each of which corresponds to a
respective functional requirement. According to another embodiment of the invention,
the method further comprises relating the plurality of software modules by junctions.
According to another embodiment of the invention, the method further comprises a step
of combining the plurality of software modules according to their junctions. According
to another embodiment of the invention, at least one of the junctions is selected from a
group including a summation junction, a control junction, and a feedback junction.

According to another aspect of the invention, a method for producing software is
provided comprising defining a design matrix describing a relation between functional
requirements of the software system and design parameters; and generating software
code based on the design matrix. According to another embodiment of the invention, the
step of defining includes determining a design matrix having a lower triangular form.
According to another embodiment of the invention, the step of defining includes
determining an uncoupled design matrix. According to another embodiment of the
invention, the step of defining includes determining a design matrix having a diagonal
form. According to another embodiment of the invention, the step of defining includes

determining a decoupled design matrix. According to another embodiment of the
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invention, the step of generating comprises: generating a plurality of models; and
outputting the models to a code generator. According to another embodiment of the
invention, the step of generating comprises generating at least one diagram describing an
object-oriented object structure. According to another embodiment of the invention, the
at least one diagram is in a Unified Modeling Language (UML) format.

According to another embodiment of the invention, the at least one diagram
includes at least one of a group of diagrams comprising a use-case diagram; and an
entity-relation diagram. According to another embodiment of the invention, the code
generated includes object-oriented entities. According to another embodiment of the
invention, the method further comprises a step of defining an object-oriented class using
at least one functional requirement. According to another embodiment of the invention,
the method further comprises a step of defining a child of the object-oriented class using
at least one functional requirement. According to another embodiment of the invention,
the method further comprises a step of defining a grandchild of the object-oriented class
using at least one functional requirement. According to another embodiment of the
invention, the grandchild of the object-oriented class defines behavior of the class.
According to another embodiment of the invention, at least one functional requirement
represents at least one object-oriented software entity. According to another embodiment
of the invention, the generated software code is source code.

According to another aspect of the invention, a method for designing software is
provided which involves object-oriented software objects, the method comprising
defining a design matrix describing a relation between a plurality of functional
requirements of the software system and design parameters; representing at least one
object-oriented object by at least one of the functional requirements; representing data
used by the at least one object-oriented software object by at least one of the design
parameters; and representing a method of the at least one object-oriented software object
by a product of a portion of the design matrix an the at least one design parameter.
According to another embodiment of the invention, the method further comprises
defining a plurality of functional requirements and constraints of the software system.
According to another embodiment of the invention, the method further comprises a step
of decomposing at least one functional requirement into leaf elements. According to
another embodiment of the invention, the method further comprises a step of

decomposing at least one design parameter into leaf elements. According to another
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embodiment of the invention, the method further comprises a step of decomposing at
least one process variable into leaf elements.

According to another éspect of the invention, a method for designing software 1s
provided comprising defining a software system by defining a design matrix describing a
relation between functional requirements of the software system and design parameters
implementing the software system; defining at least one object-oriented object; and
defining at least one method that may be defined on the at least one object, wherein the at
least one object-oriented object and the at least one method are related to the design
matrix. According to another embodiment of the invention, the method further
comprises defining an object class of the at least one object-oriented object that
represents a first level of functional requirements of the design matrix. According to
another embodiment of the invention, the method further comprises defining an instance
of the object class represented by a second level of functional requirements of the design
matrix. According to another embodiment of the invention, the method further
comprises defining behavior of the object class as a third level of functional requirements
of the design matrix. According to another embodiment of the invention, the first,
second, and third levels are successive levels of a functional requirement hierarchy.
According to another embodiment of the invention, the method further comprises
mapping the functional requirements into a physical implementation domain by defining
design parameters.

According to another embodiment of the invention, the method further comprises
a step of construction functions using diagonal elements of the design matrix. According .
to another embodiment of the invention, the step of defining a software system includes
determining whether the design matrix is uncoupled. According to another embodiment
of the invention, the method further comprises generating a plurality of models and
outputting the models to a code generator. According to another embodiment of the
invention, the step of generating comprises generating at least one diagram describing an
object-oriented system structure. According to another embodiment of the invention, the
at least one diagram includes at least one of a group of diagrams including a use-case
diagram; and an entity-relation diagram. According to another embodiment of the
invention, the at least one diagram is in a Unified Modeling Language format.

According to another aspect of the invention, a database format is provided for

designing a software system comprising a software design specification, wherein the
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design specification defines a design matrix describing a relation between a plurality of
functional requirements of the software system and design parameters, wherein the
design specification represents at least one software object by at least one of the
functional requirements, and wherein the design specification represents data used by the
at least one software object by at least one of the design parameters; and software code
produced by the design specifications. According to another embodiment of the
invention, the software design specification further comprises a design identification
identifying the software code. According to another embodiment of the invention, the
software design specification further comprises a detailed design description including
the design matrix, functional requirements and design parameters. According to another
embodiment of the invention, the software design specification further comprises a
detailed design description including the design matrix, functional requirements and
design parameters. According to another embodiment of the invention, the software
design specification further comprises a design identification identifying the software
code. According to another embodiment of the invention, the design parameters are
arranged in a plurality of levels, and wherein each of the plurality of levels can be
referenced by another software system. According to another embodiment of the
invention, the database format for designing a software system is used in a software
production system, and a user operating the software production system is capable of
creating software comprising one or more elements of the software system. According
to another embodiment of the invention, the software production system further
comprises a user interface and a database implementing the database format, and the
software production system is capable of searching through the database to obtain one or
more elements of the software system to create a new software system. According to
another embodiment of the invention, a new element of the new software system
interfaces with one or more elements of the software system, and the software production
system is operable to verify that the interface is operable. According to another
embodiment of the invention, the software production system is configured to verify a
consistency of design of the new software system.

According to another embodiment of the invention, the software production
system is configured to search design parameter information, including at least one of
description information, keywords associated with the software system, categories in

which the software system is assigned, and comments. According to another
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embodiment of the invention, the software code is in executable form. According to
another embodiment of the invention, the software code is source code. According to
another embodiment of the invention, the software production system is configured to
verify a consistency of design of the new software system by checking a consistency
between a first level of design implementing a design parameter from the database and a
second level of design of the new software system. According to another embodiment of
the invention, the second level of design is a child of the first level of design. According
to another embodiment of the invention, a new element of the new software system
interfaces with one or more elements of the software system, and the software production
system is operable to verify that the interface is operable.

According to another aspect of the invention, a database format for designing a
software system is provided comprising design identification information identifying
information describing the software system; detailed design description information
describing the structure and operating qualities of the software system; and software
code information associated with the software system. According to another
embodiment of the invention, the detailed design description defines a design matrix
describing a relation between a plurality of functional requirements of the software
system and design parameters, wherein the design specification represents at least one
software object by at least one of the functional requirements, and wherein the detailed
design description represents data used by the at least one software object by at least one
of the design parameters. According to another embodiment of the invention, the
software code information comprises source code.

According to another aspect of the invention, a method is provided for generating
software code associated with a software system, the method comprising defining a
design matrix describing a relation between functional requirements of the software
system and design parameters; and generating software code based on the design matrix.
According to another embodiment of the invention, the method further comprises
defining a plurality of functional requirements and constraints of the software system.
According to another embodiment of the invention, the method further comprises a step
of decomposing at least one functional requirement into leaf elements. According to
another embodiment of the invention, the method further comprises a step of
decomposing at least one design parameter into leaf elements. According to another

embodiment of the invention, the method further comprises a step of decomposing at
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Jeast one process variable into leaf elements. According to another embodiment of the
invention, the software code is written in a modeling code language. According to
another embodiment of the invention, the software code is executable by a computer
system. According to another embodiment of the invention, the modeling code language
is the Unified Modeling Language (UML). According to another embodiment of the
invention, the software code describes at least one diagram of a group comprising a class
diagram; an interaction diagram; a collaboration diagram; a sequence diagram; a state
diagram; and an activity diagram.

According to another embodiment of the invention, the method further comprises
a step of relating the design matrix to at least one element of the at least one diagram.
According to another embodiment of the invention, the system creates a use-case
diagram based upon the design matrix. According to another embodiment of the
invention, the method further comprises defining a plurality of customer needs, the
plurality of needs being arranged in a hierarchical tree having levels, and wherein at least
one of the levels relates to a layer of a use-case diagram. According to another
embodiment of the invention, the use-case diagram includes a relation layer, a use case |
layer and an actor layer. According to another embodiment of the invention, the actor
layer represents one or more actors.

According to another embodiment of the invention, the use case layer describes
customer needs that are attributed to the actor. According to another embodiment of the
invention, the relation layer describes a relationship between customer needs in customer
needs in the use case layer. According to another embodiment of the invention, the
relationship is a semantic connection among model elements. According to another
embodiment of the invention, the software code includes a model file which describes
the modeling code. According to another embodiment of the invention, the model file is
suitable for use as an input file for use by a software production system to create a
software system.

According to another aspect of the invention, a computer-readable medium is
provided which is encoded with a program that, when executed on a computer system,
performs a method for rendering an interface through which a user may interact, the
method comprising steps of displaying a software design interface, wherein the interface
displays a set of functional requirements upon which a software design is based, and

wherein the interface displays a design matrix describing a relation between the set of
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functional requirements and design parameters implementing the software design.
According to another embodiment of the invention, the computer system performs a step
of indicating, in association with the displayed design matrix, whether the software
design specified by the design matrix is at least one of a group including a decoupled,
uncoupled or coupled design.

According to another embodiment of the invention, the design matrix represents a
coupled design, and wherein the computer system performs a step of indicating, in
association with the displayed design matrix, whether a design parameter associated with
the design matrix is coupled. According to another embodiment of the invention, the
computer system performs a step of indicating, for the design parameter associated with
the design matrix, an alternate rearrangement of the design parameter wherein the design
parameter, if rearranged, is uncoupled or decoupled. According to another embodiment
of the invention, the computer system performs a step of indicating, for the design
matrix, an accuracy of the software design with respect to an optimum design.

According to another embodiment of the invention, the computer system
performs a step of indicating, for the design matrix, a range of acceptable inputs over
which the design matrix operates. According to another embodiment of the invention,
the computer system performs a step of arranging and displaying the functional
requirements and design parameters to the user in a hierarchical manner. According to
another embodiment of the invention, the computer system performs a step of displaying
the functional requirements and design parameters in a hierarchical tree having a
plurality of levels. According to another embodiment of the invention, the computer
system performs a step of indicating a robustness of the software. According to another
embodiment of the invention, the computer system performs a further step of creating,
based upon an arrangement of the design parameters, a Gantt chart describing production
dependencies of the software design.

Further features and advantages of the present invention as well as the structure
and operation of various embodiments of the present invention are described in detail
below with reference to the accompanying drawings. In the drawings, like reference
numerals indicate like or functionally similar elements. Additionally, the left-most one
or two digits of a reference numeral identifies the drawing in which the reference
numeral first appears. All references cited herein are expressly incorporated by

reference.
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Brief Description of the Drawings

This invention is pointed out with particularity in the appended claims. The
above and further advantages of this invention may be better understood by referring to
the following description when taken in conjunction with the accompanying drawings in
which similar reference numbers indicate the same or similar elements.

In the drawings,

Figure 1 is a block diagram illustrating concepts of domain, mapping and spaces;

Figure 2 is a block diagram showing different types of design matrices;

Figure 3 is a block diagram showing different types of control junctions;

Figure 4 is a block diagram showing different types of system architecture;

Figure § is a block diagram showing an axiomatic design process for designing
object-oriented software according to one embodiment of the invention;

Figure 6 is a block diagram showing an object representation in terms of
functional requirements according to one embodiment of the invention;

Figure 7 is a block diagram illustrating Rumbaugh’s object model notation;

Figure 8 is a block diagram of an example of an object-oriented diagram
according to one embodiment of the invention;

Figure 9 is a block diagram of an example object class and instance according to
one embodiment of the invention;

Figure 10 is a block diagram showing transitions between functional and physical
domains according to one embodiment of the invention;

Figure 11 is a block diagram showing a Structured Analysis and Design
Technique (SADT) diagram;

Figure 12 is a block diagram of an example design matrix according to one
embodiment of the invention;

Figure 13 is a block diagram showing a design matrix implementation and
consistency check according to one embodiment of the invention;

Figure 14 is a block diagram showing an example object-oriented technique
(OOT) diagram according to one embodiment of the invention;

Figure 15 is a block diagram showing a relation between a design matrix and an

object-oriented class diagram according to one embodiment of the invention;
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Figure 16 is a block diagram showing more detailed relations between a design
matrix and an object-oriented class diagram according to one embodiment of the
invention;

Figure 17 is a block diagram for the design matrix shown in Figure 16;

Figure 18 is a block diagram of a module-junction diagram according to one
embodiment of the invention;

Figure 19 is a block diagram of an exemplary environment used for database

design according to one embodiment of the invention;

Figure 20 is a block diagram of an Entity-Relation (ER) diagram according to one

embodiment of the invention;

Figure 21 is a block diagram showing a search for design parameters according to

one embodiment of the invention;

Figure 22 is a customer needs diagram according to one embodiment of the
invention;

Figure 23 is a use case diagram associated with the customer needs diagram of
Figure 22;

Figure 24 is an example use case diagram according to one embodiment of the
invention;

Figure 25 is a block diagram of an example design hierarchy according to one
embodiment of the invention;

Figure 26 is a block diagram of an example design matrix according to one
embodiment of the invention;

Figure 27 is a block diagram of an example class representation according to one
embodiment of the invention;

Figure 28 is a block diagram of example classes according to one embodiment of
the invention;

Figure 29 is a block diagram of detailed method definitions associated with the

example classes of Figure 28;

Figure 30 is a block diagram of class definitions according to one embodiment of

the invention;
Figure 31 is a chart showing relation definitions according to one embodiment of
the invention;

Figure 32 is a class diagram according to one embodiment of the invention;
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Figure 33 is a chart showing an interaction definition according to one
embodiment of the invention;

Figure 34 shows an example collaboration diagram according to one embodiment
of the invention;

Figure 35 is a sequence diagram according to one embodiment of the invention;

Figure 36 is a block diagram of a system architecture flow according to one
embodiment of the invention;

Figure 37 is an activity diagram associated with the example according to one
embodiment of the invention;

Figure 38 is a block diagram of an alternative system architecture having
different components;

Figure 39 shows an example generated UML script according to one embodiment
of the invention,;

Figure 40 is an example functional requirements (FR) table according to one
embodiment of the invention;

Figure 41 is an example DP/VARIABLE table according to one embodiment of
the invention;

Figure 42 is an example DM/OPERATION table according to one embodiment
of the invention;

Figure 43 is a block diagram of a standard code skeleton according to one
embodiment of the invention;

Figure 44 is a block diagram of an example code skeleton produced according to
one embodiment of the invention;

Figures 45A-B shows tables mapping functional requirements (FR) to design
parameters (DP);

Figures 46A-B are tables showing FRs mapped to multiple alternative DPs;

Figures 47A-B show tables relationships between parent FR/DP information and
child FR/DP;

Figures 48A-B show a parent numbering structure according to one embodiment
of the invention;

Figures 49A-B show tables mapping FRs and constraints according to one

embodiment of the invention;
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Figure 50 shows a method for mapping CNs and FRs using tables and a tree
display;

Figure 51 is a block diagram showing an interface relating actual restraints to a
design according to one embodiment of the invention;

Figures 52A-C show alternative user interfaces according to one embodiment of
the invention;

Figure 53 shows an example nested design matrix table according to one
embodiment of the invention;

Figures 54A-C show alternative user interfaces according to one embodiment of .
the invention;

Figures 55A-B show alternative user interfaces indicating activity groups related
to design according to one embodiment of the invention;

Figure 56 shows an alternative user interface according to one embodiment of the
invention;

Figure 57 shows one alternative embodiment of a user interface;

Figure 58 shows an alternative DP toggle button within an FR/DP or DP/PV
handling window;

Figure 59 shows a user interface including control buttons used to populate a
design matrix according to one embodiment of the invention;

Figure 60 shows a table showing how menus, tabs, and buttons are controlled by
a road map;

Figure 61 shows an alternative user interface according to one embodiment of the
invention;

Figure 62 shows a user interface that automatically displays a resized design
matrix based on the number of FRs and DPs;

Figures 63A-B show alternative user interface according to one embodiment of
the invention;

Figures 64A-B show alternative user interfaces that allow one step navigation
between adjacent hierarchy levels of a design according to one embodiment of the
invention;

Figure 65 shows an adjustment of options based on user experience level

according to one embodiment of the invention;
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Figure 66 shows a user interface through which a user may adjust numbering
scheme of the design according to one embodiment of the invention;

Figure 67 shows an alternative user interface that allows users to adjust elements
of a design matrix more precisely;

Figure 68 shows an example user interface used to adjust color-coding for
legends;

Figure 69 shows an alternative user interface which indicates a size of the design;

Figure 70 shows an example of a live question list according to one embodiment
of the invention;

Figure 71 shows a live to do list according to one embodiment of the invention;

Figure 72 shows one alternative user interface according to one embodiment of
the invention;

Figure 73 shows a user interface displaying child lists according to one
embodiment of the invention;

Figure 74 shows a user interface displaying an impact list showing effects of a
change throughout a design hierarchy in accordance with one embodiment of the
invention;

Figure 75 shows an example flowchart display derived from a design matrix
according to one embodiment of the invention;

Figure 76 shows an example Gantt chart derived from the flowchart shown in
Figure 75;

Figures 77A-D show probability density functions according to one embodiment
of the invention; _

Figure 78 shows a user interface displaying a design document derived from a
design according to one embodiment of the invention;

Figures 79A-B show horizontal and vertical type design trees, respectively;

Figure 80 shows a user interface that indicates a completeness of a design
according to one embodiment of the invention,;

Figure 81 shows one process used to manipulate a design matrix according to one
embodiment of the invention;

Figure 82 shows one process that checks status of a design according to one

embodiment of the invention;
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Figure 83 shows one process that determines whether elements of the design are
undefined according to one embodiment of the invention;

Figure 84 shows one process that determines whether a design is uncoupled
according to one embodiment of the invention;

Figure 85 shows one process that determines whether a design is coupled
according to one embodiment of the invention;

Figure 86 shows one process that generates rearranged sequences of a design
matrix according to one embodiment of the invention;

Figure 87 shows a process that ranks alternative or redundant DPs according to
one embodiment of the invention;

Figure 88 shows a process that ranks all permutations of DPs according to one
embodiment of the invention;

Figure 89 shows a process that generates flowchart sequences based on design
matrix information according to one embodiment of the invention;

Figure 90 shows one exemplary format of a flowchart matrix according to one
embodiment of the invention;

Figure 91 shows a process for generating an impact list according to one
embodiment of the invention; and

Figure 92 shows a process for generating a Gantt chart according to one

embodiment of the invention.

