«2 UK Patent Application «.GB .2 385 158 .. A

(43) Date of A Publication 13.08.2003

(21) Application No 0202848.8 {51} INTCL’

GO6F 17/30
(22) Date of Filing 07.02.2002
(62} UKCL (Edition V }

G4A AUDB

(71) Applicant(s)

Guang Yang (56) Documents Cited

Flat 7, 23 Rosevale Street, GLASGOW, EP 1122692 A2 US 6282539 B1

G11 6EL, United Kingdom US 5539903 A US 20010052908 A
{72} Inventor(s) (68) Field of Search

Guang Yang UK CL (Edition V) G4A

] INT CL? GO6F

{74) Agent and/or Address for Service Other: Online: WP], EPODOC, JAPIO, THE INTERNET

Guang Yang
Flat 7, 23 Rosevale Street, GLASGOW,
G11 6EL, United Kingdom

{54) Abstract Title
A system for inserting hierarchical data into an existing document

(67) The invention relates to a system for inserting hierarchical data into an existing target document. The
system retrieves data from database or other data sources and puts the data into a multi dimensional data
repository. The system creates a document model based on scanning the target document and employs
directives embedded in the document as hints to create sub document models that are embedded into their
super models. The document model may be a hierarchical model containing string constants, variable
expressions and sub-model. The system recursively scans and parses the elements of the document model. It
then inserts the retrieved data into the appropriate elements of the document model. The same data
repository can be shared by different documents for different presentations.

100
/
System modules 00
4 500
I 300

200 // //

Database Data store | p| Document

connection & > & model —P»1 D ata .

Data retrieve search creation Insertion

4

FIG. 1 illustrates the modules of the system according to the invention

V 8GL G8E¢ 99

13

100
"
System modules
400 500
, 300
200 A //
Database Data store > Document
connection & > & model — Data .
Data retrieve search creation msertion
FIG. 1 illustrates the modules of the system according to the invention
210
220
lgatafl_)asc il Database configure /
onfigure file | 31 o oo
XML p 260 270
230\ Database irameters Database
L La > a
& queries Linker Databas
250 T
240
Other object or p| Programming +
programme interface API

FIG. 2 illustrates database connection and data retrieve module

310
Root matrix
Keys Values
320 Data matrix
Keys Values
Field namel Vector {objectl, object2, object3}
Matrix m/tmel I Field name2 Vector {objectl, object2, object3}
Field name3 Vector {objectl, object2, object3}
Field name4 Vector {objectl, object2, object3}
Field name5 Vector {objectl, object2, object3}
e I
Data matrix
321 Keys Values
Field namel Vector {objectl, object2, object3}
- Field name?2 Vector {objectl, object2, object3}
Matrix name2 | __y,1 Field name3 Vector {objectl, object2, object3}
Field name4 Vector {objectl, object2, object3}
/ Field name5 Vector {objectl, object2, object3}
B | e
Data matrix
322 Keys Values
Field namel Vector {objectl, object2, object3}
Matrix name3 I Field name?2 Vector {objectl, object2, object3}
Field name3 Vector {objectl, object2, object3}
Field name4 Vector {objectl, object2, object3}
13 2/ Field name5 Vector {objectl, object2, object3}

FIG. 3 illustrates the data structure model

33

410
Root list as
document
model ! Scan line of document N
i \
430 420
no Y
Add to list < Start tags?
460
yes
450 v
~| Create sub-list [Scan line of document [— | End tag?
as iterator
structure yes l 7 0
440 T no Staxtvta N Release
Add to list | & handle to
430 parent
yes
FIG. 4 illustrates the creation of document model
/4 10
Document structure
560 l
: /5 10
liexation t—»| Extract & parser
counter
310
540
v v V/
Iterator String Variablfa < Data'
structure constants expression matrix
/
/ s
450 53/ l 230

FIG. 5 illustrates the procedure of data insertion

Data
insertion

2385158

A System for Inserting Hierarchical Data into an Existed Document

The field of this invention relates to computer software improvement and
implementation for inserting data into an existed document or file, and is particularly
directed to automatic insertion of hierarchical or nested data into an existed document
in accordance with directives input by an user. The system recursively renders the
elements of the document model with data retrieved from a data repository using the
regular search expression. The data repository and regular search expression are
defined by the system.

