PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/38583
GOG6F 17/00, 17/30 Al . L

(43) International Publication Date: 3 September 1998 (03.09.98)

(21) International Application Number: PCT/US98/03573 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 24 February 1998 (24.02.98)

(30) Priority Data:

60/039,813 26 February 1997 (26.02.97) us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
uUs
Filed on

60/039,813 (CON)
26 February 1997 (26.02.97)

(71) Applicant (for all designated States except US): SIEBEL
SYSTEMS, INC. [US/US]; 1855 South Grant Street, San
Mateo, CA 94402 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODERSEN, Robert,
A. [US/US]; 17 Spinaker Drive, Redwood City, CA 94065
(US). LIM, Peter, S. [US/US]; 917 Governors Bay Drive,
Redwood City, CA 94065 (US).

(74) Agents: GOLDMAN, Richard, M.,; Cooley Godward LLP,
3000 El Camino Real, Five Palo Alto Square, Palo Alto,
CA 94306-2155 (US) et al.

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,
GH, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD OF DETERMINING VISIBILITY TO A REMOTE DATABASE CLIENT OF A PLURALITY OF DATABASE
TRANSACTIONS HAVING VARIABLE VISIBILITY STRENGTHS

(e}
:1

(57) Abstract

The invention relates to a method of managing a database. The database includes a central database (3) and separate partially
replicated databases (23-a, 23-b, 23—c). Each partially replicated database resides in a separate node (21-a, 21-b, 21-c). Each replicated
database has an associated visibility strength. The method of managing a database determines the visibility strength of a partially replicated
database to data being propagated, determines therefrom the visibility of the partially replicated database to the data being propagated, and
propagates the data to a partially replicated database only if the node of the partially replicated database has visibility to the data.




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania

Armenia

Austria

Australia
Azerbaijan

Bosnia and Herzegovina
Barbados

Belgium

Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo

Switzerland

Cate d’Tvoire
Cameroon

China

Cuba

Czech Republic
Germany -
Denmark

Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KzZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV

- MC

MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
uUs
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

WO 98/38583 PCT/US98/03573

METHOD OF DETERMINING VISIBILITY TO A REMOTE DATABASE
CLIENT OF A PLURALITY OF DATABASE TRANSACTIONS HAVING
VARIABLE VISIBILITY STRENGTHS

INTRODUCTION

I.Technical Field

This invention relates to a system and method for providing updates to a network of
partially replicated relational database systems, and, more particularly, for providing
an efficient means for computing the visibility to a client on the network of a

transaction processed against the database.

IIL. Background

Relational databases are a commonly-employed data structure for representing
data in a business or other environment. A relational database represents data in the
form of a collection of two-dimensional tables. Each table comprises a series of cells
arranged in rows and columns. Typically, a row in a table represents a particular
observation. A column represents either a data field or a pointer to a row in another
table.

For example, a database describing an organizational structure may have one
table to describe each position in the organization, and another table to describe each
employee in the organization. The employee table may include information specific
to the employee, such as name, employee number, age, salary, etc. The position
table may include information specific to the position, such as the position title
("salesman", "vice president", etc.), a salary range, and the like. The tables may be
related by, for example, providing in each row of the employee table a pointer to a
particular row in the position table, coordinated so that, for each row in the employee

table, there is a pointer to the particular row in the position table that describes that

-1-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

employee’s position. A relational database management system (RDBMS) supports
"joining" these tables in response to a query from a user, so that the user making a
query about, for example, a particular employee, may be provided with a report of
the selected employee, including not only the information in the employee table, but
also the information in the related position table.

Relational databases may be much more complex than this example, with

several tables and a multiplicity of relations among them.

With the widespread use of inexpensive portable computers, it is advantageous
to replicate a database onto a portable computer for reference at locations remote
from the central computer. The replicated database may then be referenced by the
user of the portable computer, without requiring reference to the main database,
which may be maintained at a central location inconvenient to the user of the portable

computer. However, there are a number of difficulties with the use of a replicated
database.

One disadvantage is that a full copy of the central database may require more
data storage than is desired or economical. For example, a salesman working in the
field may need to refer to the database for information regarding sales opportunities
in his sales area, but have no need to refer to any information regarding sales
opportunities outside of his area. One possible approach to reduce the amount of
required data storage is to simply replicate only that portion of the database that is
needed by the user. However, this approach does not recognize that the criteria to
determine which portions of the data are required is likely to vary over time. For
example, the salesman may have a new city added to his territory. Under
conventional approaches, the salesman would need to re-replicate his local copy of
the database, this time selecting data including the added city. Such a practice is

inconvenient, subject to error, and time-consuming.

A further disadvantage to a replicated database is the difficulties encountered
in attempting to update data using the replicated copy. A change made to the

-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

replicated database is not made to the central database, leading to a discrepancy
between the information that is stored in the replicated copy of the database and the
information that is stored in the central database. Although it is possible to journal
modifications made to the replicated copy and apply an identical modification to the
central database, one problem that this approach faces is the possibility of colliding
updates; that is, where a user of a replicated copy makes a change to data that is also

changed by a user of the central copy or by the user of another replicated copy.

It is therefore desirable to provide a capability to maintain one or more
partially-replicated copies of a central database, in such a way that the degree of
replication may be easily changed without requiring a refresh of the entire replicated
database, and that permits updates to be coordinated among users of the central

database and users of the partially replicated databases.

SUMMARY OF THE INVENTION

The present invention is directed to a method of maintaining a partially
replicated database in such a way that updates made to a central database, or to
another partially replicated database, are selectively propagated to the partially
replicated database. Updates are propagated to a partially replicated database if the
owner of the partially replicated database is deemed to have visibility to the data
being updated. Visibility is determined by use of predetermined rules stored in a
rules database. In one aspect of the invention, the stored rules are assessed against
data content of various tables that make up a logical entity, known as a docking
object, that is being updated.

In another aspect of the invention, the stored rules are assessed against data
content of one or more docking objects that are not necessarily updated, but that are
related to a docking object being updated. In one embodiment, the visibility attributes

of the related docking objects are recursively determined.

In yet another aspect of the invention, changes in visibility are determined to

enable the central computer to direct the nodes to insert the docking object into its

-3-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

partially replicated database. Such changes in visibility are determined so as to
enable the central computer to direct a node to remove a docking object from its
partially replicated database.

In a further aspect of the invention, the predetermined rules are in declarative
form and specify visibility of data based upon structure of the data without reference
to data content.

In still another aspect of the invention, the transactions made to the database
are ordered and processed in such a way as to reduce the computational resources

required to calculate the visibility of the transactions.

In still another aspect of the invention, the transactions made to the database
are ordered and processed using a cache in such a way as to reduce the computational

resources required to calculate the visibility of the transactions.

In still another aspect of the invention, database objects and transactions have
an associated visibility strength used to determine the visibility of a transaction to an

object.

In still another aspect of the invention, the visibility calculations are performed

using a simplified set of rules located in a central dictionary.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts an overview of the operation of one embodiment of the

present invention.

Figure 2 depicts a database schema that shows the relationship of the various

components that make up a Docking Object.

Figure 3 depicts steps performed by an update manager to update a database.



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Figure 4 depicts steps performed by a Docking Manager to transmit and/or

receive one or more transaction logs.

Figure 5 depicts the steps performed by a merge processor to merge

transaction log records into an existing database.

Figure 6 depicts the steps performed by a log manager to prepare a partial
transaction log.

Figure 7 depicts the steps performed by a visibility calculator for calculating
visibility for a docking object as invoked by a log manager.

Figure 8 depicts the steps performed to synchronize a partially replicated
database in response to a change in data visibility.

Figure 9 depicts the structure of the database design of the transaction log
table.

Figure 10 depicts a database diagram for the central dictionary.

DESCRIPTION OF SPECIFIC EMBODIMENTS

Overview

Figure 1 depicts an overview of the operation of one embodiment of the
present invention. Figure 1 depicts a central computer system 1 and three remote
computer systems (or "nodes") 21-a, 21-b, and 21-c. Each of nodes 21-a, 21-b and
21-c are depicted in various states of communication with central computer system
1, as will be more fully explained. Central computer system 1 includes a central
database 3, a docking manager 5, a merge processor 7 and a log manager 9. Central

computer system 1 additionally optionally includes update manager 11 responsive to

user input 13.

Node 21-a is a remote computer system, such as a mobile client such as a
laptop computer. Node 21-a includes a partially replicated remote database 23-a,

update manager 31-a responsive to user input 33-a, docking manager 25-a and merge

-5-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

manager 27-a. In operation, update manager is responsive to user input 33-a to make
changes to remote database 23-a as directed by the operator of node 21-a. Updates

made are recorded, or journaled, in node update log 35-a.

At some point at the convenience of the operator of node 21-a, node docking
manager 35-a is activated, and enters into communication with central docking
manager 5. Update log 35-a is taken as input by node docking manager 25-a, and
provided to central docking manager 5. Central docking manager 5 creates a received
node update log 19, which contains all the information that had been recorded in
update log 35-a. Optionally, partial log 17-a is taken as input by central docking
manager 5 and provided to node docking manager 25-a, as more fully described

herein.

At some point in time, at the convenience of the operator of central computer
system 1, merge processor 7 is activated. Merge processor 7 takes as input received
node update log 19, and applies the updates described therein to central database 3.
In the process of applying the updates from received node update log 19, merge
processor journals the updates applied to central update log 15. Optionally, update
manager 11, responsive to user input 12 makes additional changed to central database
3 as directed by the operator of central computer system 1. The updates made by
update manager 11 are additionally journaled in central update log 15.

At some point in time, at the convenience of the operator of central computer
system 1, log manager 9 is activated. Log manager 9 takes as input central update
log 15 and produces as output a set of partial logs 17-a, 17-b and 17-c according to
visibility rules as will be further described herein. Each of partial logs 17-a, 17-b
and 17-c corresponds to one of nodes 21-a, 21-b and 21-c. When a node docking
manager such as node docking manager 25-a enters into communication with central
docking manager 5 and optionally requests transmission of its corresponding partial
log, ceqtral docking manager 5 takes as input the appropriate partial log, such as
partial log 17-a, and presents it to node docking manager 25-a. Node docking
manager 25-a then replicates partial log 17-a as merge log 37-a.

-6-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

At some point in the future, at the convenience of the operator of node 21-a,
merge processor 27-a is activated. Merge processor 27-a takes as input merge log

37-a, and applies the updates described therein to partially replicated database 23-a.

In addition to node 21-a, Figure 1 also depicts two additional nodes 21-b and
21-c. Node 21-b is depicted in communication with central computer 1. However,
unlike node 21-a, the operator of node 21-b has requested only to send his updates
to central computer system 1, and has not requested to be presented with changes
made elsewhere to be made to his partially replicated database 23-b. This may be,
for example, if the operator has an urgent update that must be made as soon as
possible, but does not have the time to receive updates from other nodes.
Accordingly, Figure 1 shows only transmission of node update log 35-a from node
docking manager 25-b to central docking manager 5, and no transmission from central
docking manager 5 to node docking manager 25-b. Accordingly, the merge manager

for node 21-b is not activated and is not shown.

Likewise, node 21-c is depicted as not in communication with central
computer system 1. Accordingly, the docking manager for node 21-c is not activated

and is not shown.

By the cycle described above, updates made by each of nodes 21-a, 21-b and
21-c are presented to central computer system 1, permitting central database 3 to be
updated accordingly. In addition, each of the updates made by each of the nodes 21-
a, 21-b and 21-c, as well as updates made on central computer system 1, are routed
back to each of nodes 21-a, 21-b, and 21-c, thereby keeping each of partial databases
23-a, 23-b and 23-c in synchronization with each other and with central database 3.

Database Structure

The synchronization of central database 3 with node databases 23-a, 23-b and
23-c is performed using a construct called a Docking Object. A Docking Object
consists of Member Tables (including one Primary Table), Visibility Rules, Visibility



WO 98/38583 PCT/US98/03573

10

15

20

25

30

Events, and related Docking Objects. Each docking object has a visibility level and

visibility level attributer as will be described more fully herein below.

A Member Table is a table of the relational database that makes up a docking
object. When a docking object is propagated from central database 3 to one of node
databases 23-a, 23-b or 23-c, the propagation takes the form of an insertion into each
of the Member Tables associated with the particular docking object. Similarly, when
a docking object is scheduled to be removed from a database, that removal consists
of deleting records from the member tables associated with the docking object. For
example, a docking object that represents a sales opportunity may include tables that
represent the opportunity itself (e.g., named "S_OPTY"), the product whose sale is
represented by the opportunity (e.g., named "S_OPTY_PROD"), the contact for the
opportunity (e.g., named "S_OPTY_CONTACT"), etc. Each of these tables is said
to be a member table of the "Opportunity Docking Object.” In an additional aspect
of hte invention, each member table row can have one or more rows that correspond

to the docking object.

A Primary Table is a Member Table that controls whether a particular instance
of a Docking Object is visible to a particular node. The Primary Table has a Primary
Row-ID value that is used to identify a row of the Primary Table being updated,
deleted or inserted. For example, the "Opportunity Docking Object" may have as a
primary table the table S_OPTY. The row-id of that table, i.e., S_OPTY.row_id, is
the Primary Row-ID for the Opportunity Docking Object.

Each dock object has a visibility level and a visibility level attribute that are
analyzed using visibility rules. The valid values are ’Enterprise’, ’Limited’ and
"Private.” All member table rows in an enterprise dock object are replicated to any
nodes. Member table rows in limited dock objects are replicated to any nodes.
Member table rows in limited dock objects are subject to visibility checks and are
routed to nodes that have visibility to the rows. A Visibility Rule is a criterion that
determines whether a particular instance of a Docking Object is "visible" to a

particular node 21. If a Docking Object is visible to a particular node, that node will

-8-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

receive updates for data in the Docking Object. Visibility Rules are of two types,
depending on the fiecld RULE_TYPE. A Visibility Rule with a RULE _TYPE of "R"
is referred to as an SQL Rule. An SQL Rule includes a set of Structured Query
Language (SQL) statements that is evaluated to determine if any data meeting the
criteria specified in the SQL statements exists in the Docking Object. If so, the
Docking Object is visible to the node. A Visibility Rule with a RULE_TYPE of "O"
is referred to as a Docking Object Rule. A Docking Object Rule specifies another
Docking Object to be queried for visibility. If the specified Docking Object is
visible, then the Docking Object pointing to it is also visible.

A Related Docking Object is a Docking Object that is propagated or deleted
when the Docking Object under consideration is propagated or deleted. For example,
an Opportunity Docking Object may have related Docking Objects representing the
sales contacts, the organizations, the products to be sold, and the activities needed to
pursue the opportunity. When an Opportunity Docking Object is propagated from
Central Database 3 to one of node databases 23, the related docking objects are also
propagated.

Figure 2 depicts a database schema that shows the relationship of the various
components that make up a Docking Object. The schema is a meta-database, in that
it does not describe the data being accessed in the database. Rather, the schema is
a separate database that defines the structure of the database being accessed. That is,

it is a database comprising tables that describe the relationships and data contexts of
another database.

Each of the tables shown in Figure 2 is a table in a relational database, and
as such is in row-column form. Many columns represent fields that are common to
all the illustrated tables. Such fields include for example, a ROW_ID to identify a
particular row in the table, as well as fields to track the date and time that a row was
created and last modified, and the identity of the user who created or modified the
row. In addition, each table contains fields specific to that table, and which are
described in detail below.



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Table S DOBJ 61 describes the Docking Objects in an application. Table
S_DOBJ 61 includes the fields OB]_NAME and PRIMARY _TABLE ID. Field
OBJ_NAME defines the name of the Docking Object being described. Field
PRIMARY TABLE ID is used to identify the primary table associated with this
Docking Object.

Table S_DOBJ_INST 63 describes whether a particular instance of a Docking
Object, described by table S_DOBJ 61, is present on a particular node’s database.
Table S DOBJ_INST 63 includes the fields NODE_ID, DOBJ_ID and
PR_TBL_ROW_ID. Field NODE_ID points to a particular node table 65. Field
DOBJ_ID points to the Docking Object to which the Docking Object instance applies.
Field PR_TBL_ROW_ID is used to select a particular row in the Primary Table of
the Docking Object. This value identifies the Docking Object instance.

Table S REL_DOBJ 67 describes the related Docking Objects of a particular
Docking Object, described by table S_DOBJ 61. Table S_REL_DOBJ 67 includes
the fields DOBJ_ID, REL DOBJ_ID, and SQL_STATEMENT. Field DOBJ_ID
identifies the Docking Object that owns a particular related Docking Object. Field
REL_DOBJ_ID identifies the related Docking Object that is owned by the Docking
Object identified by DOBJ_ID. Field SQL_STATEMENT is an SQL statement that
may be executed to obtain the Primary ID value of the related Docking Object.

Table S DOBJ_TBL 69 describes the member tables of a particular Docking
Object, described by table S_DOBJ 61. Table S_DOBJ_TBL 69 includes the fields
DOBJ_ID, TBL _ID, and VIS_EVENT FLG. Field DOBJ_ID identifies the Docking
Object that contains the member table described by the row. Field TBL_ID identifies
the particular table in the database that is the member table described by the row.
Field VIS_EVENT FLG is a flag that indicates whether a change to this Docking
Object can result in a visibility event. A value of "Y" indicates that a change can

result in a visibility event; a value of "N" indicates that it cannot.

-10-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Table S_DOBJ_VIS_RULE 71 contains the visibility rules associated with a
particular Docking Object. S_DOBJ_VIS_RULE 71 contains the fields DOBJ_ID,
RULE_SEQUENCE, RULE TYPE, SQL_STATEMENT and CHECK_DOBJ_ID.
Field DOBJ_ID identifies the Docking Object with which a particular visibility rule
is associated. Field RULE SEQUENCE is a sequence number that indicates the
sequence, relative to other visibility rules in table S_DOBJ_VIS_RULE 71, in which
the particular visibility rule should be run. RULE_TYPE specifies whether the
particular visibility rule is of type "R," indicating an SQL visibility rule or of type
"0," indicating a Docking Object visibility rule.