Detailed Description

According to one embodiment of the invention, a new software design
methodology is provided that is based on axiomatic design theory. In one aspect,
axiomatic design theory is adapted for use in designing object-oriented software
programs. This methodology overcomes the shortcomings of various software design
strategies including extensive software development and debugging time and the need
for extensive maintenance. Because traditional software design strategies are not
heuristic and do not provide basic principles for the development of good software
systems, bad design habits produce poor quality software. A design framework using
axiomatic design for software overcomes many of the shortcomings of current software

design techniques: high maintenance costs, limited reusability, the need for extensive
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debugging and testing, poor documentation, and limited extensibility of the software, all
of which result in high development cost of software.

According to one embodiment of the invention, a software designer or developer
describes their software based on features which depends on the programming language
or software design methodology. Axiomatic design methodology combines the concept
of “what we want to achieve” and “how we want to achieve it” and is represented as a
single concept in terms of axiomatic design. In particular, axiomatic design defines a
concept of domains which isolates representation of the software system. A domain
termed the functional domain captures the concept for “what we want to achieve” and
indicates as elements of the domain a set of functional requirements (FRs). The physical
domain represents “how we want to achieve it” and indicates as elements of the domain a
set of design parameters (DRs). Two other domains exist. One is the customer domain
which captures customer needs (CNs) defining customer requirements of the software
system. The other is a domain termed the process domain that represents process
variables (PVs) defining the existing environment in which the software system operates.
All these domains are illustrated in Figure 1. By using FRs and DPs to describe
software, a software designer can create a clear description for their software.

The specific nature of CNs, FRs, DPs and PVs of a software design depends upon
the specific nature or goals of the software:

e (Ns: Users’ needs or customer attributes which the software program must satisfy.
e FRs: Outputs or the specifications or the requirements of a program code or software
module or a system.
e DPs: (1) Inputs or modules in case of pure algorithms or
(2) Hardware such as sensors, ASICs (application specific integrated circuits),
or other hardware that interface with software systems.
e PVs: Program code (source code including subroutines, modules, or the like, or
machine code) or compilers.

Various advantages of designing software using axiomatic design principles

using a software production methods and systems according to various embodiments of

the invention include:
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. Guarantees the quality of software. A design matrix may be used to describe a
relation between FRs and DPs. The design matrix can be represented as Equation (1) in
mathematical manner. If the design matrix is diagonal, each of the FRs can be satisfied
independently by means of one DP. Such a design is called an uncoupled design. If the
matrix is triangular, the independence of FRs can be guaranteed if and only if the DPs
are changed in a proper sequence. Such a design is called a decoupled or quasi-coupled
design. All other cases are referred to as a coupled design. Figure 2 shows these
different types of designs. If the design matrix for the software is uncoupled or

decoupled, it guarantees software quality or “goodness”.

{FRs} =4} DPs}

ALl A12 Al13
[A]=]| 421 422 423| (1)
A31 A32 A33
_ OFR
" 8DP;

. Improve reusability: The FRs, DPs and PVs are decomposed until the design
can be implemented without further decomposition to create a design hierarchy.
Decomposition of FRs, DPs, and PV are not accomplished by determining a solution in
a single domain, but rather designs are determined by working recursively between
domains, referred to as “zigzagging” between the domains. Decomposition of FRs is
generally performed until the design task can be implemented without further
decomposition.

The design hierarchy may have a different shape depending on a higher-level
design decision, meaning that if a designer selects different DPs for one level to make an
uncoupled or decoupled design, the child level information may vary depending on the
DP selection. This design feature improves reusability because lower-level details of a
program do not require modification if changes are made at a higher level of the design
hierarchy. For example, after a company designs their software using axiomatic design
principles, they may want to choose previously-designed DPs for their new software
project. Decomposition for the previously-designed DPs are not required; only a small

amount of modification of the source code which represents the previously-designed DPs
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and their associated lower level hierarchies to fit the new project may be needed.
Therefore, the result of each individual software development project can be stored in a

storage structure such as a design database and referred to by a programmer at any time.

. Low maintenance cost: The system architecture (sometimes referred to as a flow
diagram or flow chart) reveals the design sequences between the modules which is
defined in terms of the (FR/DP) or (DP/PV) relationship. Figure 3 shows several
different junction types through which modules may be connected, these junctions
representing relationships between modules. This figure is determined by the design
matrix. Once a software is design finished, it is much easier to follow changes during
the development and maintenance processes. Because the developer or manager knows
how the software modules interact and which module should be checked if a change is

made, maintenance cost is reduced. Figure 4 shows an example system architecture.

. Reduce extensive debugging and testing: Because a programmer does not
directly code first, debugging and testing is minimized. In particular, the axiomatic
design method forces a programmer to develop a design prior to coding the design.
Detailed information for the design is defined during the design process. Therefore,
software coding is straightforward. If there is something wrong with the software code,
a designer or programmer analyzes and revises the design document which represents
and determines the specific code. Also, the developed software can be tested with the
FRs information step by step, because the FRs each represent specific software

requirements.

. Provides clear documentation: Axiomatic design requires determining the FRs,
DPs, PVs and design matrix prior to coding. According to one aspect of the invention,
descriptions have a same format and contain notes such as keywords, comments and the
like. According to another embodiment of the invention, a design document is
automatically defined by a software production system based upon the actual design that
allows communication between designers, managers, and developers. Automatic
documentation for software is beneficial, because documentation is standardized among
programmers and more time may be devoted to development in lieu of writing software

documentation.
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) Guarantees extensibility of the software: As discussed, conventional software
systems are generally coupled systems having feedback. Thus, it is typically difficult to
extend the previously-developed software because, in a system having feedback, a
change in one module may have an adverse affect on the operation of another system. In
most cases, new software that entirely replaces the previously-developed software is
needed to incorporate new features. To resolve coupling in systems, the relationship
between each individual feature should be checked and this checking requires detailed
information regarding the system. Currently, there are no methods for revealing this
coupling in current software designs. Analysis of a system is currently performed
manually by designers or programmers’ intuition (referred to as ad-hoc design).
Axiomatic design provides design tools such as tools for creating a design matrix
and system architecture. By using these axiomatic design tools, creating or extending a
software system is straightforward. For example, to extend an existing system, the
following steps are typically performed: add the required feature for the extension in
terms of FR/DP or DP/PV, check the relation using the design matrix and determine if
any modules are impacted by the change and adjust the program accordingly. If a
designer determines an uncoupled or decoupled design using these axiomatic design

tools, the extension is automatically verified.

. Reduces development costs of software: High costs are associated with long
software development, and debugging time, the need for maintenance, and uncertain
reliability. In general, software development is a labor-intensive business. Because
every single development process in the software development life cycle is conducted
clearly and sequentially, delays drastically affect the overall development cycle. By
implementing axiomatic design principles, designers and managers can determine the
state of the development process and can estimate the next step rather than treating
software as a block box. This knowledge provides designers and managers more
opportunities to reduce development cost.

The goals of software engineering should be twofold: first algorithmic efficiency
should be enhanced so as to reduce execution time. Second, productivity should be
enhanced so as to reduce coding, extension, and maintenance effort. As computer

hardware rapidly evolves and the need for large-scale software systems grows,
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productivity is increasingly more important in software engineering. The so-called
“software crisis” is closely tied to productivity of software development [R.S. Pressman,
Software Engineering, A Practitioner’s Approach, 4t ed., New York: McGraw Hill,
1997].

Several design methodologies for software systems have been proposed in the
past. Two decades ago, structured methods, such as structured design and structured
analysis, were most commonly used [T. DeMarco, Structural Analysis and System
Specification, New Jersey: Prentice Hall, 1979]. Structured methods focus on only the
process and generally follows a top-down approach. Therefore, another concept
(referred to as a data structure) used to represent data was introduced. As the need for
productive software systems has increased, the object-oriented method has become the
basic programming tool which follows a bottom-up design approach [B.J. Cox, Object-
Oriented Programming, Reading, Massachusetts, Addison-Wesley, 1986]. Object-
oriented programming emphasizes the need to design software right during the early
stages of software development and emphasizes the importance of modularity of objects
that include process and data together. However, even with object-oriented methods,
there are many problems that intelligent software programmers face in developing and
maintaining software over its life-cycle. Although there are several reasons for these
difficulties, the main reason is that the current software design methodology does not
provide any criterion by which a developer can create good software a priori.
Modularity alone does not assure good software, since even a set of independent
modules can couple software functions.

The axiomatic design (AD) approach has been used primarily for design of
mechanical systems and has been proposed for software design in particular [S.J. Kim,
N.P. Suh, and S.K. Kim, “Design of software systems based on axiomatic design,”
Annals of the CIRP, Vol. 40, No. 1, pp. 165-170, 1991]. In axiomatic design, a
scientific approach is used for the design process that had previously been conducted
heuristically or in an ad-hoc manner. The design process begins with the definition of
functional requirements (FRs). The axiomatic design process is generally described as
the mapping between functional and physical domains and also between the physical and
process domains. During the mapping process, two axioms — the Independence Axiom
and the Information Axiom — must be satisfied. The design task includes satisfying a set

of specified FRs of the functional domain by mapping FRs to design parameters (DPs) in
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the physical domain as shown in Figure 1. FRs and DPs are decomposed through
zigzagging until the design goals can be implemented. These mapping and zigzagging
processes assist designers to generate successful designs, as software design is
approached in an organized and deterministic manner. Also, axiomatic design principles
can be applied to many system design problems. Further, because axiomatic design
principles are mathematically-based and described using common engineering terms, the
design principles are relatively easy for engineers to understand.

The AD approach or framework has been successfully applied to software design.
However, according to one aspect of the invention, axiomatic design theory is applied to
object—oriented design methods to create a software system in a systematic and
productive manner. The basic idea used for the design and development of software
systems is similar to that used for hardware components and other systems, and thus the
integration of software and hardware design is a straightforward exercise for the software
developer.

There are similarities between the AD framework and the object-oriented method
which can be used to relate the two. For example, the concept of “inheritance and
aggregation” in the object-oriented method is similar to the “tree structure” in the AD
framework. Also, an “association” in the object-oriented method represents a part of the
concept embedded in the “design matrix” of the AD framework. There are several
differences, however, between the AD framework and current object-oriented software
design methodologies. These differences become apparent as details of axiomatic design
and object-oriented method are compared. Simply stated, the object-oriented method
deals only with the DPs (implementation details) and not the FRs (function requirements
of the system) of axiomatic design, and thus it is difficult to verify that the software
design is good a priori. Another difference is that the AD framework implements a top-
down approach to create a complete hierarchy of FRs and DPs by a zigzagging process
between the domains until lowest level FRs and DPs (i.e., leaves) are created, whereas
the object-oriented method can be completed by a bottom-up approach. Axiomatic
design principles allow a programmer to use both methods to realize a software system.
The AD framework supports both benefits from structured methods and object-oriented
methods and provides criteria for design decision making in order to create quality

software systems.
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Introduction

The development of a software system based on axiomatic design and object
oriented programming technique is described. According to one aspect of the invention,
axiomatic design of object-oriented software systems provides a major new paradigm
shift in the field of software engineering. This new method combines the power of
axiomatic design with a popular software programming methodology referred to in the
art as the object-oriented programming technique (OOT). One goal of this method is to
make software development processes a subject of science rather than an ad-hoc art, thus
reducing and/or eliminating the need for debugging and extensive software changes.

In software engineering, it is well known that software should be developed or
written with independent modules. However, conventional module used in typical
software does not meet the rigid definition of a module used in axiomatic design. In
particular, these modules are defined as Equation (2). Also, collections of conventional
modules are generally coupled. Furthermore, the decomposition of software is often
performed in the heads of the programmers based on their experience; programmers do
not explicitly define FRs, perform mapping or zigzagging to define a system, nor do they
write down design equations related to that system. Therefore, the use of independent
modules themselves does not generate uncoupled software design. To create quality
software, the relationship between the modules should be designed to make them work
independently and explicitly. These shortcomings can be overcome by designing

software first based on axiomatic design principles.

M = )
5 6DP, DP,

In particular, the AD framework disclosed herein ensures that the modules are
correctly defined and located in the right place, and in the right order. A “V model”
concept was recently introduced to improve the quality in mechanical system [B. El-
Haik, “The Integration of Axiomatic Design in the Engineering Design Process”, 11"
Annual RMSL Workshop, May 12, Detroit, U.S.A, 1999]. Because the idea of V-
models may be adapted for software production, a modified version of the “V model for
software” is disclosed here which adapts the idea of using object-oriented software

design within the AD framework.
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The V-model process as applied to object-oriented programming includes three
general steps. First, the process designs the software system based on axiomatic design,
i.e., decomposition of FRs, DPs and PVs, the design matrix, and the modules as defined
by axiomatic design. Second, the process represents the software design using a full
design matrix table and a flow diagram, which provide the well-organized structure for
software development. Third, the process builds the software system based on the flow
diagram and DP/PV relation using object-oriented concepts. This axiomatic approach
enhances software productivity because it provides a roadmap for designers and
developers of the software system and eliminates functional coupling between elements.
Figure 5 schematically represents the process, which will be explained in more detail

later in this section.

Definition of Terminology for Object-Oriented Software Systems

One of the difficulties associated with learning Object-Oriented techniques
(OOT) is the definition of key words that describe object-oriented methods. For
example, Table 1 depicts the plurality of key words used to describe the same concepts
in object-oriented programming. In this section, OOT is described by using the

keywords used in OOT and equivalent terms are shown below with respect to Table 1

below:
Developed Class Association | Generalization | Aggregation
by
Booch Class Has Inherits Containing
Coad Class & Instance Gen-Spec Part-Whole
Object Connection
Jacobson | Object Acquaintance | Inherits Consist of
Association
Odell Object Type | Relationship Subtype Composition
Rumbaugh | Class Association Generalization | Aggregation
Shlaer/ | Object Relationship Subtype N/A
Mellor

Table 1 - Several Definitions for the class structure

Object-oriented methodology (OOM) is generally a conceptual process that is
independent of any programming language until a final code creation stage. OOM is a

formal method of creating a software structure and abstraction, helping designers to
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express and communicate abstract concepts. The fundamental construct for the object-
oriented method is the object, which, according to one embodiment of the invention, is
equivalent to FRs. Object-oriented design decomposes a system into objects. Objects
“encapsulate “ both data, and methods in a single entity. According to one embodiment,
data are equivalent to DPs and methods are equivalent to relationships between FRs and
DPs, i.e., a module. An object retains certain information on how to perform certain
operations, using the input provided by the data and the method imbedded in the object.
In terms of axiomatic design, this is equivalent to saying that an object is [FRi = Aij
DPj]. A graphical representation of an object is shown in Figure 6.

Object-oriented design generally uses four definitions to describe its operations:
identity, classification, polymorphism and relationship. Identity means that data --
equivalent to DPs in one embodiment -- are incorporated into specific objects. Objects
are equivalent to an FR -- with a specified [FRi = Aij DPj] relationship -- of axiomatic
design, where DPs are data or input and Ajj is a method or a relationship.

In axiomatic design, the design equation explicitly identifies the relationship
between FRs and DPs. The term classification means that objects with the same data
structure (attributes) and behavior (operations or methods) are grouped into a class. The
object is typically represented as an instance of specific class in programming languages.
Therefore, all objects are instances of some classes. A class represents a template for
several objects and describes how these objects are structured internally. Objects of the
same class have the same definition both for their operations and for their information
structure.

The term polymorphism means that the same operation may behave differently
on different classes and therefore, two or more classes of objects respond to a received
message each in its own way. A move operation, for example, may behave differently
on Window and Chess Piece classes of a game program. The term, relationship
describes the interactions between objects or classes. These interactions can be of the
following types as shown in Figure 7. Figure 7 is a. block diagram illustrating J.
Rumbaugh’s well-known object model notation [J. Rumbaugh, M. Blaha, W.
Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design, New
Jersey: Prentice Hall, 1991].

Relationships between objects and classes are established by means of Links and

associations [J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
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Object-Oriented Modeling and Design, New Jersey: Prentice Hall, 1991][ G. Booch,
Object-Oriented Analysis and Design with Applications, 2" ed., California: The
Benjamin/Cummings Publishing Company, Inc., 1994]. A link is a physical or
conceptual connection between objects. An association represents a group of bi-
directional links with common structure and common semantics. Aggregation refers to
the “part-whole” or “a-part-of” relationship in which objects representing the
components of an object that represents the entire assembly. Sharing similarities
between classes while preserving their differences is encapsulated in generalization and
inheritance. Inheritance allows the conception of a new class of objects as a refinement
of another and abstraction of the similarities between classes. Generalization defines the
relationship between a class and one or more refined versions of it. A superclass is the
class being refined and a subclass is a class that inherits behavior from another class,
which is a refined version of the superclass. Attributes and operations common to a
group of subclasses are attached to the superclass and shared by each subclass, which
inherits the features of its superclass. Generalization and inheritance are typically
transitive across an arbitrary number of levels.