Background of this invention is to present a large corpus of hierarchical data in
different types of documents with an universal system data repository. Different from
the process of which is a creation of new documents, the invention is about to insert
the data into a target document and reserve all features of the document. It allows
users to employ various tools to create the target document for the data insertion. It
generates a structured document in terms of flexibility, efficiency and customisation.

Elements of a document are normally string constants or in texture format so that the
document contents to be printed or published over web and other network. The
elements of a structured document, such as catalogue, are usually arranged in nested
or hierarchical manner. Whereas, the data stored in database are normally in the terms
of relations either in a table or plain atomic object storage manner. Most commercial
applications store data in a relation database where the data are stored in a set of two-
dimensional relation tables. The data in the database are normally to be presented in
document elements or the portions of document elements for publication or print. The
presentation of data is a process mapping the data to appropriate document elements.
Mapping structured data to document elements appears to be a challenge, especially
when the data has large corpus. It would be difficult and time consuming process.

To present database data in the terms of hierarchical document elements, a computer
program called report generator is to map the data into the desired document elements
and to generate a documental report. Many commercial database products, like MS
Access, Oracle, have report generator to present data as a report document. However,
these report generators generate report documents based on pre-defined document
templates for specific applications. In generally, different applications may use
different templates in different report generator. Some of well defined templates may
be shared by a group of applications, but they are still not universal. Moreover, the
report generator generates a new document. Users may need additionally
programming or manually operation to copy the report elements to the portion of an
existed document to accomplish the insertion. It would be not efficient.

The current commercial solution of universal is to employ the Extensible Mark UP
Language XML. The report generator produces a XML document containing the
database data. The solution uses a XML parser to parse the XML document and
additional programmes are still needed to interact with the parsed document elements.
The additional programmes have to comply with specific presentations of
applications. For instance, XSL or XSLT programming to each HTML, DHTML,
XML, PDF, Latex presentations individually. In brief, XML provides universal data
model which may be used by different presentations but the XML is an indirect way

for the process of data insertion and still requires the additional operations to
accomplish the insertion. Both XML and report generator seem not to solve the
problem of unlimited iteration for customised insertion.

Because of the complexity and size of hierarchy data, as well as their cumbersome
usage requirements, considerable efforts is expended by an user when trying to
present data in a portion of a document while other portions of the document keep
unchanged. For example, an user wants to create a HTML web document containing a
large corpus of hierarchical data as well as with muitiple links of images and URLs. A
great deal of effort has to be expended to write a programme for production of such
web document from scratch. This invention provides a means for the user to insert the
data into the specified portion of the document while other parts of the document keep
unchanged, which reserves all links and features of the document. Therefore the user
can use a HTML editor to create a nice looking and rich linked web page as a
prototype. Then insert the hierarchical data into the prototype. In similar manner, the
user can create other document, like XML, PDF, and so on, with the same data
repository.

More specifically, the objectives of the invention is trying to enable an user to

retrieves data from database and then to:

1. insert the data into various types of documents without additional programming
specified by applications, which improves the system flexibility;

2. insert the data into different portions of a document, the user can insert a single
value of data, a group of values of data, iterated and nested values of data into the
specified portions of the document, while keep other parts unchanged to reserve
the useful features of the document. It can produce a rich and customised data
presentation, because it allows the user to use other tools to create the document
prototype;

3. an universal data repository for different presentations or documents.

The terminology used in this description is explained as following sections in
accordance with this invention.