If RULE_TYPE is equal to "R," field CHECK_DOBIJ_ID is not meaningful,
and field SQL_STATEMENT contains an SQL statement that is evaluated using the
Primary ROW-ID of the primary table associated with this Docking Object and a
particular Node 21. If the SQL statement returns any records, the Docking Object
is deemed to be visible to the Node 21 for which visibility is béing determined.

If RULE_TYPE is equal to "O," both field CHECK_DOBJ_ID and field
SQL_STATEMENT are meaningful. Field CHECK_DOBJ_ID specifies a docking
object whose visibility should be determined. If the specified docking object is
deemed to be visible, then the docking object associated with the visibility rule is also
visible. Field SQL_STATEMENT contains a SQL statement that, when executed,
returns the Row-ID of the docking object identified by CHECK_DOBJ_ID that

corresponds to the docking object instance associated with the visibility rule.

Table S_APP_TBL 73 is an Application Table that describes all the tables used
in a particular application. It is pointed to by table S_DOBJ_TBL 69 for each
member table in a docking object, and by table S_DOBJ for the primary table in a
docking object. S_APP TBL 73 points to table S_APP_COL 75, which is an
Application Column Table that describes the columns of data in a particular
application. S_APP TBL 73 points to table S_APP_COL 75 directly through a
primary key and indirectly through such means as a Foreign Key Column Table 81,
User Key Column Table 83, and Column Group Table 85. The relationship of an

-11-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Application Table, Application Column Table, Foreign Key Column Table, User Key
Column Table and Column Group Table are well known in the art and are not further
described.

Update Processing

Figure 3 depicts steps performed by an update manager 31 such as update
manager 31-a, 31-b or 31-c in updating a database, such as a node database 23-a, 23-
b or 23-c, responsive to user input. Execution of update manager 31 begins in step
101. In step 103, the update manager 31 accepts from the user input 33 in the form
of a command requesting that the data in database 23 be altered. The request may
be in the form of a request to delete a row of a table, to add a row to a table, or to
change the value of a cell at a particular column of a particular row in a table. In
step 105, using a well-known means, the update manager 31 applies the requested
update to database 23. In step 107, the update manager 31 creates a log record
describing the update and writes it to update log 35.

The contents of a log record describe the update made. Each log record
indicates the node identifier of the node making the update, an identification of the
table being updated, and an identification of the type of update being made, i.e., an
insertion of a new row, a deletion of an existing row, or an update to an existing
row. For an insertion, the log record additionally includes an identifier of the row
being inserted, including its primary key and the values of the other columns in the
row. For a deletion, the log record identifies the primary key of the row being
deleted. For an update, the log record identifies the primary key of the row being
updated, the column within the row being updated, the old value of the cell at the

addressed row and column, and the new value of the cell.

After writing a log record in step 107, the update processor exits for this
update. The foregoing description of the update processing preferably includes
additional steps not material to the present invention, for example, to assure

authorization of the user to make the update, to stage and commit the write to the

-12-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

database to allow for rollback in the event of software or hardware failure, and the

like. These steps are well-known in the art and are not described further.

An update manager 11 executing in central computer system 1 operates in an
analogous manner, except that it updates central database 3 and writes its log records
to central update log 11.

Docking Processing

Figure 4 depicts steps performed by a Docking Manager 25 such as Docking
Manager 25-a, 25-b or 25-c to transmit and/or receive one or more transaction logs.
Docking Manager 25 is invoked by the user of a remote node such as node 21-a, 21-b
or 21-c, whereby the user requests that the node dock with central computer 1 to
upload an update log such as update log 35-a to central computer 1, to download a
partial log such as partial log 17-a, or both. Execution of Docking Manager 25
begins in step 121. In step 123, Docking Manager 25 connects with central computer
1 under the control of Central Docking Manager 5. This connection can be any
connection that enables data exchange. It is anticipated that the most common form
of a connection is a telephone line used in conjunction with a modem, but other forms
of data connection, such as a Local Area Network or a TCP/IP connection may also
be used. Step 125 checks to see whether the user has requested that node update log
35-a be uploaded to the Central Computer 1. If so, execution proceeds to step 127.
If not, step 127 is skipped and control is given to step 129. In step 127, Docking
Manager 25 uploads its update log to central computer 1. The upload may be
accomplished with any known file transfer means, such as XMODEM, ZMODEM,
KERMIT, FTP, ASCII transfer, or any other method of transmitting data. In step
129, Docking Manager 25 checks to see whether the user has requested that a partial
log such as partial log 17-a be downloaded from Central Computer 1. If so, execution
proceeds to step 131. If not, step 131 is skipped and control is given to step 133.
In step 131, Docking Manager 25 downloads its partial log from central computer
1. The download may be accomplished with any known file transfer means, such as
XMODEM, ZMODEM, KERMIT, FTP, ASCII transfer, or any other method of

-13-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

transmitting data. In step 133, having completed the requested data transfer, Docking

Manager 25 exits.

Merge Processing

Merge processing is performed by a processor such as node merge processor
27-a, 27-b, or 27-c, or central merge processor 7. The merge process serves to
update its associated database with a transaction that has been entered by a user of a
computer remote from the computer where merge processing is being performed.
Merge processing is analogous to update processing and is similar in form to update
processing as previously disclosed with reference to figure 3, with three differences.
First, the input to a merge processor is not an update entered directly by a user, but
rather is a log file that is obtained from a computer remote from the computer where
the merge is executing. A second difference is that, as shown by in Figure 1, merge
processing does not produce a log when performed at a node. The function of a log
on a node is to record a transaction for propagation to Central Computer system 1
and thence to other nodes as required. A transaction that is the subject of a merge
in a node has been communicated to Central Computer System 1, and there is no

need to re-communicate it.

A third difference is that merge processing must be capable of detecting and
resolving multiple conflicting transactions. For example, assume that a field contains
the value "Keith Palmer.”" Assume further that a user at node 27-a enters a
transaction to update that field to "Carl Lake," and a user at node 27-b enters a
transaction to update the same field to "Greg Emerson.” Without coilision detection,
data among various nodes may become corrupt. When the transaction for user 27-a
is merged, the field is updated from "Keith Palmer” to "Carl Lake." Without
collision handling, when the transaction for node 27-b is merged, the field would be
updated to "Greg Emerson," and the central database would then be out of synch with
the database of node 27-a. Furthermore, when merge processing is performed on
each of nodes 27-a and 27-b, each node will update its database with the other’s
transactions, leaving at least one node out of synch with the other node and with
central database.

-14-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Therefore, merge processing must also have a means of detecting collisions
and correcting them. In the above example, a simple way to detect and correct a
collision is to compare the value in the database to the value that the merge log
reflects as being the previous value in the node database. If the two values do not
match, Merge processor 7 may reject the transaction and generate a corrective
transaction to be sent to the node from which the conflicting transaction originated.
In the above example, when the transaction for node 27-b was presented to merge
processor 7, merge processor 7 would compare "Keith Palmer," the prior value of
the field as recorded by node 27-b to "Carl Lake," the present value of the field as
recorded in central database 3. Detecting the mismatch, merge processor 7 may then
generate a transaction to change the value "Greg Emerson” to "Carl Lake," and write

that transaction to update log 15.

The above is one example of a collision and a resulting corrective action.
Other types of collisions include, for example, an update to a row that has previously
been deleted, inserting a row that has previously been inserted, and the like. Merge
processing must detect and correct each of these collisions. This may be performed

using any of a number of well-known methods, and is not discussed further.

Figure 5 depicts the steps performed by merge processor such as central merge
processor 7. Although it depicts merge processor 7 writing to central database 3 and
to transaction log 15, it is equaily representative of a node merge processor such as
node merge processor 27-a, 27-b or 27-c updating a node database 23-a, 23-b or 23-
c. Merge processing begins at step 141. In step 143, merge processor 7 finds the
first unprocessed transaction on received log 19. In step 147, merge processor 7
selects a transaction from received log 19. In step 149, merge processor 149 attempts
to update database 3 according to the transaction selected in step 147. In step 151,
merge processor 7 determines whether the database update of step 149 failed due to
a collision. If so, merge processor proceeds to step 153, which generates a corrective
transaction. Following the generation of the corrective transaction, the merge
processor returns to step 149 and again attempts to update database 3. If no collision

was detected in step 151, execution proceeds to step 157. In step 157, merge

-15-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

processing checks to see if it is executing on central computer 1. If so, step 155 is
executed to journal the transaction to log 15. In any case, either if step 157
determines that the merge processing is being performed on a node or after step 155,
execution proceeds to step 159. Step 159 checks to see if any transactions remain to
be processed from log 19. If so, execution repeats from step 147, where the next

transaction is selected. If not, merge processing exits in step 161.

Log Management

Figure 6 depicts the steps to be performed by log manager 9 to prepare a
partial transaction log such as partial transaction log 17-a, 17-b, or 17-c. The
procedure depicted in Figure 6 is executed for each node available to dock with
central computer system 1. Log manager 9 begins execution in step 171. In step
173, Log Manager 9 finds the first unprocessed transaction for the node whose partial
transaction log is being prepared. In step 175, log manager 9 selects a transaction
for processing. In step 177, log manager 9 checks to see whether the selected
transaction originated on the same node for which processing is being performed. If
so, there is no need to route the transaction back to the node, and control proceeds
to step 179. Step 179 checks to see whether there are any transactions remaining to
be processed. If so, control is given again to step 175. If not, control passes to step
189, which records the last transaction that was processed for this node, and then
exits at step 191. If the transaction originates in other than the same node as the node
for which processing is being performed, control is given to step 181. Step 181 calis
a visibility calculator to determine whether the selected transaction is visible to the
node being processed. The Visibility calculator routine is described in detail further
herein. In step 183, log manager 9 checks to see whether the visibility calculator
determined that the transaction is visible. If it is not visible, control is passed to step
179, which performs as disclosed above. If the transaction is visible, control is
passed to step 185. Step 185 writes a record for this transaction to the partial
transaction log for the node being procéssed, for example, partial transaction log 17-a
for node 21-a. In step 187, the log manager 9 records the last transaction that was
processed for this node, and then passes control to step 179, which determines

whether to select additional transactions or exit, as disclosed above.

-16-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Visibility Calculation

Figure 7 depicts a flowchart describing the process a visibility calculator for
calculating visibility for a docking object as invoked by step 181 of log manager 9.
The visibility calculator is called with the node-id of the node for which visibility is
being calculated, the docking object for which the visibility is being calculated, and
the row-id of the docking object whose visibility id being calculated. The visibility
calculator uses this information, in conjunction with information obtained from meta-
data stored in the schema depicted in Figure 2, to determine whether a particular
transaction that updates a particular row of a particular docking object is visible to

a particular node.

The Visibility calculator begins execution at step 201. In step 203, the
visibility calculator makes a default finding that the transaction is not visible.
Therefore, unless the visibility calculator determines that a transaction is visible, it
will exit with a finding of no visibility. In step 203, the visibility calculator selects
the first visibility rule associated with the docking object. This is done by finding the
table S_DOBJ_VIS_RULE 71 associated with the current Docking Object as pointed
to by table S_DOBJ 61. In step 205, the visibility calculator selects the row of table
S_DOBJ_VIS_RULE 71 with the lowest value for field RULE_SEQUENCE.

In step 207, the Visibility Calculator checks the field RULE_TYPE for a value
of "R." The value of "R" indicates that the rule is a SQL visibility rule. If so, the
Visibility Calculator proceeds to step 209. In step 209 the Visibility Calculator
obtains a SQL statement from field SQL_STATEMENT and executes it. An example
of such an SQL statement might be:

SELECT 'X’ FROM S_OPTY_EMP
WHERE OPTY_ID = :PrimaryRowld
AND EMP_ID = :Nodeld;
This SQL statement causes a query to be made of application table
S_OPTY_EMP. The query selects any records meeting two criteria. First, the
records selected must have a field OPTY_ID, which is a row id or key, equal to the

-17-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

Primary Row-ID of the Docking Object whose visibility is being determined.
Second, the records selected must have a field EMP_ID, which may be for example,
an identifier of a particular employee, equal to the Nodeld of the node for whom
visibility is being determined. In ordinary language, this SQL statement will return
records only if a row is found in a table that matches employees to opportunities,
where the opportunity is equal to the one being updated, and the employee to whom

the opportunity is assigned is the operator of the node.

This is a simplistic example, provided for maximum comprehension. More
complex SQL statements are possible. For example, the rule:

SELECT X’ FROM

&Table_Owner.S_ACCT_POSTN ap

&Table Owner.S_EMP_POSTN ep

WHERE ap.POSITION_ID = ep.POSITION_ID
AND ep.EMP_ID = :Nodeld;

This rule queries the tables S_ACCT _POSTN (which relates a particular
account with a particular position in the organization that is responsible for the
account) and S_EMP_POSTN (which relates what employee corresponds to a
particular position). The condition "ap.POSITION_ID = ep.POSITION_ID" requires
finding a row in the account-to-position table that has the same position as a row in
the employee-to-position table. The condition "ep.EMP_ID = :Nodeld" further
requires that the selected row in the employee-to-position table also have an Employee
ID equal to the ID of the user of the Node for which visibility is being determined.
In ordinary language, this condition allows visibility if the employee occupies the
position that has responsibility for the account in the docking object being updated.

There is no particular limit to the complexity of the conditions in the SQL
statement used to evaluate visibility. Particular implementations of SQL may impose
limitations, and resource considerations may make it desirable to use less complex

statements, but these limitations are not inherent in the invention.

-18-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Step 211 evaluates whether the execution of SQL_STATEMENT in step 209
returned any records. If records were returned, this indicates that the Node for which
visibility is being checked has visibility to the docking object being processed.
Accordingly, if records are returned, the Visibility Calculator proceeds to step 213.
In step 213, the transaction is marked visible. Because no further rules need to be
evaluated to determine visibility, the visibility calculator proceeds to step 228. Step
228 synchronizes the databases by determining whether the calculated visibility
requires the insertion or deletion of a docking object into a particular node’s partially
replicated database. This may occur, for example, if a node is determined to have
visibility to a docking object due to a change to a related docking object. For
example, an owner of a node may be assigned to a particular activity that is related
to a particular sales opportunity. As a result, the node should be provided with a
copy of the object representing the sales opportunity.

Figure 8 depicts the steps performed to synchronize a partially replicated
database in response to a change in data visibility. Execution begins in step 241. In
step 243, the Visibility Calculator references the visibility just calculated for a
docking object. If the Docking Object is visible, execution proceeds to step 245.
Step 245 references the S_DOBJ_INST table, to verify that a row exists for the
Docking Object for the current node. If a row exists, this indicates that the node in
question already has a copy of the referenced Docking Object, and the routine
proceeds to step 255, where it exits. If, however, no row exists for the Docking
Object at the node being processes, this indicates that the node in question does not
have a copy of the Docking Object on its partially replicated database. The routine
then proceeds to step 247, where a transaction is generated to direct the node to insert

the Docking Object into its partially replicated database.

If step 243 determines that the Docking Object is not visible, execution
proceeds to step 249. Step 249 references the S_DOBJ_INST table, to verify that no
row exists for the Docking Object for the current node. If step 243 determines that
no row exists in the S_DOBJ_INST table for the current docking object for the

current row, this indicates that the node in question does not have a copy of the

-19-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

referenced Docking Object, and the routine proceeds to step 255, where it exits. If,
however, a row exists for the Docking Object at the node being processed, this
indicates that the node in question does have a copy of the Docking Object on its
partially replicated database. The routine then proceeds to step 251, where a
transaction is generated to direct the node to delete the Docking Object from its

partially replicated database.

Referring again to Figure 7, following the data synchronization routine of step
228, the Visibility Calculator proceeds to step 229, where it exits. Referring to
Figure 6, as previously described, the resulting finding of visibility is available to be

checked by the log manager in step 183 to determine to write the transaction.

Referring again to figure 7, if step 211 determines that no records were
returned by the execution of the SQL statement in step 209, execution proceeds with
step 215. Step 215 checks to see whether there are any remaining visibility rules to
be assessed. If not, the visibility calculator proceeds to step 228 to synchronize the
database, and then to step 229, where it exits. In this case, the default mark of no
visibility that was set in step 203 remains set. This value will also be used by the log

manager as shown in Figure 6, step 183, to determine not to write the transaction.

Referring again to Figure 7, if rules remain to be assessed, control proceeds
to step 217, which selects the next rule to be processed. Control is then given again

to step 207 to begin processing the new rule.

The preceding text provided a description of the processing or SQL visibility
rule; that is, visibility rules of type "R." If step 207 determines that the visibility rule
is not of type "R," the visibility rule is of type "O." Type "O" indicates a docking-
object visibility rule. In such a case, the docking object being processed will be
considered to be visible if it is related to a particular related docking object that is
visible. If field RULE_TYPE is not equal to "R," then. execution proceeds to step
221. Step 221 determines the related Docking Object whose visibility must be

determined to determine whether the current docking object is visible. The related

220-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Docking Object identifier is obtained from field CHECK_DOBJ_ID in table
S_DOBJ_VIS_RULE 71. In step 223, the Visibility Calculator determines which row
in the related Docking Object must be queried for visibility. In order to determine
this, the Visibility Calculator obtains a predetermined SQL statement from the field
SQL_STATEMENT and executes it. The SQL statement is a query that select one
or more rows of the Docking Object that, for example, correspond to the docking
object for which the Visibility Calculator was invoked.

For example, assume that it is desired to indicate that a record for a sales
opportunity should be visible if the Node has visibility to any sales quote made for
that sales opportunity. This may be accomplished using the following SQL statement:

SELECT "ROW_ID" FROM
&Table_Owner.S_DOC_QUOTE
WHERE OPTY_ID=:Primary Rowld

This SQL statement accesses a table S_DOC_QUOTE that contains all sales
quotes. The WHERE clause specifies retrieval of all rows where the Opportunity ID
of the row is equal to the Row-ID of the opportunity for which visibility is being
calculated. The Visibility manager retrieves the specified Row-Ids, thereby
identifying the rows of the S_DOC_QUOTE table whose visibility must checked.