The following software design sequence describes the object-oriented technique
based on these concepts:
1. Define the problem or task.
Identify objects and their attributes and input data.
Identify operations that may be applied to objects.

Establish interfaces by showing the relationship between objects and operations.

ARSI A

Repeat steps 1, 2, 3, and 4.

Steps 2 and 3 are summarized collectively as steps related to object-oriented class
definition. These steps are commonly referred to as modeling or analysis. Step 4,
usually referred to as the design step, utilizes diagrams such as a data flow diagram and
an Entity-Relation (ER) diagram to realize the relationships. As shown in Figure 8, an
object diagram is generated when all these design steps are finished. At this stage, it is
difficult to determine whether the design represented by an object diagram is good
because no criterion exists in terms of design verification; this is a shortcoming of
conventional OOT.

An example of an object diagram is described below with respect to Figure 8,

wherein the numbers indicate the number of associations [Rumbaugh, 1991]:
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a. Each box is a class or an object. The top section of the box (e.g., Box in
the left top box of the figure) is the name of the class, the middle section of the box (e.g.,
text in the figure) describes the attributes of the class, and the bottom section of the box
(e.g., cut) defines the operations of the class.

b. An object is represented as an instance of specific class (e.g., Object Box

is an instance of Box class). However, sometimes each box in Figure 8 may be

called as an object.

c. Object Link has two relationships with the attributes of object Box.

d. Object Collection is an aggregation of the attribute of Box and the

operation of Link with many relationships. That is, object Collection can have

many Box and Link objects.

e. Object Collection is the superclass of subclasses Selection, Buffer and
Sheet.
f. Object Drawing, which has a relationship with object Drawing file, can

have many Sheet objects.
g. Object Link is an aggregation of object Line segment, which in turn is an
aggregation of object Point. That is, object Line segment is a part of object

Link with many relationships.

Modified Object-Oriented Method Incorporating Axiomatic Design Principles

The following describes a method for modifying object-oriented design methods
to incorporate axiomatic design principles in accordance with various embodiments of
the invention. All examples merely illustrate inventive concepts, and the spirit and scope
of the invention should not be limited thereto.

In object-oriented systems, there are two types of object diagrams: class diagram
and instance diagram. A class diagram is a schema, pattern, or template for describing
many possible instances of data. A class diagram describes object classes. An instance
diagram describes how a particular set of objects relates to each other. An instance
diagram describes object instances. Figure 9 is a block diagram showing an example
object class and instance diagram. In particular, a person class may be defined having a
name (string) and an age (integer). An instance of the Person class, namely “Bob
Powers” or “Derrick Tate” are instantiations of the Person class. These instantiations

include values for the names and ages of each person.
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An object is linked to other objects through messages, which require an object to
perform certain functions by executing a method (i.e., algorithm). The object performs
the function using the internal operations that may not be apparent to other objects —
equivalent to the elements of the design matrix that link specific FRs to specific DPs.

An “Object” may have several activities depending on how they structured and
sometimes these activities are called “Behavior”. According to one embodiment of the
invention, behavior is a special case of FR. The relationship between FRs and “Class”,
“Objects” and “Behavior” may be described in terms of the design hierarchy as shown in
Figure 27. The highest FR among the three layers of decomposed FRs is “Class”, the
children FRs of “class FR” is “Object” which may represent aggregation or
generalization, and the grandchildren FRs of “class FR” are “Behavior”. If there is no
items for “Object” for the second level, it is possible to treat the grandchildren FRs as
children FRs.

The distinction between “Super Class”, “Class”, “Object” and “Behavior” is
necessary in Object-Oriented Technique (OOT) to deal with FRs at successive layers of a
system design. In OOT, the Class represents an abstraction of Objects and thus, is
positioned one level higher than an Object in the FR hierarchy. Similarly, the Object is
one level higher than Behavior in the FR hierarchy. The use of these keywords, while
necessary in OOT, adds unnecessary complexity when the results of axiomatic design is
to be combined with OOT. Therefore, the use of these keywords in OOT will be
modified to describe axiomatic design principles.

One key word “Object” is used hereinafter to represent all three levels of FRs,
i.e., Class, Object, and Behavior. “Objects with indices” is used in place of these three
keywords. For example, Class may be called Object i to present FRi, Object is denoted
as “Object ij” to represent the next level FRs, FRij, and Behavior — the third level FRs --
is denoted as Object ijk. Thus, Object i, Object ij, and Object ijk are equivalent to FRi,
FRij, and FRijk, which are FRs at three successive levels of the FR hierarchy.

To summarize, the equivalence between the terminology of axiomatic design and
those of OOT according to one embodiment of the invention may be stated as:

e A FR can represent an Object.
e DP can be data or input for the Object, i.c., FR.
e The product of a module of the design matrix and DP can be a method, i.e., FR =

A*DP.
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o Different levels of FRs are represented as Objects with indices.

Basics of Axiomatic Design of Object-Oriented Software Systems

An exemplary axiomatic design process for designing object-oriented software
systems is shown in Figure 5. The process includes the following steps:
i. Define FRs of the Software System

The first step in designing a software system is to determine the customer
attributes in the customer domain that the software system must satisfy. Then, the
functional requirements (FRs) of the software in the functional domain and constraints
(Cs) are established to satisfy the customer needs. FRs must satisfy the customer needs
with fidelity.

ii. Mapping between the Domains and the Independence of Software Functions

The next step in axiomatic design is to map these FRs of the functional domain
into the physical domain by identifying the design parameters (DPs). DPs are the
“how’s” of the design that satisfy specific FRs. DPs are chosen to be consistent with the
constraints.  During the mapping process, the design must satisfy the Independence
Axiom, which requires that functional independence be maintained throughout the
development of an uncoupled or decoupled design. A design matrix is used for this
evaluation.

iil. Decomposition of {FRs}, {DPs}, and {PVs}

The FRs, DPs, and PVs are decomposed until the design can be implemented
without further decomposition. These hierarchies of {FRs}, {DPs}, {PVs} and the
corresponding matrices represent the system architecture. The decomposition of these
vectors generally are not done by remaining in a single domain, but are done through
zigzagging between domains. This zigzagging concept is shown in Figure 10. From
FR1 in the functional domain, the designers develop DP1 in the physical domain. Then,
the designers return to the functional domain to generate FR11 and FR12 that
collectively satisfy the highest level FR1 and the corresponding DP1. Then the designers
move to the physical domain to determine DP11 and DP12, which satisfy FR11 and
FR12, respectively. This process continues until the FRs can be satisfied without further
decomposition. Each terminal FR and DP (those which are not further decomposed) is
called a “leaf” in the tree structure.

As software is designed, the PVs are described in terms of programming

terminology such as packages, classes, attributes, methods and so on. Although object-
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oriented programming languages apply, this method may be applied to any kind of
programming language. According to one embodiment of the invention, the relationship
between DPs and PVs is exactly same for the software system. Therefore, the relation
for FRs and PVs is straightforward. As a result, the PV hierarchy shows the
programming structure.

The software design methodology which was favored in mid ‘70s and ‘80s, uses
similar decomposition with the top-down approach. As shown in Figure 11, Structured
Analysis and Design Technique (SADT) is a well-known example of this approach.
However, SADT is only conducted in the physical domain from an axiomatic design
viewpoint and the process is decomposed without consideration of data. Because of this
non-zigzagging process, there is no guarantee of functionality or productivity. Therefore
previous methods faded away as the requirement for productive software system
increased and object-oriented methods were introduced.

iv. Definition of Modules — Full Design Matrix

One of the most important features of the AD framework is the design matrix,
which provides the relationships between the FRs and DPs. The design matrix provides
two important bases in creating software. One important basis is that each element in the
design matrix can be a method (or operation) in terms of the object-oriented method.
The other basis is that each row in the design matrix represents a module to satisfy a
specific FR as defined by Equation (2). In most cases, the off-diagonal terms in the
design matrix are more important then the diagonal terms since most of the coupling
comes from these off-diagonal terms. However, it is possible to avoid coupling with a
proper sequence of change if the design matrix is triangular. An off-diagonal term can
be represented as a message transfer (or function call) in the software system. Figure 12
illustrates these concepts of relating FRs and DPs in a design matrix, and representing a
module by an element of the design matrix.

As illustrated in Figure 13, it is important to construct the full design matrix
based on the leaf information in the software system. In the example shown in Figure
13, a decomposition of FRx.2 reveals a relationship between DPx.2.3 and FRx.1, while
before decomposition, no relationship was identified. Advantages of this full design
matrix include refining the module information precisely and checking the consistency
between the hierarchy levels. Consistency can be defined as an activity in which the

designers check the layers of the design hierarchy against each other to make sure that
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the layers are consistent with one another [D.F. Baldwin, “Microcelluar Polymer
Processing and the Design of a Continuous Sheet Processing System,” Doctoral Thesis,
Massachusetts Institute of Technology, U.S.A, 1994][ D. Tate, “A Roadmap for
Decomposition: Activities, Theories, and Tools for System Design,” Doctoral Thesis,
Massachusetts Institute of Technology, U.S.A, 1999]. If an off-diagonal term is shown
in a different location which is not shown in a higher level, the designer should
reconsider the relationship again to correct this inconsistency. The FRs, DPs, design
matrices, and Cs should all be checked.
A2 Identify classes — objects, attributes, and operations

Because all the DPs in the design hierarchy are selected to satisfy FRs, it is
relatively easy to identify the objects. The leaf is the lowest level object in a given »
decomposition branch, but all leaf-level objects may not be at the same level if they
belong to different decomposition branches. Once the objects are defined, the attributes
(or data) — DPs -- and operations (or methods) — products of module times DPs -- for the
object should be defined to construct the object model. This activity should use the full
design matrix table.

The following example illustrates an example process of designing an object-

oriented system using axiomatic design principles.

Example: Software Design for a Simple Line Drawing Program

Problem:
Design a software program that can draw a straight line. Translate the resulting

axiomatic design into object-oriented methods.

Solution:
The highest level FRs may be stated as,
FR1: Define line element
FR2: Detect the drawing location
FR3: Draw the line element through the window

The corresponding DPs are selected as,
DP1: Line characteristic

DP2: Mouse click information
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DP3: GUI for the drawing
The design matrix may be written as,

[FRI} [411 0 0 -WDPI]

TFRzT:I 0 422 0 ITDpzj (a)
FR3) 431 432 433]|DP3

The FRs and DPs may be decomposed as:
Second Level for FR1

FR11: Define start
FR12: Define end

DP11: Start point
DP12: End point

The design matrix may be written as,
FR11] [a O](DPI11
= (b)
Fri2] o ]| DP12
Second Level for FR2

FR21: Detect mouse push

FR22: Detect mouse release

DP21: Event for push
DP22: Event for release

The design matrix may be written as,

{ig} :E) g}{gﬁzzzl} ©

Second Level for FR3

PCT/US00/33034
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FR31: Prepare the drawing environment
FR32: Draw the line
DP31: Window type
5 DP32: Graphics Information
The design matrix may be written as,
FR31] [e O0](DP31 q
FR2[ | f gllop32 @
10 ~ The above design can be expressed in OOT format as shown below in Table (2):
Object 1 (for FR1) Object 2 (for FR2) Object 3 for (FR3)
Second | Object 11 | Object 12 8‘3‘3“ 21| Object 22 | Object31 | o
Level (for (for FR21): (for FR22): | (for FR31): (F Jr FR329)
Objects FR11): FR12:) Detect' Detect Prepare the D(r)aw th ’
(Behavior | Define Define mouse mouse drawing lin ©
in OOT) start end push release environment ©
. . . DP32:
Attribute DP11: DP12: bp2i: DP22: DP31: Graphics
Start . Event for | Event for . .
or Data . End point Window type | Informatio
point push release N
Operation | " * - * S*DP31+g*
or Method | ¢ DP11 b*DP12 c*DP21 d*DP22 e*DP31 DP32

Table 2 - Two Different Levels of Objects
The top box of the four tiered object box in Table 2 is for the name of the Object
15 for FRs. The second boxes are for the second level FRs (in OOT, was called Behavior),
1e., FR11, FR12, FR21, etc. The “data”, which are DP11 and DP12 and so on, are in the
third tier boxes. The fourth tier boxes are for methods (or operations), which are
a*DP11, b*DP12 and so on. We can keep the parent level relationships (i.e., FR1-A11-
DP1, FR2-A22-DP2 and FR3-A33-DP3) in a library for future reuse; this assures
20  reusability since each one of these relation reveals the fundamental object structure.
The sets (FR1-A11-DP1), (FR2-A22-DP2) and (FR3-A33-DP3) are named as
Object 1d for FR1, Object 2d for FR2 and Object 3d for FR3, respectively. The
character “d” is added to the object number to denote the fact that they represent only the

diagonal element. The off-diagonal terms are then processed. This processing can be
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done if we call (FR3-A31-DP1 / FR3-A32-DP2) as Object 3* for FR3*. The asterisk
sign is used to denote the off-diagonal elements. Then, FR3 is “Object 3 for FR3”,
which is an “aggregate” of Object 3d for the diagonal element of FR3 and Object 3* for
FR3*. These relationships can be represented in terms of the OOT notation as shown in
Figure 14.

The full design matrix with FRs and DPs can be translated into the OOT structure
as shown in Figure 15. Figure 16 shows a more detailed correspondence between the
full design matrix and the OOT diagram. This translation is illustrated further in Figure
17 which shows a block diagram of an object oriented system according to the full
design matrix shown in Figure 16. In the example case, wherein the FRs are equivalent
to objects, and the DPs are equivalent to data.

vi. Establish interfaces by showing the relationships between objects and operations

Most efforts are focused on this step in the object-oriented method since the
relationship is the key feature. However, it lacks information about functional
relationships since the relationship is only represented as lines between objects (or
classes) as shown in Figure 17. To overcome this lack of information, the axiomatic
design methodology provided herein utilizes the off-diagonal element in the design
matrix as well as the diagonal elements at all levels. A design matrix element represents
a link or association relationship between different FR branches that have totally
different behavior. All these concepts are illustrated in Figure 17 which shows the
object-oriented structure corresponding to the design matrix shown in Figure 16.

One of the advantages of the AD framework is that it represents the inter-
relationships among modules in the design hierarchy. To represent the properties of
junctions at each level of decomposition, a “Module-Junction Structure Diagram” is
defined [S.J. Kim, N.P. Suh, and S.K. Kim, “Design of software systems based on
axiomatic design,” Annals of the CIRP, Vol. 40, No. 1, pp. 165-170, 1991 {also
Robotics & Computer-Integrated Manufacturing, 3:149-162, 1992}]. Based on the AD
framework, a “modular design” may not necessarily be a good design, because these
modules must be properly arranged and must satisfy the Independence Axiom. In a
complex design, this can only be performed if modules are defined consistent with
Equation (2).

To represent the relationships between modules, symbols in circles are used as

shown in Figure 18. For an uncoupled design, S in the circle is used to represent a
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simple summation of FRs. C in the circle indicates that DPs and modules must be
controlled in a sequence as suggested by the design matrix for a decoupled design. F in
the circle is used to indicate that the design is coupled, indicating that it requires
feedback and violates the Independence Axiom.

The module-junction structure diagram is shown in Figure 18 for the design
given by Equation (3) shown below. It should be noted that the higher-level modules are
obtained by combining lower-level modules. For example, by combining modules
M121, M122, and M123 with a control junction (C), we obtain the next higher-level
module M12. Then, M11 and M12 are combined to obtain M1 using a control junction
(C) again. M1 and M2, although not shown since they are not leaves, are simply

summed as indicated by symbol S.

11 [x 0](DpPI
2} L XJ{DP2}
[x 0](DPlL
sz} L XJ{DP]Z}
FRzl] [X 0 01 DP21]
R22T X X oliDpzzj
23] Lo x x]lor23 3)
szl] (X 0 01[DP121]

FRlzzj =lx x oliszzT

FrR123) |x o x]loriz
szu} rx o]{DPml}

FRI232[ Tl x  x|\pP1232

Vii. Construct the system architecture of the software system

3 3
[

5

33

{
{
|
T
|
1
{

When the AD framework is used, the entire process can be clearly shown by a
flow chart that represents the system architecture. The symbols used in the flow chart is
illustrated for uncoupled, decoupled and coupled designs in Figure 3. Figure 4 shows the
final flow diagram for the design represented by Equation (3). In particular, Figure 4
shows how the system represented by Equation (3) can be structured using the modules.
The sequence of software development begins at the lowest level, which is defined as the
leaves. To achieve the highest-level FRs, which are the final outputs of the software, the
development of the system begins from the inner-most modules shown in the flow chart
that represent the lowest-level leaves. Then, the next higher level modules are developed

(i.e., next inner-most box) following the sequence indicated by the system architecture;
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that is, a developer develops from the inner most boxes to the outer most boxes. In
summary, the software system can be developed in the following sequence:
a. Construct the core functions using diagonal elements of the design matrix.
b. Create a module for each leaf FR, following the sequence given in the flow chart
that represents the system architecture.
c. Combine the modules to generate the software system, following the module
junction diagram.

When this procedure is followed, the software developer can feduce the coding
time because the logical process reduces the software construction into a routine
operation. The process also guarantees a minimal effort for maintenance and extension
in the event that they are required in the future.

The right side of the V-model shown in Figure 5 may be used for any software
design methodologies. However, the Object-Oriented method is used in most
commercial software products, which typically use the C++ or JAVA programming
languages. The right side of the V-model can be replaced by SADT, but now SADT has
been replaced by OOT.

