

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) Int. Cl.

CO7D 487/04 (2006.01)

(21) 출원번호 10-2004-7009796

(22) 출원일자(국제출원일자) **2002년12월20일** 심사청구일자 **2007년12월12일**

(85) 번역문제출일자 2004년06월19일

(65) 공개번호 10-2004-0068966

(43) 공개일자 2004년08월02일

(86) 국제출원번호 PCT/US2002/040890

(87) 국제공개번호 **WO 2003/053361** 국제공개일자 **2003년07월03일**

(30) 우선권주장 60/343,443 2001년12월20일 미국(US)

(56) 선행기술조사문헌 W0200139777 A1

전체 청구항 수 : 총 27 항

(45) 공고일자 2010년06월08일

(11) 등록번호 10-0960827

(24) 등록일자 2010년05월25일

(73) 특허권자

오에스아이 파마슈티컬스, 인코포레이티드

미국 11747 뉴욕 멜빌, 파인론 로드 41

(72) 발명자

캐스텔하노, 앨린도엘.

미합중국, 뉴욕주 10956, 뉴 씨티, 이글 코트 3

맥키벤,브라이언

미합중국, 뉴욕주 12533, 호프웰 정션, 크린배리 드라이브 86

스테이니그,아노쥐.

미합중국, 뉴욕주 11731, 이스트 놀스포트, 세드 러스 애비뉴 149

심사관 :

박종일

(74) 대리인

특허법인 아주양헌

(54) 피롤로피리미딘 A₂ b 선택성 길항 화합물, 그의 합성방법 및 용도

(57) 요 약

본 발명은 하기의 기 정의를 갖는 화합물 또는 그의 특정한 에난티오머 또는 토오토머, 또는 그의 약학적으로 허용 가능한 염; 및 A_{2b} 아데노신 수용체와 관련된 질환의 치료가 필요한 대상자에게 치료 유효량의 본 발명의 화합물을 투여함을 포함하는 상기 대상자에서 상기 질환을 치료하는 방법을 제공한다:

R₁은 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실, -C(=0)NR_aR_b, -NR_aC(=0)NR _aR_b, -NR_aC(=0)NR _aR_b, -NC(=0)NR _aR_b, -NC(=0)N

R₂는 수소 또는 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록실, 카복실, -C(=0)NRaRb, -NRaC(=0)NRaRb, -NRaC(=0)NRaRb, -NRaC(=0)NRaRb, -OC(=0)NRaRb, 또는 -NHC(=0)Ra이거나; 또는

 R_1 , R_2 및 N이 함께, 치환된 피페라진, 치환된 아제티딘 고리, 또는 $-(CH_2)$ $_2OH$ 또는 $-CH_2C(=0)OH$ 로 치환된 피롤리딘 고리를 형성하고;

R₃은 치환되거나 비 치환된 페닐 또는 5 내지 6 원 헤테로아릴 고리이고, 이때 상기 치환체는 할로겐, 하이드록실, 시아노, (C₁-C₁₅)알킬, (C₁-C₁₅)알콕시, 또는 -NR₄R₅이며;

R4는 수소 또는 치환되거나 비 치환된 (C1-C15)알킬이고;

 R_5 는 $-(CH_2)_mOR_6$, $-CHNOR_7$, $-C(=0)NR_8R_9$, $-(CH_2)_mC(=0)OR_{10}$, $-(CH_2)_kC(=0)NR_{11}R_{12}$ 이고; 이때

 R_6 은 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_3-C_{10}) 사이클로알킬, 또는 아릴, 헤테로아릴 또는 4 내지 8 원 헤테로사이클릭 고리이고;

 R_7 은 수소 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_1-C_{30}) 알킬아릴이고;

 R_8 및 R_9 는 각각 독립적으로 수소, 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬아미노, (C_1-C_{30}) 알콕시, 또는 포화되거나 불포화된, 모노사이클릭 또는 비사이클릭, 카보사이클릭 또는 헤테로사이클릭 고리이거나, 또는

R₈, N 및 R₉가 함께, 치환되거나 비 치환된 4 내지 8 원 헤테로사이클릭 고리를 형성하고;

R₁₀은 수소 또는 치환되거나 비 치환된 (C₁-C₃₀)알킬, (C₃-C ₁₀)사이클로알킬, 또는 아릴, 헤테로아릴 또는

헤테로사이클릭 고리이고;

 R_{11} , N 및 R_{12} 는 함께 4 내지 8 원 헤테로사이클릭 고리를 형성하고;

Ra 및 Rb는 각각 독립적으로 수소 또는 알킬이고;

m은 0, 1, 2 또는 3이고;

k는 1, 2 또는 3이다.

특허청구의 범위

청구항 1

하기 화학식을 갖는 화합물 또는 그의 약학적으로 허용 가능한 염:

$$R_1$$
 R_2
 R_8
 R_9
 R_4

상기 식에서,

상기 식에서,

R₁은 치환되거나 비치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실, -C(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, E는 -NHC(=0)R_a이며;

R₂는 수소 또는 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실, -C(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -OC(=0)NR_aR_b, 또는 -NHC(=0)R_a이거나, 또는

 R_1 , R_2 및 N이 함께, 치환된 피페라진, 치환된 아제티딘 고리, 또는 $-(CH_2)_2OH$ 또는 $-CH_2C(=0)OH$ 로 치환된 피롤리딘 고리를 형성하고;

R₃은 치환되거나 비 치환된 페닐 또는 5 내지 6-원 헤테로아릴 고리이고, 이때 상기 치환체는 할로겐, 하이드록실, 시아노, (C₁-C₁₅)알킬, (C₁-C₁₅)알콕시, 또는 -NR_aR_b이며;

여기서, Ra 및 Rb는 각각 독립적으로 수소 또는 알킬이고;

R4는 수소 또는 치환되거나 비 치환된 (C1-C15)알킬이고;

 R_8 , N 및 R_9 가 함께, 치환되거나 비 치환된 4 내지 8-원 헤테로사이클릭 고리를 형성하며; 여기서 상기 헤테로사이클릭 고리는 포화된 또는 부분적으로 불포화된 5,6 또는 7-원 모노사이클릭 또는 7,8,9,10 또는 11-원 바이사이클릭 고리이다.

청구항 2

제 1 항에 있어서, R₈NR₉가 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘, 모르 폴린, 아조칸, 디하이드로-1H-이소퀴놀린, 1,2,3,6-테트라하이드로피리딘, 디하이드로-2H-피리딘, 1,3,4,9-테트 라하이드로-β-카르볼린, 1,3,8-트리아자스피로[4.5]데칸, 2,8-디아자스피로[4.5]데칸, 2,5-디아자비사이클로 [2.2.1]헵탄, 1,4-디옥사-8-아자스피로[4.5]데칸 또는 [1.4]디아제판 고리를 형성하는 화합물.

청구항 3

제 2 항에 있어서, R₈NR₉가 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘 또는 [1.4]디아제판 고리를 형성하는 화합물.

청구항 4

제 2 항에 있어서, R_sNR_s 에 의해 형성된 고리가 하나 이상의 아릴, 헤테로아릴, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬헤테로아릴, (C_1-C_{30}) 알케닐아릴, (C_1-C_{30}) 알케닐헤테로아릴, (C_1-C_{30}) 알케닐헤테로아릴 (C_1-C_{30}) 알케닐하릴 (C_1-C_{30}) 알케닐하릴 (C_1-C_{30}) 알케닐하릴 (C_1-C_{30}) 알케닐하릴 (C_1-C_{30}) 알케닐하를 (C_1-C_{30})

제 1 항에 있어서, R₃이 치환되거나 비 치환된 페닐인 화합물.

청구항 6

제 5 항에 있어서,

R₁이 -(CH₂)₂NHC(=0)CH₃이고;

R₂가 수소 또는 메틸이고;

R₄가 수소 또는 메틸인 화합물.

청구항 7

제 1 항에 있어서, 상기 화합물은 하기로 이루어진 그룹 중에서 선택된 것인 화합물 또는 그의 약학적 으로 허용가능한 염:

N-(2-{2-페닐-6-[4-(3-페닐알릴)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드:

N-{2-[6-(4-하이드록시-4-이소프로필피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{2-페닐-6-[4-(3-페닐프로필)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

2-{2-페닐-6-[4-(3-페닐프로필)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-아세트아미드;

N-[2-(6-{4-[2-(4-클로로페녹시)-에틸]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-{2-[6-(4-시아노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{2-페닐-6-[4-(3-페닐프로프-2-이닐)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[시스-3,5-디메틸-4-(3-페닐프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(4,4-디페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(3,3-디페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-메톡시-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{6-[트랜스-2,5-디메틸-4-(3-페닐프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-[6-(트랜스-2,5-디메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-벤질-시스-3,5-디메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(시스-3,5-디메틸-4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(3-메틸-3-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{2-페닐-6-[4-(5-트리플루오로메틸피리딘-2-일)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2'-클로로비페닐-2-일)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-클로로페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2'-클로로비페닐-2-일)-4-하이드록시피페리딘-1-카보닐]-2-페닐 -7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(4-플루오로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{2-페닐-6-[4-(4-페닐부틸)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{2-페닐-6-[4-(3-페닐프로필)피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드;

N-{2-[2-페닐-6-(4-피롤리딘-1-일-피페리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{6-[4-(3-사이클로헥실프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(4-메틸펜틸)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-{6-([1,4']비피페리디닐-1'-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-사이클로펜틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-아세틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드:

N-(2-{6-[4-(2-사이클로헥실에틸)-피페라진-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-

에틸)-아세트아미드;

N-{2-[2-페닐-6-(4-페닐에티닐-3,6-디하이드로-2H-피리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-3급-부틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-펜에틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-[2-(6-{4-[3-(2-시아노페닐)-프로프-2-이닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(3-시아노페닐)-프로프-2-이닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(4-시아노페닐)-프로프-2-이닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 메틸에스테르;

N-(2-{6-[4-(1-하이드록시에틸)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-[2-(6-{4-[3-(4-시아노페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 에틸에스테르;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 메틸아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 디메틸아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 벤질아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 에틸아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 디에틸아미드;

N-(2-{6-[4-(아제티딘-1-카보닐)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미

노}-에틸)-아세트아미드;

N-(2-{2-페닐-6-[4-페닐-4-(피롤리딘-1-카보닐)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{2-페닐-6-[4-페닐-4-(피페리딘-1-카보닐)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(모르폴린-4-카보닐)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 3급-부틸아미드;

N-{2-[6-(4-이소프로필-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{2-페닐-6-[4-(3-티오펜-2-일-프로프-2-이닐)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 사이클로부틸메틸 에스테르:

N-(2-{6-[4-(4-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(4-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-메톡시-4-(3-트리플루오로메틸페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(4-이소프로필-4-메톡시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-아세틸아미노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드:

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 이소 프로필 에스테르;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-에틸아미노피페리딘-4-카복심산 아미드;

N-(2-{6-[4-메톡시-4-(3-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-피롤리딘-1-일피페리딘-4-카 복실산 아미드;

N-(2-{6-[4-(2-메톡시페닐)-3,6-디하이드로-2H-피리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(4-아미노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-포르밀-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-벤질-4-메톡시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드:

N-{2-[6-(4-메톡시-4-o-톨릴피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-메톡시메틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-[2-(6-{4-[3-(2-클로로페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(3-클로로페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(4-클로로페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(2-메톡시페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(3-메톡시페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(4-메톡시페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(4-클로로페닐)-프로피오닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(3-클로로페닐)-프로피오닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(2-클로로페닐)-프로피오닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[5-(4-클로로페닐)-2H-피라졸-3-일]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]피페라진-1-일}-N-메틸-N-페닐아세트아미드;

4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-카복실산 벤질 에스테르;

N-{2-[6-(4-옥소-1-페닐-1,3,8-트리아자스피로[4.5]데칸-8-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{6-[4-(메틸펜에틸아미노)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(4-펜에틸아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세

트아미드;

N-[2-(6-{4-[2-(4-클로로페닐)-에틸아미노]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[2-(3H-이미다졸-4-일)에틸아미노]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-(2-{2-페닐-6-[4-(2-피리딘-4-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{2-페닐-6-[4-(2-피리딘-2-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(4-벤질아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘 -4-일아미노]-에틸}-아세 트아미드:

N-(2-{6-[4-(벤질메틸아미노)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-[2-(2-페닐-6-{4-[(피리딘-4-일메틸)아미노]-피페리딘-1-카보닐}-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-(2-{2-페닐-6-[4-(2-피리딘-3-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[2-페닐-6-((S)-2-페닐아미노메틸피롤리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-[2-(2-페닐-6-{4-[3-(4-트리플루오로메틸페닐)-프로필]-피페라진-1-카보닐}-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(4-플루오로페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-(2-{6-[4-(3-벤조[1,3]디옥솔-5-일-프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{2-페닐-6-[4-(3-p-톨릴프로필)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-[2-(6-{4-[3-(4-브로모페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드;

N-[2-(6-{4-[3-(3,4-디클로로페닐)프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-[2-(6-{4-[3-(2,4-디클로로페닐)프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드;

N-{2-[6-(4-벤질-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘 -4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-펜에틸-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{2-페닐-6-[4-(3-페닐프로필)-[1,4]디아제판-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드;

N-(2-{6-[4-(4-아세틸아미노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-시아노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-[2-(6-{4-[4-(아세틸메틸아미노)-페닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

N-(2-{6-[4-(2,6-디메틸페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2,4-디메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(5-클로로-2-메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(4-클로로페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-{2-[6-(5-벤질-2,5-디아자비사이클로[2.2.1]헵탄-2-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-{2-[6-(4-페녹시메틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘 -4-일아미노]-에틸}-아세트아미드;

N-(2-{6-[4-(4-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(3-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-니트로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-일}-벤조 산 메틸 에스테르;

N-{2-[2-페닐-6-(4-o-톨릴피페라진-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

N-(2-{6-[4-(3,4-디클로로페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-일}-벤즈

아미드;

N-(2-{6-[4-시아노-4-(2-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(3-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-시아노-4-(3-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드; 및

N-(2-{6-[4-시아노-4-(4-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드.

청구항 8

제 7 항에 있어서, 상기 화합물은 하기로 이루어진 그룹 중에서 선택된 것인 화합물 또는 그의 약학적으로 허용가능한 염:

N-(2-{2-페닐-6-[4-(3-페닐프로필)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-(2-{6-[4-(4-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드;

N-[2-(6-{4-[3-(4-클로로페닐)-프로필]-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드; 및

N-(2-{6-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드.

청구항 9

제 8 항에 있어서, 상기 화합물은 N-(2-{6-[4-(4-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드인 것인 화합물 또는 그의 약학적으로 허용가능한 염.

청구항 10

제 1 항 내지 제 9 항 중 어느 한 항의 화합물 및 약학적으로 허용 가능한 담체를 포함하는 약학 조성물.

청구항 11

제 10 항에 있어서,

경구, 국소, 비 경구 또는 코 투여용으로 제형화된 약학 조성물.

청구항 12

제 1 항 내지 제 9 항 중 어느 한 항의 화합물을 약학적으로 허용 가능한 담체와 혼합함을 포함하는 약학 조성물의 제조 방법.

청구항 13

포장 물질;

제 10 항의 약학 조성물; 및

약학 조성물을 A2b 아데노신 수용체와 관련된 질환의 치료에 사용하기 위한 설명서

를 포함하는 제품.

청구항 14

을 용매의 존재 하에서 PhSO₂C1 및 환원제와 반응시켜 이하의 화학식을 갖는 생성물:

을 제조하는 단계;

(b) 상기 단계 (a)의 생성물을 리튬 디이소프로필아미드(LDA) 및 용매의 존재 하에서 CO_2 와 반응시켜, 이하의 화학식을 갖는 생성물:

을 제조하는 단계;

(c) 상기 단계 (b)의 생성물을 용매의 존재 하에서

와 반응시켜, 이하의 화학식을 갖는 생성물:

을 제조하는 단계;

(d) 상기 단계 (c)의 생성물을 용액 중에서 하이드록사이드 염기와 반응시켜, 이하의 화학식을 갖는 생성물:

을 제조하는 단계; 및

(e) 상기 단계 (d)의 생성물을 염기 및 커플링제의 존재 하에서 HNR_8R_9 와 반응시켜 하기 화학식을 갖는 화합물을 제조하는 단계를 포함하는,

하기 화학식을 갖는 화합물의 제조방법:

상기 식에서,

 R_8 , N 및 R_9 가 함께, 치환되거나 비 치환된 4 내지 8-원 헤테로사이클릭 고리를 형성하며; 여기서 상기 헤테로사이클릭 고리는 포화된 또는 부분적으로 불포화된 5, 6 또는 7-원 모노사이클릭 또는 7,8,9,10 또는 11-원 바이사이클릭 고리이다.

청구항 15

제 14 항에 있어서, 단계 (a)의 환원제가 NaH이고, 용매가 디메틸포름아미드(DMF)인, 화합물의 제조방법.

청구항 16

제 14 항에 있어서, 단계 (b)의 용매가 테트라하이드로푸란(THF)인, 화합물의 제조방법.

청구항 17

제 14 항에 있어서, 단계 (c)의 용매가 디메틸 설폭사이드(DMSO)인, 화합물의 제조방법.

청구항 18

제 14 항에 있어서, 단계 (d)의 하이드록사이드 염기가 수산화 나트륨인, 화합물의 제조방법.

청구항 19

제 14 항에 있어서, 단계 (e)의 염기가 트리에틸아민이고, 커플링제가 0-(벤조트리아졸-1-일)-N,N,N',N'-테트라메틸유로늄 테트라플루오로보레이트(TBTU), 벤조트리아졸-1-일-옥시트리피롤리디노포스포늄 헥사플루오로포스페이트, 또는 1-에틸-3-(3-디메틸아미노프로필)-카보디이미드(EDC) 및 N-하이드록시벤조트리아졸이며, 용매가 DMF인, 화합물의 제조방법.

청구항 20

제 14 항에 있어서, 단계들의 순서가 (a), (b), (c), (e), 이어서 (d)인, 화합물의 제조방법.

제 14 항의 방법에 의해 제조된 화합물.

청구항 22

제 1 항 내지 제 9 항 중 어느 한 항의 화합물을 사용하여, 대상자에서 A_{2b} 아데노신 수용체와 관련된 질환을 치료하는데 유용한 약제를 제조하는 방법으로써, 이때 상기 A_{2b} 아데노신 수용체와 관련된 질환이 천식, 두드러기, 관절염, 피부경화증, 심근 경색, 허혈 후 심근 재 관류, 당뇨성 망막병증, 조산의 망막병증, 당뇨병, 설사, 염증성 장 질환, 증식성 종양이거나, 또는 비만 세포 탈과립, 혈관확장, 고혈압, 과민증 또는 알레르기성 매개인자의 방출과 관련이 있는 것인, 방법.

청구항 23

제 22 항에 있어서, A_{2b} 아데노신 수용체와 관련된 질환이 당뇨병인 것인, 방법.

청구항 24

제 22 항에 있어서, A_{2b} 아데노신 수용체와 관련된 질환이 천식인 것인, 방법.

청구항 25

제 22 항에 있어서, A_{2b} 아데노신 수용체와 관련된 질환이 비만 세포 탈과립과 관련이 있는 것인, 방법.

청구항 26

제 22 항에 있어서, A2b 아데노신 수용체와 관련된 질환이 증식성 종양인 것인, 방법.

청구항 27

제 1 항 내지 제 9 항 중 어느 한 항에 있어서,

임의의 치환체가, 존재하는 경우, 할로겐, 하이드록실, 카보닐, 직쇄(C₁-C₂₀)알킬, 분지 쇄(C₂-C₂₀)알킬, (C_3-C_{10}) 사이클로알킬, 직쇄 (C_1-C_{30}) 알킬카보닐옥시, 분지 쇄 (C_3-C_{30}) 알킬카보닐옥시, 아릴카보닐옥시, 직쇄 (C_1-C_{30}) C₃₀)알콕시카보닐옥시, 분지 쇄(C₃-C₃₀)알콕시카보닐옥시, 아릴옥시카보닐옥시, 카복실레이트, 직쇄(C₁-C₃₀)알킬카 보닐, 분지 쇄(C₃-C₃₀)알킬카보닐, 아릴카보닐, 직쇄(C₁-C₃₀)알콕시카보닐, 분지 쇄(C₃-C₃₀)알콕시카보닐, 아미노 카보닐, 직쇄(C₁-C₃₀)알킬티오카보닐, 분지 쇄(C₃-C₃₀)알킬티오카보닐, 직쇄(C₁-C₃₀)알킬설포닐, 분지 쇄(C₃-C₃₀)알 킬설포닐, 직쇄(C₁-C₃₀)알콕실, 분지 쇄(C₁-C₃₀)알콕실, 포스페이트, 포스포네이토, 시아노, 아미노, 직쇄(C₁-C₃₀)알킬아미노, 분지 쇄(C₃-C₃₀)알킬아미노, 직쇄(C₁-C₃₀)디알킬아미노, 분지 쇄(C₃-C₃₀)디알킬아미노, 아릴아미노, 디아릴아미노, 직쇄 (C_1-C_{30}) 알킬아릴아미노, 분지 쇄 (C_3-C_{30}) 알킬아릴아미노, 아실아미노, 직쇄 (C_1-C_{30}) C₃₀)알킬카보닐아미노, 분지 쇄(C₃-C₃₀)알킬카보닐아미노, 아릴카보닐아미노, 카바모일, 우레이도, 아미디노, 이 미노, 설프히드릴, 직쇄 (C_1-C_{30}) 알킬티오, 분지 $4(C_3-C_{30})$ 알킬티오, 아릴티오, 티오카복실레이트, 설페이트, 설 포네이토, 설파모일, 설폰아미도, 설포닐, 벤젠설포닐, 니트로, 트리플루오로메틸, 아지도, 6-메톡시-2,2-디메 틸테트라하이드로푸로[3,4-d][1,3]디옥솔, 3,4-디하이드록시-5-메톡시테트라하이드로푸란, 4 내지 10 원 헤테로 사이클릴, 직쇄(C₁-C₃₀)알킬아릴, 분지 쇄(C₃-C₃₀)알킬아릴, 직쇄(C₁-C₃₀)알킬헤테로아릴, 분지 쇄(C₃-C₃₀)알킬헤테 로아릴, (C_1-C_{30}) 알케닐아릴, (C_1-C_{30}) 알케닐헤테로아릴, (C_1-C_{30}) 알키닐아릴, (C_1-C_{30}) 알키닐헤테로아릴 및 방향족 및 5 내지 6 원 헤테로방향족 잔기 중에서 선택되고, 이때 상기 치환체가 상기 중 임의의 것에 의해 추가로 치 환될 수 있는 것인 화합물.

청구항 28

삭제

삭제
청구항 30
삭제
청구항 31
삭제
청구항 32
삭제
청구항 33
삭제
청구항 34
삭제
청구항 35
삭제
청구항 36
삭제
청구항 37
삭제
청구항 38
삭제
청구항 39
삭제
청구항 40
삭제
청구항 41
삭제
청구항 42
삭제
청구항 43
삭제
청구항 44

삭제

청구항 29

청구항 45
삭제
청구항 46
삭제
청구항 47
삭제
청구항 48
삭제
청구항 49
삭제
청구항 50
삭제
청구항 51
삭제
청구항 52
삭제
청구항 53
삭제
청구항 54
삭제
청구항 55
삭제
청구항 56
삭제
청구항 57
삭제
청구항 58
삭제
청구항 59
삭제
청구항 60

삭제

삭제	
청구항	62
삭제	
청구항	63
삭제	
청구항	64
삭제	
청구항	65
삭제	
청구항	66
삭제	
청구항	67
삭제	
청구항	68
삭제	
청구항	69
삭제	
청구항	70
삭제	
청구항	71
삭제	
청구항	72
삭제	
청구항	73
삭제	
청구항	74
삭제	
청구항	75
삭제	
청구항	76
삭제	

삭제	
청구항	78
삭제	
청구항	79
삭제	
청구항	80
삭제	
청구항	81
삭제	
청구항	82
삭제	
청구항	83
삭제	
청구항	84
삭제	
청구항	85
삭제	
청구항	86
삭제	
청구항	87
삭제	
청구항	88
삭제	
청구항	89
삭제	
청구항	90
삭제	
청구항	91
삭제	
청구항	92
삭제	

삭제

청구항 94

삭제

청구항 95

삭제

청구항 96

삭제

청구항 97

삭제

명세서

기술분야

- [0001] 본 출원은 2001년 12월 20일자로 출원된 미국 가출원 제 60/343,443 호의 이점을 청구하며, 이의 전체 내용은 본 발명에 참고로 인용되어 있다.
- [0002] 본 출원 전체를 통해, 다양한 공보들을 충분히 인용한다. 이들 공보의 전체 내용을 본 발명이 개시되고 청구된 날 현재 상기 공보 중의 숙련가들에게 공지된 기술 수준을 보다 충분히 개시하기 위해서 본 출원에 참고로 인용한다.

배경기술

- [0003] 아데노신은 특히 심혈관 및 신경계 내에 편재된 다수의 생리 활성들에 대한 조절인자이다. 아데노신의 효과는 특정한 세포 표면 수용체 단백질에 의해 매개되는 것으로 보인다. 아데노신은 다양한 생리 기능들, 예를 들어 진정 작용의 유도, 혈관확장, 심박동수 및 수축력의 억제, 혈소판 응집성의 억제, 글루코스신합성의 자극 및 지질분해의 억제를 조절한다. 아데노신은 아데닐레이트 사이클라제에 대한 효과 이외에, 칼륨 채널을 개방시키고, 칼슘 채널을 통한 흐름을 감소시키며, 수용체-매개된 기전을 통한 포스포이노시티드 턴오버를 억제 또는 자극하는 것으로 나타났다(예를 들어 문헌[C.E. Muller and B. Stein "아데노신 수용체 길항물질: 구조 및 가능한 치료 용도", Current Pharmaceutical Design, 2:501(1996) 및 C.E. Muller "A₁-아데노신 수용체 길항물질", Exp. Opin. Ther. Patents 7(5):419(1997)]을 참조하시오).
- [0004] 아데노신 수용체는 현재 P_1 (아데노신)과 P_2 (ATP, ADP 및 다른 뉴클레오티드) 수용체로 세분되는 퓨린 수용체의 상과에 속한다. 뉴클레오사이드 아데노신에 대한 4 개의 수용체 서브유형들은 지금까지 인간을 포함한 다양한 종들로부터 클로닝되어왔다. 2 개의 수용체 서브유형(A_1 및 A_{2a})은 나노몰 범위로 아데노신에 대한 친화성을 나타내는 반면, 2 개의 다른 공지된 서브유형 A_{2b} 및 A_{3} 은 친화성이 낮은 수용체로, 아데노신에 대한 친화성은 저마이크로몰 범위이다. A_1 및 A_3 아데노신 수용체 활성화는 아데닐레이트 사이클라제 활성의 억제를 도출시킬 수 있는 반면, A_{2a} 및 A_{2b} 활성화는 아데닐레이트 사이클라제를 자극한다.
- [0005] 몇몇 A₁ 길항물질들이 인지 질환, 신부전 및 심 부정맥의 치료를 위해 개발되었다. A_{2a} 길항물질은 파킨슨 병을 앓고 있는 환자에게 유리할 수 있음이 제시되었다. 특히 국소 전달 가능성에 비추어, 아데노신 수용체 길항물질은 알레르기성 염증 및 천식의 치료에 귀중할 수 있다. 입수할 수 있는 정보(예를 들어, 문헌[Nyce & Metzger "동물 모델에서 친식에 대한 DNA 안티센스 요법" Nature (1997) 385:721-5])는 이러한 병태 생리학적 상황에서

 A_1 길항물질이 호흡기 상피 하부의 평활근의 수축을 차단하는 반면, A_{2b} 또는 A_3 수용체 길항물질은 비만 세포 탈 과립을 차단하여, 히스타민 및 다른 염증성 매개자의 방출을 누그러뜨릴 수 있음을 지적한다. A_{2b} 수용체는 위장 관 전체를 통해, 특히 결장 및 장 상피에서 발견되었다. A_{2b} 수용체는 cAMP 반응을 매개함이 제시되었다 (Strohmeier et al., J. Biol. Chem. (1995) 270:2387-94).

- [0006] A_{2b} 수용체는 또한 광범위하게 다양한 생리 활성들에 연루되었으며, 이는 관련 질환들의 치료가 상기 A_{2b} 수용체 를 차단함으로써 달성될 수 있음을 암시한다. 예를 들어, A_{2b} 수용체 부위는 비만 세포의 탈과립에 한 역할을 하 며, 따라서 천식, 심근 재 관류 손상, 덩굴 옻나무 유발된 반응들, 두드러기, 관절염 피부경화증, 다른 자가면 역 질환 및 염증성 장 질환의 치료에 한 역할을 한다(Gao, Z. et al., J. Biol. Chem.(1999), 274(9): 5972-5980, Linden, J. et al., Life Science(1998), 62(17-18): 1519-1524, 및 2000년 9월 12일자로 허여된 미국 특허 제 6,117,878 호). Azb 수용체는 또한 심장 섬유모세포의 성장을 억제하는 것으로 나타났으며, 이는 상기 수용체가 고혈압, 심근 경색 및 허혈 후 심근 재 관류와 관련된 심장 재형성을 방지하고(Dubey, R.K. et al., Hypertension(2001), 37:716-721), 림프구 활성화에서 아데노신의 역할을 매개하며(Mirabet, M. et al., J. Cell. Sci.(1999), 112(4): 491-502), 혈관 확장 및 성장을 조절하고(Ralevic, V. and Brunstock, G., Pharmacol. Rev.(1998), 50(3): 413-492, Corset, V. et al., Nature(2000), 407(6805): 747-750, 및 Haynes, J. Jr. et al., Am. J. Physiol.(1999), 276(6): H1877-83), 인간의 장에서 신경 반사에 관여하며(Christofi, F.L. et al., J. Comp. Neurol.(2001), 439(1): 46-64), 망막 혈관형성을 조절할 수 있음-이는 비정상적인 혈 관신생, 예를 들어 당뇨성 망막병증 및 조산의 망막병증과 관련된 질환의 치료에서 A₂, 길항물질의 용도를 암시 한다(Grant, M.B. et al., Invest. Opthalmol. Vis. Sci.(2001), 42(9): 2068-2073)-을 암시한다. 상기는 또한 장 긴장상태 및 분비의 조정, 및 신경전달 및 신경분비에 관여한다(Feoktistov, I. and Biaggioni, I., Pharmacol. Rev. (1997), 49(4): 381-402).
- [0007] A_{2b} 수용체는 또한 세포 형질 전환, 예를 들어 세포 침입에 관여하는 것으로 나타난 Gs/Gq 신호전달에 협력하며 (Faivre, K. et al., Molecular Pharmacology(2001), 60:363-372 및 Regnauld, K. et al., Oncogene(2002), 21(25): 4020-4031), 이는 암 치료가 A_{2b} 길항물질에 의해 달성될 수 있음을 시사한다.
- [0008] 아데노신 수용체들은 또한 소, 돼지, 원숭이, 래트, 기니 피그, 마우스, 토끼 및 인간을 포함한 다양한 포유동물 종들의 망막 상에 존재함이 입증되었다(예를 들어, Blazynski et al., 포유동물 망막에서 아데노신 수용체들의 불연속적인 분포, Journal of Neurochemistry, volume 54, pages 648-655(1990); Woods et al., 소 망막 중의 아데노신 A₁-수용체 결합 부위의 특성화, Experimental Eye Research, volume 53, pages 325-331(1991); and Braas et al., 망막의 신경절 세포에 집중된 내생적인 아데노신 및 아데노신 수용체, Proceedings of the National Academy of Science, volume 84, pages 3906-3910(1987)). 최근에, 윌리암스(Willians)는 배양된 인간 망막 세포 주에서 아데노신 운반 부위의 관찰을 보고하였다(Williams et al., SV-40 항원 유전자에 의해 확립된 배양된 인간 망막 세포 주 중의 뉴클레오사이드 운반 부위, Current Eye Research, volume 13, pages 109-118(1994)).
- [0009] 아데노신의 흡수를 조절하는 화합물들은 이미 망막 및 시신경유두 손상의 치료에 가능한 치료제로서 제안되었다. 샤데(Shade)의 미국 특허 제 5,780,450 호에서, 샤데는 눈 질환의 치료를 위한 아데노신 흡수 억제 제의 용도를 논의하고 있다. 샤데는 특이적인 A₃ 수용체 억제제의 용도는 개시하고 있지 않다. 미국 특허 제 5,780,450 호의 내용 전체는 본 발명에 참고로 인용되어 있다.
- [0010] 아데노신 A₁, A_{2a} 및 A₃ 수용체들에 특이적인 화합물들 및 이들의 용도가 이미 PCT 국제 공개 공보 제 WO 99/62518 호 및 제 WO 01/39777 A1 호에 개시되었다. 상기 PCT 국제 공개 공보 제 WO 99/62518 호 및 제 WO 01/39777 A1 호의 전체 내용은 본 발명에 참고로 인용되어 있다.
- [0011] 추가의 아데노신 수용체 길항물질들이 약리학적 도구로서 요구되며 상기 언급한 질병 상태 및/또는 질환에 대한 약물로서 상당한 관심을 끌고 있다.
- [0012] 발명의 요약
- [0013] 본 발명은 하기 화학식을 갖는 화합물 또는 그의 특정한 에난티오머 또는 토오토머, 또는 그의 약학적으로 허용 가능한 염을 제공한다:

$$R_1$$
 R_2
 R_3
 R_4

[0014]

[0015] 상기 식에서,

[0016]

R₁은 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실, -C(=0)NR_aR_b, -NR_aC(=0)NR _aR_b, -NR_aC(=0)NR _aR_b, -NR_aC(=0)NR _aR_b, -NR_aC(=0)NR _aR_b, -NR_aC(=0)NR_aR_b, -NR_aC(=0)NR_aC(=0)NR_aR_b, -NR_aC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=0)NC(=

[0017]

R₂는 수소 또는 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실, -C(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -OC(=0)NR_aR_b, 또는 -NHC(=0)R_a이거나; 또는

[0018]

 R_1 , R_2 및 N이 함께, 치환된 피페라진, 치환된 아제티딘 고리, 또는 $-(CH_2)$ $_2OH$ 또는 $-CH_2C(=O)OH$ 로 치환된 피롤리딘 고리를 형성하고;

[0019]

 R_3 은 치환되거나 비 치환된 페닐 또는 5 내지 6 원 헤테로아릴 고리이고, 이때 상기 치환체는 할로겐, 하이드록실, 시아노, (C_1-C_{15}) 알킬, (C_1-C_{15}) 알콕시, 또는 $-NR_aR_b$ 이며;

[0020]

R₄는 수소 또는 치환되거나 비 치환된 (C₁-C₁₅)알킬이고;

[0021]

 R_5 는 $-(CH_2)_mOR_6$, $-CHNOR_7$, $-C(=0)NR_8R_9$, $-(CH_2)_mC(=0)OR_{10}$, $-(CH_2)_kC(=0)NR_{11}R_{12}$ 이고; 이때

[0022]

 R_6 은 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_3-C_{10}) 사이클로알킬, 또는 아릴, 헤테로아릴 또는 4 내지 8 원 헤테로사이클릭 고리이고;

[0023]

 R_7 은 수소 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_1-C_{30}) 알킬아릴이고;

[0024]

 R_8 및 R_9 는 각각 독립적으로 수소, 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬아미노, (C_1-C_{30}) 알콕시, 또는 포화되거나 불포화된 모노사이클릭 또는 비사이클릭, 카보사이클릭 또는 헤테로사이클릭 고리이거나, 또는

[0025]

 R_8 , N 및 R_9 가 함께, 치환되거나 비 치환된 4 내지 8 원 헤테로사이클릭 고리를 형성하고;

[0026]

 R_{10} 은 수소 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_3-C_{10}) 사이클로알킬, 또는 아릴, 헤테로아릴 또는 헤테로사이클릭 고리이고;

[0027]

 R_{11} , N 및 R_{12} 는 함께 4 내지 8 원 헤테로사이클릭 고리를 형성하고;

[0028]

 R_a 및 R_b 는 각각 독립적으로 수소 또는 알킬이고;

[0029]

m은 0, 1, 2 또는 3이고;

[0030]

k는 1, 2 또는 3이다.

[0031] 본 발명은 또한 하기 화학식을 갖는 화합물을 제공한다:

$$R_{3}$$
 R_{20}
 R_{21}
 R_{22}

[0032]

[0035]

[0036]

[0037]

[0038]

[0039]

[0040]

[0033] 상기 식에서,

[0034] R₃은 치환되거나 비 치환된 4 내지 10 원의 아릴, 헤테로아릴 또는 헤테로사이클릭 고리이고;

 R_{20} 은 할로겐 또는 $-NH(CHR_{20}')_nNHC(=0)CH_3$ 이고, 이때 R_{20} '는 H, OH, 알킬, 하이드록시알킬, 사이클로알 킬, 헤테로알킬 또는 아미노이고;

R₂₁은 H 또는 -C(=0)0H이고;

R₂₂는 H 또는 SO₂Ph이고;

n은 2, 3, 4 또는 5이고;

R₂₀이 -NH(CHR₂₀')_nNHC(=0)CH₃일 때, R₂₁은 -C(=0)OH이다.

본 발명은 또한 A_{2b} 아데노신 수용체와 관련된 질환의 치료가 필요한 대상자에게 치료 유효량의 화학식 I의 화합물을 투여하여 상기 대상자에서 상기 A_{2b} 아데노신 수용체와 관련된 질환을 치료하는 단계를 포함하는, 상기 대상자에서 상기 질병을 치료하는 방법을 제공하며, 이때 상기 A_{2b} 아데노신 수용체와 관련된 질환은 천식, 두드러기, 관절염 피부경화증, 심근 경색, 허혈 후 심근 재 관류, 당뇨성 망막병증, 조산의 망막병증, 당뇨병, 설사, 염증성 장 질환, 증식성 종양이거나, 또는 비만 세포 탈과립, 혈관확장, 고혈압, 과민증 또는 알레르기성 매개인자의 방출과 관련이 있다.

발명의 상세한 설명

[0041] 본 발명은 하기 화학식을 갖는 화합물 또는 그의 특정한 에난티오머 또는 토오토머, 또는 그의 약학적으로 허용가능한 염을 제공한다:

$$R_1$$
 R_2
 R_3
 R_4

[0042]

[0043] 상기 식에서,

[0044] R₁은 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실,

 $-C(=0)NR_aR_b$, $-NR_aC(=0)NR_aR_b$, $-NR_aC(=0)NR_aR_b$, $-NR_aC(=0)NR_aR_b$, 또는 $-NHC(=0)R_a$ 이며;

[0045] R₂는 수소 또는 치환되거나 비 치환된 알킬이고, 이때 상기 치환체는 하이드록실, 디하이드록시, 카복실, -C(=0)NR_aR_b, -NR_aC(=0)NR_aR_b, -NR_cC(=0)NR_aR_b, -OC(=0)NR_aR_b, 또는 -NHC(=0)R_a이거나; 또는

[0046] R₁, R₂ 및 N이 함께, 치환된 피페라진, 치환된 아제티딘 고리, 또는 -(CH₂) ₂OH 또는 -CH₂C(=O)OH로 치환된 피롤리딘 고리를 형성하고;

R₃은 치환되거나 비 치환된 페닐 또는 5 내지 6 원 헤테로아릴 고리이고, 이때 상기 치환체는 할로겐, 하이드록실, 시아노, (C₁-C₁₅)알킬, (C₁-C₁₅)알콕시, 또는 -NR₄R₅이며;

R₄는 수소 또는 치환되거나 비 치환된 (C₁-C₁₅)알킬이고;

R5는 -(CH₂)mOR₆, -CHNOR₇, -C(=0)NR₈R₉, -(CH₂)mC(=0)OR₁₀, -(CH₂)kC(=0)NR₁₁R₁₂이고; 이때

R₆은 치환되거나 비 치환된 (C₁-C₃₀)알킬, (C₃-C₁₀)사이클로알킬, 또는 아릴, 헤테로아릴 또는 4 내지 8 원 헤테로사이클릭 고리이고;

R₇은 수소 또는 치환되거나 비 치환된 (C₁-C₃₀)알킬, (C₁-C ₃₀)알킬아릴이고;

 R_8 및 R_9 는 각각 독립적으로 수소, 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬아미노, (C_1-C_{30}) 알콕시, 또는 포화되거나 불포화된 모노사이클릭 또는 비사이클릭, 카보사이클릭 또는 헤테로사이클릭 고리이거나, 또는

 R_8 , N 및 R_9 가 함께, 치환되거나 비 치환된 4 내지 8 원 헤테로사이클릭 고리를 형성하고;

 R_{10} 은 수소 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_3-C_{10}) 사이클로알킬, 또는 아릴, 헤테로아릴 또는 헤테로사이클릭 고리이고;

R₁₁, N 및 R₁₂는 함께 4 내지 8 원 헤테로사이클릭 고리를 형성하고;

Ra 및 Rb는 각각 독립적으로 수소 또는 알킬이고;

m은 0. 1. 2 또는 3이고;

[0058] k는 1, 2 또는 3이다.

[0047]

[0048]

[0049]

[0050]

[0051]

[0052]

[0053]

[0054]

[0055]

[0056]

[0057]

[0059] 상기 화합물의 추가의 실시태양에서, 임의의 헤테로사이클릭 또는 헤테로아릴 고리는, 존재하는 경우, 피페라진, 피페리딘, 피라진, 피리딘, 피롤리딘, 피라졸, 피리미딘, 티오펜, 이미다졸, 아제티딘, 피롤, 벤조티아졸, 벤조디옥솔란, 디티올란, 옥사틴, 이미다졸리딘, 퀴놀린, 이소퀴놀린, 디하이드로-IH-이소퀴놀린, 디하이드로-2H-피리딘, 1,3,4,9-테트라하이드로-β-카르볼린, 2,8-디아자스피로[4.5]데칸, 2,5-디아자비사이클로 [2.2.1]헵탄, 또는 [1,4]디아제판 고리, 디하이드로이소퀴놀린, 인돌, 이소인돌, 트리아자스피로[4.5]데칸, 모르폴린, 푸란 또는 이소티아졸 고리이다.

[0060] 추가의 실시태양에서, 하기 화학식을 갖는 화합물 또는 그의 특정한 에난티오머 또는 토오토머, 또는 그의 약학 적으로 허용 가능한 염을 제공한다

$$R_1$$
 R_2
 R_5
 R_4

[0061]

[0062] 상기 식에서,

[0063]

R₁은 수소 또는 메틸이고;

[0064]

 $R_2 \ \ - (\text{CH}_2)_2 \text{NHC}(=0) \text{CH}_3, \quad - (\text{CH}_2)_2 \text{OH}, \quad - (\text{CH}_2)_2 \text{NHC}(=0) \text{NHCH}_3, \quad - \text{CH}_2 \text{CH}(\text{CH}_3) \text{OH}, \quad - \text{CH}(\text{CH}_2 \text{OH}) \text{CH}_2 \text{CH}(\text{CH}_3)_2, \\ - \text{CH}(\text{CH}_2 \text{OH})_2, \quad - \text{CH}(\text{CH}_3)_2 \text{CH}, \quad - \text{CH}(\text{CH}_2 \text{OH}) \text{CH}(\text{CH}_3)_2, \quad - (\text{CH}_2)_3 \text{OH}, \quad - (\text{CH}_2)_2 \text{NH}_2, \quad - (\text{CH}_2)_2 \text{NHC}(=0) \text{N}(\text{CH}_3)_2 \quad , \\ - (\text{CH}_2)_2 \text{C}(=0) \text{NH}_2, \quad - \text{CH}_2 \text{C}(=0) \text{NH}_2, \quad - \text{CH}_3, \quad - \text{CH}_2 \text{CH}(\text{OH}) \text{CH}_2 \text{OH}, \quad - \text{CH}_2 \text{C}(=0) \text{(NC}_5 \text{H}_8 [\text{OCH}_3]) \text{(C}_6 \text{H}_4 \text{C1}) \ \cite{CH}_3 \ \cite{CH}_3 \ \cite{CH}_4 \ \cite{CH}_3 \ \cite{CH}_4 \ \cite{CH}_3 \ \cite{CH}_4 \ \cite{CH}_3 \ \cite{CH}_4 \ \cite{CH}_4 \ \cite{CH}_3 \ \cite{CH}_4 \ \$

[0065]

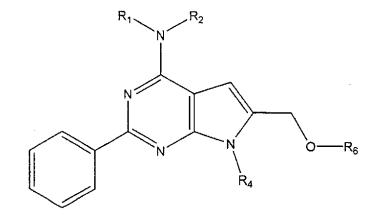
R₁, R₂ 및 N이 함께 -(CH₂)₂OH 또는 -CH₂C(=0)OH로 치환된 피롤리딘 고리, -C(=0)CH₃로 치환된 피페라진 고리, 또는 -OH 또는 CH₂OH로 치환된 아제티딘 고리를 형성하고;

[0066]

R4는 수소 또는 메틸이고;

[0067]

 $R_5 = -CH_2O(C_6H_5), \quad -CH_2O(C_6H_4 \quad C1), \quad -CH_2O(C_6H_4Br), \quad -CH_2O(C_6H_4F), \quad -CHNOCH_2(C_6H_5), \quad -CH_2O(C_6H_4[OCH_3]), \quad -CH_2O(C_6H_4F), \quad -CH_2O(C_6H_$ $-CH_{2}O(C_{6}H_{4} \quad [CH_{3}]), \quad -CH_{1}O(C_{5}H_{9}N), \quad -CH_{2}O(C_{5}H_{4}N), \quad -CH_{2}(NC_{5}H_{4}[O]), \quad -CH_{2}O(C_{6}H_{4}[NH_{2}]), \quad -CH_{2}O(C_{5}H_{9}N)SO \quad {}_{2}(C_{6}H_{5}), \\ -CH_{2}O(C_{5}H_{9}N)SO \quad {}_{2}(C_{5}H_{9}N)SO \quad {}$ $-CH_{2}O(C_{5}H_{9}N)SO_{2}CH_{2}(C_{6}H_{5}), -CH_{2}O(C_{6}H_{4}[NHC(=0)CH_{3}]), -CH_{2}O(C_{5}H_{9}N)(CH_{2})_{P}(C_{6}H_{5}), -CH_{2}O(C_{5}H_{9}N)(CH_{2})_{P}(C_{6}H_{4}Br),$ $-CH_2O(C_5H_9N)(CH_2)_P(C_6H_4C1)$, $-CH_2O(C_5H_9N)(CH_2)_P(C_6H_4[OCH$ ₃]), $-CH_2O(C_5H_9N)(CH_2)_P(C_6H_3FC1)$, $-CH_{2}O(C_{5}H_{9}N)(CH_{2})_{P}(C_{6}H_{4}[CF \quad _{3}])\,, \quad -CH_{2}O(CH_{2})_{2}CH(OH)(C_{6}H_{5})\,, \quad -CH_{2}NOCH_{2}(C_{6}H_{5})\,, \quad -CH_{2}NOC(CH_{3})_{3} \quad , \quad -C(=0)(NC_{4}H_{8}O)\,,$ $-C(=0)(NC_4H_8N)CH_2CHCH(C _{6}H_5), -C(=0)(NC_4H_8N)(CH_2)_P(C_6H_5), -C(=0)(NC _{4}H_8N)(CH_2)_2O(C_6H_4C1), -C(=0)(NC_5)_{1}$ $H_{8}[CN])(C_{6}H_{5}), \quad -C(=0)(NC_{4}H_{8}N)CH_{2}C_{2}(C_{6}H_{5}), \quad -C(=0)(NC_{4}(CH_{3})_{2}N)(CH_{2})_{P}(C_{6}H_{5}), \quad -C(=0)(NC_{5}H_{9})CH(OH)(C_{6}H_{4}F),$ $-C(=O)(NC_4(CH_3)$)₂NH), $-C(=O)(NC_4H_8N)(C_5H_3N[CF_3]),$ $-C(=0)(NC_5H_8[CH_3])(C_6H_5)$, $-C(=0)(NC_5H$ $_{8}[OCH_{3}])(C_{5}H_{4}[C_{6}H_{4}C1]),$ $-C(=0)(NC_5H_8[OCH_3])(C_6H_4C1)$, $-C(=O)(NC_5H$ $_{8}[OH])(C_{6}H_{4}C1),$ $-C(=0)(NC_5H_8[OH])(C_6H_4[C_6H_4C1]), \quad -C(=0)(NC_5H_8[OCH_3])(C_6H_4F), \quad -C(=0)NH(C_5H_9N)(CH_2)_P(C_6H_5), \quad -C(=0)(NC_5H_9N)(CH_2)_P(C_6H_5), \quad -C(=0)(NC_5H_9N)(CH_5)_P(C_6H_5), \quad -C(=0)(NC_5H_9N)(CH_5)_P(C_6H_5)_P(C_6H_5), \quad -C(=0)(NC_5H_9N)(CH_5)_P(C_6H_5)_$ $_{5}H_{9})(CH_{2})_{P}(C_{6}H_{5}), -C(0)(NC_{5}H_{9})(NC_{4}H_{8}),$


- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_{11}), -C(=O)(NC_4H_8N)(CH_2)_PCH(CH_3)_2,$
- $-C(=O)(NC_5H_9[NC_5H_{10}]), -C(=O)(NC_4H_8N)(C_5H_9), -C(O)(NC_5H_9)NH_2, \\$
- $-C(=O)(NC_5H_8[C(=O)CH_3])(C_6H_5), -C(=O)(NC_5H_7)C_2(C_6H_5),$
- $-C(=O)(NC_5H_9)(C(CH_3)_3, -C(=O)(NC_4H_8N)CH_2C_2(C_6H_4[CN]),$
- $-C(=O)(NC_5H_8[C(=O)OCH_3)(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)O(CH_2)_PCH_3])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)NH_2])(C_6H_5)$, -
- $C(=O)(NC_5H_8[C(=O)NHCH_3])(C_6H_5),$
- $-C(=O)(NC_5H_8[NHC(=O)CH_3])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)N(CH_3)_2])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)NHCH_2(C_6H_5)])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)NH(CH_2)_PCH_3])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)N\{(CH_2)_PCH_3\}_2])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)(NC_3H_6)])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)OC(CH_3)_2])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)NH_2])(NHCH_2CH_3),$
- $-C(=O)(NC_5H_8[OCH_3])(C_6H_4[OCH_3]),$
- $-C(=O)(NC_5H_8[C(=O)NH_2])(NC_4H_8),$
- $-C(=O)(NC_5H_7)(C_6H_4[OCH_3]),$
- $-C(=O)(NC_5H_8[NH_2])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)H])(C_6H_5),$
- $-C(=O)(NC_5H_8[OCH_3])(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_8[OCH_3])(C_6H_4[CH_3]),$
- $-C(=O)(NC_5H_8[(CH_2)_POCH_3])(C_6H_5),$
- $-C(=O)NH(C_4H_7N)(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4C1),$
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4[OCH_3]),$
- $-C(=O)NH(CH_2)_P(C_6H_4[C_2HSN_2],$
- $-C(=O)(NC_4H_8N)C(=O)(CH_2)_P(C_6H_4CI),$
- $-C(=O)(NC_5H_9)(C_3N_2H_2)(C_6H_4C1),$
- $-C(=O)(NC_4H_8N)CH_2C(=O)N(CH_3)(C_6H_5),$
- $-C(=O)(NC_4H_8N)C(=O)O(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_8[C_2H_3N_2O])(C_6H_5),$

[0068]

- $-C(=O)(NC_5H_9)N(CH_3)(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_9)NH(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_9)NH(CH_2)_P(C_6H_4CI),$
- $-C(=O)(NC_5H_9)NH(CH_2)_P(C_3N_2H_3),$
- $-C(=O)(NC_5H_9)NH(CH_2)_P(C_5H_4N),$
- $-C(=O)(NC_5H_9)NH(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_9)N(CH_3)(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_9)NHCH(CH_3)(C_6H_5),$
- $-(CH_2)_PC(=O)(NC_4H_8N)(CH_2)_P(C_6H_5),$
- $-C(=O)NH(CH_2)_P(C_6H_5),$
- $-C(=O)NHCH[(CH_2)_POH]_2$
- $-C(=O)NH(CH_2)_P(OH)(C_6H_{10}),$
- $-C(=O)NH(CH_2)_P(C_6H_4\{O[C_6H_5]\}),$
- $-C(=O)(NC_4H_7)(CH_2)_PNH(C_6H_5),$
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4)CF_3$,
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4F),$
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_7O_2H_5),$
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4)CH_3$,
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4Br),$
- $-C(=O)(NC_4H_8N)(CH_2)_P(C_6H_3Cl_2),$
- $-C(=O)(NC_5H_{10}N)(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_4H_8)(C_6H_4)NHC(=O)CH_3$
- $-C(=O)(NC_4H_8N)(C_6H_4[CN]),$
- $-C(=O)(NC_4H_8N)(C_6H_4[N(CH_3)C(=O)CH_3]),$
- $-C(=O)(NC_4H_8N)(C_6H_3[(CH_3)_2]),$
- $-C(=O)(NC_4H_8N)(C_6H_4C_1),$
- $-C(=O)(NC_4H_8N)(C_6H_3[(OCH_3)_2]),$
- $-C(=O)(NC_4H_8N)(C_6H_3Cl[(OCH_3)]),$
- $-C(=O)(NC_5H_9N)(CH_2)_PO(C_6H_4Cl),$
- $-C(=O)(NC_5H_8N)(CH_2)_P(C_6H_5),$
- $-C(=O)(NC_5H_9)(CH_2)_PO(C_6H_5),$
- $-C(=O)(NC_5H_9)(CH_2)_PO(C_6H_4[CN]),$
- $-C(=O)(NC_4H_8N)(C_6H_4[NO_2]),$

[0069]

- $-C(=O)(NC_4H_8N)(C_6H_4[C(=O)OCH_3]),$
- $-C(=O)(NC_4H_8N)(C_6H_4[CH_3]),$
- $-C(=O)(NC_5H_9)(CH_2)_PO(C_6H_3Cl_2),$
- $-C(=O)(NC_5H_9)(CH_2)_PO(C6H3[CN]),$
- $-C(=O)(NC_5H_9[CN])(C_6H_4CI),$
- $-C(=O)(NC_5H_8N)(C_6H_4[C(=O)NH_2]),$
- $-C(=O)(NC_5H_8[CN])(C_6H_4[OCH_3]),$
- $-C(=O)(NC_5H_8[CN])(C_6H_4Cl),$
- $-C(=O)(NC_5H_8[C(=O)(NC_4H_8)])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)(NC_5H_{10})])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)(NC_4H_8O)])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)NHC(CH_3)_3])(C_6H_5),$
- $-C(=O)(NC_5H_8[C(=O)(NC_3H_6)])(C_6H_5),$
- $-C(=O)(NC_5H_8[CH(CH_3)_2])(C_6H_5), -C(=O)(NC_4H_8N)CH_2C_2(C_4H_3S),\\$
- $-C(=O)(NC_5H_8[C(=O)OCH_2(C_4H_7)])(C_6H_5),$
- $-C(=O)(NC_5H_8[OCH_3])(C_6H_4CI), -C(=O)(NC_5H_8[OCH_3])(C_6H_4[CF_3]),$
- $-C(=O)(NC_5H_8[OCH_3])(C(CH_3)_2), -C(=O)(NC_4H_8N)(CH_2)_P(C_6H_4[CN]),\\$
- $-C(=O)(NC_5H_8)(C_6H_5)_2$ $-CH_2O(CH_2)_PN(CH_3)CH_2CHCH(C_6H_5)$, or
- -CH₂O(CH₂)_PNH(CH₂)₃(C₆H₅);
- [0070] [0071]
- 이고; 이때
- [0072] p는 0, 1, 2, 3 또는 4이다.
- [0073] 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

[0074]

[0075] 상기 식에서,

[0076]

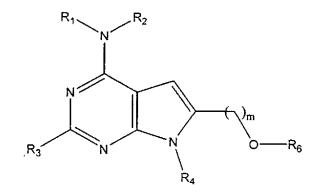
 $R_1,\ R_2$ 및 N은 함께, 치환된 아제티딘 또는 피페라진 고리를 형성하고;

[0077]

R₄는 H이고;

[0078]

R₆은 치환되거나 비 치환된 아릴 또는 헤테로아릴 고리이다.


[0079]

하나의 실시태양에서, R_1 , R_2 및 N은 함께, 치환된 아제티딘 고리를 형성한다.

[0800]

또 다른 실시태양에서, R_1 , R_2 및 N은 함께, 치환된 피페라진 고리를 형성한다.

[0081] 화학식 I에 대한 또 다른 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

[0082]

[0086]

[0083] 상기 식에서,

[0084] R₆은 치환되거나 비 치환된 아릴 또는 헤테로아릴 고리이고;

[0085] m은 0, 1, 2 또는 3이다.

하나의 실시태양에서, R4는 H이다.

[0087] 또 다른 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

[0088] 추가의 실시태양에서,

[0089] R₁은 -(CH₂)₂NHC(=0)CH₃이고;

[0090] R₂는 수소 또는 메틸이고;

[0091] R₄는 수소 또는 메틸이고;

[0092] R₆은 치환되거나 비 치환된 페닐 또는 피리딘이다.

[0093] 추가의 실시태양에서, R₂는 H이다.

[0094] 추가의 실시태양에서, R₆은 치환된 페닐이다.

[0095] 또 다른 실시태양에서, 상기 화합물은 하기로 이루어진 그룹 중에서 선택된다:

[0096] N-{2-[6-(4-플루오로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

[0097] N-{2-[6-(4-메톡시페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

[0098] N-[2-(2-페닐-6-m-톨릴옥시메틸-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드;

[0099] N-{2-[6-(3-브로모페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드;

[0100] 3-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2.3-d]피리미딘-6-일메톡시]-벤조산 메틸 에스테르;

[0101] N-{2-[6-(4-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드; 및

[0102] N-{2-[6-(3-메톡시페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드.

[0103] 화학식 [에 대한 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4

[0104] [0105]

상기 식에서,

[0106]

 R_6 은 치환되거나 비 치환된 (C_1-C_{30}) 알킬 또는 (C_3-C_{10}) 사이클로알킬이고;

[0107]

m은 0, 1, 2 또는 3이다.

[0108]

하나의 실시태양에서, R4는 H이다.

[0109]

또 다른 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

[0110]

추가의 실시태양에서,

[0111]

R₁은 -(CH₂)₂NHC(=0)CH₃이고;

[0112]

R₂는 수소 또는 메틸이고;

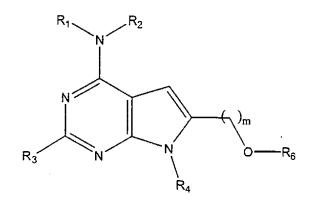
[0113]

R4는 수소 또는 메틸이고;

[0114]

R₆은 치환되거나 비 치환된 사이클로펜틸이다.

[0115]


추가의 실시태양에서, R₂는 H이다.

[0116]

또 다른 실시태양에서, 상기 화합물은 $N-(2-(6-\{2-[메틸-(3-페닐알릴)아미노]에톡시메틸\}-2-페닐-7H-피롤로 [2,3-d]피리미딘-4-일아미노}-에틸]-아세트아미드이다.$

[0117]

화학식 I에 대한 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

[0118]

[0119] 상기 식에서,

[0120]

R₆은 치환되거나 비 치환된 4 내지 8 원의 헤테로사이클릭 고리이고;

[0121]

m은 0, 1, 2 또는 3이다.

- [0122] 하나의 실시태양에서, R₄는 H이다.
- [0123] 추가의 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.
- [0124] 추가의 실시태양에서,
- [0125] R_1 은 $-(CH_2)_2$ NHC(=0)CH₃이고;
- [0126] R₂는 수소 또는 메틸이고;
- [0127] R₄는 수소 또는 메틸이고;
- [0128] R₆은 치환되거나 비 치환된 피페리딘이다.
- [0129] 추가의 실시태양에서, R₂는 H이다.
- [0130] 또 다른 실시태양에서, 상기 화합물은 하기로 이루어진 그룹 중에서 선택된다:
- [0131] N-(2-{6-[1-(벤젠설포닐)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0132] N-{2-[6-(1-펜에틸피페리딘-4-일옥시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0133] N-[2-{6-[1-(3-페닐프로필)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸]아세트 아미드;
- [0134] N-(2-{6-[1-(4-브로모벤질)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트 아미드:
- [0135] N-[2-(6-{1-[2-(2-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드:
- [0136] N-[2-(6-{1-[2-(3-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0137] N-(2-{6-[1-(3-클로로벤질)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트 아미드;
- [0138] N-[2-(6-{1-[2-(4-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0139] N-[2-(6-{1-[2-(2-메톡시페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0140] N-[2-(6-{1-[2-(3-메톡시페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0141] N-[2-(6-{1-[2-(4-메톡시페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0142] N-[2-(6-{1-[2-(4-플루오로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0143] N-[2-(6-{1-[2-(2-클로로-4-플루오로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드;
- [0144] N-[2-(6-{1-[2-(2-클로로-6-플루오로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드;
- [0145] N-[2-(6-{1-[2-(2-트리플루오로메틸페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드; 및
- [0146] N-[2-(6-{1-[2-(2-브로모페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에

틸]아세트아미드.