Having determined the a related docking object and the row-ID of thaf related
docking object upon whose visibility the visibility of the current docking object
depends, the Visibility Calculator proceeds to step 225. In step 225, the Visibility
Calculator recursively invokes itself to determine visibility of the related docking
object. The recursively invoked Visibility Calculator operates in the same manner
as the Visibility Calculator as called from the Log Manager 9, including the capability
to further recursively invoke itself. When the recursive call concludes, it returns a
visibility indicator for the related Docking Object, and control proceeds to step 227.
In step 227, the Visibility calculator determines whether the related Docking Object
was determined to have been visible. If so, the Visibility Calculator proceeds to step
213 to mark the originally current Docking Object as visible, and then to step 228 to
synchronize the database and then to step 229 to exit. If the related Docking Object

21-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

was not determined to be visible, control proceeds to step 215 to determine whether

additional visibility rules remain to be assessed.

The Visibility Calculator, in conjunction with the Log Manager is therefore
able to determine what subset of update transaction data is required to be routed to
any particular node. This operation serves to reduce the transmission of unneeded
data from the Central Computer 1 to the various nodes such as nodes 21-a, 21-b and
21-c that utilize partially replicated databases, and to reduce the system resources
such as disk space needed to store, and the CPU time needed to process, what would

otherwise be required to maintain a fully replicated database on each remote node.

The operation of the log manager 9 in conjunction with the Visibility
Calculator herein described will be apparent from reference to the description and to
the drawings. However, as a further aid in the description of these facilities, a

pseudocode representation of these facilities is hereto attached as an Appendix.

Batch Visibility Calculation

The calculation of visibility events and the routing of visible transactions may
be optimized by batching related SQL statements, rather than performing successive
row-by-row operations. This optimization is achieved by eliminating redundant
operations, using set processing and reducing network traffic. Redundant work is
eliminated by denormalizing key data used to calculate visibility into the transaction
log. For example, the Log Manager the docking object, primary table id, visibility
event flags, and related data are stored in the transaction log table. Instead of
calculating this data once for every mobile client, Log Manager calculates this data
once for all mobile clients to use. Log Manager uses set processing by submitting
SQL statements to check the visibility of many thousands of transactions
simultaneously instead of submitting a SQL statement for each transaction. Network
traffic is reduced by retrieving only the visible transactions from the database server
to the docking server. Consequently, significantly less data travels over the network

from the database server to the docking server.

22-



WO 98/38583

PCT/US98/03573

Figure 9 depicts the structure of the database design of the Transaction Log

Table 300 used to support batch visibility checking. Node table 301 is the central

table of the database, and contains one-to-many pointers to Dock Object Instance table
302, Dock Status table 304, and Transaction table 306.

Docking Object Instance table 302 stores whether a docking object instance

is visible to a mobile client and has been downloaded to the mobile client. A row

exists in Docking Object Instance table 302 if the docking object instance is fully

visible or partially visible to the mobile client. If the docking object is not visible,

10  then a row for the docking object instance does not appear in Docking Object Instance
table 302. Docking Object Instance table 302 (S_DOBJ_INST) comprises the

following fields to support batch visibility checking:

15

20

25

30

NODE ID: a non-null user key of the node to which this docking
object instance relates.

DOBJ_ID: a non-null user key of the docking object to which this
docking object instance relates.

PR _TBL ROW_ID: a non-null user key containing the Row_ID of the
primary table in the docking object. This value identifies the Docking Object
Instance.

STAT Flag: a one-byte flag containing the value 'F’ or "P’. The
value ’'F’ indicates that the docking object instance is fully visible. The value
"P’ indicates that the docking object instance is partially visible.

LAST_CHK_TXN_ID: the transaction ID of the transaction in which
the visibility of the dock object instance was last checked. This value may be
used to determine when the dock object instance must be recalculated. For
example, if LAST_CHK_TXN _ID = 3000, then Log Manager should not re-
calculate visibility of the dock object instance until a visibility event occurs
after transaction ID 3000.

Dock Status table 304 stores status information relating to each mobile client.

This includes the identity of the last file merged, the last file extracted, and the last

23-



WO 98/38583 PCT/US98/03573

transaction extracted. Dock Status Table 304 (S_DCK_STAT) comprises the
" following fields to support batch visibility checking:
ROW_ID: primary key.
NODE ID: Identity of the mobile client that owns this status
5 information.
TYPE: This field is used to interpret the VAL field, and contains one
of the strings "EXTRACT_RECORD", "LOG_EXTRACT",
"MERGE RECORD", "LAST MERGE", or "SESSION".
VAL: This field contains the value corresponding to the data type in
10 the TYPE field.

In addition, this table records the last transaction processed by an executable
program called the Log Preprocessor. This is indicated in the VAL field for a row
with a ROW_ID of zero and a TYPE of "EXTRACT_RECORD".

15

Transaction table 306 stores transaction that may need to be routed to all
mobile clients. Transaction table 306 (S_DCK_TXN_LOG) comprises the following
fields to support batch visibility checking:

TXN_ID: A non-null primary key that identifies the transaction.
20 DOBJ ID: a non-null user key of the docking object to which this
docking object instance relates.
PR_TBL_ROW_ID: a non-null user key containing the Row_ID of the
primary table in the docking object. This value identifies the Docking Object

Instance.

25 VIS_EVT_FLG: This field contains either the value *Y’ or 'N’, and
indicates whether the transaction causes a visibility event.
VIS_LEVEL FLG: This field indicates the visibility level of the dock

object. A value 'L’ indicates that the dock object has limited visibility. A

value of *P’ indicates that the dock object is private. A value of "E’ indicates

30 that this object has enterprise visibility.

24-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

Batch visibility checking executes in four phases. Briefly, Phase 1 is run one
for each transaction in Transaction Log Table 300 and denormalizes the transaction
log data into the constituent tables. Phase 2 is run once per mobile client per
iteration, and checks for visibility events for a mobile client. Phase 3 is run once per
mobile client per iteration, and extracts visible transactions for the mobile client.
Phase 4 is run once per iteration and deletes transactions from Transaction Log Table

300. Detailes of all four phases are described below.

In an embodiment of the present invention, phases 1 and 4 may be combined
into a single executable program called the Log Preprocessor. Only one Log
Preprocessor is run against an installation at any one time. Phases 2 and 3 may be
combined into a single executable program called the Log Router. One or more Log
Routers may be run against a single installation concurrently. The Log Router
program may use semaphores to prevent more than one Log Router from routing

transactions to the same mobile client simultaneously.

Phase 1 is run one for each transaction in Transaction Log Table 300 and
denormalizes the transaction log data into the constituent tables. This phase
denormalizes values in S_DCK_TXN_LOG based on transaction log data. The

following pseudocode describes the operation of Phase 1 in detail:

DoPhasel()

{
-- Get status values so we can identify which txns to pre-process
Get max(TXN_ID) from S_DCK_TXN_LOG
Get TXN_PROCESSED_ID from S_DCK_STAT for Node id 0

numTxns := 0;

-- SELECT tl.*

-- FROM S_DCK_TXN_LOG tl

-- WHERE TXN_ID > max(TXN_PROCESSED ID)

-- AND TXN_ID < = max(TXN_ID)

-- ORDER BY TXN_ID ASC

FOR each txn between max(TXN_ID) and TXN_PROCESSED ID LOOP
-- If the client program already calculated the denormalized
-- columns, then we don’t have to do it again.
IF t1. DOBJ_ID is not null THEN

25-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

continue;
END IF;

FOR each operation in the txn LOOP
-- Use UTLIdSql() to get primary table row_ids
-- Assumes that each txn can only have one primary row_id
FOR each primary id row LOOP
IF operation is a visibility event THEN
p_vis_evt_flg :="Y’;
ELSE
p_vis_evt_flg :="N’;
END IF;

update S_DCK_TXN_LOG
set (DOBJ _ID, PR_TBL ROW _ID, VIS EVT_FLQG)
= (DOBJ_ID, PR_TBL ROW _ID, p_vis_evt_{flg)
where TXN_ID = current txn_id;
END IF; ‘

END LOOP; -- each operation

numTxns : = numTxns + 1;

END LOOQOP; -- each txn

-- Commit after every N txns
IF numTxns > maxTxns THEN
Set TXN_PROCESSED _ID = current TXN_ID
commit;
numTxns := 0;
-- lock the row again

Get TXN_PROCESSED _ID from S_DCK_STAT for Node id 0
END IF;
END LOOQOP; -- for loop

Phase 2 is run once per mobile client per iteration, and checks for visibility
events for a mobile client. This phase looks for all visibility event transactions and
recomputes visibility. It looks for the next set-based transactions in order to limit the
current iteration to a reasonable amount of processing. The phase downloads and
removes Docking Obect instances in response to visibility changes and stores the
visibility of Docking Object instances.in table S_DOBJ_INST 63. The following

pseudocode describes the operation of Phase 2 in detail:

ProcessVisibilityEvent (DOBJ_ID, PR_TBL_ROW_ID, STAT FLG)

{
-- If we have already calculated visibility for this dobj

26-



WO 98/38583

10

15

20

25

30

35

40

45

PCT/US98/03573

-- instance in this iteration, then we do not need to

-- recheck visibility.

IF already check visibility for this dobj instance THEN
return;

END IF;

-- Flush the S_DOBJ_INST table cache
Call UTLNodeDObjInstFlush()

-- Compute visibility
Run SQL rules, Check Dock Object rules.

-- Reconcile S_DOBJ_INST table and do downloads/removes as needed
-- If visibility has changed, stuff the value of TXN_PROCESSED_ID
-- into S_DOBJ.LAST CHK_TXN_ID

-- NOTE: we can also stuff in the value of max(TXN_ID) so we do not
-- download txns affecting the dobj instance until after the

-- current max(TXN_ID)

Call LOGReconcileDObjInst()

}

DoPhase2 (NODE_ID)
{
-- Get status values so we can identify which txns to pre-process
Get VIS_CHECK_RECORD from S_DCK_STAT
-- new status for vis checks high water mark
Get TXN_PROCESSED _ID from S_DCK_STAT for Node Id 0

-- Don’t do anything if there are no new txns to process

IF TXN_PROCESSED_ID = VIS_CHECK_RECORD THEN
return;

END IF;

Open the .dx file for writing

-- Get visibility event txns, and load visibility

-- cache simultaneously

-- SELECT tl.TXN_ID, tl. OPERATION, tl.VIS_EVT FLG,
-- t1. DOBJ _ID, t1.PR_TBL ROW _ID, di.STAT_FLG,
-- di.LAST CHK_TXN_ID

-~ FROM S_DOBJ_INST di,

- S DCK_TXN_LOG tl

-- WHERE tl.TXN_ID > VIS_CHECK_RECORD

--  AND tL.TXN_ID <= TXN_PROCESSED _ID

-~ AND tl.TXN ID <= VIS_CHECK_RECORD + batch_size
-- (Oracle & Informix)

--  AND (t1. OPERATION in (‘i’, ‘u”) // set-based txn

- or tl.VIS_EVT FLG ="Y’)

27-



WO 98/38583 PCT/US98/03573

-~ AND tl.PR TBL_ ROW_ID = di.PR_TBL_ROW_ID (+)
-~ AND tL.DOBJ_ID = di.DOBJ_ID (+)
-~ AND tl.VIS_LEVEL FLG = 'L’ /* limited visibility */
-~ AND di.NODE _ID (+) = :node_id
5 --  AND TXN ID > di.LAST_CHK_TXN_ID
-- ORDER BY tl.TXN ID
-- NOTE: on Sybase, use set rowcount to limit batch size
-- On Oracle & Informix, we assume that not many TXN_ID
-- values are lost if the db server crashes and restarts.

10
numTxns := 0;
Set VIS CHECK_RECORD := old VIS_CHECK_RECORD;
FOR each vis event txn or set-based txn in the batch LOOP
-- We got a set-based txn
15 ProcessVisibilityEvent (t1. DOBJ_ID,
ts. PR_TBL ROW_ID, di.STAT_FLG)
END IF,;

IF amount written to .dx file > threshold THEN
20 Close and compress the .dx file
Increment LOG_EXTRACT counter in S_DCK_STAT
Add .dx file to list of files that were written
(do not write to server.tx file yet)
END IF;
25
Set VIS_CHECK_RECORD = current_txn_id

END LOOP;

30 IF Phase3 is separate program THEN
-- Do this part if Phase 3 is a separate program
IF txns were downloaded/removed to the current .dx file THEN
Close and compress the .dx file
Increment LOG_EXTRACT counter in S_DCK_STAT
35 Add .dx file to list of files that were written
(do not write to server.tx file yet)
ELSE
Delete the .dx file
END IF
40
Write all .dx files to the server.tx file

-- Commit at the end of the batch
commit;
45 END IF;
}

28-



WO 98/38583

10

15

20

25

30

35

40

45

PCT/US98/03573

Phase 3 is run once per mobile client per iteration, and extracts visible
transactions for the mobile client. The following pseudocode describes the operation
of Phase 3 in detail.

DoPhase3 (NODE ID)
{
IF Phase2 is a separate program THEN
Open the .dx file for writing
END IF;

-- Get status values so we can identify which txns to extract
Get VIS CHECK_RECORD from S_DCK_STAT
Get EXTRACT RECORD from S_DCK_STAT

-- SELECT t.TXN_ID

- FROM S_DCK_TXN_LOG tl

-- WHERE tL.TXN ID > EXTRACT_RECORD

--  AND tL.TXN_ID < = VIS_CHECK_RECORD

-~ AND (tl.VIS_EVT_FLG = 'E’ /* enterprise visible */
-- or (t.VIS_EVT FLG = 'L’ /* limited visible */

- and exists

- (select ’visible’

- from S_DOBJ_INST di

- where t1.DOBJ_ID = di.DOBJ_ID

-- and t1.PR_ TBL, ROW_ID = di.PR_TBL_ROW_ID
-- and di.NODE_ID = ’node_id’

-- and t1.TXN ID > di.LAST CHK_TXN_ID)
- )

- )

-- ORDER BY TXN_ID ASC

numTxns := 0
FOR each visible txn between EXTRACT RECORD and VIS_CHECK_RECORD
LOOP
Write the txn to the .dx file
numTxns := numTxns + 1;

IF amount written to .dx file > threshold THEN
Close and compress the .dx file
Increment LOG_EXTRACT counter in S_DCK_STAT
Add .dx file to list of files that were written
(do not write to server.tx file yet)
END IF;
END LOOP;

Set EXTRACT RECORD = VIS_CHECK_RECORD;

-290.



WO 98/38583

10

15

20

25

30

35

40

PCT/US98/03573

IF txns were downloaded/removed/written THEN
Close and compress the .dx file
Increment LOG_EXTRACT counter in S_DCK_STAT
Add .dx file to list of files that were written
ELSE
Delete the .dx file
END IF

-- Commit at the end of the batch
commit;

Phase 4 is run once per iteration and deletes obsolete transactions from
Transaction Log Table 300, including its substituent Transaction table 306 and Set
Transaction ID table 308. The following pseudocode describes the operation of Phase
4 in detail.

DoPhase4 ()
{

-- Get status values so we can identify which txns to delete
Get max(EXTRACT _RECORD) from S_DCK_STAT
Get max(EXTRACT_RECORD) from last iteration

-- No new txns to delete

IF max(EXTRACT_RECORD) = last iteration THEN
retumn;

END IF;

-- DELETE FROM S DCK_TXN LOG
-- WHERE TXN_ID <= max(EXTRACT_RECORD)
Delete from S DCK_TXN_LOG

-- Commit at the end of the batch
commit;

Visibility Caching

Improved performance may be obtained by providing a capability of caching
recent visibility events. The S_DOBJ_INST table 63 is particularly suitable to
provide such a "visibility cache." The existence of a particular docking object
instance in S_DOBJ_INST table 63 may be used to assert that the docking object

instance is visible to the mobile client.

-30-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

The visibility cache improves performance in two ways. First, it reduces the
number of times visibility must be calculated. Log Manager 9 can use the cache in
memory to determine visibility of a docking object instance when the transaction is
on a table that does not cause implicit visibility events (i.e. the
VISIBILITY_EVT _FLG is not checked for the table). Log Manager does not need
to run any visibility SQL statements to determine the visibility of the transaction.
Note that, if a transaction affects a table that can cause a visibility event, Log
Manager must re-run the visibility SQL statements to determine that transaction’s

visibility.

Second, the visibility cache reduces the number of SQL statements executed
per visibility calculation. Log Manager uses the cache to determine visibility of check
docking objects. Log Manager does not need to recursively run visibility rule SQL
statements on each check docking object instance to determine the visibility of the
transaction. Instead, Log Manager 9 joins to the S_DOBJ_INST table 63 to determine
the visibility of check docking objects.

As discussed earlier, the log manager uses two types of visibility rules, which
can be summarized as SQL rules and Check-docking-object rules. An SQL rule is an
SQL fragment that expresses whether the docking object instance is visible. An
example of a visibility condition specified by an SQL rule for the opportunity docking
object is "An Opportunity is visible if the sales rep is on the sales team." A check-
docking-object rule indicates that a docking object instance is visible if another
docking object is visible. The definition of a check-docking-object rule contains a
SQL fragment that tells the Log Manager how to get all the check docking objects for
the docking object instance. An example of a visibility condition specified by a check-
docking-object rule for the opportunity docking object is "An Opportunity is visible
if the Opportunity is used by a Quote that is visible to the sales rep."

SQL rules are relatively inexpensive in execution resources. In contrast,
Check-docking-object rules consume more resources and are therefore more

expensive. In order to execute a check-docking-object rule, Log Manager recursively

31-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

runs visibility SQL statements for the docking object it is checking. Determining
visibility of a transaction can require running hundreds, or even thousands of SQL
statements. Some objects may have eight to ten check-docking-object ruies. Running
all the visibility rule SQL statements for these objects could take between 0.25
seconds and several seconds for each mobile client. As the number of mobile clients

increases, this can lead to undesirably low levels of service.