A data repository is a run-time or persistent container to stored data and is an
implementation of a data model. In this description, the data repository is the
generalisation of the data matrices object. The data model is a way how to store data
in a data matrices object. A data matrices object is a container that holds a group of
data matrix objects. Each data matrix object within the data matrices is a two
dimensional container to contains data fields. The structure of a data matrix is similar
to a table, so a data fields as a table column. Each data fields have field names and a
set of field values. An atomic data is sometimes called cell value which locates a
specified field vector.

The variable expression is a simple regular expression indicating the system where to
retrieve the correspond value of the variable via its name and position. A variable
name is a data field name of a data matrix. The variable expression likes, not restricts
to, variable hint or sign, matrix name, variable name, and value position. The formula
likes: $table name.variable_name.row_number.

A document model is a structure of a document for insertion. The directives of
document directions may be represented by a set of iteration tags or other document
operation tags. The iteration tags are pairs of beginning and end tags that instruct the
system to create sub-model within its super model during document model creation
and to perform recursive iteration during the data insertion process. The iteration tags
may contain the data matrix names and handle of the iterations, therefore the variable
expression within the iteration tags could be a variable name like $Field name. The
formula may be, not restrict to, <iterator name=table_name:start_index:end_index>
like <iterator name=table name:2:15> means it will 13 iterations from 2 to 15. The
start and end indices specify the start and end positions of the iteration and indicates
the number of loops. If the indices are missing, like <iterator name=table name>
which means to iterate whole table.

Unlike traditional report generator, this invention inserts data retrieved from database

into a portion of an existing target document using variable expression and directives

such as iteration tags. It is that the essential features of this invention, which can be
described in more detail as the followings:

1. The system scans the target document to create a scanned-in document model
which hold scanned contents.

2. The system uses iteration tags as hints to create sub-document model to hold sub-
contents for data iterating. The iteration tags usually appears in pairs, one is start
iteration tag, another is end iteration tag. The iteration tags instruct the system to
create the sub-model and put scanned content elements in the sub-model until the
end iteration tag. It can insert other pairs of start and end iteration tags between
exiting pair tags to perform nested iterations. To support nested iteration, a
recursive algorithm was implemented to repeat the processing, if the system find
other iteration tags between the current pair of tags. It allows user can created as
many iteration as it likes.

3. The scanned-in document model contains string constants, variable expressions
which may embedded in the string constants, and sub-document models which
may contains the same types of objects as its super model.

4. The system recursively iterates the elements of the document model and parses
variable expressions that may be contained in the elements. The system retrieves
data from the data repository using the variable expression as paths and substitutes
the variable expressions with the data to accomplish the insertion

The system completely separates the document model with the data model. The both
are independent of each other. It is that make the document model agnostic about data
model it dealt with to increase flexibility. An user can create different document
models that can communicating with the data model as long as their variable
expressions are consistent. For instance, the user can create Latex, PDF, HTML
document models and insert data into these model using the same variable expressions
complying with the data model.

According to the running procedure, the system contains 4 modules: a database
connection and data retrieve module, a data storage and search module, a document
model creation module, and a data insertion module.

The database connection and data retrieve module employs the industrial standard
database connections, such DAO, ODBC and other connectivity, to connect a

database and use standard query to retrieve data from either a relational or object-
oriented database. The connection can be both local connection and network
connection including client/server and web connections. Alternatively, the module
may use or integrate other applications to retrieve data via the programming interface.
In this description, a local connection with XML configuration is given as an instance
of the implementation. The XML configure file to provide the parameters for the
database comnection and data query. The retrieved data will be put into the data
storage and search module.