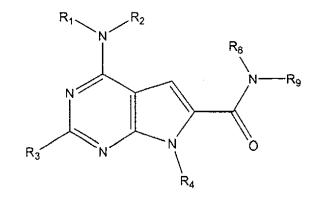
[0147] 화학식 I에 대한 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

[0148] [0149]

[0150]

[0151]

[0152]


상기 식에서,

R₇은 수소, 또는 치환되거나 비 치환된 (C₁-C₃₀)알킬, (C₁-C ₃₀)알킬아릴이다.

하나의 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

추가의 실시태양에서, R₄는 수소이다.

[0153] 화학식 I에 대한 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

[0154] [0155]

상기 식에서,

[0156] R₈, N 및 R₉는 함께, 치환되거나 비 치환된 4 내지 8 원의 헤테로사이클릭 고리를 형성한다.

[0157] 하나의 실시태양에서, R₈NR₉는 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘, 모르폴린, 아조칸, 디하이드로-1H-이소퀴놀린, 1,2,3,6-테트라하이드로피리딘, 디하이드로-2H-피리딘, 1,3,4,9-테트라하이드로-β-카르볼린, 1,3,8-트리아자스피로[4.5]데칸, 2,8-디아자스피로[4.5]데칸, 2,5-디아자비사이클로[2.2.1] 헵탄, 1,4-디옥사-8-아자스피로[4.5]데칸 또는 [1.4]디아제판 고리를 형성한다.

[0158] 추가의 실시태양에서, R₈NR₉는 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘 또는 [1. 4]디아제판 고리를 형성한다.

[0159] 또 다른 실시태양에서, R₈NR₉에 의해 형성된 고리는 하나 이상의 아릴, 헤테로아릴, (C₁-C₃₀)알킬아릴, (C₁-C₃₀)알 킬헤테로아릴, (C₁-C₃₀)알케닐아릴, (C₁-C₃₀)알케닐헤테로아릴, (C₁-C₃₀)알키닐아릴 또는 (C₁-C₃₀)알키닐헤테로아릴 잔기(이들 자체가 치환될 수 있다)로 치환된다.

[0160] 또 다른 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

[0161] 추가의 실시태양에서,

- [0162] R₁은 -(CH₂)₂NHC(=0)CH₃이고;
- [0163] R₂는 수소 또는 메틸이고;
- [0164] R₄는 수소 또는 메틸이다.
- [0165] 또 다른 실시태양에서, 상기 화합물은 하기로 이루어진 그룹 중에서 선택된다:
- [0166] N-(2-{2-페닐-6-[4-(3-페닐알릴)피페라진-1-카보닐]-7H-피롬로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0167] N-{2-[6-(4-하이드록시-4-이소프로필피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아 세트아미드;
- [0168] N-(2-{2-페닐-6-[4-(3-페닐프로필)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0169] N-{2-[6-(4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2.3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0170] 2-{2-페닐-6-[4-(3-페닐프로필)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}아세트아미드;
- [0171] N-[2-(6-{4-[2-(4-클로로페녹시)-에틸]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0172] N-{2-[6-(4-시아노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0173] N-(2-{2-페닐-6-[4-(3-페닐프로프-2-이닐)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드;
- [0174] N-(2-{6-[시스-3,5-디메틸-4-(3-페닐프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0175] N-{2-[6-(4.4-디페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2.3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0176] N-{2-[6-(3,3-디페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0177] N-{2-[6-(4-메톡시-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0178] N-(2-{6-[트랜스-2,5-디메틸-4-(3-페닐프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0179] N-(2-[6-(트랜스-2,5-디메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0180] N-{2-[6-(4-벤질-시스-3,5-디메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0181] N-{2-[6-(시스-3,5-디메틸-4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아 세트아미드;
- [0182] N-{2-[6-(3-메틸-3-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2.3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0183] N-(2-{2-페닐-6-[4-(5-트리플루오로메틸피리딘-2-일)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0184] N-(2-{6-[4-(2'-클로로비페닐-2-일)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0185] N-(2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드;
- [0186] N-(2-{6-[4-(2-클로로페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0187] N-(2-{6-[4-(2'-클로로비페닐-2-일)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아

미노}에	틸)아세트	아미드;
------	-------	------

- [0188] N-(2-{6-[4-(4-플루오로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸) 아세트아미드;
- [0189] N-(2-{2-페닐-6-[4-(4-페닐부틸)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0190] N-(2-{2-페닐-6-[4-(3-페닐프로필)피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미 ㄷ:
- [0191] N-{2-[2-페닐-6-(4-피롤리딘-1-일-피페리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0192] N-(2-{6-[4-(3-사이클로헥실프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드;
- [0193] N-(2-{6-[4-(4-메틸펜틸)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0194] N-{2-{6-([1,4']비피페리디닐-1'-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0195] N-{2-[6-(4-사이클로펜틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0196] N-{2-[6-(4-아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0197] N-{2-[6-(4-아세틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0198] N-(2-{6-[4-(2-사이클로헥실에틸)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0199] N-{2-[2-페닐-6-(4-페닐에티닐-3,6-디하이드로-2H-피리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에 틸}아세트아미드;
- [0200] N-{2-[6-(4-3급-부틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0201] N-{2-[6-(4-펜에틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0202] N-[2-(6-{4-[3-(2-시아노페닐)-프로프-2-이닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0203] N-[2-(6-{4-[3-(3-시아노페닐)-프로프-2-이닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0204] N-[2-(6-{4-[3-(4-시아노페닐)-프로프-2-이닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0205] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 메틸 에스테르;
- [0206] N-(2-{6-[4-(1-하이드록시에틸)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸) 아세트아미드;
- [0207] N-[2-(6-{4-[3-(4-시아노페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0208] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 에틸에스테르;
- [0209] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 아미 ㄷ·
- [0210] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 메틸아미드;
- [0211] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 디메

털아미드;

- [0212] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 벤질아미드;
- [0213] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 에틸아미드;
- [0214] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 디에 틸아미드;
- [0215] N-(2-{6-[4-(아제티딘-1-카보닐)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0216] N-(2-{2-페닐-6-[4-페닐-4-(피롤리딘-1-카보닐)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0217] N-(2-{2-페닐-6-[4-페닐-4-(피페리딘-1-카보닐)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0218] N-(2-{6-[4-(모르폴린-4-카보닐)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0219] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 3급-부틸아미드;
- [0220] N-{2-[6-(4-이소프로필-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아 미드;
- [0221] N-(2-{2-페닐-6-[4-(3-티오펜-2-일-프로프-2-이닐)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0222] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 사이 클로부틸메틸 에스테르;
- [0223] N-(2-{6-[4-(4-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드;
- [0224] N-(2-{6-[4-메톡시-4-(3-트리플루오로메틸페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노}에틸)아세트아미드;
- [0225] N-{2-[6-(4-이소프로필-4-메톡시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트 아미드;
- [0226] N-{2-[6-(4-아세틸아미노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트 아미드;
- [0227] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 이소 프로필 에스테르;
- [0228] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-에틸아미노피페리딘-4-카복실 산 아미드;
- [0229] N-(2-{6-[4-메톡시-4-(3-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0230] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-피롤리딘-1-일피페리딘-4-카 복실산 아미드;
- [0231] N-(2-{6-[4-(2-메톡시페닐)-3,6-디하이드로-2H-피리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0232] N-{2-[6-(4-아미노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;

- [0233] N-{2-[6-(4-포르밀-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0234] N-{2-[6-(4-벤질-4-메톡시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0235] N-{2-[6-(4-메톡시-4-o-톨릴피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0236] N-{2-[6-(4-메톡시메틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0237] N-[2-(6-{4-[3-(2-클로로페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸] 아세트아미드;
- [0238] N-[2-(6-{4-[3-(3-클로로페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸] 아세트아미드;
- [0239] N-[2-(6-{4-[3-(4-클로로페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸] 아세트아미드;
- [0240] N-[2-(6-{4-[3-(2-메톡시페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸] 아세트아미드;
- [0241] N-[2-(6-{4-[3-(3-메톡시페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸] 아세트아미드;
- [0242] N-[2-(6-{4-[3-(4-메톡시페닐)-프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸] 아세트아미드;
- [0243] N-[2-(6-{4-[3-(4-클로로페닐)-프로피오닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0244] N-[2-(6-{4-[3-(3-클로로페닐)-프로피오닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0245] N-[2-(6-{4-[3-(2-클로로페닐)-프로피오닐]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0246] N-[2-(6-{4-[5-(4-클로로페닐)-2H-피라졸-3-일]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노)에틸]아세트아미드;
- [0247] 2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]피페라진-1-일}-N-메틸-N-페 닐아세트아미드;
- [0248] 4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-카복실산 벤질 에스 테르;
- [0249] N-{2-[6-(4-옥소-1-페닐-1,3,8-트리아자스피로[4.5]데칸-8-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노]에틸}아세트아미드;
- [0250] N-(2-{6-[4-(메틸펜에틸아미노)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트 아미드;
- [0251] N-{2-[6-(4-펜에틸아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0252] N-[2-(6-{4-[2-(4-클로로페닐)-에틸아미노]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0253] N-[2-(6-{4-[2-(3H-이미다졸-4-일)에틸아미노]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0254] N-(2-{2-페닐-6-[4-(2-피리딘-4-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;

- [0255] N-(2-{2-페닐-6-[4-(2-피리딘-2-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0256] N-{2-[6-(4-벤질아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0257] N-(2-{6-[4-(벤질메틸아미노)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아 미드;
- [0258] N-[2-(2-페닐-6-{4-[(피리딘-4-일메틸)아미노]-피페리딘-1-카보닐}-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0259] N-(2-{2-페닐-6-[4-(2-피리딘-3-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0260] N-{2-[2-페닐-6-((S)-2-페닐아미노메틸피롤리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0261] N-[2-(2-페닐-6-{4-[3-(4-트리플루오로메틸페닐)-프로필]-피페라진-1-카보닐}-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드;
- [0262] N-[2-(6-{4-[3-(4-플루오로페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0263] N-(2-{6-[4-(3-벤조[1,3]디옥솔-5-일-프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0264] N-(2-{2-페닐-6-[4-(3-p-톨릴프로필)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0265] N-[2-(6-{4-[3-(4-브로모페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0266] N-[2-(6-{4-[3-(3,4-디클로로페닐)프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0267] N-[2-(6-{4-[3-(2,4-디클로로페닐)프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드;
- [0268] N-{2-[6-(4-벤질-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0269] N-{2-[6-(4-펜에틸-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0270] N-(2-{2-페닐-6-[4-(3-페닐프로필)-[1,4]디아제판-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0271] N-(2-{6-[4-(4-아세틸아미노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0272] N-(2-{6-[4-(2-시아노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0273] N-[2-(6-{4-[4-(아세틸메틸아미노)-페닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드;
- [0274] N-(2-{6-[4-(2,6-디메틸페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0275] N-(2-{6-[4-(2-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0276] N-(2-{6-[4-(2,4-디메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트 아미드;

- [0277] N-(2-{6-[4-(5-클로로-2-메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0278] N-(2-{6-[4-(4-클로로페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0279] N-{2-[6-(5-벤질-2,5-디아자비사이클로[2.2.1]헵탄-2-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0280] N-{2-[6-(4-페녹시메틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0281] N-(2-{6-[4-(4-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0282] N-(2-{6-[4-(3-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0283] N-(2-{6-[4-(2-니트로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드;
- [0284] 2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-일}-벤조산 메틸 에스테르;
- [0285] N-{2-[2-페닐-6-(4-o-톨릴피페라진-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드;
- [0286] N-(2-{6-[4-(3,4-디클로로페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸) 아세트아미드;
- [0287] N-(2-{6-[4-(2-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드;
- [0288] N-(2-{6-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드;
- [0289] 2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-일}-벤즈아미드;
- [0290] N-(2-{6-[4-시아노-4-(2-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드;
- [0291] N-(2-{6-[4-(3-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드;
- [0292] N-(2-{6-[4-시아노-4-(3-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드; 및
- [0293] N-(2-{6-[4-시아노-4-(4-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드.
- [0294] 화학식 I에 대해서 또 다른 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

$$R_1$$
 R_2
 R_8
 R_9
 R_{10}
 R_{10}

[0295]

[0296] 상기 식에서,

[0300]

[0308]

[0309]

[0310]

[0297] R₈ 및 R₉는 각각 독립적으로 수소, 또는 치환되거나 비 치환된 (C₁-C₃₀)알킬, (C₁-C₃₀)알킬아릴, (C₁-C₃₀)알킬아미노, (C₁-C₃₀)알킬아미노, 또는 포화되거나 불포화된, 모노사이클릭 또는 비사이클릭, 카보사이클릭 또는 헤테로사이클릭 고리이다.

[0298] 하나의 실시태양에서, R_8 또는 R_9 는 하나 이상의 하이드록시, 디하이드록시 또는 아미노 잔기로 치환된 (C_1-C_{30}) 알킬이다.

[0299] 또 다른 실시태양에서, R₈ 또는 R₉는 치환되거나 비 치환된 피롤리딘, 피페리딘, 비사이클[2.2.1]헵탄, 2-옥소아 제판, 인단 또는 사이클로프로필벤젠 고리이다.

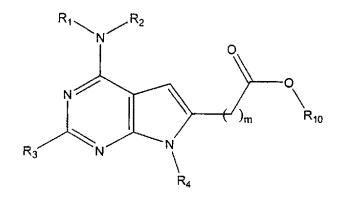
또 다른 실시태양에서, 상기 화합물은 하기로 이루어진 그룹 중에서 선택된다:

[0301] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (3-페녹시페닐)-아미드;

[0302] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (1-벤질피페리딘-4-일)-아미드;

[0303] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (1-벤질피롤리딘-3-일)-아미드;

[0304] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 4-[1,2,3]티아디아졸-4-일-벤질아미드;


[0305] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 벤질 아미드;

[0306] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (2-하이드록시-1-하이드록시메틸에 틸)-아미드;

[0307] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (1-하이드록시사이클로헥실메틸)-아미드; 및

4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 [2-(4-페녹시페닐)-에틸]-아미드.

화학식 I에 대한 또 다른 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

[0311] 상기 식에서,

[0312] R₁₀은 수소 또는 치환되거나 비 치환된 (C₁-C₃₀)알킬, (C₃-C ₁₀)사이클로알킬, 또는 아릴, 헤테로아릴 또 는 헤테로사이클릭 고리이다.

[0313] 하나의 실시태양에서, R₁₀은 치환되거나 비 치환된 피페리딘 고리이다.

[0314] 또 다른 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

[0315] 추가의 실시태양에서, R₄는 수소이다.

[0316] 추가의 실시태양에서, R₁은 -(CH₂)₂NHC(=0)CH₃이다.

[0317] 추가의 실시태양에서, R₂는 수소이다.

[0318] 추가의 실시태양에서, 상기 화합물은 하기의 화학식을 갖는다:

$$R_1$$
 R_2
 R_3
 R_4
 R_4

[0319] [0320]

화학식 I에 대한 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

$$R_1$$
 R_2
 R_{11}
 R_{12}
 R_3
 R_4

[0321]

[0322] 상기 식에서,

[0323] R₁₁NR₁₂는 함께, 치환되거나 비 치환된 4 내지 8 원의 헤테로사이클릭 고리를 형성하고,

[0324] k는 1, 2 또는 3이다.

[0325] 하나의 실시태양에서, R₁₁NR₁₂는 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘, 모르폴린, 아조칸, 디하이드로-1H-이소퀴놀린, 1,2,3,6-테트라하이드로피리딘, 디하이드로-2H-피리딘, 1,3,4,9-테트라하이드로-β-카르볼린, 1,3,8-트리아자스피로[4.5]데칸, 2,8-디아자스피로[4.5]데칸, 2,5-디아자비사이클로[2.2.1]헵탄, 1,4-디옥사-8-아자스피로[4.5]데칸 또는 [1.4]디아제판 고리를 형성한다.

[0326] 추가의 실시태양에서, $R_{11}NR_{12}$ 는 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘 또는 [1.4]디아제판 고리를 형성한다.

[0327] 또 다른 실시태양에서, $R_{11}NR_{12}$ 에 의해 형성된 고리를 하나 이상의 아릴, 헤테로아릴, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬헤테로아릴, (C_1-C_{30}) 알케닐아릴, (C_1-C_{30}) 알케닐헤테로아릴, (C_1-C_{30}) 알키닐아릴 또는 (C_1-C_{30}) 알키닐헤테로아릴 자기(이들 자체가 치화될 수 있다)로 치화하다.

[0328] 또 다른 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

[0329] 추가의 실시태양에서, R₄는 수소이다.

[0330] 추가의 실시태양에서, R₁은 -(CH₂)₂NHC(=0)CH₃이다.

[0331] 또 다른 실시태양에서, 상기 화합물은 N-(2-{6-[3-(4-벤질피페라진-1-일)-3-옥소프로필]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드이다.

[0332] 화학식 I에 대한 추가의 실시태양에서, 본 발명은 하기 화학식을 갖는 화합물을 제공한다:

$$R_1$$
 R_2
 R_{11}
 R_{12}
 R_{12}

[0333] [0334]

[0340]

[0342]

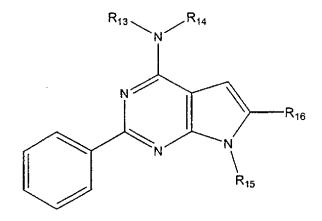
상기 식에서,

[0335] R₁₁NR₁₂는 함께, 치환되거나 비 치환된 4 내지 8 원의 헤테로사이클릭 고리를 형성하고,

[0336] k는 1, 2 또는 3이다.

[0337] 하나의 실시태양에서, R₁₁NR₁₂는 함께 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘, 모르폴린, 아조칸, 디하이드로-1H-이소퀴놀린, 1,2,3,6-테트라하이드로피리딘, 디하이드로-2H-피리딘, 1,3,4,9-테트라하이드로-β-카르볼린, 1,3,8-트리아자스피로[4.5]데칸, 2,8-디아자스피로[4.5]데칸, 2,5-디아자비사이클로[2.2.1] 헵탄, 1,4-디옥사-8-아자스피로[4.5]데칸 또는 [1.4]디아제판 고리를 형성한다.

[0338] 추가의 실시태양에서, $R_{11}NR_{12}$ 는 함께, 치환되거나 비 치환된 아제티딘, 피롤리딘, 피페라진, 피페리딘 또는 [1.4]디아제판 고리를 형성한다.


[0339] 또 다른 실시태양에서, $R_{11}NR_{12}$ 에 의해 형성된 고리를 하나 이상의 아릴, 헤테로아릴, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬헤테로아릴, (C_1-C_{30}) 알케닐아릴, (C_1-C_{30}) 알케닐헤테로아릴, (C_1-C_{30}) 알키닐아릴 또는 (C_1-C_{30}) 알키닐헤테 로아릴 잔기로 치환한다.

또 다른 실시태양에서, R3은 치환되거나 비 치환된 페닐이다.

[0341] 추가의 실시태양에서, R₄는 수소이다.

추가의 실시태양에서, R₁은 -(CH₂)₂NHC(=0)CH₃이다.

[0343] 본 발명은 또한 하기 화학식을 갖는 화합물을 제공한다:

[0344] [0345]

상기 식에서,

[0346] R_{13} 및 R_{14} 는 각각 독립적으로 수소 원자 또는 치환되거나 비 치환된 알킬 또는 알킬아릴 잔기이거나; 또 는

[0347] R₁₃NR₁₄가 함께, 치환되거나 비 치환된 4 원 헤테로사이클릭 고리, 치환되거나 비 치환된 5 원 고리, 또는 치환되거나 비 치환된 피페라진을 형성하고, 이때 상기 5 원 고리는 -CH₂C(=0)0H로 치환되며;

[0348] R₁₅는 수소 또는 치환되거나 비 치환된 알킬이고;

[0349] R₁₆은 -CH₂NR₁₇, -CH₂OR₁₇, -CH₂CH₂ C(=0)OR₁₇, CH₂CH₂C(=0)NR₁₈R₁₉, -C(=0)NR₁₈R₁₉, 또는 -C(=0)OR₁₇이고, 이 때 R₁₇, R₁₈ 및 R₁₉는 각각 독립적으로 수소 원자, 치환되거나 비 치환된 알킬, 아릴 또는 알킬아릴 잔기이거나, 또는

R₁₄NR₁₅가 함께, 치환되거나 비 치환된 4 내지 8 원 헤테로사이클릭 고리를 형성한다.

하나의 실시태양에서, 임의의 알킬은 직쇄 (C₁-C₃₀)알킬 또는 분지 쇄(C₃-C ₃₀)알킬이다.

[0352] 추가의 실시태양에서, 임의의 헤테로사이클릭 고리는, 존재하는 경우, 치환되거나 비 치환된 모르폴린, 피롤리 딘, 피페라진, 피페리딘, 아조칸, 디하이드로-1H-이소퀴놀린, 디하이드로-2H-피리딘, 1,3,4,9-테트라하이드로-β-카르볼린, 1,3,8-트리아자스피로[4.5]데칸, 2,8-디아자스피로[4.5]데칸, 2,5-디아자비사이클로[2.2.1]헵탄 또는 [1.4]디아제판 고리이다.

본 발명은 또한 하기 화학식을 갖는 화합물을 제공한다:

$$R_{20}$$
 R_{21}
 R_{22}

[0355] 상기 식에서,

[0350]

[0351]

[0353]

[0354]

[0356] R₃은 치환되거나 비 치환된 4 내지 10 원 아릴, 헤테로아릴 또는 헤테로사이클릭 고리이고;

[0357] R₂₀은 할로겐 또는 -NH(CHR₂₀')_nNHC(=0)CH₃이고, 이때 R₂₀ '는 H, OH, 알킬, 하이드록시알킬, 사이클로알 킬, 헤테로알킬 또는 아미노이며;

[0358] R₂₁은 H 또는 -C(=0)0H이고;

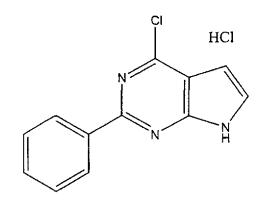
[0359] R₂₂는 H 또는 SO₂Ph이고;

[0360] n은 2, 3, 4 또는 5이고; 이때

[0361] R₂₀이 -NH(CHR₂₀')_nNHC(=0)CH₃인 경우, R₂₁은 -C(=0)0H이다.

[0362] 하나의 실시태양에서, R₃은 치환되거나 비 치환된 페닐이다.

[0363] 추가의 실시태양에서, R₂₀은 Cl이다.


[0364] 추가의 실시태양에서, R₂₂는 SO₂Ph이다.

[0365] 추가의 실시태양에서, R₂₁은 H이다.

[0366] 추가의 실시태양에서, R₂₁은 -C(=0)0H이다.

[0367] 또 다른 실시태양에서, R₂₀은 -NH(CH₂)_nNHC(=0)CH₃이고, R₂₁은 -C(=0)0H이다.

- [0368] 추가의 실시태양에서, R₂₂는 H이다.
- [0369] 추가의 실시태양에서, R₂₂는 SO₂Ph이다.
- [0370] 본 발명은 또한 A_{2b} 아데노신 수용체와 관련된 질환의 치료가 필요한 대상자에게 치료 유효량의 화학식 I의 화합물을 투여하여 상기 대상자에서 상기 A_{2b} 아데노신 수용체와 관련된 질환을 치료하는 단계를 포함하는, 상기 대상자에서 상기 질병을 치료하는 방법을 제공하며, 이때 상기 A_{2b} 아데노신 수용체와 관련된 질환은 천식, 두드러기, 관절염 피부경화증, 심근 경색, 허혈 후 심근 재 관류, 당뇨성 망막병증, 조산의 망막병증, 당뇨병, 설사, 염증성 장 질환, 증식성 종양이거나, 또는 비만 세포 탈과립, 혈관확장, 고혈압, 과민증 또는 알레르기성 매개인자의 방출과 관련이 있다.
- [0371] 하나의 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 당뇨병이다.
- [0372] 또 다른 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 천식이다.
- [0373] 또 다른 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 비만 세포 탈과립과 관련이 있다.
- [0374] 또 다른 실시태양에서, A₂, 아테노신 수용체와 관련된 질환은 증식성 종양이다.
- [0375] 본 발명은 또한 A_{2b} 아데노신 수용체와 관련된 질환의 치료가 필요한 대상자에게 치료 유효량의 화학식 II의 화합물을 투여하여 상기 대상자에서 상기 A_{2b} 아데노신 수용체와 관련된 질환을 치료하는 단계를 포함하는, 상기 대상자에서 상기 질병을 치료하는 방법을 제공하며, 이때 상기 A_{2b} 아데노신 수용체와 관련된 질환은 천식, 두드러기, 관절염 피부경화증, 심근 경색, 허혈 후 심근 재 관류, 당뇨성 망막병증, 조산의 망막병증, 당뇨병, 설사, 염증성 장 질환, 증식성 종양이거나, 또는 비만 세포 탈과립, 혈관확장, 고혈압, 과민증 또는 알레르기성 매개인자의 방출과 관련이 있다.
- [0376] 본 발명은 또한 본 발명의 화합물 및 약학적으로 허용 가능한 담체를 포함하는 약학 조성물을 제공한다.
- [0377] 하나의 실시태양에서, 상기 약학 조성물을 경구, 국소, 비 경구 또는 코 투여를 위해 제형화한다.
- [0378] 본 발명은 또한 본 발명의 화합물을 약학적으로 허용 가능한 담체와 혼합함을 포함하는 약학 조성물의 제조 방법을 제공한다.
- [0379] 본 발명은 또한
- [0380] 포장 물질;
- [0381] 상기 약학 조성물; 및
- [0382] 상기 약학 조성물을 A_{2b} 아데노신 수용체와 관련된 질환의 치료에 사용하기 위한 설명서
- [0383] 를 포함하는 제품을 제공한다.
- [0384] 본 발명은 또한

[0385] (a)

[0386] 을 용매의 존재 하에서 PhSO₂C1 및 환원제와 반응시켜:

[0387]

[0389]

[0388] 을 제조하는 단계;

(b) 상기 단계 (a)의 생성물을 리튬 디이소프로필아미드(LDA) 및 용매의 존재 하에서 CO₂와 반응시켜:

[0390] [0391]

을 제조하는 단계;

[0392] (c) 상기 단계 (b)의 생성물을 용매의 존재 하에서

[0393]

[0394] 와 반응시켜:

[0395]

[0396] 을 제조하는 단계;

[0397] (d) 상기 단계 (c)의 생성물을 용액 중에서 하이드록사이드 염기 및 커플링제와 반응시켜:

[0398] [0399]

을 제조하는 단계; 및

[0400] (e) 상기 단계 (d)의 생성물

(e) 상기 단계 (d)의 생성물을 염기의 존재 하에서 HNR_7R_8 과 반응시켜 하기 화학식을 갖는 화합물을 제조하는 단계를 포함하는,

[0401] 하기 화학식을 갖는 화합물의 제조 방법:

[0402] [0403]

상기 식에서,

[0404]

 R_8 및 R_9 는 각각 독립적으로 수소, 또는 치환되거나 비 치환된 (C_1-C_{30}) 알킬, (C_1-C_{30}) 알킬아릴, (C_1-C_{30}) 알킬아미노, (C_1-C_{30}) 알콕시, 또는 포화되거나 불포화된, 모노사이클릭 또는 비사이클릭, 카보사이클릭 또는 헤테로사이클릭 고리이거나, 또는

[0405]

 R_8 , N 및 R_9 가 함께, 치환되거나 비 치환된 4 내지 8 원 헤테로사이클릭 고리를 형성한다.

[0406]

상기 방법에 대한 하나의 실시태양에서, 단계 (a)의 환원제는 NaH이고, 용매는 디메틸포름아미드(DMF)이다.

[0407]

또 다른 실시태양에서, 단계 (b)의 용매는 테트라하이드로푸란(THF)이다.

[0408]

또 다른 실시태양에서, 단계 (c)의 용매는 디메틸 설폭사이드(DMSO)이다.

[0409]

또 다른 실시태양에서, 단계 (d)의 하이드록사이드 염기는 수산화 나트륨이다.

[0410]

또 다른 실시태양에서, 단계 (e)의 염기는 트리에틸아민이고, 커플링제는 0-(벤조트리아졸-1-일)-N,N,N',N'-테트라메틸유로늄 테트라플루오로보레이트(TBTU), 벤조트리아졸-1-일-옥시트리피롤리디노포스포늄 헥사플루오로포스페이트, 또는 1-에틸-3-(3-디메틸아미노프로필)-카보디이미드(EDC) 및 N-하이드록시벤조트리아졸이며, 용매는 DMF이다.

[0411] 또 다른 실시태양에서, 단계들의 순서는 (a), (b), (c), (e), 이어서 (d)이다.

- [0412] 본 발명은 또한 상기 방법에 의해 제조된 화합물을 제공한다.
- [0413] 본 발명은 또한 대상자에서 A_{2b} 아데노신 수용체와 관련된 질환을 치료하는데 유용한 약제를 제조하기 위한 본 발명 화합물의 용도를 제공하며, 이때 상기 A_{2b} 아데노신 수용체와 관련된 질환은 천식, 두드러기, 관절염 피부 경화증, 심근 경색, 허혈 후 심근 재 관류, 당뇨성 망막병증, 조산의 망막병증, 당뇨병, 설사, 염증성 장 질환, 증식성 종양이거나, 또는 비만 세포 탈과립, 혈관확장, 고혈압, 과민증 또는 알레르기성 매개인자의 방출과 관련이 있다.
- [0414] 상기 용도의 하나의 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 당뇨병이다.
- [0415] 또 다른 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 천식이다.
- [0416] 또 다른 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 비만 세포 탈과립과 관련이 있다.
- [0417] 또 다른 실시태양에서, A_{2b} 아데노신 수용체와 관련된 질환은 증식성 종양이다.
- [0418] 본 발명은 또한 임의의 상기 화합물을 제공하며, 이때 임의의 치환체는, 존재하는 경우, 할로겐; 하이드록실, 카보닐, 직쇄(C₁-C₃₀)알킬, 분지 쇄(C₃-C ₃₀)알킬, (C₃-C₁₀)사이클로알킬, 직쇄(C₁-C₃₀)알킬카보닐옥시, 분지 쇄(C 3-C30)알킬카보닐옥시, 아릴카보닐옥시, 직쇄(C1-C30)알콕시카보닐옥시, 분지 쇄(C3-C30)알콕시카보닐옥시, 아릴옥 시카보닐옥시, 카복실레이트, 직쇄(C₁-C₃₀)알킬카보닐, 분지 쇄(C₃-C ₃₀)알킬카보닐, 아릴카보닐, 직쇄(C₁-C₃₀)알 콕시카보닐, 분지 쇄(C₂-C₃₀)알콕시카보닐, 아미노카보닐, 직쇄(C₁-C₃₀)알킬티오카보닐, 분지 쇄(C₂-C₃₀)알킬티오 카보닐, 직쇄(C₁-C₃₀)알킬설포닐, 분지 쇄(C₃-C₃₀)알킬설포닐, 직쇄(C₁-C₃₀)알콕실, 분지 쇄(C₁-C₃₀)알콕실, 포스페 이트, 포스포네이토, 시아노, 아미노, 직쇄 (C_1-C_{30}) 알킬아미노, 분지 쇄 (C_3-C_{30}) 알킬아미노, 직쇄 (C_1-C_{30}) 디알킬 아미노, 분지 쇄(C₃-C₃₀)디알킬아미노, 아릴아미노, 디아릴아미노, 직쇄(C₁-C₃₀)알킬아릴아미노, 분지 쇄(C₃-C₃₀)알킬아릴아미노, 아실아미노, 직쇄(C₁-C₃₀)알킬카보닐아미노, 분지 쇄(C₃-C₃₀)알킬카보닐아미노, 아릴카보닐아 미노, 카바모일, 우레이도, 아미디노, 이미노, 설프히드릴, 직쇄 (C_1-C_{30}) 알킬티오, 분지 쇄 (C_3-C_{30}) 알킬티오, 아 릴티오, 티오카복실레이트, 설페이트, 설포네이토, 설파모일, 설폰아미도, 설포닐, 벤젠설포닐, 니트로, 트리플 루오로메틸, 아지도, 6-메톡시-2,2-디메틸테트라하이드로푸로[3,4-d][1,3]디옥솔, 3,4-디하이드록시-5-메톡시테 트라하이드로푸란, 4 내지 10 원 헤테로사이클릴, 직쇄(C₁-C₃₀)알킬아릴, 분지 쇄(C₃-C₃₀)알킬아릴, 직쇄(C₁-C₃ 6)알킬혜테로아릴, 분지 쇄(C3-C30)알킬혜테로아릴, (C1-C30)알케닐아릴, (C1-C 30)알케닐혜테로아릴, (C1-C30)알키 닐아릴, (C_1-C_{30}) 알키닐헤테로아릴 및 방향족 및 5 내지 6 원 헤테로방향족 잔기 중에서 선택되고, 이때 상기 치 환체는 상기 중 임의의 것에 의해 추가로 치환될 수도 있다.
- [0419] 본 발명은 또한 상기 화학식 각각에 의해 포함되는 특정한 화합물을 포함한다. 상기 특정한 화합물을 실시예 에 개시한다.
- [0420] "(C₁-C₃₀)" 또는 "(C₃-C₃₀)"으로 나타내는 탄소의 수는 1 및 3 내지 30의 임의의 증분 정수, 예를 들어 1, 2, 3, 4, 5 또는 30을 의미하고자 한다.
- [0421] 본 발명은 아데노신 A_{2b} 수용체에 선택적으로 결합하는 화합물을 기본으로 하며, 이에 의해 치료 유효량의 상기와 같은 화합물을 대상자에게 투여함으로써 상기 대상자에서 A_{2b} 아데노신 수용체와 관련된 질환을 치료한다. 상기 치료되는 질환은 예를 들어 천식, 비만 세포 탈과립, 심근 재 관류 손상, 알레르기성 반응, 예를 들어 비제한적으로 비염, 덩굴 옻나무 유발된 반응들, 두드러기, 관절염 피부경화증, 자가면역 질환, 염증성 잘 질환, 고혈압, 심근 경색, 허혈 후 심근 재 관류, 림프구 활성화, 혈관 확장, 성장, 인간의 장에서 신경 반사, 망막혈관형성, 비정상적인 혈관신생, 예를 들어 당뇨성 망막병증 및 조산의 망막병증, 장 긴장상태 및 분비의 조정, 및 신경전달 및 신경분비와 관련이 있다.
- [0422] A_{2b} 수용체는 또한 과민증, 건초열, 혈청병, 알레르기성 혈관염, 아토피성 피부염, 피부염, 습진, 특발성 폐 섬 유증, 호산구성 담낭염, 만성 기도 염증, 과호산구 증후군, 호산구성 위장염, 부종, 호산구성 심근 질병, 호산 구 증가증에 의한 에피소드성 혈관부종, 궤양성 대장염, 알레르기성 육아종증, 암종증, 호산구성 육아종, 가계

성 조직구증, 종양, 심장 저산소증, 대뇌 허혈, 이뇨, 신부전, 신경 질환, 정신 질환, 인지 질환, 심근 허혈, 기관지수축, 크론병, 그레이브병, 당뇨병, 다발성 경화증, 빈혈, 건선, 출산 질환, 홍반성 루프스, 뇌 소동맥 직경, 알레르기성 매개체의 방출, 경피증, 발작, 전체적인 허혈, 중추 신경계 질환, 심혈관 질환, 신장 질환, 염증 질환, 위장 장애, 눈 질환, 알레르기성 질환, 호흡기 질환 또는 면역학적 질환과 관련이 있다.

- [0423] 본 발명은 또한 포유동물의 A_{2b} 관련된 질환을 치료하기 위해, 상기 포유동물에게 치료 유효량의 본 발명의 화합물을 투여함으로써 상기 포유동물의 상기 질환을 치료하는 방법에 관한 것이다.
- [0424] 본 발명은 또한 포유동물의 A_{2b} 관련된 질환을 치료하기 위해, 상기 포유동물에게 치료 유효량의 본 발명의 화합물을 투여함으로써 상기 포유동물의 상기 질환을 치료하는 방법에 관한 것이다.
- [0425] 본 발명은 또한 A_{2b} 관련 질환을 치료하기 위한 포장된 약학 조성물에 관한 것이다. 상기 포장된 약학 조성물은 치료 유효량의 본 발명의 화합물들 중 하나 이상을 보유하는 용기 및 A_{2b} 관련 질환을 치료하기 위해 상기 화합물을 사용하기 위한 설명서를 포함한다.
- [0426] 본 발명의 화합물은 유리하게는 선택적인 A_{2b} 수용체 길항물질일 수 있다.
- [0427] 특히 바람직한 실시태양에서, 상기 화합물은 예를 들어 에스테라제 촉진된 가수분해에 의해 생체 내에서 유효약물로 대사될 수 있는 수용성 전구약물이다.
- [0428] 더욱 또 다른 실시태양에서, 본 발명은 세포를 본 발명의 화합물(예를 들어 바람직하게는 아테노신 수용체 길항물질)과 접촉시킴으로써, 상기 세포에서 아데노신 수용체(예를 들어 A_{2b})의 활성을 억제하는 방법을 특징으로 한다.
- [0429] 본 발명은 또한 본 발명의 화합물을 포함하는 약학 조성물을 특징으로 한다. 바람직하게는, 상기 약학 제제는 안약 제형(예를 들어 눈 주위, 눈 뒤 또는 눈 안 주입 제형, 전신 제형 또는 외과용 관주액)이다.
- [0430] 본 발명은 포유동물에서 A_{2b} 관련된 질환을 치료하기 위한 방법에 관한 것이다. 상기 방법은 치료 유효량의 상기 개시된 본 발명의 화합물을, 포유동물의 A_{2b} 관련된 질환을 치료하기 위해 상기 포유동물에게 투여함을 포함하다.
- [0431] "A_{2b} 관련된 질환의 치료"란 용어는 본 발명의 화합물에 의해 달성되는 상기 질환의 적어도 한 증상 또는 영향의 현저한 감소를 포함하는 치료를 지칭한다. 전형적으로 상기와 같은 질환은 숙주가 종종 비 제한적으로 두드러 기, 관절염 피부경화증, 알레르기성 비염, 천식, 염증성 장 질환, 고혈압, 당뇨성 망막병증 및 조산의 망막병증 을 포함한 생리학적 증상들을 경험하게 되는, 상기 숙주 내에서의 아데노신의 증가와 관련된다(예를 들어 문헌 [C.E. Muller and B. Stein "아데노신 수용체 길항물질: 구조 및 잠재적인 치료 용도", Current Pharmaceutical Design, 2:501(1996) 및 C.E. Muller "A₁-아데노신 수용체 길항물질", Exp. Opin. Ther. Patents 7(5):419(1997) 및 I. Feoktistove, R. Polosa, S.T. Holgate and I. Biaggioni "아데노신 A29 수용체: 천식에서 신규의 치료 표적" TiPS 19:148(1998)]을 참조하시오). 상기와 같은 증상들과 관련된 효과 들로는 종종 비 제한적으로 발열, 숨가쁨, 오심, 설사, 허약, 두통 및 심지어 사망이 있다. 하나의 실시태양 에서, 상기 질환에는 아데노신 수용체, 예를 들어, A_1 , A_{2a} , A_{2b} , A_3 등의 자극에 의해 매개되어, 세포 중의 칼 슘 농도 및/또는 PLC(포스포리파제 C)의 활성화가 조절되는 질병 상태가 포함된다. 바람직한 실시태양에서, 상기 질환은 아데노신 수용체(들)와 관련 있으며, 예를 들어 본 발명의 화합물은 길항물질로서 작용한다. 발명의 화합물, 예를 들어 생물학적 효과를 매개하는 아데노신 수용체 서브유형들에 의해 치료될 수 있는 적합 한 민감성 상태의 예로는 중추 신경계(CNS) 효과, 심혈관 효과, 신장 효과, 호흡기 효과, 면역학적 효과, 위장 효과 및 대사 효과가 있다. 환자에서 아데노신의 상대적인 양은 하기 열거된 효과들과 관련될 수 있다. 즉 증 가된 아데노신 수준은 효과, 예를 들어 바람직하지 못한 생리학적 반응, 예를 들어 천식적 발작을 촉발시킬 수 있다.
- [0432] 면역학적 효과는 비만 세포 탈과립(A_{2b})을 포함한다. 길항물질의 치료 용도에는 알레르기성 및 비 알레르기성 염증, 예를 들어 히스타민 및 다른 염증 매개인자의 방출이 포함된다.
- [0433] 위장 효과는 결장, 장 및 설사 병, 예를 들어 장 염증과 관련된 설사 병(A_{2b})을 포함한다.

- [0434] "질병 상태"란 용어는 원치 않는 수준의 아데노신, 아데닐일 사이클라제 활성, 아데노신 수용체의 이상 자극과 관련된 증가된 생리 활성 및/또는 cAMP의 증가에 의해 야기되거나 또는 이와 관련된 질환들을 포함하고자 한다. 하나의 실시태양에서, 상기 질병 상태는 예를 들어 천식, 만성 폐쇄성 폐 질환, 알레르기성 비염, 기관지염, 신장 질환, 위장 장애 또는 눈 질환이다. 추가적인 예로는 만성 기관지염 및 낭성 섬유증이 있다. 염증 질환의 적합한 예로는 비 림프구성 백혈병, 심근 허혈, 협심증, 경색, 뇌혈관 허혈, 정맥 고혈압, 정맥류, 정맥 궤양 및 죽상경화증이 있다. 손상된 재 관류 상태로는 예를 들어 임의의 수술, 예를 들어 재건 술, 혈전용해 또는 혈관성형술 후의 외상이 있다.
- [0435] 본 발명은 또한 본 발명의 화합물들 중 하나, 및 프로스타글란딘 작용물질, 베타-2 작용물질, 또는 무스카린 작용물질을 포함하는, 녹내장에 대한 복합 요법을 제공한다.
- [0436] "A_{2b} 관련된 질환의 치료" 또는 "A_{2b} 관련된 질환을 치료하는"이란 용어는 상술한 바와 같은 질병 상태 또는 질환의 변화, 예를 들어 포유동물에서 생리학적 증상이 현저하게 감소 또는 최소화될 수 있음을 포함하고자 한다. 상기 용어는 또한 비정상적인 양의 아데노신과 관련된 생리학적 증상 또는 효과의 제어, 예방 또는 억제를 포함한다. 하나의 바람직한 실시태양에서, 상기 질병 상태 또는 질환의 제어는 상기 질병 상태 또는 질환을 근절시키는 것이다. 또 다른 바람직한 실시태양에서, 상기 제어는 다른 생리학적 시스템 및 변수들에는 영향을 미치지 않으면서 비정상적인 수준의 아데노신 수용체 활성은 제어되도록 선택적이다.
- [0437] 하기 개시되는 본 발명 화합물의 "치료 유효량"이란 용어는 포유동물 내에서 그의 목적하는 기능을 수행하기에, 예를 들어 포유동물에서 A_{2b} 관련된 질환 또는 질병 상태를 치료하기에 충분하거나 필요한 치료 화합물의 양을 의미한다. 치료 화합물의 유효량은 포유동물 중에 이미 존재하는 원인 인자의 정도, 포유동물의 연령, 성 및체중, 및 포유동물에서 A_{2b} 관련된 질환에 작용할 수 있는 본 발명의 치료 화합물의 능력에 따라 변할 수 있다.
- [0438] 당해 분야의 통상적인 숙련가는 상기 언급한 인자들을 연구하고 과도한 실험 없이 치료 화합물의 유효량을 결정할 수 있을 것이다. 생체 외 또는 생체 내 분석을 또한 하기 개시된 치료 화합물의 "유효량"을 결정하는데 사용할 수 있다. 통상적인 숙련가는 상기 언급한 분석에 사용하기 위해 또는 치료학적 처리로서 상기 치료 화합물의 적합한 양을 선택할 것이다.
- [0439] 치료 유효량은 바람직하게는 A_{2b} 관련된 질환과 관련된 하나 이상의 질환 또는 효과를 비 처리된 대상자에 비해약 20% 이상(보다 바람직하게는 약 40% 이상, 더욱 더 바람직하게는 약 60% 이상, 훨씬 더 바람직하게는 약 80% 이상)까지 치료되도록 감소시킨다. 당해 분야의 숙련가는 상기와 같은 증상 및/또는 효과의 감소를 측정하기위한 분석을 구상할 수 있다. 상기와 같은 변수를 측정할 수 있는 임의의 당해 분야에 인식된 분석을 본 발명의 일부로서 포함시키고자 한다. 예를 들어, 천식이 치료하려는 상태인 경우, 환자의 폐로부터 소진된 공기의부피를 당해 분야에서 인식된 기법을 사용하여 부피의 증가를 측정하기위한 처리 전후에 측정할 수 있다. 마찬가지로, 염증이 치료하려는 상태인 경우, 염증이 일어난 부위를 당해 분야에서 인식된 기법을 사용하여 염증이 생긴 부위의 감소를 측정하기위한 처리 전후에 측정할 수 있다.
- [0440] "세포"란 용어는 원핵 세포 및 진핵 세포 모두를 포함한다.
- [0441] "동물"이란 용어는 아데노신 수용체를 갖는 임의의 유기체를 포함한다. 예로서 효모, 포유동물, 파충류 및 조류가 있다. 또한 트랜스제닉 동물도 포함한다.
- [0442] "포유동물"이란 용어는 당해 분야에 인식되어 있으며, 동물, 보다 바람직하게는 온혈 동물, 가장 바람직하게는 소, 양, 돼지, 말, 개, 고양이, 래트, 마우스 및 인간을 포함한다. 예를 들어 A_{2b} 관련된 질환 민감성 상태, 염증, 기종, 천식, 중추 신경계 질환 또는 급성 호흡 곤란 증후군에 민감한 포유동물이 본 발명의 일부로서 포함된다.
- [0443] 또 다른 태양에서, 본 발명은 포유동물에게 치료 유효량의 본 발명의 화합물을 투여하여, 상기 포유동물에서 아데노신 수용체의 조절이 일어나게 함으로써 상기 포유동물에서 아데노신 수용체(들)를 조절하는 방법에 관한 것이다. 적합한 아데노신 수용체는 A_1 , A_2 또는 A_3 계열을 포함한다. 바람직한 실시태양에서, 상기 화합물은 아데노신 수용체 길항물질이다.
- [0444] "아데노신 수용체를 조절한다"라는 용어는 화합물이 아데노신 수용체(들)와 상호작용하여, 아데노신 수용체와 관련된 생리 활성들을 증가 또는 감소시키거나, 또는 비정상적으로 만들거나, 또는 상기 아데노신 수용체의 조절로부터 생성되는 후속적인 단계적 영향들을 발생시키는 경우를 포함한다. 아데노신 수용체와 관련된 생리

활성들에는 진정작용의 유도, 혈관확장, 심박 수 및 수축의 억제, 혈소판 응집의 억제, 글루코스 신합성의 자극, 지질분해의 억제, 칼륨 채널의 개방, 칼슘 채널의 흐름 감소 등이 포함된다.

- [0445] "조절", "조절한다" 및 "조절하는"이란 용어는 예를 들어 본 발명의 치료 방법에 관하여 아데노신 수용체의 비정상적인 자극과 관련하여 생성되는 바람직하지 못한 생리 활성들의 증가를 예방, 근절 또는 억제함을 포함한다. 또 다른 실시태양에서, 조절이라는 용어는 길항 효과들, 예를 들어 아데노신 수용체(들)의 과도한 자극으로부터 발생하는 알레르기 및 알레르기성 염증의 조절인자의 활성 또는 생산을 감소시킴을 포함한다. 예를 들어, 본 발명의 치료 상의 데아자퓨린은 아데노신 수용체와 상호 작용하여 예를 들어 아데닐레이트 사이클라제 활성을 억제할 수 있다.
- [0446] "비정상적인 아데노신 수용체 활성을 특징으로 하는 질환"이란 용어는 아데노신 수용체의 비정상적인 자극과 관련된 질병, 장애 또는 질환들을 포함함, 즉 상기 수용체의 자극이 상기 질병, 장애 또는 질환과 직접적으로 또는 간접적으로 관련된 생화학적으로 및/또는 생리학적으로 연쇄된 사건들을 일으킴을 포함한다. 이러한 아데노신 수용체의 자극은 상기 질병, 장애 또는 질환의 단독적인 원인 인자일 필요는 없으며, 단지 치료하려는 상기 질병, 장애 또는 질환과 전형적으로 관련된 일부 증상들의 일으키는 원인일 수는 있다. 상기 수용체의 비정상적인 자극이 단독적인 인자이거나, 또는 하나 이상의 다른 인자가 상기 치료하려는 상태에 관련이 있을 수있다. 증상의 예로는 상기 열거된 질병 상태들, 및 증가된 아데노신 수용체 활성의 존재에 의해 나타나는 증상들이 있다.
- [0447] "비정상적인 아데노신 수용체 활성을 특징으로 하는 질환의 치료"란 용어는 상기 질환과 전형적으로 관련된 하나 이상의 증상을 완화 또는 감소시킴을 포함한다. 상기 치료는 또한 하나 이상의 증상의 완화 또는 감소를 포함한다. 바람직하게는, 치료는 상기 질환과 관련된 증상들을 치유, 예를 들어 실질적으로 제거한다.
- [0448] 본 발명은 또한 세포를 본 발명의 화합물과 접촉시킴으로써, 상기 세포에서 아데노신 수용체(예를 들어 A_{2b})의 활성을 억제하는 방법에 관한 것이다.
- [0449] 또 다른 실시태양에서, 본 발명은 본 발명의 화합물 및 약학적으로 허용 가능한 담체를 포함하는 약학 조성물에 관한 것이다.
- [0450] 본 발명은 또한 포유동물에게 A_{2b} 관련된 질환의 치료가 일어나도록, 치료 유효량의 본 발명의 화합물을 상기 포유동물에게 투여함으로써 상기 동물에서 상기 질환을 치료하는 방법에 관한 것이다.
- [0451] 유리하게는, 상기 질병 상태는 아데노신에 의해 매개되는 질환일 수 있다. 바람직한 질병 상태의 예로는 중추신경계 질환, 심혈관 질환, 신장 질환, 염증 질환, 알레르기성 질환, 위장 질환, 눈 질환 및 호흡기 질환이 있다.
- [0452] "알킬"이라는 용어는 포화된 지방족 그룹의 라디칼, 예를 들어 직쇄 알킬 그룹, 분지된 쇄 알킬 그룹, 사이클로 알킬(지환족) 그룹, 알킬 치환된 사이클로알킬 그룹 및 사이클로알킬 치환된 알킬 그룹을 지칭한다. 바람직한 실시태양에서, 직쇄 또는 분지 쇄 알킬은 그의 주쇄에 30 개 이하의 탄소 원자(예를 들어, 직쇄에 대해 C₁-C₃₀, 분지 쇄에 대해 C₃-C₃₀), 보다 바람직하게는 20 개 이하의 탄소 원자를 갖는다. 마찬가지로, 바람직한 사이클로알킬은 그의 고리 구조에 4 내지 10 개의 탄소 원자, 보다 바람직하게는 고리 구조에 5, 6 또는 7 개의 탄소를 갖는다.
- [0453] "치환된 알킬"이라는 용어는 탄화수소 주쇄의 하나 이상의 탄소 상의 수소와 치환되는 치환체를 갖는 알킬 잔기를 지칭한다. 상기와 같은 치환체의 예로는 할로겐, 하이드록실, 알킬카보닐옥시, 아릴카보닐옥시, 알콕시카보닐옥시, 아릴옥시카보닐옥시, 카복실레이트, 알킬카보닐, 알콕시카보닐, 아미노카보닐, 알킬티오카보닐, 알콕실, 포스페이트, 포스포네이트, 포스피네이토, 시아노, 아미노(예를 들어 알킬 아미노, 디알킬아미노, 아릴아미노, 디아릴아미노 및 알킬아릴아미노), 아실아미노(예를 들어 알킬카보닐아미노, 아릴카보닐아미노, 카바모일 및 우레이도), 아미디노, 이미노, 설프히드릴, 알킬티오, 아릴티오, 티오카복실레이트, 설페이트, 설포네이토, 설파모일, 설폰아미도, 니트로, 트리플루오로메틸, 시아노, 아지도, 헤테로사이클릴, 알킬아릴, 또는 방향족 또는 헤테로방향족 잔기가 있을 수 있다. 당해 분야의 숙련가들은 경우에 따라 탄화수소 쇄 상에서 치환된 잔기 자체가 치환될 수도 있음을 이해할 것이다. 사이클로알킬을 예를 들어 상술한 치환체들로 추가로 치환시킬 수 있다. "알킬아릴" 잔기는 아릴로 치환된 알킬(예를 들어 페닐메틸(벤질))이다. "알킬"이라는 용어는 또한 길이가 유사하고 상술한 알킬에 대한 치환이 가능하지만, 각각 하나 이상의 이중 또는 삼중 결합을 함유하는 불포화된 지방족 그룹을 포함한다.

- [0454] 본 발명에 사용된 "아릴"이라는 용어는 0 내지 4 개의 헤테로원자를 포함할 수 있는 5- 및 6-원 단일 고리 방향 족 그룹을 포함한 아릴 그룹의 라디칼, 예를 들어 벤젠, 피롤, 푸란, 티오펜, 이미다졸, 벤즈옥사졸, 벤조티아졸, 트리아졸, 테트라졸, 피라졸, 피리딘, 피라진, 피리다진 및 피리미딘 등을 지칭한다. 아릴 그룹은 또한 방향족 그룹에 축합된 폴리사이클릭, 예를 들어 나프틸, 퀴놀릴, 인돌릴 등을 포함한다. 고리 구조에 헤테로 원자를 갖는 아릴 그룹을 또한 "아릴 헤테로사이클", "헤테로아릴" 또는 "헤테로방향족"이라 칭할 수도 있다. 상기 방향족 고리를 하나 이상의 고리 위치에서 상술한 바와 같은 치환체들, 예를 들어 할로겐, 하이드록실, 알콕시, 알킬카보닐옥시, 아릴카보닐옥시, 아릴옥시카보닐옥시, 카복실레이트, 알킬카보닐, 알콕시카보닐, 아미노카보닐, 알킬티오카보닐, 포스페이트, 포스포네이토, 포스피네이토, 시아노, 아미노(알킬아미노, 디알킬아미노, 아릴아미노, 디아릴아미노 및 알킬아릴아미노 포함), 아실아미노(알킬카보닐아미노, 아릴카보닐아미노, 카바모일 및 우레이도 포함), 아미디노, 이미노, 설프히드릴, 알킬티오, 아릴티오, 티오카복실 레이트, 설페이트, 설포네이토, 설파모일, 설폰아미도, 니트로, 트리플루오로메틸, 시아노, 아지도, 헤테로사이클릴, 알킬아릴, 또는 방향족 또는 헤테로방향족 잔기로 치환시킬 수 있다. 아릴 그룹은 또한 폴리사이클(예를 들어 테트랄린)을 형성하기 위해서 방향족이 아닌 지환족 또는 헤테로사이클릭 고리와 축합 또는 가교될 수 있다.
- [0455] "알케닐" 및 "알키닐"이라는 용어는 길이가 유사하고 상술한 알킬에 대한 치환이 가능하지만, 각각 하나 이상의 이중 또는 삼중 결합을 함유하는 불포화된 지방족 그룹을 지칭한다. 예를 들어, 본 발명은 시아노 및 프로파길 그룹을 고려한다.
- [0456] 탄소 수를 달리 나타내지 않는 한, 본 발명에 사용된 "저급 알킬"은 그의 주쇄 구조에 1 내지 10 개의 탄소, 보다 바람직하게는 1 내지 6 개, 훨씬 더 바람직하게는 1 내지 3 개의 탄소 원자를 갖는, 상기 정의한 바와 같은 알킬 그룹을 의미한다. 마찬가지로, "저급 알케닐" 및 "저급 알키닐"은 유사한 쇄 길이를 갖는다.
- [0457] "알콕시알킬", "폴리아미노알킬" 및 "티오알콕시알킬"이라는 용어는 탄화수소 주쇄의 하나 이상의 탄소가 예를 들어 산소, 질소 또는 황 원자로 치환된, 산소, 질소 또는 황 원자를 또한 포함하는, 상술한 바와 같은 알킬 그룹을 지칭한다.
- [0458] "폴리사이클릴" 또는 "폴리사이클릴 라디칼"이란 용어는 2 개 이상의 탄소가 2 개의 인접한 고리들(예를 들어 상기 고리는 "축합된 고리"이다)에 공통인 2 개 이상의 환상 고리의 라디칼(예를 들어 사이클로알킬, 사이클로알케닐, 사이클로알키닐, 아릴 및/또는 헤테로사이클릴)을 지칭한다. 비 인접 원자들을 통해 결합된 고리들을 "가교된" 고리라 칭한다. 폴리사이클의 각 고리를 상술한 바와 같은 치환체들, 예를 들어 할로겐, 하이드록실, 알콕시, 알킬카보닐옥시, 아릴카보닐옥시, 알콕시카보닐옥시, 아릴옥시카보닐옥시, 카복실레이트, 알킬카보닐, 알콕시카보닐, 아미노카보닐, 알킬티오카보닐, 포스페이트, 포스포네이토, 포스피네이토, 시아노, 아미노(알킬 아미노, 디알킬아미노, 아릴아미노, 디아릴아미노 및 알킬아릴아미노 포함), 아실아미노(알킬카보 닐아미노, 아릴카보닐아미노, 카바모일 및 우레이도 포함), 아미디노, 이미노, 설프히드릴, 알킬티오, 아릴티오, 티오카복실레이트, 설페이트, 설포네이토, 설파모일, 설폰아미도, 니트로, 트리플루오로메틸, 시아노, 아지도, 헤테로사이클릴, 알킬아릴, 또는 방향족 또는 헤테로방향족 잔기로 치환시킬 수 있다.
- [0459] 본 발명에 사용된 "헤테로원자"란 용어는 탄소 또는 수소 이외의 임의의 원소의 원자를 의미한다. 바람직한 헤테로원자는 질소, 산소, 황 및 인이다.
- [0460] 본 발명에 사용된 "헤테로사이클" 또는 "헤테로사이클릭 시스템"이란 용어는 포화되거나 또는 부분적으로 불포화된 적합한 5, 6 또는 7 원의 모노사이클릭 또는 7, 8, 9, 10 또는 11 원의 비사이클릭 헤테로사이클릭 고리를 의미한다.
- [0461] "카보사이클릭" 또는 "헤테로사이클릭"이란 용어는 2 개의 고리가 공통의 한 원자를 가지며 상기 원자가 탄소 또는 헤테로원자일 수 있는 비사이클릭 화합물을 나타내는 스피로 화합물을 추가로 포함한다.
- [0462] "아미노산"이란 용어는 단백질에서 발견되는 천연 및 비 천연 아미노산, 예를 들어 글리신, 알라닌, 발린, 시스 테인, 류신, 이소류신, 세린, 쓰레오닌, 메티오닌, 글루탐산, 아스파트산, 글루타민, 아스파라긴, 리신, 아르기 닌, 프롤린, 히스티딘, 페닐알라닌, 티로신 및 트립토판을 포함한다. 아미노산 동족체는 적합한 작용기를 갖는 길어지거나 단축된 측쇄 또는 변형 측쇄를 갖는 아미노산을 포함한다. 아미노산은 또한 상기 아미노산의 구조가 입체 이성체 형태를 허용하는 경우 아미노산의 D 및 L 입체 이성체를 포함한다. "디펩티드"란 용어는함께 연결된 2 개 이상의 아미노산을 포함한다. 바람직하게는, 디펩티드는 펩티드 결합을 통해 연결된 2 개의 아미노산이다. 특히 바람직한 디펩티드는 예를 들어 알라닌-알라닌 및 글리신-알라닌을 포함한다.