Software Design Database

In accordance with one aspect of the invention, a software design database is
provided that is used to store aspects of a software design implementing axiomatic
design principles. One or more of the features of the design database provide the
following:

e Search by design parameters (DPs) information (including description, keyword,
comments, categories and so on) among all the possible DPs.

e Provide several results which has functional requirements (FRs), design parameters
(DPs), process variables (PVs) and design matrix with the design hierarchy.

e Provide graphical representation for the selected design hierarchy in terms of Unified
Modeling Language (UML). The graphical representation could be, for example, a
Class diagram, Activity diagram, Flow diagram, Package diagram, etc.

Axiomatic Design theory encourages designers to find out the proper design
parameters (DPs) which makes uncoupled or decoupled effect for desired set of
functional requirements (FRs). However, sometimes it is difficult to determine proper

DPs in case of beginner or even expert designer. To avoid these difficulties, it is useful
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to support the DPs candidate through a design database so that the design might get an

idea of their specific FR/DP relationships. Software systems usually have some common

functions named as “common libraries” between the software products. These common

features are stored into each programmer’s computer as several files. Therefore it is kind

of a measuring scheme for the programmer’s skill such that the programmer has many

common libraries or not. If this kind of library stored into the database system and

provided to the entire software designer, it is really useful to shorten the software design

and development life cycle as well as improve reusability.

Improve reusability: As discussed above, one of the key issues to use the axiomatic
design concept according to one embodiment of the invention includes selecting
proper DPs to make an uncoupled or decoupled design. Based on the axiomatic
design, only one DP should be assigned for specific FRs among all the other
alternatives. If a DP has enough information such as child level design structure, the
designer does not need to further decompose that level since all the necessary design
hierarchy is by though the child level. Therefore, the usage of database system,
which includes DP information with a pre-proven design hierarchy, improves the
reusability of the software system. A common library function is an example of the
database content for the software system according to one embodiment of the
invention. Ideally, the result of each individual software development project can be
stored as design database and each level DPs may be referred at any time for the

different project.

Low maintenance cost: As discussed, the information stored into the design
database is pre-proven, which means each level of the design hierarchy should be
uncoupled or decoupled in terms of its axiomatic design. As long as this condition is
satisfied, the usage of pre-proven design database does not require debugging or
testing for the given DPs. The only required work to implement this design database
as a DP includes checking the inconsistency between a level which has DPs from the
design database and its child level and test the connection [D.F. Baldwin,
“Microcelluar Polymer Processing and the Design of a Continuos Sheet Processing
System,” Doctoral Thesis, Massachusetts Institute of Technology, U.S.A, 1994][D.

Tate, “A Roadmap for Decomposition: Activities, Theories, and Tools for System
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Design,” Doctoral Thesis, Massachusetts Institute of Technology, U.S.A, 1999].
Therefore the usage of design database reduces the amount work to do and assures

the low maintenance cost.

e Low development cost of software: Using the pre-proven design reduces
development time, debugging, and testing time. These time savings reduce
development costs of software.

To meet these ends, an efficient query as well as well defined database structure
should be implemented. Current search engine requires words or/and phrases and
combination strategy between the words such as AND/OR combination. These kinds of
query provide ambiguous results due to the lack of query information and the database
structure. For example, Internet search engines such as Yahoo, Altavista and the like do
not allow a user to determine answers to queries in a single step. Therefore, a user must
try another effort to determine proper information through reviewing the results.

To overcome these ambiguities, a knowledge-based approach may be used. For
instance, Invention Machine software from Invention Machine Corporation (IMC) may
be implemented along with the software design system. The Invention Machine System
[http://www.inventionmachine.com] provides organizations with easy access to a large
knowledge-base 3-D animated scientific effects and technical examples. The Invention
Machine System also captures in-house technical knowledge and expertise, and improves
the way technical knowledge is shared across the engineering enterprise, and conducts a
competitive analysis by searching the U.S. and Japanese Patent Office database and
comparing patent trends using a powerful charting feature. Therefore, the system
suggests technical alternatives using predefined database upon the designers request but
the system is not involved in the designing of software.

The software design database according to various embodiments of the invention
includes several fields such as descriptions, keywords, comments, categories and the
like. The design database may include source code, object code, or any intermediary file
format which describes the software system. According to one embodiment, the
software design database contains source code in separate file system so that the designer
can access it. As many as the specific design cases added into this database, it can
represent more specific design suggestions. According to one embodiment, information

providing an index of the database is provided. This index information allows a
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programmer to obtain proper information for the DPs candidate for the specific FRs of
software design.

Design Database

In this section, the development and implementation of software design database
is presented. This database design may also be used for other types of design cases.

A database is generally defined as an integrated collection of persistent data
representing the information of interest for various programs that compose the |
computerized information system of on organization [A. Siberschats, H.F. Korth, and S.
Sudarshan, Database System Concepts, 3" Edition, McGraw Hill, 1998].

The software design database according to one embodiment of the invention
includes two different pieces. One piece is the database itself to store detailed design
specifications. The other piece is a file system having directory structure to contain the
real source code based on the design specification. The database can be located on any
kind of computer or computers connected through a communications network, or
alternatively may be located on a single computer system.

The design database according to one embodiment of the invention may be
implemented in the database environment as shown in Figure 19. The database located
at the Company stores system designs used locally by the Company. Alternatively, the
database located in the ADSI can have general design solutions. The ADSI provides
several kinds of design solutions for the software design based on the programming
environment. If the design solution is in the public domain, any software designer can
use it freely. However, if the design solution is not published, the ADSI charges to use

those design solutions.

Data Model for the Software Design Database

The data model represented this section is based on Entity-Relationship model
(ER model). Figure 20 shows an Entity-Relationship (ER) diagram for the database
shown in Figure 19. The file system that is a part of the operating system may be used to
implement various embodiments of the invention.

The database generally includes three major parts for storing design information.
The first part represents the design identification. The second part shows the detailed
design descriptions, and the third part is designed to store the source code information.

Code for the design is stored into the file system, and is identified by name field in the
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FILE table. Detailed database tables that store such design information according to

various embodiments of the invention appear below in Tables 3-16.

No Table ID Table Description
1 | DESIGN_SET Setup the design identification
2 | HISTORY Relate between DESIGN_SET and REVISION
3 | REVISION Keep track the design changes
4 | HIERARCHY Relate between REVISION and DOMAIN
S |CN Store customer needs (CNs) in customer domain
6 |FR Store functional requirements (FRs) in functional
domain
7 | DP Store design parameters (DPs) in physical domain
8 | CONSTRAINT Store constraints information
9 | EFFECT Relate between CONSTRAINT and FR (FR/DP
domain)
10 | DM Relate between FR and DP (FR/DP mapping)
11 | OPERATION Identify specific operation (i.e. method in the
source file)
12 | VARIABLE Identify specific variable (i.e. attribute in the
source file)
13 | ATTRIBUTE Relate between VARIABLE and DP
14 | METHOD Relate between OPERATION and DM

Table 3 - Database Table List

According to one embodiment of the invention, all the attributes in those

generalized tables are shown its specialized table. For example, OPERATION and

VARIABLE tables have its generalized table attributes such as name and description in

10 their record. Figure 20 does not show the DP/PV relation because it is identical with the

FR/DP relation.
Table ID DESIGN_SET (Setup the design identification)
Unique Index DESIGN_CODE
No Record ID Type Length Status Description
1 | DESIGN_COD | String 10 PK1 Identify the design
E (PK=
primary
key)
2 | DESCRIPTION | String 80 Describe the design
3 | KEYWORD String | 40 Categorize the design

15

Table 4 - Detailed information for DESIGN_SET table
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Table ID REVISION (Keep track the design changes)
Unique Index REVISION_CODE
No Record ID Type Length Status Description
1 | REVISION_CO | String 10 PK1 Identify the design changes
DE
2 | DESCRIPTION | String 80 Describe the changes
Table 5 - Detailed information for REVISION table
Table ID HISTORY (Relate between DESIGN _SET and REVISION)
Unique Index DESIGN_CODE + REVISION CODE
No Record ID Type Length Status Description
1 | DESIGN _COD | String 10 PK1 Identify the design
E
2 | REVISION_CO | String 10 PK2 Identify the design changes
DE (second
primary
key)
3 | DATE String 80 Specify the date for design
changes
Table 6 - Detailed information for HISTORY table
Table ID HIERARCHY (Relate between REVISION and DOMAIN (e.g.
CN/FR/DP/PV))
Unique Index REVISION CODE+CODE+PARENT+NUMBER
No Record ID Type Length Status Description
1 | REVISION_CO | String 10 PK1 Identify the design changes
DE
2 | CODE String 20 PK2 Identify the domain
(second | description
primary
key)
3 | PARENT String 20 PK3 Indicate the zigzagging source
(third
primary
key)
4 | NUMBER String 2 PK4 Indicate the hierarchy number
(fourth
primary
key)

Table 7 - Detailed information for HIERARCHY table
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Table ID CN (Store customer needs (CNs) in customer domain)
Unique Index CODE + PARENT + NUMBER
No Record ID Type | Length | Status Description
1 | CODE String | 10 PK1 Identify the domain
(DESIGN_CODE description
+
REVISION_CODE
+ domain name) .
2 | PARENT String | 20 PK?2 Indicate the zigzagging
source
3 | NUMBER String | 2 PK3 Indicate the hierarchy
number
4 | DESCRIPTION String | 80 Represent the customer need
description
5 | KEYWORD String | 40 Represent the keyword for
the customer need
6 | COMMENT String | 300 Represent the comment for
the customer need
7 | LEAF Boolea |1 Indicate the leaf / hierarchy
n
Table 8 - Detailed information for CN table
Table ID FR (Store functional requirements (FRs) in functional domain)
Unique Index CODE + PARENT + NUMBER
No Record ID Type Length Status Description
1 | CODE String 10 PK1 Identity the domain
description
2 | PARENT String 20 PK2 Indicate the zigzagging source
3 | NUMBER String 2 PK3 Indicate the hierarchy number
4 | DESCRIPTION | String 80 Represent the FR description
5 | KEYWORD String 40 Represent the keyword for the
FR
6 | COMMENT String 300 Represent the comment for
the FR
7 | CATEGORY String 20 Represent the FR category
8 | VERIFICATIO | String 5 Represent the FR verification
N spec
9 | LEAF Boolean | 1 Indicate the leaf / hierarchy

Table 9 - Detailed information for FR table
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DP (Store design parameters (DPs) in physical domain)

Table ID
Unique Index CODE + PARENT + NUMBER + ALTERNATIVE
No Record ID Type Length Status Description
1 | CODE String 10 PK1 Identify the domain
description
2 | PARENT String 20 PK2 Indicate the zigzagging source
3 | NUMBER String 2 PK3 Indicate the hierarchy number
4 | ALTERNATIV | String 2 PK4 Indicate alternative status
E
5 | DESCRIPTION | String 80 Represent the DP description
6 | KEYWORD String 40 Represent the keyword for the
DP
7 | COMMENT String 300 Represent the comment for
the DP
8 | CATEGORY String 20 Represent the DP category
8 | VERIFICATIO | String 5 Represent the DP verification
N spec
10 | LEAF Boolean | 1 Indicate the leaf / hierarchy
Table 10 - Detailed information for DP table
Table ID CONSTRAINT (Store constraint information)
Unique Index CODE + PARENT + NUMBER
No Record ID Type Length Status Description
1 | CODE String 10 PK1 Identify the domain
description
2 | PARENT String 20 PK2 Indicate the zigzagging source
3 | NUMBER String 2 PK3 Indicate the hierarchy number
4 | DESCRIPTION | String 80 Represent the  Constraint
description
5 | KEYWORD String 40 Represent the keyword for the
Constraint
6 | COMMENT String 300 Represent the comment for
the Constraint
7 | CATEGORY String 20 Represent the  Constraint
category
8 | VERIFICATIO | String 5 Represent the  Constraint
N verification spec
9 | INITIAL_ VAL | String 10 Estimated value for budget
UE
10 | ACTUAL_VAL | String 10 Actual value for budget
UE
11 | LEAF Boolean | 1 Indicate the leaf / hierarchy

Table 11 - Detailed information for CONSTRAINT table
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Table ID EFFECT (Relate between CONSTRAINT and FR (FR/DP
domain))
Unique Index CODE1 + CODE2
No Record ID Type | Length | Status Description
1 | CODEI (For FR/DP | String | 10 PK1 Identify the domain
mapping CODEI: description
CODE in FR table +
PARENT in FR table
+ NUMBER in FR
table)
2 | CODE2 (For FR/DP | String | 20 PK2 Indicate the zigzagging
mapping CODE2: source
CODE in
CONSTRAINT table
+ PARENT in
CONSTRAINT table
+ NUMBER in
CONSTRAINT table
+ DOMAIN in
CONSTRAINT table)
Table 12 - Detailed information for EFFECT table
Table ID DM (Relate between FR and DP (FR/DP mapping))
Unique Index CODE1 + CODE2
No Record ID Type Length | Status Description
1 | CODEI String | 10 PK1 Identify the row for design
matrix element
2 | CODE2 (For FR/DP | String | 10 PK2 Identify the column for design
mapping CODE2: matrix element
CODE in DP table +
PARENT in DP table
+ NUMBER in DP
table +
ALTERNATIVE in
DP table)
3 | VALUE String | 40 Represent the effect between
FR/DP
4 | COMMENT String | 300 Represent the comment for
the element

Table 13 - Detailed information for DM table




WO 01/40933

-44 -

PCT/US00/33034

Table ID Identify specific operation (i.e. method in the source file)
Unique Index NAME + ATTRIBUTE
No Record ID Type Length Status Description
1 [ NAME String 10 PK1 Identify the source code
2 | METHOD String 20 PK2 Indicate operation within the
source code
3 | DESCRIPTION | String 80 Represent the description
Table 14 - Detailed information for OPERATION table
Table ID Identify specific variable (i.e. attribute in the source file)
Unique Index NAME + METHOD
No Record ID Type Length Status Description
1 | NAME String 10 PK1 Identify the source code
ATTRIBUTE String 20 PK2 Indicate data within the source
code
3 | DESCRIPTION | String 80 Represent the description
Table 15 - Detailed information for VARIABLE table
Table ID Relate between VARIABLE and DP
Unique Index NAME + ATTRIBUTE + CODE2
No Record ID Type Length Status Description
1 | NAME String 10 PK1 Identify the source code
2 | ATTRIBUTE String 20 PK2 Indicate data within the source
code
2 | CODE2 String 10 PK3 Identify the column for design
matrix element
Table 16 - Detailed information for ATTRIBUTE table
Table ID Relate between OPERATION and DM
Unique Index NAME + METHOD + CODE1 + CODE2
No Record ID Type Length Status Description
1 | NAME String 10 PK1 Identify the source code
2 | METHOD String 20 PK2 Indicate operation within the
source code
3 | CODEl1 String 10 PK3 Identify the row for design
matrix element
4 | CODE2 String 10 PK4 Identify the column for design
matrix element

Table 17 - Detailed information for METHOD table
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Realization of a Software Design Database

A) Database Construction

To access a design database system, the structure for the design database may be
pre-defined within the database system, and the users to access the database must be
assigned properly. A database manager usually performs these steps at the beginning of
the database design. However, a software production system may generate the database
structure and assign users automatically. If a commercial database system (e.g.
Microsoft Access, Oracle, DB2 and the like) supporting the Structured Query Language
(SQL), the database system can create the database structure supporting software design.
SQL has several command syntaxes to contact the database. Examples for these SQL
commands include:
e Table Creation

create table table_name (record_name_1, record_type(record_length),

recore_name_2, record type(record_length),

recore_name_n, record type(record length));

e User Creation

create user user_name identified by password;
B) Data Handling

SQL has several commands to access a database. These commands are
summarized as:
e INSERT: Stores a new data set
e UPDATE: Modifies an existing data set
e DELETE: Erases an existing data set
e FETCH: Inquires the data set which matches the given condition

A software designer can manipulate the design database using these commands
and the software system may provide standard interfaces between designers and the

software database.

Database Implementation

A database implementation is shown in Figure 21. Whenever the user provides a

query, the database system searches the design database and determines matched
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information based on the provided query. If the database system can determine the
required DP information, it will provide the result(s) within a scrollable list table as
shown. Therefore, the user can navigate the suggested search result to determine a
proper DP to use. If he/she decides to select one of the suggestions, the database system
adds the selected design hierarchy into the current design specification. In this way, the
software designer may improve the reusability, reduce maintenance cost and reduce the
development cost of software. Detailed actions performed by the database according to
various embodiments of the invention are as follows:
A) Query

According to one embodiment of the invention, the database system includes a
graphical user interface that allows a user to search through the software design database.
The interface has several fields listed below:

e Input: search string

e Options:

For multiple string search:
v" AND: find data which includes all the search string
- v" OR: find data which includes at least one search string
e For domain:

v" FR: find DP data with corresponds FR information

v DP: find DP data directly

v DM: find DP data which has the same string within the design matrix

v" All: find DP data with all cases listed above

e For layer:

v" Package: find DP data located at the higher level in the design
hierarchy (in case of the designer wants to get the whole packages
which include several class files)

v" Class: find DP data located at the middle level in the design hierarchy
(in case of the designer wants to get a specific class files)

v" Method: find DP data located at the lower level in the design
hierarchy (in case of the designer wants to obtain the detailed
methods which includes specific algorithms)

e For field:
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description: find the search string in description field
keyword: find the search string in keyword field
comment: find the search string in comment field

category: find the search string in category field

AN NN NN

all: find the search string in all field
B) Search Result

As a user selects one of the search results, a user can access detailed information
so that he/she can obtain more information regarding how the design works. During this
navigation process, the user can decide which suggested design fits into their design. To
provide the proper information, the database system provides information to the user in
three different formats such as:

e Hierarchy and descriptions for each level including FR/DP/PV and design

matrix

e Graphical representation with UML (discussed below in more detail)

e Source code view
C) Confirmation of Design Selection

After the user makes a decision to use one of the design suggestions, the database
system copies information associated with the design suggestion from the selected design
and pastes into the current design. According to one embodiment, the database system

may provide several guides to allow minor changes to fit into their design requirements.