Log Manager also uses the S_DOBJ_INST table to track whether a docking
object instance (e.g., a particular Opportunity instance) has been downloaded to a
mobile client. The S DOBJ_INST table prevents Log Manager from downloading a
docking object instance that was already previously downloaded, or removing a

docking obiject instance that was already previously removed.

The visibility cache is implemented in two ways. First, the S_DOBJ_INST
table is used for transactions on non-visibility event tables. When checking visibility
of a transaction, if the transaction is on a table that does not cause visibility events
(S_DOBJ_TBL.VIS_EVT_FLG = ’'N’), then the S_DOBJ_INST table is used to
determine if the docking object instance is visible. If the docking object instance of
the transaction exists in the S_DOBJ_INST table, then the transaction is visible to the
mobile client. Otherwise, the transaction is not visible to the mobile client. The
benefit is that the Log Manager does not need to run any visibility SQL rules or
check-docking-object rules to determine the visibility.

Second, the S_DOBJ_INST table is used to determine visibility of check-
docking-objects. Most of the check-docking-object rules may be converted to SQL
rules that join the check-docking object to the S_DOBJ_INST table. If any check-
docking object exists in the S_DOBJ_INST table, then the check-docking object must
be visible to the mobile client. The benefit is that the Log Manager runs at most one

SQL statement to determine visibility of a check-docking object.

-32-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

The following example shows the benefits of the visibility cache. Without the
visibility cache, the set of rules used to check visibility of a docking object

representing an account might be expressed as the following four rules.

Rule 1 (SQL): Account is visible if Account is a competitor:
primary_table. CMPT_FLG =Y’

Rule 2 (SQL): Account is visible to sales rep if sales rep is on the Account Team:

exists (select ‘X’ from S_ACCNT_POSTN ap, S_EMP_POSTN ep
where ap.OU_EXT ID = primary_table. ROW_ID
and ep.EMP_ID = :person_id)

Rule 3 (Check-Docking-Object): Account is visible if it is an account for an
Opportunity that is visible:

select OPTY_ID from S_OPTY_ORG oo
where OU_ID = :primary_row_id

Rule 4 (Check-Docking-Object): Account is visible if it is an account for a Quote that
is visible:

select ROW_ID from S_DOC_QUOTE
where OU_ID = :primary_row_id

To check the visibility of an Account docking object without a visibility cache,
Log Manager performs the following steps to generate and execute SQL statements

based on the above visibility rules.

Step 1: OR together the SQL rules and execute the result:

select "X’ from S_ORG_EXT primary_table
where primary_table. ROW_ID = :primary_table_row_id
and ((primary_table. CMPT FLG = 'Y’)
or exists (select "X’ from S_ACCNT_POSTN ap, S_EMP_POSTN
cp
where ap.OU_EXT ID = primary_table. ROW_ID
and ep.EMP_ID = :person_id)

-33-



WO 98/38583

10

15

20

25

30

35

PCT/US98/03573

Step 2: Execute Rule 3, the check-docking-object rule for the Opportunities object:

select OPTY_ID from S_OPTY_ORG oo
where OU_ID = :primary_row_id

For each opportunity retrieved, execute the visibility rule SQL statements
(SQL rules and check docking object rules) to determine whether the opportunity is

visible. This can be many SQL statements.

Step 3: Execute the check docking object rule for the Quotes object:

select ROW_ID from S_DOC_QUOTE
where OU_ID = :primary_row_id

For each quote retrieved, the visibility rule SQL statements (SQL rules and
check docking object rules) are executed to determine whether the quote is visible.

This can be many SQL statements.

The total number of SQL statements executed by this process may be
computed as 1 + (Opty Check Objs * Opty vis rules) + (Quote Check Objs * Quote
vis rules). This may be anywhere from one statement to several hundred statements,

depending on the number of Opportunity and Quotes objects retrieved.

With the visibility cache, the set of rules used to check visibility of a docking
object representing an account might be expressed as the following four rules. The
two SQL rules 1 and 2 are unchanged; the two check-dock-object rules have been

replaced with SQL rules that interrogate the S_DOBJ_INST table.

Rule 1 (SQL): Account is visible if Account is a competitor:
primary_table. CMPT_FLG =Y’

Rule 2 (SQL): Account is visible to sales rep if sales rep is on the Account Team:

exists (select "X’ from S_ACCNT_POSTN ap, S_EMP_POSTN ep
where ap.OU_EXT ID = primary_table. ROW_ID
and ep.EMP_ID = :person_id)

-34-



WO 98/38583

10

15

20

25

30

35

40

PCT/US98/03573

Rule 3 (SQL): Account is visible if it is an account for an Opportunity that is visible:

exists (select 'X’ from S_OPTY_ORG oo, S_DOBJ_INST di
where 00.0U_ID = :primary_row_id
and 00.OPTY_ID = di.PR_TBL_ROW_ID
and di.DOBJ_ID = :dobjid and di. NODE _ID = :nodeid)

Rule 4 (SQL): Account is visible if it is an account for a Quote that is visible:

exists (select ‘X’ from S_DOC_QUOTE q, S_DOBJ_INST di
where q.OU_ID = :primary_row_id
and q.ROW_ID = di.PR_TBL_ROW _ID
and di.DOBJ_ID = :dobjid and di.NODE_ID = :nodeid)

To check the visibility of an Account docking object using a visibility cache,
Log Manager generates and executes a single SQL statement derived from the four

SQL rules. Log manager Ors together all four SQL rules to obtain a single SQL

rule, as follows:

select "X’ from S_ORG_EXT primary_table
where primary_table. ROW_ID = :primary_table row_id
and ((primary_table. CMPT_FLG = 'Y’)
or exists (select ‘X’ from S_ACCNT_POSTN ap, S_EMP_POSTN

where ap.OU_EXT ID = primary_table. ROW_ID
and ep.EMP_ID = :person_id)
or exists (select 'X’ from S_OPTY_ORG oo, S_DOBJ_INST di
where 00.0U_ID = :primary_row_id
and 00.OPTY_ID = di.PR_TBL_ROW_ID
and di.DOBJ_ID = :dobjid and di.NODE_ID = :nodeid)
or exists (select "X’ from S_DOC_QUOTE q, S_DOBJ_INST di
where q.OU_ID = :primary_row_id
and q.ROW_ID = di.PR_TBL_ROW_ID
and di.DOBJ_ID = :dobjid and di.NODE _ID = :nodeid)
)

This single SQL statement accomplishes the same result as the potentially
hundreds of SQL statements that would be required without the visibility cache.

Because the SQL statements can get very large, it is advisable to establish a

limit to the number of SQL rules that will be ORed together by Log Manager. This

limit is preferably parameter-driven to permit ease of customization for a particular

-35-



WO 98/38583

10

15

20

25

30

35

40

PCT/US98/03573

configuration. In some implementations, it may be useful to limit the number of

tables in the SQL statement to about 16.

The following SQL fragments each provide a mechanism for joining to the
S_DOBJ_INST table. The fragment that is best for a particular implementation may

vary depending on the performance characteristics for that implementation.

Alternative 1:

or (exists (select *X’ from S_OPTY_ORG oo, S_DOBJ_INST di
where 00.0U_ID = :primary_row_id
and 00.OPTY_ID = di.PR_TBL_ROW_ID
and di.DOBJ_ID = :checkdobjid
and di.NODE ID = :nodeid)
)

Alternative 2:

or (exists (select X’ from S_DOBJ_INST di
where di.DOBJ ID = :checkdobjid
and di.NODE ID = :nodeid
and di.PR_TBL_ROW_ID in (
select OPTY_ID from S_OPTY_ORG oo
where 00.0U_ID = :primary _row_id))
)

Alternative 3:

or (exists (select OPTY_ID from S_OPTY_ORG oo
where 00.0U ID = :primary_row_id
and OPTY ID in
(select PR TBL_ROW_ID from S_DOBJ_INST di
where di.NODE _ID = :nodeid
and di. DOBJ_ID = :checkdobjid
and di.STATUS_FLG = :vistype))
)
The following pseudocode shows the algorithm for the visibility checking
engine using the visibility cache. The algorithm is documented as four routines,
denoted as CheckTxnVisibility, CheckObjectVisibility, CheckSqlRule and

CheckOtherRule.

CheckTxnVisibility
-- Check if a record in the txn log is visible to a LaptopNodeld

-36-



WO 98/38583

10

15

20

25

30

35

40

45

PCT/US98/03573

-- Also processes implicit visibility events and related dock objects
static BOOL CheckTxnVisibility (LaptopNodeld, Table, Rowld, *peVisible)

{

Find the Table in the Dictionary;
IF Table not found THEN

Error: Table not defined
END IF;

-- set to not visible by default
*peVisible = "None’;

FOR all docking objects that the table belongs to LOOP
-- Generate SQL to get Primaryld values of the Docking Object
GeneratePrimaryldSQL (Table, RowlId, DockingObject);
FOR each Primaryld value retrieved LOOP
-- Enhancement #1: use cache for non-visibility events
-- txn is for a table that does not cause visibility
-- events and the txn is not an insert on the dock object’s
-- primary table (this is a new dock object instance).
-- Do not need to do visibility calculation. No implicit
-- visibility events and no related dock object processing
IF Table.visibilityEventFlag = "N’
&& not an insert into DockObjectPrimaryTable THEN

Find the object instance in the S_DOBJ_INST table
IF status = ’Full’ THEN
*peVisible = ’Full’
ELSIF status = ’Partial’ THEN
*peVisible = ’Partial’
ELSE
*peVisible = "None’
END IF;
ELSE
-- Must recalculate visibility
CheckObjectVisibility (LaptopNodeld, PrimaryTable,
PrimaryRowld, depth = 0, peVisible);
END IF;

-- Process implicit visibility events and related dock objects
ReconcileObjectInstance (LaptopNodeld, PrimaryTable,
PrimaryRowld, &eVisible);

-- If we need to process implicit visibility events, then
-- continue looping through all docking objects even if we
-- already know that the Txn is visible.
IF *peVisible in ("Full’, ’Partial’) THEN
IF Table.visibilityEventFlag = 'N’ THEN
return TRUE;

-37-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

45

END IF;
END IF;
END LOOP;
END LOOP;

return TRUE;
}

CheckObijectVisibility
-- Check if a docking object instance is visible to the laptop user.

BOOL CheckObjectVisibility
(Nodeld, DObjName, PrimaryRowld, depth, *peVisible)
{

-- Algorithm:

-- Check FULL visibility

-- Use SQL Rules ORed together

--  Use Check Dock Object Rules one by one
-- Check PARTIAL visibility (iff depth == 0)
--  Use SQL rules OR-ed together

-- Use Check Dock Object Rules one by one

-- Flush the visibility cache to the S_DOBJ_INST table because
-- the SQL rules will reference the cache.
Flush the visibility cache to the S_DOBJ_INST table.

-- Object is not visible.
*peVisible = None;

-- Check Visibility using SQL._RULES ORed together
CheckSqlRule (Nodeld, DObjName, PrimaryRowld, peVisible,
depth, UTL_VIS_FULL);
IF *peVisible == UTL_VIS_FULL THEN
goto done;

-- Check Visibility using Check Docking Objects
CheckOtherRule (Nodeld, DObjName, PrimaryRowld, peVisible,
depth, UTL_VIS_FULL);
IF *peVisible == UTL_VIS_FULL THEN
goto done;

IF depth == 0 THEN
/* Check Visibility using SQL_RULES ORed together */
CheckSqlRule (Nodeld, DObjName, PrimaryRowId, peVisible,
depth, UTL_VIS_PARTIAL);

-38-



WO 98/38583

10

15

20

25

30

35

40

45

PCT/US98/03573

IF *peVisible == UTL_VIS_PARTIAL THEN
goto done;

/* Check Visibility using Check Docking Objects */
CheckOtherRule (Nodeld, DObjName, PrimaryRowld, peVisible,
depth, UTL_VIS_PARTIAL);
IF *peVisible == UTL_VIS_PARTIAL THEN
goto done; :
END IF;

done:

}

return TRUE;

CheckSqlRule

BOOL CheckSqlRule (Nodeld, DObjName, PrimaryRowld, peVisible,

{

depth, eVisType)

-- Create the SQL statement
-- "SELECT ’X’ from <PrimaryTable> pt where
--  pt.ROW_ID = <primary table row id>"

WHILE (TRUE) LOOP
-- Build the SQL statement by ORing the SQL rules together.
FOR each visibility rule for the Docking Object LOOP
-- Only append SQL statements that match the VisType

-- (Partial or Full)

IF RuleType != SQLRule || RuleLocalFlag != eVisType THEN
continue;

END IF;

-- Limit number of rules per statement to the one

-- specified in the system preference.

IF number_rules_appended = "LOG: vis rules per Stmt" THEN
break;

END IF;

-- Add " <sql fragment>" to sql statement

Append the SQL rule to the sql statement;
END LOOP;

-- Run the sql statement
Run the select SQL statement using PrimaryRowld;
IF any rows returned THEN

-- row is visible

*peVisible = eVisType;

goto done;

-39-



WO 98/38583

10

15

20

25

30

35

40

45

PCT/US98/03573
END IF;

-- Stop if no more rules to run

IF no more rules to append THEN
break;

END IF;

END WHILE,;

done:
return TRUE;

}

CheckOtherRule

BOOL CheckOtherRule (Nodeld, DObjName, PrimaryRowld, peVisible,
depth, eVisType)
{

-- Run check docking object rules
FOR each visibility rule for the Docking Object LOOP
-- Only run sql statements that match the VisType
-- (Partial or Full)
IF RuleType != CheckDockObjectRule
|| RuleLocalFlag != eVisType THEN
continue;
END IF;

Run the ParameterSQL using PrimaryRowld to get newPrimaryRowld
FOR each record retrieved by ParameterSQL LOOP
-- recursively check visibility
CheckObjectVisibility (LaptopNodeld, CheckDObjName,
newPrimaryRowld, depth + 1, peVisible);
-- Stop as soon as the object is found to be visible!
IF *peVisible in (Full’, "Partial’) THEN
goto done;
END IF;
END LOOP;

done:
return TRUE;
}

Degrees of Visibility
The docking process may be further enhanced by treating object visibility as

a non-binary condition; that is, providing for an object to have a degree of visibility

-40-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

so that it may be visible in certain contexts and not visible in others. This may be
provided for by associating a visibility strength with each dock object visibility rule.
Visibility strength is a positive integer that states how visible a given dock object

instance 1is.

Visibility strength provides an alternative to concepts of fully and partially
visible dock object instances. Rather than specifying visibility as either full or partial,

visibility strengths allow for an unlimited range of visibility for an object.

When a visibility rule passes, the dock object instance receives the visibility
strength associated with the visibility rule. This visibility strength controls two

aspects.

The first aspect controlled by visibility strength is the downloading or removal
of member table rows. Each member table also has a visibility strength. Docking
downloads (or removes) member table rows only if the dock object instance visibility
strength is greater or equal to the member table visibility strength. This aspect may
be used to limit the number of member table rows replicated to docking clients. For
example, when an Account is visible due to a Quote, docking should download the
Account header, but does not need to download rows in the Account Notes, Account
Positions, and other member tables. Log Manager download and removal processing
is improved because Log Manager can skip downloading and removing certain
member tables. In addition, docking replicates fewer rows to the docking clients,

and the docking clients occupy less disk space.

A second aspect controlled by visibility strength is the downloading or removal
of related dock object instances. Each related dock object rule also has a visibility
strength. When a dock object instance is visible, docking downloads (or removes)
related dock object instances only if the dock object instance visibility strength is
greater or equal to the related dock object rule visibility strength. This aspect may be
used to follow a subsets of related dock objects depending on the reason why the dock

-41-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

object instance is visible. This allows docking to follow a subset of related dock

objects even if a dock object instance is partially visible.

Visibility strength is implemented by adding new attributes to the repository
dock obiject table, dock object visibility rules and dock object related dock object
rules. These new attributes specify the visibility strengths of member tables, visibility

rules and related dock object rules.

Each dock object visibility rule has a visibility strength. When a visibility rule
passes, the dock object instance’s visibility strength is equal to the highest visibility
strength value of all visibility rules that pass. The dock object instance visibility

strength specifies which member table rows to replicate to a docking client and which

related dock object rules to run.

Check dock object visibility rules also have a check-dock-object visibility
strength. The check-dock-object visibility strength value specifies that the current
dock object instance is visible only if the other dock object instance has a visibility

strength greater than or equal to the check-dock-object visibility strength value.

Visibility strength is indicated by an attribute VIS_STRENGTH that specifies
the strength of the dock object instance. The semantics of this attribute may vary
depending on the context of the table in which it appears, as more fully discussed
herein. VIS_STRENGTH may have the following values:

0: not visible
5: partially visible
10: fully visible

A number of the tables in the database schema are modified to support the
VIS_STRENGTH attribute. The S_DOCK_TABLE table stores the member tables
for a docking object. Each docking object can have one or more member tables. The
table contains an additional field, VIS_STRENGTH. VIS_STRENGTH is a numeric
field containing the minimum visibility strength of the dock object instance for rows

-42-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

in this table to be downloaded. The field has a default value of 5, indicating that

member table rows are downloaded if the dock object instance is partially visible.

The S_DOCK_VIS_RULE table stores the visibility rules for a docking object.
Each docking object can have one or more visibility rules. The table contains an
additional field, VIS STRENGTH. VIS_STRENGTH is a numeric field containing
the visibility strength of the dock object instance if the rule passes. The field has a
default value of 5 (partially visible) if PARTIAL = ’y’, and otherwise is set to 10.
The S DOCK_VIS_RULE table also includes a CHECK_VIS_STRENGTH field,
used for check-dock-object rules (i.e., rules with ruleType = ’C’). This value
represents the minimum visibility strength of the check dock object instance to make
this visibility rule pass. The field has a default value of 10, requiring the check dock

object to be fully visible, for ruleType='C’, and is otherwise unused and set to 0.