- [0463] 본 발명의 일부 화합물들의 구조는 비대칭 탄소 원자를 포함하며 따라서 라세메이트 및 라세미 혼합물, 단일의 거울상 이성체, 부분 입체 이성체성 혼합물 및 개별적인 부분 입체 이성체들로서 나타남이 주목될 것이다. 이들 화합물의 모든 상기와 같은 이성체 형태들은 본 발명에 명백히 포함된다. 각각의 입체성 탄소는 R 또는 S 배위를 가질 수 있다. 따라서 상기와 같은 비대칭으로부터 발생하는 이성체들(예를 들어 모든 거울상 이성체 및 부분 입체 이성체)이 달리 나타내지 않는 한 본 발명에 포함됨은 물론이다. 상기와 같은 이성체들을 전형적인 분리 기법 및 입체 화학적으로 조절된 합성에 의해 실질적으로 순수한 형태로 수득할 수 있다.
- [0464] 본 발명은 또한 포유동물에서 A_{2b} 관련된 질환을 치료하기 위한 약학 조성물에 관한 것이다. 상기 약학 조성물은 치료 유효량의 본 발명의 화합물 및 약학적으로 허용 가능한 담체를 포함한다. 하기 개시하는 모든 화합물들이 치료에 포함됨은 물론이다. 또한 본 발명의 화합물을 단독으로 또는 본 발명의 다른 화합물과 함께 또는 추가적인 치료 화합물들, 예를 들어 항생제, 소염제 또는 항암제와 함께 사용할 수 있음도 물론이다.
- [0465] "항생제"란 용어는 당해 분야에 인식되어 있으며, 병원균의 증식을 제거 또는 억제하고 감염된 숙주에 대해 유해 효과가 최소이거나 전혀 없으면서 상기 병원균에는 선택적으로 독성인, 미생물의 증식에 의해 생산되는 물질 및 그의 합성 유도체를 포함한다. 항생제의 적합한 예로는 비 제한적으로 아미노글리코사이드, 세팔로스포린, 클로람페니콜, 푸시드산, 마크로리드, 페니실린, 폴리믹신, 테트라사이클린 및 스트렙토마이신의 주요 부류들이 포함된다.
- [0466] "소염제"란 용어는 당해 분야에 인식되어 있으며 염증의 원인 인자에 직접적으로 대립하지 않으면서 신체 기전에 작용하는 약제, 예를 들어 글리코코르티코이드, 아스피린, 이부프로펜, NSAIDS 등을 포함한다.
- [0467] "항암제"란 용어는 당해 분야에 인식되어 있으며 바람직하게는 다른 생리학적 기능들에는 불리한 영향을 미치지 않으면서 암 세포의 증식을 감소, 근절 또는 예방하는 약제들을 포함한다. 대표적인 예로는 시스플라틴 및 사이클로포스파미드가 있다.
- [0468] 본 발명에 사용된 "암"이란 용어는 독특한 특성(정상적인 조절의 상실)을 가져서 조절되지 않는 성장, 분화의 결여, 및 국소 조직을 침범하여 전이시키는 능력을 생성시키는 세포성 악성질환을 의미한다. 세포성 악성질환의 존재는 종종 종양의 존재에 의해 지시된다. 염증을 일으킬 수 있는 정상 조직상의 국소적인 종양 압박에 기인하여 국소 조직 침범이 일어나거나, 또는 종양이 효소에 의한 파괴를 일으키는 물질들을 동화시킬 수 있다.
- [0469] 본 발명의 화합물을 인간 및 포유동물에게 약제로서 투여하는 경우, 이들을 그 자체로서 또는 예를 들어 0.1 내지 99.5%(보다 바람직하게는 0.5 내지 90%)의 유효 성분을 약학적으로 허용 가능한 담체와 함께 함유하는 약학 조성물로서 제공할 수 있다.
- [0470] 본 발명에 사용된 "약학적으로 허용 가능한 담체"란 용어는 본 발명의 화합물(들)을 그의 목적하는 기능을 수행 할 수 있도록 환자 내에서 또는 상기 환자에게 운반 또는 수송함을 수반하는 약학적으로 허용 가능한 물질, 조 성물 또는 비히클, 예를 들어 액체 또는 고체 충전제, 희석제, 부형제, 용매 또는 캡슐화 물질을 의미한다. 전 형적으로는, 상기와 같은 화합물들은 하나의 기관 또는 신체의 일부로부터 또 다른 기관 또는 상기 신체의 일부 로 운반 또는 수송된다. 각각의 담체는 제형의 다른 성분들과 혼화성이고 환자에게 해롭지 않다는 의미에서 "허용 가능해야" 한다. 약학적으로 허용 가능한 담체로서 작용할 수 있는 물질들의 일부 예로는 당. 예를 들 어 락토오즈, 글루코스 및 슈크로즈; 전분, 예를 들어 옥수수 전분 및 감자 전분; 셀룰로즈 및 그의 유도체, 예 를 들어 나트륨 카복시메틸 셀룰로즈, 에틸 셀룰로즈 및 셀룰로즈 아세테이트; 분말화된 트라가칸트; 맥아; 젤 라틴; 활석; 부형제, 예를 들어 코코아 버터 및 좌약 왁스; 오일, 예를 들어 땅콩 오일, 면실유, 홍화유, 호마 유, 올리브 오일, 옥수수유 및 두유; 글리콜, 예를 들어 프로필렌 글리콜; 폴리올, 예를 들어 글리세린, 솔비톨, 만니톨 및 폴리에틸렌 글리콜; 에스테르, 예를 들어 에틸 올리에이트 및 에틸 라우레이트; 아가; 완충 제, 예를 들어 수산화 마그네슘 및 수산화 알루미늄; 알긴산; 발열원 비 함유 수; 등장성 염수; 링거액; 에틸 알콜; 포스페이트 완충액; 및 약학 제형에 사용되는 다른 무독성의 혼화성 물질이 있다.
- [0471] 상기 열거한 바와 같이, 본 발명의 몇몇 실시태양들은 염기성 작용기, 예를 들어 아미노 또는 알킬아미노를 함유할 수 있으며, 따라서 약학적으로 허용 가능한 산과 약학적으로 허용 가능한 염을 형성할 수 있다. 이 점에 있어서 "약학적으로 허용 가능한 염"이란 용어는 본 발명 화합물의 비교적 무독성인 무기 및 유기 산 부가 염을 지칭한다. 이들 염을 본 발명 화합물의 최종 단리 및 정제 중에 동일 반응계에서, 또는 본 발명의 정제된 화합물을 유리 염기 형태로 적합한 유기 또는 무기 산과 별도로 반응시키고 이에 의해 형성된 염을 단리시킴으로써 제조할 수 있다. 대표적인 염으로는 하이드로브로마이드, 하이드로클로라이드, 설페이트, 비설페이트, 포스페이트, 니트레이트, 아세테이트, 발레레이트, 올리에이트, 팔미테이트, 스테아레이트, 라우레이트,

벤조에이트, 락테이트, 포스페이트, 토실레이트, 시트레이트, 말리에이트, 푸마레이트, 숙시네이트, 타르트레이트, 나프틸레이트, 메실레이트, 글루코헵토네이트, 락토비오네이트 및 라우릴설포네이트 염 등이 있다(예를 들어 문헌[Berge et al. (1977) "Pharmaceutical Salts", J. Pharm. Sci. 66:1-19]을 참조하시오).

- [0472] 다른 경우에, 본 발명의 화합물은 하나 이상의 산성 작용기를 함유할 수 있으며, 따라서 약학적으로 허용 가능한 연기와 약학적으로 허용 가능한 연을 형성할 수 있다. 이러한 경우에 "약학적으로 허용 가능한 연"이란 용어는 본 발명 화합물의 비교적 무독성인 무기 및 유기 연기 부가연을 지칭한다. 이들 연을 마찬가지로 상기화합물의 최종 단리 및 정제 중에 동일 반응계에서, 또는 상기 정제된 화합물을 유리 산 형태로 적합한 연기, 예를 들어 약학적으로 허용 가능한 금속 양이온의 하이드록사이드, 카보네이트 또는 비카보네이트, 암모니아, 또는 약학적으로 허용 가능한 유기 1 차, 2 차 또는 3 차 아민과 별도로 반응시킴으로써 제조할 수 있다. 전형적인 알칼리 또는 알칼리 토 연으로는 리튬, 나트륨, 칼륨, 칼슘, 마그네슘 및 알루미늄 연 등이 있다. 연기 부가염의 형성에 유용한 전형적인 유기 아민으로는 에틸아민, 디에틸아민, 에틸렌디아민, 에탄올아민, 디에탄옥아민, 피페라진 등이 있다.
- [0473] "약학적으로 허용 가능한 에스테르"란 용어는 본 발명 화합물의 비교적 무독성의 에스테르화된 생성물을 지칭한다. 이들 에스테르를 상기 화합물의 최종 단리 및 정제 중에 동일 반응계에서, 또는 상기 정제된 화합물을 그의 유리 산 형태 또는 하이드록실로 적합한 에스테르화제와 별도로 반응시킴으로써 제조할 수 있다. 카복실산을 촉매의 존재 하에서 알콜에 의한 처리를 통해 에스테르로 전환시킬 수 있다. 하이드록실 함유 유도체를 에스테르화제, 예를 들어 알카노일 할라이드에 의한 처리를 통해 에스테르로 전환시킬 수 있다. 상기 용어는 또한 생리 조건 하에서 용매화될 수 있는 저급 탄화수소 그룹, 예를 들어 알킬 에스테르, 메틸, 에틸 및 프로필에스테르를 포함한다(예를 들어 상기 문헌[Berge et al.]을 참조하시오).
- [0474] 본 발명은 또한 생체 내에서 본 발명의 치료 화합물로 전환되는 전구약물의 용도를 고려한다(예를 들어 문헌 [R.B. Silverman, 1992, "The Organic Chemistry of Drug Design and Drug Action", Academic Press, Chapter 8]을 참조하시오). 상기와 같은 전구약물을 사용하여 치료 화합물의 생체 분포(예를 들어 프로테아제의 반응성 부위에 전형적으로 들어가지 않는 화합물을 허용하기 위해서) 또는 약물 동력학을 변경시킬 수 있다. 예를들어 카복실산 그룹을 예를 들어 메틸 그룹 또는 에틸 그룹에 의해 에스테르화시켜 에스테르를 수득할 수 있다. 상기 에스테르를 환자에게 투여하는 경우, 상기 에스테르는 효소에 의해 또는 비 효소적으로, 환원적으로 또는 가수분해에 의해 절단되어 음이온성 그룹을 드러낸다. 음이온성 그룹을, 절단되어 중간체 화합물을 드러내고 후속적으로 분해되어 유효 화합물을 제공하는 잔기들(예를 들어 아실옥시메틸 에스테르)로 에스테르화시킬 수 있다. 또 다른 실시태양에서, 상기 전구약물은 생체 내에서 치료 화합물로 산화되는 설페이트 또는 설포네이트의 환원된 형태, 예를들어 티올이다. 더욱 또한, 음이온성 잔기를, 생체 내에서 능동 수송되거나, 또는 표적 기관에 의해 선택적으로 흡수되는 그룹으로 에스테르화시킬 수 있다. 상기 에스테르는 치료 잔기가, 담체 잔기에 대해 하기 개시하는 바와 같이, 특정한 반응성 부위로 특이적으로 표적화되도록 선택할 수 있다.
- [0475] 습윤제, 유화제 및 윤활제, 예를 들어 나트륨 라우릴 설페이트 및 스테아르산 마그네슘뿐만 아니라 착색제, 방출제, 코팅제, 감미제, 풍미제 및 항료, 보존제 및 산화방지제가 또한 상기 조성물 중에 존재할 수 있다.
- [0476] 약학적으로 허용 가능한 산화방지제의 예로는 수용성 산화방지제, 예를 들어 아스코르브산, 시스테인 하이드로 클로라이드, 나트륨 비설페이트, 나트륨 메타비설파이트, 나트륨 설파이트 등; 유용성 산화방지제, 예를 들어 아스코르빌 팔미테이트, 부틸화된 하이드록시아니솔(BHA), 부틸화된 하이드록시톨루엔(BHT), 레시틴, 프로필 갈 레이트, 알파-토코페롤 등; 및 금속 킬레이트제, 예를 들어 시트르산, 에틸렌디아민 테트라아세트산(EDTA), 솔비톨, 타르타르산, 인산 등이 있다.
- [0477] 본 발명의 제형은 경구, 코, 국소, 경피, 볼, 설하, 직장, 질 및/또는 비 경구 투여에 적합한 것들을 포함한다. 상기 제형을 편의상 단위 투여형으로 제공할 수 있으며 제약 분야에 널리 공지된 임의의 방법에 의해 제조할 수 있다. 단일 투여형을 제조하기 위해 담체 물질과 배합시킬 수 있는 유효 성분의 양은 일반적으로 치료 효과를 생성시키는 화합물의 양일 것이다. 일반적으로는 100% 중에서 상기 량은 약 1% 내지 약 99%의 유효 성분, 바람직하게는 약 5% 내지 약 70%, 가장 바람직하게는 약 10% 내지 약 30%의 범위일 것이다.
- [0478] 이들 제형 또는 조성물의 제조 방법은 본 발명의 화합물을 담체 및 임의로 하나 이상의 보조 성분들과 회합시키는 단계를 포함한다. 일반적으로, 상기 제형은 본 발명의 화합물을 액체 담체 또는 미분된 고체 담체 또는 이들 모두와 균일하고 긴밀하게 회합시키고, 이어서 경우에 따라 제품을 성형시킴으로써 제조한다.
- [0479] 경구 투여에 적합한 본 발명의 제형은 캡슐, 교갑, 환제, 환약, 정제, 로젠지(풍미 베이스, 예를 들어 슈크로즈

및 아카시아 또는 트라가칸트 사용), 분말, 과립, 또는 수성 또는 비 수성 액체 중의 용액 또는 현탁액으로서, 또는 수중 유적형 또는 유중 수적형 액체 유화액으로서, 또는 엘릭서 또는 시럽으로서, 또는 파스텔(불활성 베이스, 예를 들어 젤라틴 및 글리세린, 또는 슈크로즈 및 아카시아 사용)로서 및/또는 구강 세척액 등의 형태일수 있으며, 이들은 각각 소정량의 본 발명의 화합물을 유효 성분으로서 함유한다. 본 발명의 화합물을 또한 큰 환약, 연약 또는 페이스트로서 투여할 수도 있다.

- [0480] 경구 투여용의 본 발명의 고체 투여형(캡슐, 정제, 환제, 당의정, 분말, 과립 등)에서, 유효 성분을 하나 이상의 약학적으로 허용 가능한 담체, 예를 들어 시트르산 나트륨 또는 인산 이칼슘 및/또는 하기의 것들 중 임의의 것과 혼합한다: 충전제 또는 증량제, 예를 들어 전분, 락토오즈, 슈크로즈, 글루코스, 만니톨 및/또는 규산; 결합제, 예를 들어 카복시메틸셀룰로즈, 알기네이트, 젤라틴, 폴리비닐 피롤리돈, 슈크로즈 및/또는 아카시아; 회석제, 예를 들어 글리세롤; 붕해제, 예를 들어 아가-아가, 탄산 칼슘, 감자 또는 타피오카 전분, 알긴산, 특정의 실리케이트, 및 탄산 나트륨; 용해 지연제, 예를 들어 파라핀; 흡수 촉진제, 예를 들어 4급 암모늄 화합물; 습윤제, 예를 들어 세틸 알콜 및 글리세롤 모노스테아레이트; 흡수제, 예를 들어 카올린 및 벤토나이트 점토; 윤활제, 예를 들어 활석, 스테아르산 칼슘, 스테아르산 마그네슘, 고형 폴리에틸렌 글리콜, 나트륨 라우릴 설페이트 및 이들의 혼합물; 및 착색제. 캡슐, 정제 및 환제의 경우에, 상기 약학 조성물은 완충제를 또한 포함할수도 있다. 유사한 유형의 고체 조성물은 또한 연질 및 경질 충전된 젤라틴 캡슐 중의 충전제로서 락토오즈 또는 유당과 같은 부형제뿐만 아니라 고 분자량 폴리에틸렌 글리콜 등을 사용할 수 있다.
- [0481] 정제를 임의로 하나 이상의 보조 성분들과 함께 압착 또는 성형에 의해 제조할 수 있다. 압착 정제를 결합제 (예를 들어 젤라틴 또는 하이드록시프로필메틸 셀룰로즈), 윤활제, 불활성 희석제, 보존제, 붕해제(예를 들어 나트륨 전분 글리콜레이트 또는 가교결합된 나트륨 카복시메틸 셀룰로즈), 표면 활성 또는 분산제를 사용하여 제조할 수 있다. 성형 정제는 적합한 기계에서 불활성 액체 희석제로 습윤시킨 분말화된 화합물의 혼합물을 성형시킴으로써 제조할 수 있다.
- [0482] 본 발명의 약학 조성물의 정제, 및 다른 고체 투여형, 예를 들어 당의정, 캡슐, 환제 및 과립을 임의로 코팅제 및 외피, 예를 들어 장용 코팅제 및 약제-제형화 분야에 널리 공지된 다른 코팅제들을 사용하여 얻거나 제조할수 있다. 이들을 또한 예를 들어 목적하는 방출 프로파일을 제공하기 위해 가변 비율의 하이드록시프로필메틸셀룰로즈, 다른 중합체 기질, 리포솜 및/또는 미소구들을 사용하여 상기 중의 유효 성분의 느리거나 조절된 방출을 제공하도록 제형화할 수도 있다. 이들을 예를 들어 세균 유지 필터를 통한 여과에 의해서, 또는 살균제를 사용 직전에 멸균 수 또는 일부 다른 멸균 주입용 매질에 용해시킬 수 있는 멸균 고체 조성물의 형태로 혼입시킴으로써 멸균시킬 수 있다. 이들 조성물은 또한 임의로 불투명화제를 함유할 수 있으며 유효 성분(들)을오직 또는 우선적으로 위장 관의 특정 부분에, 임의로 지연된 방식으로 방출하는 조성을 가질 수 있다. 사용될 수 있는 매몰 조성물의 예로 중합체성 물질 및 왁스가 있다. 상기 유효 성분은 또한 경우에 따라 상술한하나 이상의 부형제들과 함께 미세 캡슐화된 형태일 수 있다.
- [0483] 본 발명 화합물의 경구 투여용 액체 투여형은 약학적으로 허용 가능한 유화액, 미세유화액, 용액, 현탁액, 시럽 및 엘릭서를 포함한다. 유효 성분 이외에, 상기 액체 투여형은 당해 분야에 통상적으로 사용되는 불활성 희석 제들, 예를 들어 물 또는 다른 용매, 가용화제 및 유화제, 예를 들어 에틸 알콜, 이소프로필 알콜, 에틸 카보네이트, 에틸 아세테이트, 벤질 알콜, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸렌 글리콜, 오일(특히, 면실유, 땅콩 오일, 옥수수유, 배아유, 올리브유, 피마자유 및 호마유), 글리세롤, 테트라하이드로푸릴 알콜, 폴리에틸렌 글리콜 및 솔비탄의 지방산 에스테르, 및 이들의 혼합물을 함유할 수 있다.
- [0484] 불활성 희석제 이외에, 상기 경구 조성물은 또한 습윤제, 유화 및 현탁제, 감미제, 풍미제, 착색제, 향료 및 보존제와 같은 보조제들을 포함할 수 있다.
- [0485] 현탁액은 유효 화합물 이외에 현탁제, 예를 들어 에톡실화된 이소스테아릴 알콜, 폴리옥시에틸렌 솔비톨 및 솔비탄 에스테르, 미정질 셀룰로즈, 알루미늄 메타하이드록사이드, 벤토나이트, 아가-아가 및 트라가칸트, 및 이들의 혼합물을 함유할 수 있다.
- [0486] 직장 또는 질 투여를 위해 본 발명의 약학 조성물 제형을 좌약으로서 제공할 수 있으며, 이는 하나 이상의 본 발명의 화합물을 하나 이상의 적합한 비 자극성 부형제 또는 담체, 예를 들어 코코아 버터, 폴리에틸렌 글리콜, 좌약 왁스 또는 살리실레이트와 혼합함으로써 제조할 수 있으며, 실온에서 고체이나, 체온에서는 액체인, 따라서 직장 또는 질강에서 용융되어 상기 유효 화합물을 방출할 것이다.
- [0487] 질 투여에 적합한 본 발명의 제형은 또한 당해 분야에 적합한 것으로 공지된 담체를 함유하는 페서리, 탐폰, 크

림, 젤, 페이스트, 포움 또는 분무 제형을 포함한다.

- [0488] 본 발명 화합물의 국소 또는 경피 투여용 투여형은 분말, 스프레이, 연고, 페이스트, 크림, 로션, 젤, 용액, 패치 및 흡입제를 포함한다. 유효 화합물을 멸균 조건 하에서 약학적으로 허용 가능한 담체 및 임의의 보존제, 완충제 또는 경우에 따라 분사제와 혼합할 수 있다.
- [0489] 상기 연고, 페이스트, 크림 및 젤은 본 발명의 유효 화합물 이외에 부형제, 예를 들어 동물 및 식물성 지방, 오일, 왁스, 파라핀, 전분, 트라가칸트, 셀룰로즈 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 규산, 활석 및 산화 아연, 또는 이들의 혼합물을 함유할 수 있다.
- [0490] 분말 및 스프레이는 본 발명의 화합물 이외에 부형제, 예를 들어 락토오즈, 활석, 규산, 수산화 알루미늄, 규산 칼슘 및 폴리아미드 분말, 또는 이들 물질의 혼합물을 함유할 수 있다. 스프레이는 통상적인 분사제, 예를 들어 클로로플루오로하이드로카본 및 휘발성의 비 치환된 탄화수소, 예를 들어 부탄 및 프로판을 추가로 함유할수 있다.
- [0491] 경피 패치는 본 발명의 화합물을 신체에 조절하여 전달할 수 있는 부가된 이점을 갖는다. 상기와 같은 투여형은 상기 화합물을 적합한 매질에 용해 또는 분산시킴으로써 제조할 수 있다. 흡수 향상제를 또한 사용하여 피부를 통한 상기 화합물의 흐름을 증가시킬 수 있다. 상기와 같은 흐름의 속도는 속도 조절 멤브레인을 제공하거나 또는 중합체 기질 또는 젤에 유효 화합물을 분산시킴으로써 조절할 수 있다.
- [0492] 안약 제형, 안 연고, 분말, 용액 등을 또한 본 발명의 범위 내에 있는 것으로 고려한다. 바람직하게는, 상기 약학 제제는 안약 제형(예를 들어 눈 주위, 눈 뒤 또는 눈 안 주입 제형, 전신 제형 또는 외과용 관주액)이다.
- [0493] 본 발명의 안약 제형은 하나 이상의 데아자퓨린 및 약학적으로 허용 가능한 비히클을 포함할 수 있다. 다양한 유형의 비히클들을 사용할 수 있다. 상기 비히클은 일반적으로 수성일 것이다. 제형의 케이스뿐만 아니라 상기와 같은 조성물을 병에 걸린 눈에 상기 용액을 한 방울 내지 두 방울 떨어뜨림으로써 쉽게 투여할 수 있는 환자의 능력을 근거로, 수용액이 일반적으로 바람직하다. 그러나, 본 발명의 데아자퓨린을 또한 다른 유형의 조성물, 예를 들어 현탁액, 점성 또는 반 점성 겔 또는 다른 유형의 고체 또는 반고체 조성물에 쉽게 혼입시킬 수도 있다. 본 발명의 안약 조성물은 또한 다양한 다른 성분들, 예를 들어 완충제, 보존제, 공용매 및 점도 형성제를 함유할 수 있다.
- [0494] 적합한 완충 시스템(예를 들어 인산 나트륨, 아세트산 나트륨 또는 붕산 나트륨)을 가하여 보관 조건 하에서 pH 가 이동하는 것을 방지할 수 있다.
- [0495] 안약 제품들을 전형적으로는 수회 용량 형태로 포장한다. 따라서 사용 중의 미생물 오염을 방지하기 위해서 보존제가 요구된다. 적합한 보존제로는 벤즈알코늄 클로라이드, 티메로살, 클로로부탄올, 메틸 파라벤, 프로 필 파라벤, 페닐에틸 알콜, 이데테이트 이나트륨, 소르브산, 폴리쿼터늄-1, 또는 당해 분야의 숙련가들에게 공지된 다른 보존제들이 있다. 상기와 같은 보존제를 전형적으로는 0.001 내지 1.0 중량/부피%("w/v%")의 수준으로 사용한다.
- [0496] 본 발명의 화합물을 눈 안 수술 과정 중에, 예를 들어 눈 뒤 또는 눈 주위 주입 및 눈 안 관류 또는 주입을 통해 투여하는 경우, 비히클로서 균형을 이룬 염 관주액의 사용이 가장 바람직하다. BSS(등록상표) 멸균 관주액 및 BSS 플러스(등록상표) 멸균 눈 안 관주액(Alcon Laboratories, Inc., Fort Worth, Texas, USA)이 생리적으로 균형을 이룬 눈 안 관주액의 예들이다. 상기 후자 유형의 용액은 본 발명에 내용 전체가 참고로 인용되어 있는 미국 특허 제 4,550,022 호(Garabedian, et al.)에 개시되어 있다. 눈 뒤 및 눈 주위 주입은 당해 분야의 숙련가들에게 공지되어 있으며 다수의 간행물들, 예를 들어 문헌[Ophthalmic Surgery: Principles of Practice, Ed., G. L. Spaeth. W. B. Sanders Co., Philadelphia, Pa., U.S.A., pages 85-87(1990)]에 개시되어 있다.
- [0497] 상기 지적한 바와 같이, 세포 수준에서 망막 및 시신경유도 조직에 대한 손상을 예방 또는 감소시키기 위한 본 발명 화합물의 용도는 본 발명의 실시태양의 특히 중요한 태양이다. 치료될 수 있는 안 질환으로는 비 제한적으로 망막병증, 황반변성, 눈 허혈증, 녹내장, 및 눈 조직에 대한 상처, 예를 들어 허혈성 재 관류 상처, 광화학적 상처 및 눈 수술과 관련된 상처, 특히 빛 또는 수술 장비에의 노출에 의한 망막 또는 시신경 유도에 대한 상처와 관련된 손상들이 있다. 상기 화합물을 또한 예를 들어 안과 수술에 따른 유리체 또는 결막하 주입에 의한, 안과 수술에 대한 보조제로서 사용할 수 있다. 상기 화합물을 일시적인 질환의 급성 치료에 사용하거나 또는 만성적으로, 특히 퇴행성 질병의 경우에 만성적으로 투여할 수 있다. 상기 화합물을 또한 특히 눈 수술

또는 비 침습적인 안과 절차, 또는 다른 유형의 수술 전에 예방학적으로 사용할 수 있다.

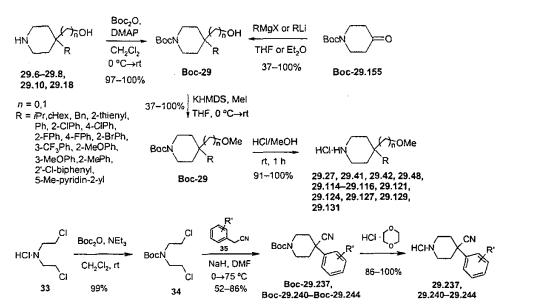
- [0498] 비 경구 투여에 적합한 본 발명의 약학 조성물은 본 발명의 하나 이상의 화합물을 하나 이상의 약학적으로 허용가능한 멸균 등장성 수성 또는 비수성 용액, 분산액, 현탁액 또는 유화액, 또는 사용 직전에 멸균 주사용 용액 또는 분산액으로 재 조성할 수 있는 멸균 분말(이들은 산화방지제, 완충제, 세균 발육 저지제, 제형을 목적하는 수용자의 혈액과 등장성으로 만드는 용질 또는 현탁 또는 증점제를 함유할 수 있다)과 함께 포함한다.
- [0499] 본 발명의 약학 조성물에 사용될 수 있는 적합한 수성 및 비수성 담체의 예로는 물, 에탄올, 폴리올(예를 들어 글리세롤, 프로필렌 글리콜, 폴리에틸렌 글리콜 등) 및 그의 적합한 혼합물, 식물성 오일, 예를 들어 올리브 오일, 및 주입 가능한 유기 에스테르, 예를 들어 에틸 올리에이트가 있다. 적합한 유동성을 예를 들어 코팅 물질, 예를 들어 레시틴에 의해, 분산액의 경우에 목적하는 입자 크기를 유지함으로써, 계면활성제를 사용함으로써 유지시킬 수 있다.
- [0500] 이들 조성물은 또한 보존제, 습윤제, 유화제 및 분산제와 같은 보조제들을 함유할 수 있다. 다양한 항균 및 항진균제, 예를 들어 파라벤, 클로로부탄올, 페놀 소르브산 등의 혼입에 의해 미생물의 작용을 확실히 방지할 수 있다. 또한 등장성 시약, 예를 들어 당, 염화 나트륨 등을 상기 조성물에 포함시키는 것이 바람직할 수도 있다. 또한, 주입 가능한 약제 형태의 연장된 흡수를 알루미늄 모노스테아레이트 및 젤라틴과 같이 흡수를 지연하는 약제를 혼입시킴으로써 성취할 수 있다.
- [0501] 일부의 경우에, 약물의 효과를 연장시키기 위해서, 피하 또는 근육 내 주입으로부터 약물의 흡수를 지체시키는 것이 바람직할 수 있다. 이는 불량한 수 용해도를 갖는 결정성 또는 비결정성 물질의 액체 현탁액을 사용함으로써 성취될 수 있다. 상기 약물의 흡수 속도는 그의 용해속도에 따라 변하며, 이는 차례로 결정 크기 및 결정형태에 따라 변할 수 있다. 한편으로, 비 경구 투여되는 약물 형태의 지연된 흡수는 상기 약물을 오일 비히클에 용해 또는 현탁시킴으로써 성취된다.
- [0502] 주입 가능한 데포 형태는 폴리락타이드-폴리글리콜라이드와 같은 생물 분해성 중합체로 주제 화합물의 미세캡슐 기질을 형성시킴으로써 제조된다. 약물 대 중합체의 비 및 사용되는 특정 중합체의 성질에 따라, 약물 방출속도를 조절할 수 있다. 다른 생물 분해성 중합체의 예로는 폴리(오르토에스테르) 및 폴리(무수물)이 있다. 주입 가능한 데포 제형을 또한 약물을 체 조직과 혼화성인 리포솜 또는 미세유화액에 포집하여 제조한다.
- [0503] 본 발명의 제제를 경구, 비 경구, 국소 또는 직장으로 제공할 수 있다. 상기를 물론 각각의 투여 경로에 적합한 형태로 제공한다. 예를 들어, 상기를 정제 또는 캡슐 형태로, 주사, 주입 또는 흡입에 의해 투여된 주사액, 흡입액, 눈 로션, 연고, 좌약 등에 의해; 로션 또는 연고에 의해 국소적으로; 및 좌약에 의해 직장으로 투여한다. 경구 투여가 바람직하다.
- [0504] 본 발명에 사용된 "비 경구 투여" 및 "비 경구적으로 투여된"이란 표현은 경구 및 국소 투여 이외에, 대개 주입에 의한 투여 방식을 의미하며, 여기에는 비 제한적으로 정맥 내, 근육 내, 동맥 내, 포막 내, 피막 내, 안와 내, 심장 내, 피내, 복강 내, 경기관내, 피하, 표피하, 관절 내, 피막 하, 거미망막 하, 척수강 내 및 흉골 내주사 및 주입이 포함된다.
- [0505] 본 발명에 사용된 "전신 투여", "전신적으로 투여된", "말초적 투여" 및 "말초적으로 투여된"이란 표현은 화합물, 약물 또는 다른 물질을 중추 신경계에 직접 이외의 방식으로, 예를 들어 피하 투여에 의해 투여하여, 상기를 환자의 전신에 들어가게 하고 따라서 대사 및 다른 유사한 과정이 가해짐을 의미한다.
- [0506] 이들 화합물을 치료를 위해 임의의 적합한 투여 경로, 예를 들어 경구, 코, 예를 들어 스프레이, 직장, 질 내, 비 경구, 저장기 내 및 국소적으로, 예를 들어 구강 및 설하를 포함한 경로로, 분말, 연고 또는 점적액에 의해 인간 및 다른 동물에게 투여할 수 있다.
- [0507] 선택된 투여 경로에 관계없이, 적합한 수화된 형태로 사용될 수 있는 본 발명의 화합물 및/또는 본 발명의 약학 조성물을 당해 분야의 숙련가들에게 공지된 통상적인 방법에 의해 약학적으로 허용 가능한 투여형으로 제형화한 다.
- [0508] 본 발명의 조성물 중의 유효 성분들의 실제 투여 수준을 특정 환자, 조성 및 투여 방식에 대해 환자에게 독성이지 않으면서 목적하는 치료 반응을 달성하기에 효과적인 유효 성분의 양을 얻기 위해서 변화시킬 수 있다.
- [0509] 선택된 투여 수준은 다양한 인자들, 예를 들어 사용되는 본 발명의 특정 화합물 또는 그의 에스테르, 염 또는 아미드의 활성, 투여 경로, 투여 시간, 사용되는 특정 화합물의 분비 속도, 치료 지속 기간, 사용된 특정 화합물과 함께 사용되는 다른 약물, 화합물 및/또는 물질, 치료하려는 환자의 연령, 성별, 체중, 질환, 일반적인 건

강 및 과거 병력, 및 의료 분야에 널리 공지된 유사한 인자들에 따라 변할 것이다.

- [0510] 당해 분야의 통상적인 기술을 가진 의사 또는 수의사는 필요한 약학 조성물의 유효량을 쉽게 결정 및 처방할 수 있다. 예를 들어 상기 의사나 수의사는 약학 조성물에 사용되는 본 발명 화합물의 용량을 목적하는 치료 효과를 성취하기 위해서 필요한 용량보다 낮은 수준에서 출발하여 상기 목적하는 효과가 성취될 때까지 상기 용량을 점진적으로 증가시킬 수 있다.
- [0511] 일반적으로, 본 발명 화합물의 적합한 1 일 용량은 치료 효과를 생성시키기에 효과적인 최저 용량인 화합물의 양이 될 것이다. 상기와 같은 유효 용량은 일반적으로 상술한 인자들에 따라 변할 것이다. 일반적으로는, 지시된 진통 효과를 위해 사용되는 경우, 환자에 대한 본 발명 화합물의 정맥 내 및 피하 용량은 하루에 체중 kg 당 약 0.0001 내지 약 200 mg, 보다 바람직하게는 약 0.01 내지 약 150 mg, 더욱 더 바람직하게는 약 0.2 내지 약 140 mg의 범위일 것이다.
- [0512] 경우에 따라, 상기 유효 화합물의 1 일 유효 용량을 하루 전체에 걸쳐 적합한 간격으로, 임의로 단위 투여형으로, 2 회, 3 회, 4 회, 5 회, 6 회 또는 별도로 투여되는 보다 많은 하위 용량으로 투여할 수 있다.
- [0513] 본 발명의 화합물을 단독으로 투여하는 것도 가능하지만, 상기 화합물을 약학 조성물로서 투여하는 것이 바람직 하다.
- [0514] 본 발명은 또한 포유동물에서 A_{2b} 관련된 질환을 치료하기 위한 포장된 약학 조성물에 관한 것이다. 상기 포장된 약학 조성물은 하기 개시하는 바와 같이 치료 유효량의 하나 이상의 본 발명의 화합물을 보유하는 용기 및 상기 포유동물에서 상기 A_{2b} 관련된 질환을 치료하기 위해 상기 화합물을 사용하기 위한 설명서를 포함한다.
- [0515] 본 발명의 화합물은 1998년 3월 9일자로 출원되고 1999년 7월 8일자로 공개된 국제 출원 PCT/US98/04595에 개시된 수용성 전구약물을 포함할 수 있다. WO 99/33815의 전체 내용은 본 발명에 참고로 인용되어 있다. 상기수용성 전구약물은 생체 내에서 예를 들어 에스테라제 촉매화된 가수분해에 의해 유효 약물로 대사된다.
- [0516] 또 다른 태양에서, 본 발명은 동물(예를 들어 인간)에게 유효량의 본 발명의 화합물을 투여함으로써 상기 동물의 눈에 대한 손상을 치료하는 방법을 특징으로 한다. 바람직하게는, 상기 화합물은 동물의 세포에서 A_{2b} 아데 노신 수용체의 길항물질이다. 상기 손상은 망막 또는 시신경유두에 대한 것이며 급성 또는 만성적인 것일 수 있다. 상기 손상은 예를 들어 녹내장, 부종, 국소빈혈, 저산소증 또는 외상의 결과일 수 있다.
- [0517] 본 발명은 또한 세포를 본 발명의 화합물과 접촉시킴으로써 상기 세포에서 아데노신 수용체(예를 들어 A_{2b} 아데 노신 수용체)의 활성을 억제하는 방법에 관한 것이다. 바람직하게는, 상기 화합물은 상기 수용체의 길항물질 이다.
- [0518] 또 다른 실시태양에서, 본 발명은 본 발명의 화합물 및 약학적으로 허용 가능한 담체를 함유하는 약학 조성물에 관한 것이다.
- [0519] 본 발명은 또한 포유동물에게 상기 동물에서 A_{2b} 관련된 질환의 치료가 일어나도록, 치료 유효량의 본 발명의 화합물을 상기 포유동물에게 투여함으로써 상기 동물에서 상기 질환을 치료하는 방법에 관한 것이다. 유리하게는, 상기 질병 상태는 아데노신에 의해 매개되는 질환일 수 있다. 바람직한 질병 상태의 예로는 중추 신경계질환, 심혈관 질환, 신장 질환, 염증 질환, 알레르기성 질환, 위장 질환, 눈 질환 및 호흡기 질환이 있다.
- [0520] 본 발명은 또한 포유동물에서 A_{2b} 관련된 질병 상태, 예를 들어 호흡기 질환(예를 들어 천식, 기관지염, 만성 폐 쇄성 폐 질환 및 알레르기성 비염), 신장 질환, 위장 질환 및 눈 질환을 치료하기 위한 약학 조성물에 관한 것이다. 상기 약학 조성물은 치료 유효량의 하기 개시되는 본 발명의 화합물 및 약학적으로 허용 가능한 담체를 포함한다. 하기 개시하는 모든 화합물들이 치료에 포함됨은 물론이다. 또한 본 발명의 화합물을 단독으로 또는 본 발명의 다른 화합물과 함께 또는 추가적인 치료 화합물들, 예를 들어 항생제, 소염제 또는 항암제와 함께 사용할 수 있음도 물론이다.
- [0521] 상기 지적한 바와 같이, 세포 수준에서 망막 및 시신경유도 조직에 대한 손상을 예방 또는 감소시키기 위한 본 발명 화합물의 용도는 본 발명의 실시태양의 특히 중요한 태양이다. 치료될 수 있는 안 질환으로는 비 제한적으로 망막병증, 황반변성, 눈 허혈증, 녹내장, 및 눈 조직에 대한 상처, 예를 들어 허혈성 재 관류 상처, 광화학적 상처 및 눈 수술과 관련된 상처, 특히 빛 또는 수술 장비에의 노출에 의한 망막 또는 시신경 유두에 대한 상처와 관련된 손상들이 있다. 상기 화합물을 또한 예를 들어 안과 수술에 따른 유리체 또는 결막하 주입에

의한, 안과 수술에 대한 보조제로서 사용할 수 있다. 상기 화합물을 일시적인 질환의 급성 치료에 사용하거나 또는 만성적으로, 특히 퇴행성 질병의 경우에 만성적으로 투여할 수 있다. 상기 화합물을 또한 특히 눈 수술 또는 비 침습적인 안과 절차, 또는 다른 유형의 수술 전에 예방학적으로 사용할 수 있다.

- [0522] 본 발명을 하기의 실시예들로 추가로 예시하며, 이들 실시예를 결코 추가적인 제한으로서 해석해서는 안 된다. 배경 기술에서 참고로 한 것들을 포함하여, 본 원 전체를 통해 인용된, 모든 참고문헌, 계류중인 특허 출원 및 공개된 특허 출원들의 내용은 본 발명에 참고로 인용된다. 실시예 전체를 통해 사용된 모델들은 숭인된 모델들이며, 이들 모델에서의 효능의 입증은 인간에 대한 효능의 예견임은 물론이다.
- [0523] 본 발명의 특징들 및 다른 상세한 내용들을 이제 보다 구체적으로 개시할 것이며, 청구의 범위에서 지적할 것이다. 본 발명의 특정 실시태양들을 단지 예시로서 나타내었으며 본 발명을 제한하는 것은 아님은 물론이다. 본 발명의 본질적인 특징들을 본 발명의 범위로부터 이탈됨 없이 다양한 실시태양들에 사용할 수 있다.
- [0524] 본 발명을 하기 실험에 대한 상세한 설명으로부터 보다 잘 이해할 것이다. 그러나, 당해 분야의 숙련가는 논 의된 특정한 방법 및 결과들이 이 후에 이어지는 청구의 범위에서 보다 충분히 개시되는 바와 같이 본 발명을 단지 예시하는 것임을 쉽게 알 것이다.


실시예

- [0525] 실험에 대한 상세한 설명
- [0526] 일반적인 정보
- [0527] LC/MS 분석을 휴렛 팩커드(Hewlett Packard) HP110에 부착된, 길슨(Gilson) 215 자동샘플러 및 길슨 819 자동 주입기를 사용하여 수행하였다.
- [0528] 질량 스펙트럼을 양성 전기분무 이온화를 이용하여, 마이크로매스 플랫폼(Micromass Platform) II 질량 분광계 상에서 얻었다.
- [0529] LC 분석을 UV 검출기를 사용하여 254 nm에서 시도하였다. 샘플을 10 분에 걸친 용매 B 중의 15 내지 99%의 용매 A의 선형 구배(방법 A, 비 극성) 또는 15 분에 걸친 용매 B 중의 5 내지 100%의 용매 A의 선형 구배(방법 B, 극성)를 사용하여 페노메넥스 루나(Phenomenex Luna) C18(2)(5 미크론, 4.6 x 150 mm) 컬럼 상에서 용출시켰다. 상기 용매 A는 100% 아세토니트릴이고, 용매 B는 0.01% 포름산이며, 이는 수중에서 샘플 체류 시간에 대해 감지할만한 영향을 미치지 않는 것으로 관찰되었다.
- [0530] IR 스펙트럼을 상이한 반사율을 사용하여 박막으로서 퍼킨-엘머 스펙트럼(Perkin-Elmer Spectrum) 1000 FT-IR 분광계 상에 기록하였다.
- [0531] H NMR 및 ¹³C NMR 스펙트럼을 주변 온도에서 내부 표준으로서 TMS 또는 잔류 용매 피크를 사용하여 배리안 (Varian) 장치(H의 경우 400 MHz 또는 200 MHz, ¹³C의 경우 100.6 MHz 또는 50.3 MHz)로 기록하였다. 라인 위치 또는 다중선들이 ppm(δ)으로서 주어지며 커플링 상수(J)는 절대 값(헤르츠)으로서 주어지는 반면, 신호의 다양성을 하기와 같이 약기한다: s(단일선), d(이중선), t(삼중선), q(사중선), quint(오중선), m(다중선), me (중심이 있는 다중선), br(확장된).
- [0532] 모든 융점들을 Mel-Temp II 장치로 측정하였으며 보정되지 않은 것이다.
- [0533] 원소 분석은 아틀란틱 마이크로랩(Atlantic Microlab, Inc., Norcross, GA)에서 수행되었다.
- [0534] 상업적으로 입수할 수 있는 무수 용매 및 HPLC-등급 용매들을 추가의 정제 없이 사용하였다.
- [0535] 실시예 1: 비-상업적인 3,3- 및 4,4-이 치환된 피페리딘 29의 합성
- [0536] 다수의 4,4-이 치환된 피페리딘 29에 대한 합성을 반응식 1에 나타낸다. Boc-보호된 알콜인 Boc-29를 디-3급-부틸 디카보네이트와의 반응에 의해 상업적으로 입수할 수 있는 아미노알콜 29.6 내지 29.8, 29.10 및 29.18로부터, 또는 그리냐르 또는 유기리튬 시약의 첨가에 의해 N-Boc-4-피리돈(Boc-29.155)으로부터 제조하였다. 메틸 요오다이드 및 KHMDS에 의한 메틸화로 상응하는 메틸 에테르를 수득하였다. HCl/MeOH에 의한 탈보호로 메

틸 에테르 아민 하이드로클로라이드, 및/또는 일부의 경우에 상응하는 1,2,3,6-테트라하이드로피리딘을 수득하였다. 니트릴 35의 보호된 질소 겨자 34에 의한 알킬화에 이어서 디옥산 중의 HCl에 의한 Boc의 제거로 아민 29.237 및 29.240 내지 29.244를 수득하였다.

[0537] [반응식 1]

[0538] 비-상업적인 4,4-이 치환된 피페리딘 29의 합성

[0539] 또한, 4-아세틸-4-페닐페페리딘 29.76과의 표준 반응(환원 및 메틸리튬의 첨가)으로 각각 피페리딘 29.93 및 29.102를 수득하였다. 4-알킬-4-페닐피페리딘 29.108, 29.110 및 29.128, 및 3,3-디페닐피페리딘(29.26)을 각각 삼염화 알루미늄(문헌[J. Med. Chem. 1998, 41, 5320-5333] 참조) 또는 트리플산(문헌[J. Org. Chem. 1999, 64, 6702-6705] 참조)을 사용하여 프리델-크라프츠 반응에 의해 합성하였다. 에스테르 29.92, 29.95 및 29.118을 용매로서 알콜 및 산 촉매로서 H₂SO₄를 사용하여 산 29.85로부터 제조하였다.

[0540] 4-(2-클로로페닐)-4-하이드록시피페리딘-1-카복실산 3급-부틸 에스테르(Boc-29.43):

[0541] 방법 A(I-Li 교환): 드라이 아이스/아세톤에 의해 냉각시킨, THF(10 ml) 중의 2-클로로요오도벤젠(122 μl, 0.999 밀리몰) 용액에 nBuLi(헥산 중의 2.5 M, 0.5 ml, 1.25 밀리몰)를 가하였다. 30 분 후에, THF(1 mℓ) 중 의 N-Boc-4-피페리돈(Boc-29.155)(225 mg, 1.25 밀리몰) 용액을 가하였다. 1.5 시간 후에 냉각 욕을 제거하 고, 추가로 1.5 시간 후에 상기 반응물을 포화된 NaHCO₃ 용액 및 물을 가하여 급냉시켰다. 상기 혼합물을 EtOAc(4 x 15 ml)로 추출하고, 합한 유기 충들을 2N NaOH, 물 및 염수로 세척하고, MgSO4 상에서 건조시키고, 여과하고 농축시켰다. 상기 물질을 MeOH(5 ml)에 용해시키고, NaBH₄(19 mg, 0.5 밀리몰)를 가하고, 상기 용액 을 실온에서 1 시간 동안 교반하였다. 상기 용매를 증발시키고, 물을 가하고 상기 용액을 EtOAc(4 x 15 ml)로 합한 유기 층들을 물 및 염수로 세척하고, MgSO4 상에서 건조시키고, 여과하고 농축시켰다. 물질을 실리카 겔 상에서 크로마토그래피시켜 Boc-29.43(49%)와 Boc-29.47(7%)의 혼합물 180 mg을 수득하였다. Boc-29.47: MS(ES): m/z 388.0/390.0(20/7)[MH[†]]. ^¹H NMR(CDCl₃, 200 MHz): 대부분의 피크들이 2-클로로페닐 화합물의 피크들과 겹친다, δ = 1.45(s, 9H), 6.96-7.03(m, 1H), t_R(비-극성) = 11.0 min.

[0542] 방법 B(I-Mg 교환): -20 내지 -15 ℃로 냉각시킨, THF(3 mℓ) 중의 2-클로로요오도벤젠(145 μℓ, 1.19 밀리몰) 용액에 iPrMgCl(THF 중의 2M, 0.6 mℓ, 1.2 밀리몰)을 가하였다. 30 분 후에, THF(2 mℓ) 중의 N-Boc-4-피페리 돈(Boc-29.155)(203 mg, 1.02 밀리몰)을 가하고, 반응 혼합물을 밤새 교반하고, 주변 온도로 가온시켰다. 포화된 NH₄Cl 용액 및 물을 가하고, 상기 용액을 EtOAc(3 x 15 mℓ)로 추출하였다. 합한 유기 충들을 염수로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시켰다. 상기 물질을 MeOH(10 mℓ)에 용해시키고, NaBH₄(38 mg, 1 밀리몰)를 가하고, 상기 용액을 실온에서 1.5 시간 동안 교반하였다. 상기 용매를 증발시키고, 물을 가하고

상기 용액을 EtOAc(3 x 15 mℓ)로 추출하였다. 합한 유기 층들을 물 및 염수로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시켰다. 조 물질을 실리카 겔 상에서 크로마토그래피시켜 Boc-29.43 168 mg(0.540 밀리몰, 53%)을 수득하였다. 상기 서서히 고형화되는 오일을 핵산으로 연마시켜 무색 결정으로서 분석학적으로 순수한 화합물 158 mg(0.507 밀리몰, 50%)을 수득하였다, 융점 126-127 ℃. MS(ES): m/z 312.0/314.0(10/3)[MH[†]]. ¹H NMR(CDCl₃, 200 MHz): δ = 1.48(s, 9H), 1.98(brd, J = 14.0 Hz, 2H), 2.24(brdt, J = 4.8, 12.8 Hz, 2H), 2.82(s, 1H), 3.16(brt, J = 12.8 Hz, 2H), 4.04(brd, J = 10.8 Hz, 2H), 7.15-7.29(m, 2H), 7.31-7.41(m, 1H), 7.50-7.56(m, 1H), t_R(비-극성) = 9.9 min. C₁₆H₂₂CINO₃(311.81): 계산치 C 61.63, H 7.11, N 4.49, Cl 11.37; 실측치 C 61.75, H 7.14, N 4.42, Cl 11.50.

[0543] 4-하이드록시-4-0-톨릴페피레딘-1-카복실산 3급-부틸 에스테르:

[0545] 4-메톡시-4-티오펜-2-일피페리딘-1-카복실산 3 급-부틸 에스테르:

[0546] 드라이 아이스/아세톤에 의해 냉각시킨, THF(5 mℓ) 중의 N-Boc-4-피페리돈(Boc-29.155)(201 mg, 1.01 밀리몰) 용액에 2-티에닐리튬(THF 중의 1 M, 1.5 mℓ, 1.5 밀리몰)을 가하였다. 50 분 후에, 상기 냉각 욕을 제거하고; 추가로 1 시간 후에, 메틸 요오다이드(125 μℓ, 2.01 밀리몰)를 가하고 상기 용액을 밤새 주변 온도에서 교반하였다. 상기 용매를 증발시키고, 물을 가하고, 혼합물을 EtOAc(4 x 15 mℓ)로 추출하였다. 합한 유기 충들을 물 및 염수로 세척하고, MgSO₄ 상에서 건조시키고 여과하고 농축시켰다. 조 물질(¹H NMR에 의해 측정 시 메틸에테르와 알콜의 1:2 비율의 혼합물)을 일반적인 과정에 따라 메틸화시켜 황색 오일로서 표제 화합물 300 mg (1.01 밀리몰, 100% 수율)을 수득하였다. ¹H NMR(CDCl₃, 200 MHz): δ = 1.46(s, 9H), 1.93(brdt, J = 4.3, 12.6 Hz, 2H), 2.00(brd, J = 12.8 Hz, 2H), 3.05(s, 3H), 3.16(brt, J = 11.0 Hz, 2H), 3.84(brd, J = 12.2 Hz, 2H), 6.93-7.00(m, 2H), 7.25-7.31(m, 1H).

[0547] 4-사이클로헥실-4-하이드록시피페리딘-1-카복실산 3 급 부틸 에스테르:

[0549]

[0551]

[0548] Boc-29.43에 대한 과정에 따라 제조하였다. 백색 고체, 37% 수율의 분석학적으로 순수한 물질, 융점 87-89 ℃. C₁₀H₂₂NO₃(283.41): 계산치 C 67.81, H 10.31, N 4.94; 실측치 C 67.89, H 10.31, N 4.94.

4-(2-플루오로페닐)-4-하이드록시피페리딘-1-카복실산 3 급-부틸 에스테르:

[0550] Boc-29.43의 제조 방법 A에 따라 제조하였다. 백색 고체, 61% 수율의 분석학적으로 순수한 물질, 융점 109-110 ℃. C₁₆H₂₂FNO₃(295.36): 계산치 C 65.07, H 7.51, N 4.74; 실측치 C 64.79, H 7.45, N 4.70.

4-(2-브로모페닐)-4-하이드록시피페리딘-1-카복실산 3 급-부틸 에스테르:

- [0552] Boc-29.43의 제조 방법 B에 따라 제조하였다. MS(ES): m/z 356/358[MH[†]].
- [0553] 4'-하이드록시-3-메틸-3',4',5',6'-테트라하이드로-2'H-[2,4']비피리디닐-1'-카복실산 3 급-부틸 에스테르:
- [0554] Boc-29.43의 제조 방법 b에 따라 제조하였다. ¹H NMR(CDCl₃, 200 MHz): δ = 1.50(s, 9H), 2.22-2.40(m, 4H), 2.50(s, 3H), 3.33(brt, J = 12.8 Hz, 2H), 4.10(brd, J = 10.8 Hz, 2H), 7.17(dd, J = 4.7, 7.7 Hz, 1H), 7.50(dd, J = 1.2, 7.7 Hz, 1H), 8.37(dd, J = 1.2, 4.8 Hz, 1H).
- [0555] 아미노알콜의 Boc-보호에 대한 일반적인 과정:
- [0556] CH₂Cl₂(20 ㎡) 중의 아미노알콜(1.99 밀리몰) 용액에 Boc₂O(440 mg, 2.02 밀리몰) 및 DMAP(5 mg, 0.04 밀리몰) 를 가한다. 주변 온도에서 18 시간 동안 교반한 후에, 반응 혼합물을 농축시키고 건조시켜 Boc-보호된 아미노 알콜을 수득하고, 이를 전형적으로는 다음 단계에 직접 사용하거나 또는 크로마토그래피에 의해 정제시킨다.
- [0557] 4-하이드록시-4-페닐피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.7):
- [0558] 일반적인 과정에 따라 제조하였다. 100% 수율. 백색 고체, 융점 120-121 ℃. H NMR(CDCl₃, 200 MHz): δ = 1.48(s, 9H), 1.65-1.80(m, 2H), 2.00(brdt, J = 4.7, 13.0 Hz, 2H), 3.24(brt, J = 11.7 Hz, 2H), 4.02(brd, J = 11.7 Hz, 2H), 7.21-7.41(m, 3H), 7.44-7.52(m, 2H).
- [0559] 4-(4-플루오로페닐)-4-하이드록시피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.18):
- [0560] 일반적인 과정에 따라 제조하였다. 86% 수율. H NMR(CDCl₃, 200 MHz): δ = 1.48(s, 9H), 1.65-1.80(m, 2H), 1.97(brdt, J = 4.8, 12.4 Hz, 2H), 3.23(brt, J = 12.8 Hz, 2H), 4.03(brd, J = 12.8 Hz, 2H), 6.99-7.10(m, 2H), 7.40-7.50(m, 2H).
- [0561] 알콜의 메틸화에 대한 일반적인 과정:
- [0562] 얼음/물에 의해 냉각시킨, 무수 THF(5 ml) 중의 알콜(0.55 밀리몰) 용액에 KHMDS(톨루엔 중의 0.5 M, 1.6 ml, 0.80 밀리몰)를 가한다. 30 분 후에, 메틸 요오다이드(50 μl, 0.80 밀리몰)를 가한다. 백색 침전물이 거의즉시 나타난다. 이어서 냉각 욕을 제거하고, 반응 혼합물을 주변 온도에서 교반한다. TLC에 의해 판단 시, 상기 반응은 대개 1 시간 후에 완료되며; 출발 알콜이 여전히 존재하는 경우, 추가적인 KHMDS 및 메틸 요오다이드를 가하여 상기 반응을 완료시킨다. 후처리를 위해, 포화된 NaHCO3 용액 및 물을 가하고, 혼합물을 CH2Cl2(4 x 15 ml)로 추출한다. 합한 유기 충들을 염수로 세척하고, MgSO4 상에서 건조시키고, 여과하고 농축시킨다. 조물질을 전형적으로는 다음 단계에 직접 사용하거나 또는 크로마토그래피에 의해 정제시킨다.
- [0563] 4-(2-클로로페닐)-4-메톡시피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.42) 및 4-(2'-클로로비페닐-2-일)-4-메톡시피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.46):
- [0564] 일반적인 과정에 따라 Boc-29.43 및 Boc-29.47의 혼합물로부터 95%의 수율로 합성하였다. Boc-29.42: ¹H NMR(CDCl₃, 200 MHz): δ = 1.47(s, 9H), 1.92(m_c, 2H), 2.38(brd, J = 13.8 Hz, 2H), 3.02(s, 3H), 3.20(brt, J = 12.6 Hz, 2H), 3.99(brd, J = 10.2 Hz, 2H), 7.15-7.43(m, 4H). Boc-29-46: ¹H NMR(CDCl₃, 200 MHz): 대부분의 피크들이 2-클로로페닐 화합물의 것들과 겹친다. δ = 1.41(s, 9H), 3.01(s, 3H), 6.96-7.03(m, 1H), 7.60-7.65(m, 1H).

[0565] 4-메톡시-4-페닐피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.27):

[0566] 일반적인 과정에 따라 100% 수율로 합성하였다. IR(필름): v = 3059 cm⁻¹, 2974, 2933, 2874, 1693, 1446, 1422, 1365, 1281, 1246, 1214, 1169, 1130, 1070, 1024, 893, 864, 761, 700. ¹H NMR(CDCl₃, 200 MHz): δ = 1.47(s, 9H), 1.85(brdt, J = 2.2, 12.0 Hz, 2H), 2.03(brd, J = 12.6 Hz, 2H), 2.98(s, 3H), 3.18(brt, J = 12.3 Hz, 2H), 3.97(brd, J = 11.0 Hz, 2H), 7.26-7.40(m, 5H).

[0567] 4-(4-플루오로페닐)-4-메톡시피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.48):

[0568] 일반적인 과정에 따라 70% 수율로 합성하였다. ¹H NMR(CDCl₃, 200 MHz): δ = 1.47(s, 9H), 1.81(brdt, J = 3.6, 13.2 Hz, 2H), 2.00(brd, J = 12.2 Hz, 2H), 2.96(s, 3H), 3.16(brt, J = 11.9 Hz, 2H), 3.97(brd, J = 10.2 Hz, 2H), 7.00-7.10(m, 2H), 7.30-7.40(m, 2H).

[0569] Boc 그룹의 제거에 대한 일반적인 과정:

[0570] 아세틸 클로라이드(1.5 ml, 21 밀리몰)를 주변 온도에서 무수 메탄올(8 ml)에 적가한다. 10 분 후에, 상기 용액을 Boc-보호된 아민(0.9 밀리몰)의 용액에 가하고 상기 반응물을 주변 온도에서 교반한다. TLC에 의해 판단시, 출발 물질의 소비가 완료되면, 용매를 증발시킨다. 잔사(아민 하이드로클로라이드)를 아미드 형성에 직접사용한다.

[0571] 4-(2-클로로페닐)-4-메톡시피페리딘 하이드로클로라이드(29.42) 및 4-(2'-클로로비페닐-2-일)-4-메톡시피페리딘 하이드로클로라이드(29.46):

[0572] Boc-29.42 및 Boc-29.46의 혼합물로부터 유도된 물질을 사용하여 일반적인 과정을 수행하였다. 담황색 포움, 100% 수율. 29.42: MS(ES): m/z 226.0/228.0[MH[†]], 194.0/196.0(100/35)[MH[†]-MeOH]. ¹H NMR(CDCl₃, 200 MHz): δ = 2.2-2.5(brs, 2H), 2.5-2.7(brs, 2H), 2.99(s, 3H), 3.42(brs, 4H), 7.25-7.45(m, 4H). t_R(비-극성) = 3.8 min. 29.46: MS(ES): m/z 302.0/304.0(4/1)[MH[†]], 270.0/272.0(100/35)[MH[†]-MeOH]. ¹H NMR에서 뚜렷한 피크는 없었다. t_R(비-극성) = 4.7 min.

[0573] 4-(2-클로로페닐)-피페리딘-4-올(29.43) 및 4-(2'-클로로비페닐-2-일)-피페리딘-4-올(29.47):

[0574] 메탄올(3 mℓ) 중의 아민 Boc-29.43 및 Boc-29.47(34 mg, 0.11 밀리몰)의 혼합물 및 H₂SO₄(20 mg, 0.20 밀리몰) 용액을 주변 온도에서 3.5 일 동안 교반하였다. 포화된 NaHCO₃를 가하고, 혼합물을 CH₂Cl₂(5 x 10 mℓ)로 추출 하였다. 합한 유기 충들을 MgSO₄ 상에서 건조시키고, 여과하고 농축시켜 ~ 15%의 클로로비페닐 피페리딘 29.47을 함유하는 29.43 12 mg(0.057 밀리몰, 52%)을 수득하였다. 29.43: ¹H NMR(CDCl₃, 200 MHz): δ = 1.90-2.10(brm, 2H), 2.28(brdt, J = 4.4, 13.6 Hz, 2H), 2.8-3.1(brm, 2H), 3.1-3.3(brm, 2H), 7.15-7.45(m, 3H), 7.55-7.61(m, 2H). 29.47의 유일한 구별 가능한 피크: ¹H NMR(CDCl₃, 200 MHz): δ = 6.98-7.16(m, 1H).

[0575] 4-메톡시-4-페닐피페리딘 하이드로클로라이드(29.27):

[0576] 일반적인 과정에 따랐다. 베이지색 고체, 97% 수율. H NMR(CDC1₃, 200 MHz): δ = 2.19(brd, J = 14.2 Hz, 2H), 2.24-2.44(brm, 2H), 2.98(s, 3H), 3.40(brs, 4H), 7.27-7.44(m, 5H), 9.6(brs, 2H).