Automatic Generation of Unified Modeling Language (UML)

According to one aspect of the invention, the software design system generates
Unified Modeling Language diagrams based upon the axiomatic design. In particular,
the software design system may perform the following:

e Represent the UML using axiomatic design terminology such as FRs, DPs and design
matrix

e Draw UML diagrams directly

e Generate data file to feed existing software (e.g. Rational Rose)

In the 1980s and early 1990s, object-oriented method was the fashionable
technology which was going to solve the software crisis [R.S. Pressman, Software

Engineering, A Practitioner’s Approach, 4™ ed., New York: McGraw Hill, 1997]. There
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are several approaches have been introduced for the object-oriented method and three
major authors (Rumbaugh, Booch and Jacobson) were spotlighted among these
approaches. Recently, all these authors are agreed to combine their approaches and
come up with a standard framework. As a result, the UML (Unified Modeling
Language) has become a standard to develop object-oriented software programs [Rob
Pooley and Perdita Stevens, Using UML — Software Engineering with Objects and
Components, Addison-Wesley Longman, Inc., 1999][Martin Fowler and Kendall Cott,
UML Distilled, Addison-Wesley Longman, Inc., 1999][Hans-Erik Eriksson and Magnus
Penker, UML Toolkit, John Wiley & Sons, Inc. 1998]. UML is a visual language to
represent the information in the models with graphical symbols and connections.
Therefore, UML facilitates communication between project managers, programmers and
designers by identifying complex relationships in object-oriented systems. Although
UML represents software systems with standard symbols, the software design itself (the
actual coding) remains for the designer’s to complete.
Axiomatic design is useful design theory for the software design. Although most
axiomatic design research is focused on mechanical systems, axiomatic design may be
used to develop a software system and also support automatic code generation to assist
the designer. Applying axiomatic design principles to object-oriented programming, and
more specifically providing a system and method for generating UML diagrams provides
the following advantages:
¢ Reduces Modeling Effort: There are several commercially-available software
packages provided to support creating system designs in UML. Each software
package has their own interface to generate the UML, and in general, these packages
function similar to a drawing editor. Users work within these interfaces interactively
to design software systems. This interactive work often produces poor designs
because design is trivialized by a drawing program--the required thought or time is
not invested in design of the system. Further, UML and their editing programs alone
do not provide criterion by which a design may be evaluated. By contrast, by
implementing axiomatic design principles to design software, interactiveness
between software modules may be reduced and quality of the software guaranteed if
the design satisfies particular design axioms.

¢ Maintain consistency: UML creation from axiomatic design provides a same

interpretation between the two concepts. First, it provides a consistent viewpoint for
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the design (the result of axiomatic design), design representation (the UML) and the
real source code. Second, this consistency helps the collaborative design and

development environment for the software system.

Introduction

In this section, a relation between UML and axiomatic design according to one
embodiment of the invention is presented. A key concept in UML is relationships
between object-oriented classes. All representation in UML (for example, sequence
diagram, activity diagram, and the like) is based on these relationships. This relationship
concept is strongly matched with the design matrix in axiomatic design. Therefore,
according to one embodiment of the invention, the design matrix information is

expanded into a mapping result between domains.

Use Case Diagram

Definition: A use case is a description of how a system can be used (from an
external actor’s point of view). Use cases show the functionality of a system, and are
described in terms of external actors, use cases, and the system being modeled. A use
case should yield an observable result of value to a particular actor. A use-case diagram
contains model elements for the system, the actors, and the use cases, and shows the
different relationships such as generalization, association, and dependency between these
elements.

Traditional software design methodologies including object-orientated methods
usually define ambiguous functional requirements. Although a designer generally thinks
about functionality during the design process, traditional design methods generally do
not address functional requirements in any concrete detail. Further, there is another
aspect to consider regarding the software design. The following question might be
helpful to understand this aspect. “How does the designer define the functionality or
functional requirement?” A customer’s point of view is one of the required information
to give an answer for this question. However, the information provided by the customer
is also buried inside the software design as well. The use case diagram is therefore
introduced to explain this customer’s viewpoint.

Use cases were first introduced by Ivar Jacobson in the early 1990s, as

development from the earlier idea of scenarios. Use cases represent the functionality of a
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system from a user’s point of view by definition. The “user” means anything external to
the system being developed which interacts with the system. A user might be a person,
another information system, a hardware device, etc.

Axiomatic design provides a domain concept to explain the “what” and “how”
relation between domains. For example, the mapping between customer domain and
functional domain interprets the customer needs into functional requirements. Therefore,
the customer needs in the customer domain is an excellent concept that may be used to
represent the use case of a software system. Also, customer needs can have hierarchies
like FRs and DPs. Because methods for constructing customer needs are various,
customer needs having multiple hierarchies may be used to describe them.

For example, three major hierarchy levels for software systems are used to fit into
the use case concept. The first layer, called as actor layer, represents actors and can have
multiple actors to represent different actor’s viewpoint or relationship between actors.
This layer may or may not have lower levels. The second layer describes customer needs
that belongs to the actor’s viewpoint and are referred to as the use case layer. This use
case layer may or may not have lower levels to represent more detailed explanation. The
third layer, referred to as a relation layer, describes the relationship between the customer
needs in an intermediate layer. Figure 22 shows a modified version of customer needs
according to one embodiment of the invention, and is a use case diagram based on the

customer needs hierarchy.

Example
To provide a better understanding of the functional concepts, a simple drawing

example is provided below, the simple drawing example being an extended version of
the simple drawing example explained above:
e Customer needs:
v' Actor layer:
CNI1: User
v’ Use case layer:
CNI11: We need a software to draw a line or a rectangle or a circle at a time.
CN12: The software should work with mouse using push, drag, and release.
e Use case diagram (as shown in Figure 24):

o Top level design:
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DP1: Element [DP2: GUT with
characteristics |window
FR1: Define element A 0
FR2: Specity drawing environment a B
e Second level for FR1
DP12:
DP11: Line Rectangle DP13: Circle
characteristic |characteristic |characteristic
FR17: Define line element C 0 0
FR12: Define rectangle element 0 D 0
FR13: Define circle element 0 0 E
¢ Second level for FR2
DP22: Mouse [DP23: Drawing
DP21: Radio [click area (ie.
buttons information Canvas)
FR21: ldentity the drawing type F 0 0
FR22: Detect drawing location b -G 0
FR23: Draw the element c 0 H
e Third level for FR11:
DP111: Start  (DP112: End
point point
FRT11: Define start [ 0
FR112: Define end 0 J
e Third level for FR12:
DP121: Upper |DP122: Lower
left point right point
FR121: Define upper left corner K 0
FR122: Detine lower right corner 0 L
e Third level for FR13:
DP131: Center
point DP132: radius
FR131: Define center vl 0
FR132: Define radius 0 N
e Third level for FR21:
DP212:
DP211: Line  |Rectangle DP213: Circle
button button button
FR211. Identify Tine 0] 0 0
FR212: ldentify rectangle 0 P 0
FR213: Tdentify circle 0 0 Q

e Third level for FR22:
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DP2271: Event |DP222: Event
for push for release
FR221. Detect mouse push R 0
FR222: Detect mouse release 0 S

e Design hierarchy (as shown in Figure 25):
e Full design matrix (as shown in Figure 26):

Class

Definition: A class is a model element used to model entities, both intellectual
and physical. A class is described with numbers that are attributes, operations, and
relationships to other classes. The members are reflected in objects of the class. A class
can be generalized and specialized; extension mechanisms may be attached to the class.

A class may have several behaviors for different activities and these behaviors
usually are represented by one or more methods which actually manipulate the data (i.e.
attributes) inside the class. This set of information can be represented by FRs, DPs and a
design matrix and called as an object having indices. The behaviors should be located at
the bottom of design hierarchy (i.e. leaf) because the behavior defines activity for a class.
Therefore, at least one or two higher level FR/DP relations in the design hierarchy should
be indicated as a class. Occasionally, an attribute inside a class is an instance of another
class that indicates a part or an inner class. Figure 25 illustrates the basis of class
representation for the design hierarchy.

Based on the domain specification for the software design, the process domain
represented by process variables (PVs) may define the specification for the source code.
For example, the specification can be a package name, class name, method name, and the
like. According to one embodiment of the invention, the design matrix relating DPs and
PVs is always the same as FR and DP because the PV determines source code, and all
the information within the source code are provided by the FR/DP relation. In this way,
communication between the designer and the programmer can be guaranteed and
maintained consistently. Therefore, these kinds of design decisions can be completed
with this mapping.

Zigzagging between the two domains (i.e. physical domain and process domain)
can be performed whenever the designer chooses. For example, zigzagging may be

performed after the FR/DP mapping is finished at any level in the deign hierarchy.
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However, it is preferred that zigzagging is performed after the whole FR/DP mapping
completes because the designer should think about the size of the entire software and
number of class files. Further, it may be difficult to define the class specification during
the design decomposition. Once one of the intermediate levels is determined as a class
by a designer, further decomposition may not be necessary because the detailed design
specifications such as attributes and methods are at a lower level in the FR/DP domain.
Due to the limitation for the decomposition process which only focuses on the diagonal
elements in the design matrix, Figure 28 shows the class definition for the diagonal
design matrix element in the example described above.

The final step is to define all the other classes (i.e. the off-diagonal design
elements). The most common way to define the off-diagonal classes is to follow the
class definition in the process domain. However, designers can categorize the off-
diagonal terms in design matrix in their own way. Using the former definition, the
example may have one off-diagonal class (i.e. object 1*: FR2-a-DP1). The element b
and c in the full design matrix do not require separate classes because these elements are
located within the window_d class. Figure 29 shows the detailed method definitions for
the design matrix elements and Figure 30 represents the entire class definitions for the

given example.

Relationships
Definition: A relationship is a semantic connection among model elements. A

relationship is specialized to generalization, dependency, association, transition, and link.
The relationship can be categorized in two manners. The first is the macroscopic
relation which includes generalization, association, aggregation and so on. The second is
the microscopic relation to represent the message transfer between classes. In axiomatic
design, the macroscopic relationship can be specified at the intermediate or higher level
(for instance, class level in the Figure 27) in the design hierarchy. On the other hand, the
microscopic relationship is belongs to the leaf or one level above from the leaf level (i.e.
object or behavior level in the Figure 27).
A method for defining each one of the design matrix elements for the FR/DP
domain may be based on the following questions.
o Does changing the DP affect the FR?
o Does the design of the DP affect the way the FR is satisfied?
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. Does the choice of this DP affect that FR?
o Can the DP be designed without affecting the FR?
Whenever the designer finishes to fill out the entire design matrix elements and
determines the class for the process domain, the following questions can serve as the

basis to fill out the design matrix for the DP/PV domain:

. What kind of relation does this element indicate?
. How many multiplicities are involved?

o Does this relation have directions?

. What kind of message should be transferred?

To answer these questions, decision making for the design process is performed.
Also, it is the modeling process of software engineering. Figure 31 represents these
decision making processes for the example and shows that the designer wants to have

aggregation relationships in this design.

Class Diagram

Definition: A class diagram shows a static structure with classes and their
definitions and relationships.

As the information for FR/DP design matrix, DP/PV design matrix, and PV class
structure is combined, the class diagram can be generated automatically. One of the
advantages of class diagram produced from axiomatic design is that the design “makes
sense” to the designer, and this is important in terms of design viewpoint. Using the
notation with “_d” for diagonal classes and “_*” for off-diagonal classes, the class
diagram provides much more clear understanding of the design than that from object-
orientated diagrams. Figure 32 shows such a class diagram. The class diagram shown in
Figure 32 shows the macroscopic relations of objects generally. The microscopic

relation can be shown with further diagrams described below.

Interaction Diagram

Definition: An interaction shows how the class/objects interact to perform a
specific functionality. An interaction diagram is a generic term for sequence, and

collaboration diagrams.
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Interaction diagrams record in detail how objects interact to perform a task. In
particular, the interaction diagrams isolate each individual task’s behaviors using
graphical representation and the interaction diagrams include a set of operations. A task
can be represented as a functional requirement of the system. Axiomatic design
determines a definition for a module, the definition being a more specific definition than
that for the entire software system. The definition describes a particular task represented
by the functional requirement. A module is defined mathematically in equation (4) as

follows:

4
j=1 éDP; EDF, @

Therefore, interaction for a task can be defined as a sum of design matrix
elements in a row and its corresponding DPs. The sequence of the interaction progresses
from a right to a left direction because an element on a diagonal of the design matrix
(referred to as an “on-diagonal” element) serves as the starting point for the
corresponding FRs. If the task only has an associated on-diagonal design matrix
element, interaction diagram does not need to be generated because there is no
interactions with the other tasks. Figure 33 shows the interaction definition for the

example described above.

e Collaboration Diagram

Definition: A collaboration describes how a set of objects interacts to perform
some specific function. The collaboration diagram also describes both a context and an
interaction. In particular, the context shows a set of objects involved in the collaboration
along with links to each other. The interaction shows communication performed by
objects in the collaboration. A collaboration diagram describes how objects interact, and
focuses on the collaboration in space, which means that the relationships (links) between
the objects are explicitly shown.

With the definition of interaction, the collaboration diagram can be shown using
FRs, DPs, and a design matrix. Figure 34 illustrates the collaboration diagram based on

Figure 33 for task FR23.
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e Sequence Diagram

Definition: A sequence diagram describes how objects interact with each other.
Sequence diagrams focus on time, meaning they display when messages are sent and
received.

A sequence diagram may be shown with the definition of interaction. Figure 35
shows one embodiment of a sequence diagram based on Figure 33 for task FR23 in the
example described above.

If these diagrams are too complicated, a designer can decompose these further.
Therefore, these interaction diagrams can serve as a guide to further decomposition. For
example, FR23 can be decomposed into FR231: Draw a line, FR232: Draw a rectangle,
and FR233: Draw a circle. Thus, the collaboration diagram and sequence diagram is
more concise (e.g. if a designer needs to see the interaction for “FR231: draw a line”, the
collaboration diagram and sequence diagram only shows the interaction with 1, 1.1, and

1.1.1 from the Figure 34 and 35).

State Diagram

Definition: An object state is determined by its attribute values and links to other
objects. A state is a result of previous activities in the object. A state diagram captures
object life cycles (also the life cycles of subsystems and systems). The state diagram
illustrates how events (messages, time, errors, and state) changes affect object states over
time.

Information for object state changes may not be identifiable using axiomatic
design. It needs another definition to represent correctly and the definition is not fixed in
axiomatic design so far. Even though the state diagram is useful to understand the
operation of the system, this diagram is not necessary often during the software

development process.

Activity Diagram

Definition: An activity diagram shows interactions between entities, focusing on
the work performed. The activity diagram displays a sequence of actions including
alternative executions and objects involved in performing the work.

Activity diagrams record the dependencies between activities, such as which

activities can occur in parallel and what activities must be completed before one or more
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other activities can start. In axiomatic design, these kinds of information can be
represented by the design matrix. For instance, if a design is uncoupled, it can be
represented with any kind of sequence (i.e., parallel activity) and if a design is
decoupled, there is at least one sequence to follow. As a result, the flow chart (i.e.,
system architecture) is an excellent representation that may be used to show activities for
the software system. A translation between flowchart and activity diagrams may be
easily performed. In particular, the summation can be represented as synchronization bar
and all the other activities can be connected with arrows. Figures 36 and 37 show one

such translation.

Component diagram

Definition: A component diagram describes software components (source, link,
and executable) and their dependencies to each other, and represents the structure of the
code. The components are distributed to nodes in a deployment diagram described
below.

A component defined in UML means ‘a distributable piece of implementation of
a system, including software code (source, binary or executable) but also including
business documents, etc., in a human system [UML Notation Guide version 1.1, OMG
ad/97-08-05 1997]. If the software system integrates with other hardware system or
other different packages, the component diagram can be used to understand overall
interfaces. Figure 38 shows a component concept developed from axiomatic design

elements.

Deployment Diagram

Definition: A deployment diagram shows the run-time architecture of processors,
devices, and the software components that execute in the architecture. The deployment
diagram is the ultimate physical description of the system topology, including the
structure of hardware units of the system and the software that executes on each unit.

The deployment diagram is an extended version of the component diagram.
Therefore, representation of the deployment diagram using the axiomatic design result is

possible also.
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UML Script Code Generation

There are several methods to generate UML with axiomatic design.. One method
is to generate the required diagrams directly. The other is to generate a model data file
which serves as an input data file for existing UML software packages such as Rational
Rose design system. Further, according to another embodiment of the invention, the
axiomatic design system may directly generate UML code. UML code is represented by
script type formats defined by the document entitled OMG Unified Modeling Language
Specifications, version 1-3, June 1999 (available at

http://www.rational.com/uml/resources/documentation/index.jtmpl). Based on the UML

documents described above and the UML specifications, the axiomatic design system
can generate this UML script code. Further, Rational Rose design software also uses this
script code format for their input/output data file. Therefore, the UML script code
generation can be synchronized between the axiomatic design systems of the present
invention and other design packages such as Rational Rose software. Figure 39 shows

an example of UML script code.

Automatic Code Generation

As discussed above, axiomatic design principles may be incorporated into a
software design that, upon instruction of a user, creates software systems. According to
one aspect of the invention, the software system automatically generates code based
upon an axiomatic design. According to various embodiments of the invention, the

software design may have one or more of the following properties:

e In accordance with one embodiment, a system is provided that generates code
skeletons in a target language and transfers the information from the axiomatic
design into code in that language.

¢ In accordance with one embodiment, a system and method produces code skeletons
using axiomatic design terminology such as FRs, DPs and design matrix.