The S_ DOCK_REL OB]J table stores the related dock object rules for a
docking object. Each docking object can have one or more related dock object rules.
The table contains an additional field, VIS_STRENGTH. VIS_STRENGTH is a
numeric field containing the minimum visibility strength of the dock object instance
for Log Manager to run this rule. It has a default value of 10, requiring full
visibility. The S DOCK REL OBJ table also includes a field
REL VIS STRENGTH. This field contains a value that is used to provide a
visibility strength value to related dock instances. It has a default value of 5.

The S_DOCK_INST table is a new table replacing S_DOBJ_INST, and stores
the current visibility strength of a dock object instance for each docking client. It has
the following fields. NODE_ID is a non-null unique key that indicates the docking
client corresponding to this row. DOCK _ID is a non-null unique key that indicates
the dock object corresponding to this dock object instance. PR_TBL_ROW_ID
contains a key that is the primary table row id of the dock object instance.
VIS_STRENGTH is a numeric field containing the current visibility strength of the
dock object instance for the docking client.

The following SQL code may be used to define the S_DOCK_INST table:

-43-



WO 98/38583

10

15

20

25

30

35

PCT/US98/03573

create table S_DOCK_INST (
NODE ID VARCHAR2(15) NOT NULL,
DOCK ID VARCHAR2(30) NOT NULL,
PR_TBL_ROW_ID VARCHAR2(15) NOT NULL,
VIS_STRENGTH NUMBER NOT NULL
)

create unique index S_DOCK_INST Ul on S_DOCK_INST
(NODE _ID, DOCK_ID, PR_TBL_ROW_ID, VIS_STRENGTH);

The S DCK_TXN_LOG table stores the transactions to route to docking
clients. The table contains an additional field, VIS_STRENGTH. VIS_STRENGTH
is a numeric field containing the visibility strength of the table referenced by the
transaction. This value is denormalized by the Log Preprocessor and is used by the
Log Router. It is only used in implementations using the Oracle™ database. The
following SQL code may be used to define the S_DCK_TXN_LOG table:

alter table S_ DCK_TXN_LOG add (TBL_VIS_STRENGTH NUMBER);

Log Manager processing

Log Manager routes a transaction to a docking client only if the dock object
instance visibility strength is greater or equal to the member table visibility strength.
The Log Preprocessor stores the member table visibility strength as a denormalized

value in the transaction log table.

When Log Router processes visibility events, visibility rules are executed in
decreasing order of visibility strength until a visibility rule passes. When a visibility
rule passes, the dock object instance receives the visibility strength of the visibility
rule that passes. If no visibility rule passes, then the dock object instance gets a
visibility strength of none (value = 0). After calculating the visibility strength,
visibility strength of the dock object instance is written to the S_DOCK_INST table,
unless the dock object instance has a visibility strength of 0.



WO 98/38583

10

15

20

25

30

PCT/US98/03573

When Log Router searches for visible transactions, a transactions is fetched
only if the S_DOCK_INST table has a visibility strength that is greater than or equal
to the visibility strength of the transaction log denormalized member table.

Log Manager uses the member table’s visibility strength attribute to identify
member table rows to download or remove: When the visibility strength of a dock
object instance changes, Log Manager downloads or removes member table rows for
the dock object instance. If the new visibility strength is greater than the old
visibility strength, the referenced member table rows have not previously been
downloaded and now should be downloaded. If the new visibility strength is less than
the old visibility strength, then Log Manager removes member table rows that have

previously been downloaded and should not now be downloaded.

When processing related dock object rules, Log Manager uses the visibility
strength attribute of each rule to identify which related dock object rules to execute.
When the visibility strength of a dock object does not change and the visibility
strength is not None, Log Manager checks related dock object instances and verifies
that their visibility strength have not changed. When the visibility strength of a dock
object instance changes, Log Manager checks all related dock object instances and
downloads or removes related dock object instances as needed. If the new visibility
strength is greater than the old visibility strength, Log Manager executes the related
dock object rules that have not previously been run and now should be run. If the
new visibility strength is less than the old visibility strength, Log Manager executes

the related dock object rules that have been previously run and now should not be

nm.

Log Manager uses the relVisStrength attribute of each rule to reduce visibility
checking. If the new visibility strength is greater than or equal to the old visibility
strength, and Log Manager finds a related dock object instance and the related dock
object’s relVisStrength is greater than or equal to the other dock object’s maximum

visibility rule visStrength, then Log Manager does not need to re-check visibility of

-45-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

other dock object instance. The related dock object instance visStrength is set to the
related dock object’s relVisStrength.

Simplified Docking Visibility Rules

The utility of the present invention may be made more useful by simplifying
the docking visibility rules. Specifically, the docking visibility rules may be stored
in a single location, the central dictionary, so that the database extraction process
DBXtract and Log Manager can rely on the same definitions to extract and route
transactions to mobile clients. Predefined docking visibility rules may also be
provided to support commonly required visibility tasks such as position dependencies,
employee dependencies, and check-dock-object rules. This approach provides several

benefits.

First, storing all docking visibility rules in the central dictionary lets both Log
Manager and DBXtract use the same definitions to route transactions to mobile
clients, reducing the cost of maintaining docking visibility rules. This also eliminates
the need to maintain DBXtract SQL scripts for each different database vendor (e.g.
Sybase™, Oracle™, or Informix™). Second, it permits the definition of pre-defined
visibility rules commonly used by vendor-supplied applications. These rules make
it unnecessary to enter SQL fragments or define related docking object rules. 90%
of all docking visibility rules for typical applications may use pre-defined visibility
rules. Third, the central dictionary lets customers use the Docking Object List view
to easily customize docking visibility rules to satisfy site-specific requirements.
Customers can also easily activate or deactivate visibility rules by changing an
attribute of a visibility rule. With simplified visibility rules, clients, such as end
users, can change visibility rules using an easy-to-use graphical user interface. This
improves performance for majority of customers by letting us define specialized
visibility rules for a small set of customers as inactive rules and letting the customers
activate the specialized rules. Customers that do not use the specialized rules do not
incur the performance cost of the specialized rules. Fourth, storing all docking
visibility rules in a unified location makes it easier to build future docking

enhancements.

-46-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Simplified docking rules are implemented as follows. Five new types of
visibility rules are defined and stored in the central dictionary.

1) Check-dock-object rules relate two docking object instance to each other
without the use of a SQL fragment. Check dock object rules are similar to SQL rules
except that a check dock object definition between two docking objects is stored
instead of a SQL fragment. For example, an opportunity is visible if an activity that
is fully visible uses the opportunity.

2) Position rules specify that a docking object instance is visible if an
employee on the docking client occupies a position for the docking object. For
example, an opportunity is visible if an employee on the docking client is an
opportunity sales team member.

3) Position manager rules specify that the docking object instance is visible if
an employee on the docking client is the manager of an employee that occupies a
position for the docking object. For example, an opportunity is visible if an employee
on the docking client is the manager of an opportunity sales team member.

4) Employee rules specify that a docking object instance is visible if an
employee on the docking client is assigned to the docking object. For example, an
activity is visible if an employee on the docking client is assigned to the activity.
Employee rules are typically used for owner, creator, etc.

5) Employee manager rules specify that the docking object instance is visible
if an employee on the docking client is the manager of an employee assigned to the
docking object. For example, an activity is visible if an employee on the docking
client is the manager of an employee assigned to the activity. Employee manager

rules are typically used for manager of owner, manager of creator, etc.

In Log Manager, visibility SQL statements are generated from the central
dictionary at runtime. Code is added to the visibility checker common API to
generate and run SQL statements for the new visibility rule types. Log Manager’s
visibility event code is modified to use the new types of visibility rules to find related
docking object instances.

-47-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

Fig. 9 depicts a database diagram for the central dictionary. This diagram is
akin to the schema of Fig. 2 with additional support added to the
S_DOCK_VIS_RULE table, as follows.

The S_DOCK_VIS_RULE table contains the visibility rules associated with
a particular Docking Object. S_DOCK_VIS_RULE 71 contains the additional fields
DOCK _ID, SEQUENCE, TYPE, ACTIVE and PARTIAL. Field DOCK_ID
identifies the Docking Object with which a particular visibility rule is associated,
referred to as the "current docking object.” Field SEQUENCE is a sequence number
that indicates the sequence, relative to other visibility rules in the table, in which the
particular visibility rule should be run. The ACTIVE field indicates whether a
particular rule is active or not. A value of "Y’ or null indicates that the rule is active,
and a value of 'N’ indicates that it is inactive. The field TYPE specifies the type of
the particular visibility rule. A value of 'S’ indicates an SQL rule; a value 'O’
indicates a parameter dock object rule; a value 'C’ indicates a check-dock-object rule;
a value ’P’ indicates a position rule; a value 'Q’ indicates a position manager rule;
a value ’E’ indicates an employee rule; a value 'F’ indicates an employee manager
rule. The field PARTIAL, if set to 'Y’, indicates that if the visibility rule is
satisfied, the current docking object is partially visible. If set to N’ or null, it
indicates that if the visibility rule is satisfied, the current docking object instance is
fully visible.

In addition the S_DOCK_VIS RULE table contains a number of fields whose

meaning and meaningfulness depends upon the rule type.

SQL rules use the fields SQL_STATEMENT and VIS_EVT_COLS. In this
context, the SQL_STATMENT field is an SQL fragment that, if it returns any rows,

indicates that the dock object instance is visible.

Parameter Dock Object Rules use the fields CHECK_DOCK_ID and
SQL_STATMENT. In this context, CHECK_DOCK_ID contains a pointer to another
docking object and SQL_STATEMENT contains an SQL statement to obtain the

-48-



WO 98/38583

10

15

20

25

30

PCT/US98/03573

PrimaryID values for the other dock object. For each PrimaryID retrieved, Log
Manager runs the visibility rule of the other dock object.

Check-Dock-Object rules use the fields CHECK_DOCK_ID,
SRC_COLUMN_ID and TAR_COLUMN_ID. In this context, SRC_COLUMN_ID
identifies the column in the current dock object that joins to the check dock object and
TAR_COLUMN_ID identifies the column in the check dock object that joins to the
dock object join column. For the Check-Dock-Object type, the visibility event
columns is implicit: all columns needed to join from the primary table of the current

dock object to the dock object join column.

Position rules use the field POSTN_COLUMN _ID, which is a column in a
member of table of the current dock object that points to the S_POSTN table. For
Position rules, the visibility event columns is implicit: all columns needed to join

from the primary table of the current dock object to the position column.

Position Manager rules use the field POSTN_COLUMN_ID, which is a
column in a member of table of the current dock object that points to the S_POSTN
table. For Position Manager rules, the visibility event columns is implicit: all columns
needed to join from the primary table of the current dock object to the position

column.

Employee rules use the field EMP_COLUMN_ID to identify a column in a
member table of the current dock object that points to the S_EMPLOYEE table. For
Employee rules, the visibility event columns are implicit: all columns needed to join

from the primary table of the current dock object to the employee column.

Employee Manager rules use the field EMP_COLUMN _ID to identify a
column in a member table of the current dock object that points to the S_POSTN
table. For Employee Manager rules, the visibility event columns is implicit: all
columns needed to join from the primary table of the current dock object to the

employee column.

-49-



WO 98/38583

10

15

20

25

PCT/US98/03573

SQL statements are stored in the central dictionary memory structures for
access by Log Manager and DBXtract. When the dictionary is loaded, SQL
statements are generated and stored in the memory structures. Because the number
of SQL statements are small, the generation code is expected to take less than one
second. Alternatively, if the generation takes too long, the dictionary API may be
modified to generate the SQL statements for a given dock object whenever the dock

object is first referenced.

Appendix B describes the format SQL statements that Log Manager and
DBXtract generate at runtime and provide an example of these SQL statements using

the Accounts dock object.

CONCLUSION
Various modifications to these embodiments will be readily apparent to
those skilled in the art, and the generic principles defined herein may be applied to
other embodiments without the use of inventive faculty. Thus, the present
invention is not intended to be limited to the embodiments shown herein, but is to
be accorded the widest scope consistent with the principles and novel features

disclosed herein.

All publications and patent applications mentioned in this specification are
herein incorporated by reference to the same extent as if each individual
publication or patent application was specifically and individually indicated to be

incorporated by reference.

The invention now being fully described, it will be apparent to one of

ordinary skill in the art that many changes and modifications can be made thereto

without departing therefrom.

-50-



WO 98/38583 PCT/US98/03573

5

10

15

20

25

30

35

40

45

50

APPENDIX A

Writing User Transaction Log File for a Given Laptop Node

This program will be called by a server-side process that processes transaction log
entries for all Laptop Nodes. For each Laptop Node, the calling process building the
UserTrxnLogFileName and calling Program 1.

Input Parameters

¢ LaptopNodeld - node_id of the destination laptop

e UserTxnLogFileName - full path of the file where txns will be written

* MaxBatchTxns - number of txns between commits and updates to the
S DOCK_STATUS table

¢ MaxTxns - number of txns to process in this session. Use this parameter to
limit processing.

Main Algorithm

-- Check parameters

IF (MaxTxns < 1 || MaxBatchTxns < 1) THEN
Invalid Parameter

END IF

-- Get last LOG_EXTRACT number for the Laptop from S_DOCK_STATUS
last_txn_commit_number = UTLDStatGetLogNum(LaptopNodeld) ;

-- Initialize Variables

NumTxns = 0; -~ Total number of txns processed
NumBatchTxns = 0; -- Total number of txns written in the current
batch

-- Read Docking Object and Table definitions into memory structures
StartDicthpi () ;

-- Open the User Log Txn file
Open User Log Txn file

-- Select and process new txns in S_DOCK_TRANSACTION_LOG
-- where txn_commit_number > last_txn_commit_number
FOR each new txn LOOP

-- Stop processing if reach MaxTxns
IF NumTxns = MaxTxns THEN

break;
END IF;

-- Prevent circular txns. Do not send the txn back to the
originating laptop
IF txn.OriginNodeId = LaptopNodeId THEN
Goto next transaction
END IF;

-- Process all other types of transactions

-51-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

45

50

55

60

-- This is the wvisibility calculator!
-- This routine also processes implicit visibility events

-- Later: Data Merge can call this function to check whether a txn

is
-- gtill visible when merging txns into a laptop or server
database.
CheckVisibility (LaptopNodeld, LogRecordType, TableName,
TransRowlId) ;
IF txn is visible THEN
-- Write transactions to UserTxnlog file depending on the
-- type of LogRecordType.
Write the txn to the user log file
++NumBatchTxns
END IF;

-- Finished processing the txn

-- Commit (if needed)

IF NumBatchTxns = MaxBatchTxns THEN
-- Assume that separate process comes around and deletes
-- Txns in S_DOCK_TRANSACTION_LOG that have been processed
-- for all nodes. So, no need to delete the txns from the log.
Update last LOG_EXTRACT number for Laptop in S_DOCK_STATUS
Commit;
NumBatchTxns = 0

END IF;

++NumTxns
End Loop; /* Each transaction in the Txn Log table */

-- Commit
Update last LOG_EXTRACT number for Laptop in S_DOCK_STATUS
Commit;

-- Close log file (if needed)

IF UserTxnLogFileP != NULL THEN
Close File;

END IF;

StopDictApi ();

Check Visibility Routines

-- Check if a record in the txn log is visible to a LaptopNodeId
BOOL CheckVisibility (LaptopNodeId, LogRecordType, TableName,
TransRowId)

-- SQLStatements routed based on the destination list
IF LogRecordType in (’SQLStatement’) THEN
IF Laptop Node in destination list THEN
return TRUE;
END IF;

-- Shadow and Multi Record LogRecordTypes are routed to all nodes
-- No visibility events with these LogRecordTypes.
ELSIF LogRecordType in (’ShadowOperation’, ’‘MultiRecordDelete’,
‘MultiRecordUpdate’) THEN
return TRUE;

-- Simple Deletes need more processing
ELSIF LogRecordType in (’/Simple Delete’) THEN
IF (table.visibility in (’/Enterprise’, ’'Limited’)) THEN
return TRUE;
END IF;

-52-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

45

50

55

60

65

-- Simple Inserts and Simple Updates need more processing
-- CheckTxnVisibility () also processes implicit visibility events
ELSIF LogRecordType in (’Simple Insert’, ’'Simple Update’) THEN
IF (table.visibility = ‘Enterprise’) THEN
return TRUE;
ELSIF table.visibility = ‘Limited’ THEN
IF CheckTxnVisibility (LaptopNodeId, Table, Rowld) THEN
return TRUE;
END IF;
END IF;
END IF;

}

-- Check if a record in the txn log is visible to a LaptopNodeId
static BOOL CheckTxnVisibility (LaptopNodeld, Table, RowId)

BOOL bVisible = FALSE;

Find the Table in the Dictiomnary;
IF Table not found THEN

Error: Table not defined
END IF;

FOR all docking objects that the table belongs to LOQP
-- Generate SQL to get PrimaryId values of the Docking Object
GeneratePrimaryIdSQL (Table, RowlId, DockingObject) ;
FOR each PrimaryId value retrieved LOOP
CheckObjectVisibility (LaptopNodeId, PrimaryTable,
PrimaryRowId)
IF object is visible THEN
-- Because CheckObjectVisibility() also processes implicit
-- visibility events, we must loop through ALL docking
objects
-- even if we already know that the Txn is visible.
-- Exception: if the table has VIS_event_FLG = ‘N’
-- then we can return immediately.
IF Table.visibilityEventFLG = ‘N’ THEN
return TRUE;
ELSE
bVisible = TRUE;
END IF;
END IF;
END LOOP;
END LOOP;

return bVisible;

-- Check if an instance of a docking object is visible to the laptop
user.

-- Also processes implicit visibility events!

BOOL CheckObjectVisibility (LaptopNodeId, DockingObjectName,
PrimaryRowId)

FOR each visibility rule for the Docking Object LOOP
IF RuleType = RuleSQL THEN
Run the select SQL statement using PrimaryRowId;
IF any rows returned THEN
-- row is visible
-- Process an implicit Download Object
DownloadObjectInstance (LaptopNodeId, PrimaryTableName,
PrimaryRowld) ;
return TRUE;
END IF;
ELSIF RuleType = CheckDockingObject THEN :
Run the ParameterSQL uging PrimaryRowId to get newPrimaryRowld

-53-



WO 98/38583

10

15

20

25

30

35

40

45

50

55

60

PCT/US98/03573
FOR each record retrieved by ParameterSQL LOOP
-- RECURSIVE!
CheckObjectVigibility (LaptopNodeId, CheckDockingObjectName,

newPrimaryRowId) ;
IF rc = TRUE THEN
-- Process an implicit Download Object
DownloadObjectInstance (LaptopNodeld, PrimaryTableName,
PrimaryRowld) ;
return TRUE;
END IF;
END LOOP;
END IF;
END LOOP;

-- Object is not visible.