The data storage and search module is a process to create a data repository in
compliance with the system defined data model. The data model is a compound data
structure which may contain sub-structures. The system defined a root container
called the data matrices. The data matrices object comprises of many other sub-
structures called data matrix, and each data matrix has an unique name as an
associated key within the data matrices. A data matrix in turn contains many data field
objects. A data field is made of a field name and a set of corresponding field values
called vector. Therefore the data matrices is 3 dimensional storage and search facility.
The first dimension is the names of data matrix objects, second dimension is field
names, and third is an indices of field values in the value set. The system can search
an atomic data in the data matrices by using the 3 dimensional parameters as a search
path. In practice, an user can implement the data model based on the above concept
using various data structure, such as data array, vector, hash table and so on. The data
matrices object can either be persistent store as a file or in computer memory.

The document model creation and data insertion module is the basis of essential
features of this invention described before. It creates a document model from
scanning a target document and composes the document model with the data
repository to accomplish the insertion of data to the target document.

A preferred embodiment of the invention will now be described with reference to the
accompanying drawings in which:

FIGURE. 1 illustrates the modules of the system according to the invention.
FIGURE. 2 illustrates database connection and data retrieve module.

FIGURE. 3 illustrates the data structure model.

FIGURE. 4 illustrates the creation of document structure.

FIGURE. § illustrates the procedure of data insertion.

FIGURE 1 illustrates an overall structure of the system module 100. The functionality
of the system 100 is to retrieve data from a data repository such as a database and
another data source and insert these data into a portion of a target document using
customised directives as hints or as data passages. The system 100 can be both
standalone application and integrated into other applications. It could be either a local
or network application. The system contains 4 modules: database connection and data
retrieve module 200, data storage and search module 300, document model creation
module 400, and data insertion module 500. The 4 modules are independent of each
other and communicate with the predefined interfaces.

The module 200 is activated first and connects the system with a database or another
data source. The module will execute query to retrieve data from the database. The
retrieved data will input into module 300. The module 300 will stored the data in the

manner that can be easily searched by regular expression. Then the module 400 scans
a target document and creates a hierarchical document model which contains the
information about the document structure for the insertion. The module 500
recursively iterates the elements of the document model and inserts data retrieved
from the data repository into the document model to produce output.

FIGURE. 2 illustrates database connection and data retrieve module 200. The module
described here is based on relation database connection via database connectivity, like
ODBC, DAO and so on. The module has two types of inputs, a script file called
database configure file 210 or a programme input 250.

- The script file 210 is a texture file which embeds the database connection parameters
and queries. For instance, if the script file is a XML file, it looks like:

<?xml version="1.0' encoding="utf-8'?>
<DBML>
<Connector>
<DBDriver>$Database driver </DBDriver>
<URLStub>$Database stub</URLStub>
<DBName>$Database name</DBName>

<DBURL>$Database stub + $Database name </DBURL>
<UserName>$User name</UserName>;
<Password>$User password</Password>
<Host>$Machine host name</Host>
<Port> $Communication port </Port>
</Connector>

<pool>$pool size </pool>

<Query name= “$table name”>$Quary 1</Query>

</DBML>

Here § indicates that it should be replaced with its real value. The XML file is used to
configure the database connection and provide the SQL query script.

A programme called Database configure parser 220 parses the script file into
elements and store the elements into a data structure. In the case of XML file the
parser based on the DOM model of XML parses the xml file and stores the results of
these elements of the xml file in a ad-hoc way, i.e. stores in a hash-table with
associated key related to the element’s tags or tag attributes. The storage is the
database parameter and query object 230 to hold these parameters and SQL
statements resulting from the parsed xml file. The storage object 230 is a separate
layer between input and database linker 260. It can also be the interface of input
methods and provide a flexible mechanism to accommodate different input methods
210 and 250. The method allows an user to change its query or connection to increase
flexibility.

Alternatively, an user can write its own programme to retrieve data from database or
integrate the module into another application via the programme interface API 240,
The retrieved data are also imported into the object 230.