[0577] 4-(4-플루오로페닐)-4-메톡시피페리딘 하이드로클로라이드(29.48):

- [0578] 일반적인 과정에 따랐다. 베이지색 고체, 99% 수율. ¹H NMR(CDCl₃, 200 MHz): δ = 2.10-2.25(brm, 2H), 2.25-2.45(brm, 2H), 2.96(s, 3H), 3.39(brs, 4H), 7.00-7.15(m, 2H), 7.25-7.38(m, 2H), 9.6(brs, 2H).
- [0579] Boc-보호, 메틸화 및 탈보호의 일반적인 과정에 따라, 하기 7 개의 피페리딘을 제조하였다.
- [0580] 4-(4-클로로페닐)-4-메톡시피페리딘 하이드로클로라이드 염(29.114):
- [0581] 44% 수율. H NMR(CDCl₃, 200 MHz): δ = 2.21(brs, 4H), 2.97(s, 3H), 3.36(brs, 4H), 7.35(m, 4H).
- [0582] 4-메톡시-4-(3-트리플루오로메틸페닐)-피페리딘 하이드로클로라이드 염(29.115):
- [0583] 49% 수율. H NMR(CDCl₃, 200 MHz): δ = 1.99(brs, 4H), 2.99(s, 3H), 3.20(brs, 2H), 3.99(brs, 2H), 7.55(m, 4H).
- [0584] 4-이소프로필-4-메톡시피페리딘 하이드로클로라이드(29.116):
- [0585] 18% $\dot{\gamma}$ 8. H NMR(CDCl₃, 200 MHz): δ = 0.85(d, 6H, J = 6.6 Hz), 1.54(brs, 4H), 1.94(m, 1H), 2.96(brs, 2H), 3.20(s, 3H), 3.87(brs, 2H).
- [0586] 4-메톡시-4-(3-메톡시페닐)-피페리딘 하이드로클로라이드(29.121):
- [0587] 42% 수量. 1 H NMR(CDC1₃, 200 MHz): δ 2.25(m, 4H), 2.99(s, 3H), 3.31(m, 4H), 3.80(s, 3H), 6.96(m, 3H), 7.32(t, 1H, J = 7.6 Hz).
- [0588] 4-벤질-4-메톡시피페리딘 하이드로클로라이드 염(29.129):
- [0589] 49% 수율. H NMR(CDCl₃, 200 MHz): $\delta = 1.89(m, 4H)$, 2.86(s, 2H), 3.14(brs, 4H), 3.34(brs, 2H), 3.37(s, 3H), 7.22(m, 5H).
- [0590] 4-메톡시-4-0-톨릴피페리딘 하이드로클로라이드 염(29.130):
- [0591] 38% 수율. 1 H NMR(CDCl₃, 200 MHz): δ = 2.12(m, 2H), 2.48(brs, 2H), 2.53(s, 3H), 2.97(s, 3H), 3.33(brs, 4H), 7.20(brs, 4H).
- [0592] 4-메톡시메틸-4-페닐피페리딘 하이드로클로라이드 염(29.131):
- [0594] 4-메톡시-4-(2-메톡시페닐)-피페리딘(29.124):
- [0595] Boc-29.70을 무수 MeOH 30 ml에 용해시키고 이어서 10 방울의 농 H₂SO₄를 가하였다. 전체 혼합물을 N₂ 하에서 밤새 환류시켰다. 가열 후에, 트리에틸아민을 pH가 7 내지 8이 될 때까지 가하였다. 농축시키고 이어서 6 ml의 포화된 NaHCO₃에 용해시키고, 5 x 12 ml의 EtOAc로 추출하고, 2 x 10 ml의 염수로 세척하고 MgSO₄ 상에서 건조시켰다. 여과 및 농축시켜 베이지색 오일 5.1 mg(100%)을 수득하였다. 상기 오일을 정제 없이 추가의 반응에 사용하였다.

[0596] 비스-(2-클로로에틸)-카르밤산 3 급-부틸 에스테르(34):

[0597] 얼음/물에 의해 냉각시킨, CH₂Cl₂(70 ml) 중의 33(10.05 g, 56.3 밀리몰) 및 Boc₂O(13.6 g, 62.3 밀리몰)의 현 탁액에 트리에틸아민(9.5 ml, 68.2 밀리몰)을 가하였다. 45 분 후에, 냉각 욕을 제거하고, 반응 혼합물을 주 변 온도에서 밤새 교반하였다. 물(50 ml)을 가하고, 혼합물을 에테르:헥산(1:1)(3 x 100 ml)으로 추출하였다. 합한 유기 충들을 물(2 x) 및 염수로 세척하고, MgSO₄ 상에서 건조시키고 농축시켜, 34와 Boc₂O의 1:1 혼합물인 담황색 액체를 수득하였다. 따라서 상기 반응을 상기 물질을 사용하여 2 회, 즉 먼저 5.89 g(33.0 밀리물)의 33과 4.8 ml의 NEt₃(34 밀리몰), 이어서 2.5 g(14 밀리몰)의 33과 2.3 ml의 NEt₃(17 밀리몰)을 사용하여 반복하였다. 이에 의해 담황색 액체로서, ¹H NMR 및 TLC에 의해 순수한, 공지된 14.887 g(61.5 밀리몰, 99%)의 아민 34을 수득하였다. ¹H NMR(CDCl₃, 200 MHz): $\delta = 1.47(s, 9H)$, 3.55-3.70(brm, 8H).

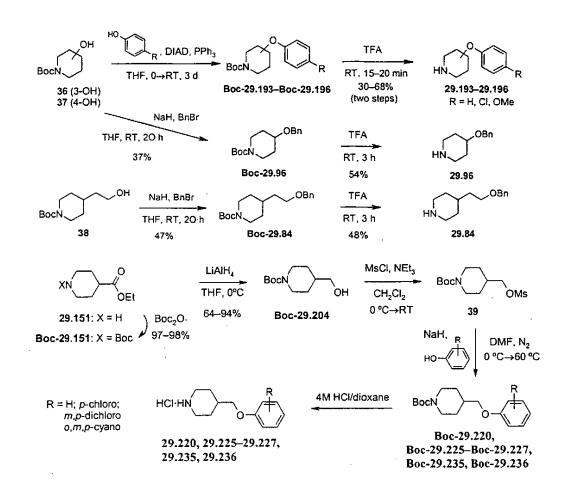
[0598] 4-(2-클로로페닐)-4-시아노피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.237):

[0599] 얼음/물에 의해 냉각시킨, DMF(110 ml) 중의 NaH(60% 오일 현탁액, 7.37 g, 184.4 밀리몰)의 현탁액에 20 분에 걸쳐 DMF(20 ml) 중의 니트릴 35.237(9.782 g, 64.52 밀리몰) 용액을 가하였다. 수소가 방출되었으며, 반응 혼합물이 황색으로 변하였다. 30 분 후에, DMF(15 ml) 중의 클로로아민 34(14.88 g, 61.45 밀리몰) 용액을 가 하였다. 15 분 후에, 냉각 욕을 제거하고 반응 혼합물을 5.5 시간 동안 75 ℃(욕 온도)로 가열하였다. TLC 는 상기 두 출발 물질이 모두 완전히 소비되었음을 가리켰다. DMF를 증발시켰다. 물과 에테르(각각 200 ml)의 첨가 시 고체가 분리되었으며, 이를 여과하고, 에테르와 EtOAc로 철저히 세척하고, 건조시켜 8.018 g(24.99 밀리몰, 41%)의 Boc-29.237을 수득하였다. 합한 여액과 세척물의 층들을 분리시키고, 수성 층을 추가 의 에테르(2 x 150 mℓ)로 추출하였다. 합한 유기 층들을 5% HOAc, 물, 1N NaOH, 물 및 염수로 세척하고, MgSO4 상에서 건조시켰다. 상기 용액을 실리카 겔 패드를 통해 여과하였다. 농축 시 고체가 침전되었으며, 이를 여과하고 에테르와 헥산으로 세척하고 건조시켜 6.138 g(19.13 밀리몰, 31%)의 Boc-29.237을 수득하였다. 모액을 농축시키고 잔사를 실리카 겔 상에서 컬럼 크로마토그래피에 의해 정제시켜 2.885 g(8.99 밀리몰, 15 %)의 Boc-29.237을 수득하였다. 전체 수율은 17.04 g(53.12 밀리몰, 86%)이었다. 융점 165-166 ℃. $NMR(CDCl_3, 200 \text{ MHz}): \delta = 1.48(s, 9H), 2.00(brdt, J = 4.2, 13.0 \text{ Hz}, 2H), 2.43-2.53(m, 2H), 3.28(brt, J = 4.2, 13.0 \text{ Hz})$ = 12.8 Hz, 2H), 4.28(brd, J = 13.2 Hz, 2H), 7.28-7.50(m, 4H), C₁₇H₂₁C1N₂O₂(320.82): 계산치 C 63.65, H 6.60, Cl 11.05, N 8.73; 실측치 C 63.82, H 6.61, Cl 10.90, N 8.72.

[0600] 4-(2-클로로페닐)-피페리딘-4-카보니트릴 하이드로클로라이드(29.237):

[0601] 디옥산 중의 HCl 용액(4 M, 200 mℓ, 800 밀리몰)을 Boc-보호된 아민 Boc-29.237(18.4 g, 57..4 밀리몰)에 가하였다. 1.5 시간 후에, 용매를 증발시키고 잔사를 진공 하에서 건조시켜 무색 고체로서 14.8 g(57.4 밀리몰, 100%)의 29.237을 수득하였다. 융점 241-243 ℃. MS(ES) 221[MH⁺], t_R(방법 B) = 8.15 min. ¹ H NMR(CDCl₃, 200 MHz): δ = 2.5-2.8(brm, 4H), 3.4-3.6(brm, 2H), 3.6-3.8(brm, 2H), 7.33-7.39(m, 3H), 7.48-7.53(m, 1H), 10.01(brs, 2H), C₁₂H₁₄Cl₂N ₂(257.16): 계산치 C 56.05, H 5.49, Cl 27.57, N 10.89; 실측 치 C 55.67, H 5.48, Cl 27.86, N 10.61.

- [0602] 하기의 화합물들을 유사한 방식으로 제조하였다:
- [0603] **4-시아노-4-(2-메톡시페닐)-피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-26.240):** MS(ES) 217.0[MH⁺-Boc], t_R (방법 A) = 9.9 min.
- [0604] 4-(3-클로로페닐)-4-시아노피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-26.241): MS(ES) 221.0[MH -Boc].
- [0605] 4-시아노-4-(3-메톡시페닐)-피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-26.242): MS(ES) 217.0[MH -Boc].


- [0606] **4-(4-클로로페닐)-4-시아노피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-26.243):** MS(ES) 221.0[MH⁺-Boc], t_R (방법 A) = 10.7 min.
- [0607] **4-시아노-4-(4-메톡시페닐)-피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-26.244):** ¹H NMR(CDCl₃, 200 MHz): δ = 1.48(s, 9H), 1.90(brdt, J = 4.3, 12.8 Hz, 2H), 2.02-2.14(m, 2H), 3.19(brt, J = 12.4 Hz, 2H), 3.81(s, 3H), 4.28(brd, J = 13.6 Hz, 2H), 6.93 및 7.38(AA'BB', 4H).
- [0608] **4-(2-메톡시폐닐)-피페리딘-4-카보니트릴 하이드로클로라이드(29.240):** MS(ES) 217.07[MH[†]], t_R(방법 B) = 7.70 min.
- [0609] **4-(3-클로로페닐)-피페리딘-4-카보니트릴 하이드로클로라이드(29.241):** MS(ES) 220.98[MH[†]], t_R(방법 B) = 8.57 min.
- [0610] **4-(3-메톡시페닐)-피페리딘-4-카보니트릴 하이드로클로라이드(29.242):** MS(ES) 217.02[MH[†]], t_R(방법 B) = 7.28 min.
- [0611] **4-(4-클로로페닐)-피페리딘-4-카보니트릴 하이드로클로라이드(29.243):** MS(ES) 220.96[MH[†]], t_R(방법 B) = 8.83 min.
- [0612] **4-(4-메톡시페닐)-피페리딘-4-카보니트릴 하이드로클로라이드(29.244):** MS(ES) 217.02[MH[†]], t_R(방법 B) = 7.43 min.
- [0613] 프리델-크라프츠 반응에 대한 일반적인 과정:
- [0614] 4-이소프로필피페리딘-4-올 29.4(62.4 mg, 0.436 밀리몰) 및 AlCl₃(178 mg, 3 당량)를 벤젠(15 mℓ)에 현탁시키고, 아르곤 하에서 24 시간 동안 환류시켰다. 반응 혼합물을 얼음-물 20 mℓ에 붓고, 5 x 10 mℓ의 EtOAc로 추출하고, 2 x 15 mℓ의 염수로 세척하고, MgSO₄ 상에서 건조시켰다. 용매를 제거하고 TLC에 의해 정제시킨후에, 갈색을 띤 오일 29.110(25.3 mg, 29%)을 수득하였다.
- [0615] 29.128 및 Bn-19.108을 동일한 방법에 의해 제조하였다.
- [0616] **1-벤질-4-메틸-4-페닐피페리딘(Bn-29.108):** ¹H NMR(CDCl₃, 200 MHz): δ 1.20(m, 3H), 1.78(m, 2H), 2.13(m, 2H), 2.45(m, 4H), 3.45(s, 2H), 7.13-7.32(m, 10H).
- [0617] **4-에틸-4-페닐피페리딘(29.128):** ¹H NMR(CDCl₃, 200 MHz): 8 0.56(t, 3H, J=7.3Hz), 1.58(m, 2H), 1.87(m, 2H), 2.19(m, 2H), 3.03(brs, 2H), 3.56(brs, 2H), 7.10-7.37(m, 5H).
- [0618] **4-이소프로필-4-페닐피페리딘(29.110):** ¹H NMR(CDCl₃, 200 MHz): δ 1.12-1.20(m, 2H), 1.27(d, 6H), 1.41-1.63(m, 3H), 2.28(brs, 1H), 2.50(t, 2H, J=11.2Hz), 3.09(d, 2H, J=12.2Hz), 4.49(s, 2H), 7,14-7,31(m, 5H).
- [0619] 4-페닐피폐리딘-4-카복실산 메틸 에스테르(29.02):
- [0620] 29.85(113 mg, 0.3 밀리몰) 및 메탄올(50 ml)을 함께 합한 후에, 2 방울의 농축된 H₂SO₄를 가하고 상기 용액을 가열 환류시켰다. 14 시간 후에, 용매를 제거하고 2N NaOH를 pH가 13 내지 14가 될 때까지 가하였다. 3 x 10 ml의 CH₂Cl₂로 추출하고, 2 x 10 ml의 염수로 세척하고, MgSO₄ 상에서 건조시켰다. 용매를 제거한 후에, 백

색 고체 29.92(20 mg, 31% 수율)를 수득하였다. ¹H NMR(CDCl₃, 200 MHz): δ = 1.92(m, 2H), 2.52(m, 2H), 2.78(m, 2H), 3.02(m, 2H), 3.65(s, 3H), 7.20-7.42(m, 5H).

- [0621] 29.95 및 29.118을 각각, 용매로서 메탄올 대신에 에탄올 및 이소프로판올을 사용하여 동일한 방법에 의해 제조하였다.
- [0622] **4-페닐피페리딘-4-카복실산 에틸 에스테르(29.05):** 25% 수율. ¹H NMR(CD₃OD, 200 MHz): δ = 1.16(t, 3H, J=7Hz), 1.91(m, 2H), 2.52(m, 2H), 2.80(m, 2H), 3.03(m, 2H), 4.11(q, 2H, J=11.5Hz), 7.20-7.41(m, 5H).
- [0623] **4-페닐피페리딘-4-카복실산 이소프로필 에스테르(29.118):** 12% 수율. ¹H NMR(CDCl₃, 200 MHz): δ = 1.17(d, 6H, J=3.1Hz), 2.23(brs, 2H), 2.64(brs, 2H), 3.01(brs, 2H), 3.39(brs, 2H), 5.03(m, 1H), 7.27-7.34(m, 5H).
- [0624] 실시예 2: 비 상업적인 3- 및 4-일 치환된 피페리딘 29의 제조
- [0625] [반응식 2]

[0627] [0628]

[0626] 비-상업적인 3- 및 4-일 치환된 피페리딘 29의 제조

4-(4-클로로페녹시)-피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.194)

[0629] THF(15 mℓ) 중의 DIAD(11.4 mℓ, 55.0 밀리몰) 용액을 35 분에 걸쳐 THF(40 mℓ)의 4-하이드록시피페리딘-1-카복실산 3 급-부틸 에스테르(10.06 g, 50.0 밀리몰), 4-클로로페놀(5.1 mℓ, 50.4 밀리몰) 및 트리페닐포스핀(14.44 g, 55.1 밀리몰)의 빙 냉 용액에 적가하였다. 실온에서 2.9 일 후에, 용매를 회전 증발기 상에서 제거하여 점색 액체가 남았으며; 핵산을 가하고 이어서 증발시켜 고체가 남았다. 에테르(25 mℓ), 이어서 핵산(100

ml)을 가하고 고체를 여과하고 핵산으로 세척하였다. 여액을 회전 증발기 상에서 농축시켜 금색의 점성 액체 (19.6 g)가 남았다. 조 생성물을 그 자체로서 사용하였다. ESIMS 311.9/313.8(25/10)[MH[†]], 296.9/298.8[MH[†] - C₄H₉ + CH₃CN], 255.9/257.8(94/32)[MH[†] - C₄H₉], 212.0/214.0(13/5)[MH[†] - C₄H₉ - CO₂].

[0630] 4-(4-클로로페녹시)-피페리디늄 클로라이드(29.194):

- [0631] 트리플루오로아세트산(40 ml)을 빙 수 욕에서 냉각시킨 조 카바메이트 Boc-29.194(18.6 g, 59.7 밀리몰)에 가하였다. 1 분 후에, 반응물을 15 분간 실온에서 교반하고, 이어서 회전 증발기 상에서 농축시켰다. 에테르 (200 ml)를 가하고 이를 3 M NaOH(3 x 50 ml) 및 물(50 ml)로 세척하였다. 생성물을 1 M HC1(3 x 50 ml)로 추출하고 수성 상을 3 M NaOH(60 ml)로 염기성으로 만들었다. 유리 염기를 DCM(1 x 50 ml, 이어서 2 x 25 ml)으로 추출하고, 건조(MgSO₄)시키고, 여과하고 오일로 농축시켰다. 하이드로클로라이드 염을 에테르 중의 HC1(HC1-포화된 에테르 200 ml + 에테르 150 ml)를 적가하여 유리 염기의 메탄올(6 ml) 용액으로부터 침전시켰다. 상기 염을 여과에 의해 수거하고 에테르(100 ml)로 세척하여 회색 고체(7.97 g, 4-하이드록시피페리딘-1-카복실산 3 급-부틸 에스테르로부터 68%)를 수득하였다. ESIMS(유리 염기) 212.0/213.9(100/35)[MH[†]].
- [0632] 29.193 및 29.195-29.196을 동일한 방식으로 제조하였다.
- [0633] 벤질 에테르 제조에 대한 일반적인 과정:
- [0634] THF(2 ml) 중의 4-(2-하이드록시에틸)-피페리딘-1-카복실산 3 급-부틸 에스테르(114.7 mg, 0.5 밀리몰) 용액을 NaH(13.2 mg, 1.1 당량) 및 THF(2 ml) 현탁액에 실온에서 N₂ 하에 가하였다. 30 분 후에, THF(2 ml) 중의 벤질 브로마이드(65.4 μl, 1.1 당량) 용액을 가하였다. 20 분 후에, 용매를 제거하고 H₂O 10 ml에 붓고, 3 x 10 ml의 EtOAc로 추출하고, H₂O 10 ml 및 염수 10 ml로 세척하고, MgSO₄ 상에서 건조시켰다. 용매를 제거하고 실리카 겔에 의해 정제시킨 후에, Boc-29.84를 수득하였다(75.5 mg, 47% 수율). Boc-29.84에, TFA(1 ml)를 가하고 3 시간 동안 교반하였다. 과잉의 TFA를 제거하고 pH가 13이 될 때까지 2N NaOH로 중화시키고, H₂O 8 ml에 용해시키고, 5 x 8 ml의 EtOAc로 추출하고, 염수 10 ml로 세척하고, MgSO₄ 상에서 건조시켰다. 용매를 제거하여 29.84(24.6 mg, 48% 수율)를 수득하였다.
- [0635] 29.96을 동일한 경로에 의해 제조하였다.
- [0636] **4-(2-벤질옥시에틸)-피폐리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.84):** ¹H NMR(CDC1₃, 200 MHz): δ 1.13(m, 2H), 1.45(s, 9H), 1.59(m, 5H), 2.67(t, 2H, J=12.1Hz), 3.50(t, 2H, J=6Hz), 4.09(d, 2H, J=12.8Hz), 4.49(s, 2H), 7.26-7.35(m, 5H).
- [0637] **4-(2-벤질옥시에틸)-피페리딘(29.84):** ¹H NMR(CDCl₃, 200 MHz): δ 1.15(m, 2H), 1.58(m, 5H), 2.60(brs, 2H), 3.04(brs, 2H), 3.51(t, 2H, J=5.6Hz), 4.49(s, 2H), 7.26-7.35(m, 5H).
- [0638] **4-벤질옥시피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.96):** 37% 수율. ¹H NMR(CDCl₃, 200 MHz): 8 1.45(s, 9H), 1.90(m, 2H), 1.84(m, 2H), 3.10(m, 2H), 3.56(m, 1H), 3.77(m, 1H), 4.55(s, 2H), 7.25-7.35(m, 5H).
- [0639] **4-벤질옥시피페리딘(29.96):** 54% 수율. H NMR(CDCl₃, 200 MHz): δ 1.42(brs, 2H), 1.88(brs, 2H), 2.56(brs,

2H), 3.03(brs, 2H), 3.41(m, 1H), 4.55(s, 2H), 7.25-7.35(m, 5H).

- [0640] 아릴옥시메틸피페리딘에 대한 일반적인 과정(J. Med. Chem., 1997, 40, 50-59)
- [0641] 피페리딘-1,4-디카복실산 1-3 급-부틸 에스테르 4-에틸 에스테르(Boc-29,151):
- [0642] 1 당량의 에틸 이소니페코테이트를 에틸 아세테이트(무수)에 용해시키고 빙-욕에서 0 ℃로 냉각시켰다. 이어서 1 당량의 Boc 무수물을 에틸 아세테이트에 용해시키고 교반 중인 반응 혼합물에 적가하고 서서히 실온에 도달하게 하고 밤새 교반하였다. 반응 혼합물을 물에 붓고 이어서 1 회 분취량의 물, 0.1 M HCl, 포화된 중탄산나트륨 및 염수로 세척하였다. 이를 황산 나트륨으로 건조시키고, 여과하고 농축시켜 등명한 무색 오일을 수득하였다.

[0643] 4-하이드록시메틸피페리딘-1-카복실산 3 급-부틸 에스테르(Boc-29.204):

[0644] 1 당량의 Boc-29.151을 THF(무수)에 용해시키고 병욕에서 0 ℃로 냉각시키고, 이어서 0.7 당량의 LiAlH₄(THF 중의 1 M)를 상기 교반 중인 용액에 적가하고 0 ℃에서 2 시간 동안 교반하였다. 이어서 반응 혼합물을 물 및 2 M 수산화 나트륨으로 0 ℃에서 급냉시키고 프릿화된 깔때기를 통해 여과하고 고체를 에틸 아세테이트로 세척하였다. 여액을 물, 염수로 세척하고, 황산 나트륨으로 건조시키고, 여과하고 농축시켰다.

[0645] 4-메탄설포닐옥시메틸피페리딘-1-카복실산 3 급-부틸 에스테르(39):

[0646] 1 당량의 Boc-29.204를 DCM(무수)에 용해시키고 1.2 당량의 TEA를 또한 반응 혼합물에 가하고 병욕에서 0 ℃로 냉각시켰다. 1.1 당량의 메탄설포닐 클로라이드를 반응 혼합물에 가하고 서서히 실온으로 되게 하였다. 반응 혼합물을 클로로포름과 물 사이에 분배시키고 수성 상을 클로로포름으로 3 회 세척하였다. 클로로포름 세척물을 합하고, 황산 나트륨으로 건조시키고, 여과하고 농축시켜 밝은 갈색/황색 오일을 수득하였으며, 이는 냉장고에서 정치 시 밝은 갈색을 띤 고체로 변하였다.

[0647] 4-아릴옥시메틸피페리딘-1-카복실산 3 급-부틸 에스테르:

[0648] 1.1 당량의 적합한 페놀을 DMF(무수)에 용해시키고 빙욕에서 0 ℃로 냉각시키고, 이어서 1.0 당량의 NaH를 가하고 서서히 실온에 도달하게 하면서 1 시간 동안 0 ℃에서 교반하였다. 메실레이트 39를 최소량의 DMF(무수)에 용해시키고 반응 혼합물에 적가하고 오일욕에서 밤새 60 ℃로 가열하였다. 반응 혼합물을 감압을 통해 농축시키고 이어서 에테르와 0.5 M 수산화 나트륨 사이에 분배시켰다. 상기 에테레이트를 추가의 2 회 분취량의 0.5 M 수산화 나트륨, 1 회 분취량의 물 및 1 회 분취량의 염수로 세척하고, 황산 나트륨으로 건조시키고, 여과하고 농축시켜 회색 내지 백색 고체를 수득하였다.

[0649] 4-아릴옥시메틸피페리딘:

[0650] 1 당량의 Boc-보호된 아릴옥시메틸피페리딘을 디옥산 중의 4 M HCl 25 내지 30 ml에 용해시키고 실온에서 2 시간 동안 교반하였다. 반응을 이때까지 완료시켰다. 이어서 반응 혼합물을 감압을 통해 농축시키고 건조시켰다.

[0651] 4-페녹시메틸-피페리딘-1-카복실산 3 급-부틸 에스테르

- [0652] MS(ES)
- [0653] 4-(4-클로로페녹시메틸)-피페리딘-1-카복실산 3 급-부틸 에스테르
- [0654] MS(ES) 이온화 없음[MH⁺]. t_R(방법 A) = 12.1 min.

- [0655] 4-(4-시아노페녹시메틸)-피페리딘-1-카복실산 3 급-부틸 에스테르 MS(ES) 이온화 없음[MH^{\dagger}], t_{R} (방법 A) = 10.7 min. [0656] 4-(3,4-디클로로폐녹시메틸)-피페리딘-1-카복실산 3 급-부틸 에스테르 [0657] MS(ES) 이온화 없음[MH^{\dagger}], $t_{\mathbb{R}}$ (방법 A) = 12.7 min. [0658] [0659] 4-(3-시아노페녹시메틸)-피페리딘-1-카복실산 3 급-부틸 에스테르 MS(ES) 이온화 없음[MH[†]], t_R(방법 A) = 10.9 min. [0660] 4-(2-시아노폐녹시메틸)-피페리딘-1-카복실산 3 급-부틸 에스테르 [0661] MS(ES) 316.89[MH⁺], $t_R(방법 A) = 10.1 min$. [0662] 4-페녹시메틸피페리딘; 하이드로클로라이드 [0663] [0664] MS(ES) 191.93[MH[†]], $t_R(방법 A) = 3.6 min$. [0665] 4-(4-클로로페녹시메틸)-피페리딘; 하이드로클로라이드 [0666] ms 데이터 없음 [0667] 4-(3,4-디클로로페녹시메틸)-피페리딘; 하이드로클로라이드 MS(ES) 259.80[MH[†]], $t_R(방법 A) = 4.6 min$. [0668] [0669] 4-(피페리딘-4-일메톡시)-벤조니트릴; 하이드로클로라이드 [0670] MS(ES) 216.93[MH[†]], $t_R(방법 A) = 3.2 min$. [0671] 3-(피페리딘-4-일메톡시)-벤조니트릴; 하이드로클로라이드 MS(ES) 216.94[MH[†]]. tp(방법 A) = 3.5 min. [0672] [0673] 2-(피페리딘-4-일메톡시)-벤조니트릴; 하이드로클로라이드 MS(ES) 217.0[MH⁺], $t_R(방법 A) = 8.3 \text{ min.}$ [0674] [0675]페닐 에테르를 미츠노부(Mitsunobu) 반응에 의해 N-Boc-하이드록시피페리딘 36 및 37 및 페놀로부터, 메실레이 트 형성 및 페놀레이트에 의한 치환을 통해 N-Boc-4-하이드록시메틸피페리딘(Boc-29.204)으로부터 합성하였다. 벤질 에테르를 벤질 브로마이드에 의한 알킬화에 의해 제조하였다. 벤질 피페리딘 29.28, 29.29, 29.81 및 29.82를 TFA/Et₃SiH에 의한 환원(J. Med. Chem. 1992, 35, 4903-4910)에 의해 상응하는 케톤으로부터 제조하였
- [0676] 실시예 3: 비 상업적인 피페라진 및 호모피페라진 29의 제조
- [0677] [반응식 3]

다.

[0678] 비-상업적인 피페라진 및 호모피페라진 29의 제조

[0679] [0680]

[0683]

치환된 (페닐프로필)피페라진을 상업적으로 입수할 수 있는 알릴프로피온산 40으로부터 출발하여, 염화 티오닐을 사용한 산 클로라이드의 형성, 피페라진과의 반응 및 LiAlH4에 의한 상기 형성된 아미드의 아민 29로의 환원에 의해, 또는 산과 일 보호된 피페라진과의 EDC 커플링에 이은 탈보호 및 아민 29로의 환원에 의해 제조하였다. 후자의 시퀀스를 또한 페닐프로필호모피페라진(29.192)의 제조에 사용하였다. 또한 알킬아릴피 페라진을 모노-Boc-보호된 유도체로부터 환원제로서 NaBH(OAc)3를 사용한 적합한 알데히드에 의한 환원적 아민화에 이은 HCI/MeOH 탈보호에 의해, 또는 26.22 및 26.31에 의한 환원적 아민화에 의해 제조하였다. 호모피페 라진 29.189를 41로부터 부호발트-하르트비히(Buchwald-Hartwig) 커플링에 의해 제조하였다. 상기 피페라지닐 아세트아미드 29.200 및 29.206을 니트로페닐-피페라진 42로부터 각각 4 또는 5 단계로 제조하였다.

[0681] 또한, 1-(2-메탄설피닐페닐)-피페라진(29.238)을 나트륨 페리오데이트에 의한 산화에 의해 티오메틸 화합물 29.228로부터 제조하였다. 메틸 2-브로모벤조에이트와 피페라진의 S_NAr에 의해 2-피페라지닐벤즈아미드 29.239를 수득하였다. 피페라진의 프로파길 브로마이드에 의한 알킬화, (3-브로모프로프-1-이닐)-벤젠 및 4-페닐-1-부탄올의 메실레이트는 각각 1-프로프-2-이닐피페라진(29.83), 1-(3-페닐프로프-2-이닐)-피페라진 (29.21) 및 1-(4-페닐부틸)-피페라진(29.56)을 제공하였다.

[0682] Boc-보호된 피페라진 및 호모피페라진의 알데히드에 의한 환원적 아민화에 대한 일반적인 과정

4-(3-클로로벤질)-피페라진-1-카복실산 3 급-부틸 에스테르(20,24):

[0684] 무수 디클로로에탄(70 ml) 중의 피페라진-1-카복실산 3 급-부틸 에스테르(4.00 g, 21.5 밀리몰)의 용액에 주변 온도에서 3-클로로벤즈알데히드(2.49 ml, 3.08 g, 21.9 밀리몰), HOAc(2.58 ml, 2.71 g, 45.1 밀리몰) 및 NaBH(OAc)₃(5.46 g, 25.8 밀리몰)을 가한다. 주변 온도에서 3 일 간 교반한 후에, 2N NaOH(40 ml)를 가하고 충들을 분리시키고, 수성 충을 CH₂Cl₂(4 x 50 ml)로 추출한다. 합한 유기 추출물을 물(3 x 50 ml) 및 염수(80 ml)로 세척하고 MgSO₄ 상에서 건조시킨다. 조 물질을 실리카 겔 상에서 핵산:EtOAc 혼합물로 용출시키면서 크

로마토그래피에 의해 정제시켜 황색 오일로서 표제 화합물 5.83~g(18.8~ 밀리몰, 87%)을 수득한다. MS(ES): $m/z~311.0/313.0(50/18)[MH<math>^{\dagger}$], $t_{\rm P}$ (방법 A) = $5.0~{\rm min}$.

[0685] 4-벤질-시스-3,5-디메틸피페라진-1-카복실산 3 급-부틸 에스테르(20,16):

[0686] 상응하는 3-클로로벤질 피페라진에 대한 과정을 사용하였다. 표제 화합물을 실리카 겔 상에서 크로마토그래피후에 황색 오일(34% 수율)로서 수득하였다. ¹H NMR(CDCl₃, 200 MHz): δ 7.40-7.18(m, 5H), 3.90-3.80(m, 2H), 3.81(s, 2H), 2.72-2.50(m, 4H), 1.45(s, 9H), 1.04(d, J = 6.0 Hz, 6H).

[0687] 1-벤질-시스-2,6-디메틸피페라진 디하이드로클로라이드(29.32):

[0688] HC1에 의한 Boc 제거에 대한 일반적인 과정에 따라, 표제 화합물을 베이지색 고체(정량적)로서 4-벤질-시스-3,5-디메틸피페라진-1-카복실산 3 급-부틸 에스테르로부터 수득하였다. MS(ES, 유리 염기): m/z 205.1(100)[MH[†]]. t_R(방법 B, 유리 염기) = 5.8 min.

[0689] 1-프로프-2-이닐피페라진(29.83):

[0690] 프로파길 브로마이드(1.19 g, 10 밀리몰) 및 피페라진(8.61 g, 100 밀리몰)을 THF(90 ml)에 용해시켰다. N₂ 하에서 교반하고 4 시간 동안 환류시켰다. 용매를 제거하고 H₂O 40 ml에 용해시켰다. 4 x 40 ml의 EtOAc로 추출하고, 2 x 15 ml의 염수로 세척하고, MgSO₄ 상에서 건조시켰다. 용매를 제거한 후에, 갈색을 띤 고체 29.83(285 mg, 23% 수율)을 수득하였다. ¹H NMR(CDCl₃, 200 MHz): δ = 2.28(t, 1H, J = 2.4 Hz), 2.56(m, 4H), 2.92(m, 4H), 3.30(d, 2H, J = 2.6 Hz).

[0691] 1-(3-페닐프로프-2-이닐)-피페라진(29.21):

[0692] THF(16 mℓ) 중의 피페라진(862 mg, 10.0 밀리몰) 용액에 (3-브로모프로프-1-이닐)-벤젠(245 mg, 1.26 밀리몰)을 가하고 반응 혼합물을 밤새 교반한다. THF를 증발시키고, 물/Na₂CO₃을 가하고, 혼합물을 Et₂O(6 x 10 mℓ)로 추출하고, 합한 추출물을 물, 염수로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시킨다. 잔사를 크로 마토그래피(실리카 겔, MeOH/CH₂Cl₂)에 의해 정제시켜 표적 화합물 179 mg(0.892 밀리몰, 71%)을 수득한다. ¹H NMR(CDCl₃, 200 MHz): δ 1.97(s, 1H), 2.63(m, 4H), 2.97(m, 4H), 3.51(s, 2H), 7.25-7.35(m, 3H), 7.40-7.48(m, 2H).

[0693] 1-[3-(4-클로로페닐)-알릴]-피페라진(29.135):

[0694] ¹H NMR(CDCl₃, 200 MHz): δ 1.60(brs, 1H), 1.79(tt, J = 7.6, 7.6 Hz, 2H), 2.28-2.50(m, 6H), 2.60(t, J = 7.8 Hz, 2H), 2.85-2.94(m, 4H), 7.08-7.15(m, 2H), 7.20-7.27(m, 2H).

[0695] **2-피페라진-1-일-벤조산 메틸 에스테르(29.232)**(J. Med. Chem., 1978, 21(12), 1301-1306):

[0696] 10 당량의 피페라진, 1 당량의 브로마이드 출발 물질 10 및 탄산 칼륨을 1,4 디옥산에 용해시키고 밤새 환류시키고 이어서 실온에서 추가로 하루 간 교반하고 이어서 반응물을 후처리하였다. 반응 혼합물을 농축시키고 2M NaOH와 클로로포름 사이에 분배시켰다. 수성 분획을 클로로포름으로 3 회 세척하고 유기 분획들을 합하고 황산 나트륨으로 건조시키고, 여과하고 농축시켜 백색 고체 8 g을 수득하였으며, 상기 고체는 다량의 피페라진 출발 물질을 함유하였다. 따라서, 물질을 다시 물로 세척하고 1M HC1로 중화시키고 농축시켰다. 상기 여액을

다시 물로 1 회 세척하고 수성 상을 클로로포름으로 4 회 추출하였다. 클로로포름 분획들을 합하고 황산 나트륨으로 건조시키고, 여과하고 농축시켜 황색 오일 $(14\% \ cdotsigned column + 221[MH]$, $t_R()$ 방법 $L_R()$ 방법 $L_R()$ 장($L_R()$) $L_R()$ $L_R()$

[0697] 2-피폐라진-1-일-벤즈아미드(29,239):

[0698] 1 당량의 29.232를 MeOH(무수)에 용해시키고 파르 봄베 중의 병욕에서 0 ℃로 냉각시키고 이어서 암모니아 기체를 포화될 때까지 혼합물에 발포시켰다. 이어서 상기 혼합물을 밤새 병욕에서 50 ℃로 가열하였다. 물질을 농축시키고 용출제로서 CHCl₃ 중의 20% MeOH를 사용하여 실리카 컬럼에 의해 정제시켜 회색 고체(20% 수율)를 수득하고 출발 물질을 회수하였다. MS(ES) 206[MH[†]], t₂(방법 B) = 4.14 min.

[0699] 1-(2-메탄설피닐페닐)-피페라진(29.238):

[0700] 1 당량의 29.228을 아세토니트릴/물에 용해시키고 병욕에서 0 ℃로 냉각시켰다. 이어서 1.5 당량의 나트륨 페리오데이트를 1 회 분취량으로 첫 번째 혼합물에 가하고 실온에서 밤새 교반하였다. 반응 혼합물을 클로로포름과 물 사이에 분배시키고 포화된 중탄산 나트륨으로 중화시키고 수성 상을 6 회 분취량의 클로로포름으로 세척하였다. 클로로포름 세척물들을 합하고 황산 나트륨으로 건조시키고, 여과하고 농축시켜 황색 고체를 수득하고, 이를 다음 단계에 조 물질로서 사용하였다. MS(ES) 225[MH[†]], tp(방법 A) = 2.07 min.

[0701] 4-(4-니트로페닐)-피페라진-1-카복실산 3 급-부틸 에스테르(43):

[0702] 1 당량의 피페라진 42를 DCM(무수)에 이어서 1.5 당량의 TEA에 용해시키고 병욕에서 0 ℃로 냉각시키고 이어서 1.25 당량의 Boc 무수물을 반응 혼합물에 가하고 1 시간 동안 교반하였다. 반응 혼합물을 1 회 분취량의 물, 1 회 분취량의 포화된 중탄산 나트륨으로 세척하고, 황산 나트륨으로 건조시키고 여과하고 농축시켜 황색 고체를 수득하였다. MS(ES) 307.9[MH[†]].

[0703] 4-(4-아미노페닐)-피페라진-1-카복실산 3 급-부틸 에스테르(44):

[0704] 메탄올(무수)에 용해된 1 당량의 43 및 10%의 10% Pd/C를 수소 분위기 하에서 가하고 실온에서 밤새 교반하였다. 반응물을 셀라이트 패트를 통해 여과하고 농축시켜 청색/자색 오일을 수득하였다. 상기 오일을 DCM에 용해시키고 1 M HC1로 산성화시키고 유기 세척물을 제거하였다. 수성 상을 포화된 중탄산 나트륨으로 중화시키고 DCM으로 3 회 세척하고, 황산 나트륨으로 건조시키고, 여과 및 농축시켜 옅은 적색 오일을 수득하였다. 72% 수율. MS(ES) 277.8[MH⁺].

[0705] 4-(4-아세틸아미노페닐)-피페라진-1-카복실산 3 급-부틸 에스테르(Boc-29,200):

[0706] 1 당량의 15를 DCM(무수)에 용해시키고 1.5 당량의 TEA를 반응 혼합물에 가하고 병욕에서 0 ℃로 냉각시켰다. 상기 혼합물에 1.1 당량의 염화 아세틸을 가하고 실온에 도달하게 하고 1 시간 후에 정지시켰다. 용매를 감압에 의해 제거하고 DCM과 물 사이에 분배시켰다. 수성 상을 DCM으로 3 회 세척하고 모든 유기 세척물들을 합하고 황산 나트륨으로 건조시키고 여과하고 농축시켜 밝은 갈색/황갈색 고체(91%)를 수득하였다. MS(ES) 320.3[MH⁺].

[0707] 4-[4-(아세틸메틸아미노)-페닐]-피페라진-1-카복실산 3 급-부틸 에스테르(Boc-29,206):

[0708] 1 당량의 Boc-29.200을 DMF(무수)에 용해시키고 빙욕에서 0 ℃로 냉각시켰다. 이어서 1.5 당량의 NaH를 반응 혼합물에 가하고 0 ℃에서 1/2 시간 동안 계속 교반하였다. 이어서 1.2 당량의 메틸 요오다이드를 반응 혼합 물에 가하고 추가로 1 시간 동안 교반하였다. 반응물을 물로 급냉시키고, 이어서 수성 상을 에틸 아세테이트로 3 회 세척하였다. 유기 분획들을 합하고 황산 나트륨으로 건조시키고, 여과하고 농축시켜 담갈색/황갈색고체(94% 수율)를 수득하였다. MS(ES) 334.2[MH[†]].

[0709] N-메틸-N-(4-피폐라진-1-일폐닐)-아세트아미드(29,206):

[0710] 1 당량의 Boc-29.206을 DCM 용액 중의 25% TFA에 용해시키고 실온에서 질소 분위기 하에 교반하고 1 시간 동안 교반하였다. 용매를 제거하고 조 혼합물을 DCM과 포화된 중탄산 나트륨 사이에 분배시키고 수성 상을 DCM으로 3 회 세척하고, 유기 세척물들을 합하고, 황산 나트륨으로 건조시키고 여과하고 농축시켰다. 수성 상을 농축시키고 DMC/MeOH로 연마하였다. 유기 물질을 선행의 유기 세척물과 합하여 담황색 고체(71% 수율)를 수득하였다. MS(ES) 234.2[MH[†]].

N-(4-피페라진-1-일페닐)-아세트아미드(29.200):

29.206에 대한 과정에 따라, 29.200을 Boc-29.200으로부터 담황색 고체로서 87% 수율로 제조하였다. MS(ES) 220.1[MH[†]].

실시예 4: 중간체 7의 합성

[0714] C-6에 페녹시메틸렌, 알콕시메틸렌 또는 옥심 에테르 잔기를 갖는 피롤로[2,3-d]피리미딘에 대한 주요 중간체는 브로마이드 7이며, 이를 메틸 시아노아세테이트 및 클로로아세톤으로부터 6 단계로 제조한다(반응식 4). 모노 알킬화 생성물 2를 1,3-디옥솔란으로서 보호하고 이어서 피리미딘 고리를 벤즈아미딘과의 반응에 의해 형성시킨다. 피롤 고리의 환화는 수성 HC1과의 반응 시 일어나며 POC1₃와의 환류로 클로라이드 5가 생성된다. 피롤 의 Boc-보호에 이은 NBS에 의한 라디칼 브롬화로 브로마이드 7을 수득한다.

[0715] [반응식 4]

[0711]

[0712]

[0713]

[0717]

[0716] 브로마이드 7의 합성

[0718] 2-시아노-4-옥소펜타노산 메틸 에스테르(1):

[0719] MeOH(20 mℓ) 중의 에틸 시아노아세테이트(6.58 g, 58.1 밀리몰)의 빙냉(0 ℃) 용액에 NaOMe(25% w/v; 58.1 밀리몰)의 용액을 서서히 가하였다. 10 분 후에, 클로로아세톤(5 mℓ, 62.8 밀리몰)을 서서히 가하였다. 4 시간 후에, 용매를 제거하였다. 갈색 오일을 EtOAc(100 mℓ)로 희석하고 H₂O(100 mℓ)로 세척하였다. 유기 분획을 건조시키고, 여과하고 갈색 오일(7.79 g, 79%)로 농축시켰다. 상기 오일은 메틸/에틸 에스테르 생성물(9/1)의 혼합물이며, 이를 추가의 정제 없이 사용하였다. H NMR(CDCl₃, 200 MHz): δ 1.26(t, J = 7.1 Hz).

2.44(s, 3H), 3.02(dd, 1H, J = 15.0, 7.0 Hz), 3.42(dd, 1H, J = 15.0, 7.1 Hz), 3.62(s, 3H), 3.91(dd, 1H, J = 7.2, 7.0 Hz), 4.24(q, J = 7.2 Hz).

[0720] 2-시아노-3-(2-메틸-[1,3]디옥솔란-2-일)-프로피온산 메틸 에스테르(2)

[0721] 실라와 뤼프케(Seela and Lupke)의 과정을 사용하였다¹. 따라서, 케톤(1)(5.0 g, 32.2 밀리몰)의 TsOH(100 mg) 존재 하의 에틸렌 글리콜(4 mℓ, 64.4 밀리몰)에 의한 보호에 의해 플래시 크로마토그래피(SiO₂; 3/7 EtOAc/Hex, R_f = 0.35) 후에 오일(5.2 g, 81.0%)로서 2를 수득하였다. 여전히 에틸 에스테르를 5%까지 함유한 다. ¹H NMR(CDCl₃, 200 MHz): δ 1.26(t, J = 7.1 Hz), 1.35(s, 3H), 2.32(dd, 1H, J = 15.0, 7.0 Hz), 2.48(dd, 1H, J = 15.0, 7.1 Hz), 3.62(dd, 1H, J = 7.2, 7.0 Hz), 3.79(s, 3H), 3.98(s, 4H), 4.24(q, J = 7.2 Hz); MS(ES) 200.1(M⁺+1).

6-아미노-5-(2-메틸-[1,3]디옥솔란-2-일메틸)-2-페닐피리미딘-4-올(3):

[0722]

[0723] 무수 DMF(15 mℓ) 중의 아세탈(2)(1 g, 5.02 밀리몰), 벤즈아미딘(786 mg, 5.02 밀리몰) 및 DBU의 용액을 15 시간 동안 85 ℃로 가열하였다. 상기 혼합물을 CHCl₃(30 mℓ)로 희석하고 0.5 N NaOH(10 mℓ) 및 H₂O(20 mℓ)로 세척하였다. 유기 분획을 건조시키고, 여과하고 갈색 오일로 농축시켰다. 플래시 크로마토그래피(SiO₂; 1/9 EtOAc/CH₂Cl₂, R₂ 0.35)를 시도하였으나 물질이 상기 컬럼 상에서 결정화되었다. 실리카 젤을 MeOH로 세척하였다. 생성물(3)을 함유하는 분획들을 농축시키고 추가의 정제 없이 사용하였다(783 mg, 54.3%): ¹H NMR(CDCl₃, 200 MHz): δ 1.38(s, 3H), 3.60-3.15(m, 2H), 3.98(s, 4H), 5.24(brs, 2H), 7.45(m, 3H), 8.24(m, 2H); MS(ES) 288.1(M +1).

[0724] 6-메틸-2-페닐-7H-피롤로[2,3-d]피리미딘-4-올 하이드로클로라이드(4):

[0725] 1N HC1(40 ml) 중의 아세탈 3(700 mg, 2.44 밀리몰) 용액을 실온에서 2 시간 동안 교반하였다. 생성된 슬러리를 여과하여 황갈색 고체로서 HC1 염 4(498 mg, 78.0%)를 수득하였다. ¹H NMR(DMSO-d₆, 200 MHz): δ 2.25(s, 3H), 6.17(s, 1H), 7.45(m, 3H), 8.05(m, 2H), 11.78(s, 1H); MS(ES) 226.1(M[†]+1).

[0726] 4-클로로-6-메틸-2-페닐-7H-피롤로[2,3-d]피리미딘 하이드로클로라이드(5):

[0727] 4(4.0 g, 17.76 밀리몰) 및 오염화 인(125 mℓ)의 불균질 혼합물을 가열 환류시켰다. 14 시간 후에, 균질한 용액을 실온으로 냉각시키고 진공 하에서 농축시켜 흑색 오일을 수득하였다. 물을 상기 오일에 가하고 혼합물을 가온하였다. 생성된 고체를 여과하고 물로 세척하고 실온에서 건조시켜 갈색 고체 4.22 g(97%)을 수득하였다.

¹H NMR(DMSO-d₆, 200 MHz): δ 2.43(s, 3H), 6.31(s, 3H), 7.49(m, 3H), 8.34(m, 2H).

[0728] 4-클로로-6-메틸-2-페닐피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸 에스테르(6):

[0729] 다-3 급-부틸 디카보네이트(5.37 g, 24.6 밀리몰) 및 디메틸아미노피리딘(1.13 g, 9.2 밀리몰)을 5(1.50 g, 6.15 밀리몰) 및 피리딘을 함유하는 용액(30 mℓ)에 가하였다. 20 시간 후에, 반응물을 농축시키고 잔사를 CH₂Cl₂와 물 사이에 분배시켰다. CH₂Cl₂ 층을 분리시키고, MgSO₄ 상에서 건조시키고, 여과하고 농축시켜 흑색고체를 수득하였다. 플래시 크로마토그래피(SiO₂; 1/9 EtOAc/헥산, R_f 0.40)시켜 백색 고체(80%) 1.70 g을 수 특하였다. 융점 = 175-177 ℃. ¹H NMR(CDCl₃, 200 MHz): δ 1.76(s, 9H), 2.66(s, 3H), 6.39(s, 1H),

 $7.45(m, 3H), 8.50(m, 2H); MS(ES) 344.1(M^{+}+1).$

[0730] 6-브로모메틸-4-클로로-2-페닐피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸 에스테르(7):

[0731] N-브로모숙신이미드(508 mg, 2.86 밀리몰) 및 AIBN(112 mg, 0.68 밀리몰)을 6(935 mg, 2.71 밀리몰) 및 CCI₄(50 mℓ)를 함유하는 용액에 가하였다. 상기 용액을 가열 환류시켰다. 2 시간 후에, 반응물을 실온으로 냉각시키고 진공 하에서 농축시켜 백색 고체를 수득하였다. 플래시 크로마토그래피(SiO₂; 1/1 CH₂Cl₂/헥산, Rf 0.30)시켜 백색 고체(84%) 960 mg을 수득하였다. 융점 = 155-157 ℃. ¹H NMR(CDCl₃, 200 MHz): δ 1.79(s, 9H), 4.93(s, 2H), 6.76(s, 1H), 7.48(m, 3H), 8.52(m, 2H); MS(ES) 423.9(M +1).

[0732] 실시예 5: C-6 페녹시메틸렌 유도체

- [0733] 7 중의 벤질 브로마이드를 페녹사이드로 쉽게 치환시켜 8을 수득한다. DMSO 중의 아민과 함께 가열 시, C-4의 클로라이드가 치환되고 Boc 그룹이 제거되어 A₂₈ 길항물질 9.1 내지 9.51이 수득된다(반응식 5).
- [0734] [반응식 5]
- [0735] C-6 페녹시메틸렌 유도체 9.1 내지 9.51의 제조

[0736]

[0737] [표 1]

[0738] A_{2B} 길항물질 9.1 내지 9.51

Comp. #	Structure	MW	Comp. #	Structure	MW
9.1	HN N N N N N N N N N N N N N N N N N N	401.47	9.2	N N N OCI	448.96
9.3	HO NH HO CI	470.96	9.4	NH HO NH HO NH	470.96
9.5	HO NH NH OCI	424.89	9.6	HO NH	424.89
9.7	HO HA CO	450.97	9.8		476.97
9.9	Charles of Co	462.94	9.10	N N N N C CI	461.96
9.11	HN N N N N N N N N N N N N N N N N N N	419.46	9.12	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	431.50
9.13	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	435.92	9.14	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	402.46
9.15	OH CI	420.90	9.16	HN H O	435.92
9.17	HN N N N N N N N N N N N N N N N N N N	415.50	9.18	HN H O O	480.37

[0739]

Comp. #	Structure	MW	Comp.	Structure	MW
9.19	THE	459.51	9.20		522.01
9.21	THAT OF O	622.13	9.22	NH OOO OO	582.06
9.23	TEN O	402.46	9.24		435.92
9.25	HN N N N N N N N N N N N N N N N N N N	416.49	9.26	THE TANK THE	431.50
9.27	HN NH,	416.49	9.28	H N N N N N N N N N N N N N N N N N N N	458.52
9.29	HN OH	394.86	9.30	HO HO CO	450.97
9.31	HO NH O	408.89	9.32	HO NH CI	408.89
9.33	HN OH	424.89	9.34	HN N N N N N N N N N N N N N N N N N N	450.93
9.35	O NH NH NH O CI	505.02	9.36	OH NH N N O	462.98

[0740]

Comp. #	Structure	MW	Comp. #	Structure	MW
9.37	HN OH	408.89	9.38	HNN OH	408.89
9.39	HN OH	408.89	9.40	HN N N CI	436.95
9.41	HN OH	436.95	9.42	HN OH	470.96
9.43	N N N OH	470.96	9.44	OH CI	448.96
9.45	NA N	493.01	9.46	HO NH N CI	451.96
9.47	HN NH ₂	393.88	9.48	HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	464.96
9.49		461.96	9.50	OH N N N N N N N N N N N N N N N N N N N	406.88
9.51	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	449.94			

[0741] [0742]

[0744]

페놀에 의한 브로마이드 치환에 대한 일반적인 과정

[0743] 4-클로로-6-페녹시메틸-2-페닐-피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸 에스테르(8.1):

나트륨 페녹사이드 트리하이드레이트(173 mg, 1.02 밀리몰)를 1 회 분취량으로 CH₂Cl₂(5 mℓ) 및 DMF(10 mℓ)에 용해된 브로마이드 7(410 mg, 0.97 밀리몰) 용액에 가하였다. 2 시간 후에, 반응 용액을 CH₂Cl₂와 물 사이에 분배시켰다. 수 층을 CH₂Cl₂로 추출하였다. 합한 CH₂Cl₂ 층들을 물로 세척하고, MgSO₄ 상에서 건조시키고, 여 과하고 농축시켜 황색 고체를 수득하였다. 플래시 크로마토그래피(SiO₂; 1/6 EtOAc/핵산, R_f 0.30)시켜 백색 고체(50%) 210 mg을 수득하였다. ¹H NMR(CDCl₃, 200 MHz): δ 1.76(s, 9H), 5.45(s, 2H), 6.83(s, 1H), 7.03(m, 3H), 7.34(m, 2H), 7.48(m, 3H), 8.53(m, 2H); MS(ES) 436.2(M +1).

[0745] 아민에 의한 C4-클로라이드 치환에 대한 일반적인 과정:

[0746] N-[2-(6-페녹시메틸-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]아세트아미드(9.1):

[0747] 8.1(85 mg, 0.20 밀리몰), N-아세틸에틸렌-디아민(201 mg, 1.95 밀리몰) 및 DMSO(3 mℓ)를 함유하는 용액을 100 ℃로 가열하였다. 1 시간 후에 상기 온도를 130 ℃로 상승시켰다. 3 시간 후에, 반응물을 실온으로 냉각시

키고 EtOAc와 물 사이에 분배시켰다. 수 층을 EtOAc(2 x)로 추출하였다. 합한 EtOAc 층들을 물로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시켰다. 플래시 크로마토그래피(SiO₂; 1/10 EtOH/CHCl₃, R_f 0.25)시켜 백색 포움 고체(93%) 73 mg을 수득하였다. 융점 = 196-197 ℃. ¹H NMR(DMSO-d₆, 200 MHz): δ 1.79(s, 3H), 3,36(m, 2H), 3.61(m, 2H), 5.12(s, 2H), 6.59(s, 1H), 6.89-7.09(m, 3H), 7.20-7.50(m, 5H), 7.57(brt, 1H), 8.03(brt, 1H), 8.39(m, 2H), 11.81(brs, 1H); MS(ES) 402.6(MH⁺). t_R(방법 A) = 3.6 min.

[0748] 하기 화합물들 9.2 내지 9.51을 동일한 방식으로 제조하였다:

[0749] 2-{1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]-피롤리딘-2-일}-에탄올(9,2):

[0750] $MS(ES): 449.0(M^{+}+1).$

[0751] 3-(S)-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-1-페닐에탄올(9.3):

3-(S)-[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-1-phenylethanol (9.3): ¹H-NMR (200 MHz, CDCl₃): δ 8.27 (m, 2H), 7.35 (m, 8H), 7.06 (m, 1H), 6.87 (m, 1H), 6.51 (m, 2H), 6.23 (s, 1H), 5.67 (m, 1H), 5.06 (m, 1H), 4.52 (s, 2H), 4.20-4.00 (m, 1H), 3.90-3.60 (m, 1H). MS (ES): 471.0 (M⁺+1).

[0752] [0753]

[0754]

2-(R)-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-1-페닐에탄올(9.4):

2-(R)-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-1-phenylethanol (9.4): 1 H-NMR (200 MHz, CDCl₃): δ 8.27 (m, 2H), 7.32 (m,

8H), 7.06 (m, 1H), 6.88 (m, 1H), 6.54 (m, 2H), 6.23 (s, 1H), 5.66 (m, 1H), 5.07 (m, 1H), 4.56 (s, 2H), 4.20-4.00 (m, 1H), 3.90-3.70 (m, 1H). MS (ES): 471.0 (M⁺+1).

[0755] [0756]

3-(S)-[6-(3-클로로폐녹시메틸)-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-1,2-디올(9.5):

3-(S)-[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-propane-1,2-diol (9.5): $\sqrt{1}$ H-NMR (200 MHz, CD₃OD): δ 8.27 (m, 2H), 7.39 (m, 3H), 7.22 (dd, 1H, J = 8.2Hz), 7.02 (m, 1H), 6.96-6.86 (m, 2H), 6.57 (s, 1H), 5.09 (s, 2H), 3.99-3.86 (m, 1H), 3.86-3.64 (m, 2H), 3.56 (d, 2H, J = 5.2Hz). MS (ES): 425.0 (M⁺+1).