-- Process an implicit Remove Object

RemoveObjectInstance (LaptopNodeId, PrimaryTableName,
PrimaryRowId) ;

return FALSE;

}

Generate SQL Statement to Get Primaryld

-- Generate the SELECT SQL statement to get the PrimaryId value of
-- the docking object for the given MemberTable

-- SQL statement looks like:

-- SELECT tp.<row_id>

-- FROM <table_owner>.<Table> t1,

-- <table_owner>.<PKTable> t2,

-- ... one or more intermediate tables between the table
-- and the PrimaryTable

-- <table_owner>.<PKTable> tN

-- <table_owners>.<PrimaryTable> tp

-- WHERE t1.ROW_ID = :row_id /* row_id in transaction log */
-- /* join to PK table t2 */

-- AND tl1.<FKColumn> = t2.<PKColumn>

-- AND <tl FKCondition>

-- /* any number of joins until reach the table that joins
-- to the PrimaryTable */

-- /* join from t2 to tN */

-- AND t2.<FKColumn> = tN.<PKColumn>

-- AND <t2 FKCondition>

-- /* join to the PrimaryTable */

-- AND tN.<FKColumn> = tp.<PKColumn>

-- AND <tN FKCondition>

-- Note that there may be one or more paths from the Member Table
-- to the Primary Table. We need to generate a SQL select statement
-- for each of the paths and UNION the statements together.

-- This function assumes that there are no loops in the definition.

-- These SQL statement do not change for each Table in a Docking
Object,
-- so we can calculate them one and store them in memory.

struct
CHAR* selectlist;

CHAR* fromClause;
CHAR* whereClause;

-54-



WO 98/38583

10

15

20

25

30

35

40

45

50

55

60

65

PCT/US98/03573

UINT numTables; /* also the number of joint to reach the Primary

Table */
} GenStmt;

GeneratePrimaryIdSQL (Table, DockingObject)

/* there may be more than one SQL statement, so we have a dynamic
array of SQL statements. Each element in the array is a path
from the Table to the Primary Table*/

DynArrId GenStmtArr;

GenStmt newGenStmt;

CHAR* sqglStmt;
DynArrCreate {(GenStmtArr);

-- Create the first element and initialize
newGenStmt = malloc();

newGenStmt .numTables = 1;

newGenStmt .selectList = "SELECT row_id";

newGenStmt .fromClause = "FROM <Table> tl1'";

newGenStmt .whereClause = "WHERE tl.ROW_ID = :row_id";
DynArrAppend (GenStmtArr, &newGenStmt) ;

/* Recursively follow FKs to the PrimaryTable */
Build the select, from and where clause simultaneously */
AddPKTable (Table, DockingObject, GenStmtArr, O0);

-- Union all the paths together
numStmts = DynArrSize (GenStmtArr);
FOR all elements in the array LOOP
tmpSglStmt = GenStmtArr[j] .selectlist]| GenStmtArr[j].fromClause
GenStmtArr {j] .whereClause;
sglStmt = sqlStmt || 'UNION’ || tmpSqlStmt;
END LOOP;

DynArrDestroy (GenStmtArr);
IF sglStmt = NULL THEN

Error: no path from Table to Primary Table.
END IF;

-- Recursively follow all FKs to the Primary Table
AddPKTable (Table, DockingObject, GenStmt, InputStmtNum)

{

UINT numFKS = 0;

UINT StmtNum;

GenStmt newGenStmt;

FOR all FKs for the table LOOP

IF PKTable is a Member Table of the Docking Object THEN
-- If there'’'s more than one FK, then there is more than one

path

-- out of the current table.
-- Copy the SQL stmt to a new DynArrElmt to create a new path
IF numFKs > 0 THEN
-- Create a new element and copy from GenStmt [InputStmtNum]
newGenStmt = malloc() ;
newGenStmt.numTables = GenStmt [InputStmtNum] .numTables;
newGenStmt .selectlList = GenStmt [InputStmtNum] .selectlist;
newGenStmt . fromClause = GenStmt [InputStmtNum] .fromClause;
newGenStmt .whereClause = GenStmt [InputStmtNum] .whereClause;
DynArrAppend (GenStmtArr, &newGenStmt) ;
StmtNum = DynArrSize (GenStmtArr);

-55-



WO 98/38583

10

15

20

25

30

35

40

45

50

55

60

PCT/US98/03573

-- Put a check here for infinite loops
IF StmtNum == 20 THEN
Error: Probably got an Infinite loop?
END IF;
ELSE
StmtNum = InputStmtNum;
END IF;

-- hppend the new PKTable to the fromClause and whereClause
GenStmt [StmtNum] .fromClause =
GenStmt [StmtNum] .fromClause |} ",\n <Table> t<numTables +
1>";
GenStmt [StmtNum] .whereClause =
GenStmt [StmtNum] .whereclause ||
"AND t<numTables>.<FKColumn> = t<numTables +
1>.<PKColumns>" |
"AND <FKCondition for Table if any>";
++GenStmt .numTables;

-- PKTable is the Primary Table then Done.
IF PKTable = PrimaryTable THEN
RETURN;
ELSE
AddPKTable (PKTable, DockingObject, GenStmt, StmtNum);
END IF;

-- Only count FKs to other member tables in the same Docking
Object
++numFKs ;

END IF;
END LOOP;

RETURN;

}
Process Visibility Events

-- Download an Object Instance to a Laptop
-- This function also downloads all Related Docking Object instances.
BOOL DownloadObjectInstance (LaptopNodeld, ObjectName, PrimaryRowId)
{

-- Check if the object instance is already downloaded to the laptop

Find the object instance in the S_DOBJ_INST table

IF exists on laptop THEN

return TRUE;
END IF;

-- Register object instance in S_DOBJ_INST table

-- Write Download Object records to the Txn Log

FOR each member table of the docking object LOOP
Generate SQL select statement to download records
Write each retrieved record to the User Txn Log file

END LOOP;

-- Download records for Parent Object instances
FOR each RelatedDockingObject LOOP
Run ParameterSQL to get newPrimaryId of RelatedDockingObjects
FOR each newPrimaryld retrieved LOOP
-- Check if the instance of the object is visible to the laptop
user
CheckObjectVisibility (LaptopNodeld, ObjectName, PrimaryRowld)
IF visible THEN
DownloadObjectInstance {(LaptopNodeld,

-56-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

45

RelatedDockingObject,

newPrimaryRowld) ;

END IF;
END LOOP;

END LOOP;

return TRUE;

-- Remove an Object Instance to a Laptop
-- This function also removes all Related Docking Object instances.
BOOL RemoveObjectInstance (LaptopNodeId, ObjectName, PrimaryRowld)

{

-- Check if the object instance is already downloaded to the laptop
Find the object instance in the S_DOBJ_INST table
IF does not exist on laptop THEN
return TRUE;
END IF;

-- Delete the object instance from S_DOBJ_INST table

-- Write Remove Object records to the Txn Log

FOR each member table of the docking object LOOP
Generate SQL select statement to get records to delete
Write each retrieved record to the User Txn Log file

END LOOP;

-- Remove for Parent Object instances
FOR each RelatedDockingObject LOOP
Run ParameterSQL to get newPrimaryId of RelatedDockingObjects
FOR each newPrimaryId retrieved LOOP
-- Check if the instance of the object is visible to the laptop

user
CheckObjectVisibility (LaptopNodeld, ObjectName, PrimaryRowId)
IF not visible THEN
RemoveObjectInstance {LaptopNodeld,
RelatedDockingObject, newPrimaryRowId);

END IF;

END LOOP;

END LOOP;

return TRUE;

-57-



WO 98/38583 PCT/US98/03573

Appendix B: SQL Statements and Examples

Top Level SQL Statements

This section describes the format SQL statements that Log Manager and DBXtract generates at

runtime. See the next section for an example of these SQL statements using the Accounts dock
5 object.

Log Manager Visibility SQL Statements

Log Manager generates visibility sql statements when checking the visibility of a dock object
instance. Log Manager generates a <sub sql statement> for each visibility rule, the structure of
which depends on the visibility rule type (see Sub SQL Statements below).

10
select 'X'
from &Table_Owner.<primary table> primary table
where primary table.ROW_ID = <primary row_id>
and ((<sub sgl statements> 1)
15 OR (<sub sgl statement 2>)

OR (<sub sgl statement N>).
)
/

20 Log Manager Related Dock Object SQL Statements

Log Manager generates related dock object sql statements after the visibility of a dock object
instance has changed. Log Manager generates one or more <sub sql statements> for each
visibility rule, the structure of which depends on the visibility rule type (see Sub SQL Statements
below).

25
<sub sqgl statement>

-58-



WO 98/38583 PCT/US98/03573

Sub-Statements for SQL Rules

Log Manager Visibility SQL Statements
<sgl fragments>

5 Log Manager Related Dock Object SQL Statements

User enters related dock object sgl statements.

DBXtract Phase 2 SQL Statements

select DISTINCT pt.ROW_ID ITEM ID_ T, <dobj_id>
10 ITEM TYPE T,
:node_id CREATED BY_ T, <partial flag>
DPARTIAL FLG_T
from :table_owner.<primary table> pt
where <sgl fragment>
15 and pt.ROW_ID not in
(select di.ITEM_ID
from :table owner.S_DCK_INIT_ITEM di
where di.CREATED_BY = :node_id
and di.ITEM_TYPE = <dobj_id>)
20 /

-59-



WO 98/38583

10

15

20

25

30

35

40

45

50

PCT/US98/03573

Sub-Statements for Check Dock Object Rules

Log Manager Visibility SQL Statements
SQL Statement Template

exists (select 'C’
from &Tables
&Table Owner.S_DOBRJ_INST di
where di.NODE_ID = :node_id
and di.DOBJ_ID = &Check DObj_Id
and di.STAT FLG = 'F’
and di.PR_TBL_ROW_ID = &Join_ Column
&Joins

/

Algoerithm
Build source and target dock object paths separately. Join source path to source primary table.
Join target path to S_DOBJ_INST table. Then join source and target using the two join columns.

Build Source object paths

IF source join column table = source primary table
THEN
-- can optimize: join target object directly to
primary table
&Tables: add nothing
&Joins : add nothing
pSrcJdoinCol = "primary table.<source join column>"
ELSE
Get paths from source join column table to source
primary table.
- The paths will not include the source primary table
- The paths will not include the source join column
&Tables: Add every table in path to from clause, last
element first:
"&Table Owner.<pathcol [N] ->pTable->pTableName>
SN"
&Joins:
- Add joins for all path cols except the last
element:
"and sN.<pathcol [N] - >pColumnName> = sN+1.ROW_ID"
- Add join from last element to primary rowid:
"and s<last>.<pathcol [last] ->pColumnName> =
primary_ table.ROW_ID"
pSrcdoinCol = "sl.<source join column>"
END IF

Build Target object paths
IF target join column = target primary table ROW_ID
THEN

-- can optimize: join source object directly to
S _DOBJ_INST table

&Tables: add nothing

&Joins : add nothing

pTarJdoinColumn: nothing

&Join_Column: pSrcJoinColumn

-60-



WO 98/38583

10

15

20

25

30

35

40

45

50

55

PCT/US98/03573

ELSE
Get paths from target join column table to target
primary table.
- The path will not include the target primary table
if the path traverses
any other member table.
- The paths will not include the target join column.
&Tables: Add every table in path, first element first
—_ "&Tables_Owner.<pathcol [N] ->pTable->pTableName>
tN n
&Joins:
- Add joins for all path cols except the last
element:
"and tN+1.ROW_ID = tN.pathcol [N]->pColumnName"
(note backwards order)
pTarJoinColumn: "tl.<Target join column>"

&Join_Column: "t<last>.<pathcol[last]->pColumnName>"
END IF

2. Join source and target join columns
&Joins : Add join from target join column to source
join column if both exist:
"and <pTardoinColumn> = <pSrcJoinColumn>"

3. Replace &Tables, &Join_Column and &Joins in the SQL
statement template.

Example 1: Opportunity visible due to Activity

Source Object Opportunity (src ptable: S_OPTY)
Target Object Activity (tar ptable: S_EVT_ACT)
Source join column = S_OPTY.ROW_ID

Target join column = S_EVT ACT.OPTY_ID

1. Target Path: S_EVT ACT.ROW_ID
&Tables: S_EVT_ACT tl
&Joins : and di.PR_TBL_ROW_ID = tl1.ROW_ID
pTarJoinCol: t1.0PTY_ID
2. Source Path: S_OPTY.ROW_ID
&Tables: add nothing
&Joins : add nothing
pSrcJoinCol: primary_table.ROW_ID
3. Join source and target
&Joins : and t1.0PTY_ID = primary_table.ROW_ID

select ‘X'
from &Table Owner.S_OPTY primary_table
where ROW_ID = ?
and exists (select ’'C’
from &Table Owner.S_EVT ACT t1,
&Table_Owner.S_DOBJ_INST di
where di.NODE_ID :node_id
and di.DOBJ_ID = &Check DObj_Id
and di.STAT FLG = 'F’
and di.PR_TBL ROW_ID = t1.ROW_ID

-61-



WO 98/38583

PCT/US98/03573
and t1.0PTY_ID =
primary table.ROW_ID)
Example 2: Activity visible due to Opportunity
5
Source Object = Activity (src ptable: S_EVT ACT)
Target Object = Opportunity (tar ptable: S_OPTY)
Source join column = S_EVT ACT.OPTY_ID
Target join column = S OPTY ROW_ID
10

1. Target Path: S_OPTY.ROW_ID
&Tables: S_OPTY tl
&Joins : add nothing
pTaraJoinCol: di.PR_TBL_ROW_ID
15 2. Source Path: S_EVT_ACT.ROW_ID
&Tables: add nothing
&Joins : add mothing
pSrcJdoinCol: primary_table.OPTY_ID
3. Join source and target
20 &Joins: and di.PR_TBL_ROW_ID =
primary_table.OPTY_ID

select "X’
from &Table Owner.S_EVT ACT primary_table
25 where ROW_ID = ?
and exists (select 'C’
from &Table Owner.S_OPTY t1l,
&Table Owner.S DOBJ INST di
where di.NODE_ID = :node_id
30 and di.DOBJ_ID = &Check DObj_Id
and di.STAT _FLG = 'F’
and di.PR_TBL_ROW_ID =
primary_ table.OPTY ID)

35

Example 3: Account visible due to Partner Account

Source Object: Account (src ptable: S_ORG_EXT)

Target Object: Account (tar ptable: S_ORG_EXT)
40 Src join column: S_ORG_EXT.ROW_ID

Tar join column: S ORG REL. PRTNR OoU_ID

1. Target Path: S _ORG_REL.OU_ID
&Tables: S_ORG_REL t1l

45 &Joins: and di.PR_TBL_ROW_ID = t1.0U_ID
pTardoinCol: tl. PRTNR 0U_ ID
2. Source Path: S_ORG_. "EXT.ROW_ID

&Tables: add nothing
&Joins : add nothing
50 pSrcdoinCol: primary_ table.ROW_ID
3. Join source and target
&Joins: and tl1.PRTNR_OU_ID = primary table.ROW_ID

exists (select 'C’
55 from &Table_Owner.S_ORG_REL tl,

-62-



WO 98/38583 PCT/US98/03573

&Table_Owner.S_DOBJ_INST di
where di.NODE_ID = :node_id
and di.DOBJ_ID = &Check DObj_1Id
and di.STAT FLG = 'F’
5 and di.PR_TBL_ROW_ID = tl1.0U_ID
and tl1.PRTNR_OU_ID =
primary table.ROW_ID)

10 Example 4: Account visible due to Parent Account

Source Object: Account (src ptable: S_ORG_EXT)
Target Object: Account (tar ptable: S_ORG_EXT)
Src join column: S_ORG_EXT.ROW_ID

15 Tar join column: S_ORG_EXT.PARENT OU_ID

1. Target Path: S_ORG_EXT.ROW_ID
&Tables: S_ORG_EXT til
&Joins : and di.PR_TBL ROW_ID = t1.ROW_ID
20 pTardoinCol: tl.PARENT OU_ID
2. Source Path: S_ORG_EXT.ROW_ID
&Tables: add nothing
&Joins : add nothing
pSrcdoinCol: primary table.ROW_ID
25 3. Join source and target
&Joins: and tl.PARENT OU_ID = primary_table.ROW_ID

exists (select 'C’
from &Table_Owner.S_ORG_EXT t1,
30 &Table_Owner.S_DOBJ_INST 4i
where di.NODE_ID = :node_id
and di.DOBJ_ID = &Check_DObj_Id
and di.STAT FLG = 'F’
and di.PR_TBL_ROW_ID = t1l.ROW_ID
35 and t1.PARENT OU_ID =
primary table.ROW_ID)

3. Log Manager Related Dock Object SQL Statements

40
SQL Statement Template
select pt.ROW_ID
from &Tables
45 &Joins
/
Algorithm

Build source and target dock object paths separately. Join target path to :primary_row_id.
50 Join source and target using the two join columns. Get source primary table ROW_ID.

1. Build Target object paths

IF target join column = target primary table ROW_ID
THEN

-63-



WO 98/38583

10

15

20

25

30

35

40

45

50

55

PCT/US98/03573

-- can optimize: join source object directly to
:primary_row_id

&Tables: add nothing

&Joins : add nothing

pTarJoinColumn = ":primary row_id"
ELSE

Get paths from target join column table to target
primary table.