The database linker object 260 read the database connector parameters from the
database parameters and query 230 to make database 270 connection. The necessary
parameters required by database 270 mainly include the database driver, database

URL, user identification and password. If the connection is successful, the database
linker 260 can execute SQL statements from the database parameter and query 230
and retrieve data from the database 270. The resulting data will be stored in a data
matrices 300.

FIGURE. 3 illustrates the data structure model which makes of the data storage and
search module 300. The retrieved data are stored in data matrices object 310 that is a
compound data structure to contain other sub-structures. Each sub-structure may have
its own sub-structures. It builds so-called 3 dimensional or layers data structure, i. e.
it is a nested data structure in compliance with the regular search expression. The
basic or oot dimension is the root matrix 310. It is a data structure stores the data
matrix objects, 330, 331, 332, and so on (33x), their associated keys are 320, 321, 322
(32x), respectively. This data structure can be implemented as an instance of hash
tables or maps that stores the both objects and their associated keys. The keys will
help the system to retrieve the objects from the data structure. The data matrices
object 310 also has behaviour for the system to manipulate the stored objects. It can
add, delete and retrieve a object with its associated key. It provides the first entry for
the system to search a data matrix object with its associated key.

The second dimension is a data matrix 330x and the data matrix is also a data
structures similar to data matrices object 310. The data matrix stores data field objects
and their associated keys. It can manipulate the stored data field objects and provide
second search entry to find a set of field values with the field name. They are also
more likely to be an instance of hash table or maps.

Third dimension is data field objects that are stored in data matrix 33x. A data field is
a container of a set of data filed values or cell data. The data field values are atomic
data of the system. These atomic data are stored in a data structure such as linked data
array or vector, which keeps the order of the objects during storage. The data structure
allows identical data objects to be stored in its different portions. Every stored atomic
data object has its index and the index services as search entry to find it specified
atomic data. Generally, an index search is faster than key search.

The first and second dimensions used keys to search the corresponding objects. In the
first dimension, a key is the name of a data matrix, so in second dimension, the key is
the name of a data field. These names have to be unique within their container, more
specifically, the names of data matrix 32x have to be unique within a data matrices
310, the names of data fields have to unique within a data matrix. Third dimension
uses an index to search its corresponding object. Thus it provides the facility of name
space search. The search expression is matrix_name.field_name.index. All
manipulations of a data object have to follow the procedure indicated by the
expression. The data matrices is generally described as a data repository defined by
the system.

The default values for missing of dimensional parameters of search expressions are in
following rules. If an index of a field value is messing, it should return all values in
the specified data field. If a field name 32x is missing, it should return all fields in the
specified data matrix. If a name of a data matrix is missing, it should return null due
to the fact that no specified data can be found.

FIG. 4 illustrates the module 400 of the creation of document model using recursive
programming on scanned-in document. An user writes directives as hints on a target
document to indicate the system where to insert the specified data objects into the
documents. The hints includes variable expressions complying with search expression
and directives specifying iterations. There are two kinds of insertions: atomic data
insertion and hierarchical data insertion. The former is to insert atomic data objects
into the specified portion of the target document. The expression of the hint may be
$matrix_name.field name.index, while sign $ indicates that it is a variable. An user
could use another special character as the variable indication. The later is to insert
hierarchic data objects into the target document indicated by the directives in the
document. These directives, in the description, are represented by iteration tags. The
user has to write start tag to start iteration and end tag to end iteration and also the
number of iteration. The tags looks like,
<iterator query=matrix_name:bigin_index:end_index>

The default value means all data, for instance, <iterator query=matrix_name> means
iterating all rows in specified data field; <iterator query=matrix_name:x> iterating
from x to end; <iterator query=matrix_name:x:y> iterating from x to y. The field
name within the iterator likes $field_name, since the iterator handles indices and the
name of the specified matrix object. The end tag might be </iterator>. The user can
define his own pair of iteration tags if he wishes. An example for Latex document is
give:

\section{\sffamily { Course Entries}}

{\it Primary Course:} $course.Course.1
<iterator query=department>

\subsection {$Department}
\lhead[$Department]{}
\rhead[]{$Department}

<iterator query=course>

\foreignlanguage {nohyphenation} {\subsubsection{$Course \index {courseindex} {$Cour
se {\it \\($Department)}}}}

{\it Credits:} $Credits \hfill {\it Level:} $Level
{\it When Taught:} $Taught

{\it Timetable:} $Timetable

{\it Requirements of entry:} $EntryReq

{\it Co-requisites:} $CoReq

{\it Excluded Courses:} $Exclude

{\it Assessment:} $Assessment

{\it Degree Examination taken in:} $DegreeExam
{\it Resit Examination taken in:} $ResitExam
{\it Aims:} $Aims

{\it Honours Course Prescription:} $Honours
{\it Course Co-ordinator:} $Coordinator
<literator>

</iterator>

The procedure of creation of the document model is described as follows:

1. The system first creates a root list 410 to hold all data. The root list is a generic
data structure, normally a linked data array or a vector that stores data elements in
sequence.

2. The system scans the target document 420 and parses the string line.

3. If the string line doesn’t contain an iteration start tag 430, it adds the string 440
into the corresponding list, it might be root list or sub-list depends on the iteration
status. The root list 410 indicates the outmost iteration.

4. If the string line contains a start iteration tag 430, it creates a sub-list 450 which is
similar data structure as root list. Repeat the procedure 2, and 3. There after the
string will be added to sub-list 450 until an end iteration tag is met. The sub-list
will be added to its super list.

5. When the string contains an end iteration tag 460, the system would release the
handle 470 to its super list, which is to transfer the current iteration to its outer
iteration. The scanned string after the end iteration tag will be added to the super
list thereafier.

6. For nested iteration, the producers 2, 3, and 4 are performed repeatedly according
to the application.

The list stores the structured information of the document and can be described as in
the terms of document model. The root list is a document model and the sub-lists are
sub-models. The sub-models are also called as iterator structure in the case of
processing description.

A recursive programming technique is employed to implement the procedure. It
provides elegant and flexible solution for users to carry out unlimited iteration
theoretically. Any computer programming Language, which supports recursive
feature, such as C++, Java, can implement the procedure. Here is example in Java
code fragment:

public void scanLine(String s, Vector v0) throws IOException
{

if(s == null)

s = BReader1.readLine(); //skip empty line

else if{s.trim().equals(getiteratorTag()))

Vector v = new Vector();
String con = new String();
do

{
String s1 = BReaderl.readLine();

if(s1.trim().equals(getlteratorTag()))
scanLine(s1, v); //recursive loop

else if(!s1.trim().equals("</iterator>"))

v.addElement(s1);
con=sl;
}while(!con.trim().equals("</iterator>")});
v0.addElement(v);
}else

v0.addElement(s);

The created document model contains string constants, variables expressions
indicated by $ character or other user defined character, and sub-models which in turn
may contain the same types of contents as their super model to form the hierarchical
structure. The variables present by prefix character and variable expression are regular
expressions to indicate the system where to find their corresponding values in the data
repository. Each sub-model contains iterator information including the indices of start

and end iteration, super model information, and the name of the data matrix it
belongs.

FIGURE. 5 illustrates the module 500 of data insertion. Data insertion is a processing

that recursively transverses the elements of the document model 410 and inserts data

retrieved from the data matrices 310 into the appropriate document elements. The
procedure includes following steps:

1. It extracts document elements from the document model and parses these
elements. The parsed result is one of the three types, iterator structures 450, string
constants and variables.

2. If the element is iterator structure 450, set up an iteration counter to start index
and go back step 1, repeat it until the iteration counter reach the end index of the
iteration.

3. If the parsed element is a string constant 530, the element will be directly written
into the target document using data insertion 550.