[0757]

[0758] 3-(R)-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-1,2-디올(9.6):

3-(R)-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-propane-1,2-diol (9.6): 1 H-NMR (200 MHz, CD₃OD): δ 8.26 (m, 2H), 7.39 (m, 3H), 7.22 (dd, 1H, J = 8.2Hz), 7.02 (m, 1H), 6.96-6.86 (m, 2H), 6.57 (s, 1H), 5.09 (s, 2H), 4.00-3.86 (m, 1H), 3.86-3.65 (m, 2H), 3.56 (d, 2H, J = 5.3Hz). MS (ES): 425.0 (M^{+} +1). /

[0759]

```
2-(R)-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-4-메틸펜탄-1-올(9.7):
[0760]
                                              2-(R)-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo
                                              ylamino]-4-methylpentan-1-ol (9.7): <sup>1</sup>H-NMR (200 MHz, CDCl<sub>3</sub>): δ 8.27 (m, 2H),
                                              7.38 (m, 3H), 7.10 (m, 1H), 6.90 (m, 1H), 6.54 (m, 2H), 6.37 (s, 1H), 5.30-5.10 (m, 1H),
                                              4.71-4.45 (m, 2H), 4.00-3.85 (m, 1H), 3.80-3.65 (m, 1H), 1.89-1.65 (m, 1H), 1.65-1.50
                                              (m, 1H), 1.01 (d, 3H, J = 6.6Hz), 0.97 (d, 3H, J = 6.6Hz). MS (ES): 451.0 (M<sup>+</sup>+1).
[0761]
                                           {1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]피롤리딘-3-일}-아세트산
[0762]
                                                                                                                                                                                                                                                                                                                                                                                             에스테르
                                           (9.8):
                                                \{1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7 H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7 H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-(
                                                pyrrolidin-3-yl}-acetic acid methyl ester (9.8): ^{1}\text{H-NMR} (200 MHz, CD3OD): \delta 8.32
                                                (m, 2H), 7.39 (m, 3H), 7.23 (dd, 1H, J = 8.1Hz), 7.02 (m, 1H); 6.92 (m, 2H), 6.58 (s, 1H),
                                                5.06 (s, 2H), 4.10 (m, 1H), 3.93 (m, 1H), 3.72 (m, 1H), 3.69 (s, 3H), 3.38 (m, 1H),
                                                2.64 (m, 1H), 2.49 (br d, 2H, J = 6.2Hz), 2.18 (m, 1H), 1.65 (m, 1H). MS (ES): 477.1
                                                (M^{+}+1).
[0763]
[0764]
                                           {1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]피롤리딘-3-일}-아세트산(9.9):
                                                 pyrrolidin-3-yl}-acetic acid (9.9): <sup>1</sup>H-NMR (200 MHz, CD<sub>3</sub>OD): δ 8.32 (m, 2H), 7.40
                                                (m, 3H), 7.25 \text{ (dd, } 1H, J = 8.2Hz), 7.07 \text{ (m, } 1H), 6.95 \text{ (m, } 2H), 6.69 \text{ (s, } 1H), 5.14 \text{ (s, } 2H),}
                                                4.25-4.15 (m, 1H), 4.12-3.99 (m, 1H), 3.92-3.78 (m, 1H), 3.38 (m, 1H), 2.64 (m, 1H),
                                                2.49 (m, 2H), 2.18 (m, 1H), 1.65 (m, 1H). MS (ES): 463.0 (M<sup>+</sup>+1).
[0765]
[0766]
                                           2-{1-[6-(3-클로로폐녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]-피롤리딘-3-일}-아세트아미드(9.10):
                                                2-\{1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl)-2-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl)-2-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[6-(3-Chlorophenoxymethyl]-1-[
                                                pyrrolidin-3-yl}-acetamide (9.10): <sup>1</sup>H-NMR (200 MHz, CD<sub>3</sub>OD): δ 8.35 (m, 2H), 7.39
                                                (m, 3H), 7.25 \text{ (dd, } 1H, J = 8.0Hz), 7.06 \text{ (m, } 1H), 6.96 \text{ (m, } 2H), 6.69 \text{ (s, } 1H), 5.14 \text{ (s, } 2H),
                                                4.14 (dd, 1H, J = 10.6 \& 7.0Hz), 4.02 (m, 1H), 3.83 (m, 1H), 3.53 (m, 1H), 2.72 (m, 1H),
                                                2.42 (d, 2H, J = 7.4Hz), 2.26 (m, 1H), 1.69 (m, 1H). MS (ES): 462.2 (M<sup>+</sup>+1).
[0767]
                                           N-{2-[6-(4-플루오로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.11):
[0768]
                                           MS(ES) 420 (M+H); t<sub>R</sub>(방법 A) = 6.8 min.
[0769]
[0770]
                                           N-{2-[6-(4-메톡시폐녹시메틸)-2-페닐-7H-피롤로[2.3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.12):
                                           MS(ES) 432 (M<sup>†</sup>); t_R(방법 A) = 6.4 min.
[0771]
[0772]
                                           N-{2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9,13):
                                           MS(ES) 436 (M^{\dagger}); t_R(방법\ A) = 7.7 \min.
[0773]
[0774]
                                           N-{2-[2-페닐-6-(피리딘-3-일옥시메틸)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.14):
                                           MS(ES) 403 (M+H); tp(방법 A) = 3.8 min.
[0775]
                                           {1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]-아제티딘-3-일}메탄올(9,15):
[0776]
                                           MS(ES) 421 (M^{\dagger}); t_R(방법 A) = 9.5 min.
[0777]
[0778]
                                           N-{2-[6-(2-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.16):
```

```
MS(ES) 436 (M<sup>+</sup>); t<sub>R</sub>(방법 A) = 8.6 min.
[0779]
[0780]
                                     N-[2-(2-페닐-6-m-톨릴옥시메틸-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸}-아세트아미드(9.17):
                                     MS(ES) 416 (M<sup>†</sup>); t<sub>R</sub>(방법 A) = 8.6 min.
[0781]
[0782]
                                    N-{2-[6-(3-브로모페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.18):
                                     MS(ES) 480/482(91/100) [MH<sup>†</sup>]; t<sub>R</sub>(방법 B) = 6.0 min.
[0783]
[0784]
                                     3-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-일메톡시]-벤조산 메틸 에스테르(9,19):
                                     황색 고체, 융점 80-85 ℃(분해); MS(ES) 459.9 [MH<sup>†</sup>]; t<sub>P</sub>(방법 A) = 6.8 min.
[0785]
[0786]
                                     [4-(2-아세틸아미노에틸아미노)-6-(3-클로로페녹시메틸)-2-페닐피롤로[2,3-d]피리미딘-7-일]-아세트산 에틸 에
                                     스테르(9.20):
                                    MS(ES) 522 (M<sup>+</sup>); t<sub>R</sub>(방법 A) = 10.6 min.
[0787]
                                     N-{2-[6-(3-클로로페녹시메틸)-7-(6-메톡시-2,2-디메틸테트라하이드로푸로[3,4-d][1,3]디옥솔-4-일메틸)-2-페닐
[0788]
                                     -7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.21):
                                     MS(ES) 622 (M<sup>+</sup>); t<sub>R</sub>(방법 A) = 11.3 min.
[0789]
[0790]
                                     N-{2-[6-(3-클로로폐녹시메틸)-7-(3,4-디하이드록시-5-메톡시테트라하이드로푸란-2-일메틸)-2-폐닐-7H-피롤로
                                     [2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.22):
                                     MS(ES) 582 (M<sup>+</sup>); t<sub>R</sub>(방법 A) = 8.0 min.
[0791]
[0792]
                                     N-{2-[6-(2-옥소-2H-피리딘-1-일메틸)-2-페닐-7H-피롬로[2.3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.2
                                     3):
                                      N-\{2-[6-(2-Oxo-2H-pyridin-1-ylmethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-
                                      ylamino]-ethyl}-acetamide (9.23): <sup>1</sup>H NMR (200 MHz, DMSO-d<sub>6</sub>): δ 1.78 (s, 3H), 3.32
                                       (m, 2H), 3.59 (m, 2H), 5.14 (s, 2H), 6.27 (dd, 1H, <math>J = 6.6, 6.6Hz), 6.34 (s, 1H), 6.43 (d, 2H), 6
                                       1H, J = 8.8Hz), 7.44 (m, 5H), 7.76 (d, 1H, J = 6.9Hz), 8.00 (brt, 1H), 8.38 (m, 2H); MS
                                       (ES): 403.1 (M^++1).
[0793]
[0794]
                                     N-{2-[6-(4-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.24):
                                        N-{2-[6-(4-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-
                                        ethyl}-acetamide (9.24): <sup>1</sup>H NMR (200 MHz, DMSO-d<sub>6</sub>): 8 1.79 (s, 3H), 3.56 (m, 2H),
                                        3.61 (m, 2H), 5.13 (s, 2H), 6.60 (s, 1H), 7.05 (d, 2H, J = 9.2Hz), 7.34 (d, 2H, J = 9.2Hz),
                                        7.60 (m, 3H), 7.57 (brt, 1H), 8.03 (brt, 1H), 8.40 (m, 2H); MS (ES): 436.1 [MH<sup>+</sup>].
[0795]
[0796]
                                     1-메틸-3-[2-(6-폐녹시메틸-2-메틸-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]-우레아(9.25):
                                          1-Methyl-3-[2-(6-phenoxymethyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-
                                          ethyl]-urea (9.25): <sup>1</sup>H NMR (200 MHz, CD<sub>3</sub>OD): \delta 2.64 (s, 3H), 3.51 (t, 2H, J = 6.0Hz),
```

1-Methyl-3-[2-(6-phenoxymethyl-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino)-ethyl|-urea (9.25): 1 H NMR (200 MHz, CD₃OD): δ 2.64 (s, 3H), 3.51 (t, 2H, J = 6.0Hz), 3.82 (t, 2H, J = 6.0Hz), 5.19 (s, 2H), 6.60 (s, 1H), 6.97 (dd, 1H, J = 7.4Hz), 7.06 (d, 2H, J = 7.8Hz), 7.32 (m, 2H), 7.44 (m, 3H), 8.39 (m, 2H); MS (ES): 416.9 (M⁺+1); t_R (method A) = 6.1 min.

[0797] A) = 6.1 mi

```
[0798]
                                         N-{2-[6-(3-메톡시페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.26):
                                             \textit{N-}\{2\text{-}[6\text{-}(3\text{-}Methoxyphenoxymethyl})\text{-}2\text{-}phenyl\text{-}7\textit{H-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrimidin\text{-}4\text{-}pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit{d}]pyrrolo[2,3\text{-}\textit
                                             ylamino]-ethyl}-acetamide (9.26): <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>): δ 1.75 (s, 3H), 3.56 (m,
                                             2H), 3.75 (s, 3H), 3.87 (m, 2H), 4.88 (s, 2H), 5.80 (brs, 1H), 6.35 (d, 3H, J = 6.2Hz), 6.50
[0799]
                                                (d, 1H, J = 6.6Hz), 7.10 (d, 1H, J = 7.2Hz), 7.40 (m, 3H), 8.36 (m, 2H) 10.47 (brs, 1H);
                                                MS (ES): 432.0 (M+1).
[0800]
[0801]
                                         N-{2-[6-(3-아미노폐녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9.27):
                                           N-\{2-[6-(3-Aminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-10-(3-Aminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-10-(3-Aminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-10-(3-Aminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-10-(3-Aminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-10-(3-Aminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophenoxymethyl)-10-(3-Aminophen
                                           ethyl}-acetamide (9.27): ^{1}\text{H} NMR (200 MHz, CDCl3): \delta 1.78 (s, 3H), 3.57 (m, 2H), 3.75
                                           (s, 3H), 3.88 (m, 2H), 5.02 (s, 2H), 5.90 (brs, 1H), 6.20 - 6.60 (m, 4H), 7.04 (m, 2H),
                                           7.44 (m, 3H), 8.38 (m, 2H) 9.45 (brs, 1H).
[0802]
[0803]
                                         N-{2-[6-(3-아세틸아미노폐녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(9,28):
                                            N-{2-[6-(3-Acetylaminophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-
                                            ylamino]-ethyl}-acetamide (9.28): <sup>1</sup>H NMR (200 MHz, CD<sub>3</sub>OD): δ 1.83 (s, 3H), 2.10
                                            (s, 3H), 3.50 (t, 2H, J = 6.0Hz), 3.80 (t, 2H, J = 6.2Hz), 5.14 (s, 2H), 6.55 (s, 1H), 6.76
                                            (m, 1H), 7.02 (d, 1H, J = 8.4Hz), 7.20 (dd, 1H, J = 8.0, 8.0Hz), 7.40 (m, 3H), 8.37 (m,
                                            2H).
[0804]
[0805]
                                         2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에탄올(9.29):
                                          2-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-
                                          ethanol (9.29): <sup>1</sup>H NMR (200 MHz, CD<sub>3</sub>OD): \delta 3.15 (t, 2H, J = 5.8Hz), 3.55 (t, 2H, J = 5.8Hz)
                                          5.4Hz), 5.17 (s, 2H), 6.59 (s, 1H), 7.00 (m, 2H), 7.08 (s, 1H), 7.26 (dd, 1H, J = 8.4,
                                          8.4Hz) 7.42 (m, 3H), 8.34 (m, 2H); MS (ES): 395.0 (M<sup>+</sup>+1); t_R (method A) = 8.4 min.
[0806]
[0807]
                                         (2S)-2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-4-메틸펜탄-1-올(9,30):
                                         MS(ES): 451.0(M+1); tp(방법 A) = 10.5 min.
[0808]
[0809]
                                         (2R)-1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-2-올(9.31):
                                            (2R)-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-
                                            ylamino]-propan-2-ol (9.31): <sup>1</sup>H NMR (200 MHz, CD<sub>3</sub>OD): \delta 1.25 (d, 3H, J = 6.2Hz),
                                            3.54 - 3.79 (m, 2H), 4.12 (m, 1H), 5.15 (s, 2H), 6.60 (s, 1H), 6.95 (m, 2H), 7.07 (dd, 1H,
                                            J = 7.8, 7.8Hz), 7.42 (m, 3H), 8.32 (m, 2H); MS (ES): 409.0 (M<sup>+</sup>+1); t_R (method A) = 8.7
                                            min.
[0810]
[0811]
                                         (2S)-1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-2-올(9.32):
                                            (2S)-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-
                                            ylamino]-propan-2-ol (9.32): <sup>1</sup>H NMR (200 MHz, CD<sub>3</sub>OD): \delta 1.25 (d, 3H, J = 6.2Hz),
                                            3.54 - 3.79 (m, 2H), 4.12 (m, 1H), 5.15 (s, 2H), 6.60 (s, 1H), 6.95 (m, 2H), 7.07 (dd, 1H,
                                            J = 7.8, 7.8Hz), 7.42 (m, 3H), 8.32 (m, 2H); MS (ES): 409.0 (M<sup>+</sup>+1); t_R (method A) = 8.7
                                            min.
[0812]
```

[0813] 2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-1,3-디올(9.33):

2-[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-propane-1,3-diol (9.33): 1 H NMR (200 MHz, CD₃OD): δ 3.86 (d, 4H, J = 5.8Hz), 4.57 (t, 1H, J = 5.4Hz), 5.18 (s, 2H), 6.64 (s, 1H), 6.95 (m, 2H), 7.07 (dd, 1H, J = 2.2, 2.2Hz), 8.20 (dd, 1H, J = 8.2, 8.2Hz), 7.43 (m, 3H), 8.32 (m, 2H); MS (ES): 425.0 (M⁺+1); t_R (method A) = 7.7 min.

[0814] [0815]

1-{2-[6-(3-클로로폐녹시메틸)-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-3-메틸우레아(9.34):

1-{2-[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-ethyl}-3-methylurea (9.34): 1 H NMR (200 MHz, CDCl₃): δ 2.57 (d, 3H, J = 4.8Hz), 3.55 (m, 2H), 3.83 (m, 2H), 4.85 (s, 2H), 5.52 (brs, 1H), 6.00 (brs, 1H), 6.38 (s, 1H), 6.64 (m, 1H), 6.73 (dd, 1H, J = 1.8, 1.8Hz), 6.92 (d, 1H, J = 8.8Hz), 7.14 (dd, 1H, J = 8.0, 8.0Hz), 7.40 (m, 3H), 8.34 (m, 2H), 10.64 (brs, 1H); MS (ES): 451.0 (M[†]+1); t_R (method A) = 8.0 min.

[0816]

[0817]

2{[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]메틸}-피페리딘-1-카복실산 메틸아미 드(9.35):

2-{[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-methyl}-piperidine-1-carboxylic acid methylamide (9.35): ¹H NMR (200 MHz, CD₃OD + DMSO-d₆): δ 1.40 – 1.70 (m, 6H), 2.43 (s, 3H), 3.50 – 3.90 (m, 2H), 4.10 (m, 1H), 4.45 (m, 2H), 3.83 (m, 2H), 5.20 (s, 2H), 6.58 (s, 1H), 7.04 (m, 2H), 7.10 (dd, 1H, J = 2.2, 2.2Hz), 7.29 (dd, 1H, J = 8.2, 8.2Hz), 7.44 (m, 3H), 8.38 (m, 2H); MS (ES): 505.0 (M*+1); t_R (method A) = 9.7 min.

[0818]

[0819] 트랜스-2-{[6-(3-클로로폐녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-메틸}-사이클로혝산올(9.3 6):

trans-2-{[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-methyl}-cyclohexanol (9.36): 1 H NMR (200 MHz, CDCl₃): δ 1.00 – 2.00 (m, 9H), 2.93 (m, 1H), 3.66 (m, 2H), 4.73 (d, 2H, J = 2.8Hz), 4.90 (brs, 1H), 6.00 (brs, 1H), 5.41 (brs, 1H), 6.37 (s, 1H), 6.57 (ddd, 1H, J = 1.0, 2.6, 8.2Hz), 6.66 (dd, 1H, J = 2.6, 2.6Hz), 6.93 (ddd, 1H, J = 0.8, 1.8, 7.9Hz), 7.13 (dd, 1H, J = 8.0, 8.0Hz), 7.38 (m, 3H), 8.23 (m, 2H), 11.23 (brs, 1H); MS (ES) 463/465 (MH $^{+}$); t_R (method A) = 10.0 min.

[0820]

[0822]

[0821] (R)-2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-1-올(9.37):

(R)-2-[6-(3-Chlorophenoxymethyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-propan-1-ol (9.37): 1 H NMR(CDCl₃, 200 MHz): δ 1.36 (d, 3H, J = 7Hz), 1.44 (s, 1H), 3.71 (dd, 1H, J = 7.2, 3.8Hz), 3.90 (dd, 1H, J = 8.2, 2.8Hz), 4.44-4.67 (m, 3H), 5.17-5.35 (m, 1H), 6.32 (s, 1H), 6.42-6.57 (m, 2H), 6.76-6.94 (m, 2H), 7.00-7.14 (m, 1H), 7.29-7.44 (m, 3H), 8.14-8.32 (m, 2H); MS (ES) 409.0/411.1 (100/35) [MH $^{+}$]; t_R (method A) = 8.9 min.

```
[0823]
                                                  (S)-2-[6-(3-클로로폐녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-프로판-1-올(9.38):
                                                        (S)\hbox{-}2\hbox{-}[6\hbox{-}(3\hbox{-}Chlorophenoxymethyl})\hbox{-}2\hbox{-}phenyl\hbox{-}7H\hbox{-}pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrimidin-4-pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]pyrrolo[2,3-d]
                                                       ylamino]-propan-1-ol (9.38): {}^{1}H NMR(CDCl<sub>3</sub>, 200 MHz): \delta 1.37(d,3H, J = 7Hz), 1.44
                                                       (s,1H), 3.72 (dd, 1H, J = 7.4, 3.6Hz), 3.90 (dd, 1H, J = 8, 3Hz), 4.40-4.70 (m,3H), 5.28
                                                       (brd,1H, J = 5.4Hz), 6.33 (s,1H), 6.43-6.60 (m,2H), 6.76-6.94 (m,2H), 7.02-7.14 (m,1H),
                                                       7.30-7.45 (m,3H), 8.14-8.32 (m,2H); MS (ES) 409/411 (100/35) [MH<sup>+</sup>]; t_R (method A) =
                                                       8.9 min.
[0824]
[0825]
                                                  3-[6-(3-클로로페녹시메틸)-2-페닐-7H-피톨로[2,3-d]피리미딘-4-일아미노]-프로판-1-올(9.39):
[0826]
                                                  MS(ES): 409/411[MH^{T}]; t_{R}(방법 A) = 8.4 min.
[0827]
                                                  (R)-2-[6-(3-클로로폐녹시메틸)-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-3-메틸-부탄-1-올(9.40):
[0828]
                                                  MS(ES): 437/439[MH^{\dagger}]; t_R(방법 A) = 9.7 min.
                                                  (S)-2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-3-메틸-부탄-1-올(9,41):
[0829]
                                                  MS(ES): 437/439[MH^{\dagger}]; t_R(방법 A) = 9.7 min.
[0830]
[0831]
                                                  (R)-2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-2-페닐에탄올(9.42):
                                                  MS(ES): 471/473[MH^{\dagger}]; t_R(방법 A) = 9.8 min.
[0832]
                                                  (S)-2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-2-페닐에탄올(9.43):
[0833]
[0834]
                                                  MS(ES): 471/473[MH^{\dagger}]; t_R(방법 A) = 9.8 min.
[0835]
                                                  {1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]-피페리딘-3-일}-메탄올(9.44):
                                                   \{1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7 \textit{H-pyrrolo}[2,3-d] pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-2-phenyl-7 \textit{H-pyrrolo}[2,3-d] pyrimidin-4-yl]-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethyl)-1-[6-(3-Chlorophenoxymethy
                                                   piperidin-3-yl}-methanol (9.44): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz): δ 1.4-2.00 (m, 5H), 3.52
                                                   (d, 2H, J = 7.6Hz), 3.78-3.86 (m, 1H), 4.02-4.22 (m, 2H), 4.50 (dd, 2H, J = 11.6, 3.2Hz),
                                                   6.35-6.50 (m, 2H), 6.54 (brs, 1H), 6.83-6.94 (m, 1H), 7.05 (t, 1H, J = 8.2Hz), 7.28-7.44
                                                   (m, 3H), 8.18-8.31 (m, 2H); MS (ES) 449/451 [MH<sup>+</sup>]; t_R (method A) = 10.3 min.
[0836]
[0837]
                                                  N-{2-[6-(3-클로로폐녹시메틸)-5-디메틸아미노메틸-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}아세트
                                                  아미드(9.45):
                                                    N-{2-[6-(3-Chlorophenoxymethyl)-5-dimethylaminomethyl-2-phenyl-7H-
                                                     pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (9.45): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200
                                                     MHz): δ 1.61 (s, 3H), 2.30 (s, 6H), 3.43-3.60 (m, 4H), 3.74-3.93 (m, 2H), 4.53 (brs, 2H),
[0838]
                                                     6.34-6.50 (m, 2H), 6.83-6.95 (m, 1H), 7.07 (t, 1H, J = 8.4Hz), 7.25-7.45 (m, 3H), 7.53-7.45 (m, 2H), 
                                                     7.71 (m, 1H), 8.22-8.40 (m, 2H), 9.57-9.78 (m, 1H); MS (ES) 493/495 [MH^{+}]; t_R (method
                                                     A) = 7.2 \text{ min.}
[0839]
```

[0840] 2-[6-(3-클로로페녹시메틸)-5-디메틸아미노메틸-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에탄올(9,46):

2-[6-(3-Chlorophenoxymethyl)-5-dimethylaminomethyl-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino]-ethanol (9.46): 1 H NMR(CDCl₃, 200 MHz): δ 2.29 (s, 6H), 3.50 (s, 2H), 3.71-3.84 (m, 2H), 3.85-3.97 (m, 2H), 4.44 (s, 2H), 6.33-6.49 (m, 2H), 6.83-6.95 (m, 1H), 7.07 (t, 1H, J = 8.2Hz), 7.20-7.42 (m, 4H), 8.18-8.31 (m, 2H), 9.77 (brs, 1H); MS (ES) 452/454 [MH $^{+}$]; t_{R} (method A) = 7.0 min.

[0841] 1H); MS (ES) 452/454 [MH

[0842] N-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]에탄-디아민(9,47):

[0843] MS(ES): $394/396[MH^{+}]$.

[0844] 3-{2-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-1,1-디메틸우레아(9.48):

[0845] DCM(5 mℓ) 및 DMF(1 mℓ) 중의 9.47(20 mg) 및 TEA(100 mg) 용액에 DCM(3 mℓ) 중의 CIC(0)N(CH₃)₂(100 mg) 용액을 0 ℃에서 교반하면서 적가하였다. 첨가 후에, 교반을 2 시간 동안 속행시키고 반응 혼합물을 포화된 NaHCO₃ 수용액으로 2 회, 염수로 1 회 세척하고, MgSO₄ 상에서 건조시키고, 이어서 농축시켰다. 잔사를 예비 TLC(실리카 젤, EtOAc/핵산 = 2/1)에 의해 정제시켜 회색 포움(7 mg, 31%)을 수득하였다.

 1 H-NMR (200 MHz, CDCl₃): δ 2.70 (s, 6H), 3.55–3.68 (m, 2H), 3.82–3.94 (m, 2H), 4.82 (s, 2H), 5.40 (t, 1H, J = 5.2Hz), 6.30 (brs, 1H), 6.42 (s, 1H), 6.55-6.78 (m, 2H), 6.90-6.95 (m, 1H), 7.08-7.20 (m, 1H), 7.18-7.48 (m, 3H), 8.28-8.40 (m, 2H), 10.90 (brs, 1H); MS (ES): 465/467 [MH $^{+}$].

[0846] [0847]

1-{4-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]-피페라진-1-일}-에타논(9.49):

1-{4-[6-(3-Chlorophenoxymethyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-yl]-piperazin-1-yl}-ethanone (9.49): 1 H NMR(CDCl₃, 200 MHz): δ 2.18 (s, 3H), 3.61-3.77 (m, 2H), 3.77-3.90 (m, 2H), 4.00-4.10 (m, 2H), 4.10-4.20 (m, 2H), 4.62 (brs, 2H), 6.40-6.54 (m, 3H), 6.86-6.95 (m, 1H), 7.08 (t, 1H, J = 8.2Hz), 7.32-7.45 (m, 3H), 8.25-8.39 (m, 2H); MS (ES) 462/464 [MH⁺]; t_R (method A) = 9.8min.

[0848] [0849]

1-[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]아제티딘-3-올(9.50):

[0850] MS(ES): $407/409[MH^{\dagger}]$; $t_R("b"d"A") = 8.6 min.$

[0851] N-(2-{[6-(3-클로로페녹시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일]메틸아미노}에틸)아세트아미드(9.51):

[0852] $MS(ES): 450/452[MH^{\dagger}]; t_R(방법 A) = 8.5 min.$

[0853] 실시예 6: C-6 알콕시메틸렌 유도체

[0854] 알콕시메틸렌 유도체를 편의상 알콜에 의한 7 중의 브로마이드의 은-매개된 치환에 의해 제조한다. 일련의 피페리딘 설폰아미드 15를 Boc 제거, C-4 클로라이드 치환 및 설포닐화에 의해 중간체 10으로부터 제조하였다(반응식 6).

[0855] [반응식 6]

[0856] 은-매개된 브로마이드 치환 및 설폰아미드 15의 합성

[0857]

[0860]

[0858] 은-매개된 브로마이드 치환에 대한 일반적인 과정

[0859] 6-(1-3 급-부톡시카보닐피페리딘-4-일옥시메틸)-4-클로로-2-페닐피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸에스테르(10):

브로마이드 7(4.54 g, 10 밀리몰) 및 N-Boc-피페리딘-4-올(13.32 g)을 DCM(120 mℓ)에 용해시키고 N₂ 하에 실온에서 18 시간 동안 AgOTf(3.55 g)로 처리하였다. 반응 혼합물 중의 고체를 여과에 의해 제거하고 DCM(2 x 20 mℓ)으로 세척하였다. 여액을 포화된 NaHCO₃ 용액 및 염수로 세척하고, MgSO₄ 상에서 건조시키고 여과하고 농축시켰다. 조 생성물을 플래시 크로마토그래피(실리카 겔, EtOAc/핵산 = 1:2)에 의해 정제시켜 백색 고체로서 표제 화합물 4.339 g(82%)을 수득하였다.

¹H-NMR (200 MHz, CDCl₃): δ 1.45 (s, 9H), 1.50-

1.65 (m, 2H), 1.70–1.98 (m, 11H), 3.30–3.50 (m, 2H), 3.70–3.90 (m, 3H), 4.95 (s, 2H), 6.70 (s, 1H), 7.46-7.49 (m, 3H), 8.49–8.53 (m, 2H).

[0861] [0862]

4-클로로-2-페닐-6-(피페리딘-4-일옥시메틸)-7H-피롤로[2,3-d]피리미딘(11):

[0863] 14의 합성 과정에 따라 11을 29% 수율로 제조하였다.

[0864] 4-[2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-일메톡시]피페리딘-1-카복실산 3 급-부틸 에 스테르(12):

[0865] 아릴 클로라이드 10(1.3 g), DMSO(20 mℓ), N-아세틸에틸렌디아민(3.0 g) 및 NaHCO₃(2 g)를 교반하고 밤새 질소하에 90 ℃로 가열하였다. 이어서 반응 혼합물을 실온으로 냉각시키고 물(60 mℓ)로 희석한다. 생성된 슬러리를 EtOAc로 3 회 추출한다. 합한 유기 충들을 포화된 NaHCO₃ 용액 및 염수로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시켜 갈색 고체 1.46 g(97%)을 수득하였다.

¹H-NMR (200 MHz, CDCl₃): δ 1.44 (s, 9H), 1.50–1.64 (m, 2H), 1.80 (s, 2H), 1.82–1.92 (m, 2H), 2.84–3.08 (m, 3H), 3.18–3.42 (m, 4H), 3.45–3.70 (m, 4H), 3.78–3.95 (m, 3H), 4.46 (s, 2H), 5.76 (t, 1H, J = 5.6Hz), 6.25 (s, 2H), 7.19 (t, 1H, J = 6.2), 7.38-7.56 (m, 3H), 8.43-8.46 (m, 2H), 10.19 (brs, 1H); MS (ES): 509.0 [MH⁺].

[0866] [0867]

6-(1-벤젠설포닐피페리딘-4-일옥시메틸)-4-클로로-2-페닐-7H-피롤로[2,3-d]피리미딘(13.1):

[0868] 15.3의 합성 과정에 따라, 13.1을 95% 수율로 제조하였다.

 1 H-NMR (200 MHz, CDCl₃): δ 1.50–1.70 (m, 2H), 1.70–1.90 (m, 2H), 2.75–2.90 (m, 2H), 3.03–3.36 (m, 3H), 4.45 (s, 2H), 6.40 (s, 1H), 7.30–7.70 (m, 6H), 7.71–7.77 (m, 2H), 8.01–8.06 (m, 2H), 10.08 (brs, 1H).

[0869] [0870]

6-(1-벤질설포닐피폐리딘-4-일옥시메틸)-4-클로로-2-페닐-7H-피롤로[2,3-d]피리미딘(13.2):

[0871] 15.3의 합성 과정에 따라, 13.2를 83% 수율로 제조하였다.

¹H-NMR (200 MHz, CDCl₃) δ 1.50–1.70 (m, 2H), 1.70–1.90 (m, 2H), 2.90–3.00 (m, 2H), 3.15–3.30 (m, 2H), 3.30–3.45 (m, 1H), 4.19 (s, 2H), 4.52 (s, 2H), 6.45 (s, 1H), 7.30–7.45 (m, 5H), 7.45–7.53 (m, 3H), 8.01–8.06 (m, 2H), 10.08 (brs, 1H).

[0872]

[0873] N-{2-[2-페닐-6-(피페리딘-4-일옥시메틸]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드 트리플루오 로아세트산 염(14):

[0874] 화합물 12(0.23 g)를 5% TFA/DCM(4 mℓ)에서 교반하였다. 백색 포움(0.19 g)을 진공 하에서 건조 후 정량적인 수율로 수득하였다.

 $^{1}\text{H-NMR}$ (200 MHz, CDCl₃): δ 1.63 (s, 3H), 1.66–2.00 (m, 2H), 2.78–3.00 (m, 2H), 3.00–3.20 (m, 2H), 3.30–3.48 (m, 2H), 3.50–3.60 (m, 1H), 3.63–3.75 (m, 2H), 4.13 (s, 2H), 6.30 (s, 1H), 7.20–7.40 (m, 3H), 8.13–8.17 (m, 2H); MS (ES): 408.8 [MH $^{+}$].

[0875]

[0876] N-(2-{6-[1-(벤젠설포닐)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아 미드(15.1):

[0877] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 15.1을 13.1로부터 37% 수율로 제조하였다.

¹H-NMR (200 MHz,

CDCl₃): δ 1.45–1.59 (m, 2H), 1.67 (s, 3H), 2.75–2.87 (m, 2H), 3.03–3.26 (m, 4H), 3.27–3.35 (m, 1H), 3.57–3.62 (m, 2H), 3.83–3.92 (m, 2H), 4.36 (s, 2H), 5.74 (t, 1H, J = 5.6Hz), 6.22 (s, 1H), 6.96 (t, 1H, J = 5.6Hz), 7.40–7.54 (m, 3H), 7.55–7.62 (m, 3H), 7.68–7.72 (m, 2H), 8.37–8.45 (m, 2H), 10.09 (brs, 1H); MS (ES): 546.8 [MH⁺].

[0878]

[0879] N-(2-{6-[1-(벤질설포닐)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아 미드(15.2):

[0880] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 15.2를 13.2로부터 68% 수율로 제조하였다.

¹H-NMR (200 MHz,

CDCl₃): δ 1.41–1.51 (m, 2H), 1.57–1.67 (m, 2H), 1.84 (s, 3H), 2.17–2.95 (m, 2H), 3.11–3.23 (m, 2H), 3.27–3.32 (m, 1H), 3.59–3.64 (m, 2H), 3.85 (m, 2H), 4.14 (s, 2H), 4.41 (s, 2H), 6.18 (brs, 1H), 6.28 (s, 1H), 6.92 (t, 1H, J = 5.0Hz), 7.30–7.40 (m, 5H), 7.40–7.58 (m, 3H), 8.40-8.45 (m, 2H), 10.55 (brs, 1H); MS (ES): 562.7 [MH $^{+}$].

[0881]

[0882] N-(2-{6-[1-(4-시아노벤젠설포닐)피폐리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(15.3):

[0883] 아민 14(62 mg) 및 NEt₃(0.1 mℓ)을 THF(6 mℓ) 및 DCM(6 mℓ)에서 교반하고 5 ℃로 냉각시켰다. 4-시아노페닐설 포닐 클로라이드(30 mg)를 주사기에 의해 적가하고 교반을 실온에서 2 시간 동안 계속하고, 이어서 반응 혼합물을 농축시켰다. 잔사를 DCM에 재 용해시키고 포화된 NaHCO₃, 염수로 세척하고, MgSO₄ 상에서 건조시켰다. 용매를 제거한 후에, 조 생성물을 예비 TLC(실리카 겔, DCM/MeOH = 12/1)에 의해 정제시켜 회색 포움으로서 16 mg(36 %)의 15.3을 수득하였다.

¹H-NMR (200

MHz, CDCl₃): δ 1.50–1.67 (m, 2H), 1.80 (s, 3H), 2.94–3.20 (m, 4H), 3.32–3.46 (m, 1H), 3.50–3.70 (m, 2H), 3.80–3.95 (m, 2H), 4.47 (s, 2H), 5.72 (brs, 1H), 6.22 (s, 1H), 6.81 (brs, 1H), 7.20–7.38 (m, 3H), 7.75–7.90 (m, 4H), 8.37-8.40 (m, 2H), 9.37 (brs, 1H); MS (ES): 574.1 [MH $^+$].

[0884]

[0885]

실시예 7: N-알킬피페리딘 유도체

[0886] N-알킬피페리딘 유도체 17.1 내지 17.19를 11의 알킬화, 및 환원제로서 NaBH(OAc)₃을 사용한 14의 환원적 아민화에 의해 제조하였다(반응식 7).

[0887]

[반응식 7]

[0888] 알킬화 11 → 16에 대한 일반적인 과정

- [0889] 화합물 11(49 mg), 알킬 브로마이드 및 탄산 칼륨(100 mg)을 N₂ 하에 실온에서 3 시간 동안 무수 DMF 중에서 교 반하였다. 이어서 DMF를 진공 하에서 제거하였다. 잔사를 DCM과 물 사이에 분배시켰다. 수성 층을 분리시 키고 DCM으로 2 회 추출하였다. 합한 DCM 층들을 중탄산 나트륨 포화 수용액 및 염수로 세척하고, MgSO₄ 상에 서 건조시켰다. 용매를 제거한 후에, 조 생성물을 TLC(실리카 겔, 100% EtOAc)에 의해 정제하였다.
- [0890] 하기의 화합물들을 상기 방식으로 제조하였다:
- [0891] 4-클로로-2-페닐-6-(1-벤질피페리딘-4-일옥시메틸)-7H-피롤로[2,3-d]피리미딘(16.1): 57% 수율.
- [0892] 4-클로로-2-페닐-6-(1-펜에틸피페리딘-4-일옥시메틸)-7H-피롤로[2,3-d]피리미딘(16.2): 31% 수율.
- [0893] 4-클로로-2-페닐-6-[-(3-페닐프로필)피폐리딘-4-일옥시메틸]-7H-피롤로[2,3-d]피리미딘(16.3): 55% 수율.
- [0894] 4-클로로-2-페닐-6-[1-(4-브로모벤질)피페리딘-4-일옥시메틸)-7H-피롤로[2,3-d]피리미딘(16.4): 95% 수율.
- [0895] N-{2-[6-(1-벤질피폐리딘-4-일옥시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(17. 1):
- [0896] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 17.1을 16.1로부터 5% 수율로 제조하였다. H NMR(200 MHz, CDCl₃): δ 1.52-1.65(m, 2H), 1.74-1.92(m, 5H), 2.15-2.25(m, 2H), 2.62-2.78(m, 2H),

3.20-3.30 (m, 1H), 3.45 (s, 2H), 3.56-3.68 (m, 2H), 3.82-3.95 (m, 2H), 4.20 (s, 2H), 5.67 (t, 1H, J=5.4Hz), 6.25 (s, 1H), 7.09 (brs, 1H), 7.20-7.38 (m, 5H), 7.42-7.48 (m, 3H), 8.38-8.43 (m, 2H), 9.34 (brs, 1H); MS (ES): 499.2 (M⁺+1).

[0897]

[0898] N-{2-[6-(1-펜에틸피페리딘-4-일옥시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(17. 2):

[0899] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 17.2를 16.2로부터 23% 수율로 제조하였다.

¹H-NMR (200 MHz,

CDCl₃): δ 1.41–1.58 (m, 2H), 1.57–1.67 (m, 2H), 1.77 (s, 3H), 1.80–2.00 (m, 2H), 2.16–2.26 (m, 2H), 2.53–2.61 (m, 2H), 2.76–2.84 (m, 4H), 3.34–3.42 (m, 1H), 3.57–3.63 (m, 2H), 3.86–3.94 (m, 2H), 4.60 (s, 2H), 5.57 (t, 1H, J = 5.8Hz), 6.25 (s, 1H), 7.06 (brs, 1H), 7.20–7.38 (m, 5H), 7.40–7.58 (m, 3H), 8.40–8.44 (m, 2H), 9.15 (brs, 1H); MS (ES): 513.0 (M*+1).

[0900] [0901]

N-[2-{6-[1-(3-페닐프로필)피폐리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸]아세트 아미드(17.3):

[0902] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 17.3을 16.2로부터 18% 수율로 제조하였다.

¹H-NMR (200 MHz, CDCl₃): δ 1.57–1.67 (m, 2H), 1.77 (s, 3H), 1.80–1.98 (m, 4H), 2.00–2.18 (m, 2H), 2.34 (t, 2H, J = 7.6Hz), 2.62 (t, 2H, J = 8.4Hz), 2.68-2.84 (m, 2H), 3.34–3.46 (m, 1H), 3.57–3.64 (m, 2H), 3.86–3.94 (m, 2H), 4.61 (s, 2H), 5.53 (t, 1H, J = 5.4Hz), 6.24 (s, 1H), 7.07 (brs, 1H), 7.20–7.38 (m, 5H), 7.40–7.58 (m, 3H), 8.40–8.44 (m, 2H), 8.97 (brs, 1H); MS (ES): 527.2 (M⁺+1).

[0903]

[0904] N-(2-{6-[1-(4-브로모벤질)피폐리딘-4-일옥시메틸]-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸]아세트 아미드(17.4):

[0905] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 17.4를 16.4로부터 32% 수율로 제조하였다.

¹H-NMR (200 MHz,

CDCl₃): δ 1.50–1.65 (m, 2H), 1.76–1.96 (m, 5H), 2.05–2.20 (m, 2H), 2.60–2.75 (m, 2H), 3.25–3.35 (m, 1H), 3.43 (s, 2H), 3.54–3.62 (m, 2H), 3.85–3.93 (m, 2H), 4.50 (s, 2H), 5.67 (t, 1H, J = 5.4Hz), 6.25 (s, 1H), 7.09 (brs, 1H), 7.21 (d, 2H, J = 8.4Hz), 7.40–7.51 (m, 5H), 8.39–8.44 (m, 2H), 9.70 (brs, 1H); MS (ES): 576.9 (M⁺+1).

[0906] [0907]

2-[6-(1-벤질피페리딘-4-일옥시메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]아세트아미드(17.5):

[0908] 아민으로서 글리신아미드를 사용하는 C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 17.5를 16.1로부터 43% 수율로 제조하였다.

¹H-NMR (200 MHz, CDCl₃): δ 1.60–1.78 (m, 2H), 1.80–1.95 (m, 2H), 2.08–2.16 (m, 2H), 2.60–2.75 (m, 2H), 3.28-3.39 (m, 1H), 3.47 (s, 2H),4.38 (d, 2H, J = 5.4Hz), 4.57 (s, 2H), 5.50–5.70 (m, 2H), 6.25 (s, 1H), 6.47 (brs, 1H), 7.20–7.40 (m, 5H), 7.42–7.48 (m, 3H), 8.38-8.43 (m, 2H), 9.34 (brs, 1H).

[0909]

[0910] N-(2-{2-페닐-6-[1-(3-페닐알릴)피폐리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸]아 세트아미드(17.6):

[0911] 알킬화 11 → 16에 대한 일반적인 과정에 따라, 17.6을 14로부터 4% 수율로 제조하였다.

¹H-NMR (200 MHz, CDCl₃)

 δ 1.57–1.76 (m, 2H), 1.78 (s, 3H), 1.82–2.00 (m, 2H), 2.74–2.92 (m, 2H), 3.20-3.38 (m, 2H), 3.40–3.50 (m, 1H), 3.52–3.64 (m, 2H), 3.82–3.94 (m, 2H), 4.56 (s, 2H), 5.29 (s, 2H), 5.69 (brs, 1H), 6.16-6.34 (m, 2H), 6.59 (d, 1H, J = 15.4Hz), 7.01 (brs, 1H), 7.30–7.40 (m, 5H), 7.40–7.50 (m, 3H), 8.39–8.44 (m, 2H), 9.40 (brs, 1H); MS (ES): 525.2 [MH⁺].

[0912]

[0913] N-[2-(6-{1-[2-(2-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.7):

[0914] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 17.7을 70% 수율로 제조하였다.

¹H-NMR (200

MHz, CDCl₃) δ 1.48–1.67 (m, 2H), 1.70–1.90 (m, 5H), 2.23 (t, 2H, J = 9.2Hz), 2.50–2.61 (m, 2H), 2.78–2.94 (m, 4H), 3.18–3.26 (m, 1H), 3.54–3.60 (m, 2H), 3.83–3.91 (m, 2H), 4.44 (s, 2H), 5.73 (t, 1H, J = 6.0Hz), 6.26 (s, 1H), 7.11–7.34 (m, 5H), 7.42-7.51 (m, 3H), 8.40-8.45 (m, 2H), 10.30 (brs, 1H); MS (ES): 546.8 (M*+1).

[0915] [0916]

- N-[2-(6-{1-[2-(2-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드 메탄설폰산 염(17.7·MsOH):
- [0917] 17.7(315 mg)을 메탄올(5 mℓ)에 용해시키고 5 ℃로 냉각시켰다. 메탄올(5 mℓ) 중의 메탄설폰산(57 mg)을 가하였다. 이어서 생성된 용액을 이소프로필 에테르(20 mℓ)로 희석하고 밤새 냉동기에 두었다. 백색 고체(82 mg)를 여과 후에 수득하였다. 모액을 진공 하에서 농축시켜(욕 온도 10 ℃) 약간 갈색을 띤 오일을 수득하였다. 생성된 오일을 무수 이소프로필 에테르 중에서 1 시간 동안 교반하여 약간 갈색을 띤 고체 246 mg을 수득하였다. 2 개 배치의 생성물을 합하고 무수 에틸 에테르에서 교반하여 약간 갈색을 띤 고체 324 mg(88% 수율)을 수득하였다. 융점 153-156 ℃.

¹H-NMR (200 MHz, CD₃OD)

δ 1.80-2.18 (m, 5H), 2.20-2.40 (m, 2H), 2.65-2.90 (m, 5H), 3.20-3.60 (m 10H), 3.70-

[0918]

3.85 (m, 1H), 4.75 (s, 2H), 6.80 (brs, 1H), 7.25–7.40 (m, 2H), 7.40–7.51 (m, 2H), 7.60–7.80 (m, 3H), 8.16–8.35 (m, 2H); t_R (method A) = 11.15 min; MS (ES): 546.9 [MH⁺].

[0919]

- [0920] 14의 환원적 아민화에 대한 일반적인 과정
- [0921] 피페리딘 14(60 mg, 0.15 밀리몰), 알데히드(45 mg, 0.29 밀리몰) 및 NaBH(OAc)₃(67 mg, 0.32 밀리몰)을 실온에서 밤새 MeOH(6 ml) 중에서 교반한다. 반응 혼합물을 여과하고 여액을 TLC 플레이트에 직접 충전시키고 DCM/MeOH = 4/1로 전개시킨다.
- [0922] 아민 17.8 내지 17.18을 상기 과정에 따라 제조하였다.
- [0923] N-[2-(6-{1-[2-(3-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.8): 10% 수율.

N-[2-(6-{1-[2-(3-Chlorophenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-7H-

pyrrolo[2,3-d]pyrimidin-4-ylamino)ethyl]acetamide (17.8): 10% yield. 1 H-NMR (200 MHz, CDCl₃): δ 1.50–1.72 (m, 2H), 1.80 (s, 3H), 1.82–1.96 (m, 2H), 2.26–2.42 (m, 2H), 2.55–2.68 (m, 2H), 2.70–2.86 (m, 4H), 3.22–3.40 (m, 1H), 3.55–3.65 (m, 2H), 3.83–3.91 (m, 2H), 4.49 (s, 2H), 5.75 (t, 1H, J = 6.0Hz), 6.26 (s, 1H), 7.00–7.15 (m, 2H), 7.15–7.25 (m, 3H), 7.40–7.55 (m, 3H), 8.40–8.44 (m, 2H), 9.98 (brs, 1H); MS (ES): 546.80 (M $^{+}$ +1).

[0924]

[0925] N-(2-{6-[1-(3-클로로벤질)피페리딘-4-일옥시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트 아미드(17.9): 33% 수율.

N-(2-{6-[1-(3-Chlorobenzyl)piperidin-4-yloxymethyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}ethyl)acetamide (17.9): 33% yield. ¹H-NMR (200 MHz, CDCl₃): δ 1.50–1.65 (m, 2H), 1.76 (s, 3H), 2.00–2.20 (m, 2H), 2.60–2.69 (m, 2H), 3.28–3.35 (m, 1H), 3.42 (s, 2H), 3.49–3.58 (m, 2H), 3.85–3.93 (m, 2H), 4.54 (s, 2H), 5.59 (t, 1H, *J* = 5.8Hz), 6.23 (s, 1H), 7.08 (t, 1H, *J* = 5.8Hz), 7.16–7.25 (m, 3H), 7.30 (s, 1H), 7.40–7.51 (m, 5H), 8.38–8.43 (m, 2H), 9.39 (brs, 1H); MS (ES): 532.8 (M⁺+1).

[0926]

[0927] N-[2-(6-{1-[2-(4-클로로페닐)에틸]피폐리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.10): 10% 수율.

N-[2-(6-{1-|2-(4-Chlorophenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino)ethyl]acetamide (17.10): 10% yield. ¹H-NMR (200 MHz, CDCl₃) δ 1.50–1.72 (m, 2H), 1.78 (s, 3H), 1.82–1.96 (m, 2H), 2.16–2.30 (2H), 2.16–2.30 (m, 2H), 2.48–2.60 (m, 2H), 2.71–2.86 (m, 4H), 3.22–3.40 (m, 1H), 3.55–3.65 (m, 2H), 3.86–3.91 (m, 2H), 4.60 (s, 2H), 5.58 (t, 1H, J = 5.0Hz), 6.24 (s, 1H), 7.03 (t, 1H, J = 5.0Hz), 7.13 (d, 2H, J = 8.4Hz), 7.26 (d, 2H, J = 8.4Hz), 7.43–7.51 (m, 3H), 8.38-8.43 (m, 2H), 9.11 (brs, 1H); MS (ES): 546.8 (M⁺+1).

[0928] [0929]

N-[2-(6-{1-[2-(2-메톡시폐닐)에틸]피폐리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.11): 18% 수율. H-NMR

(200 MHz, CDCl₃) δ 1.50–1.70 (m, 2H), 1.79 (s, 3H), 1.80–1.96 (m, 2H), 2.40–2.62 (m, 2H), 2.65–2.75 (m, 2H), 2.76–2.86 (m, 4H), 3.27–3.34 (m, 1H), 3.55–3.61 (m, 2H), 3.76–3.83 (m, 5H), 4.22 (s, 2H), 5.82 (t, 1H, J = 6.0Hz), 6.27 (s, 1H), 6.80–6.92 (m, 2H), 7.10–7.20 (m, 3H), 7.43–7.51 (m, 3H), 8.41–8.45 (m, 2H), 10.25 (brs, 1H); MS (ES): 542.9 (M⁺+1).

[0930] [0931]

N-[2-(6-{1-[2-(3-메톡시페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.12): 7% 수율.

N-[2-(6-{1-[2-(3-Methoxyphenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino)ethyl]acetamide (17.12): 7% yield. ¹H-NMR (200 MHz, CDCl₃) δ 1.50–1.80 (m, 2H), 1.81 (s, 3H), 1.90–2.10 (m, 4H), 2.65–2.75 (m, 2H), 2.76-2.96 (m, 4H), 3.27–3.50 (m, 1H), 3.55–3.63 (m, 2H), 3.79 (s, 3H), 3.80–3.93 (m, 2H), 4.51 (s, 2H), 5.78 (brs, 1H), 6.27 (s, 1H), 6.74-6.79 (m, 3H), 6.98 (brs, 1H), 7.17–7.20 (m, 1H), 7.45–7.48 (m, 3H), 8.40–8.45 (m, 2H), 10.00 (brs, 1H); MS (ES): 542.9 (M⁺+1).

[0932] [0933]

N-[2-(6-{1-[2-(4-메톡시페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.13): 6% 수율.

N-[2-(6-{1-[2-(4-Methoxyphenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)ethyl]acetamide (17.13): 6% yield. 1 H-NMR (200 MHz, CDCl₃) δ 1.54–1.72 (m, 2H), 1.82 (s, 3H), 1.83–1.96 (m, 2H), 2.71-2.86 (m, 8H), 3.22–3.40 (m, 1H), 3.50–3.65 (m, 2H), 3.76 (s, 3H), 3.80–3.91 (m, 2H), 4.35 (s, 2H), 6.11 (t, 1H, J = 5.0Hz), 6.31 (s, 1H), 6.83 (d, 2H, J = 8.4Hz), 7.14 (t, 1H, J = 5.0Hz), 7.26 (d, 2H, J = 8.4Hz), 7.43-7.46 (m, 3H), 8.40-8.43 (m, 2H), 10.90 (brs, 1H); MS (ES): 543.0 (M⁺+1).

[0934] [0935]

N-[2-(6-{1-[2-(4-플루오로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.14): 14% 수율.

N-[2-(6-{1-[2-(4-Fluorophenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-TH-pyrrolo[2,3-d]pyrimidin-4-ylamino)ethyl]acetamide (17.14): 14% yield. ¹H-NMR (200 MHz, CDCl₃) δ 1.58–1.78 (m, 2H), 1.80 (s, 3H), 1.82–2.10 (m, 2H), 2.44–2.60 (m, 2H), 2.60–2.80 (m, 2H), 2.80–2.92 (m, 4H), 3.38–3.48 (m, 1H), 3.50–3.65 (m, 2H), 3.82–3.94 (m, 2H), 4.53 (s, 2H), 5.77 (t, 1H, J = 5.4Hz), 6.27 (s, 1H), 6.90–7.06 (m, 3H), 7.08–7.20 (m, 2H), 7.40–7.60 (m, 3H), 8.38–8.43 (m, 2H), 9.90 (brs, 1H); MS (ES): 530.8 (M⁺+1).

[0936]

[0937] N-[2-(6-{1-[2-(2-클로로-4-플루오로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드(17.15): 10% 수율. [0938]

2H), 2.46-2.64 (m, 2H), 2.74-2.94 (m, 4H), 3.18-3.24 (m, 1H), 3.48-3.60 (m, 2H), 3.83-4.00 (m, 2H), 4.57 (s, 2H), 5.64 (t, 1H, J=6.0Hz), 6.25 (s, 1H), 6.84-7.20 (m, 4H), 8.38-8.45 (m, 2H), 9.40 (brs, 1H).

[0939] [0940]

N-[2-(6-{1-[2-(2-클로로-6-플루오로폐닐)에틸]피폐리딘-4-일옥시메틸}-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드(17.16): 13% 수율.

N-[2-(6-{1-[2-(2-Chloro-6-fluorophenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)ethyl]acetamide (17.16): 13% yield. ¹H-NMR (200 MHz, CDCl₃) δ 1.48–1.64 (m, 2H), 1.77 (s, 3H), 1.78–1.94 (m, 2H), 1.95–2.08 (m, 2H), 2.50–2.55 (m, 2H), 2.70–3.01 (m, 6H), 3.33–3.39 (m, 1H), 3.54–3.62 (m, 2H), 3.86–3.94 (m, 2H), 4.55 (s, 2H), 5.59 (t, 1H, J = 5.8Hz), 6.25 (s, 1H), 6.90–7.00 (m, 1H), 7.04–7.20 (m, 3H), 7.42–7.52 (m, 3H), 8.39–8.44 (m, 2H), 9.55 (brs, 1H).

[0941] [0942]

N-[2-(6-{1-[2-(2-트리플루오로메틸페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일 아미노)에틸]아세트아미드(17.17): 7% 수율.

N-[2-(6-{1-[2-(2-Trifluoromethylphenyl)ethyl]piperidin-4-yloxymethyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)ethyl]acetamide (17.17): 7% yield. ¹H-NMR (200 MHz, CDCl₃) 8 1.58–1.76 (m, 2H), 1.78 (s, 3H), 1.84–1.90 (m, 2H), 2.26–2.50 (m, 2H), 2.61–2.67 (m, 2H), 2.78–2.90 (m, 2H), 2.92–3.10 (m, 2H), 3.35–3.45 (m, 1H), 3.57–3.63 (m, 2H), 3.86–3.91 (m, 2H), 4.60 (s, 2H), 5.64 (t, 1H, J = 5.2Hz), 6.26 (s, 1H), 7.03 (t, 1H, J = 5.2Hz), 7.24–7.40 (m, 2H), 7.42–7.60 (m, 5H), 8.39–8.44 (m, 2H), 9.50 (brs, 1H).

[0943] [0944]

N-[2-(6-{1-[2-(2-브로모폐닐)에틸]피폐리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(17.18): MS(ES): 590.9(M⁺+1).

[0945] 2-(6-{1-[2-(4-클로로페닐)에틸]피페리딘-4-일옥시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-아세트 아미드(17,19): 글리신아미드를 사용하여 동일한 경로에 의해 수득하였다. MS(ES): 518.8(M⁺+1).

[0946] 실시예 8: 피페리딘 유도체 17의 개방 쇄 동족체

[0947] 피페리딘 유도체 17의 일련의 개방 쇄 동족체 19.1 내지 19.5를 7로부터 2 단계로 제조하였다(반응식 8).

[0948] [반응식 8]

[0949] 개방 쇄 N-알킬 유도체 19.1 내지 19.5의 합성

[0950]

[0951] 하기 아민 19.1 내지 19.5를 은-매개된 브로마이드 치환 및 C-4 클로라이드 치환에 대한 일반적인 과정에 따라 제조하였다.

[0952] N-(2-(6-{2-[메틸-(3-페닐알릴)아미노]에톡시메틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸]아세트 아미드(19.1): 2% 수율.

N-(2-(6-{2-[Methyl-(3-phenylallyl)amino]ethoxymethyl}-2-phenyl-TH-pyrrolo[2,3-d]pyrimidin-4-ylamino}ethyl]acetamide (19.1): 2% yield. ¹H-NMR (200 MHz, CDCl₃): δ 1.78 (s, 3H), 2.45 (s, 3H), 2.79 (t, 2H, J = 4.8Hz), 3.38–3.48 (m, 2H), 3.53–3.58 (m, 2H), 3.70 (t, 2H, J = 4.8Hz), 3.82–3.94 (m, 2H), 4.65 (s, 2H), 5.60 (brs, 1H), 6.23 (s, 1H), 6.36–6.47 (m, 1H), 6.62 (d, 1H, J = 15.8Hz), 7.20–7.32 (m, 6H), 7.38–7.50 (m, 3H), 8.39–8.44 (m, 2H), 9.60 (brs, 1H); MS (ES): 499.1 (M $^+$ +1).

[0953] [0954]

N-(2-{2-페닐-6-[2-(3-페닐프로필아미노)에톡시메틸]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸]아세트아미드 TFA 염(19.2): 77% 수율.

N-(2-{2-Phenyl-6-[2-(3-phenylpropylamino)ethoxymethyl]-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}ethyl)acetamide TFA salt (19.2): 77% yield. ¹H-NMR (200 MHz, CDCl₃) δ 1.78–2.10 (m, 5H), 2.55-2.60 (m, 2H), 2.80–3.00 (m, 2H), 3.55–3.70 (m, 2H), 3.78–3.95 (m, 2H), 4.16–4.19 (m, 2H), 4.28–4.30 (m, 2H), 4.95 (s, 2H), 6.55 (s, 1H), 7.10-7.25 (m, 5H), 7.45-7.60 (m, 3H), 7.85 (brs, 3H), 8.21-8.25 (m, 2H), 10.13 (brs, 1H).

[0955]

[0956] N-(2-{6-[3-(4-메톡시페닐)프로폭시메틸]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(19. 3): 40% 수율.

N-(2-{6-[3-(4-Methoxyphenyl)propoxymethyl]-2phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}ethyl)acetamide (19.3): 40% yield. 1 H-NMR (200 MHz, CDCl₃) δ 1.70–1.90 (m, 5H), 2.53 (t, 2H, J = 8.0Hz), 3.30 (t, 2H, J = 6.2Hz), 3.78 (s, 3H), 3.88–3.90 (m, 2H), 4.42 (s, 2H), 5.64 (t, 1H, J = 5.2Hz), 6.22 (s, 1H), 6.80 (d, 2H, J = 8.4Hz), 6.95–7.20 (m, 3H), 7.40–7.51 (m, 3H), 8.40–8.45 (m, 2H), 10.00 (brs, 1H). MS (ES): 474.0 (M⁺+1).

[0957] [0958]

N-{2-[6-(3-하이드록시-3-페닐프로폭시메틸메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아 미드(19.4): 31% 수율.

N-{2-[6-(3-Hydroxy-3-phenylpropoxymethyl)-2phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}ethyl)acetamide (19.4): 31% yield. ¹H-NMR (200 MHz, CDCl₃) δ 2.61 (s, 3H), 3.05-3.18 (m, 2H), 3.30-3.39 (m, 2H), 3.60-3.70 (m, 2H), 3.87-3.95 (m, 2H), 5.29 (brs, 1H), 5.95 (brs, 1H), 6.05 (brs, 2H), 7.17 (s, 1H), 7.40-7.60 (m, 8H), 7.83-7.88 (m, 1H), 8.41-8.46 (m, 2H), 9.30 (brs, 1H). MS (ES): 460.0 (M⁺+1).

[0959]

[0960] N-[2-(6-사이클로펜틸옥시메틸-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드(19,5):

N-[2-(6-Cyclopentyloxymethyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (19.5): 1 H NMR (200 MHz, CDCl₃): δ 1.40-1.70 (m, 8H), 1.76 (s, 3H), 3.58 (m, 2H), 3.87 (m, 3H), 4.44 (s, 2H), 5.65 (brt, 1H), 6.24 (s, 1H), 7.20 (brs, 1H), 7.44 (m, 3H), 8.41 (m, 2H); MS (ES): 393.9 [MH $^{+}$].

[0961]

[0962] [張 2]

[0963] A_{2B} 길항물질 15, 17 및 19

Comp. #	Structure	MW	Comp. #	Structure	MW
15.1	THE	548.67	15.2	HN N N N N N N N N N N N N N N N N N N	562.70
15.3	HN H O O O O O O O O O O O O O O O O O O	573.68	17.1	HN H	498.63
17.2	N N N N N N N N N N N N N N N N N N N	512.66	17.3	N THOUSE THE STATE OF THE STATE	526.69
17.4	HN H O N	577.53	17.5	H ₂ N H O N N H	470.58
17.6		524.67	17.7	HN H O O	547.11
17.8	HN N CI-	547.11	17.9	HN H CO	533.08
17.10	HN HO ON	547.11	17.11	HN H O O	542.69
17.12	HN H	542.69	17.13	TE T	542.69

[0964]

Comp. #	Structure	MW	Comp. #	Structure	MW
17.14	HN N N N	530.65	17.15	HIN HO CI	565.10
17.16	N N N N N N N N N N N N N N N N N N N	565.10	17.17	HN N N F F	580.66
17.18	HN HO N	591.56	17.19	H ₂ N NH O NH	519.05
19.1		498.63	19.2		486.62
19.3		473.58	19.4	N N N N N N N N N N N N N N N N N N N	, 459.55
19.5		393.49			

[0965]

[0966]

[0967]

[0968]

실시예 9: C-6 옥심 에테르

옥심 에테르 22를 브로마이드 7로부터 알데히드 20으로의 코른블룸(Kornblum) 산화에 이어서 옥심 에테르 형성 및 C-4 클로라이드 치환을 통해 제조하였다(반응식 9).

[반응식 9]

[0969] 옥심 에테르 22의 합성

[0970] [0971]

[0972]

4-클로로-6-포르밀-2-페닐피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸 에스테르(20):

DMSO(50 mℓ) 중의 브로마이드 7(2.00 g, 4.73 밀리몰), Na₂HPO₄(806 mg, 5.68 밀리몰) 및 NaH₂PO₄(227 mg, 1.89 밀리몰)의 현탁액을 질소 하에서 48 ℃로 가열한다. 1 시간 후에, 모든 고체들이 용해되며, 반응을 2 시간 동안 속행한다. 이어서 상기 용액을 H₂O(600 mℓ)에 붓고, 혼합물을 EtOAc(2 x 150 mℓ)로 추출한다. 합한 EtOAc 충들을 H₂O(3 x 400 mℓ) 및 염수로 세척하고 MgSO₄ 상에서 건조시킨다. 여과 및 농축에 의해 황색 고체를 수득하고, 이를 EtOH로 연마하여 황색 고체로서 표제 화합물 1.06 g(2.97 밀리몰, 63%)을 수득한다. MS(ES): m/z 304.7/306.7(33/10)[MH[†]-Boc-H₂O+2 MeOH], 272.7/274.7(100/32)[MH[†]-Boc-H ₂O+ MeOH]. ¹H NMR(DMSO-d₆, 200 MHz): δ = 1.79(s, 9H), 7.44(s, 1H), 7.48-7.55(m, 3H), 8.51-8.60(m, 2H), 10.39(s, 1H), t_R(방법 A) = 10.4 min.

[0973] 6-(벤질옥시이미노메틸)-4-클로로-2-페닐피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸 에스테르(21.1):

[0974] CH₂Cl₂(2 mℓ) 중의 알데히드 20(50 mg, 0.14 밀리몰), 0-벤질하이드록시아민 하이드로클로라이드(26 mg, 0.16 밀리몰) 및 피리딘(12 mg, 0.15 밀리몰)의 용액을 주변 온도에서 5 시간 동안 교반하고, 이어서 포화된 NH₄Cl 용액을 가하고 혼합물을 EtOAc(3 x 5 mℓ)로 추출한다. 합한 추출물을 염수로 세척하고 MgSO₄ 상에서 건조시킨다. 헥산으로부터의 조 고체의 결정화로 무색 고체로서 표제 화합물, 단일 옥심 단량체 31 mg(0.067 밀리몰, 48%)을 수득한다. MS(ES): m/z 463.0/465.0(90/48) [MH[†]], 363.1/365.2(100/32) [MH[†]-Boc].