- The paths will not include the target primary table
if the path traverses

any other member table.
- The paths will not include the target join column.
&Tables: Add every table in path last element first

A "&Table Owner.<pathcol [N] ->pTable->pTableName> tN"

&Joins:
- Add join from :primary row_id to last path
column:
"and t<last>.<pathcol[0] ->pColumnName> =
:primary_row_id"
- Add joins for all path cols except the last
element:
"and tN+1.ROW_ID = tN.<pathcol[N]-
>spColumnName>" (note backwards order)
pTarJoinColumn: "tl.<Target join column>"
END IF

Build Source object paths
Always add source primary table in join to guarantee
that the source dock object instance exists
IF source join column table = source primary table
THEN

-- optimize: can omit source tables from SQL
statement

&Tables: "<source primary table> pt"

&Joins : add nothing

pSrcJdoinCol: "pt.<src join column>"
ELSE

Get paths from source join column table to source
primary table.

- The paths will not include the source primary table

- The paths will not include the source join column

&Tables:

- Add every table in path to from clause, first
element first:

"gTable_ Owner.<pathcol [N] - >pTable-

>pTableName> sN"

- Add source primary table to from clause:

"&Table Owner.<source primary table> pt"

&Joins
- Add joins for all path cols except the last
element:
"and sN.<pathcol [N] - >pColumnName> =
sN+1.ROW_ID"

- Add join from last element to source primary table
row_id:



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

45

50

55

"and s<lasts>.pathcol [last] ->pColumnName =

pt .ROW_ID"
pSrcJdoinCol = "sl.<Source join column>"
END IF
3. Join source and target join columns
&Joins: Add join from target join column to source join
column:

"and <pTarJoinCol> = <pSrcJoinCols>"

Example 1: Opty visible due to Activity (Get all Opportunities for an Activity)

Source Object Opportunity (src ptable: S_OPTY)
Target Object Activity (tar ptable: S_EVT_ACT)
Source join column S_OPTY.ROW_ID

Target join column S_EVT ACT.OPTY_ID

1. Source Path: S_OPTY.ROW_ID
&Tables: S_OPTY pt
&Joins : add nothing
pSrcdoinCol: pt.OPTY_ID
2. Target Path: S_ EVT_ ' ACT.ROW_ID
&Tables: S_EVT ACT £l
&Joins : and :primary row id = tl1.ROW_ID
pTarJoinCol: tl.OPTY_ID
3. Join source and target
&Joins : and tl.OPTY_ID = pt.ROW_ID

select pt.ROW_ID
from &Table Owner.S_EVT ACT t1,
&Table_Owner.S_OPTY pt
where :primary_row_id = tl.ROW_ID
and t1.0PTY_ID = pt.ROW_ID
/

Example 2: Activity visible due to Opportunity (Get all Activities for an Opportunity)

Source Object

Activity (src ptable: S_EVT_ACT)
Target Object

Opportunity (tar ptable: S_OPTY)
Source join column = S_EVT ACT.OPTY_ID
Target join column = S OPTY ROW_ID

1. Source Path: S_EVT ACT.ROW_ID
&Tables: S_EVT_. ACT pt
&Joins : add nothing
pSrcJoinCol: pt.OPTY_ID
2. Target Path: S _OPTY.ROW_ID
&Tables: add nothing
&Joins : add nothing
pTarJoinCol: :primary row_id
3. Join source and target
&Joins : and tl1.0OPTY_ID = pt.ROW_ID

select pt.ROW_ID
from &Table_Owner.S_EVT_ACT pt

-65-



WO 98/38583 PCT/US98/03573

where :primary row_id = pt.OPTY_ID
/

Example 3: Account visible due to Partner Account (Get all Accounts for a partner Account)

5
Source Object: Account (src ptable: S_ORG_EXT)
Target Object: Account (tar ptable: S_ORG_EXT)
Src jOln column: S_ORG_EXT.ROW_ID
Tar join column: S ORG REL. PRTNR OU_1ID

10

1. Source Path: S_ORG_EXT.ROW_ID
&Tables: S_ORG_EXT pt
&Joins : add nothing
pSrcJoinCol: pt.ROW_ID
15 2. Target Path: S_ORG_REL.OU_ID
&Tables: S _ORG _REL t1
&Joins : and :primary row_id = tl1l.0U_ID
pTarJoinCol: tl.PRTNR_OU_ID
3. Join source and target
20 &Joins : and tl.PRTNR_OU_ID = pt.ROW_ID

select pt.ROW_ID
from &Table_ Owner.S_ORG_REL t1l,
&Table Owner.S_ORG_EXT pt
25 where :primary row _id = tl1.0U_ID
and tl1.PRTNR_OU ID = pt.ROW_ID

/
Example 4: Account visible due to Parent Account (Get all Accounts for a Parent Account)

30
Source Object: Account (src ptable: S_ORG_EXT)
Target Object: Account (tar ptable: S_ORG_EXT)
Src jOln column: S_ORG_EXT.ROW_ID
Tar join column: S ORG EXT. PARENT OU_ID

35

1. Source Path: S_ORG_EXT.ROW_ID
&Tables: S_ORG_EXT pt
&Joins : add nothing
pSrcJoinCol: pt.ROW_ID
40 2. Target Path: S_ORG_EXT.ROW_ID
&Tables: S_ORG_EXT tl
&Joins : and :primary_row_id = t1.ROW_ID
pTarJoinCol: t1.PARENT OU_ID
3. Join source and target
45 &Joins: and tl1l.PARENT OU_ID = pt.ROW_ID

select pt.ROW_ID
from &Table Owner.S_ORG_EXT t1,
&Table_Owner.S_ORG_EXT pt
50 where :primary_ row_id = tl1.ROW_ID
and tl.PARENT OU_ID = pt.ROW_ID
/

-66-



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

40

45

50

Sub-Statements for Position Rules
Log Manager Visibility SQL Statements

SQL Statement Template

exists (select ’'X’
from &Tables
&Table_Owner.S_EMP POSTN ep,
&Table _Owner.S NODE EMP ne,
&Table _Owner.S NODE " REL nr
where nr. NODE ID = node id
and nr.SUB NODE ID = ne.NODE_ID
and ne.EMP ID = ep.EMP_ID
and ep.POSITION_ID = &Join_Column
&Joins)

/

Algorithm
Buiid paths. Join path to primary_table. ROW_ID. Join position column to position table.

IF position column table = primary table
THEN
-- can optimize: join primary table directly to
S_EMP POSTN
"~ &Tables: add nothing
&Joins : add nothing
&Join_Column: "primary table.<position column>"
ELSE
Get paths from position column table to primary table.
- The paths will not include the primary table
- The paths will not include the position column
&Tables Clause:
- Add every table in path, last element first
"&Table_ Owner.<pathcol [N] ->pTable->pTableName>
jN"
&Joins Clause:
- Add joins for all path cols except the last element:
"and jN.<pathcol [N] - >pColumnName> = jN+1.ROW_ID"
- Add join from last element to primary rowid:
vand j<last>.<pathcol [last] - >pColumnName> =
primary_ table.ROW_ID"
&Join_Column: "jl.<position column>"
END IF

Replace &Tables, &Join_Column and &Joins in the SQL
statement template.

Example 1: Opportunity Position

Object: Opportunity (primary table: S_OPTY)
Position Column: S_OPTY POSTN.POSTN_ID

Path Cols: S_OPTY_ POSTN .. OPTY_1ID

&Tables: S OPTY POSTN j1

&Joins: and j1.0PTY ID = primary_table.ROW_ID

-67-



WO 98/38583 PCT/US98/03573

&Join_Column: j1.POSTN_ID

exists (select ’'X’
from &Table Owner.S_OPTY_POSTN j1,
5 &Table Owner.S EMP POSTN ep,
&Table Owner.S NODE EMP ne,
&Table Owner.S NODE REL nr

where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
10 and ne.EMP_ID = ep.EMP_ID

and ep.POSITION ID = j1.POSTN_ID
and j1.0PTY_ID = primary_ table. ROW_TID)
/

15 Example 2: Quote Position

Ohject: Quote (ptable: S _DOC_QUOTE)
Position Column: S_DOC QUOTE POSTN ID
Path: S _DOC_QUOTE. ROW ID

20 &Tables: none
&Joins: none
&Join Column: primary table.POSTN_ID

exists (select ‘X’
25 from &Table_Owner.S_EMP_POSTN ep,
&Table _Owner.S NODE REL nr,
&Table | _Owner.S NODE “EMP ne

where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
30 and ne.EMP_ID = ep.EMP_ID

and ep.POSITION ID =
primary table.POSTN_ID)

Log Manager Related Dock Object SQL Statements
35

SQL Statement Templates
Node to Current Dock Object

select pt.ROW_ID
40 from &Table Owner.S_NODE_REL join_table,
&Table Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN ep,

&Tables
where join table.NODE_ID = :node_id
45 and jOln table.NODE_ID = :primary_row_id

and join_table.SUB_| NODE ID = ne.NODE_ ID
and ne.EMP_ID = ep. EMP D
and ep.POSITION_ID = &Join_ Column
&Joins

50 /

Algorithm

-68-



WO 98/38583

10

15

20

25

30

35

40

45

50

55

PCT/US98/03573

Build paths. Join path to pt.ROW_ID. Join position column to position table. Always join to
primary table so the statement only returns related objects that really exist. E.g. only retrieve
Opportunities that really exist.

IF position column table = primary table
THEN
-- can optimize: join primary table directly to
S_EMP_ POSTN
&Tables: <primary table> pt
&Joins: empty
&Join_Column: "pt.<position column>"
ELSE
Get paths from position column table to primary table.
- The paths will not include the primary table
- The paths will not include the position column
&Tables Clause:
- Add every table in path first element first
"&Table_ Owner.<pathcol [N] ->pTable->pTableName>"
- Add primary table: <primary table> pt
&Joins Clause:
- Add joins for all path cols except the last element:
"and jN.<pathcol [N] - spColumnName> = jN+1.ROW_ID"
- Add join from last element to primary rowid:
"and j<last>.<pathcol [last] ->pColumnName> =
pt .ROW_ID"

&Join_Column: "jl.<position column>"
END IF

Replace &Tables, &Join_Column and &Joins in the SQL
statement template.

Example 1: Opportunity Position

Object: Opportunity (ptable: S_OPTY)
Position Column: S_OPTY_POSTN.POSTN_ID
Path: S_OPTY POSTN.OPTY ID

&Tables: S OPTY POSTN '_]l S_OPTY pt
&Joins : and 31 OPTY ID = pt. ROW_ID
&Join_Column:: j1.POSTN ID

select pt.ROW_ID
from &Table Owner.S NODE_REL join_table,
&Table Owner.S NODE_EMP ne,
&Table Owner.S EMP POSTN ep,
&Table Owner.S_OPTY POSTN j1,
&Table Owner.S OPTY pt
where join_ table.NODE_ID = :node_id
and jOln table.NODE_ID = :primary row_id
and join_table.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = ep.EMP_ID
and ep.POSITION ID = j1.POSTN_ID
and j1.0PTY_ID = pt.ROW_ID)

-69-



WO 98/38583

10

15

20

PCT/US98/03573

Example 2: Quote Position

Object:

Quote (ptable: S_DOC_QUOTE)

Position Column: S_DOC QUOTE POSTN_ID
Path: S_DOC_QUOTE. ROW_ID

&Tables:

&Joins

S_DOC_QUOTE pt
none

&Join_Column: pt.POSTN_ID

select
from

where
and
and
and
and

pt .ROW_ID

&Table _Owner.S_NODE_REL join_table,
&Table Owner.S NODE EMP ne,

&Table Owner.S_ _EMP POSTN ep,

&Table Owner.S DOC _QUOTE pt

]Oln table. NODE ID = :node_id

jOln table. NODE ID = :primary_row_id
join_table.SUB_NODE_ID = ne.NODE_ID
ne.EMP_ID = ep.EMP_ID

ep.POSITION_ID = pt.POSTN_ID)

-70-



WO 98/38583 PCT/US98/03573

Sub-Statements for Position Manager Rules

Log Manager Visibility SQL Statements

SQL Statement Template

exists (select 'X’
from &Tables
&Table_Owner.S_POSTN_RPT REL prr,
&Table_ Owner.S_EMP_POSTN ep,
10 &Table Owner.S NODE_EMP ne,
' &Table Owner.S NODE " REL nr
where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = ep.EMP_ID

15 and ep.POSITION_ID = prr.POSITION_ID
and prr.SUB_POSTN_ID = &Join_Column
&Joins)
/

20 Algorithm
Same as Position Rule algorithm, except we use the SQL statement template above.

Log Manager Related Dock Object SQL Statements

SQL Statement Templates
25 Node to Current Dock Object

select pt.ROW_ID
from &Table_ Owner.S NODE_REL join_ table,
&Table Owner.S_NODE_EMP ne,
30 sTable Owner.S_EMP POSTN ep,
&Table_ Owner.S_POSTN_RPT_REL prr
&Tables
where join_table.NODE_ID = :node_id
and join_table.NODE_ID = :primary_ row_id
35 and join_table.SUB NODE_ID = ne.NODE_ID
and ne.EMP_ID = ep. EMP D
and ep. POSITION ID = prr.POSITION_ID
and prr.SUB_POSTN_ ID = &Join_Column

&Joins
40 /

e Employee to Current Dock Object

select pt.ROW_ID
45 from &Table_Owner.S_NODE_REL nr,
&Table_Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN ep,
&Table_Owner.S_POSTN_RPT_REL prr
&Tables
50 where nr.NODE _ID = :node_id
and nr.SUB_NODE_ID = ne.NODE _ID
and ne.EMP_ID = ep.EMP_ID
and ep.EMP_ID = :primary_row_id
and ep.POSITION_ID = prr.POSITION_ID

-71-



WO 98/38583 PCT/US98/03573

and prr.SUB_POSTN_ID = &Join_Column
&Joins
/

5 « Position to Current Dock Object

select pt.ROW_ID
from &Table_Owner.S_NODE_REL nr,
&Table_Owner.S_NODE_EMP ne,
10 &Table_Owner.§_EMP_POSTN ep,
&Table_Owner.S_POSTN_RPT_REL join_table
&Tables
where nrt. NODE_ID = :node_id
and nr.SUB_NODE _ID = ne.NODE_ID
15 and ne.EMP_ID = ep.EMP_ID
and ep.POSITION_ID = :primary_row_id
and join_table. POSITION_ID = :primary_row_id // help sybase by providing value
and join_table.SUB_POSTN_ID = &Join_Column
&Joins

20 /
Algorithm

Same as Position Rule algorithm, except we create related dock objects from Nodes, Employees,
Positions and use the SQL statement templates above.

25



WO 98/38583 PCT/US98/03573

10

15

20

25

30

35

Sub-Statements for Employee Rules

Log Manager Visibility SQL Statements

SQL Statement Template

exists (select 'X’
from &Tables
&Table Owner.S_NODE_EMP ne,
&Table Owner.S NODE REL nr
where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = &Join_Column
&Joins)

/

Algorithm
Same as Position Rule algorithm, except we use the SQL statement template above.

Log Manager Related Dock Object SQL Statements

SQL. Statement Templates
Node to Current Dock Object

select pt.ROW_ID

from &Table _Owner.S_NODE_REL join_table,
&Table _Owner.S NODE EMP ne
&Tables

where join_table.NODE_ID :node_id

and join table.NODE_ID :primary row_id

and join_table.SUB_NODE_ID = ne.NODE_ID

and ne.EMP_ID = &Join Column

&Joins

/

Algorithm
Same as Position Rule algorithm, except we use the SQL statement template above.

T3-



WO 98/38583

10

15

20

25

30

35

40

45

50

Sub-Statements for Employee Manager Rules

Log Manager Visibility SQL Statements

SQL Statement Template

PCT/US98/03573

exists (select ’'X’
from &Tables
&Table Owner.S_EMP_ POSTN psub,
&Table_ Owner. S POSTN RPT_REL prr,
&Table Owner.S EMP POSTN pmgr,
&Table Owner.S_NODE_EMP ne,
&Table Owner.S_NODE_REL nr
where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = pmgr. EMP 1D
and pmgr.POSITION ID = prr.POSITION_ID
and prr.SUB_POSTN_ID = psub.POSITION_ID
and psub.EMP_ID = &Join_Column
&Joins)
/
Algorithm

Same as Position Rule algorithm, except we use the SQL statement template above.

Log Manager Related Dock Object SQL Statements

SQL Statement Templates
Node to Current Dock Object

select pt.ROW_ID

from &Table Owner.S_NODE_REL join_table,

&Table Owner.S NODE EMP ne,

&Table _Owner.S EMP POSTN pmgr,
&Table | _Owner.S_ POSTN RPT REL prr,
&Table _Owner.S EMP POSTN psub

&Tables
where join_table.NODE_ID
and join table.NODE_ID

and join_table.SUB_ NODE 1D

:node_id

:primary row_id
= ne.NODE_ID

and ne.EMP_ID = pmgr. EMP_ID

and pmgr.POSITION_ID
and prr.SUB_POSTN_ID =
and psub.EMP_ID =
&Joins

/

+ Employee to Current Dock Object

select pt.ROW_ID
from &Table_Owner.S NODE REL nr,
&Table_Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN psub,
&Table_Owner.S_POSTN_RPT_REL prr,
&Table_Owner.S_EMP_POSTN pmgr

-74-

= prr.POSITION_ID

psub.POSITION_ID

&Join_Column



WO 98/38583 PCT/US98/03573

&Tables
where nt.NODE_ID = :node_id
and nr.SUB_NODE _ID = ne.NODE_ID
and ne.EMP_ID = pmgr.EMP_ID
5 and pmgr.EMP_ID = :primary_row_id
and pmgr.POSITION_ID = prr.POSITION_ID
and prr.SUB_POSTN_ID = psub.POSITION_ID
and psub.EMP_ID = &Join_Column
&lJoins

10 /

+  Position to Current Dock Object

select pt.ROW_ID
15 from &Table_ Owner.S_NODE_REL nr,
&Table_Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN psub,
&Tabte_Owner.S_POSTN_RPT_REL join_table,
&Table_Owner.S5_EMP_POSTN pmgr
20 &Tables
where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = pmgr.EMP_ID
and pmgr.POSITION_ID = :primary_row_id
25 and join_table. POSITION_ID = :primary_row_id // help sybase by providing value
and join_table.SUB_POSTN_ID = psub.POSITION_ID
and psub.EMP_ID = &Join_Column

&Joins
/
30
Algorithm
Same as Position Rule aigorithm, except we create related dock objects from Nodes, Employees,
Positions and use the SQL statement templates above.
35



WO 98/38583

Example

PCT/US98/03573

Here are examples of visibility rules for the Account docking object and sql statements that Log
Manager and DBXtract generate for each visibility rule.