Writing down source code is one of the major items to be performed in the
software development life cycle. This coding process is generally performed by a head
programmer based on the modeling information which is the result of prior process. To
reduce maintenance efforts, it is highly recommended to add a lot of comments, which

describes modeling information, inside the source code between line by line or method
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by method. However, most programmers feel this work is cumbersome or time
consuming. Generally, the code is further developed, less comments are inserted into the
code due to apathy, increased familiarity with the code (by the programmers), or by
rushed development during later stages. According to one aspect of the invention,
information produced by the design process may be automatically translated into
comments in the code. More specifically, as a designer proceeds through the axiomatic
design, the designer produces rich information including data structure, function
structure, relationships, and so forth. According to various embodiments of the
invention, a software design system may be provided that performs one of more of the
following:

e Generate the entire source code skeletons using these rich information.

e Reduce the coding time by automatically generating code and comments.

e Provide consistency between design and source code.

Further, various embodiments of the invention provide one or more of the
following advantages:
¢ Reduce the coding effort: Automatic code skeleton generation provides more time

to focus on algorithm development. It also provides a clear outline and instruction to
assist the programmer in developing specific methods inside the code skeleton
because the code skeleton reveals design comments such as design descriptions and
comments associated with the design description.

e Maintain consistency: The code skeleton can act as a bridge between the design and
the actual source code by using the same description in software design. In one case,
the programmer may use specific code generated by the design specification.
Alternatively, the programmer might have the design information for the method that
he/she is trying to make. Either way, the design process concludes with the actual
code.

Several commercially-available software products have features to generate code
skeletons. Some of these products use UML, especially class diagrams. Code skeletons
produced by these products generally include class name, attributes, methods and brief
comments. However, according to one embodiment of the invention, results of the

axiomatic design process are used to generate code skeletons and comments.
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Because the axiomatic design process requires detailed information, the code
skeleton generated can have much more detailed descriptions than that which are
traditionally provided by UML. It consists of class name, attributes, methods, detailed

comments and the sequences to finish the actual algorithm.

Introduction
A code generation scheme according to one embodiment of the invention is
disclosed below. To provide a better understanding, the following is based upon simple

drawing example described above with respect to Figures 24-26.

Data structures for code generation

The data structures used for code generation may be identical with the definitions
described in the line drawing example above. Each one of the attributes inside the ER
diagram represented in Figure 20 is the inputs for code skeleton. The specific examples
for these inputs are described in Figures 2 through 26 based on the line drawing example
described above.

Figure 40 shows a DP table based upon the line drawing example described
above. Figure 41 shows a DP/VARIABLE table and ATTRIBUTES relating the DP and
VARIABLE tables for the example. Figure 42 shows a table relating a DM table to an
OPERATION table through a METHOD table. It should be understood that these tables
are merely examples of a system design upon which code may be generated, and that

other system designs may be used.

Code skeleton
Every object-oriented programming language has similar structure such as class
name, global attributes, a constructor and methods. The comments generally may be
located anywhere inside the code. Therefore, a code skeleton that follows language
structure and provides a clear, well documented structure may be used.

Figure 43 shows a standard code skeleton generated according to one
embodiment of the invention. In particular, Figure 43 shows the process by which code
is produced. In an “Introduction” area, comments for the classes may be inserted.
Alternatively, comments may appear in various sections of the code. These comments

may include, for example, descriptions of the FRs, DPs or any other information
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describing the code file or design. In “Define import package” area, other code to be
included in a compilation of the code may be referenced. In a “Define class” area,
packages and class types may be defined. Attribute types corresponding to the design
may be commented on and defined in a “Define global attributes” area. In a “Define
constructor” area, comments and constructors for the objects corresponding to the design
are defined. Further, in a “Define methods” area, methods associated with objects of the
design are defined. Within this “Define methods” area, coding sequences that reflect any
interactions prescribed by off-diagonal elements of the design matrix are placed. In a
“Define finish” area, proper end statements are placed according to programming
language conventions.

Figure 44 shows an example code skeleton written in the Java programming
language produced using the code skeleton and method described above with respect to
Figure 43. In particular, Figure 44 shows a Java code skeleton based upon the line
drawing example described above, for FR2 = a*DP1+ B*DP2. Of course, sections of the
code are determined according to programming language conventions.

Because a code skeleton is produced that follows language conventions, provides
a clear document structure, the programmer can spend more time to focus on the
algorithmic viewpoint with this consistent code skeleton. One or more of the following
may be included in a code skeleton in accordance with various embodiments of the
invention:

e Axiomatic design description: information that is collected about the design

e Roadmap: strategy for recognizing the current activity being performed by the
designers and relating this to the overall progress of the design

¢ Guidance: suggestions or questions-for-thought to assist the designers

e User interface: the layout and operation of the graphical user interface

e Options: the variety of choices for customizing the software

e Algorithms: the details of how a function or calculation is performed

User Interface

As discussed previously, design tasks can be represented as a mapping between
domains. Designers map from requirements of what they want the design to do to
solutions of how the design will achieve these requirements. As the design progresses,

broad, high-level requirements are broken down, or decomposed, into smaller sub-
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requirements which are then satisfied by sub-solutions. As the designers select solutions,
they use the two design axioms to evaluate whether the design is a quality design.

The benefits of a software tool for applying axiomatic design, as embodied in
design software implementing axiomatic design principles, are many:

1. Designers can start with ill-defined customer needs and use the design software to
document and organize these needs.

2. As designers develop concepts, they define requirements, develop additional
concepts, and select solutions using the design software. The design software
provides one or more of the following:

(a). The design software captures the history of the project and the rationale for the
decisions that were made.

(b). An archive of solutions can be used to build a corporate knowledgebase and to
transfer learning between parts of the organization.

(c). Different solution alternatives can be evaluated and compared objectively.

3. The design software provides tools for systems engineering that capture and use the
hierarchy of design information that naturally grows as the design progresses. The
design software provides one or more of: |
(a). The design software captures constraints and their application throughout the

design.

(b). The design software lets managers check consistency between multiple sub-
tasks.

(c). As changes are considered or made during the design, the design software tracks
the interrelationships between parts of the design to determine what else in the
design is potentially affected.

4. The design software provides tools for project management.

(a). The design software lets designers and managers assign resources (time, budget,
and responsibility) to the project and to distribute them among the design tasks.

(b). The design software tracks the use of the resources as the design progresses.

5. The design software enables robust design.

(a). Tolerance design can be done in the design software. The designers can assign

tolerances to components of the design to achieve the required functionality.



20

25

30

WO 01/40933 PCT/US00/33034
-63 -

(b). Data about as-produced variation in components can be used in conjunction with
tolerances and desired functionality to calculate probability of success as
described in axiomatic design using information content.

The design software using axiomatic design principles provides benefits for the
company, managers, and designers. For the company, the design software provides
greater profit, a competitive advantage over companies who do not use such design
principles, and less risk in developing software. For the manager it provides effective
resource assignment, effective change management, and institutional learning and
knowledge transfer. For the designer, it provides focused creativity, better designs, and
quick design completion.

e Automate the design process: Designers follow several steps to design using
axiomatic design. Programmers commonly refer to these systematic processes as a
“roadmap” [Derrick Tate, “A roadmap for decomposition: Activities, Theories, and
Tools for System Design,” Ph.D. thesis, department of Mechanical Engineering,
MIT, Cambridge, MA, 1999]. The user interface of the software system according to
various embodiments of the invention may be designed based upon these steps.
Whenever a designer enters FR data into axiomatic design software, it queries for the
corresponding DP information and manages the size of design matrix, design
hierarchy automatically. Also, the axiomatic design system displays the next step to
follow by checking the current status. This automation scheme assists users to
follow the axiomatic design process.

e Spread axiomatic design concepts among the programmers: To shift the design
paradigm requires great effort because most programmers usually do not want to
change from what they have learned to a new programming concept. There are
several approaches to overcome this difficulty. One of the most effective ways is to
use software which visualizes the overall system development concept.

e Forces programmers to focus on the design: Design is a creative work which is
performed by human thinking. The real power from axiomatic design concept is to
allow the designer to think about their problem using a systematic approach. Design
software according to various embodiments of the invention provide this thinking
environment by asking several questions of the programmer in a step by step manner.
These questions force designers to focus on their design so that they have more

chance to create quality software.
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Manage changes: As discussed, it is difficult to keep track of software changes
manually. According to various aspects of the invention, a design software system is
provided that manages the changes during the design process automatically.
Document the design with various formats: Designers might need several formats
to explain their design. Even though the design data is the same, work needed to
make the design document requires large amount of time if the designers need
several different formats. This duplication activity can be enhanced with the
software. Design software according to one embodiment provides several different
data formats through which the designer may visualize the designed result in the
form of printed documents, graphics images to be copied into different applications
electronically and data file that feeds into other application programs. The system
manipulates the same design data set and produces the required design document

according to the needs of the designer.

User Interface

To provide better understanding of various user interfaces according to various

embodiments of the invention, the following description is provided with respect to
Figures 45-80
1. Tables

Explain the domain mapping with table format: Axiomatic design forces users to
maintain one-to-one mapping between domains. It is an intuitive user interface to
have a table having several columns which represent each domain and rows for one
to one mapping. This table interface covers the mapping between FR and DP or DP
and PV and is shown in Figures 45A and 45B as alternative embodiments of such an

interface.

Merged FR cell to explain the alternative choices for DPs: Designers usually
think of several choices to satisfy a specific FR. These choices can be explained as
alternatives. Seeing all the possible choices at once with corresponding FR provides
more useful environment for a designer. Figures 46A and 46B show several

embodiments of an interface showing alternative design choices to a designer.
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Display parent FR/DP information: To allow a designer to visually determine the
parent FR/DP information during the decomposition provides a designer a greater

change to create accurate sub-level FR/DP pairs and reduces the step for parent level
inquiry. Figures 47A and 47B show several embodiments of an interface presenting

such parent FR/DP information.

Display the parent node number with abbreviation: Using an abbreviation for
parent number provides a simple interface and increases the space for data entry.

Such an interface is shown in Figures 48A and 48B.

FR/Constraint mapping: Unlike a mapping between two different domains, the
constraint determines boundaries for FRs. However, the one-to-one mapping is not
valid for FR/Constraint relationships. Thus, it is more intuitive to show these FR/
Constraint relations in a table. Figures 49A and 49B show various embodiments of

an interface presenting FR/Constraint relationship information.

CN/FR mapping: The relation between FRs and CNs are usually vague. The CN
explains broad needs and specific needs all together and can include multiple
requirements within a sentence in most cases. Because of these characteristics,
presenting a one-to-one mapping with FR is not possible. The interface shown in
Figure 50 displays mappings between CNs and FRs to the designer. According to
one embodiment, this interface uses tables and tree displays and indicates as a check
box for the mapping. Alternatively, the interface uses the same table format as that
of the design matrix. For example, CNs are displayed in a first column and FRs are
displayed in a first row of the table. Further, the interface may display multiple CN
lists which are satisfied by a specific FR. It should be appreciated that any method
for displaying CN and FR information may be used.

Budgeting for constraints: Some constraints are limited by certain parameter
values. For instance, weight, cost and volume are constraints restricted by the target
market, manufacturing environment and so on in mechanical systems. These

constraints usually have operators such as less than, more than, equal to, etc. Design
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software according to one embodiment of the invention captures this information and
allows the designer to compare the designed constraint and the real value of their
product when the design is complete. Figure 51 shows one such graphical

representation.

Add additional column to display detailed information: It is also useful to display
additional information to a designer such as comments, keywords, application links,
etc. within the same table. Figures 52A-C show various embodiments of interfaces

displaying detailed design information.

Nested (or full) design matrix table: In order to have more accurate design,
designer should check the consistencies between levels in the design hierarchy. The
nested design matrix table shown in Figure 53 is a useful interface that allows a

designer to check the relationships between different levels.

2. Layouts

Display the mapping and relationship at the same time: The layouts shown in
Figures 54A-C reduces steps needed by a designer to compare the FR/DP

information.

Display the sequence of design activity: As discussed above, there is a sequence to
design software systems using axiomatic design principles. This roadmap sequence
can be grouped as four different activities. In particular, a tabbed interface may be

used to indicate these groups and control the tabs depending on the design situation.

Examples of these tabbed interfaces are shown in Figures 55A-55B.

2.1 Components for design guide.

Design question area: One of the best methods for implementing an axiomatic
design is to prompt the designer with questions regarding the design at each step,
because the axiomatic representation describes the thinking process systematically.
Figure 56 shows an interface that presents components that support a visualization of

the human thinking process.
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To do list area: The design software provides several lists to be checked based on
the design roadmap.

Legend indication area: Several conditions such as design status,
alternative/redundant DPs, and the like are indicated to provide clear information.
Aerial view area: In the case of a large designs, it is useful to indicate a focused
location of the design by showing an overall picture of the entire hierarchy displaying
nodes as small boxes.

Scrolling theorems, corollaries linked to active tab: Theorems and corollaries may
be added to refine several cases. They can be categorized depending on the design
activity. A scrolling component may be included that reminds the user of the rules of

axiomatic design.

“How to” combo box: Interfaces such as context-sensitive help allow users to obtain

help regarding the use of a software system. an example of such a question is “How can

I do something that I want with this tool?” FAQ (Frequently Asked Questions) lists and

tutorials are typical kinds of solutions that satisfy this requirement. The design software

may include a component to provide a proper answer for this question. We have a bunch

of resources from our customer in terms of these questions.

3. Buttons / Menus / Icons

Database 1/0 toggle menu in File menu: A software design system may include
two different data store mechanisms. One may be file I/O for all users (i.e. single
and/or multi-user). The other may be the database I/O only for multi-user design
cases. To indicate these two different storage functions, a software design system
may include a toggle menu. Once the user toggles on this menu, the entire data is
sent to the database. Otherwise, the data is stored as a separate text file. As a result,
the database function is user-friendly and steps required to be executed by a user in
the storing process is minimized. Figure 57 shows an embodiment of an interface

having such a toggle control.

Alternative DP toggle button in the FR/DP or DP/PV handling window: To
reduce steps to add design data, an automation scheme may be provided to add

alternative data. The alternative DP is usually entered upon the user’s request. Once
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the user toggles on an Alternative DP button as shown in the interface of Figure 58,
the system automatically adds one more blank row for the alternative DP based on

the automation scheme. Thus, the system reduces data adding steps.

One step design matrix control buttons: To populate the design matrix with data
generally requires iterative work by the designer. To reduce this iteration, the design
software may include a set of controls that when activated, the system fills out the
design matrix with specific patterns. For example, these controls may include:

- Radio buttons for current choice: The design matrix element is filled out
with a toggled item defined by a user.

- Make diagonal button: Activation of this button makes the design matrix a
diagonal matrix automatically.

- Make triangular button: Activation of this button makes the design matrix a
triangular matrix automatically.

- Set button: Activation of this button fills the design matrix with a choice of
radio button for the current selection. If a user selects multiple cells, the
system fills out those selected cells. Otherwise, the system fills out every
undefined design matrix cell. These controls are shown in more detail in

Figure 59.

4. Automation

Automatic menu/tab/button control to represent the roadmap: Optimally, a
designer should follow several steps in order to apply axiomatic design principals.
These steps can be represented in the software with conditional checks. The table
displayed in Figure 60 explains how menus, tabs, and buttons may be controlled by

the roadmap.

Automatic blank row display to prepare data entry: Design software according to
one embodiment of the invention may include add buttons to enter the data such as
CN, FR, DP, Constraints, and the like. Whenever a user pushes an add button, a
separate dialog box pops up for data input. Alternatively, the system use a Microsoft
Excel-type table-handling scheme for data entry and may automate this procedure by
adding a blank row under the data input table automatically as shown in Figure 61.

Also, there may be an option to add a row for alternative DPs as well.
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Live resizing the design matrix: The size of the design matrix is highly correlated
with the number of FRs and DPs. According to one embodiment of the invention,
the design software controls the size of design matrix automatically based on the

number of FRs and DPs as shown in Figure 62.

Automatic numbering control: Because of the design hierarchy, axiomatic design
uses numbers to indicate different nodes, levels and so forth. According to one
embodiment of the invention, the design software controls this numbering scheme
automatically. In particular, the software controls the numbers when a user adds /
deletes specific data. Also, the software renumbers all the child level numbers when

the user changes a node location.

5. Navigation

Navigate with design tree: To navigate within the design hierarchy, the design
software may use the design tree (i.e. CN tree, FR tree). When a user clicks one of
the nodes in the design hierarchy tree, focused node information is displayed in an
associated table area as shown in Figure 63A. The system may also include a DP

tree, PV tree for navigation in the same manner.

Highlight the focused node in the design tree: It may be useful to highlight focused
node information in the design tree as shown in Figure 63B. This highlighting

feature provides visual feeling to the user of where the focus is located.

One step Navigation between adjacent level: The design software system may
include a navigation feature between adjacent levels of the design hierarchy as shown
in Figure 64. Users can compare the differences between parent and child easily

using this navigation feature.

Options Adjustment
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Display Configuration Control/Management by level adjustment: Like other
design methodologies, a designer, who is trying to use the axiomatic design concept,
needs preliminary training. There are several steps to learn the axiomatic design
concept. Most of these learning processes were done conveniently in the form of
lectures in universities and companies. However, if a software tool supports or
represents these learning steps precisely, it is going to be a huge benefit. Therefore,
the design software may be adjusted in terms of the user experience level, which
represents the knowledge level for the axiomatic design methodology. The table
shown in Figure 65 shows how the design software may configure the user interface
for a specific user experience level. The black dot means available features for
specific levels. The gray dot means enabled graphical interfaces for corresponding
levels. Also, users are allowed to turn on and off certain features within the level so

that they can customize the software for their own environment.

Numbering Scheme: This option allows setup numbers for the nodes and hierarchies

by user. The table shown in Figure 66 shows one of a possible set of numbers.