6-(3 급-부톡시이미노메틸)-4-클로로-2-페닐피롤로[2,3-d]피리미딘-7-카복실산 3 급-부틸 에스테르(21.2):

[0976] 상응하는 벤질-옥시이미노메틸 화합물에 대한 과정에 따라, 표제 화합물을 담황색 고체로서 58% 수율로 수득하였다.

¹H NMR (200 MHz, CDCl₃): (*E*) isomer (85%): δ = 1.39 (s, 9H), 1.77 (s, 9H), 7.06 (s, 1H), 7.45–7.52 (m, 3H), 8.48–8.56 (m, 2H), 8.61 (s, 1H); (*Z*) isomer (15%): δ = 1.45 (s, 9H), 1.78 (s, 9H), 7.05 (s, 1H), 7.45–7.52 (m, 3H), 8.48–8.56 (m, 2H), 8.62 (s, 1H).

[0978] N-{2-[6-(벤질옥시이미노메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(22.1):

[0979] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 예비 TLC에 의해 정제시킨 후에 황색 포움, 단일 옥심 단량 체로서 표제 화합물을 69% 수율로 제조하였다. 융점 83-87 ℃. MS(ES): m/z 429.1(100)[MH[†]] ¹H NMR(200 MHz, CDCl₃): δ = 1.82(s, 3H), 3.53-3.65(m, 2H), 3.84-3.96(m, 2H), 5.18(s, 2H), 5.94(brs, 1H), 6.51(s, 1H), 6.84(brs, 1H), 7.31-7.52(m, 8H), 8.05(s, 1H), 8.37-8.45(m, 2H), 9.16(brs, 1H), t_R(방법 A) = 8.7 min.

N-{2-[6-(3 급-부톡시이미노메틸)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(22.2):

[0981] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 예비 TLC에 의해 정제시킨 후에 무색 오일로서 표제 화합물을 56% 수율로 제조하였다. MS(ES): m/z 395.2(100)[MH[†]]. t_R(방법 A) = 8.5 min.

[0982] [표 3]

[0975]

[0977]

[0980]

[0984]

[0983] A_{2B} 길항물질 22

Comp. Structure	MW	Comp. #	Structure	MW
22.1 NH	428.50	22.2	NH N-O	394.48

[0985] 실시예 10: C-6 아미드

[0986] C-6에 아미드 잔기를 갖는 피롤로[2,3-d]피리미딘 26에 대한 주요 중간체는 N-벤젠설포닐-보호된 피롤로피리미 딘 24이다. 상기 아미드 잔기를 금속화 및 카바모일 클로라이드 또는 이소시아네이트에 의한 급냉에 이어서 C-4 의 클로라이드를 아민으로 치환시키고 동시에 벤젠설포닐 그룹을 제거함으로써 직접 도입시킬 수 있다.

[0987] [반응식 10]

[0988] C-6 아미드 26으로의 합성 경로: 직접적인 아미드 형성

[0989]

[0990] 한편으로, 24의 음이온을 이산화 탄소와 반응시켜 리튬 염 27을 수득하고, 이를, 유리 산은 쉽게 탈카복실화되기 때문에 그 자체로 사용한다. C-4에서 아민에 의한 클로라이드 치환, 이어서 설포닐 그룹의 제거 및 PyBOP, TBTU 또는 EDC를 사용한 아미드 커플링으로 A₂₈ 길항물질 26을 수득한다. 아미드 형성을 하이드록시숙신이미드에스테르 32(커플링을 위해 EDC 및 HOPt를 사용하여 산 30으로부터 제조됨)와 아민을 반응시킴으로써 매우 편리하게 수행할 수 있다. 최종 두 단계(즉 피롤 탈보호 및 아미드 형성)의 순서를 역전시킬 수 있다(반응식 11a). 선택된 아미드를 그의 메탄설폰산 염으로 전환시켰다.

[0991] 반응식 11a 내지 11c

[0992] C-6 아미드 26으로의 합성: CO₂ 급냉

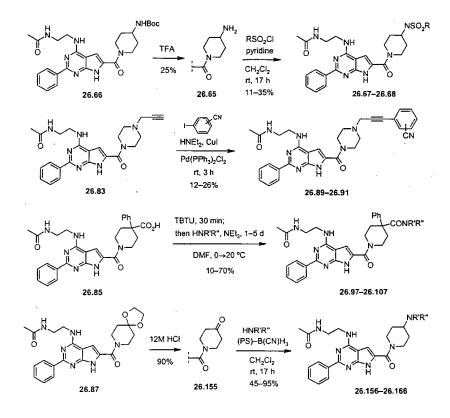
[0993] [반응식 11a]

[0994]

[0995] [반응식 11b]

[0996]

[0997] [반응식 11c]


[0998] [0999]

26.167을 5로부터 출발하여 유사한 방식으로 제조하였다.

[1000] 다수의 아미드 26을 추가로 유도체화하였다(반응식 12). Boc-보호된 26.66을 26.65로 탈보호시키고 염화 설포 닐과 반응시켜 26.67 내지 26.68을 수득하였다. 아세틸렌 26.83을 아릴 요오다이드와 소노가시라 (Sonogashira) 커플링시켜 26.89 내지 26.91을 수득하였다. 산 26.85를 DMF 중의 TBTU를 사용하여 일련의 1 차 및 2 차 아민과 커플링시켜 아미드 26.97 내지 26.107을 수득하였다. 케탈 26.87을 탈보호시키고 환원제로 서 중합체-지지된 시아노보로하이드라이드를 사용하여 일련의 1 차 및 2 차 아민과 반응시켜 45 내지 95% 수율 을 얻었다.

[1001] [반응식 12]

[1002] 선택된 C-6 아미드 26의 추가적인 유도체화

[1003]

[1005] A_{2B} 길항물질 26.1 내지 26.250

Comp.	Structure	MW	Comp.	Structure	MW
26.1	NH NH NH	408.46	26.2	J H NH H O	506.57
26.3		523.64	26.4	THE MAY NO	464.57
26.5	THE NIT OF THE PROPERTY OF THE	525.66	26.6	HO CI	533.03
26.7	TO NH HO	498.59	26.8	THE NAME OF THE PARTY OF THE PA	512.62
26.9	H.N. NH	504.98	26.10	N N N N N N N N N N N N N N N N N N N	566.59
26.11	N N N N N N N N N N N N N N N N N N N	511.63	26.12	NH N	534.67
26.13	SH NH	515.02	26.14		497.60
26.15	H ₁ N NH N	497.60	26.16	NH NH NN O-C	562.08
26.17		432.53	26.18	HQ F	516.58

[1006]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.19		507.60	26.20	THE STATE OF THE S	506.57
26.21	NH NH NH	521.63	26.22		435.53
26.23	N N N N N N N N N N N N N N N N N N N	439.57	26.24		553.71
26.25		558.69	26.26	THE NAME OF THE PARTY OF THE PA	558.69
26.27	The NH of the NH	512.62	26.28	NH N	514.61
26.29	HO F	530.61	26.30	THE NH WHITE	553.71
26.31		435.53	26.32		525.66
26.33		539.69	26.34		756.87

[1007]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.35	SHOWN NO	484.57	26.36		496.62
26.37	NH NH NN FFF	552.56	26.38	SH NH SH SH	501.57
26.39	THE NAME OF THE PERSON OF THE	552.56	26.40	NH CI (N)	553.46
26.41		623.16	26.42	HN NH NO CI	547.06
26.43	HO CI	533.03	26.44	CONTRACTOR OF THE PROPERTY OF	727.70
26.45	H,N NH NH CI	519.01	26.46	H,N NH NH CI	595.11
26.47	TO NH HO CO	609.13	26.48		530.61
26.49		565.68	26.50	H,N NH	489.97
26.51		826.37	26.52		797.33

[1008]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.53		522.66	26.54	THE NAME OF THE PARTY OF THE PA	496.62
26.55		511.63	26.56		539.69
26.57		524.67	26.58	NH N	475.60
26.59	NA THE STATE OF TH	531.71	26.60		491.64
26.61	HO ANH NO STATE OF THE PARTY OF	577.49	26.62		482.59
26.63		489.63	26.64 ·		475.60
26.65	NH NH NH	421.51	26.66		521.62
26.67	NH N	499.60	26.68	H	475.69

[1009]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.69	HO NH	528.62	26.70	NH HO	528.62
26.71	JH NH CO	518.02	26.72	THE STATE OF THE S	451.53
26.73	NH N	510.60	26.74	NH N	512.62
26.75	The state of the s	512.62	26.76	THE NAME OF THE PARTY OF THE PA	524.62
26.77		517.68	26.78	HO NH	446.51
26.79		504.60	26.80	The state of the s	551.65
26.81	NH NH NH	531.06	26.82		547.06
26.83	NH N	445.53	26.84	NH N	540.67
26.85	HO O O	526.60	26.86		462.60

[1010]

Comp.	Structure	MW	Comp. #	Structure	MW
26.87	TA T	464.53	26.88	THE NH THE STATE OF THE STATE O	510.64
26.89	The state of the s	546.64	26.90		√ 546.64
26.91	The Notice of th	546.64	26.92	THE NH	540.63
26.93	HC HC	526.64	26.94		550.67
26.95	THE PART OF THE PA	554.65	26.96	THE SECOND SECON	512.62
26.97	H,N,O	525.62	26.98		539.64
26.99		553.67	26.100	NH N	615.74
26.101		553.67	26.102		581.72

[1011]

Comp.	Structure	MW	Comp.	Structure	MW
26.103		565.68	26.104		579.71
26.105	HIN NEW YORK THE PROPERTY OF T	593.74	26.106	NH N	595.71
26.107	The second secon	581.72	26.108	TH NH	496.62
26.109	NH N	540.67	26.110		524.67
26.111	The same of the sa	527.65	26.112	TH NH	594.72
26.113	H,N, NH, NH, NH, NH, NH, NH, NH, NH, NH,	486.55	26.114	THE NAME OF COLUMN ASSESSMENT	547.06
26.115	THE STATE OF THE S	580.62	26.116	THE NAME OF THE PARTY OF THE PA	478.60
26.117	TH. ZH. ZH. ZH. ZH. ZH. ZH. ZH. ZH. ZH. Z	539.64	26.118	The NH	568.68

[1012]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.119	THE PART OF THE PA	492.59	26.120	THAN THE PROPERTY OF THE PROPE	540.63
26.121	THE NH OF THE NEW YORK THE NEW	542.64	26.122	H,N,	518.62
26.123 ⁻		510.60	26.124	THAT WE WANTED	542.64
26.125	TO NAME OF THE PARTY OF THE PAR	597.60	26.126	THE NAME OF THE PARTY OF THE PA	510.60
26.127	HO NH NO NH	512.62	26.128	ZH ZH	510.64
26.129	THE NAME OF THE PARTY OF THE PA	526.64	26.130	NH N	526.64
26.131	The second secon	526.64	26.132	NH N	497.60
26.133	NH NH NH	560.10	26.134	NH NH NH	560.10
26.135	NH NH NH	560.10	26.136		538.61

[1013]

Comp.	Structure	MW ·	Comp. #	Structure	MW
26.137	NH NH OH	507.00	26.138		512.60
26.139		555.69	26.140	NH NH	° 555.69
26.141		555.69	26.142	THE NAME OF THE PARTY OF THE PA	518.62
26.143		574.09	26.144	THE NAME OF THE PARTY OF THE PA	574.09
26.145		574.09	26.146	THAT NAME OF THE PARTY OF THE P	583.10
26.147		554.66	26.148		541.61
26.149	THE NAME OF THE PARTY OF THE PA	552.64	26.150	TIN NO	541.61
26.151	THE NAME OF STREET OF STRE	478.56	26.152	THE NAME OF THE PARTY OF THE PA	478.56

[1014]

Comp.	Structure	MW	Comp.	Structure	MW
26.153	The second secon	511.63	26.154	SH NH	559.68
26.155		420.47	26.156		539.69
26.157		525.66	26.158		560.10
26.159		515.62	26.160	THE NAME OF THE PARTY OF THE PA	526.65
26.161		526.65	26.162		511.63
26.163		525.66	26.164		525.66
26.165		512.62	26.166	THE NAME OF THE NA	526.65
26.167	HANNE NAME OF THE PROPERTY OF	551.70	26.168	NH N	381.44
26.169	The state of the s	525.66	26.170	NH NH NH	537.67

[1015]

Comp.	Structure	MW	Comp.	Structure	MW
26.171		428.50	26.172	NH OH OH	412.45
26.173	NH NH NH	454.54	26.174	NH NH OH	450.55
26.175	NH NH NH	534.62	26.176		497.60
26.177		449.52	26.178		588.72
26.179	PH Z Z Z	435.53	26.180	NH NH NH	493.57
26.181	NH N	434.55	26.182	THE NH CONTRACTOR OF FEF	593.66
26.183	NH NH NN N	543.65	26.184	THE NAME OF THE PARTY OF THE PA	569.67
26.185	THANK NAME OF THE PROPERTY OF	539.69	26.186	H NH	604.56

[1016]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.187	NAT HO		26.188	THE NH CI	594.55
26.189		497.61	26.190	NH N	511.63
26.191		525.66	26.192	THE STATE OF THE S	539.69
26.193	THE NH CONTRACTOR OF THE NAME	498.59	26.194	NH N	533.03
26.195	NH N	528.62	26.196	NH N	498.59
26.197		463.54	26.198	NA PARAMETER STATE OF THE PARAMETER STATE OF	454.54
26.199	HANNE ZHOO NO N		26.200	7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	540.63
26.201		454.54	26.202		508.59

[1017]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.203		508.59	26.204	NH OHOHO	436.52
26.205		472.55	26.206	JH NH NH NH	554.66
26.207		527.63	26.208	NH H	458.52
26.209	The state of the s	449.52	26.210		511.63
26.211	AN NH NN O	527.63	26.212	July Williams	513.60
26,213		518.02	26.214		501.57
26.215		483.58	26.216		519.56
26.217	TH NH NH NH	511.63	26.218	SH NH CO	543.63
26.219	SH NH O	548.05	26.220	THE NAME OF COLUMN TWO IS NOT THE OWNER OF THE OWNER OWNER OF THE OWNER	547.06

[1018]

Comp.	Structure	MW	Comp. #	Structure	MW
26.221		509.62	26.222	J-H NH N OH	499.58
26.223	JAN HOLOGO	552.47	26.224	SH NUMBER OF COLUMN TO COLUMN THE	530.03
26.225		512.62	26.226		537.63
26.227		537.63	26.228	THE NEW YORK OF THE NEW YORK O	529.67
26.229	H NO	528.58	26.230	THE NAME OF COLUMN TO COLUMN THE NAME OF COLUMN THE	518.02
26.231	NH NH NH FF	551.58	26.232	JH NH NHOO	541.61
26.233	Jan NH	497.60	26.234	O'N-H-N-N-O-O	513.60
26.235	NH NH CI	581.51	26.236		537.63
26.237		542.05	26.238	THE NH NO.5.	545.67

[1019]

Comp. #	Structure	MW	Comp. #	Structure	MW
26.239	NH NH ONH,	526.60	26.240		537.63
26.241	THE NAME OF THE PARTY OF THE PA	542.05	26.242		537.63
26.243	ZH Z	542.05	26.244	THE NAME OF THE PARTY OF THE PA	537.63
26.245	HO HO NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	531.02	26.246	HO NH NH NN	549.08
26.247	H,N,N,H,N,N,H,N,N,N,N,N,N,N,N,N,N,N,N,N	513.99	26.248	H,N NH NN	532.05
26.249	H,N NH NH O	528.02	26.250	H,N H	546.08

[1020]

[1021]

7-벤젠설포닐-4-클로로-2-페닐-7H-피롤로[2,3-d]피리미딘(24):

[1022] 빙/수 욕에 의해 냉각시킨, 무수 DMF(20 ml) 중의 수소화 나트륨(780 mg의 60% 오일 현탁액, 19.5 밀리몰)의 현탁액에 질소 하에서 DMF(10 ml) 중의 피롤로피리미딘 23(2.00 g, 7.52 밀리몰) 용액을 5 분에 걸쳐 가한다. 15 분 후에, 벤젠설포닐 클로라이드(1.2 ml, 9.40 밀리몰)를 가하고, 이어서 냉각 욕을 제거한다. 4 시간 후에, 반응 혼합물을 얼음과 포화된 NaHCO3 용액의 혼합물에 붓고, 침전된 고체를 여과하고 아세톤(3 x) 및 메탄올(2 x)로 연마하여 베이지색 고체 2.37 g을 수득한다. 상기 고체는 약 10 몰% DMF(83% 수율 기준)를 함유하고 다음 단계에 사용될 수 있으며; 용출제로서 아세톤을 사용하여 실리카겔 상에서 크로마토그래피에 의해 순수한 샘플을 수득할 수 있다.

¹H-NMR (CDCl₃): δ 6.70 (d, J =

4.2Hz, 1H), 7.47–7.68 (m, 6H), 7.76 (d, J = 4.2Hz, 1H), 8.24–8.32 (m, 2H), 8.48–8.56 (m, 2H); IR (solid): ν = 3146 cm⁻¹, 1585, 1539, 1506, 1450, 1417, 1386, 1370, 1186, 1176, 1154, 1111, 1015, 919, 726, 683, 616, 607; MS (ES): 372/370 (MH⁺); mp = 226–227 °C. $C_{18}H_{12}ClN_3O_2S$ (369.83): calcd. C 58.46, H 3.27, N 11.36, Cl 9.59; found C 58.17, H 3.24, N 11.36, Cl 9.48.

[1023]

[1024] 7-벤젠설포닐-4-클로로-2-페닐-7H-피롤로[2,3-d]피리미딘-6-일)-모르폴린-4-일-메타논(25.1):

[1025] 드라이 아이스/아세톤에 의해 냉각시킨, 무수 THF(10 mℓ) 중의 N-설포닐 화합물 24(100 mg, 0.270 밀리몰) 용액에 LDA.THF(270 μℓ, 사이클로헥산 중의 1.5 M 용액, 0.405 밀리몰)를 가한다. 60 분 후에, 모르폴린카바모일 클로라이드(47 μℓ, 0.405 밀리몰)를 가한다. 1.5 시간 후에, 반응물을 포화된 NH₄Cl 용액을 가하여 급냉시키고, 혼합물을 EtOAc(3 x 15 mℓ)로 추출하고, 합한 EtOAc 충들을 물 및 염수로 세척하고, MgSO₄ 상에서 건조시킨

- 다. 실리카 겔 상에서 크로마토그래피에 의해 백색 고체로서 표제 화합물 59 mg(0.12 밀리몰, 45%)을 수득한
- 다. 융점 259-260 °C. MS(ES): m/z 483.0/485.0(100)[MH[†]]. t_p(방법 A) = 10.8 min.

[1026] 7-벤젠설포닐-4-클로로-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (4-페녹시페닐)-아미드(25.2):

[1027] 상기 과정에 따라, 25.2를 백색 고체로서 37% 수율로 수득하였다. 융점 250-253 ℃. MS(ES): m/z 581.0/583.0(100)[MH[†]]. t_R(방법 A) = 12.8 min.

[1028] 리튬 7-벤젠설포닐-4-클로로-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실레이트(27):

[1030]

[1029] 드라이 아이스/아세톤에 의해 냉각시킨, 무수 THF(150 ml) 중의 N-설포닐 화합물 24(1.504 g, 4.07 밀리몰) 용액에 LDA.THF(3.8 ml, 사이클로헥산 중의 1.5 M 용액, 5.7 밀리몰)를 가한다. 45 분 후에, 이산화 탄소를 5분간 상기 용액에 발포시키고, 이어서 냉각 욕을 제거한다. 용액이 주변 온도에 도달하면, 용매를 증발시켜 담황색 고체로서 염 27[(iPr)2NCO2Li 함유] 1.73 g을 수득한다. 상기 염을 다음 단계에 정제 없이 사용한다.

 1 H-NMR(D₆-DMSO): $\delta = 6.44(s, 1H), 7.50-7.75(m, 6H), 8.33-8.40(m, 2H), 8.53(dd, J = 8.0, 1.6Hz, 2H).$

4-(2-아세틸아미노에틸아미노)-7-벤젠설포닐-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산(28a):

[1031] 무수 DMSO(20 mℓ) 중의 리튬 염 3(2.02 g, ~4.8 밀리몰) 및 N-아세틸에틸렌디아민(4.91 g, 48.1 밀리몰) 용액을 질소 하에 4.5 시간 동안 80 ℃로 가열한다. DMSO 및 과잉의 아민을 증발시키고, 2N NaOH(30 mℓ)를 가하고, 혼합물을 EtOAc(4 x 30 mℓ)로 추출한다. 수성 층을 수성 HC1에 의해(먼저 일부 고체가 침전될 때까지 12 N HC1, 이어서 pH가 3 내지 4되고 더 이상 고체가 침전되지 않을 때까지 2 N HC1에 의해) pH ~ 3 내지 4로 산성화시킨다. 베이지색 고체를 여과하고 건조시켜 28a 1.59 g을 수득하고, 이를 다음 단계에 추가의 정제 없이 사용한다. 상기 물질에 대한 LC/MS 분석: 83%의 28a, 10%의 30a(데설포닐화된 물질), 6%의 데스아세틸-28a. ¹H-NMR(D₆-DMSO): δ = 1.78(s, 3H), 3.3(m, 2H; 수 피크 하에 숨겨져 있음), 3.62(m, 2H), 7.35(s, 1H), 7.5-7.6(m, 3H), 7.6-7.8(m, 3H), 8.0-8.1(brm, 2H, NH), 8.34(d, J = 8.6 Hz, 2H), 8.40-8.50(m, 2H). MS(ES): 480(MH[†]).

[1032] 7-벤젠설포닐-(4-카바모일메틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산(28b):

[1033] 28a에 대한 과정에 따라 제조하였다. MS(ES): m/z 451.7(100)[MH[†]]. tp(방법 A) = 7.1 min.

[1034] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산(30a):

[1035] 메탄올 중의 수산화 나트륨 용액(65 ㎖, 5 M, 325 밀리몰)을 메탄올(35 ㎖) 중의 피롤로피리미딘 28a(6.3 g, 13.1 밀리몰) 용액에 가한다. 1.5 시간 후에, MeOH를 증발시킨다. 잔사를 2N NaOH(200 ㎖)에 용해시키고 Et₂O(2 x 30 ㎖)로 추출한다. 수성 층을 수성 HCl에 의해(먼저 일부 고체가 침전될 때까지 12 N HCl, 이어서 pH가 3 내지 4되고 더 이상 고체가 침전되지 않을 때까지 2 N HCl에 의해) pH ~ 3 내지 4로 산성화시킨다. 베이지색 고체를 여과하고 건조시켜 30a 4.345 g(12.8 밀리몰, 98% 수율)을 수득한다. 상기 물질에 대한 LC/MS 분석: 95%의 30a, 3%의 데스아세틸-30a. 이를 다음 단계에 추가의 정제 없이 사용한다.

¹H-NMR (D₆-

DMSO): δ = 1.81 (s, 3H), 3.3 (m, 2H; hidden under water peak), 3.62 (m, 2H), 7.29 (s, 1H), 7.44–7.50 (m, 3H), 8.0–8.1 (brm, 2H, NH), 8.40–8.45 (m, 2H). ¹H NMR (CDCl₃/CD₃OD, 200 MHz): δ = 1.82 (s, 3H), 3.53 (m_c, 2H), 3.87 (t, J = 5.7 Hz, 2H), 7.24 (s, 1H), 7.44–7.50 (m, 3H), 8.33–8.40 (m, 2H). ¹³C NMR (d₆-DMSO, 50.3 MHz, DEPT135): δ = 22.66 (+), 38.45 (-), 39.53 (-), 102.22 (C_{quart}), 106.11 (C_{quart}), 124.94 (+), 127.65 (+, 2C), 128.09 (+, 2C), 129.53 (C_{quart}), 138.98 (+), 152.02 (C_{quart}), 157.15 (C_{quart}),

[1036]

159.21 (C_{quart}), 162.14 (C_{quart}), 169.47 (C_{quart}). MS (ES): m/z 339.9 (100) [MH $^{+}$]. t_{R} (method A) = 5.0 min.

[1037]

- [1038] 4-(카바모일메틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산(30b):
- [1039] 30a에 대한 과정에 따라 제조하였다. MS(ES): m/z 311.9(100)[MH[†]]. t_R(방법 A) = 4.6 min.
- [1040] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 2,5-디옥소피롤리딘-1-일 에스테르 ("숙신이미드")(32):
- [1041] 산 30a(3.0 g, 8.84 밀리몰), EDC(5.1 g, 26.0 밀리몰), 하이드록시벤조트리아졸 하이드레이트(1.35 g, 8.84 밀리몰) 및 하이드록시숙신이미드(3.1 g, 26 밀리몰)를 DMF(70 mℓ)에 용해시켰다. 4-디메틸아미노-피리딘(216 mg, 0.2 밀리몰)을 가하고 반응물을 실온에서 교반하였다. 19 시간 후에, 반응 혼합물을 EtOAc와 물 사이에 분배시켰다. 층들을 분리시키고 수성 층을 EtOAc(3 x)로 재 추출하였다. 합한 EtOAc 추출물을 물(2 x) 및 염수로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시켜 황색 포움을 수득하였다. 고체를 2 회, 즉 Et₂O로 1 회 및 DCM으로 1 회 연마시켜 담황색 고체 2.92 g(76%)을 수득하였다. 분석 샘플을 CHCl₃ → CHCl₃ 중의 15% iPrOH로 용출시키면서 실리카 겔 상에서 크로마토그래피에 의해 수득하였다. 융점 230-234 ℃(분해). C₂₁H₂₀N₀O₅(436.4) 이론치 C 57.79 H 4.62 N 19.26; 실측치 C 58.06 H 4.81 N 18.99.

 1 H NMR (d₆-DMSO, 200 MHz): δ = 1.78 (s, 3H), 2.87 (s, 4H), 3.35 (m, 2H), 3.60 (m, 2H), 7.45 (m, 3H), 7.69 (s, 1H), 8.03 (brs, 1H), 8.25 (brs, 1H), 8.42 (m, 2H). MS (ES): 436.7 (MH⁺). t_{R} (method A) = 6.6 min.

[1042]

- [1043] 숙신이미드 32로부터 아미드 26의 합성에 대한 일반적인 과정:
- [1044] 무수 DMF(2 ml) 중의 숙신이미드 32(52 mg, 0.12 밀리몰), 아민 29 또는 그의 하이드로클로라이드 염(0.14 밀리몰) 및 트리에틸아민(22 μl, 유리 아민이 사용되는 경우 0.16 밀리몰, 하이드로클로라이드 염이 사용되는 경우 상기 량의 2 배) 용액을 주변 온도에서 24 내지 48 시간 동안 교반한다. 이어서 용매를 증발시키고, 잔사를 EtOAc(15 ml)와 물(10 ml) 사이에 분배시키고, 수성 층을 추가의 EtOAc(3 x 15 ml)로 추출한다. 합한 유기 층들을 2N NaOH, 물(2 x) 및 염수로 세척하고, MgSO4 상에서 건조시키고, 여과하고 농축시킨다. 조 물질을 크로 마토그래피에 이어 연마 또는 결정화에 의해 정제시킨다.
- [1045] 산 30a로부터 아미드 26의 합성에 대한 일반적인 과정:
- [1046] TBTU(48 mg, 0.15 밀리몰)를 빙/수에 의해 냉각시킨, DMF(1.5 ml) 중의 산 30a(41 mg, 0.12 밀리몰) 용액에 가한다. 30 분 후에, 아민 29 또는 그의 하이드로클로라이드 염(0.14 밀리몰) 및 트리에틸아민(22 μl, 유리 아민이 사용되는 경우 0.16 밀리몰, 하이드로클로라이드 염이 사용되는 경우 상기 량의 2 배)을 가하고, 냉각 욕을 제거하고, 반응 혼합물을 TLC가 상기 산의 완전한 소비를 가리킬 때까지 24 내지 주변 온도에서 교반한다. 이어서 DMF를 증발시키고, 잔사를 EtOAc(15 ml)와 물(10 ml) 사이에 분배시키고, 수성 층을 추가의 EtOAc(3 x

15 ml)로 추출한다. 합한 유기 충들을 2N NaOH, 물(2 x) 및 염수로 세척하고, MgSO₄ 상에서 건조시키고, 여과하고 농축시킨다. 조 물질을 크로마토그래피에 이어 연마 또는 결정화에 의해 정제시킨다.

[1047] N-{2-[6-(모르폴린-4-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.1):

[1048] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 26.1을 회색 고체로서 25.1로부터 제조하였다. 융점 250 ℃. MS(ES): m/z 409.2(100)[MH[†]].

¹H NMR (CDCl₃, 200 MHz): δ = 1.82 (s, 3H), 3.59 (q, J = 5.4 Hz, 2H), 3.72–3.80 (m, 4H), 3.83–3.92 (m, 6H), 6.08 (brs, 1H), 6.68 (s, 1H), 6.80 (brs, 1H), 7.43–7.49 (m, 3H), 8.38–8.45 (m, 2H), 9.81 (brs, 1H). t_R (method A) = 5.2 min.

[1049] [1050]

4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (4-페녹시페닐)-아미드(26.2):

[1051] C-4 클로라이드 치환에 대한 일반적인 과정에 따라, 26.2를 26.1로부터 백색 고체로서 제조하였다. 융점 250-257 ℃(분해). MS(ES): m/z 506.9(100)[MH[†]]

 1 H NMR (DMSO-D₆, 200 MHz): δ = 1.79 (s, 3H), 3.40 (m_c, 2H), 3.65 (q, J = 6.2 Hz, 2H), 6.89–7.13 (m, 5H), 7.29–7.48 (m, 6H), 7.76 (d, J = 9.2 Hz, 2H), 7.88 (brs, 1H), 8.04 (brs, 1H), 8.37–8.44 (m, 2H), 10.16 (s, 1H), 12.13 (s, 1H). t_R (method A) = 8.5 min.

[1052] [1053]

N-(2-{2-페닐-6-[4-(3-페닐알릴)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드 (26.3): 희색 고체. MS(ES): m/z 524.2(10)[MH[†]], 408.2(100)[MH[†]-PhC₃H₃].

N-(2-{2-Phenyl-6-[4-(3-phenylallyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.3): off-white solid. MS (ES): m/z 524.2 (10) [MH $^{+}$], 408.2 (100) [MH $^{+}$ - PhC₃H₃]. ¹H NMR (CDCl₃, 200 MHz): δ = 1.81 (s, 3H), 2.61 (m_e, 4H), 3.22 (d, J = 6.6 Hz, 2H), 3.60 (q, J = 5.2 Hz, 2H), 3.88–3.98 (m, 6H), 5.87 (brs, 1H), 6.28 (dt, J = 15.7, 6.6 Hz, 1H), 6.54 (d, J = 15.7 Hz, 1H), 6.66 (s, 1H), 6.80

[1054]

(brs, 1H), 7.20–7.50 (m, 8H), 8.40–8.45 (m, 2H), 9.45 (brs, 1H). t_R (method A) = 6.0 min.

[1055]

[1056] N-{2-[6-(4-하이드록시-4-이소프로필피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아 세트아미드(26.4): 백색 고체, 융점 140-145 ℃(분해).

N-{2-[6-(4-Hydroxy-4-isopropylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.4): white solid, mp 140–145 °C (decomp.). MS (ES): m/z 465.2 (100) [MH $^+$]. IR (film): v = 3332 cm $^{-1}$, 2964, 2877, 1654, 1590, 1574, 1532, 1438, 1387, 1327, 1278, 1255, 1170, 1071, 1026, 936, 776, 750, 706. 1 H NMR (CD₃OD, 200 MHz): δ = 0.96 (d, J = 7.0 Hz, 6H), 1.55–1.70 (m, 5H), 1.85 (s, 3H), 3.40–3.56 (m, 4H), 3.83 (t, J = 6.0 Hz, 2H), 4.37 (brd, J = 12.0 Hz, 2H), 6.92 (s, 1H), 7.40–7.46 (m, 3H), 8.37–8.45 (m, 2H). t_R (method A) = 5.8 min.

[1057]

[1058] N-(2-{2-페닐-6-[4-(3-페닐프로필)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미 드(26.5): 융점 198-200 ℃(분해).

N-(2-{2-Phenyl-6-[4-(3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]-

pyrimidin-4-ylamino}-ethyl)-acetamide (26.5): Mp 198–200 °C. MS (ES): m/z 526.1 (51) [MH⁺]. IR (film): v = 3295 cm⁻¹, 3062, 3024, 2929, 2857, 1654, 1589, 1573, 1530, 1454, 1432, 1387, 1328, 1297, 1170, 1132, 1027, 1001, 776, 749, 703. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.79$ (s, 3H), 1.83 (quint, J = 7.4 Hz, 2H), 2.39 (t, J = 7.6 Hz, 2H), 2.47 (m_c, 4H), 2.65 (t, J = 7.6 Hz, 2H), 3.52–3.56 (m, 2H), 3.80–3.90 (m, 6H), 6.19 (brs, 1H), 6.67 (s, 1H), 7.01 (brs, 1H), 7.16–7.42 (m, 8H), 8.37–8.40 (m, 2H), 10.12 (brs, 1H). ¹³C NMR (CDCl₃/CD₃OD, 50.3 MHz, additional DEPT135): $\delta = 22.97$ (+), 28.31 (–), 33.50 (–), 40.85 (–), 41.19 (–), 41.35 (–), 53.01 (–), 57.66 (–), 101.95 (2C, +, C_{quart}), 125.85 (+), 126.35 (C_{quart}), 127.96 (+), 128.33 (+), 129.91 (+), 138.64 (C_{quart}), 141.84 (C_{quart}), 150.95 (C_{quart}), 157.59 (C_{quart}), 160.07 (C_{quart}), 161.49 (C_{quart}), 171.42 (C_{quart}). t_R (method A) = 4.4 min. C₃₀H₃₅N₇O₂ (525.66): calcd. C 68.55, H 6.71, N 18.65; found C 68.93, H 6.78, N 18.26.

[1059] [1060]

N-(2-{6-[4-(4-클로로페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(26.6): 담황색 고체.

 $N\hbox{-}(2\hbox{-}\{6\hbox{-}[4\hbox{-}(4\hbox{-}Chlorophenyl)\hbox{-}4\hbox{-}hydroxypiperidine-1-carbonyl]\hbox{-}2\hbox{-}phenyl\hbox{-}7$H-}$

pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.6): pale yellow solid. MS (ES): m/z 533/535 (100/37) [MH⁺]. IR (film): v = 3354 cm⁻¹, 3062, 2928, 2869, 1653, 1589, 1573, 1529, 1493, 1437, 1388, 1327, 1275, 1208, 1170, 1095, 1026, 1012, 934, 776, 749, 706. ¹H NMR (CD₃OD, 200 MHz): $\delta = 1.82$ (brd, J = 13.0 Hz, 2H), 1.85 (s, 3H), 2.11 (dt, J = 13.0, 3.8 Hz, 2H), 3.42–3.62 (m, 4H), 3.83 (t, J = 6.1 Hz, 2H), 4.48 (brd, J = 13.6 Hz, 2H), 6.97 (s, 1H), 7.30–7.54 (m, 7H), 8.38–8.45 (m, 2H). t_R (method A) = 7.0 min.

[1061] [1062]

N-{2-[6-(4-하이드록시-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아 미드(26.7): 회색 고체, 융점 158-162 ℃(분해).

N-{2-[6-(4-Hydroxy-4-phenylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-

a]pyrimidin-4-ylamino]-ethyl}-acetamide (26.7): off-white solid, mp 158–162 °C (decomp.). MS (ES): m/z 499.0 (100) [MH⁺]. IR (film): v = 3308 cm⁻¹, 3062, 2948, 2925, 2853, 1653, 1591, 1575, 1534, 1447, 1385, 1328, 1277, 1172, 1108, 1037, 1016, 950, 802, 776, 759, 702. ¹H NMR (CD₃OD, 200 MHz): $\delta = 1.82$ (brd, J = 13.0 Hz, 2H), 1.84 (s, 3H), 2.11 (dt, J = 13.0, 3.8 Hz, 2H), 3.41–3.65 (m, 4H), 3.82 (t, J = 5.8 Hz, 2H), 4.46 (brd, J = 11.8 Hz, 2H), 6.96 (s, 1H), 7.18–7.54 (m, 8H), 8.38–8.45 (m, 2H). t_R (method A) = 6.7 min.

[1063]

[1064] N-{2-[6-(4-벤질-4-하이드록시피폐리딘-1-카보닐)-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아 미드(26.8): 회색 고체, 융점 140-145 ℃(분해).

 $\textit{N-}\{2\text{-}[6\text{-}(4\text{-Benzyl-4-hydroxypiperidine-1-carbonyl})\text{-}2\text{-}phenyl\text{-}7\textit{H-}pyrrolo}\{2,3\text{-}2\text{-}(4\text{-Benzyl-4-hydroxypiperidine-1-carbonyl})\text{-}2\text{-}phenyl\text{-}7\textit{H-}pyrrolo}\}$

d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.8): off-white solid, mp 140–145 °C (decomp.). MS (ES): m/z 512.9 (100) [MH⁺]. IR (film): v = 3281 cm⁻¹, 3065, 2922, 2852, 1654, 1589, 1574, 1532, 1432, 1385, 1327, 1272, 1170, 1084, 1026, 992, 951, 803, 776, 703. ¹H NMR (CD₃OD, 200 MHz): δ = 1.50–1.75 (m, 4H), 1.85 (s, 3H), 2.80 (s, 2H), 3.30–3.56 (m, 4H), 3.82 (t, J = 6.2 Hz, 2H), 4.30 (brd, J = 13.2 Hz, 2H), 6.89 (s, 1H), 7.18–7.35 (m, 5H), 7.35–7.55 (m, 3H), 8.38–8.45 (m, 2H). t_R (method A) = 6.9 min.

[1065]

[1066] N-{6-[4-(4-클로로페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}아세트 아미드(26.9): 희색 고체, 융점 200-205 ℃(분해).

2-{6-[4-(4-Chlorophenyl)-4-hydroxypiperidine-1-carbonyl]-2-phenyl-7H-

pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-acetamide (26.9): off-white solid, mp 200–205 °C (decomp.). MS (ES): m/z 504.8/506.9 (100/37) [MH⁺]. IR (film): v = 3309 cm⁻¹, 2954, 2926, 2853, 1684, 1613, 1569, 1532, 1455, 1445, 1430, 1383, 1326, 1265, 1203, 1094, 1010, 950, 911, 824, 760, 737, 705. ¹H NMR (CD₃OD, 200 MHz): δ = 1.80-1.90 (m, 2H), 2.08–2.21 (m, 2H), 3.50–3.65 (m, 2H), 4.29 (s, 2H), 4.42–4.55 (m, 2H), 7.01 (s, 1H), 7.32–7.43 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H), 8.38–8.45 (m, 2H). t_R (method A) = 7.1 min.

[1067] [1068]

N-(2-{6-[4-하이드록시-4-(3-트리플루오로메틸페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(26.10): 회색 고체, 융점 145-150 ℃(분해).

 $N\hbox{-}(2\hbox{-}\{6\hbox{-}[4\hbox{-Hydroxy-}4\hbox{-}(3\hbox{-trifluoromethylphenyl})\hbox{-piperidine-}1\hbox{-}carbonyl]\hbox{-}2\hbox{-phenyl-}1$

7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-ethyl)-acetamide (26.10): off-white solid, mp 145–150 °C. MS (ES): m/z 566.9 (100) [MH⁺]. IR (film): v = 3284 cm⁻¹, 2933, 1654, 1591, 1574, 1533, 1435, 1387, 1329, 1278, 1165, 1124, 1075, 1026, 931, 803, 776, 751, 703. ¹H NMR (CD₃OD, 200 MHz): $\delta = 1.82$ (brd, J = 13.0 Hz, 2H), 1.84 (s, 3H), 2.15 (dt, J = 13.0, 3.8 Hz, 2H), 3.42–3.70 (m, 4H), 3.82 (t, J = 6.2 Hz, 2H), 4.47 (brd, J = 12.8

[1069]

Hz, 2H), 6.97 (s, 1H), 7.40–7.50 (m, 3H), 7.50–7.60 (m, 2H), 7.70–7.80 (m, 1H), 7.88 (s, 1H), 8.37–8.45 (m, 2H). t_R (method A) = 7.8 min.

[1070]

[1071] N-{2-[6-(4-페닐에틸피폐라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.1 1): 백색 고체, 융점 226-228 ℃.

 $N-\{2-[6-(4-Phenethylpiperazine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl\}-acetamide (26.11): white solid, mp 226–228 °C. MS (ES): <math>m/z$ 511.8 (15) [MH⁺], 407.8 (48) [MH⁺ – PhCH=CH₂]. IR (film): v = 3295 cm⁻¹, 3066, 3027, 2934, 2809, 1654, 1598, 1574, 1533, 1453, 1432, 1387, 1327, 1297, 1170, 1132, 1029, 1000, 776, 749, 703. ¹H NMR (CD₃OD/CDCl₃, 200 MHz): δ = 1.84 (s, 3H), 2.52–2.78 (m, 6H), 2.78–2.90 (m, 2H), 3.52–3.60 (m, 2H), 3.80–4.00 (m, 6H), 6.19 (brs, 1H), 6.92 (s, 1H), 7.16–7.38 (m, 5H), 7.38–7.50 (m, 3H), 8.35–8.40 (m, 2H). t_R (method A) = 4.5 min.

[1072]

[1073] N-(2-{6-[4-(3-모르폴린-4-일프로필)-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 **틸)아세트아미드(26.12):** 백색 고체, 융점 225-230 ℃(분해). MS(ES): m/z 535.3(10)[MH⁺], 322.0(52)[MH⁺-1-(3-모르폴린-4-일프로필)피페라진]. t_R(방법 B) = 5.3 min.

- [1074] N-(2-{6-[4-(4-클로로페닐)-3,6-디하이드로-2H-피리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(26.13): 베이지색 고체, 융점 172-175 ℃(분해). MS(ES): m/z 515.2/517.3(50/20)[MH[†]], t_R(방법 A) = 8.9 min.
- [1075] N-{2-[6-(4-벤질피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.14): 회색 고체, 융점 235-240 ℃(분해). MS(ES): m/z 497.9(10)[MH[†]], 407.9(100)[MH[†]-PhCH₂[†]]. t_R(방법 A) = 4.3 min.
- [1076] 2-{2-페닐-6-[4-(3-페닐프로필)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}아세트아미드(26.1 5): 백색 고체, 융점 213-217 ℃(분해). MS(ES): m/z 498.0(100)[MH[†]]. t_R(방법 A) = 4.3 min.
- [1077] N-[2-(6-{4-[2-(4-클로로폐녹시)-에틸]-피폐라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세 **트아미드(26.16):** 회색 고체, 융점 227-228 °C(분해). MS(ES): m/z 561.9/563.9(50/22)[MH[†]],

321.9(85)[MH⁺-2-(4-클로로페녹시)에틸피페라진]. t_R(방법 A) = 5.0 min.

- [1078] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 비사이클로[2.2.1]헵트-2-일아미노 (26.17): 희색 고체, 융점 280-285 ℃(분해). MS(ES): m/z 432.9(100)[MH[†]]. t_R(방법 A) = 7.3 min.
- [1079] N-(2-{6-[4-(4-플루오로페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(26.18): 담황색 고체, 융점 150-153 ℃(분해). MS(ES): m/z 516.9(100)[MH[†]]진]. t_R(방법 A) = 6.9 min.
- [1080] N-{2-[6-(4-시아노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.19): 희색 고체, 융점 150-155 ℃(분해). MS(ES): m/z 508.0(100)[MH⁺]. t_R(방법 A) = 7.7 min.
- [1081] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (3-페녹시페닐)-아미드(26.20): 담황색 고체, 융점 140-142 ℃. MS(ES): m/z 506.9(100)[MH⁺]. t_R(방법 A) = 8.8 min.
- [1082] N-(2-{2-페닐-6-[4-(3-페닐프로프-2-이닐)-피폐라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드(26.21): 희색 고체, 융점 213-215 ℃.

N-(2-{2-Phenyl-6-[4-(3-phenylprop-2-ynyl)-piperazine-1-carbonyl]-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-ethyl)-acetamide (26.21): off-white solid, mp 213–215 °C. MS (ES): m/z 521.8 (100) [MH⁺], 321.8 (100) [MH⁺ – (3-phenylprop-2-ynyl)piperazine]. IR (film): ν = 3302 cm⁻¹, 3061, 3022, 2924, 2850, 1654, 1589, 1573, 1531, 1455, 1429, 1386, 1367, 1327, 1298, 1270, 1171, 1135, 1027, 999, 970, 803, 776, 755, 704, 691. ¹H NMR (CDCl₃, 200 MHz): δ = 1.80 (s, 3H), 2.73 (m_c, 4H), 3.50–3.61 (m, 4H), 3.80–4.00 (m, 6H), 5.93 (brs, 1H), 6.68 (s, 1H), 6.82 (brs, 1H), 7.25–7.35 (m, 3H), 7.35–7.55 (m, 5H), 8.37–8.47 (m, 2H), 9.63 (brs, 1H). ¹³C NMR (CDCl₃, 50.3 MHz, DEPT135): δ = 23.03 (+), 29.66 (-), 40.60 (-), 41.70 (-), 47.67 (-), 51.93 (-), 83.63 (C_{quarl}), 85.81 (C_{quarl}), 101.97 (+), 102.20 (C_{quarl}), 122.70 (C_{quarl}), 126.40 (C_{quarl}), 128.04 (+), 128.28 (+, 4C), 129.81 (+), 131.69 (+, 4C), 138.70 (C_{quarl}), 151.13 (C_{quarl}), 157.67 (C_{quarl}), 159.89 (C_{quarl}), 161.60 (C_{quarl}), 171.17 (C_{quarl}). t_R (method A) = 7.5 min.

- [1083]
- [1084] N-{2-[6-(시스-3,5-디메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.22): 희색 고체, 융점 138-140 ℃. MS(ES): m/z 435.8(100)[MH[†]]. t_R(방법 A) = 3.1 min.
- [1085] (4-벤질피폐리단-1-일)-(4-디메틸아미노-2-페닐-7H-피롤로[2,3-d]피리미단-6-일)-메타논(26.23): 담황색 고체. MS(ES): m/z 439.8(100)[MH[†]]. t_R(방법 A) = 11.3 min.
- [1086] N-(2-{6-[시스-3,5-디메틸-4-(3-페닐프로프)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸)아세트아미드(26.24): 담황색 고체, 융점 86-89 ℃(분해). MS(ES): m/z 554.0(18)[MH[†]], 321.9(48)[MH[†]-시스-3,5-디메틸-4-(3-페닐프로필)-피페라진]. t_R(방법 A) = 5.8 min.
- [1087] N-{2-[6-(4,4-디페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.2 5): 희색 고체, 융점 254-256 ℃. MS(ES): m/z 558.9(100)[MH[†]]. t_R(방법 A) = 8.7 min.
- [1088] N-{2-[6-(3,3-디페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.2 6): 백색 고체, 융점 156-159 ℃(분해). MS(ES): m/z 558.9(100)[MH[†]]. t_R(방법 A) = 8.8 min.
- [1089] N-{2-[6-(4-메톡시-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.27): 백색 고체, 융점 135-138 ℃. MS(ES): m/z 512.9(100)[MH[†]]. t_R(방법 A) = 7.7 min.
- [1090] N-(2-{6-[4-(4-플루오로벤질)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아

미드(26.28): 회색 고체, 융점 283-284 ℃(분해).

N-(2-{6-[4-(4-Fluorobenzyl)-piperidine-1-carbonyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.28): off-white solid, mp 283–284 °C (decomp.). MS (ES): m/z 515.0 (100) [MH⁺]. IR (film): v = 3286 cm⁻¹, 3059, 2940, 2868, 1649, 1589, 1573, 1531, 1509, 1447, 1432, 1386, 1327, 1299, 1271, 1220, 1168, 1105, 1068, 954, 837, 803, 776, 732, 705. ¹H NMR (CDCl₃/CD₃OD, 200 MHz): δ = 1.20–1.40 (m, 2H), 1.75–1.90 (m, 3H), 1.78 (s, 3H), 2.58 (d, J = 7.0 Hz, 2H), 2.99 (brs, 2H), 3.48–3.55 (m, 2H), 3.82–3.90 (m, 2H), 4.57 (brd, J = 12.0 Hz, 2H), 6.78 (s, 1H), 6.94–7.16 (m, 4H), 7.44–7.52 (m, 3H), 7.80 (brs, 1H), 8.30–8.39 (m, 2H). t_R (method A) = 8.1 min.

- [1091]
- [1092] N-[2-(6-{4-[(4-플루오로페닐)-하이드록시메틸]-피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노)에틸]아세트아미드(26.29): 희색 고체, 융점 135-145 ℃(분해). MS(ES): m/z 530.8(100)[MH[†]]. t_R(방법 A) = 6.9 min.
- [1093] N-(2-{6-[트랜스-2,5-디메틸-4-(3-페닐프로필)-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노(3-메틸)아세트아미드(26.30): 회색 고체, 융점 98-100 ℃(분해). MS(ES): m/z 553.9(48)[MH[†]], 321.8(79)[MH[†]-트랜스-2,5-디메틸-4-(3-페닐프로필)피페라진]. t₂(방법 A) = 5.7 min.
- [1094] N-{2-(6-(트랜스-2,5-디메틸피폐라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미 드(26.31): 황색을 띤 고체, 융점 120-125 ℃. MS(ES): m/z 436.0(18)[MH⁺], 321.9(100)[MH⁺-트랜스-2,5-디메틸피페라진]. t_R (방법 B) = 8.8 min.
- [1095] N-{2-[6-(4-벤질-시스-3,5-디메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세 트아미드(26.32): 백색 고체, 융점 196-198 ℃. MS(ES): m/z 526.0(29)[MH[†]], 435.9(100)[MH[†]-PhCH₂[†]]. t_ℝ(방법 A) = 5.1 min.
- [1096] N-{2-(6-(시스-3,5-디메틸-4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아 세트아미드(26.33): 회색 고체, 융점 110-115 ℃(분해). MS(ES): m/z 540.0(82)[MH⁺], 435.8(73)[MH⁺-PhCHCl₂], 321.8(100)[MH ⁺-시스-3,5-디메틸-4-펜에틸피페라진]. t_R(방법 A) = 5.4 min.
- [1097] N-[2-(6-{4-[4-(2-아세틸아미노)에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-트랜스-2,5-디메틸피 페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드(26.34): 백색 고체. MS(ES): m/z 757.1(10)[MH[†]], 436.0(9)[N-{2-[6-(시스-3,5-디메틸-4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드 · H[†]],379.1(100) [MH[†]-N-{2-[6-(시스-3,5-디메틸-4-펜에틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드]. t_R(방법 A) = 6.6 min.
- [1098] N-{2-[2-페닐-6-(4-피리딘-2-일-피페라진-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(2 6.35): 회색 고체, 융점 223-226 ℃(분해). MS(ES): m/z 484.9(22)[MH[†]], 321.9(100)[MH[†]-피리딘-2-일-피페라진]. t_R(방법 A) = 4.8 min.
- [1099] N-{2-[6-(3-메틸-3-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(2 6.36): 융점 140-145 ℃.

N-{2-[6-(3-Methyl-3-phenylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo{2,3-d}-pyrimidin-4-ylamino]-ethyl}-acetamide (26.36): Mp 140–145 °C. MS (ES): m/z 497.0 (100) [MH⁺]. IR (film): v = 3294 cm⁻¹, 3063, 2936, 2861, 1654, 1590, 1573, 1531, 1432, 1386, 1327, 1296, 1271, 1168, 908, 776, 762, 730, 701. ¹H NMR (CDCl₃, 200 MHz): δ = 1.2–1.3 (m, 1H), 1.31 (s, 3H), 1.6–1.8 (m, 2H), 1.79 (s, 3H), 2.15–2.25 (m, 1H), 3.5–3.7 (m, 3H), 3.8–4.1 (m, 5H), 5.85 (brs, 1H), 6.63 (s, 1H), 6.87 (brs, 1H), 7.2–7.5 (m, 10H), 8.40–8.50 (m, 2H), 9.40 (s, 1H). t_R (method A) = 8.1 min.

[1100] [1101]

N-(2-{2-폐닐-6-[4-(3-트리플루오로메틸피리딘-2-일)-피폐라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸)아세트아미드(26.37): 희색 고체, 융점 225-228 ℃(분해).

N-(2-{2-Phenyl-6-[4-(3-trifluoromethylpyridin-2-yl)-piperazine-1-carbonyl]-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-ethyl)-acetamide (26.37): off-white solid, mp 225–228 °C. MS (ES): m/z 553.0 (100) [MH⁺]. ¹H NMR (DMSO-d₆, 400 MHz): δ = 1.79 (s, 3H), 3.26 (m_c, 4H), 3.30–3.38 (m, 2H), 3.60–3.67 (m, 2H), 3.85 (brs, 4H), 7.00 (s, 1H), 7.24 (dd, J = 4.8, 7.6 Hz, 1H), 7.40–7.48 (m, 3H), 7.83 (brs, 1H), 8.05 (t, J = 5.2 Hz, 1H), 8.11 (dd, J = 1.6, 7.6 Hz, 1H), 8.38–8.42 (m, 2H), 8.55 (d, J = 4.8 Hz, 1H). t_R (method A) = 7.6 min.

[1102] [1103]

N-(2-{6-[4-(4-플루오로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아 미드(26.38): 융점 234 ℃. MS(ES): m/z 502.0(100)[MH[†]], 321.9(84)[MH[†]-1-(4-플루오로페닐)피페라진].

N-(2-{6-[4-(4-Fluorophenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.38): Mp 234 °C. MS (ES): m/z 502.0 (100) [MH⁺], 321.9 (84) [MH⁺ – 1-(4-fluorophenyl)piperazine]. IR (film): $v = 3301 \text{ cm}^{-1}$, 3049, 2923, 2861, 1654, 1590, 1574, 1532, 1508, 1430, 1387, 1328, 1277, 1232, 1164, 1027, 916, 828, 816, 776, 731, 706. ¹H NMR (CDCl₃/CD₃OD, 200 MHz): $\delta = 1.79$ (s, 3H), 3.21 (m_e , 4H), 3.54 (m, 2H), 3.86 (t, J = 6.2 Hz, 2H), 4.04 (m_e , 4H), 6.86 (s, 1H), 6.9–7.1 (m, 4H), 7.45–7.55 (m, 3H), 7.75 (brs, 1H), 8.30–8.40 (m, 2H). t_R (method A) = 7.5 min.

[1104] [1105]

N-(2-{2-페닐-6-[4-(5-트리플루오로메틸피리딘-2-일)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(26.39): 회색 고체, 융점 270-273 ℃(분해). MS(ES): m/z 553.0(100)[MH[†]], t_R(방법 A) = 8.0 min.

[1106] N-(2-{6-[4-(3,5-디클로로피리딘-4-일)-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(26.40):

 $N-(2-\{6-[4-(3,5-Dichloropyridin-4-yl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.40): MS (ES): <math>m/z$ 552.9/554.9/556.9 (100/71/14) [MH $^+$], 321.9 (83) [MH $^+$ – pyridinylpiperazine]. IR (film): $\nu = 3282$ cm $^{-1}$, 3080, 2962, 2926, 2854, 1652, 1598, 1574, 1532, 1434, 1383,

[1107]

1328, 1282, 1241, 1149, 1026, 933, 806, 777, 750, 706. ¹H NMR (CDCl₃/CD₃OD, 200 MHz): $\delta = 1.80$ (s, 3H), 3.45 (m_c, 4H), 3.54 (m, 2H), 3.88 (t, J = 6.2 Hz, 2H), 4.04 (m_c, 4H), 6.82 (s, 1H), 7.30–7.55 (m, 3H), 8.30–8.40 (m, 4H). t_R (method A) = 7.2 min.

[1108]

[1109] N-(2-{6-[4-(2'-클로로비페닐-2-일)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(26.41):

N-(2-{6-[4-(2'-Chlorobiphenyl-2-yl)-4-methoxypiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.41): MS (ES): m/z 623.0/625.0 (100/38) [MH $^{+}$]. IR (film): v = 3306 cm $^{-1}$, 3022, 2945, 2924, 1652, 1591, 1574, 1537, 1434, 1384, 1328, 1286, 1243, 1071, 1016, 776, 753, 704. ¹H NMR (CDCl₃, 200 MHz): δ = 1.80 (s, 3H), 1.8–2.3 (m, 4H), 3.08 (s, 3H), 3.3–3.6 (m, 4H), 3.80–3.90 (m, 2H), 4.31 (m_c, 2H), 5.81 (m_c, 1H), 6.53 (s, 1H), 6.88 (brs, 1H), 7.01–7.10 (m, 1H), 7.25–7.50 (m, 9H), 7.64 (d, J = 7.6 Hz, 1H), 8.35–8.45 (m, 2H), 9.47 (brs, 1H). t_R (method A) = 8.9 min.

[1110] [1111]

N-(2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드(26.42): 백색 고체, 융점 201-202 ℃(분해).

N-(2-{6-[4-(2-Chlorophenyl)-4-methoxypiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.42): white solid, mp. 201–202 °C. MS (ES): m/z 547.0/549.0 (100/38) [MH⁺]. IR (film): v = 3312 cm⁻¹, 3034, 2934, 1653, 1599, 1574, 1534, 1433, 1390, 1328, 1286, 1252, 1071, 1016, 776, 754, 705. 1 H NMR (CDCl₃/CD₃OD, 200 MHz): $\delta = 1.78$ (s, 3H), 1.99 (m_e, 2H), 2.52 (brd, J = 12.8 Hz, 2H), 3.05 (s, 3H), 3.4–3.6 (m, 4H), 3.80–3.90 (m, 2H), 4.51 (brd, J = 11.2 Hz, 2H), 6.75 (s, 1H), 7.25–7.40 (m, 3H), 7.40–7.50 (m, 4H), 8.35–8.45 (m, 2H). t_R (method A) = 7.2 min. C_{29} H₃₁ClN₆O₃ (547.06): calcd. C 63.67, H 5.71, N 15.36, Cl 6.48; found C 63.54, H 5.74, N 15.40, Cl 6.65.

[1112]

- [1113] N-(2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드 메탄설폰산 염(26.42 · MsOH):
- [1114] 26.42(1.570 g, 2.87 밀리몰)를 무수 MeOH(25 mℓ)에 용해시키고, 상기 용액을 여과하고 플라스크와 필터를 추가의 MeOH(5 mℓ)로 세정한다. 메탄설폰산(290 mg, 3.01 밀리몰)을 가하고, MeOH 10 mℓ을 증발시키고, Et₂0를 지속적인 침전물이 확실히 형성(85 mℓ)될 때까지 가한다. 주변 온도에서 1 시간 동안 정치시킨 후에, 밤새 -20 ℃로 냉각시킴으로써 결정화를 완료시킨다. 고체를 여과하고 건조시켜 백색 고체로서 상기 염 1.613 g(2.508 밀리몰, 87%)을 수득한다. 융점 190-191 ℃.
- [1115] N-(2-{6-[4-(2-클로로페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(26.43):

N-(2-{6-[4-(2-Chlorophenyl)-4-hydroxypiperidine-1-carbonyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-ethyl)-acetamide (26.43): MS (ES): m/z 533.0/535.0 (100/36) [MH⁺]. IR (film): v = 3312 cm⁻¹, 3054, 2961, 2924, 2857, 1658, 1598, 1574, 1533, 1431, 1388, 1328, 1274, 1170, 1016, 776, 756, 705. ¹H NMR (CDCl₃, 200 MHz): δ = 1.78 (s, 3H), 2.09 (brd, J = 12.8 Hz, 2H), 2.38 (brdt, J = 3.6, 12.6 Hz, 2H), 3.4–3.6 (m, 4H), 3.80–3.90 (m, 2H), 4.54 (brd, J = 13.2 Hz, 2H), 6.31 (brs, 1H), 6.75 (s, 1H), 7.15–7.60 (m, 8H), 8.35–8.45 (m, 2H). t_R (method A) = 6.5 min.

[1116]

- [1117] 2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-1-[4-(2-클로로페닐)-4-메톡시피페리딘-1-일]에타논(26.44): 회색 고체. MS(ES): m/z 727.1/729.1/731/1(100/69/14)[MH[†]], t_R(방법 A) = 11.3 min.
- [1118] 2-{6-[4-(2-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세 트아미드(26,45):

2-{6-[4-(2-Chlorophenyl)-4-methoxypiperidine-1-carbonyl]-2-phenyl-7*H*-pyrrolo-[2,3-*d*]pyrimidin-4-ylamino}-acetamide (26.45): MS (ES): m/z 519.0/521.0 (100/37) [MH[†]]. IR (film): $v = 3310 \text{ cm}^{-1}$, 3024, 2960, 2936, 2873, 1673, 1590, 1573, 1532, 1446, 1431, 1389, 1324, 1298, 1285, 1199, 1071, 1016, 776, 754, 705. ¹H NMR (CDCl₃/CD₃OD, 200 MHz): $\delta = 2.05$ (m, 2H), 2.57 (brd, J = 13.6 Hz, 2H), 3.09 (s, 3H), 3.45–3.65 (m, 2H), 4.36 (s, 2H), 4.45–4.60 (m, 2H), 6.81 (s, 1H), 7.25–7.50 (m, 7H), 8.32–8.40 (m, 2H). t_R (method A) = 7.5 min.