Visibility Rules for Organization

Rule

Rule

Partial | Sql Statement Check Check Dock Check Dock Object | Position Column Emp
# Type Flag Object | Object Source | Target Column Col
Column
1 Sql N primary_table.CMPT_F
LG =Y’
2 Posiion | N S_ACCNT_POST
N
POSITION_ID
3 Posiion | N S_ORG_EXT
Manage PR_POSTN_ID
r
143 Check | ¥ Contac | 5_ORG_EXT | S_CONTACT
Dock t ROW_ID PR_DEPT_OU_ID
Object
3 Check Y Contac | S_ORG_EXT S_PER_ORG_UNI
Dock t ROW_ID T
Object ouU_ID
6 Check Y Accoun | S ORG_EXT S_ORG_REL
Dock t ROW_ID PRTNR_OU_ID
Object
Rule Descriptions
15 1. Rule 1: Account is a competitor
2. Rule 2: Sales rep is on the account team
3. Rule 3: Manager of the primary sales rep on the Account
4. Rule 4: Primary Account for a Contact you have visibility on
5. Rule 5: Secondary Account for a Contact you have full visibility on
20 6. Rule 6: Account for a partner Account you have full visibility on
6. Log Manager Visibility SQL Statements
Log Manager runs the rule sql statements OR-ed together:
select "X’
25 from &Table Owner.<primary table> primary table
where primary table.ROW_ID = <primary_row_id> //
rule 1
and ((primary_ table.CMPT_FLG = 'Y’)
OR (exists (select ’'X’ //
30 rule 2
from &Table_Owner.S_NODE_REL
nr,
&Table_Owner.S_NODE_EMP
ne,
35 &Table_Owner.S_EMP_POSTN
ep,
&Table_Owner.S_ACCNT_POSTN jl
where nr.NODE_ID = :node_id
40 and nr.SUB_NODE_ID =
ne .NODE_ID
and ne.EMP_ID = ep.EMP_ID

-76-




WO 98/38583

10

15

20

25

30

35

40

45

50

55

PCT/US98/03573

and ep.POSITION_ID =
j1.POSITION_ID
and j1.0U_ID =
primary table.ROW_ID)

OR (exists (select ‘X’ // rule
’ from &Table Owner.S_NODE_REL
e &Table Owner.S_NODE_EMP
ae &Table_ Owner.S_EMP POSTN
ep.,

&Table Owner.S_POSTN_RPT REL prr
where nr.NODE_ID = :node_id

and nr.SUB_NODE_ID =
ne.NODE_ID

and ne.EMP_ID = ep.EMP_ID

and ep.POSITION_ID =
prr.POSITION_ID

and prr.SUB_POSTN_ID =
primary table.PR_POSTN_ID)

OR (exists (select 'C’ // rule
4
from &Table_Owner.S_DOBJ_INST
di,
&Table Owner.S_CONTACT tl
where di.NODE_ID = :node_id
and di.DOBJ_ID = <Contact Dock
Object Id>
and di.STAT FLG = 'F’
and di.PR_ TBL ROW_ID = tl1.ROW_ID
and tl1.PR_. DEPT OU ID =
primary_table. ROW_ID)
OR (exists (select 'C’ //
rule 5
from &Table Owner.S_DOBJ_INST
di,
&Table Owner.S_PER_ORG_UNIT t1
where di.NODE_ID = :node_id
and di.DOBJ_ID = <Contact Dock
Object Id>
and di.STAT FLG = 'F’
and di.PR_ TBL ROW_ID = tl1l.PER_ID
and tl. OU ID =
primary_ table.ROW_ID)
OR (exists (select ’'C’ //
rule 6
from &Table Owner.S_DOBJ_INST
di,

&Table_Owner.S_ORG_REL tl
where di.NODE_ID = :node_id
and di.DOBJ_ID = <Account Dock
Object Id>
and di.STAT FLG = 'F'’

-77-



WO 98/38583 PCT/US98/03573

and di.PR_TBL_ROW_ID =
£1.0U_ID

and tl.PRTNR_OU_ID =
primary table.ROW_ID)
5 )

Log Manager Related Dock Object SQL Statements

e Nodes
10

select pt.ROW_ID // rule 2
from &Table_Owner.S_NODE_REL join,
&Table_Owner.S_NODE_EMPne,
&Table_Owner.S_EMP_POSTN ep,
15 &Table_Owner.S_ACCNT_POSTNjl,
&Table_Owner.S_ORG_EXT pt
where join_table. NODE_ID = :node_id
and join_table. NODE_ID = :primary_row_id
and join_table.SUB_NODE_ID = ne.NODE_ID
20 and ne.EMP_ID = ep.EMP_ID
and ep.POSITION_ID = j1.POSITION_ID
and j1.0U_ID = pt. ROW_ID
/

25 select pt.ROW_ID i/ rule 3
from &Table_Owner.S_NODE_REL join_table,
&Table_Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN ep,
&Table_Owner.S_POSTN_RPT_RELprr,
30 &Table_Owner.S_ORG_EXT pt
where join_table.NODE_ID = :node_id
and join_tabie.NODE_ID = :primary_row_id
and join_table.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = ep.EMP_ID
35 and ep.POSITION_ID = prr.POSITION_ID
and prr.SUB_POSTN_ID = pt.PR_POSTN_ID
/

+ Employees
40

select pt.ROW_ID // rule 3
from &Table_Owner.S_NODE_RELnr,
&Table_Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN ep,
45 &Table_Owner.S_POSTN_RPT_RELprr,
&Table_Owner.S_ORG_EXT pt
where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
and ne,EMP_ID = ep.EMP_ID
50 and ep.EMP_ID = :primary_row_id
and ep.POSITION_ID = prr.POSITION_ID
and prr.SUB_POSTN_ID = pt.PR_POSTN_ID



WO 98/38583 PCT/US98/03573

+ Positions

select pt.ROW_ID // rule 3
5 from &Table_Owner.S_NODE_REL nr,
&Table_Owner.S_NODE_EMP ne,
&Table_Owner.S_EMP_POSTN ep,
&Table_Owner.S_POSTN_RPT_RELjoin_table,
&Table_Owner.S_ORG_EXT pt
10 where nr.NODE_ID = :node_id
and nr.SUB_NODE_ID = ne.NODE_ID
and ne.EMP_ID = ep.EMP_ID
and ep.POSITION_ID = :primary_row_id
and join_table.POSITION_ID = :primary_row_id
15 and join_table.SUB_POSTN_ID = pt.PR_POSTN_ID

¢ Contacts

select pt.ROW_ID // rule 4
20 from &Table_Owner.S_CONTACT!1,
&Table_Owner.S_ORG_EXT pt
where :primary_row_id = t1.ROW_ID
and t1.PR_DEPT_OU_ID = pt.ROW_ID
/

25

select pt. ROW_ID /I rule §
from &Table_Owner.S_PER_ORG_UNITtl,
&Table_Owner.S_ORG_EXT pt
30 where :primary_row_id = t1.PER_ID
and t1.0U_ID = pt.ROW_ID
/

35 +  Accounts

select pt.ROW_ID // rule 6
from &Table_Owner.S_ORG_RELA1,
&Table_Owner.S_ORG_EXT pt
where :primary_row_id = t1.0U_ID
40 and t1.PRTNR_OU_ID = pt.ROW_ID
/



WO 98/38583

10

15

20

25

30

PCT/US98/03573

CLAIMS

A method of managing a database, said database including a central
database (3) and separate partially replicated databases (23a, 23b, 23c),
said separate partially replicated databases (23a, 23b, 23c) residing at
separate nodes (21a, 21b, 21c), each of said partially replicated databases
(23a, 23b, 23c) having an associated visibility strength, comprising
determining the visibility strength of a partially replicated database (23a,
23b, 23c) to data being propagated, and propagating said data to the
partially replicated database (23a, 23b, 23c) only if the partially replicated
database (23a, 23b, 23c) has visibility to the data.
An article of manufacture comprising:
a computer usable medium having computer readable program code
means embodied therein for causing determining the visibility
strength of a partially replicated database (23a, 23b, 23c) to data
being propagated, determining therefrom the visibility of the
partially replicated database (23a, 23b, 23¢) to the data being
propagated, and propagating said data to a partially replicated
database (23a, 23b, 23c) only if the partially replicated database
(23a, 23b, 23c) has visibility to the data, the computer readable
program means in said article of manufacture comprising:

computer readable program code means for causing a

computer to effect determining the visibility strength

of a partially replicated database (23a, 23b, 23¢) to

data being propagated;

computer readable program code means for causing a

computer to effect propagating said data to a partially

replicated database (23a, 23b, 23c) only if the

partially replicated database (23a, 23b, 23c) has

visibility to the data.
A program storage device readable by a machine, tangibly

embodying a program of instructions executable by a machine to

-80-



WO 98/38583 PCT/US98/03573

perform method steps for managing a database, said method steps
comprising determining the visibility strength of a partially
replicated database (23a, 23b, 23c) to data being propagated,
determining therefrom the visibility of the partially replicated
database (23a, 23b, 23c) to the data being propagated, and
propagating said data to a partially replicated database (23a, 23b,
23c) only if the partially replicated database (23a, 23b, 23c) has
visibility to the data.

-81-



PCT/US98/03573

WO 98/38583

1/9

1NdNI H3sn 1NdNI H3sN 1NdNI H3sN
e ecs quz aee” o4z \ oge”
\ \ \
vz mhm/ ' iz ﬂm/ ¥ oz Em/ !
N }—{awaan /Du 31vadn <—] 31vadn
= _ : s :
IDHAN [\ 7 = = =
egg/ (52 Qm.m.&m age/ =
= 904 A\_ M00Q e
6= pgp /4 a5z "
U e "
] ] L]
|||||||||||||||||||| 1) '
9L~ LI~ BLIN v ¥
=||E||= %000
T T T i
5 A Honoo | 61 W
t — { 3ouan |
- \ -——s
mn\ [mese— ‘ h Gﬁm
4 £
| 3ivadn
A
P .
gl INdNI H3ISN

SUBSTITUTE SHEET ( rule 26)



WO 98/38583

4

!

PCT/US98/03573

2/9
63 65 67
S_DOBJ_INST  p---| NODE S_REL_DOBJ
T T T/b"
S_DOBJ
! PRIMARYT
71 PR TABLE A 69
S_DOBJ_VIS_RULE ! S_DOBJ_TBL
E T
l 73
S_APP_TBL
' ' ' '
L 85 E A1 81 A 88
P FOREIGN KEY COLUMN USER KEY COLUMN
» | I
i ; o
S_APP_COL
FiG..2
SUBSTITUTE SHEET ( ruie 26)



WO 98/38583

+
3/9

101

START

//103

//33
ACCEPT
USER INPUT |t USER

INPUT

y

//105

UPDATE
DATABASE

PCT/US98/03573

,//31

23

A 4

//107

CREATE
LOG
RECORD

Y

EXIT

FIG..3

109

SUBSTITUTE SHEET ( rule 26)




WO 98/38583

_T_

4/9

PCT/US98/03573

121 pd 25

START

//123

CONNECT TO
CENTRAL
COMPUTER

125

UPLOAD

REQUEST
?

127

SEND LOG

129

DOWNLOAD \ NO

REQUEST
”

YES L 131

RECEIVE LOG

133

EXIT

FIG.-4

SUBSTITUTE SHEET ( ruie 26)



WO 98/38583

4

-~
©

PCT/US98/03573

5/9

START

141 /7

/143

FIND FIRST
UNPROCESSED
TRANSACTION

’i ys 147

HEILELAN

SELECT
TRANSACTION

-1 / 149 $

UPDATE
DATABASE

s 153

GENERATE
CORRECTIVE
TRANSACTION

YES

151

157
YES

CENTRAL

COMPUTER 155
?
- WRITE TO
LoG [
]
159 .5
TRANS-
ACTIONS
REMAIN
161

SUBSTITUTE SHEET ( ruie 26)

NI




WO 98/38583 PCT/US98/03573

_+_

6/9
171

START 9
(™) -

/173

FIND FIRST
UNPROCESSED
TRANSACTION

=

SELECT | /175
TRANSACTION

179

TRANS-
ACTIONS \YES|
A REMAINING
?
NO

CALL VISIBILITY

CALCULATOR

' 189
183 UPDATE LAST-
LOG-
NO EXTRACTED
YES
//'185 Y 191

WRITE PARTIAL END

TRANSACTION

LOG
l //*187
UPDATE LAST-
LOG-
EXTRACTED
|

FIG.-6

SUBSTITUTE SHEET ( rule 26)



WO 98/38583

_.i._

7/9

201
START

DEFAULT:
MARK NOT
VISIBLE

Y

SELECT FIRST

RULE

/217

SELECT
NEXT
RULE

FIG..7

SUBSTITUTE SHEET ( rule 26)

203

/ 205

PCT/US98/03573

v 209

EXECUTE

DETERMINE
RELATED SQL_STATEMENT
OBJECT
‘ /223 211
GET ROWID RECORDS\.YES
RETURNED
\ e 225 ?
CALL
VISIBILITY NO
CALCULATOR
227
YES
VISIBLE T >
’ Y
ANO MARK
- VISIBLE
215
4
YES RULES 213

REMAIN
?




WO 98/38583

8/9

241

START

YES

PCT/US98/03573

/ 228

DOCKING

YES NO

DOCKING

249

OBJECT IN —— OBJECT IN
S_DOBJ_INST S_DOBJ_INST
? ?
YES
247 251
INDICATE INDICATE
INSERT DELETE
REQUIRED REQUIRED
v 255
FIG..8 EXIT
/300
302 ~301 304
DOCK OBJECT INSTANGE p---{ NODE | --—4 DOCK STATUS
:
| 306 308
FIG..9 [TRANSACTION|--~ “Grionio

SUBSTITUTE SHEET ( rule 26)



WO 98/38583 PCT/US98/03573

9/9
NODE DOCK b---|  NODE RELATED
OBJECT INSTANCE DOCKING OBJECT
T T 7T
DOCKING OJBECT
J X '
' CHECK | Y
J\ DOCK OBJECT PRIMARY TABLE
P A
DOCKING
saL OTHER OJBECT , OBJECT TABLE
A : T
EMPLOYEE/ MGRJ| Link  ||POSITION / MGR .||t
OF EMPLOYEE OF POSITION_|}: !
: — : \
\ VISIBILITY RULE | : !
: Voo : \ ~
] ] 1 ]
: Vo \ APPLICATION TABLE
: N : .
! ' ' ' 1 1
EMPLOYEE SRC & TARGET POSITION : !
COLUMN  JOIN COLUMNS COLUMN ! L
: . \ \ INDEX
] 1 ] ] ]
t ] ] ] ] y
]
A
INDEX COLUMN
T
/N VNN AN\ N\ )
APPLICATION COLUMN

FIG.-10

SUBSTITUTE SHEET ( rule 26)



INTERNATIONAL SEARCH REPORT

Invemational applieation Ne.
PCTAISS8/03573

A. CLASSIFICATION OF SURIECT MAITER
IPC(6) :GO6F 17/00, 17/30
US CL :70773, 6, 202

Acsording w Inwcmational Patcnt Clussification (TPC) or to both national classification and 1IPC

B. FIELDS SEARCHED

us. ' 707/1-204

Minimum documentation scarched (classificution system followed by classification symbals)

Documentation searched other than minimum documontation o the extent that such documents are included in the ficids searched

Electrunic data base consultad during the intematinnal search (namc of data hase and, where practicable, search renns uscd)

€ DOCUMENTS CONSINERED TO BE RELEVANT

Catsgory® Citation of documenL with indication, Where appropriate. of the relsvant pasaages Relovant to claim Na.
Y US 5,581,757 A (MAXEY) 03 December 1996, Abstract 1-3
Y.E US 5,758,337 A (HAMMOND) 26 May 1998, Abstract 1-3
Y.E US 5,740,433 A (CARR et al) 14 April 1998, Abstract 1-3

D Furthcr documents arc listed in the continuation of Box C,

D Sce patent family snnex,

i Spacial ostegories of sited documents:

A document defining the ganeml stats of the art which is not comsidesd
@ be of particuier rolevenus

*5° sarlisr document published on or efler ths iuermwional filing date

"L document which muy Uurow daubtl on nnomy clim(s) or whieh
citsd w h the or ether
spacial reaton (e -p«fﬁod)

- dosument reletring o an orsl discl use, exhibiton or ulier
means

" dosument publishad prior w0 the international filing date but laier din

the priveily duiw claimed

L fuiar o blished afier the i | filing date or priotity
dsis mnd nol in conflict with the applisation bul ciled o underatand
the principie or theary wderlying the invention

X d of purts noe: the ¢lai inveulivu sannot be
considered novel o wuuiel be cenaidered to inveive an invenlive step
when the documaent is takel slous

ry* desument of panisnlar relavance; the claimed invention cannot be
coptidersd W Imwolve sn inventive atep winn Uie doaumem is
eombined with one o more other such d such
being obvious o s person skilled in the ane

et dosumsnt manther nf the same patsit fuily

Date of the actual complelion of the intcmational search

03 JUNE 1998

Date of mailing of the intcmational scarch report

1 4 AUG l!lgﬂ

Name and muailing address of the ISA/US
Commissioner of Patenis and Trademarks
Box PCT

Washingion. D. c. 20231

Pucsimile No.  (703) 305-3230

lmhoﬁz:d officor !
gIVID JUNG ( U/'
Telophone No. 03) 308-5262

Foerm PCT/1ISA/210 (sccond sheet)Xluly 1992)w




	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