Design Matrix setup: The elements of the design matrix usually include two items.
An ‘X’ means there is a relation between FR and DP and an ‘O’ item means not.
Some designers may want to adjust these elements more precisely. Therefore, the
design software may provide freedom to the user to specify alternate design matrix
elements as shown in Figure 67. This adjustment may be reflected in the graphical
interface as shown. There is also a concept dealing with the measure of coupling in a
system [Nam P. Suh, The Principle of Design, 1990, Chapter 4]. The reangularity

and semangularity shows the degree of coupling of the design.

Legend setting: It is important to distinguish among different types of information.
The purpose of legends is to visualize the differences between data types
immediately. In one embodiment, the design software uses color coding for the
legends (not shown). Color-coding is also useful for graphics. As shown in Figure

68, an interface through which the user may adjust the legend is shown.
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e Application Links (or File Location): According to one embodiment of the
invention, the design software is a complementary design tool that integrates with a
company’s design environment. There are many commercially-available software
tools for design (for example, CAD, FEM, QFD, TRIZ and the line. To cooperate
with these tools, the design software may include functions to interface with these
other software tools. Thus, designers can use their own tools while deploying the
axiomatic design concept using application links to the software design system.
Acclaro software keeps track the file I/O for the linked applications so that the

designer can manage all the information while operating the linked applications.

Information Options Adjustment

e Real time update for the total number of FR & DP display: It is useful for a
designer to know how large the design in terms of the total number of FRs and DPs;

an interface such as that shown in Figure 69 provides such design information.

e Live question list: As discussed, axiomatic design is a kind of thinking process.
This process can be standardized and represented inside the design software system.
In particular, the design software may ask to user a number of questions to guide this

thinking process. Examples are discussed below with respect to Figures 70-71.

. Live to do list: Designers should check a number of items prior to finishing the
design. For example, if they change a specific DP, they have to check the entire
downstream impacts to ensure the changes are allowable. Also, if the user did not fill
out the required information in the design (i.e. hierarchies), the users may be

prompted to finish the insufficient information as shown in Figure 71.

¢ Ranking with strong FR-DP association: A key part of an axiomatic design is the
design matrix because it contains a majority of design information. According to one
embodiment of the invention, the design software system sets of DPs, distinguishing
the best DPs among the alternatives. To suggest the better solution sets, the ranking
information should include a set of FRs to be satisfied, design status, number of off-

diagonal X’s, number of coupled X’s and measure of coupling. Designers can
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choose a better set of DPs using this information. The strong FR-DP association
means that the FRs and corresponding DPs stick together. For example, DP 1 is
selected to fulfill the FR 1, DP 2 is for FR 2, and so forth. As shown in Figure 72,

FR-DP pairs having strong associations have no alternative DPs.

Ranking with free association of DPs: Unlike the strong association, designers

might face a situation that they could not specify the DPs for a specific FR although
they know the available DPs set and relations with the FRs set. The design software
system may search the possible combinations that satisfy the independence axiom to

locate the best matching DP.

Rearrange sequence: The rearranged information (i.e. design sequences) provide
possible combinations to construct the design. For example, if a designer has 5x5
design matrix, the total number of sequence combinations is 5! (=120 cases).
However, the possible sequences are restricted by the pattern of design matrix (i.e.
uncoupled, decoupled, coupled). According to one embodiment, the design software

shows the possible sequences, which are displayed at the lower right side in Figure

72.

Child list: Sometimes the child lists for specific nodes are useful to allow a designer
to focus on the local problem. According to one embodiment of the invention shown
in Figure 73, the design software displays this information rather than using a FR and

DP tree window to display the entire hierarchy information.

Impact list: If designers wish to change a specific DP, they should check the effect
through the hierarchy to make sure the change is allowable. There is a sequence for
evaluating this impact effect based on the pattern of the design matrix. To reduce

this inspection time, the software design system may display the items to check due

to the changes in the form of table and flow chart drawing as shown in Figure 74.

Flow chart display: The flow chart, which is derived from the design matrix,

visualizes the design order with graphics. The design software may calculate this
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information with design matrix information and display the flowchart as shown in

Figure 75.

Gantt Chart display: The flow chart can be easily converted into a Gantt Chart, if
the time information (i.e. time duration for each module) is provided. According to
one embodiment of the invention, the design software has an interface through which
a user may enter these time durations and display the corresponding scheduling

information visually as shown in Figure 76.

Adyvice for decoupling: Axiomatic design software recommends a designer
construct an uncoupled or decoupled design. When the designer creates a coupled
design, however, there are certain ways to decouple the coupled design. These
elements can be summarized as follows:
- Check the off-diagonal element in the design matrix and ask if the designer
can modify the corresponding DPs.
- If the designer cannot modify the corresponding DPs, ask for alternatives for
the corresponding FRs.
- Otherwise, provide a suggestion to change the FR which could not be

satisfied with the current DP set.

PDF (Probability Density Function) graph display for information axiom:
Information content requires common area that explains overlapped region between
system range and design range. According to one embodiment of the invention, the
design software shows different distribution types such as uniform, normal,
increasing and decreasing. When a designer enters required information to calculate
the information content, the system draws the distribution shapes and fill out the
common area automatically. Figures 77A-D show different types of PDFs discussed

above.

Design documentation: One of the important features of software design is to

document the design results. The system may generate, for example, a design
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document having a Hypertext Markup Language (HTML) format as shown in Figure
78. HTML file format is well-known in the art of Internet publishing.

¢ Design tree display for each domain: Two types of tree contents are available to
show CA/FR/DP/PV design trees. One is vertical type and the other is horizontal
type. Because both types have advantages, two different types of interfaces may be

provided to support users as shown in Figures 79A-B.

e One step access for embedded examples: Simple examples may be embedded in
the design software to assist the user. Users can load these examples by selecting

one of the menu items under an example main menu, for example.

e Drawing transfer using system clipboard: Some users may want to paste specific
drawings, which are generated by the software design system, into their own
documents such as journal papers, proposals, reports and so on. The software may
include a function to copy the drawings into system clipboards so that users can paste

the images into their applications.

o Audit: After a designer has finished the design, they might want to know the
completeness of their design. An audit function examines the design and shows if
there is missing information. Such an interface that identifies missing information is

shown in Figure 80.

Design Matrix Interpretation and Manipulation

The design system may include many procedures for manipulating and/or
evaluating a design using the design matrix. As discussed, the design matrix includes a
great deal of information regarding the system design that may be adapted to provide
additional information to a user, for example, such as project organization and system
description information including flowcharts, impact lists, Gantt charts, and other
information. Algorithms or methods used to extract and use such information from the

design matrix may be provided. More particularly, algorithms that interpret or
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manipulate information in the design matrix. The following algorithms, among others,
may be provided to interpret and/or manipulate design matrix data:

e Algorithm to check the design status of entities of the design matrix

e Algorithm to generate rearrangement sequences for the system design
e Algorithm for ranking a design having a strong FR-DP association

e Algorithm for ranking a design having a free association of DPs

o Algorithm for generating a flowchart describing the system design

¢ Algorithm for generating an impact list related to the system design

e Algorithm for generating a Gantt chart related to the system design

e Algorithm for computing a full design matrix from inconsistency data
e Algorithm for displaying a full design matrix

The design matrix in the Axiomatic Design framework includes a great deal of
information. It includes the design status, sequences for flowchart (or system
architecture) schedule information and other information. As discussed above, the
design matrix expresses the relationship between different domains (i.e., functional
domain described by FR and physical domain described by DP). To interpret and
manipulate this matrix, algorithms are provided that manipulate elements of the matrix.
In the case of a design matrix having non-numeric information, algorithms are provided
that manipulate elements having non-numerical characteristics. The basic algorithm to
handle elements of the matrix is illustrated in a book entitled “The Principle of Design,”
by Nam P. Suh, Oxford University Press, 1990, pp. 383-385. This algorithm modifies
the matrix format by changing the order of FRs and DPs to determine if the design
matrix can be manipulated into triangular form to create a decoupled design. The
algorithm as shown in Figure 81 shows one algorithm according to one embodiment of
the invention used to manipulate a design matrix.

According to one embodiment of the invention, a method is provided for
changing the order of FRs and DPs. According to this embodiment, the following are
performed:

i) Find the row which contains one non-zero element. Rearrange the order of
{FRs} and {DPs} by putting the row and the column which contain the non-
zero element first (i.e. if i row contains one non-zero element at ;™ column,

then put i component of {FR} first and put j[h component of {DP} first.
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i1) Excluding the first row and column, find the row which contain one one-zero
element. Rearrange the components of {FRs} and {DPs} by putting the row
and the column which contains the non-zero element at the row and column
second.

1i1) Repeat the procedure until there are no more sub-matrices to analyze.

Further, a method may be provided to check the status of the design as shown in
Figure 82. More particularly, a determination and indication of the state of the design
(such as not defined, uncoupled, coupled, or other state) may be performed. The result
of this determination may be indicated to a user of the design system. To determine
whether various elements of the design are defined, a process may be performed wherein
the elements are independently evaluated to determine whether they are defined.
According to one aspect of the invention, an element is not defined when its element
value is zero or is empty. It should be appreciated that other values may be used to
indicate the element is not defined. One exemplary method for determining whether
elements are defined is shown if Figure 83 wherein each of the elements of the design
matrix is evaluated using nested loops.

To determine whether the design is uncoupled, the value of each element of the
design matrix may be evaluated. According to one embodiment of the invention as show
in Figure 84, if the value of any element is “X,” then the design is not coupled.
Otherwise, the design is uncoupled.

Figure 85 shows a method for determining whether a design is coupled.
Coupling, as discussed above, can occur when the number of DPs is less than the number
of FRs, or the FRs cannot be satisfied. The method may, for example, identify the
coupled rows of the design matrix and assign those rows to a coupled set. If, after the
design matrix is evaluated, the coupled set is empty, the design matrix represents a
decoupled design. Otherwise, the design is coupled.

Figure 86 shows a method for generating rearranged sequences of the design
matrix according to one embodiment of the invention. In particular, the elements of the
design matrix may be rearranged to modify the design matrix in triangular form which
may be useful in evaluating or using the design.

Figure 87 shows a method for ranking alternative or redundant DPs.
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For instance, a designer may have alternative DPs or redundant DPs in which the system
may be implemented. The algorithm shown in Figure 87 describes how to rank the best
combinations among these alternative or redundant DPs.

More particularly, the method shown in Figure 87 ranks designs having a strong
FR-DP association. This method collects the combinations among the alternatives and
redundant DPs having a non-zero element in the diagonal element at the beginning of a
row. Figure 88 shows a method of ranking designs having free association of DPs.

More particularly, this method shown in Figure 88 finds all possible combinations of
DPs that could form a basis of a design using permutation. It should be appreciated that
any method for ranking alternative or redundant designs may be used.

As discussed above, flowcharts may be generated that graphically describe the
system design represented by the design matrix. Figure 89 shows one method for
generating flowchart sequences based on design matrix information. The method uses
design matrix information to generate an edge list that determines a flowchart matrix.
The flowchart matrix can then be used to generate a flowchart. This flowchart
graphically represents the architecture of the design. Because the method shown in
Figure 89 can be used for the entire design hierarchy at each level, the algorithm shown
in Figure 89 may be used to generate flowchart sequences for one level.

Figure 90 shows one exemplary format of a flowchart matrix according to one
embodiment of the invention. In particular, the size of the flowchart matrix is the square
of the number of FRs in the system: |[FR number} X |[FR number|. Each cell of the matrix
may relate the following information: FR number (identification) + status of FR, wherein
the type of status for an FR may be, for example, one of the following status types: F =
coupled (feedback junction), C = decoupled (control junction), or S = uncoupled
(summation junction). The information in the flowchart matrix is then used to generate a
flowchart which can be used to generate other information, or the flowchart may be
displayed to a user.

Figure 91 shows a method for generating an impact list. An impact list is a set of
information that is affected by a change in the design hierarchy. Because the flow chart
shows the whole design sequence based on the design matrix, the result of flowchart
matrix described above with respect to Figures 89 and 90 may be used as input data for
generating the impact list. The algorithm shown in Figure 91 describes how to create the

impact list based upon flowchart information.
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A Gantt chart is a flow chart showing duration information for each node of the
flowchart. In particular, the well-known Gantt chart displays dependencies for one or
more tasks for use in project planning. A Gantt chart, according to one embodiment of
the invention, may also be used to indicate dependencies in creating DPs of a system
design to more adequately plan a creation of the software system. The duration
information should be provided in all the leaf level at least to enable a user to estimate
how long it should take to create the software system. The algorithm shown in Figure 92
describes how to create the Gantt chart using information from the flowchart matrix.

Having now described a few embodiments, it should be apparent to those skilled
in the art that the foregoing is merely illustrative and not limiting, having been presented
by way of example only. Numerous modifications and other embodiments are within the
scope of one of ordinary skill in the art and are contemplated as falling within the scope

of the invention.
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CLAIMS
1. A digital information product comprising:
a computer-readable medium; and
stored on the computer-readable medium, computer program instructions
defining a software system that produces software code based on a set of functional

requirements and design parameters provided by a programmer.

2. The digital information product according to claim 1, wherein the computer
program instructions, when executed, allow the programmer to define a design matrix
describing a relation between the set of functional requirements and the design

parameters.

3. The digital information product according to claim 2, wherein the computer
program instructions, when executed, allow a programmer to manipulate the design

matrix into lower triangular form.

4. The digital information product according to claim 2, wherein the computer
program instructions, when executed, allow a programmer to determine a decoupled

design matrix.
5. The digital information product according to claim 2, wherein the computer
program instructions, when executed, allow a programmer to determine an uncoupled

design matrix.

6. A method for producing a software system, the method comprising:

defining a design matrix describing a relation between functional requirements of

the software system and design parameters; and

generating software code based on the design matrix.

7. The method according to claim 6, further comprising a step of constructing

functions using diagonal elements of the design matrix.
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8. The method according to claim 6, further comprising a step of defining a flow

description that describes a flow of the software system.

9. The method according to claim 6, further comprising a step of defining a

software module corresponding to at least one functional requirement.

10.  The method according to claim 9, wherein the software module is defined based

upon the flow description.

11.  The method according to claim 6, further comprising a step of defining a plurality

of software modules, each of which corresponds to a respective functional requirement.

12.  The method according to claim 11, further comprising relating the plurality of

software modules by junctions.

13.  The method according to claim 12, further comprising a step of combining the

plurality of software modules according to their junctions.

14.  The method according to claim 13, wherein at least one of the junctions is

selected from a group including:

15. A method for producing software comprising:
defining a design matrix describing a relation between functional requirements of
the software system and design parameters; and

generating software code based on the design matrix.

16.  The method according to claim 15, wherein the step of defining includes

determining a design matrix having a lower triangular form.

17.  The method according to claim 15, wherein the step of defining includes

determining an uncoupled design matrix.
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18. The method according to claim 15, wherein the step of defining includes

determining a design matrix having a diagonal form.

19.  The method according to claim 15, wherein the step of defining includes

determining a decoupled design matrix.

20. The method according to claim 15, wherein the step of generating comprises:
generating a plurality of models; and

outputting the models to a code generator.

21.  The method according to claim 15, wherein the step of generating comprises

generating at least one diagram describing an object-oriented object structure.

22.  The method according to claim 21, wherein the at least one diagram is in a

Unified Modeling Language format.

23.  The method according to claim 21, wherein the at least one diagram includes at
least one of a group of diagrams comprising:
a use-case diagram; and

an entity-relation diagram.

24.  The method according to claim 15, wherein the code generated includes object-

oriented entities.

25.  The method according to claim 15, further comprising a step of defining an

object-oriented class using at least one functional requirement.

26.  The method according to claim 24, further comprising a step of defining a child

of the object-oriented class using at least one functional requirement.

27. The method according to claim 25, further comprising a step of defining a

grandchild of the object-oriented class using at least one functional requirement.
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28.  The method according to claim 27, wherein the grandchild of the object-oriented

class defines behavior of the class.

29.  The method according to claim 24, wherein at least one functional requirement

represents at least one object-oriented software entity.

30. The method according to claim 15, wherein the generated software code is

Source Code.

31. A method for designing software involving object-oriented software objects, the
method comprising:

defining a design matrix describing a relation between a plurality of functional
requirements of the software system and design parameters;

representing at least one object-oriented object by at least one of the functional
requirements;

representing data used by the at least one object-oriented software object by at
least one of the design parameters; and

representing a method of the at least one object-oriented software object by a

product of a portion of the design matrix an the at least one design parameter.

32.  The method according to 31, further comprising defining a plurality of functional

requirements and constraints of the software system.

33.  The method according to 31, comprising a step of decomposing at least one

functional requirement into leaf elements.

34.  The method according to 31, comprising a step of decomposing at least one

design parameter into leaf elements.

35.  The method according to 31, comprising a step of decomposing at least one

process variable into leaf elements.
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36. A method for designing software comprising:

defining a software system by defining a design matrix describing a relation
between functional requirements of the software system and design parameters
implementing the software system;

defining at least one object-oriented object; and

defining at least one method that may be defined on the at least one object,
wherein the at least one object-oriented object and the at least one method are related to

the design matrix.

37. The method according to claim 36, further comprising defining an object class of
the at least one object-oriented object that represents a first level of functional

requirements of the design matrix.

38.  The method according to claim 37, further comprising defining an instance of the
object class represented by a second level of functional requirements of the design

matrix.

39. The method according to claim 38, further comprising defining behavior of the

object class as a third level of functional requirements of the design matrix.

40. The method according to claim 39, wherein the first, second, and third levels are

successive levels of a functional requirement hierarchy.

41. The method according to claim 36, further comprising mapping the functional

requirements into a physical implementation domain by defining design parameters.

42.  The method according to claim 36, further comprising a step of construction -

functions using diagonal elements of the design matrix.

43.  The method according to claim 36, wherein the step of defining a software

system includes determining whether the design matrix is uncoupled.
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44.  The method according to claim 36, further comprising generating a plurality of

models and outputting the models to a code generator.