[1119] [1120]

2-{6-[4-(2'-클로로비페닐-2-일)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}아 세트아미드(26.46):

2-{6-[4-(2'-Chlorobiphenyl-2-yl)-4-methoxypiperidine-1-carbonyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-acetamide (26.46): m/z 595.0/597.0 (100/38) [MH⁺]. IR (film): v = 3362 cm⁻¹, 3023, 2924, 2850, 1669, 1594, 1573, 1532, 1463, 1438, 1388, 1324, 1284, 1071, 1017, 803, 755, 705. ¹H NMR (CDCl₃/CD₃OD, 200 MHz): $\delta = 1.75-2.25$ (m, 4H), 3.09 (s, 3H), 3.3–3.6 (m, 2H), 4.20–4.35 (m, 2H), 4.39 (s, 2H), 6.58 (s, 1H), 7.01–7.10 (m, 1H), 7.25–7.50 (m, 9H), 7.64 (d, J = 7.4 Hz, 1H), 8.35–8.45 (m, 2H). t_R (method A) = 8.9 min.

[1121] [1122]

N-(2-{6-[4-(2'-클로로비페닐-2-일)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노}에틸)아세트아미드(26.47):

 $N-(2-\{6-[4-(2'-Chlorobiphenyl-2-yl)-4-hydroxypiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.47): MS (ES): <math>m/z$ 609.0/611.0 (100/38) [MH $^{+}$]. IR (film): v = 3352 cm $^{-1}$, 3022, 2924, 1652, 1599, 1575, 1538, 1463, 1451, 1382, 1328, 1272, 1112, 1015, 754, 705. ^{1}H NMR (CDCl₃, 200 MHz):

[1123]

 δ = 1.79 (s, 3H), 1.8–2.2 (m, 4H), 3.3–3.5 (m, 2H), 3.60 (m_e, 2H), 3.80–3.90 (m, 2H), 4.43 (m_e, 2H), 5.96 (brs, 1H), 6.62 (s, 1H), 6.91 (brs, 1H), 6.90–7.07 (m, 1H), 7.25–7.57 (m, 10H), 8.35–8.45 (m, 2H), 9.62 (brs, 1H). t_R (method A) = 7.8 min.

[1124]

[1125] N-(2-{6-[4-(4-플루오로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸) 아세트아미드(26.48): 백색 고체, 융점 134-137 ℃.

N-(2-{6-[4-(4-Fluorophenyl)-4-methoxypiperidine-1-carbonyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-ylamino}-ethyl)-acetamide (26.48): white solid, mp 134–137 °C. MS (ES): m/z 531.0 (100) [MH $^+$]. IR (film): v = 3305 cm $^{-1}$, 3056, 2932, 2824, 1651, 1599, 1574, 1533, 1447, 1432, 1387, 1327, 1280, 1223, 1163, 1071, 1025, 900, 834, 776, 751, 706. ¹H NMR (CDCl₃/CD₃OD, 200 MHz): δ = 1.78 (s, 3H), 1.92 (dt, *J* = 4.8, 12.8 Hz, 2H), 2.14 (brd, *J* = 13.2 Hz, 2H), 3.01 (s, 3H), 3.4–3.6 (m, 4H), 3.86 (t, *J* = 5.4 Hz, 2H), 4.49 (brd, *J* = 13.2 Hz, 2H), 6.75 (s, 1H), 7.06 (app t, *J* = 8.8 Hz, 2H), 7.25–7.40 (m, 2H), 7.40–7.50 (m, 3H), 8.35–8.45 (m, 2H). t₈ (method A) = 7.4 min.

[1126]

[1127] N-{2-[6-(2-벤질-1-옥소-2,8-디아자스피로[4.5]운데칸-8-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.49): 백색 고체, 융점 140 ℃(분해). MS(ES): m/z 565.9(100)[MH[†]], t_R(방법 A) = 6.9 min.

- [1128] 2-{6-[4-(4-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}아세트아미드(26.5 0): MS(ES): m/z 489.9/491.9(100/34)[MH[†]], t_R(방법 A) = 7.6 min.
- [1129] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (2-{6-[4-(2-클로로페닐)-4-메톡시

피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아미드(26.51): 백색 고체, 융점 180-185 ℃(분해). MS(ES): m/z 826.0/828.0(52/21)[MH[†]], t_R(방법 A) = 8.2 min.

- [1130] 4-(2-아세틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (2-{6-[4-(4-클로로페닐)-피페라진 -1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아미드(26.52): 회색 고체. MS(ES): m/z 797.0/799.0(6/3)[MH⁺], tp(방법 A) = 8.3 min.
- [1131] N-(2-{2-페닐-6-[4-(3-페닐알릴)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(2 6.53): ¹H-NMR(CDCl₃, 200 MHz): δ 1.79

(m, 7H), 2,21 (t, 1H, J = 6.6Hz), 2.33 (m, 1H), 3.00 (brs, 2H), 3.15 (m, 1H), 3.59 (brs, 2H), 3.90 (brs, 2H), 4.58 (brs 2H), 5.99 (brs, 1H), 6.23 (m, 1H), 6.37 (m, 1H), 6.66 (d, 1H), 6.99 (brs, 1H), 7.24-7.46 (m, 8H), 8.40 (m, 2H), 9.70 (brs, 1H). MS (ES) 522.8 [MH $^{+}$]. t_R (method A) = 9.2 min.

[1132]

[1133] N-{2-[6-(4-벤질피폐리딘-1-카보닐)-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.54): 백색 고체, 융점 260-261 ℃.

N-{2-[6-(4-Benzylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.54): white solid, mp. 260–261 °C. ¹H NMR (CDCl₃, 200 MHz): δ = 1.78 (m, 7H), 2.54 (d, 2H, J = 6.6Hz), 2.91 (brs, 2H), 3.56 (brs, 2H), 3.84 (brs, 2H), 4.53 (d, 2H, J = 13.6Hz), 6.40 (brs, 1H), 6.71 (s, 1H), 7.12-7.45 (m, 9H), 8.40 (q, 2H, J = 2.2Hz), 9.98 (brs, 1H). MS (ES) 496.8 [MH $^+$]. t_R (method A) = 8.6 min. $C_{29}H_{32}N_6O_2$ ·0.33H₂O (502.57): calcd. C 69.30, H 6.55, N 16.72; found C 69.46, H 6.48, N 16.70.

[1134]

[1135] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (1-벤질피페리딘-4-일)-아미드 (26.55):

4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carboxylic acid (1-benzylpiperidin-4-yl)-amide (26.55): 1 H NMR (CDCl₃, 200 MHz) δ 1.61-2.05 (m, 7H), 2.18 (m, 2H), 2.89 (d, 2H, J = 12Hz), 3.56 (s, 2H), 3.60 (d, 2H, J = 4.8Hz), 3.87 (brs, 2H), 3.99 (brs, 1H), 6.22 (brs, 1H), 6.33 (brs, 1H), 6.68 (b, 1H), 6.86 (brs, 1H), 7.26-7.45 (m, 9H), 8.40 (q, 2H, J = 3.2Hz), 9.64 (brs, 1H). MS (ES) 512.1 [MH $^{+}$]. t_{R} (method A) = 4.9 min.

[1136]

[1137] N-(2-{2-페닐-6-[4-(4-페닐부틸)피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(2 6.56):

 $N-(2-\{2-\text{Phenyl-6-}[4-(4-\text{phenylbutyl})-\text{piperazine-1-carbonyl}]-7H-\text{pyrrolo}[2,3-d]-\text{pyrimidin-4-ylamino}-\text{ethyl})-\text{acetamide}$ (26.56): ¹H NMR (CDCl₃, 200 MHz) δ 1.52-1.68 (m, 4H), 1.78 (s, 3H), 2.37 (t, 2H, J=7Hz), 2.44 (brs, 4H), 2.63 (t, 2H; J=7.6Hz), 3.54 (brs, 2H), 3.81 (brs, 6H), 6.28 (brs, 1H), 6.66 (s, 1H), 7.12-7.44 (m, 9H), 8.40 (q, 2H, J=4.2Hz), 10.40 (brs, 1H). MS (ES) 540.1 [MH $^+$]. t_R (method A) = 4.9 min.

[1138]

[1139] N-(2-{2-페닐-6-[4-(3-페닐프로필)피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드 (26.57):

 $N-(2-\{2-\text{Phenyl-6-}[4-(3-\text{phenylpropyl})-\text{piperidine-1-carbonyl}]-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino\}-ethyl)-acetamide (26.57): ¹H NMR (CDCl₃, 200 MHz) <math>\delta$ 1.17-1.38 (m, 5H), 1.58-1.69 (m, 4H), 1.79 (s, 3H), 2.61 (t, 2H, J=7.6Hz), 3.00 (brs, 2H), 3.55 (q, 2H, J=5.4Hz), 3.86 (brs, 2H), 4.53 (d, 2H, J=13.2Hz), 6.05 (brs, 1H), 6.65 (s, 1H), 7.03 (brs, 1H), 7.16-7.32 (m, 5H), 7.33-7.48 (m, 3H), 8.40 (q, 2H, J=3.2Hz), 9.81 (brs, 1H). MS (ES) 524.9 [MH *]. t_R (method A) = 9.6 min.

[1140] [1141]

N-{2-[2-페닐-6-(4-피롤리딘-1-일-피페리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.58):

 $N-\{2-[2-Phenyl-6-(4-pyrrolidin-1-yl-piperidine-1-carbonyl)-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl\}-acetamide (26.58): <math>^{1}$ H NMR (CDCl₃, 200 MHz) δ 1.62-2.00 (m, 7H), 1.84 (s, 3H), 2.74 (brs, 4H), 3.03 (t, 2H, J=14Hz), 3.62 (m, 2H), 3.91 (brs, 2H), 4.49 (d, 2H, J=13.6Hz), 6.57 (brs, 1H), 6.87 (s, 1H), 7.20 (m, 1H), 7.33-7.45 (m, 3H), 8.42 (q, 2H, J=3.2Hz), 9.90 (brs, 1H). MS (ES) 475.9 [MH $^{+}$]. t_{R} (method A) = 3.7 min.

[1142]

[1143] N-(2-{6-[4-(3-사이클로헥실프로필)피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아 세트아미드(26.59):

N-(2-{6-[4-(3-Cyclohexylpropyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.59): 1 H NMR (CDCl₃, 200 MHz) δ 0.90 (t, 2H, J = 10.1Hz), 1.19 (d, 6H, J = 7.4Hz), 1.50 (brs, 2H), 1.67 (d, 5H, J = 10.6Hz), 1.77 (s, 3H), 2.33 (t, 2H, J = 7.7Hz), 2.47 (brs, 4H), 3.48 (m, 2H), 3.82 (brs, 6H), 6.28 (brs, 1H), 6.67 (s, 1H), 7.16 (brs, 1H), 7.42 (m, 3H), 8.37 (m, 2H), 10.44 (brs, 1H). MS (ES) 532.0 [MH $^{+}$]. $t_{\rm R}$ (method A) = 5.1 min.

[1144]

[1145] N-(2-{6-[4-(4-메틸펜틸)피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(2 6.60):

N-(2-{6-{4-(4-Methylpentyl)-piperazine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.60): ¹H NMR (CDCl₃, 200 MHz) δ 0.87 (d, 6H, J = 6.6Hz), 1.20 (m, 2H), 1.49 (m, 3H), 1.74 (s, 3H), 2.33 (t, 2H, J = 7.5Hz), 2.44 (brs, 4H), 3.47 (brs, 2H), 3.78 (brs, 6H), 6.60 (brs, 1H), 6.68 (s, 1H), 7.41 (brs, 4H), 8.35 (brs, 2H), 11.11 (brs, 1H). MS (ES) 492.3 [MH $^{+}$]. t_R (method A) = 4.5 min.

[1146]

[1147] N-(2-{6-[4-(4-브로모페닐)-4-하이드록시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(26.61):

N-(2-{6-[4-(4-Bromophenyl)-4-bydroxypiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.61): 1 H NMR (CD₃OD, 200 MHz) δ 1.80 (brs, 2H), 1.85 (s, 3H), 2.11 (m, 2H), 3.52 (m, 4H), 3.83 (t, 2H, J = 6Hz), 4.51 (d, 2H, J = 12.4Hz), 6.97 (s, 1H), 7.43-7.48 (m, 7H), 8.42 (m, 2H). MS (ES) 576.5/578.4 [MH $^{+}$]. t_{R} (method A) = 7.5 min.

[1148]

[1149] N-{2-[2-페닐-6-(4-페닐피페리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.62):

N-{2-[2-Phenyl-6-(4-phenylpiperidine-1-carbonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.62): 1 H NMR (CDCl₃, 200 MHz) δ 1.63-1.89 (m, 4H), 1.71 (s, 3H), 2.73 (t, 1H, J = 10.7Hz), 2.94 (brs, 2H), 3.46 (brs, 2H), 3.71 (brs, 2H), 4.63 (d, 2H, J = 12.6Hz), 6.34 (brs, 1H), 6.74 (s, 1H), 7.15-7.41 (m, 9H), 8.37 (brs, 2H), 11.12 (brs, 1H). MS (ES) 483.0 [MH $^{+}$]. t_{R} (method A) = 7.7 min.

[1150]

[1151] N-{2-[6-([1,4']비피폐리디닐-1'-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.6

3):

N-{2-[6-([1,4']Bipiperidinyl-1'-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.63): ¹H NMR (CDCl₃, 200 MHz) δ 1.44 (brs, 2H), 1.70

[1152]

(brs, 6H), 1.83 (s, 3H), 1.96 (d, 2H), 2.63 (brs, 4H), 2.91 (brs, 3H), 3.62 (brs, 2H), 3.91 (brs, 2H), 4.60 (d, 2H, J = 11.4Hz), 6.74 (brs, 1H), 6.94 (s, 1H), 7.42 (m, 4H), 8.40 (m, 2H), 10.30 (brs, 1H). MS (ES) 489.8 [MH $^+$]. t_R (method A) = 3.9 min.

[1153] [1154]

N-{2-[6-(4-사이클로펜틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(2 6.64):

 $N-\{2-[6-(4-Cyclopentylpiperazine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.64): <math>^{1}H$ NMR (CDCl₃, 200 MHz) δ 1.51-1.71 (m, 8H), 1.80 (s, 3H), 2.56 (brs, 4H), 3.33 (t, 1H), 3.59 (m, 6H), 6.12 (brs, 1H), 6.67 (s, 1H), 7.01 (brs, 1H), 7.44 (m, 3H), 8.41 (m, 2H), 9.98 (brs, 1H). MS (ES) 475.9 [MH $^{+}$]. t_{R} (method A) = 4.0 min.

[1155] [1156]

N-{2-[6-(4-아미노피폐리딘-1-카보닐)-2-폐닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.65): TFA에서 교반하고 나서 베이직 워크업함으로써 26.66으로부터 제조됨; 수율 25%.

¹H NMR (CD₃OD, 200 MHz) δ 1.42 (m, 2H), 1.86 (s, 3H), 1.97 (brs, 2H), 3.15 (m, 3H), 3.53 (t, 2H, J = 6Hz), 3.83 (t, 2H, J = 6Hz), 4.50 (d, 2H, J = 13.6Hz), 6.92 (s, 1H), 7.42 (m, 3H), 8.40 (m, 2H), 9.98 (brs, 1H). MS (ES) 421.8 [MH $^{+}$]. $t_{\rm R}$ (method A) = 3.2 min.

[1157] [1158]

{1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]피페리딘-4-일}-카르밤산 3 급-부틸 에스테르(26.66):

{1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]piperidin-4-yl}-carbamic acid *tert*-butyl ester (26.66): 1 H NMR (CDCl₃, 200 MHz) δ 1.46 (s, 9H), 1.61 (brs, 4H), 1.82 (s, 3H), 2.11 (m, 1H), 3.19 (t, 2H, J = 11.2Hz), 3.60 (q, 2H, J = 5Hz), 3.74 (brs, 1H), 3.91 (m, 2H), 4.50 (d, 2H, J = 13.2Hz), 5.97 (brs, 1H), 6.65 (s, 1H), 6.79 (brs, 1H), 7.45 (m, 3H), 8.43 (m, 2H), 9.44 (brs, 1H). MS (ES) 522.0 [MH $^{+}$]. 1 L_R (method A) = 7.2 min.

[1159] [1160]

N-{2-[6-(4-메탄설포닐아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아 미드(26.67):

[1161] 26.65 및 메탄설포닐 클로라이드로부터 11% 수율로 제조하였다.

¹H NMR (CDCl₃, 200 MHz) δ 1.49 (m, 2H), 1.76 (s, 3H), 1.97 (m, 2H), 2.90 (s, 3H), 3.25 (brs, 2H), 3.43 (t, 2H, J = 6.1Hz), 3.50 (m, 1H), 3.74 (t, 2H, J = 6.1Hz), 4.31 (d, 2H, J = 13.6Hz), 6.83 (s, 1H), 7.33-7.38 (m, 3H), 8.43 (m, 2H). MS (ES) 500.0 [MH $^{+}$]. $t_{\rm R}$ (method A) = 5.4 min.

[1162]

[1163] N-(2-{2-페닐-6-[4-(톨루엔-4-설포닐아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(26.68):

[1164] 26.65 및 토실 클로라이드로부터 35% 수율로 제조하였다.

¹H NMR (CD₃OD, 200 MHz) δ 1.80 (m, 2H), 1.89 (s, 3H), 2.35

(s, 1H), 2.43(brs, 2H), 2.49 (s, 3H), 3.54 (t, 2H, J = 6.2Hz), 3.89 (t, 2H, J = 6.2Hz), 4.23 (d, 2H, J = 14.4Hz), 7.07-7.97 (m, 8H), 8.21 (m, 2H). MS (ES) 576.1 [MH $^{+}$]. t_R (method A) = 7.2 min.

[1166]

[1167] N-(2-{6-[4-하이드록시-4-(3-메톡시페닐)피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드(26,69):

N-(2-{6-[4-Hydroxy-4-(3-methoxyphenyl)-piperidine-1-carbonyl]-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.69): 1 H NMR (CD₃OD, 200 MHz) δ 1.80 (brs, 1H), 1.85 (s, 3H), 1.97 (s, 1H), 2.14 (m, 2H), 2.49 (brs, 4H), 3.80 (s, 3H), 3.83 (d, 2H, J = 5.8Hz), 4.44 (d, 2H, J = 12.8Hz), 6.78-6.84 (m, 1H), 6.97 (s, 1H), 7.05-7.13 (m, 2H), 7.26 (t, 1H, J = 7.9Hz), 7.42-7.47 (m, 3H), 8.41 (m, 2H). MS (ES) 529 [MH $^{+}$]. t_R (method A) = 7.2 min.

[1168] [1169]

N-(2-{6-[4-하이드록시-4-(2-메톡시페닐)피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에 틸)아세트아미드(26,70):

N-(2-{6-[4-Hydroxy-4-(2-methoxyphenyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.70): 1 H NMR (CD₃OD, 200 MHz) δ 1.74 (d, 1H, J = 0.8Hz), 1.81 (brs, 1H), 1.85 (s, 3H), 2.56 (m, 2H), .52 (brs, 4H), 3.80 (d, 2H, J = 6.6Hz), 3.85 (s, 3H), 4.43 (d, 2H, J = 13.2Hz), 6.92-7.01 (m, 3H), 7.25 (m, 1H), 7.42-7.47 (m, 3H), 7.53 (m, 1H), 8.41 (m, 2H). MS (ES) 529.0 [MH $^{+}$]. t_{R} (method A) = 6.7 min.

[1170]

[1171] N-(2-{6-[4-(4-클로로페닐)피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드 (26,71):

N-(2-{6-[4-(4-Chlorophenyl)-piperazine-1-carbonyl]-2-phenyl-TH-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl)-acetamide (26.71): ¹H NMR (CD₃OD, 200 MHz) δ 1.86 (s, 3H), 3.23 (m, 4H), 3.53 (t, 2H, J = 6.2Hz), 3.84 (t, 2H, J = 6.3Hz), 3.99 (t, 4H, J = 4.8Hz), 6.95-6.99 (m, 3H), 7.20 (d, 2H, J = 9.2Hz), 7.42-7.44 (m, 3H), 8.41 (m, 2H). MS (ES) 517.9/519.9 [MH $^{+}$]. t_R (method A) = 8.8 min. $C_{27}H_{28}CIN_7O_2$ (518.02): calcd. C 62.60, H 5.45, N 18.93, Cl 6.84; found C 62.66, H 5.46, N 18.39, Cl 6.49.

[1172] [1173]

N-(2-{6-[4-(2-하이드록시에틸)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트 아미드(26.72):

N-(2-{6-[4-(2-Hydroxyethyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.72): ¹H NMR (CD₃OD, 200 MHz) δ 1.86 (s, 3H), 2.62 (m, 4H), 3.52 (t, 2H, J = 6Hz), 3.71 (t, 2H, J = 5.6Hz), 3.85 (m, 4H), 6.92 (s, 1H), 7.41-7.44 (m, 3H), 8.39 (m, 2H). MS (ES) 451.9 [MH $^{+}$]. t_R (method A) = 3.6 min.

[1174]

[1175] N-{2-[6-(4-벤조일피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26.73):

 $N-\{2-[6-(4-Benzoylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl\}-acetamide (26.73): ¹H NMR (CDCl₃, 200 MHz) <math>\delta$ 1.76 (s, 3H), 1.89 (brs, 3H), 3.19 (brs, 2H), 3.49 (brs, 4H), 3.77 (brs, 2H), 4.45 (d, 2H, J=13.2Hz), 6.55

[1176]

(brs, 3H), 6.74 (s, 1H), 7.43-7.62 (m, 6H), 7.90 (d, 2H, J = 7.4Hz), 8.38 (brs, 2H), 10.67 (brs, 1H). MS (ES) 510.9 [MH $^{+}$]. t_R (method A) = 7.5 min.

[1177]

[1178] N-(2-{6-[4-(2-메톡시페닐)피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드 (26.74):

N-(2-{6-[4-(2-Methoxyphenyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.74): ¹H NMR (CDCl₃, 200 MHz) δ 1.68 (brs, 2H), 1.78 (s, 3H), 1.90 (d, 2H, J = 11.6Hz), 3.20 (m, 3H), 3.55 (brs, 2H), 3.83 (brs, 5H), 4.77 (brs, 2H), 6.22 (brs, 1H), 6.74 (brs, 1H), 6.89 (q, 2H, J = 6.9Hz), 7.16 (t, 3H, J = 8.8Hz), 7.43 (brs, 3H), 8.40 (brs, 2H), 10.20 (brs, 1H). MS (ES) 512.9 [MH $^+$]. t_R (method A) = 8.3 min.

[1179] [1180]

N-(2-{6-[4-(하이드록시폐닐메틸)피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드(26,75):

 $N-(2-\{6-[4-(Hydroxyphenylmethyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.75): <math>^{1}H$ NMR (CDCl₃, 200 MHz) δ 1.29 (brs, 3H), 1.75 (s, 3H), 1.83-2.08 (m, 2H), 2.87 (brs, 2H), 3.53 (brs, 2H), 3.81 (brs, 2H), 4.33 (d, 1H, J=7Hz), 4.52 (t, 2H, J=15Hz), 6.43 (brs, 1H), 6.67 (s, 1H), 7.16 (brs, 1H), 7.26-7.31 (m, 5H), 7.42 (t, 3H, J=2.9Hz), 8.32 (m, 2H). MS (ES) 512.9 [MH⁺]. t_R (method A) = 6.8 min.

[1181] [1182]

N-{2-[6-(4-아세틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.76):

 $N-\{2-[6-(4-Acetyl-4-phenylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.76): <math>^{1}H$ NMR (CDCl₃, 200 MHz) δ 1.82 (s, 3H), 1.96 (s, 3H), 2.01 (brs, 2H), 2.45 (brs, 2H), 3.58 (brs, 4H), 3.87 (brs, 2H), 4.20 (brs, 2H), 6.24 (brs, 1H), 6.70 (s, 1H), 6.90 (brs, 1H), 7.21-7.43 (m, 7H), 8.37 (brs, 2H), 9.74 (brs, 1H). MS (ES) 524.9 [MH $^{+}$]. t_{R} (method A) = 7.6 min.

[1183]

[1184] N-(2-{6-[4-(2-사이클로헥실에틸)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세 트아미드(26.77):

N-(2-{6-[4-(2-Cyclohexylethyl)-piperazine-1-carbonyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.77): 1 H NMR (CDCl₃, 200 MHz) δ 0.94 (t, 2H, J = 10.8Hz), 1.20-1.44 (m, 7H), 1.67-1.73 (m, 4H), 1.77 (s, 3H), 2.46 (m, 6H), 3.53 (brs, 2H), 3.81 (brs, 6H), 6.31 (brs, 1H), 6.67 (s, 1H), 7.18 (brs, 1H), 7.40-7.44 (t, 3H, J = 3.1Hz), 8.38 (m, 2H), 10.56 (brs, 1H). MS (ES) 517.9 [MH $^{+}$]. 1 L_R (method A) = 4.8 min.

[1185] [1186]

N-{2-[6-(4-에티닐-4-하이드록시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트 아미드(26.78):

 $N-\{2-[6-(4-Ethynyl-4-hydroxypiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl\}-acetamide (26.78): <math>^{1}$ H NMR (CDCl₃, 200 MHz) δ 1.83 (s, 3H), 1.89 (m, 2H), 2.04 (m, 2H), 2.61 (s, 1H), 3.64 (m, 2H), 3.74 (m, 2H), 3.91 (s, 2H), 4.20 (m, 2H), 6.68 (brs, 1H), 6.74 (s, 1H), 7.45-7.48 (m, 3H), 8.42 (m, 2H). MS (ES) 446.8 [MH $^{+}$]. t_{R} (method A) = 5.5 min.

[1187]

[1188] N-{2-[2-페닐-6-(4-페닐에티닐-3,6-디하이드로-2H-피리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에 틸}아세트아미드(26.79):

N-{2-[2-Phenyl-6-(4-phenylethynyl-3,6-dihydro-2H-pyridine-1-carbonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.79): 1 H NMR (CDCl₃, 200 MHz) δ 1.83 (s, 3H), 2.50 (brs, 2H), 3.56 (q, 2H, J = 6Hz), 3.84 (t, 2H, J = 5.2Hz), 4.00 (t, 2H, J = 5.7Hz), 4.44 (brs, 2H), 6.25 (brs, 1H), 7.07 (s, 1H), 7.37-7.45 (m, 10H), 8.54 (m, 2H). MS (ES) 504.9 [MH $^{+}$]. 1 L 1 R (method A) = 8.7 min.

[1189]

[1190] N-(2-{2-페닐-6-[4-(2-페닐사이클로프로판카보닐)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드(26.80):

N-(2-{2-Phenyl-6-[4-(2-phenylcyclopropanecarbonyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.80): 1 H NMR (CDCl₃, 200 MHz) δ 1.32 (m, 1H), 1.68 (p, 1H, J = 4.6Hz), 1.95 (p, 1H, J = 3.8Hz), 2.51 (m, 1H), 3.56 (brs, 2H), 3.70 (brs, 4H), 3.83 (brs, 6H), 6.47 (brs, 1H), 6.74 (brs, 1H), 7.00 (brs, 1H), 7.12 (d, 2H, J = 6.6Hz), 7.21-7.33 (m, 3H), 7.41 (brs, 3H), 8.38 (brs, 2H), 10.39 (brs, 1H). MS (ES) 552.2 [MH $^{+}$]. $^{+}$ I_R (method A) = 7.3 min.

[1191] [1192]

N-(2-{6-[4-(4-클로로벤질)피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아미드 (26.81):

N-(2-{6-[4-(4-Chlorobenzyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.81): ¹H NMR (CDCl₃, 200 MHz) δ 1.70 (m, 3H), 1.80 (s, 3H), 2.07 (d, 2H, J = 5.2Hz), 2.52 (d, 2H, J = 6.2Hz), 2.94 (brs, 2H), 3.57 (brs, 2H), 3.88 (brs, 2H), 4.54 (d, 2H, J = 13.8Hz), 6.07 (brs, 1H), 6.66 (s, 1H), 6.99-7.46 (m, 8H), 8.41 (q, 2H, J = 3.2Hz), 9.69 (brs, 1H). MS (ES) 530.9/532.9 [MH $^{+}$]. t_{R} (method A) = 9.1 min

[1193] [1194]

N-[2-(6-{4-[(4-클로로페닐)-하이드록시메틸]피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드(26.82):

N-[2-(6-{4-[(4-Chlorophenyl)-hydroxymethyl]-piperidine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.82): 1 H NMR (CDCl₃, 200 MHz) δ 1.43 (brs, 3H), 1.79 (s, 3H), 1.86 (m, 2H), 2.01 (brs, 2H), 2.93 (brs, 2H), 3.59 (brs, 2H), 3.88 (brs, 2H), 4.39 (d, 1H, J = 6.8Hz), 4.61 (t, 2H, J = 2.9Hz), 6.03 (brs, 1H), 6.65 (s, 1H), 6.89 (brs, 1H), 7.21-7.34 (m, 5H), 7.43 (t, 3H, J = 6.2Hz), 8.41 (m, 2H). MS (ES) 547.1/549.0 [MH $^{+}$]. $^{+}$ 1 (method A) = 7.4 min.

[1195] [1196]

N-{2-[2-페닐-6-(4-프로프-2-이닐피페라진-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.83):

[1197] 30a로부터 43% 수율로 제조하였다.

¹H NMR

(CD₃COCD₃, 200 MHz) δ 1.82 (s, 3H), 2.62 (t, 4H, J = 5Hz), 2.74 (t, 2H, J = 2.2Hz), 3.40 (d, 2H, J = 2.2Hz), 3.56 (q, 2H, J = 3.1Hz), 3.84 (m, 6H), 6.95 (s, 1H), 7.43(m, 4H), 8.54 (m, 2H). MS (ES) 445.9 [MH⁺]. t_R (method A) = 4.5 min.

[1198]

[1199] N-(2-{6-[4-(2-벤질옥시에틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸)아세트아 미드(26.84):

 $N-(2-\{6-[4-(2-Benzyloxyethyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino\}-ethyl)-acetamide (26.84): ¹H NMR (CDCl₃, 200 MHz) <math>\delta$ 1.20 (m, 3H), 1.57 (m, 2H), 1.73 (brs, 2H), 1.78 (s, 3H), 2.94 (brs, 2H), 3.50 (m, 4H), 3.83 (brs, 2H), 4.49 (s, 2H), 4.55 (brs, 2H), 6.22 (brs, 1H), 6.66 (s, 1H), 7.13 (brs, 1H), 7.33-7.44 (m, 8H), 8.40 (m, 2H), 10.12 (brs, 1H). MS (ES) 540.9 [MH⁺]. t_R (method A) = 8.5 min.

[1200]

[1201] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산(26.8 5):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid (26.85): 1 H NMR (CD₃COCD₃, 200 MHz) δ 1.82 (s, 3H), 2.68 (d, 2H, J = 13.4Hz), 3.41 (m, 2H), 3.55 (m, 2H), 3.84 (t, 2H, J = 5.5Hz), 4.50 (d, 2H, J = 13.6Hz), 7.00 (s, 1H), 7.42 (m, 9H), 8.52 (m, 2H), 10.82 (brs, 1H). MS (ES) 526.8 [MH⁺]. $_{18}$ (method B) = 6.7 min.

[1202] [1203]

N-{2-[6-(4-3 급-부틸피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드 (26.86):

 $N-\{2-[6-(4-tert-Butylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl\}-acetamide (26.86): <math>^{1}H$ NMR (CDCl₃, 200 MHz) δ 1.33 (m, 3H), 1.61 (brs, 9H), 1.81 (s, 3H), 1.85 (brs, 2H), 2.96 (brs, 2H), 3.62 (m, 2H), 3.92 (m, 2H), 4.74 (d, 2H, J=12.4Hz), 5.82 (brs, 1H), 6.65 (s, 1H), 6.85 (brs, 1H), 7.46 (m, 3H), 8.44 (m, 2H), 9.42 (brs, 1H). MS (ES) 462.9 [MH $^{+}$]. $t_{\rm R}$ (method A) = 8.6 min.

[1204] [1205]

N-{2-[6-(1,4-디옥사-8-아자스피로[4.5]데칸-8-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아 세트아미드(26.87):

 $N-\{2-[6-(1,4-Dioxa-8-azaspiro]4.5]$ decane-8-carbonyl)-2-phenyl-7*H*-pyrrolo[2,3-*d*]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.87): ¹H NMR (CDCl₃, 200 MHz) δ 1.74 (brs, 7H), 3.49 (m, 2H), 3.84 (m, 6H), 3.96 (s, 4H), 6.55 (brs, 1H), 6.69 (s, 1H), 7.30 (brs, 1H), 7.40 (m, 3H), 8.31 (m, 2H), 9.42 (brs, 1H). MS (ES) 464.8 [MH⁺]. t_R (method A) = 5.9 min.

[1206] [1207]

N-{2-[6-(4-펜에틸피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(26,88):

 $N-\{2-[6-(4-\text{Phenethylpiperidine-1-carbonyl})-2-\text{phenyl-}7H-\text{pyrrolo}[2,3-d]\text{pyrimidin-4-ylamino}]-ethyl\}-acetamide (26.88): <math>^1\text{H NMR}$ (CDCl₃, 200 MHz) δ 1.63 (brs, 5H), 1.81 (s, 3H), 1.85 (m, 2H), 2.67 (t, 2H, J=7.8Hz), 3.03 (brs, 2H), 3.61 (brs, 2H), 3.91 (brs, 2H), 4.65 (brs, 2H), 5.90 (brs, 1H), 6.66 (s, 1H), 6.86 (brs, 1H), 7.17-7.26 (m, 5H), 7.45 (brs, 3H), 8.42 (brs, 2H), 9.58 (brs, 1H). MS (ES) 510.8 [MH $^+$]. ^1LR (method A) = 9.0 min.

[1208]

[1209] 26.83과의 소노가시라 반응에 대한 일반적인 과정:

[1210] 아세틸렌 26.83(20 mg, 0.0449 밀리몰), 2-요오도벤조니트릴(12.4 mg, 1.2 당량) 및 디에틸아민(1 ml)을 합하고 실온에서 N₂ 하에 3 시간 동안 교반한다. Pd(PPh₃)₂Cl₂(1.6 mg, 5% 당량) 및 CuI(0.5 mg, 5% 당량)를 가한다. 3 시간 후에, 용매를 제거하고 H₂O 10 ml을 붓는다. 5 x 8 ml의 EtOAc로 추출하고, 2 x 10 ml의 H₂O 및 10 ml의 염수로 세척하고, MgSO₄ 상에서 건조시킨다. 조 물질을 예비 TLC에 의해 정제한다.

[1211] 하기 3 개의 화합물 26.89 내지 16.91을 상기 방법에 의해 합성하였다:

[1212] N-[2-(6-{4-[3-(2-시아노페닐)-프로프-2-이닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노)에틸]아세트아미드(26.89):

N-[2-(6-{4-[3-(2-Cyanophenyl)-prop-2-ynyl]-piperazine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.89): 1 H NMR (CDCl₃, 200 MHz) δ 1.78 (s, 3H), 2.87 (brs, 4H), 3.62 (brs, 2H), 3.76 (s, 2H), 3.93 (brs, 6H), 6.05 (brs, 1H), 6.86 (s, 1H), 7.08 (brs, 1H), 7.46 (brs, 4H), 7.56 (m, 2H), 7.66 (d, 2H, J = 8Hz), 8.44 (brs, 2H), 9.45 (brs, 1H). MS (ES) 546.9 [MH $^{+}$]. $_{1}$ R (method A) = 6.4 min.

[1213]

[1214] N-[2-(6-{4-[3-(3-시아노페닐)-프로프-2-이닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노)에틸]아세트아미드(26.90):

N-[2-(6-{4-[3-(3-Cyanophenyl)-prop-2-ynyl]-piperazine-1-carbonyl}-2-phenyl-TH-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.90): 1 H NMR (CDCl₃, 200 MHz) δ 1.84 (s, 3H), 2.74 (brs, 4H), 3.61 (brs, 4H), 3.96 (brs, 6H), 6.70 (s, 1H), 7.46 (brs, 4H), 7.58-7.78 (m, 4H), 8.42 (m, 2H), 9.40 (brs, 1H). MS (ES) 546.8 [MH $^{+}$]. $^{+}$ I (method A) = 6.3 min.

[1215] [1216]

N-[2-(6-{4-[3-(4-시아노페닐)-프로프-2-이닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에틸]아세트아미드(26.91):

N-[2-(6-{4-[3-(4-Cyanophenyl)-prop-2-ynyl]-piperazine-1-carbonyl}-2-phenyl-TH-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.91): ¹H NMR (CDCl₃, 200 MHz) δ 1.83 (s, 3H), 2.73 (brs, 4H), 3.62 (brs, 4H), 3.98 (brs, 6H), 5.93 (brs, 1H), 6.69 (brs, 2H), 7.46 (m, 4H), 7.58 (t, 3H, J = 9.2Hz), 8.44 (brs, 2H), 9.40 (brs, 1H). MS (ES) 546.9 [MH $^+$]. t_R (method A) = 6.4 min.

[1217] [1218]

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 메틸 에스테르(26.92):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid methyl ester (26.92): 1 H NMR (CDCl₃, 200 MHz) δ 1.80 (s, 3H), 1.96 (m, 2H), 2.63 (t, 2H, J = 6.9Hz), 3.35 (brs, 2H), 3.57 (brs, 2H), 3.70 (s, 3H), 3.86 (brs, 2H), 4.46 (brs, 2H), 6.21 (brs, 1H), 6.73 (s, 1H), 7.00 (brs, 1H), 7.34-7.41 (m, 8H), 8.39 (brs, 2H), 9.90 (brs, 1H). MS (ES) 540.8 [MH⁺]. 1 L (method A) = 7.8 min.

[1219]

[1220] N-(2-{6-[4-(1-하이드록시에틸)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}에틸) 아세트아미드(26.93):

 $\label{eq:N-(2-{6-[4-(1-Hydroxyethyl)-4-phenylpiperidine-1-carbonyl]-2-phenyl-7} $$ In $NMR (CDCl_3, 200 MHz) $$ $$ $$ Solution of the context of the cont$

[1221]

0.98 (d, 3H, J = 6.2Hz), 1.78 (s, 3H), 1.86 (brs, 2H), 2.20 (d, 1H, J = 10.2Hz), 2.44 (d, 1H, J = 12.6Hz), 3.02 (brs, 2H), 3.60 (m, 3H), 3.83 (brs, 2H), 4.40 (d, 2H, J = 11Hz), 6.37 (brs, 1H), 6.66 (s, 1H), 7.12 (brs, 1H), 7.27-7.39 (m, 8H), 8.34 (t, 2H, J = 3.7Hz), 10.50 (brs, 1H). MS (ES) 526.9 [MH $^{+}$]. t_R (method A) = 6.9 min.

[1222]

[1223] N-[2-(6-{4-[3-(4-시아노페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)에 틸]아세트아미드(26.94):

N-[2-(6-{4-[3-(4-Cyanophenyi)-propyi]-piperazine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.94): 1 H NMR (CDCl₃, 200 MHz) δ 1.82 (brs, 5H), 2.39 (t, 2H, J = 7Hz), 2.50 (brs, 4H), 2.72 (t, 2H, J = 7.5Hz), 3.60 (brs, 2H), 3.87 (brs, 6H), 6.13 (brs, 1H), 6.68 (s, 1H), 6.88 (brs, 1H), 7.31 (brs, 2H), 7.44 (brs, 3H), 7.60 (d, 2H, J = 8Hz), 8.40 (m, 2H), 9.78 (brs, 1H). MS (ES) 550.9 [MH $^{+}$]. t_R (method A) = 5.4 min.

[1224]

[1225] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 에틸에스테르(26.95):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl-4-phenylpiperidine-4-carboxylic acid ethyl ester (26.95): 1 H NMR (CDCl₃, 200 MHz) δ 1.21 (t, 3H, J = 7.6Hz), 1.81 (s, 3H), 2.01 (m, 2H), 2.64 (m, 2H), 3.40 (brs, 2H), 3.60 (brs, 2H), 3.91 (brs, 2H), 4.20 (q, 2H, J = 7.2), 4.47 (brs, 2H), 6.03 (brs, 1H), 6.71 (s, 1H), 6.91 (brs, 1H), 7.34-7.44 (m, 8H), 8.44 (brs, 2H), 9.70 (brs, 1H). MS (ES) 555.0 [MH $^{+}$]. t_{R} (method A) = 7.8 min.

[1226] [1227]

N-{2-[6-(4-벤질옥시피폐리단-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미단-4-일아미노]에틸}아세트아미드(26.9 6):

 $N-\{2-[6-(4-\text{Benzyloxypiperidine-1-carbonyl})-2-\text{phenyl-}7H-\text{pyrrolo}[2,3-d]\text{pyrimidin-4-ylamino}]-\text{ethyl}-\text{acetamide (26.96):} \ ^1\text{H NMR (CDCl}_3, 200 \text{ MHz}) \delta 1.22 \text{ (m, 1H), 1.71 (s, 3H), 1.82 (brs, 2H), 3.43 (brs, 2H), 3.66 (m, 6H), 3.96 (brs, 2H), 4.53 (s, 2H), 6.66 (brs, 1H), 6.71 (s, 1H), 7.33-7.44 (m,8H), 8.36 (m, 2H), 11.14 (brs, 1H). MS (ES) 512.9 [MH<math>^+$]. t_R (method A) = 7.5 min.

[1228]

[1229] 26.85에 의한 아미드 형성

[1230] 산 26.85(16 mg, 0.0304 밀리몰) 및 트리에틸아민(8.5 μ , 2 당량)을 DMF(2 ml)에 용해시키고 빙 욕에서 냉각시켰다. 5 분 후에, TBTU(11.7 mg, 1.2 당량)를 가하였다. 30 분 후에, 피롤리딘(3.1 μ l, 1.2 당량)을 가하고 이어서 실온에서 2 일간 교반하였다. 반응 혼합물을 10 ml의 5% HOAc 수용액에 붓고, 5 x 8 ml의 EtOAc로 추출하고, 8 ml의 HOAc 수용액, 2 x 8 ml의 H₂O 및 8 ml의 염수로 세척하고, MgSO₄ 상에서 건조시켰다. 여과하고 용매를 제거하고 TLC에 의해 정제시켜 회색 고체로서 12.6 mg의 26.104를 수득하였다.

[1231] 아미드 26.97 내지 27.107을 상기 방법에 의해 제조하였다.

[1232] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 아미드(26,97):

[1233]

[1234] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 메틸아미드(26.98):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid methylamide (26.98): 1 H NMR (CDCl₃, 200 MHz) δ 1.71 (s, 3H), 2.13 (brs, 2H), 2.41 (brs, 2H), 3.66 (d, 3H, J = 4.8Hz), 3.48 (brs, 2H), 3.81 (m, 4H), 3.93 (brs, 2H), 5.87 (d, 1H, J = 4.4Hz), 6.76 (s, 1H), 7.29-7.39 (m, 8H), 7.64 (brs, 1H), 8.29 (brs, 2H). MS (ES) 539.9 [MH $^{+}$]. 1 L $^{+}$ R (method B) = 13.0 min.

[1235]

[1236] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 디메틸아미드(26.99):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid dimethylamide (26.99): 1 H NMR (CDCl₃, 200 MHz) δ 1.75 (s, 3H), 2.41 (d, 2H, J = 13.2Hz), 2.50-3.00 (brs, 6H), 3.35 (brs, 4H), 3.86 (brs, 4H), 4.41 (brs, 2H), 6.38 (t, 1H, J = 5.2Hz), 6.74 (s, 1H), 7.20-7.43 (m, 8H), 8.41 (m, 2H), 10.09 (brs, 1H). MS (ES) 553.9 [MH $^{+}$]. t_{R} (method B) = 14.5 min.

[1237] [1238]

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 벤질 아미드(26.100):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid benzylamide (26.100): ^{1}H NMR (CDCl₃, 200 MHz) δ 1.80 (s, 3H), 2.17 (brs, 2H), 2.49 (brs, 2H), 3.59 (brs, 2H), 3.89 (brs, 4H), 4.09 (brs, 2H), 4.36 (brs, 2H), 5.57 (brs, 1H), 6.71 (s, 1H), 7.04 (m, 3H), 7.23-7.43 (m, 11H), 8.40 (brs, 2H), 9.59 (brs, 1H). MS (ES) 615.9 [MH $^{+}$]. $_{18}$ (method A) = 7.7 min.

[1239] [1240]

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 에틸아미드(26.101):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid ethylamide (26.101): 1 H NMR (CDCl₃, 200 MHz) δ 1.00 (t, 3H, J = 7.2Hz), 1.78 (s, 3H), 2.20 (brs, 2H), 2.44 (brs, 2H), 3.21 (d, 2H, J = 6.4Hz), 3.56 (brs, 2H), 3.85 (brs, 4H), 4.03 (brs, 2H), 5.30 (brs, 1H), 6.21 (brs, 1H),

[1241]

6.71 (s, 1H), 7.04 (brs, 1H), 7.37-7.40 (m, 8H), 8.38 (brs, 2H), 9.97 (brs, 1H). MS (ES) 553.9 [MH $^{+}$]. t_R (method A) = 6.6 min.

[1242] [1243]

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 디에 틸아미드(26.102):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid diethylamide (26.102): 1 H NMR (CDCl₃, 200 MHz) δ 0.68 (brs, 3H), 1.23 (brs, 3H), 1.76 (s, 3H), 2.39 (d, 2H), 2.91 (brs, 2H), 3.33 (brs, 2H), 3.58 (brs, 4H), 3.88 (brs, 4H), 4.40 (brs, 2H), 6.24 (brs, 1H), 6.74 (s, 1H), 7.15 (brs, 1H), 7.22-7.44 (m, 8H), 8.42 (m, 2H), 9.97 (brs, 1H). MS (ES) 581.9 [MH $^{+}$]. $^{+}$ I (method B) = 16.5 min.

[1244]

[1245] N-(2-{6-[4-(아제티딘-1-카보닐)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에 틸)-아세트아미드(26.103):

N-(2-{6-[4-(Azetidine-1-carbonyl)-4-phenylpiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.103): 1 H NMR (CDCl₃, 200 MHz) δ 1.76 (s, 3H), 1.80 (brs, 2H), 2.02 (t, 4H, J = 7.4Hz), 2.43 (d, 2H, J = 12Hz), 3.57 (brs, 4H), 3.87 (brs, 2H), 3.99 (brs, 2H), 4.38 (brs, 2H), 6.38 (brs, 1H), 6.74 (s, 1H), 7.22-7.40 (m, 9H), 8.41 (m, 2H), 10.01 (brs, 1H). MS (ES) 556.0 [MH $^{+}$]. t_{R} (method B) = 14.6 min.

[1246]

[1247] N-(2-{2-페닐-6-[4-페닐-4-(피롤리딘-1-카보닐)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에 틸)-아세트아미드(26.104):

N-(2-{2-Phenyl-6-[4-phenyl-4-(pyrrolidine-1-carbonyl)-piperidine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.104): 1 H NMR (CDCl₃, 200 MHz) δ 1.56 (brs, 4H), 1.76 (brs, 4H), 1.78 (s, 3H), 2.47 (d, 2H), 2.82 (brs, 2H), 3.57 (brs, 4H), 3.89 (brs, 2H), 4.40 (brs, 2H), 6.22 (brs, 1H), 6.74 (s, 1H), 7.10 (brs, 1H), 7.22-7.43 (m, 8H), 8.42 (m, 2H), 9.80 (brs, 1H). MS (ES) 580.0 [MH $^{+}$]. $^{+}$ I (method B) = 15.6 min.

[1248] [1249]

N-(2-{2-페닐-6-[4-페닐-(피페리딘-1-카보닐)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸) -아세트아미드(26.105):

 $N-(2-\{2-\text{Phenyl-6-}[4-\text{phenyl-4-}(\text{piperidine-1-carbonyl})-\text{piperidine-1-carbonyl}]-7H-$ pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.105): ¹H NMR (CDCl₃, 200 MHz) δ 1.48 (brs, 4H), 1.68 (brs, 4H), 1.79 (s, 3H), 2.41 (d, 2H), 3.32 (brs, 4H), 3.61 (brs, 4H), 4.46 (brs, 2H), 6.06 (brs, 1H), 6.72 (s, 1H), 7.04 (brs, 1H), 7.24-7.46 (m, 8H), 8.43 (m, 2H), 9.66 (brs, 1H). MS (ES) 593.9 [MH $^{+}$]. t_R (method A) = 7.9 min.

[1250] [1251]

N-(2-{6-[4-(모르폴린-4-카보닐)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에 틸)-아세트아미드(26,106):

 $N-(2-\{6-[4-(Morpholine-4-carbonyl)-4-phenylpiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.106): <math>^{1}$ H NMR (CDCl₃, 200 MHz) δ 1.80 (s, 3H), 2.38 (d, 2H), 3.35 (brs, 8H), 3.61 (brs, 4H), 3.90 (brs, 4H), 4.47

[1252]

(brs, 2H), 6.05 (brs, 1H), 6.72 (s, 1H), 6.96 (brs, 1H), 7.24-7.44 (m, 8H), 8.43 (m, 2H), 9.66 (brs, 1H). MS (ES) 595.9 [MH $^{+}$]. $t_{\rm R}$ (method B) = 14.2 min.

[1253]

[1254] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 3 급 -부틸아미드(26.107):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid *tert*-butylamide (26.107): 1 H NMR (CDCl₃, 200 MHz) δ 1.24 (s, 9H), 1.81 (s, 3H), 2.40 (d, 2H), 3.61 (brs, 4H), 3.91 (brs, 4H), 4.11 (brs, 2H), 6.01 (brs, 1H), 6.72 (s, 1H), 6.91 (brs, 1H), 7.30-7.45 (m, 8H), 8.41 (m, 2H), 9.56 (brs, 1H). MS (ES) 581.9 [MH $^{+}$]. 1 L_R (method A) = 7.8 min.

[1255]

[1256] N-{2-[6-(4-메틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]에틸}아세트아미드(2 6.108):

 $N-\{2-[6-(4-Methyl-4-phenylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl\}-acetamide (26.108): <math>^{1}H$ NMR (CDCl₃, 200 MHz) δ 1.30 (s, 3H), 1.77 (m, 5H), 2.18 (brs, 2H), 3.54 (brs, 2H), 3.69 (brs, 2H), 3.81 (brs, 4H), 6.20 (brs, 1H), 6.67 (s, 1H), 7.09 (brs, 1H), 7.23-7.42 (m, 8H), 8.40 (m, 2H), 10.23 (brs, 1H). MS (ES) 496.9 [MH $^{+}$]. $t_{\rm R}$ (method A) = 7.9 min.

[1257]

[1258] N-(2-{6-[4-(1-하이드록시-1-메틸에틸)-4-페닐피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26.109):

N-(2-{6-[4-(1-Hydroxy-1-methylethyl)-4-phenylpiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.109): 1 H NMR (CDCl₃, 200 MHz) δ 1.09 (s, 6H), 1.79 (s, 3H), 1.97 (t, 2H, J = 12.8 Hz), 2.41 (d, 2H, J = 13Hz), 2.87 (brs, 2H), 3.57 (brs, 2H), 3.69 (s, 1H), 3.85 (brs, 2H), 4.50 (d, 2H, J = 9.8Hz), 6.11 (brs, 1H), 6.64 (s, 1H), 7.02 (brs, 1H), 7.29-7.40 (m, 8H), 8.37 (brs, 2H), 10.01 (brs, 1H). MS (ES) 540.9 [MH $^{+}$]. $^{+}$ I_R (method A) = 7.0 min.

[1259] [1260]

N-{2-[6-(4-이소프로필-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트 아미드(26.110):

 $N-\{2-[6-(4-lsopropyl-4-phenylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.110): <math>^{1}$ H NMR (CDCl₃, 200 MHz) δ 1.15 (brs, 2H), 1.24 (s, 6H), 1.48 (d, 2H, J=11.6 Hz), 1.69 (m, 1H), 1.75 (s, 3H), 2.76 (brs, 2H), 3.51 (brs, 2H), 3.79 (brs, 2H), 4.52 (d, 2H, J=11Hz), 6.32 (brs, 1H), 6.64 (s, 1H), 7.13-7.42 (m, 9H), 8.38 (brs, 2H), 10.41 (brs, 1H). MS (ES) 524.9 [MH $^{+}$]. t_{R} (method A) = 8.8 min.

[1261] [1262]

N-(2-{2-폐닐-6-[4-(3-티오펜-2-일-프로프-2-이닐)-피폐라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노} -에틸)-아세트아미드(26.111):

N-(2-{2-Phenyl-6-[4-(3-thiophen-2-yl-prop-2-ynyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.111): 1 H NMR (CDCl₃, 200 MHz) δ 1.81 (s, 3H), 2.71 (brs, 4H), 3.61 (brs, 4H), 3.94 (brm, 6H), 5.94 (brs, 1H), 6.69 (s, 1H), 6.83 (brs, 1H), 6.96 (dd, 1H, J = 5Hz, J = 3.8Hz), 7.22(m, 2H), 7.45 (brd, 3H), 8.40 (brd, 2H), 9.62 (brs, 1H).

[1263]

[1264]

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 사이 클로부틸메틸 에스테르(26.112):

1-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-4-phenylpiperidine-4-carboxylic acid cyclobutylmethyl ester (26.112): 1 H NMR (CDCl₃, 200 MHz) δ 0.89-1.34 (m, 7H), 1.70 (t, 2H, J = 10Hz), 1.78 (s, 3H), 2.02 (brt, 2H), 2.53 (d, 2H, J = 13.6Hz), 3.42 (brm, 2H), 3.59 (brs, 2H), 3.89 (brs, 2H), 4.39 (d, 2H, J = 12.4Hz), 6.04(brs, 1H), 6.15 (brs, 1H), 6.73 (s, 1H), 7.09 (brs, 1H), 7.26-7.45 (m, 7H), 8.42 (m, 2H).

[1265]

[1266] 2-{6-[4-(4-플루오로벤질)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-아세트아미드(26. 113):

2-{6-[4-(4-Fluorobenzy])-piperidine-1-carbonyl]-2-phenyl-7*H*-pyrrolo[2,3-*d*]-pyrimidin-4-ylamino}-acetamide (26.113): 1 H NMR (CDCl₃, 200 MHz) δ 1.30 (brs, 2H), 1.75 (s, 3H), 1.81 (brs, 3H), 2.55 (m, 2H), 2.96 (brs, 2H), 4.42 (d, 2H, J = 5Hz), 4.58 (d, 2H, J = 14.2Hz), 5.52 (brs, 1H), 5.89 (brs, 1H), 6.28 (brs, 1H), 6.65 (s, 1H), 6.95-7.15 (m, 4H), 7.46 (m, 3H), 8.41 (m, 2H).

[1267]

[1268] N-(2-{6-[4-(4-클로로페닐)-4-메톡시피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26.114):

N-(2-{6-[4-(4-Chlorophenyl)-4-methoxypiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.114): 1 H NMR (CDCl₃, 200 MHz) δ 1.77 (s, 3H), 1.87-2.12 (m, 4H), 2.95 (s, 3H), 3.51 (brs, 4H), 3.78 (brs, 2H), 4.40 (d, 2H, J = 10.6Hz), 6.47 (brs, 1H), 6.74 (s, 1H), 7.23-7.41 (m, 8H), 8.35 (m, 2H), 10.83 (brs, 1H). MS (ES) 547.0/549.0 [MH $^{+}$]. 1 t_R (method A) = 8.6 min.

[1269]

N-(2-{6-[4-메톡시-4-(3-트리플루오로메틸페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 [1270] 미노}-에틸)-아세트아미드(26.115): $N\hbox{-}(2\hbox{-}\{6\hbox{-}[4\hbox{-}Methoxy\hbox{-}4\hbox{-}(3\hbox{-}trifluoromethylphenyl)\hbox{-}piperidine-1-carbonyl]\hbox{-}2\hbox{-}phenyl-piperidine-1-carbonyl]\hbox{-}2\hbox{-}phenyl-piperidine-1-carbonyl]$ 7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.115): ¹H NMR (CDCl₃, 200 MHz) δ 1.80 (s, 3H), 1.90-2.18 (m, 4H), 3.03 (s, 3H), 3.59 (brs, 4H), 3.86 (brs, 2H), 4.51 (d, 2H, J = 13.4Hz), 6.10 (brs, 1H), 6.72 (s, 1H), 6.92 (brs, 1H), 7.42-7.64 (m, 8H), 8.38 (m, 2H), 10.05 (brs, 1H). MS (ES) 581 [MH $^{+}$]. t_R (method A) = 8.8 min. [1271] N-{2-[6-(4-이소프로필-4-메톡시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세 [1272] 트아미드(26.116): $N-\{2-[6-(4-Isopropyl-4-methoxypiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-carbonyl-2-phenyl$ pyrimidin-4-ylamino]-ethyl}-acetamide (26.116): ¹H NMR (CDCl₃, 200 MHz) 8 0.91 (d, 6H, J = 6.8Hz), 1.69 (m, 4H), 1.80 (s, 3H), 1.99 (m, 1H), 3.19 (s, 3H), 3.61 (brs, 4H), 3.89 (brs, 2H), 4.41 (d, 2H, J = 12.4Hz), 6.03 (brs, 1H), 6.68 (s, 1H), 6.96 (brs, 1H), 7.45(m, 3H), 8.39 (m, 2H), 9.89 (brs, 1H). MS (ES) 478.9 [MH $^{+}$]. t_R (method A) = 7.0 min. [1273] N-{2-[6-(4-아세틸아미노-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세 [1274] 트아미드(26.117): $N\hbox{-}\{2\hbox{-}[6\hbox{-}(4\hbox{-}Acetylamino\hbox{-}4\hbox{-}phenylpiperidine\hbox{-}1\hbox{-}carbonyl)\hbox{-}2\hbox{-}phenyl\hbox{-}7$$H$-pyrrolo[2,3\hbox{-}2]$}$ d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.117): 1 H NMR (CDCl₃, 200 MHz) δ [1275] 1.65 (s, 3H), 1.88 (s, 3H), 2.50 (brs, 6H), 3.36 (m, 2H), 3.67 (m, 2H), 4.26 (d, 2H, J =13.2Hz), 6.76 (s, 1H), 6.94 (brs, 1H), 7.05-7.25 (m, 8H), 7.48 (brs, 1H), 8.28 (m, 2H), 10.34 (brs, 1H). MS (ES) 540 [MH $^{+}$]. t_R (method B) = 13.5 min. [1276] [1277] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐피페리딘-4-카복실산 이소 프로필 에스테르(26.118): ¹H NMR (CDCl₃, 200 MHz) δ 1.19 (d, 6H, J = 6.2Hz), 1.77 (s, 3H), 1.93 (t, 2H, J = 11Hz), 2.60 (d, 2H, J = 11Hz) 12.8Hz), 3.32 (brs, 2H), 3.54 (brs, 2H), 3.82 (brs, 2H), 4.42 (d, 2H, J = 13.2Hz), 5.05 (m, 1H, J = 6.2Hz), 6.31 (brs, 1H), 6.72 (s, 1H), 7.12 (brs, 1H), 7.31-7.42 (m, 8H), 8.35 (m, 2H), 10.46 (brs, 1H). MS (ES) 568.9 [MH $^{+}$]. t_R (method A) = 8.4 min. [1278] [1279] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-에틸아미노피페리딘-4-카복실 산 아미드(26.119): H NMR (CD₃OD, 200 MHz) δ 1.13 (t, 3H, J = 7Hz), 1.74 (m, 2H), 1.85 (s, 3H), 2.09 (m, 2H), 2.55 (q, 2H, J =7.1Hz), 3.52 (t, 2H, J = 6Hz), 3.83 (t, 4H, J = 6Hz), 3.94 (m, 2H), 6.92 (s, 1H), 7.41-7.47 (m, 3H), 8.39-8.44 (m, 2H). MS (ES) 493.0 [MH $^{+}$]. t_R (method A) = 6.6 min. [1280] [1281] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-페닐아미노피페리딘-4-카복실 산 아미드(26.120): ¹H NMR (CD₃OD, 200 MHz) δ 1.84 (s, 3H), 2.13 (m, 4H), 3.51 (m, 4H), 3.82 (t, 2H, J = 6Hz), 4.24 (d, 2H, J = 6.9Hz), 6.67-6.74 (m, 3H), 6.92 (s, 1H), 7.13 (t, 2H, J = 7.9Hz), 7.42 (m, 3H), 8.41 (m, 2H). MS (ES) 541.0 [MH $^{+}$]. t_R (method A) = 6.3 min. [1282] [1283] N-(2-{6-[4-메톡시-4-(3-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)

-아세트아미드(26.121):

¹H NMR (CDCl₃, 200

MHz) δ 1.75 (s, 3H), 1.87 (d, 2H, J = 11.6Hz), 2.05 (d, 2H, J = 12.8Hz), 3.00 (s, 3H), 3.48 (brs, 2H), 3.81 (brs, 4H), 4.41 (d, 2H, J = 13Hz), 6.39 (brs, 1H), 6.74 (s, 1H), 6.81 (d, 2H, J = 8.2Hz), 6.93(brs, 2H), 7.24-7.38 (m, 5H), 8.35 (m, 2H), 10.64 (brs, 1H). MS (ES) 543.0 [MH $^{+}$]. $t_{\rm R}$ (method A) = 7.3 min.