4. If the parsed element is a string with variable expression 540. The system will
parse the expression onto dimensional search entries including matrix name, field
name and data index, then use these entries to fetch data from data matrices 310.
Parse the expression is firstly to check whether the variable is outside an iteration
loop. If it is, the parser tokenises the expression and builds a data array containing
these entries. If it is not outside the iteration loop, the parser has to get the matrix
name and iterator counter 560 as data index from the corresponding iterator
information.

5. The fetched data from the data repository 310 will be inserted into the appropriate
elements of the target document by substitution of the variable expressions.

The following sections will give an example to show how the invention works.

Suppose an university wants to publish its course catalogue on the web in HTML
document. The course catalogue is organised as the way that the university has many
departments, and each department teaches many courses. Different department
teaches different courses. The departmental and course data are stored in department
and course tables separately in a relation database. The name of department table is
“department”, and the name of course table is “course”. It requires to publish these
courses grouped by the departments. The web publisher, first all, writes a script file in
XML format for database connection and query, shown as:
<?xml version='1.0' encoding="utf-8'?>
<DBML>
<Connector>

<DBDriver>sun.jdbc.odbc.JdbcOdbceDriver</DBDriver>

<URLStub>jdbc:odbc:</URLStub>

<DBName>diary</DBName>

<DBURL>jdbc:odbc:diary</DBURL>

<UserName>user_id</UserName>

<Password>pwd</Password>

<Port>:708</Port>

<Host>localhost</Host>

<PoolSize>50</PoolSize>
</Connector>

<deparment>select * from department</deparment>
<course>select * from course</course>

10

</DBML>

Then he creates a HTML prototyping file which has nice looking and multiple links
using commercial editor tool. The HTML document is used as the target document for
data insertion. The web publisher write the hints on the target document to instruct the
system where and how to insert data as:

Other HTML elements

<!- -data inert here - ->

<iterator query=department>

<hd>Department: $Department</h4>

<iterator query=course>

 $Code <img src="hitp://www.gla.ac.uk/graphics/x.gif" border="0" alt
="" width="50" height="1"> §Name

<i>Credits:</i> $Credits <img src="http://www.gla.ac.uk/graphics/x.gif" border=
"0" alt="" width="150" height="1"> <i>Level:</i> §Level

<i>When taught:</i> $Taught

<i>Timetable:</i> $Timetable

<i>Requirements of entry:</i> $EntryReq

<i>Co-requisites:</i> $CoReq

<i>Excluded Courses:</i> $Exclude

<j>Assessment:</i> $ Assessment

<i>Degree Examinations taken in:</i> $DegreeExam

<i>Resit Examinations taken in:</i> $ResitExam

<i>Aims:</i> $Aims

<i>Honours Course Prescription:</i> $Honours

<i>Course Co-ordinator:</i> $Coordinator

</iterator>

</iterator>

..

The system was implemented in Java, JDK 1.4, the latest version which has the XML
parser and linked hash map classes. It could be implemented in other programming
languages that have recursive programming features. Once running the system, the
system connects to a database and retrieves data from the database using the database
parameters provided by the database connection script file. ’

The retrieved data are imported into a data repository called “data matrices”. The root
matrix called data matrices object is an instance of HashMap class. The data matrices
can stored the name of a data matrix as key object and the data matrix as value object.
It can retrieve the stored object via its key. The second dimensional object called data
matrix is the instance of LinkedHashMap. The structure is similar to above except it
keeps a sequence of stored object. A data matrix stores data field names as keys and
data field values as value objects. The third dimensional object is data field values
which is an instance of Vector. The data field stores atomic object of this application.
The atomic object is used to insert to a target document and substitute its variables.
All manipulations have to via the three dimensional entry comply with the regular
expression for the system to retrieve data.