45.  The method according to claim 44, wherein the step of generating comprises

generating at least one diagram describing an object-oriented system structure.

46.  The method according to claim 45, wherein the at least one diagram includes at
least one of a group of diagrams including:
a use-case diagram; and

an entity-relation diagram.

47.  The method according to claim 45, wherein the at least one diagram is in a

Unified Modeling Language format.

48. A database format for designing a software system comprising:

a software design specification, wherein the design specification defines a design
matrix describing a relation between a plurality of functional requirements of the
software system and design parameters, wherein the design specification represents at
least one software object by at least one of the functional requirements, and wherein the
design specification represents data used by the at least one software object by at least
one of the design parameters; and

software code produced by the design specifications.

49. The database format according to claim 48, wherein the software design

specification further comprises a design identification identifying the software code.

50.  The database format according to claim 48, wherein the software design
specification further comprises a detailed design description including the design matrix,

functional requirements and design parameters.

51. The database format according to claim 49, wherein the software design
specification further comprises a detailed design description including the design matrix,

functional requirements and design parameters.
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52.  The database format according to claim 49, wherein the software design

specification further comprises a design identification identifying the software code.

53. The database format according to claim 48, wherein the design parameters are
arranged in a plurality of levels, and wherein each of the plurality of levels can be

referenced by another software system.

54. The database format according to claim 48, wherein the database format for
designing a software system is used in a software production system, and a user
operating the software production system is capable of creating software comprising one

or more elements of the software system.

55.  The database format according to claim 54, wherein the software production
system further comprises a user interface and a database implementing the database
format, and the software production system is capable of searching through the database

to obtain one or more elements of the software system to create a new software system.

56.  The database format according to claim 55, wherein a new element of the new
software system interfaces with one or more elements of the software system, and the

software production system is operable to verify that the interface is operable.

57.  The database format according to claim 55, wherein the software production

system is configured to verify a consistency of design of the new software system.

58.  The database format according to claim 55, wherein the software production
system is configured to search design parameter information, including at least one of
description information, keywords associated with the software system, categories in

which the software system is assigned, and comments.

59. The database format according to claim 48, wherein the software code is in

executable form.
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60. The database format according to claim 48, wherein the software code is source
code.
61.  The database format according to claim 57, wherein the software production

system is configured to verify a consistency of design of the new software system by
checking a consistency between a first level of design implementing a design parameter

from the database and a second level of design of the new software system.

62. The database format according to claim 61, wherein the second level of design is

a child of the first level of design.

63. The database format according to claim 55, wherein a new element of the new
software system interfaces with one or more elements of the software system, and the

software production system is operable to verify that the interface is operable.

64. A database format for designing a software system comprising:

design identification information identifying information describing the software
system;

detailed design description information describing the structure and operating
qualities of the software system; and

software code information associated with the software system.

65. The database format according to claim 64, wherein the detailed design
description defines a design matrix describing a relation between a plurality of functional
requirements of the software system and design parameters, wherein the design
specification represents at least one software object by at least one of the functional
requirements, and wherein the detailed design description represents data used by the at

least one software object by at least one of the design parameters.

66. The database format according to claim 64, wherein the software code

information comprises source code.



10

15

20

25

30

WO 01/40933 PCT/US00/33034

-87-

67. A method for generating software code associated with a software system, the
method comprising:

defining a design matrix describing a relation between functional requirements of
the software system and design parameters; and

generating software code based on the design matrix.

68. The method according to claim 67, further comprising defining a plurality of

functional requirements and constraints of the software system.

69. The method according to claim 67, further comprising a step of decomposing at

least one functional requirement into leaf elements.

70. The method according to claim 67, further comprising a step of decomposing at

least one design parameter into leaf elements.

71. The method according to claim 67, further comprising a step of decomposing at

least one process variable into leaf elements.

72. The method according to claim 67, wherein the software code is written in a

modeling code language.

73.  The method according to claim 67, wherein the software code is executable by a

computer system.

74. The method according to claim 72, wherein the modeling code language is the

Unified Model Language (UML).

75. The method according to claim 72, wherein the software code describes at least
one diagram of a group comprising:

a class diagram;

an interaction diagram;

a collaboration diagram;

a sequence diagram;
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a state diagram; and
an activity diagram.
76. The method according to claim 75, further comprising a step of relating the

design matrix to at least one element of the at least one diagram.

77.  The method according to claim 72, wherein the system creates a use-case

diagram based upon the design matrix.

78.  The method according to claim 67, further comprising defining a plurality of
customer needs, the plurality of needs being arranged in a hierarchical tree having levels,

and wherein at least one of the levels relates to a layer of a use-case diagram.

79.  The method according to claim 67, wherein the use-case diagram includes a

relation layer, a use case layer and an actor layer.

80.  The method according to claim 79, wherein the actor layer represents one or more
actors.
81. The method according to claim 79, wherein the use case layer describes customer

needs that are attributed to the actor.

82.  The method according to claim 79, wherein the relation layer describes a

relationship between customer needs in customer needs in the use case layer.

83. The method according to claim 82, wherein the relationship is a semantic

connection among model elements.

84. The method according to claim 82, wherein the software code includes a model

file which describes the modeling code.

85. The method according to claim 84, wherein the model file is suitable for use as

an input file for use by a software production system to create a software system.
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86. A computer-readable medium encoded with a program that, when executed on a
computer system, performs a method for rendering an interface through which a user
may interact, the method comprising steps of:

displaying a software design interface, wherein the interface displays a set of
functional requirements upon which a software design is based, and wherein the interface
displays a design matrix describing a relation between the set of functional requirements

and design parameters implementing the software design.

87.  The computer-readable medium according to claim 86, wherein the computer
system performs a step of indicating, in association with the displayed design matrix,
whether the software design specified by the design matrix is at least one of a group

including a decoupled, uncoupled or coupled design.

88. The computer-readable medium according to claim 86, wherein the design matrix
represents a coupled design, and wherein the computer system performs a step of
indicating, in association with the displayed design matrix, whether a design parameter

associated with the design matrix is coupled.

89. The computer-readable medium according to claim 88, wherein the computer
system performs a step of indicating, for the design parameter associated with the design
matrix, an alternate rearrangement of the design parameter wherein the design parameter,

if rearranged, is uncoupled or decoupled.

90.  The computer-readable medium according to claim 88, wherein the computer
system performs a step of indicating, for the design matrix, an accuracy of the software

design with respect to an optimum design.

91.  The computer-readable medium according to claim 86, wherein the computer
system performs a step of indicating, for the design matrix, a range of acceptable inputs

over which the design matrix operates.
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92.  The computer-readable medium according to claim 86, wherein the computer
system performs a step of arranging and displaying the functional requirements and

design parameters to the user in a hierarchical manner.

93.  The computer-readable medium according to claim 92, wherein the computer
system performs a step of displaying the functional requirements and design parameters

in a hierarchical tree having a plurality of levels.

94. The computer-readable medium according to claim 90, wherein the computer

system performs a step of indicating a robustness of the software.

95.  The computer-readable medium according to claim 92, wherein the computer
system performs a further step of creating, based upon an arrangement of the design

parameters, a Gantt chart describing production dependencies of the software design.
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/*

Comments for class:
File Name
FR description
DP description

*/

< Introduction <

Reference for import or include

—H <Deﬁne import package <

Package PackageName

ClassType ClassName {

< Define class <

/*
Comments for attributes

FR description
DP description

*/

AttributeType AttributeName:

<deﬁne global attributes <

AttributeType AttributeName:

AttributeType AttributeName:

FIG. 43A

®

FIG. 43B

FIG. 43A
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/*

Comments for constructor
FR description
DP description

Define constructor

*/
ClassType ConstructorNome()‘[

/*Comments for —
component
FR description
DP description

* ~ Define component
/ < (e.q. Initializotll)on fo
given attributes)

ComponentHandling(); ™

ComponentHandling();
ComponentHandling();

/*
Comments for method

FR description
DP ggscription

Define methods

*/

MethodType MethodName() {:

/*Comments for —
sequence
FR description

DP description
g
*/ <
RelatedMessageCall(); \y

[ RelatedMessageCall();
} [ RelatedMessageCall();

J
J
}/* source code end*/ F / G. 4.35

SUBSTITUTE SHEET (RULE 26)

efine coding sequence
(e.g. Interaction which describes
ff—diagonal activities)

/ \




WO 01/40933 PCT/US00/33034

60/127
/* )
Coments for class:
Comments for class: File Name: Window_d.java
File Name FR2: Sﬁecif drawing environment
FR description DP2: GUI with window
DP description FR2=a*DP1(Element
characteristic)+B*DP2(GUIr
with window)
*/ y
Reference for import or include import javax.swing.*;
I -‘_Iimport java.awt.*;
[

Package PackageName

ClassType ClassName { public class window_d{ /*Dpzt/
/* | i
/* Comments for attributes:
Comments for attributes ]| FR211: Identify line
FR description DP211: Line button */
DP description Radiobutton line; /*DP211*/
*/ /* Comments for attributes:

. . . FR212: Identify rectangle
AttributeType AttributeName; DP212: Rectangle button */

AttributeType AttributeName; Radiobutton rectangle; /*DP212*/
AttributeType AttributeName;

FIG. 44A

Q\) FIG. 448 5)
FIG. 44C
FIG. 44A
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/*

*/

Comments for constructor

FR description
DP description

ClassType ConstructorNome(){

/*Comments for
component
FR description
DP description

*/
ComponentHandling();

ComponentHandling();

ComponentHandling();

Comments for constructor:

FR2: Specify drawing environment
DP2: GUI with window

*/
[| public Window_d{){ /*lement of design matric B*/

/* Comments for component
FR21: Identify the drawing type

DP21: Radio button */
CreateButtons(); /*Element of design matrix; F*/

/* Comments for component
FR22: Detect drawing location

DP22: Mouse click information*/
MouseListener(); /*Element of design matrix G*/

}

FlG. 44B
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/*
Comments for method '] |/* Comments for method:
FR descrl.ptl.on FR211: Identify line
DP description DP211: Line button */
* public void addLine(){
MethodType MethodNam e(){ /*Element of design matrix: 0 */
/*Comments for |— /* Comments for method:
sequence FR221: Detect mouse push
FR description DP221: Event for push *){
inti public void mousePushed
DP description /*Element of design matrix: R */
*/
/*Comment for sequences )
RelatedMessageCall(); DP213: Circle button */
RelatedMessageCall(); isCircleSelected();
} [RelatedMessageCall(); \Interaction
221
- /*Comment for sequences
j DP111: Start Point */
J Element_*.assignLocation();
1
¥ }
/* source code end*/ /* End: Window_d.java */

FIG. 44C
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FR Information: : DP Information:
Number Description Num... Description
FR#.1 Provide security DP#.1 Login privilege
FR#.2 Assign tasks DP#.2 Resource of desiq...
FR#£.3 Manage schedule DP#.3 Schedule—manage...
FR#.4 Construct design h... ||| DP#.4 Data structure for...
FR#.5 Facilitate changes... |||DP#5 |ECO handling tool

FIG. 45A

FR DP
FR 1 description <i> DP 1 description
FR 2 description=t> DP 2 description
FR 3 description<t> DP 3 description

WIN|[=

FIG. 45B
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FR Information: ﬂ DP Information:
Number Description Number Description
FR#.1 Control the water fl...||| DP#.1 Angle for flow ra...
FR#.2 Control the temper...[|| DP#£1(1) |Angle of hot wat...
DP#.2 Angle for tempe...
DP#.2(1) |Connecting rod...
DP#.2(2)|Angle of cold w...

FlG.

416A

FR

DP

1 FR 1 description

DP 1 description

Alternative DP 2(a)

Alternative DP 2(b)

2 |FR 2 description{

Alternative DP 2(c)

3 | FR 3 description

DP 3 description

FIG.

4166
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Parent Information:

Number Description

FR 1.1 Manage design workflow

LDP 1.1 | Management roadmap

FR Information: a DP Information:

Number Description Number Description
FR#.1 Provide security DP#.1 Login privilege
FR#.2 Assign tasks DP#.2 |Resource of de...
FR#.3 Manage schedule DP#.3 Schedule—mana...
FR#.4 Construct design h... ||| DP#4 |Data structure f...
FR#.5 Facilitate changes... DP#.5 ECO handling t...

FIG. 47A

FR DP
ParentParent FR description| Parent DP description
1 | FR 1 description |DP 1 description
Alternative DP_2(a)
2 | FR 2 description | Alternative DP 2(b)
Alternative DP 2(c)
3 | FR 3 description | DP 3 description

FIG. 4/7B
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Parent Information:

Number Description

FR 1.1 Manage design workflow

DP_1.1 Management roadmap

FR Information: ﬂ DP Information:
Number Description Number Description
FR#.1 Provide security DP#.1 Login privilege
FR#.2 Assign tasks DP#.2 Resource of de...
FR#.3 Manage schedule DP#.3  |Schedule—mana...
FR#.4 Construct design h... ||| DP#.4 |Data structure f...
FR#.5 Facilitate changes... DP#.5 ECO handling t...

FIG. 48A

# 1.2.3 FR DP

Parent [Parent FR description| Parent DP description
#.1 FR 1 description |DP 1 description

Alternative DP_2(a)
#2 | FR 2 description | Alternative DP 2(b)

| Alternative DP 2(c)
#3 FR 3 description |DP 3 description

FIG. 488
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DP11DP12DP13| DP21 DP22

DP211
DP212
DP213
DP22
DP23

FR111 X1
FRU1 [FR112 P AXT
FR121 X
FR12 [FR122 X
FR131 XV
FR13|FR132 X
FR211 /// /,//,//// X1 /,/A
FR21 [FR212 71 ‘
FRA31 407

%

’X

FR1

FR2

FR2220 X/ X
FR23 YXIX1

FIG. 53
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O;@ FR/DP Design Matrix @Anolysis

Parent Information:

Number Description
FR 1.1 Manage design workflow

LDP 1.1 | Management roadmap

FR Information: q DP Information:

Numb... Description Numb... Description
FR#.1 Provide security DP#1 |Login privilege
FR#.2 Assign tasks DP#.2 Resource of d...
FR#3 Manage Sched... DP#3 |Schedule—ma...
FR#.4 Construct desi... DP#4 |Data structure...
FR#5 Facilitate chan... DP#.5 ECO handling...

FIG. 54A

OE@ FR/DP Design Matrix @Anolysi

Design Matrix Table:
1.1(1.1)|[DP#.1][DP#£.2]
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Matrix size=total humber of row

Current row, column==1

Yes

atrix size ==
current row, Stop
column
No data

Find the row which contains
one non—zero element

ith row/jth
column

{

Change ith row with current row
Change jth column with current column

Increase current row, column

FIG. 81
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Not Defined()

(Algorithm B—1) "not defined” Return "not deﬁnecD

"defined”

Uncoupled()

(Algorithm B—2) "uncoupled” Return ”uncoupled")

not uncoupled”

l

coupled_set =
Coupled()
(Algorithm B—3)

coupled_set “has elementi’—a@eturn "coupled” )
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Loop One (int row=0; row<total_row_number. row++) {
Loop Two (int column=0; column <total._column_number; column++) {
If(maxtrix[row][column] == "empty")

return “not defined" If one of the diagonal

element has “0", the
deslgn is. not defined In

If(row == column) { : terms of the axlomatio
[f(matrix[row][column] == "O") deslgn viewpolnt
return "not defined”
)
}
}

return "defined" |

FIG. 83

{Loop One (int row=0; row<total_row_number: row-++) {
Loop Two (Int column=0; column <total_column_number; columns++) {
If(row |= column) {
If(matrix[row]{column] == "X")
return "not uncoupled"
)
}
}

return "uncoupled"

FIG. 84
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Matrix size = total number of row
define sequence[Matrix size]

current row, column.==
initialize sequence

atrix size ==
current row,
column

<

es—>Getum sequence)

No

Find the row which contains
more than one non-zero
element

!
ith row/ jth
column

Change ith row with current row
Change jth column with current column |

I

Change the sequence infromation

Increase current row, column. {

FIG. 86
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Create -Linked List structure for node: N

sequence = Rearrange Design Matrix
(FIG. 86)

Initialize N with sequence N: 1,2 3 4 ..

Create Linked List structure for edge: E

Check Design Matrix
_(RG. 82)
using rearranged
matrix

’not defined’>{return "empty”

Is

1, 0, uncoupled
Uncoupled?

, 0, uncoupled

Assign uncoupled 2
3, 0, uncoupled
4 led

set into E

mmmm

coupled set =

x 1, 3
Coupled() l\i/ﬁ

(FIG. 85)

v .
Assign coupled E: 1, 3, coupled
set into E
| .

E: 1, 2, decoupled
E: 2, 3, decoupled
E: 3

Loop: 3
, 4, decoupled

Get decoupled/uncoupled set for each row
Assign decoupled/uncoupled set into E

Create flowchart matrix using E

Geturn flowchart mat;io F /G, 89
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Input: changed node (FR or DP)

Create the flowchart for each level (FIG. 89)
|
flowchart matrix for each level

v
Create Impact List L

level = Search the location for changed
node among the hierarchy

Add the changed node into L

Add all the child node under changed node into L

Find offected node in level using flowchart matrix

Yes
s affected node | Add the‘offected
exist? node into L
No
Add all the child
node under
affected node into L

No

s parent node
exist?

Yes

affected node = level.parent

level = level.parent

FIG. 91
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Input: durations in the leaf levels

Create the flowchart
for each level (FIG. 89)

flowchart matrix for each level

level = top level

Recursive call

node = first start node from level |<

calculate the node.duration
from leaf level

Draw node with duration

Modify drawing x, y
location for next node

Yes

Is child level exist
for the node?

level= node.child

No
Is next node exist?
Yes

node = next node from level

FIG. 92
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