Then the system scans the target document by calling the scanLine subroutine. It
creates a data vector to hold the scanned result. When scan to department iterator, it
creates a department vector to hold departmental data. All scanned data afterward will
be stored in the department vector until the end iteration tag. Similarly, it scans the

11

course iterator, it creates a course vector to hold course data. The course vector is an
element of department vector and the department is an element of data vector. The
data insertion process is the iteration of the data vector. When the iteration encounters
the department vector, it starts department iteration. After it gets department name
variables, it starts the course iteration. Once the course iteration finished, it releases
the handle to another department iteration for next run, and so on. During the
iterations, the system parses and substitutes the variable expressions with the data
retrieved from the data repository. Therefore the hierarchic data are inserted into the
target document.

The course catalogue in HTML formatting is ready for publish. The process only
insert data into the related portion of the document, whereas, don’t change other
portion of the document. It reserves all features of the prototype of the document.

1.
CLAIMS

What claimed is:

1. A system of computer implementation for inserting hierarchical data into an existed
target document, the system comprising: a module to connect a database and retrieve
data from a database or another data source; a module to stored data in a multiple
dimensional data repository and provide a search or retrieve path complying with
regular expression; a module to generate a hierarchical document model based on
scanning the target document including using directives as hint to create sub-model; a
module to recursively transverse and insert the elements of the document model with
the retrieved data.

2. The system of inserting hierarchical data into an existed document of claim 1, the
database connection and retrieve module uses the XML script file to provide the
connection parameters and query script. Alternatively, the module can be integrated
into another system via the application programming interface to connect databases.
An user can also employs other industrial standard modules to connect a database and
retrieve data from the databases or from other data sources.

3. The system for inserting hierarchical data into an existed document of claim 1,
wherein a data store module is to store data retrieved from databases or other data
sources into a predefined multiple dimensional data repository. The data repository is
a compound data structure to store data and provides search path complying with
regular search expression. The data repository can be made as persistent object or as
run-time object residing in computer memory.

4. The system of inserting hierarchical data into an existed document of claim 1,
wherein the generation module of a document model is a process for the system to
create a hierarchical document model based on scanned-in the existed document and
on the using directives embedded in document. The document model is a derivation of
generic data structure to store the elements of the target document elements. The
system uses these directives as hints to perform the generation of both document and
sub-document models. These directives can be nested, users can insert sub-directives
between existed directives to build a hierarchical document model. These directives
can be represented by, not restrict to, a set of iteration tags such as pairs of start
iteration and end iteration tags. These iteration tags instruct the system to transversely
iterate the contents between start and end iteration tags.

5. The system of inserting hierarchical data into an existed document of claim 1,
wherein a data insertion module is a recursive process for the system to insert data
into the created document model. The process transversely iterates the elements of the
document model and parses these elements using the system defined expression. It
then inserts the retrieved correspond data to the appropriate elements of the document
mode].

6. The system of inserting hierarchical data into an existed document of claim 1,
wherein the existed document is a textural or text contained document in computer
readable format.

&ﬂ«‘-i ’ T}“f"yfa
& 1C o
+ Patent - 7
5, Office £ { J
o, 13 & S
T e %&9 INVESTOR IN PEOPLE
Application No: GB 0202848.8. Examiner: Ben Widdows
Claims searched: 1-6 Date of search: 10 January 2003
Patents Act 1977 : Search Report under Section 17
Documents considered to be relevant:
Category | Relevant | Identity of document and passage or figure of particular relevance
to claims
X atleast | US 2001/0052908 A (HARTMAN) see abstract and paragraph [0066]
1,3&6 on page 6
X alt ;fzs()t US 6282539 Bl (LUCA) see summary of invention
A - US 5539903 A (IBM) see abstract
A - EP 1122692 A2 (SOLIDWORKS CORP) see abstract
Categories:
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
& Member of the same patent family E Patent document published on or after, but with priority date earlier
than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCY:
G4A

Worldwide search of patent documents classified in the following areas of the IPC’:
GO6F

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO
THE INTERNET

AnExecutive Agency of the Department of Trade and Industry