[1284] [1285]

1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-피롤리딘-1-일피페리딘-4-카 복실산 아미드(26.122):

¹H NMR (CD₃OD, 200

[1286]

MHz) δ 1.78 (brs, 4H), 1.85 (s, 3H), 1.96 (m, 2H), 2.07 (m, 2H), 2.75 (brs, 4H), 3.53 (t,

2H, J = 6Hz

2H, J = 6Hz), 3.68 (brs, 2H), 3.84 (t, 2H, J = 6Hz), 4.08 (m, 2H), 6.92 (s, 1H), 7.42-7.45 (m, 3H), 8.38-8.42 (m, 2H). MS (ES) 519.0 [MH $^{+}$]. $t_{\rm R}$ (method A) = 3.4 min.

[1287] [1288]

N-(2-{6-[4-(2-메톡시페닐)-2,6-디하이드로-2H-피리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26.123):

¹H NMR (CDCl₃, 200

MHz) δ 1.81 (s, 3H), 2.69 (brs, 2H), 3.05 (d, 2H, J = 4.8Hz), 3.63 (m, 2H), 3.82 (d, 3H, J = 3.2Hz), 3.92 (m, 2H), 4.52 (brs, 2H), 5.84 (brs, 1H), 6.75 (s, 1H), 6.94 (m, 3H), 7.15-7.26 (m, 2H), 7.45 (m, 3H), 8.43 (m, 2H), 9.48 (brs, 1H). MS (ES) 511.0 [MH $^{+}$]. t_R (method A) = 7.7 min.

[1289] [1290]

N-(2-{6-[4-메톡시-4-(2-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸) -아세트아미드(26.124):

¹H NMR (CDCl₃, 200

MHz) δ 1.80 (s, 3H), 2.31 (m, 4H), 3.14 (s, 3H), 3.62 (brs, 4H), 3.63 (m, 2H), 3.84 (s, 3H), 3.93 (m, 4H), 4.47 (d, 2H), 5.90 (brs, 1H), 6.70 (s, 1H), 6.96 (m, 3H), 7.30 (m, 2H), 7.45 (m, 3H), 8.41 (m, 2H), 9.47 (brs, 1H). MS (ES) 543.0 [MH $^{+}$]. t_R (method A) = 7.1 .

[1291]

min.

[1292] N-{2-[6-(4-아미노-4-페닐피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미 드(26,125):

 1 H NMR (CD₃OD, 200 MHz) δ 1.85

(s, 3H), 1.94 (brs, 2H), 2.32 (brs, 2H), 3.52 (t, 2H, J = 6.2Hz), 3.83 (t, 2H, J = 5.8Hz), 3.84 (s, 3H), 3.99 (m, 4H), 4.47 (d, 2H), 6.94 (s, 1H), 7.24-7.59 (m, 8H), 8.42 (m, 2H).

[1293] MS (ES) 498.0 [MH $^{+}$]. t_R (method B) = 8.4 min.

[1294] N-{2-[6-(4-포르밀-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(26.126):

¹H NMR (CDCl₃+CD₃OD, 200

MHz) δ 1.75 (s, 3H), 2.12 (brs, 2H), 2.46 (brs, 2H), 3.46 (brs, 4H), 3.83 (brs, 2H), 4.31 (brs, 2H), 6.73 (s, 1H), 7.25-7.41 (m, 8H), 8.32 (m, 2H), 9.45 (s, 1H). MS (ES) 511.0

[1295] $[MH^+]$. $t_R \text{ (method A)} = 2.9 \text{ min.}$

[1296] N-{2-[6-(4-하이드록시메틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아 세트아미드(26.127):

```
<sup>1</sup>H NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD,
 200 MHz) \delta 1.79 (s, 3H), 2.02 (brs, 2H), 2.31 (d, 2H, J = 12.2Hz), 3.40 (m, 2H), 3.50
 (brs, 2H), 3.57 (s, 2H), 3.87 (m, 2H), 4.27 (d, 2H, J = 12.8Hz), 6.77 (s, 1H), 7.31-7.48 (m,
 8H), 8.34 (m, 2H). MS (ES) 511.0 [MH^{+}]. t_R (method A) = 2.9 min.
N-{2-[6-(4-에틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2.3-d]피리미딘-4-일아미노]-에틸}-아세트아미드
(26.128):
                                                                                 ^{1}H NMR (CDCl<sub>3</sub>, 200 MHz) \delta 1.16
 (m, 2H), 1.24 (d, 3H, J = 7Hz), 1.44 (m, 2H), 1.62 (m, 2H), 1.75 (s, 3H), 2.88 (brs, 2H),
 3.56 (brs, 2H), 3.85 (brs, 2H), 4.45 (d, 1H, J = 13.4Hz), 4.60 (d, 1H, J = 10.4Hz), 5.99
 (brs, 1H), 6.61 (s, 1H), 6.99 (brs, 1H), 7.11-7.43 (m, 8H), 8.38 (m, 2H) 9.87 (brs, 1H).
 MS (ES) 511.0 [MH^{+}]. t_R (method A) = 8.3 min.
N-{2-[6-(4-벤질-4-메톡시피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미
드(26.129):
                                                                                 <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) δ 1.48
 (t, 2H, J = 11.1Hz), 1.76 (m, 5H), 2.76 (s, 2H), 3.35 (m, 5H), 3.52 (brs, 2H), 3.80 (brs, 2H
 2H), 4.24 (d, 2H, J = 12.2Hz), 6.25 (brs, 1H), 6.63 (s, 1H), 7.10-7.43 (m, 9H), 8.35 (m,
 2H), 10.41 (brs, 1H). MS (ES) 527.0 [MH^{+}]. t_R (method A) = 7.3 min.
N-{2-[6-(4-메톡시-4-o-톨릴피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아
미드(26.130):
                                                                                 ^{1}H NMR (CDCl<sub>3</sub>, 200 MHz) \delta 1.77
 (s, 3H), 1.88 (t, 2H, J = 11.8Hz), 2.28 (d, 2H, J = 14.4Hz), 2.55 (s, 3H), 2.98 (s, 3H), 3.49
 (brs, 4H), 3.79 (brs, 2H), 4.44 (d, 2H, J = 12.8Hz), 6.31 (brs, 1H), 6.73 (s, 1H), 7.18 (brs,
  5H), 7.40 (m, 3H), 8.35 (m, 2H), 10.60 (brs, 1H). MS (ES) 527.0 [MH^+]. t_R (method A) =
N-{2-[6-(4-메톡시메틸-4-페닐피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트
아미드(26.131):
                                                                                                      <sup>1</sup>H NMR·(CDCl<sub>3</sub>, 200
 MHz) \delta 1.75 (s, 3H), 1.94 (t, 2H, J = 10.6Hz), 2.17 (t, 2H, J = 13.0Hz), 3.21 (brs, 4H),
 3.30 (s, 3H), 3.48 (d, 2H, J = 4.0Hz), 3.75 (brs, 2H), 4.15 (d, 2H, J = 13.2Hz), 6.43 (brs,
 1H), 6.66 (s, 1H), 7.26-7.42 (m, 9H), 8.32 (m, 2H), 10.76 (brs, 1H). MS (ES) 527.0
 [MH^{\dagger}]. t_R (method A) = 7.5 min.
4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산
                                                                                                                                                                    (1-벤질피롤리딘-3-일)-아미드
(26.132):
MS(ES): 497.7(M+1), t<sub>R</sub>(방법 A) = 4.4 min.
N-[2-(6-{4-[3-(2-클로로페닐)-프로필]-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에
틸]-아세트아미드(26.133):
MS(ES): 560.1(M+1), t_R() 법 A) = 4.9 min.
N-[2-(6-{4-[3-(3-클로로페닐)-프로필]-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에
틸]-아세트아미드(26.134):
```

[1297]

[1298]

[1299] [1300]

[1301]

[1302]

[1303] [1304]

[1305]

[1306]

[1307]

[1308]

[1309]

[1310]

[1311]

[1312]

 $MS(ES): 560.1(M^{+}+1).$

N-[2-(6-{4-[3-(4-클로로페닐)-프로필]-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에

틸]-아세트아미드(26.135):

N-[2-(6-{4-[3-(4-Chlorophenyl)-propyl]-piperazine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.135): 1 H NMR (d₆-DMSO, 200 MHz): δ = 1.72 (tt, J = 6.8, 6.8 Hz, 2H), 1.82 (s, 3H), 2.34 (t, J = 6.8 Hz, 2H), 2.42 (brs, 4H), 2.59 (t, J = 7.0 Hz, 2H), 3.32–3.45 (m, 2H), 3.60–3.80 (m, 6H), 6.95 (d, J = 1.8 Hz, 1H), 7.24–7.35 (AA'BB', 4H), 7.40–7.50 (m, 3H), 7.83 (t, J = 5.5 Hz, 1H), 8.07 (t, J = 5.7 Hz, 1H), 8.40–8.47 (m, 2H), 12.00 (d, J = 1.4 Hz, 1H). 13 C NMR (d₆-DMSO, 50.3 MHz, DEPT135): δ = 22.67 (+), 27.79 (-), 32.07 (-), 38.60 (-), 39.67 (-), 44.63 (-), 52.80 (-), 56.82 (-), 101.54 (C_{quart}), 102.33 (+), 126.58 (C_{quart}), 127.55 (+), 128.10 (+), 129.33 (+), 130.15 (+), 130.24 (C_{quart}), 139.12 (C_{quart}), 140.99 (C_{quart}), 151.08 (C_{quart}), 156.86 (C_{quart}), 158.30 (C_{quart}), 161.36 (C_{quart}), 169.44 (C_{quart}). MS (ES): 559.2 (M⁺+1), t_R (method A) = 4.9 min.

[1313]

- [1314] N-[2-(6-{4-[3-(4-클로로페닐)-프로필]-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드 메탄설포네이트 염(26.135 · MsOH):
- [1315] 화합물 26.135(5.37 g, 9.59 밀리몰)를 메탄올(50 mℓ)과 THF(100 mℓ)의 혼합물에 용해시키고 메탄설폰산(921 mg, 9.59 밀리몰)을 적가한다. 상기 용액을 15 분간 정치시키고 이어서 진공 하에서 농축시킨다. 담황색 포움을 에탄올에 용해시키고 농축시켜 담황색의 비 결정성 고체 6.3 g(100%)을 수득한다. 융점 150-156 ℃.

¹H NMR (400 MHz, DMSO-

 D_6): $\delta = 1.79$ (s, 3H), 1.96 (m, 2H), 2.30 (s, 3H), 2.64 (t, 2H, J = 7.2Hz), 3.12 (m, 4H), 3.35 (m, 6H), 3.50-3.70 (m, 4H), 4.46 (d, 2H, J = 6.8Hz), 7.02 (s, 1H), 7.26 (d, 2H, J = 8.4Hz), 7.36 (d, 2H, J = 8.4Hz), 7.40-7.48 (m, 3H), 7.87 (brs, 1H), 8.04 (brs, 1H), 8.39 (dd, 2H, J = 2.0, 7.2Hz), 9.68 (brs, 1H), 12.09 (brs, 1H). MS (ES): 560.0/562.0 (100/33) [MH⁺]. t_R (method B) = 10.5 min.

[1316]

[1317] N-[2-{6-[4-(2-옥소-2,3-디하이드로벤조이미다졸-1-일)-피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26.136):

N-(2-{6-[4-(2-Oxo-2,3-dihydrobenzoimidazol-1-yl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.136): ¹H NMR (d₆-DMSO, 400 MHz) δ 1.79 (s, 3H), 1.82 (m, 2H), 2.36 (m, 2H), 3.13 (m, 2H), 3.40 (m, 2H), 3.62 (m, 2H), 4.52 (m, 3H), 6.94 (s, 1H), 6.97 (m, 3H), 7.26 (d, 1H, J = 5.2Hz), 7.43 (m, 3H), 7.85 (brs, 1H), 8.05 (brs, 1H), 8.40 (d, 2H, J = 6.8Hz), 10.9 (brs, 1H), 12.0 (brs, 1H); MS (ES): 538.9 (M $^{+}$ +1), t_{R} (method B) = 12.9 min.

[1318]

[1319] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 [1-(4-클로로벤질)-2-하이드록시에 틸]-아미드(26.137):

4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carboxylic acid [1-(4-chlorobenzyl)-2-hydroxyethyl]-amide (26.137): ¹H NMR (d₆-DMSO, 400 MHz) δ 1.79 (s, 3H), 1.82 (m, 2H), 2.75 (m, 2H), 3.35 (m, 2H), 3.40 (m, 2H), 3.45 (m, 2H), 3.62 (m, 2H), 4.11 (brs, 1H), 4.91 (t, 1H, J = 5.4Hz), 7.09 (s, 1H), 7.17 (d, 2H, J = 8.8Hz), 7.43 (m, 3H), 8.01 (d, 2H, J = 8.4Hz), 8.38 (d, 2H, J = 8.4Hz), 11.92 (brs, 1H); MS (ES): 506.9 (M*+1), t_R (method B) = 14.5 min.

[1320]

- [1321] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 4-[1,2,3]티아디아졸-4-일-벤질아 미드(26.138):
- [1322] MS(ES): 512.9(M+1), t_R(방법 B) = 14.2 min.
- [1323] N-[2-(6-{4-[3-(2-메톡시폐닐)-프로필]-피폐라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드(26,139):

- [1324] MS(ES): 555.9(M+1), t_R(방법 B) = 11.7 min.
- [1325] N-[2-(6-(4-[3-(3-메톡시페닐)-프로필]-피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드(26,140):
- [1326] MS(ES): 556.0(M+1), t_R(방법 B) = 11.4 min.
- [1327] N-[2-(6-{4-[3-(4-메톡시페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드(26,141):
- [1328] MS(ES): 555.9(M+1), t_R(방법 B) = 11.3 min.
- [1329] N-(2-{6-[4-(2-옥소-2-피롤리딘-1-일에틸)-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노} -에틸)-아세트아미드(26.142):
- [1330] MS(ES): 518.9($M^{\dagger}+1$), $t_R(방법B) = 8.7 min$.
- [1331] N-[2-(6-{4-[3-(4-클로로페닐)-프로피오닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26.143):
- [1332] MS(ES): 573.9($M^{\dagger}+1$), t_{R} (방법 B) = 15.5 min.
- [1333] N-[2-(6-{4-[3-(3-클로로페닐)-프로피오닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26.144):
- [1334] MS(ES): 573.9($M^{\dagger}+1$), $t_R(방법 B) = 15.5 min.$
- [1335] N-[2-(6-{4-[3-(2-클로로페닐)-프로피오닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26.145):
- [1336] MS(ES): 573.8(M+1), t_R(방법 B) = 15.2 min.
- [1337] N-[2-(6-{4-[5-(4-클로로페닐)-2H-피라졸-3-일]-피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노)-에틸]-아세트아미드(26,146):
- [1338] MS(ES): $582.9(M^{+}+1)$, $t_R(방법 B) = 16.4 min$.
- [1339] 2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피폐라진-1-일}-N-메틸-N-페 닐아세트아미드(26.147):
- [1340] MS(ES): 555.0($M^{\dagger}+1$), $t_R(방법 B) = 10.4 min$.
- [1341] 4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-카복실산 벤질 에스 테르(26.148):
- [1342] MS(ES): 541.9(M+1). tp(방법 B) = 15.3 min.
- [1343] N-{2-[6-(4-옥소-1-페닐-1,3,8-트리아자스피로[4.5]데칸-8-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노]-에틸}-아세트아미드(26.149):
- [1344] MS(ES): 552.9(M+1). t_R(방법 B) = 13.9 min.
- [1345] N-{2-[6-(4-벤조[1,3]디옥솔-5-일메틸피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸} -아세트아미드(26,150):

- [1346] MS(ES): 541.9(M+1), t_R(방법 B) = 3.8 min.
- [1347] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페리딘-4-카복실산 에틸 에스 테르(26.151):
- [1348] MS(ES): 479.0($M^{\dagger}+1$), $t_R(방법A) = 6.7 min$.
- [1349] 1-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페리딘-3-카복실산 에틸 에스 테르(26.152):
- [1350] MS(ES): 479.0(M+1), t_R(방법 A) = 6.9 min.
- [1351] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (1-벤질피롤리딘-3-일)-메틸아미드 (26.153):
- [1352] MS(ES): 512.0($M^{+}+1$), $t_{R}(방법 A) = 4.3 min.$
- [1353] N-{2-[6-(4-비페닐-4-일-피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드 (26.154):

 $N-\{2-[6-(4-Biphenyl-4-yl-piperazine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl\}-acetamide (26.154): ¹H NMR (d₆-DMSO, 200 MHz) <math>\delta$ 1.73 (s, 3H), 3.60 (m, 2H), 3.84 (m, 2H), 7.01 (m, 4H), 7.20–7.40 (m, 9H), 7.82 (brs, 1H), 8.02 (brs, 1H), 8.40 (m, 2H), 12.03 (brs, 1H); MS (ES): 559.9 (M⁺+1), t_R (method A) = 9.0 min.

- [1354]
- [1355] N-{2-[6-(4-옥소피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(26.15 5):
- [1356] 화합물 26.87(400 mg, 0.86 밀리몰)을 5 ml의 12 M HCI(수성)에 용해시켰다. 45 분 후에, 반응물을 냉 NaHCO₃ (포화)에 서서히 첨가함으로써 염기성으로 만들었다. 이어서 상기 용액을 EtOAc와 물 사이에 분배시켰다. 충들을 분리시키고 수성 충을 EtOAc(2 x)로 재 추출하였다. 합한 EtOAc 추출물들을 MgSO₄ 상에서 건조시키고, 여과하고 농축시켜 백색 고체 325 mg(90%)을 수득하였다.

¹H NMR (CDCl₃, 200 MHz) δ 1.83 (s, 3H), 2.59 (m,

4H), 3.60 (m, 2H), 3.88 (m, 2H), 4.20 (m, 4H), 6.17 (brs, 1H), 6.69 (brs, 1H), 6.76 (s,

- 1H), 7.43 (m, 3H), 8.42 (m, 2H), 9.84 (brs, 1H); MS (ES): 420.9 (M*+1).
- [1358] 중합체-지지된 시아노보로하이드라이드를 사용한 26.155의 환원적 아민화에 대한 일반적인 방법:
- [1359] 아민(0.14 밀리몰)을 1 ml의 DCM/AcOH(100:1) 혼합물에 용해시킨다. 케톤 26.155(40 mg, 0.095 밀리몰) 및 폴리스티릴메틸트리메틸암모늄 시아노보로하이드라이드(60 mg, 부하 = 3 내지 5 밀리몰/g)를 가하고 반응물을 제도 진탕기 상에 놓는다. 17 시간 후에, 반응 혼합물을 여과하고 수지를 DCM으로 세척한다. 한편으로, 여과 후에 반응물을 EtOAc 및 5% Na₂CO₃(수성)로 후처리할 수 있다. 생성된 균질한 용액을 농축시켜 생성물을 45 내지 95% 수율로 수득한다.
- [1360] 하기 11 개의 아민 26.156 내지 26.166을 상기 방법에 의해 제조하였다:
- [1361] N-(2-{6-[4-(메틸펜에틸아미노)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세 트아미드(26.156):

N-(2-{6-[4-(Methylphenethylamino)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.156): ¹H NMR (d₆-DMSO, 200 MHz) δ 1.30-1.50 (m, 2H), 1.77 (m, 2H), 1.87 (s, 3H), 2.26 (s, 3H), 2.67 (m, 5H), 2.80 - 3.10 (m, 2H), 3.33 (m, 2H), 3.61 (m, 2H), 4.34 (d, 2H, J = 13.2 Hz), 6.89 (S, 1H), 7.1–7.3 (6H, m), 7.42 (m, 3H), 7.78 (brs, 1H), 8.02 (brs, 1H), 8.40 (m, 2H). MS (ES): 539.9 (M⁺+1), t_R (method B) = 11.1 min.

[1362] [1363]

N-{2-[6-(4-펜에틸아미노피페리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드 (26.157):

N-{2-[6-(4-Phenethylaminopiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.157): 1 H NMR (CDCl₃, 200 MHz) δ 1.40 – 1.60 (m, 2H), 1.80 (s, 3H), 2.00 (m, 2H), 2.80 – 2.90 (m, 3H), 2.94 (d, 2H, J = 6.0Hz), 3.10 – 3.30 (m, 2H), 3.60 (m, 2H), 3.90 (m, 2H), 4.44 (d, 2H, J = 13.8Hz), 5.98 (brs, 1H), 6.66 (s, 1H), 6.82 (brs, 1H), 7.17 – 7.30 (m, 5H), 7.45 (m, 3H), 8.40 (d, 1H, J = 5.6Hz) 8.42 (d, 1H, J = 7.8Hz). MS (ES): 526.0 (M $^+$ +1), t_R (method B) = 10.8 min.

[1364]

[1365] N-[2-(6-{4-[2-(4-클로로페닐)-에틸아미노]-피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26.158):

N-[2-(6-{4-[2-(4-Chlorophenyl)-ethylamino]-piperidine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.158): 4 H NMR (CDCl₃, 200 MHz): δ = 1.38–1.55 (m, 2H), 1.79 (s, 3H), 1.90–2.10 (m, 2H), 2.70–2.85 (m, 3H), 2.90 (d, 2H, J = 6.6 Hz), 3.10–3.30 (m, 2H), 3.61 (m, 2H), 3.90 (m, 2H), 4.45 (d, 2H, J = 13.2Hz), 5.97 (brs, 1H), 6.65 (s, 1H), 6.81 (brs, 1H), 7.14 (d, 2H, J = 8.0Hz), 7.27 (d, 2H, J = 7.4Hz), 7.45 (m, 3H), 8.40 (m, 3H); MS (ES): 560.0 (M⁺+1), t_R (method B) = 12.0 min.

[1366] [1367]

N-[2-(6-{4-[2-(3H-이미다졸-4-일)-에틸아미노]-피페리딘-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아 미노)-에틸]-아세트아미드(26.159):

N-[2-(6-{4-[2-(3H-Imidazol-4-yl)-ethylamino]-piperidine-1-carbonyl}-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.159): ¹H NMR (d₆-DMSO, 200 MHz): δ = 1.20-1.30 (m, 2H), 1.78 (s, 3H), 1.80-1.90 (m, 2H), 2.60 (m, 3H), 2.78 (m, 4H), 3.34 (m, 2H), 3.62 (m, 2H), 4.20 (m, 2H), 6.73 (s, 1H), 6.76 (s, 1H), 6.90 (s, 1H), 7.36-7.52 (m, 5H), 7.79 (brs, 1H), 8.03 (m, 1H), 8.39 (m, 2H); MS (ES): 516.0 (M⁺+1), I_R (method B) = 7.2 min.

[1368] [1369]

N-(2-{2-페닐-6-[4-(2-피리딘-4-일에틸아미노)-피폐리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에 틸)-아세트아미드(26.160):

N-(2-{2-Phenyl-6-[4-(2-pyridin-4-ylethylamino)-piperidine-1-carbonyl]-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.160): ¹H NMR (d₆-DMSO, 200 MHz): δ = 1.15-1.30 (m, 2H), 1.78 (s, 3H), 1.82-1.95 (m, 2H), 2.60-2.92 (m, 5H), 3.12 (m, 2H), 3.33 (m, 2H), 3.61 (m, 2H), 4.20 (m, 2H), 6.89 (s, 1H), 6.90-7.20 (brs, 1H), 7.24 (d, 1H, J = 5.6Hz), 7.42 (m, 3H), 7.76 (m, 1H), 8.01 (m, 1H), 8.40 (m, 3H); MS (ES): 527.0 (M⁺+1), t_R (method B) = 7.6 min.

[1370]

[1371] N-(2-{2-페닐-6-[4-(2-피리딘-2-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에 틸)-아세트아미드(26.161): N-(2-{2-Phenyl-6-[4-(2-pyridin-2-ylethylamino)-piperidine-1-carbonyl]-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.161): ¹H NMR (d₆-DMSO, 200 MHz): δ = 1.15-1.30 (m, 2H), 1.80 (s, 3H), 1.82-1.95 (m, 2H), 2.70-3.00 (m, 5H), 3.15 (m, 2H), 3.33 (m, 2H), 3.63 (m, 2H), 4.20 (m, 2H), 6.87 (s, 1H), 6.90-7.20 (brs, 1H), 7.10-7.30 (m, 2H), 7.42 (m, 3H), 7.60-7.80 (m, 2H), 8.00 (brs, 1H), 8.40 (m, 2H); MS (ES): 526.9 (MH⁺), t_R (method B) = 9.1 min.

[1372] [1373]

N-{2-[6-(4-벤질아미노피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(2 6.162):

N-{2-[6-(4-Benzylaminopiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.162): ¹H NMR (CDCl₃, 200 MHz): δ = 1.40–1.60 (m, 2H), 1.79 (s, 3H), 2.00 (m, 2H), 1.90 (brs, 1H), 3.21 (m, 2H), 3.59 (m, 2H), 3.89 (m, 2H), 4.30 (d, 2H, J = 13.6 Hz), 5.95 (brs, 1H), 6.66 (s, 1H), 6.85 (brs, 1H), 7.30 (m, 5H), 7.43 (m, 3H), 8.42 (m, 2H); MS (ES): 512.0 (M $^+$ +1), t_R (method B) = 10.0 min.

[1374] [1375]

N-(2-{6-[4-(벤질메틸아미노)-피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26.163):

N-(2-{6-[4-(Benzylmethylamino)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.163): ¹H NMR (CDCl₃, 200 MHz): δ = 1.60–1.80 (m, 2H), 1.80 (s, 3H), 1.98 (m, 2H), 2.23 (s, 3H), 2.80 (brs, 1H), 3.10 (m, 2H), 3.60 (m, 4H), 3.90 (m, 2H), 4.66 (d, 2H, J = 13.6 Hz), 5.90 (brs, 1H), 6.68 (s, 1H), 7.24–7.35 (m, 5H), 7.44 (m, 3H), 8.42 (m, 2H); MS (ES): 526.0 (M⁺+1), t_R (method B) = 10.2 min.

[1376] [1377]

N-(2-{2-페닐-6-[4-(1-페닐에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세 트아미드(26,164):

N-(2-{2-Phenyl-6-[4-(1-phenylethylamino)-piperidine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.164): ¹H NMR (CDCl₃, 200 MHz): δ = 1.35 (d, 3H, J = 5.8 Hz), 1.60–1.80 (m, 2H), 1.79 (s, 3H), 2.00–2.15 (m, 2H), 2.65 (m, 1H), 2.80 (brs, 1H), 3.10 (m, 2H), 3.60 (m, 2H), 3.80–4.20 (m, 3H), 5.92 (brs, 1H), 6.61 (s, 1H), 6.84 (brs, 1H), 7.32 (s, 5H), 7.44 (m, 3H) 8.40 (m, 2H); MS (ES): 526.0 (M⁺+1), t_R (method B) = 10.5 min.

[1378]

[1379] N-[2-(2-페닐-6-{4-[((피리딘-4-일메틸)-아미노]-피페리딘-1-카보닐}-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드(26.165):

N-[2-(2-Phenyl-6-{4-[(pyridin-4-ylmethyl)-amino]-piperidine-1-carbonyl}-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl]-acetamide (26.165): 1 H NMR (d₆-DMSO, 200 MHz) δ = 1.20–1.40 (m, 2H), 1.78 (s, 3H), 1.80–2.00 (m, 2H), 3.10 (m, 2H), 3.36 (m, 2H), 3.63 (m, 3H), 3.78 (s, 2H), 4.12 (m, 2H), 6.90 (s, 1H), 7.42 (m, 6H), 7.80 (brs, 1H), 8.05 (brs, 1H), 8.40 (m, 2H), 8.47 (m, 2H); MS (ES): 512.9 (M $^{+}$ +1), t_R (method B) = 8.4 min.

[1380]

[1381] N-(2-{2-페닐-6-[4-(2-피리딘-3-일에틸아미노)-피페리딘-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에 틸)-아세트아미드(26.166): N-(2-{2-Phenyl-6-[4-(2-pyridin-3-ylethylamino)-piperidine-1-carbonyl]-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.166): ¹H NMR (d₆-DMSO, 200 MHz): $\delta = 1.20-1.40$ (m, 2H), 1.78 (s, 3H), 1.80–2.00 (m, 2H), 2.60–2.90 (m, 6H), 3.00–3.25 (m, 3H), 3.62 (m, 2H), 4.39 (m, 2H), 6.85 (s, 1H), 7.25 (m, 1H), 7.40 (m, 3H), 7.63 (m, 1H), 7.79 (brs, 1H), 8.02 (m, 1H), 8.39 (m, 3H); MS (ES): 526.9 (M⁺+1), t_R (method B) = 7.7 min.

[1382]

- [1383] N-[2-(6-메틸-{2-옥소-2-[4-(3-페닐알릴)-피페라진-1-일]-에틸}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26,167):
- [1384] 5로부터 47의 제조와 유사한 알킬화 및 일반적인 과정에 따른 C-4 클로라이드 치환에 의해 제조하였다. MS(ES) 552(MH⁺); t_R(방법 B) = 3.9 min.
- [1385] 3-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-일]-프로피온산 메틸 에스테르(26.168):
- [1386] 20의 위티히 반응에 이어서 43 → 44에 대한 조건을 사용한 이중 결합 환원 및 일반적인 과정에 따른 C-4 클로 라이드 치환에 의해 표제 화합물을 수득하였다.

 ^{1}H NMR (CDCl₃, 200 MHz) δ 9.95 (s,

1H), 8.39 (m, 2H), 7.43 (m; 3H), 6.05 (m, 1H), 5.52 (m, 1H), 3.89 (m, 2H), 3.65 (s, 3H),

3.58 (m, 2H), 2.90 (t, 2H), 2.62 (t, 2H), 1.76 (s, 3H); t_R (method B) = 5.0 min.

[1387]

[1388]

N-(2-{6-[3-(4-벤질피페라진-1-일)-3-옥소프로필]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26.169): 26.128의 메틸 에스테르에 대한 가수 분해와 30a --> 26의 일반적인 과정에 따른 아미드 형성에 의해 제조됨.

1H

NMR (CDCl₃, 200 MHz) 8 9.99 (s, 1H), 8.41 (m, 2H), 7.42 (m, 3H), 7.30 (m, 5H), 6.05 (s, 1H), 5.45 (m, 1H), 3.88 (m, 2H), 3.63 (m, 2H), 3.56 (m, 2H), 3.45 (s, 2H), 3.38 (m, 2H), 3.56 (m, 2H), 3.56 (m, 2H), 3.56 (m, 2H), 3.88 (m, 2H), 3.88 (m, 2H), 3.56 (m, 2H), 3.56 (m, 2H), 3.56 (m, 2H), 3.88 (m, 2H), 3.88 (m, 2H), 3.56 (m, 2H), 3.56 (m, 2H), 3.56 (m, 2H), 3.58 (m, 2H), 3.58

[1389]

2H), 3.05 (t, 2H), 2.61 (t, 2H), 2.39 (m, 2H), 2.34 (m, 2H), 1.75 (s, 3H); t_R (method A) = 3.9 min.

[1390]

[1393]

- [1391] N-(2-{7-메틸-2-페닐-6-[4-(3-페닐알릴)-피페라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26,170):
- [1392] 일반적인 과정 30a → 26에 따라 4-(3-페닐알릴)피페라진(29.3)에 의한 27의 아미드 형성에 의해 아미드 45를 수득하였다(MS(ES) 598/600(MH[†])). pH를 7로 조절함을 제외하고, 28 → 30에 대해 개시된 바와 같이 설포닐 그룹을 제거하여 46(MS(ES) 458/460(MH[†]))을 수득하였다. Boc-29.200 → Boc-26.206에 대한 과정에 따라 DMF 중의 메틸 요오다이드 및 NaH에 의한 알킬화에 이어서, 일반적인 과정에 따른 C-4 클로라이드 치환에 의해 26.170을 수득하였다.

 1 H NMR (CDCl₃, 200 MHz) δ 8.51 (m, 2H), 7.5–7.25 (brm, 10H), 7.07

(m, 1H), 5.43 (d, 1H, J = 16.0Hz), 6.48 (s, 1H), 6.25 (dt, 1H, J = 16.0, 6.6Hz), 5.76 (m, 1H), 3.92 (m, 5H), 3.79 (m, 4H), 3.57 (m, 2H), 3.21 (d, 2H, J = 6.6Hz), 2.56 (m, 4H),

1.76 (s, 3H); MS(ES) 537 (MH⁺); t_R (method A) = 5.4 min.

- [1394] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 벤질아미드(26,171):
- [1395] MS(ES): $428(MH^{T})$, $t_{R}(\forall A) = 7.0 \text{ min.}$
- [1396] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (2-하이드록시-1-하이드록시메틸에 틸)-아미드(26.172):

- [1397] MS(ES): $413(MH^{+})$, $t_{R}(방법 A) = 9.3 min$.
- [1398] N-{2-[6-(3,4-디하이드로-1H-이소퀴놀린-2-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세 트아미드(26,173):
- [1399] MS(ES): 454(MH⁺), t_R(방법 A) = 7.4 min.
- [1400] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (1-하이드록시사이클로헥실메틸)-아미드(26.174):
- [1401] MS(ES): $451(MH^{\dagger})$, $t_R(방법 A) = 6.3 min$.
- [1402] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 [2-(4-페녹시페닐)-에틸]-아미드 (26.175):
- [1403] $MS(ES): 535(MH^{+}).$
- [1404] N-{2-[2-페닐-6-((S)-2-페닐아미노메틸피롤리딘-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세 트아미드(26,176):
- [1405] MS(ES): 498(MH⁺), t_R(방법 A) = 7.7 min.
- [1406] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 ((S)-2-옥소아자판-3-일)-아미드 (26.177):
- [1407] MS(ES): $450(MH^{\dagger})$, $t_R(방법 A) = 5.6 min$.
- [1408] N-(2-{6-[4-(하이드록시디페닐메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26.178):
- [1409] MS(ES): 589(MH⁺), $t_R(방법 A) = 8.4 min$.
- [1410] N-{2-[6-(4-메틸-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(2 6.179):
- [1411] MS(ES): 436(MH⁺), t_R(방법 A) = 6.9 min.
- [1412] N-{2-[2-페닐-6-(1,3,4,9-테트라하이드로-β-카르볼린-2-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸} -아세트아미드(26,180):
- [1413] MS(ES): $494(MH^{\dagger})$, $t_R(방법 A) = 7.7 min$.
- [1414] N-{2-[6-(아조카-1-카보닐)-2-페닐-7H-피롬로[2.3-d]피리미딘-4-일아미노]-에딜}-아세트아미드(26.181):
- [1415] MS(ES): $435(MH^{+})$, $t_{R}(방법 A) = 7.3 min$.
- [1416] N-[2-(2-페닐-6-{4-[3-(4-트리플루오로메틸페닐)-프로필]-피페라진-1-카보닐}-7H-피롤로[2,3-d]피리미딘-4-일 아미노)-에틸]-아세트아미드(26.182):
- [1417] MS(ES): 594(MH⁺). t_R(방법 A) = 5.1 min.
- [1418] N-[2-(6-{4-[3-(4-플루오로페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드(26.183):
- [1419] MS(ES): 544(MH⁺), t_R(방법 A) = 4.6 min.
- [1420] N-(2-{6-[4-(3-벤조[1,3]디옥솔-5-일-프로필)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미

노}-에틸)-아세트아미드(26.184):

- [1421] MS(ES): 570(MH⁺), $t_R(방법 A) = 4.4 min$.
- [1422] N-(2-{2-페닐-6-[4-(3-p-톨릴프로필)-피폐라진-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26.185):
- [1423] MS(ES): 540(MH⁺), t_R(방법 A) = 4.8 min.
- [1424] N-[2-(6-{4-[3-(4-브로모페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에 틸]-아세트아미드(26,186):
- [1425] MS(ES): 606(MH⁺), t_P(방법 A) = 5.0 min.
- [1426] N-[2-(6-{4-[3-(3,4-디클로로페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26.187):
- [1427] MS(ES): 596(M+H), t_R(방법 B) = 4.4 min.
- [1428] N-[2-(6-{4-[3-(2,4-디클로로페닐)-프로필]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노) -에틸]-아세트아미드(26.188):
- [1429] MS(ES): 596(M+H), t_R(방법 B) = 4.4 min.
- [1430] N-{2-[2-페닐-6-(4-페닐-[1,4]디아제판-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(2 6.189):
- [1431] MS(ES): 498(MH[†]), t_R(방법 B) = 15.5 min.
- [1432] N-{2-[6-(4-벤질-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(2 6.190):
- [1433] MS(ES): 512(MH[†]), t_R(방법 B) = 10.3 min.
- [1434] N-{2-[6-(4-펜에틸-[1,4]디아제판-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드 (26.191):
- [1435] MS(ES): 527(MH[†]). t_R(방법 B) = 11.2 min.
- [1436] N-(2-{2-페닐-6-[4-(3-페닐프로필)-[1,4]디아제판-1-카보닐]-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26,192):
- [1437] MS(ES): 540(MH⁺), t_R(방법 B) = 11.8 min.
- [1438] (R,S)-(N-{2-[6-(3-폐녹시피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(26.193):
- [1439] MS(ES): $499(MH^{\dagger})$, $t_R(방법 B) = 15.6 min$.
- [1440] N-(2-{6-[4-(4-클로로페녹시)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26.194):
- [1441] MS(ES): 533(MH^T), t_R(방법 B) = 17.1 min.
- [1442] N-(2-{6-[4-(4-메톡시폐녹시)-피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26.195):

- [1443] MS(ES): 529(MH⁺), t_R(방법 B) = 15.8 min.
- [1444] N-{2-[6-(4-폐녹시피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(26.19 6):
- [1445] MS(ES): 499(MH[†]), t_R(방법 B) = 16.3 min.
- [1446] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 [3-(2-옥소피롤리딘-1-일)-프로 필]-아미드(26,197):
- [1447] MS(ES): 464.08(MH⁺), t_R(방법 A) = 5.44 min.
- [1448] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (2-페닐사이클로프로필)-아미드 (26.198):
- [1449] MS(ES): 455.14(MH⁺), $t_R(방법 A) = 7.74 min$.
- [1450] N-(2-{6-[4-(4-클로로벤조일)-피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26.199):
- [1451] MS(ES): 545.0(MH⁺), t_R(방법 A) = 8.15 min.
- [1452] N-(2-{6-[4-(4-아세틸아미노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26,200):
- [1453] MS(ES): 541.11(MH⁺), t_R(방법 A) = 5.83 min.
- [1454] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 인단-2-일아미드(26,201):
- [1455] MS(ES): 455.03(MH⁺). t_p(방법 A) = 7.52 min.
- [1456] N-(2-{6-[4-(4-시아노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아 미드(26.202):

N-(2-{6-[4-(4-Cyanophenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.202): ¹H NMR (CDCl₃, 200 MHz): δ = 1.81 (s, 3H), 2.72 (brs, 3H), 3.42-3.60 (m, 6H), 3.87 (t, 2H, J = 4.8 Hz), 3.97-4.10 (m, 4H), 6.86 (s, 2H), 6.89 (s, 1H), 7.4-7.6 (m, 6H), 8.30-8.42 (m, 2H). MS (ES) 509.0 [MH⁺], t_R (method A) = 7.22 min.

- [1457]
- [1458] N-(2-{6-[4-(2-시아노페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아 미드(26.203):

N-(2-{6-[4-(2-Cyanophenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.203): 1 H NMR (CD₃OD, 200 MHz): δ = 1.86 (s, 3H), 3.20-3.35 (m, 4H), 3.47-3.60 (m, 2H), 3.84 (brt, 2H, J = 6.3 Hz), 4.05 (brt, 4H, J = 4.4 Hz), 6.67 (s, 1H), 7.08-7.22 (m, 2H), 7.38-7.50 (m, 3H), 7.53-7.70 (m, 2H), 7.90 (s, 1H), 8.37-8.48 (m, 2H). MS (ES) 508.95 [MH $^{+}$], t_R (method A) = 7.43 min.

- [1459]
- [1460] N-{2-[6-(4-하이드록시메틸피폐리단-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미단-4-일아미노]-에틸}-아세트아 미드(26,204):

N-{2-[6-(4-Hydroxymethylpiperidine-I-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino]-ethyl}-acetamide (26.204): ¹H NMR (CD₃OD, 200 MHz): δ = 1.22-1.40 (m, 2H), 1.70-1.94 (m, 6H), 2.9-3.2 (m, 2H), 3.4-3.6 (m, 4H), 3.83 (brt, 2H, J = 6.2 Hz), 4.56 (brd, 2H, J = 12.2 Hz), 6.90(s, 1H), 7.38-7.5 (m, 3H), 7.90 (s; 1H), 8.35-8.47 (m, 2H). MS (ES) 437.11 [MH $^+$], t_R (method A) = 5.19 min.

- [1461]
- [1462] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 [2-(4-메톡시페닐)-에틸]-아미드 (26.205):
- [1463] MS(ES): 472.93(MH⁺), t_R (방법 A) = 7.23 min.
- [1464] N-[2-(6-{4-[4-(아세틸메틸아미노)-페닐]-피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)-에틸]-아세트아미드(26,206):
- [1465] MS(ES): 554.9(MH[†]), t_R(방법 A) = 6.20 min.
- [1466] N-(2-{6-[4-(4-메톡시페닐)-3-메틸피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26.207):

N-(2-{6-[4-(4-Methoxyphenyl)-3-methylpiperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.207): ¹H NMR (CDCl₃, 200 MHz): δ = 0.90 (d, 6H, J = 6.2 Hz), 1.77 (s, 3H), 2.91-3.10 (m, 2H), 3.2-3.7 (m, 6H), 3.7-4.5 (m, 7H), 6.53 (m, 1H), 6.73-7.00 (m, 6H), 7.25 (m, 1H), 7.35-7.50 (m, 2H), 8.31-8.47 (m, 1H). MS (ES) 528.0 [MH⁺], t_R (method A) = 6.9 min.

- [1467]
- [1468] 4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카복실산 (2-페녹시에틸)-아미드(26,208):
- [1469] MS(ES): 458.94(MH⁺), t_R(방법 A) = 7.3 min.
- [1470] N-{2-[6-(3-아세틸아미노피롤리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드 (26.209):
- [1471] MS(ES): 449.95(MH⁺), $t_R(방법 A) = 5.1 min$.
- [1472] N-(2-{6-[4-(2,6-디메틸페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26,210):
- [1473] MS(ES): 511.89(MH[†]), t_R(방법 A) = 9.0 min.
- [1474] N-(2-{6-[4-(2-에톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아 미드(26.211):

N-(2-{6-[4-(2-Ethoxyphenyl)-piperazine-1-carbonyl]-2-phenyl-TH-pyrrolo[2,3-TH-pyrimidin-4-ylamino}-ethyl)-acetamide (26.211): ¹H NMR (CDCl₃, 200 MHz): δ = 1.75 (s, 3H), 3.09 (brt, 4H, TH-4.4 Hz), 3.43-3.57 (m, 2H), 3.70-3.85 (m, 2H), 3.90-4.05 (m, 4H), 6.35-6.45 (m, 1H), 6.74 (s, 1H), 6.8-7.07 (m, 4H), 7.19-7.3 (m, 1H), 7.34-7.49 (m, 3H), 8.31-8.48 (m, 2H), 10.7 (brs, 1H). MS (ES) 527.84 [MH⁺], TH (method A) = 7.91 min.

- [1475]
- [1476] N-(2-{6-[4-(2-메톡시페닐)-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아 미드(26.212):
- [1477] MS(ES): 513.87(MH^{\dagger}), t_{R} (방법 A) = 7.33 min.
- [1478] N-(2-{6-[4-(2-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아

미드(26.213):

- [1479] MS(ES): 517.82(MH⁺), t_R(방법 A) = 8.28 min.
- [1480] N-(2-{6-[4-(2-플루오로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트 아미드(26,214):
- [1481] MS(ES): 501.88(MH⁺), t_R(방법 A) = 7.76 min.
- [1482] N-{2-[2-페닐-6-(4-페닐피페라진-1-카보닐)-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(26.21 5):

N-{2-[2-Phenyl-6-(4-phenylpiperazine-1-carbonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino]-ethyl}-acetamide (26.215): ¹H NMR (CD₃OD, 200 MHz): δ = 1.86 (s, 3H), 3.17-3.28 (m, 4H), 3.47-3.61 (m, 2H), 3.84 (brt, 2H, J = 5.8 Hz), 3.98 (brt, 4H, J = 4.8 Hz), 6.87 (t, 1H, J = 7.4 Hz), 6.96(s, 1H), 6.99 (dd, 2H, J = 8.9,1.0 Hz), 7.25 (dd, 2H, J = 7.6, 1.6 Hz), 7.35-7.52 (m, 3H), 8.36-8.49 (m, 2H); MS (ES) 483.84 [MH⁺], t_R (method A)= 7.50 min.

[1483]

[1484] N-(2-{6-[4-(2,4-디플루오로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26.216):

N-(2-{6-[4-(2,4-Difluorophenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.216): ¹H NMR (CD₃OD, 200 MHz): δ = 1.86 (s, 3H), 3.10 (brt, 4H, J = 5.2 Hz), 3.53 (t, 2H, J = 6.2 Hz) 3.83 (t, 2H, J = 6.2 Hz), 3.99 (brt, 4H, J = 4.8 Hz), 6.80-7.16 (m, 4H), 7.36-7.51 (m, 3H), 8.33-8.49 (m, 2H); MS (ES) 519.81 [MH⁺], t_R (method A) = 7.92 min.

[1485]

[1486] N-(2-{6-[4-(2-에틸페닐)-피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26,217):

N-(2-{6-[4-(2-Ethylphenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.217): ¹H NMR (CD₃OD, 200 MHz): δ = 1.28 (t, 3H, J = 7.4 Hz), 1.85 (s, 1H), 2.76 (q, 2H, J = 7.2 Hz), 2.87-3.10 (m, 4H), 3.45-3.59 (m, 2H), 3.83 (brt, 2H, J = 5.8 Hz), 3.91-4.5 (m, 4H), 6.95 (s, 1H), 6.99-7.19 (m, 3H), 7.20-7.27 (m, 1H), 7.37-7.49 (m, 3H), 8.37-8.48 (m, 2H). MS (ES) 511.86 [MH $^{+}$], $t_{\rm R}$ (method A) = 8.92 min.

[1487]

[1488] N-(2-{6-[4-(2,4-디메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세 트아미드(26,218):

N-(2-{6-[4-(2,4-Dimethoxyphenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.218): 1 H NMR (CD₃OD, 200 MHz): δ = 1.85 (s, 3H), 2.93-3.08 (m, 4H), 3.46-3.59 (m, 2H), 3.75 (s, 3H), 3.78-3.88 (m, 5H), 3.90-4.40 (m, 4H), 6.45 (dd, 1H, J = 8.6, 2.6 Hz), 6.56 (d, 1H, J = 2.6 Hz), 6.90 (d, 1H, J = 8.8 Hz), 6.94 (s, 1H), 7.33-7.52 (m, 3H), 8.35-8.48 (m, 2H); MS (ES) 543.86 [MH $^+$], t_R (method A) = 7.00 min.

[1489]

[1490] N-(2-{6-[4-(5-클로로-2-메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸) -아세트아미드(26,219):

```
pyrrolo[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide~(26.219): ~^1H~NMR~(d_6-DMSO,
                           200 MHz): \delta = 1.81 (s, 3H), 3.0-3.12 (m, 4H), 3.34-3.45 (m, 2H), 3.59-3.71 (m, 2H), 3.82
[1491]
                            (s, 1H), 3.83-3.92 (m, 4H), 6.89 (d, 1H, J = 1.8 Hz), 6.98-7.40 (m, 3H), 7.39-7.51 (m,
                            3H), 7.76-7.87 (m, 1H), 8.01-8.11 (m, 1H), 8.35-8.47 (m, 2H); MS (ES) 547.83 [MH^+], t_R
                            (method A) = 8.11 min.
[1492]
[1493]
                        N-(2-{6-[4-(4-클로로페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아
                        세트아미드(26,220):
                          N-(2-{6-[4-(4-Chlorophenoxymethyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-
                          [2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.220): <sup>1</sup>H NMR (d<sub>6</sub>-DMSO, 200
                          MHz): \delta = 1.22-1.50 (m, 2H), 1.80 (s, 3H), 1.81-1.97 (m, 2H), 2.91-3.17 (m, 2H), 3.30-
                          3.44 (m, 2H), 3.56-3.73 (m, 2H), 3.85-3.96 (m, 2H), 4.33-4.54 (m, 2H), 6.98 (d, 2H, J =
                          9.2 Hz), 7.33 (d, 2H, J = 9.0 Hz), 7.38-7.54 (m, 3H), 7.80-7.91 (m, 1H), 8.02-8.13 (m,
                          1H), 8.36-8.48 (m, 2H); MS (ES) 546.82 [MH^{+}], t_R (method A) = 8.96 min.
[1494]
[1495]
                        N-{2-[6-(5-벤질-2,5-디아자비사이클로[2.2.1]헵탄-2-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-
                        에틸}-아세트아미드(26.221):
                        MS(ES): 509.87(MH<sup>+</sup>), t<sub>R</sub>(방법 A) = 4.05 min.
[1496]
                        N-(2-{6-[4-(2-하이드록시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세
[1497]
                        트아미드(26.222):
                          pyrimidin-4-ylamino}-ethyl)-acetamide (26.222): ^{1}H NMR (d<sub>6</sub>-DMSO, 200 MHz): \delta =
                          1.81 (s, 3H), 2.95-3.08 (m, 4H), 3.33-3.45 (m, 2H), 3.58-3.71 (m, 2H), 3.80-3.96 (m, 4H),
                          6.69-6.96 (m, 4H), 6.99 (s, 1H), 7.39-7.53 (m, 3H), 7.76-7.88 (m, 1H), 8.00-8.11 (m, 1H),
                          8.35-8.48 (m, 2H); MS (ES) 321.81 [MH^{+}], t_R (method A) = 6.86 min.
[1498]
[1499]
                        N-(2-{6-[4-(2.3-디클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2.3-d]피리미딘-4-일아미노}-에틸)-아세
                        트아미드(26,223):
                           pyrimidin-4-ylamino}-ethyl)-acetamide (26.223): ^{1}H NMR (d_{6}-DMSO, 200 MHz): \delta =
                            1.81 (s, 3H), 3.00-3.15 (m, 4H), 3.43-3.75 (m, 2H), 3.80-4.00 (m, 4H), 7.01 (s, 1H), 7.18
                            (t, 1H, J = 4.6 Hz), 7.30-7.39 (m, 2H), 7.40-7.53 (m, 3H), 7.76-7.90 (m, 1H), 8.00-8.12
                            (m, 1H), 8.34-8.48 (m, 1H); MS (ES) 551.73 [MH<sup>+</sup>], t<sub>R</sub> (method A) = 8.83 min.
[1500]
                        N-(2-{6-[5-(4-클로로페닐)-2,5-디아자비사이클로[2,2,1]헵탄-2-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-
[1501]
                        4-일아미노}-에틸)-아세트아미드(26.224):
                        MS(ES): 529.77[MH<sup>†</sup>], t<sub>R</sub>(방법 A) = 8.15 min.
[1502]
                        N-{2-[6-(4-폐녹시메틸피폐리딘-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미드(2
[1503]
                        6.225):
                          N-\{2-[6-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-phenyl-7H-pyrrolo[2,3-d]-1-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiperidine-1-carbonyl)-2-(4-Phenoxymethylpiper
                           pyrimidin-4-ylamino]-ethyl}-acetamide (26.225): ^{1}H NMR(d<sub>6</sub>-DMSO, 200 MHz): \delta =
```

N-(2-{6-[4-(5-Chloro-2-methoxyphenyl)-piperazine-1-carbonyl]-2-phenyl-7H-

1.20-1.50 (m, 2H), 1.80 (s, 3H), 1.82-2.00 (m, 2H), 2.10-2.30 (m, 1H), 2.95-3.18 (m, 2H),

[1504]

3.32-3.45 (m, 2H), 3.57-3.71 (m, 2H), 3.90 (d, 2H, J = 5.8 Hz), 4.45 (brd, 2H, J = 11.8 Hz), 6.86-7.20 (m, 4H), 7.29 (dd, 2H, J = 7.0, 1.4 Hz), 7.38-7.53 (m, 3H), 7.76-7.89 (m, 1H), 8.00-8.11 (m, 1H), 8.35-8.48 (m, 2H); MS (ES) 512.90 [MH⁺], t_R (method A) = 8.12 min.

[1505]

[1506] N-(2-{6-[4-(4-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26.226):

N-(2-{6-[4-(4-Cyanophenoxymethyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.226): ¹H NMR(d₆-DMSO, 200 MHz): δ = 1.22-1.49 (m, 2H), 1.80 (s, 3H), 1.82-1.98 (m, 2H), 2.02-2.24 (m, 1H), 2.92-3.17 (m, 2H), 3.32-3.44 (m, 2H), 3.56-3.74 (m, 2H), 4.01 (d, 2H, J = 6.0 Hz), 4.35-4.52 (m, 2H), 6.94 (s, 1H), 7.13 (d, 2H, J = 9.2 Hz), 7.38-7.52 (m, 3H), 7.77 (d, 2H, J = 8.8 Hz), 7.80-7.88 (m, 1H), 7.99-8.10 (m, 1H), 8.33-8.47 (m, 2H); MS (ES) 537.88 [MH $^+$], t_R (method A) = 7.61 min.

[1507]

[1508] N-(2-{6-[4-(3-시아노폐녹시메틸)-피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아 세트아미드(26.227):

N-(2-{6-[4-(3-Cyanophenoxymethyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.227): ¹H NMR (d₆-DMSO, 200 MHz): δ = 1.22-1.48 (m, 2H), 1.80 (s, 3H), 1.83-1.98 (m, 2H), 2.03-2.25 (m, 1H), 2.94-3.19 (m, 2H), 3.32-3.45 (m, 2H), 3.56-3.73 (m, 2H), 3.98 (d, 2H, J = 6.2 Hz), 4.34-4.54 (m, 2H), 6.94 (s, 1H), 7.26-7.36 (m, 1H), 7.36-7.55 (m, 6H), 7.78-7.89 (m, 1H), 8.00-8.12 (m, 1H), 8.35-8.47 (m, 2H); MS (ES) 537.87 [MH $^+$], t_R (method A) = 7.80 min.

[1509] [1510]

N-(2-{6-[4-(2-메틸설파닐페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세 트아미드(26,228):

 $N-(2-\{6-[4-(2-Methylsulfanylphenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.228): <math>^{1}H$ NMR (d_{6} -DMSO, 200 MHz): $\delta=1.78$ (s, 3H), 2.38 (s, 3H), 2.89-3.03 (m, 4H), 3.30-3.42 (m, 2H), 3.55-3.70 (m, 2H), 3.77-3.92 (m, 4H), 6.98 (s, 1H), 7.06-7.22 (m, 4H), 7.74-7.87 (m, 1H), 7.97-8.13 (m, 1H), 8.32-8.48 (m, 2H); MS (ES) 529.91 [MH $^{+}$], t_{R} (method A) = 8.09 min.

[1511] [1512]

N-(2-{6-[4-(2-니트로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아 미드(26,229):

N-(2-{6-[4-(2-Nitrophenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.229): ¹H NMR(d₆-DMSO, 200 MHz): δ = 1.81 (s, 3H), 3.06-3.19 (m, 4H), 3.33-3.45 (m, 2H), 3.58-3.74 (m, 2H), 3.78-3.94 (m, 4H), 7.01 (s, 1H), 7.20 (dd, 1H, J = 7.6, 0.8 Hz), 7.34-7.53 (m, 4H), 7.63 (dd, 1H, J = 7.7, 1.4 Hz), 7.86 (dd, 1H, J = 8.0, 1.4 Hz), 8.00-8.11 (m, 1H), 8.34-8.48 (m, 2H); MS (ES) 528.89 [MH⁺], t_R (method A) = 7.49 min.

[1513]

[1514] N-(2-{6-[4-(3-클로로페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아 미드(26.230):

N-(2-{6-[4-(3-Chlorophenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamino}-ethyl)-acetamide (26.230): 1 H NMR (d₆-DMSO, 200 MHz): δ = 1.81 (s, 1H), 3.32-3.45 (m, 6H), 3.58-3.77 (m, 2H), 3.80-3.93 (m, 4H), 6.78-7.04 (m, 4H), 7.26 (t,1H, J = 8 Hz), 7.40-7.53 (m, 3H), 7.80-7.93 (m, 1H), 8.01-8.13 (m, 1H), 8.37-8.49 (m, 2H); MS (ES) 517.85 [MH $^{+}$], t_R (method A) = 8.13 min.

[1515]

```
N-(2-{2-페닐-6-[4-(3-트리플루오로메틸페닐)-피페라진-1-카보닐]-2-페닐-7H-피롬로[2.3-d]피리미딘-4-일아미
[1516]
                                                     노}-에틸)-아세트아미드(26.231):
                                                          N\hbox{-}(2\hbox{-}\{2\hbox{-}Phenyl\hbox{-}6\hbox{-}[4\hbox{-}(3\hbox{-}trifluoromethylphenyl)\hbox{-}piperazine\hbox{-}1\hbox{-}carbonyl]\hbox{-}7$$H$-pyrrolomethylphenyl)$-piperazine and the second secon
                                                          [2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.231): <sup>1</sup>H NMR(d<sub>6</sub>-DMSO, 200
                                                          MHz): \delta = 1.81 (s, 3H), 3.33-3.46 (m, 7H), 3.59-3.74 (m, 2H), 3.81-3.94 (m, 4H), 7.01 (s,
                                                          1H), 7.12 (brd, 1H, J = 7.4 Hz), 7.20-7.32 (m, 2H), 7.40-7.53 (m, 4H), 7.80-7.91 (m, 1H),
                                                          8.00-8.11 (m, 1H), 8.36-8.47 (m, 2H); MS (ES) 551.88 [MH^{+}], t_R (method A) = 8.41 min.
[1517]
[1518]
                                                     2-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-일}-벤조산 메틸
                                                     에스테르(26.232):
                                                           2-{4-[4-(2-Acetylaminoethylamino)-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-
                                                           carbonyl]-piperazin-1-yl}-benzoic acid methyl ester (26.232): <sup>1</sup>H NMR (d<sub>6</sub>-DMSO,
                                                           200 MHz): \delta = 1.81 (s, 3H), 2.99-3.12 (m, 4H), 3.32-3.71 (m, 4H), 3.80-3.91 (m, 7H),
                                                           6.94-7.20 (m, 4H), 7.35-7.57 (m, 3H), 7.65 (dd, 1H, J = 6.8, 1.4 Hz), 7.76-7.89 (m, 1H),
                                                           7.99-8.11 (m, 1H), 8.34-8.47 (m, 2H); MS (ES) 541.89 [MH^{+}], t_R (method A) = 7.36 min.
[1519]
[1520]
                                                     N-{2-[2-페닐-6-(4-o-톨릴피페라진-1-카보닐)-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노]-에틸}-아세트아미
                                                     드(26.233):
                                                           N-\{2-[2-Phenyl-6-(4-o-tolylpiperazine-1-carbonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-o-tolylpiperazine-1-carbonyllogue and the second of the secon
                                                           ylamino]-ethyl}-acetamide (26.233): <sup>1</sup>H NMR (d<sub>6</sub>-DMSO, 200 MHz): \delta = 1.81 (s, 3H),
                                                           2.31 (s, 3H), 2.85-3.00 (m, 4H), 3.33-3.45 (m, 2H), 3.58-3.72 (m, 2H), 3.82-3.93 (m, 4H),
                                                           6.92-7.09 (m, 3H), 7.18 (brt, 2H, J = 7.4 Hz), 7.39-7.53 (m, 3H), 7.76-7.89 (m, 1H), 8.00-6.92-7.09 (m, 3H), 7.76-7.89 (m, 1H), 7.76-7.89 (
                                                           8.12 (m, 1H), 8.36-8.48 (m, 2H); MS (ES) 497.89 [MH^{+}], t_R (method A) = 8.15 min.
[1521]
                                                     N-(2-{6-[4-(3-메톡시페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아
[1522]
                                                     미드(26.234):
                                                        N-(2-{6-[4-(3-Methoxyphenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]-
                                                        pyrimidin-4-ylamino}-ethyl)-acetamide (26.234): <sup>1</sup>H NMR (d<sub>6</sub>-DMSO, 200 MHz): \delta =
                                                        1.81 (s, 3H), 3.16-3.45 (m, 6H), 3.57-3.70 (m, 2H), 3.73 (s, 3H), 3.80-3.91 (m, 4H), 6.36-
                                                        6.63 (m, 3H), 7.00 (s,1H), 7.15 (t, 1H, J = 7.6 Hz), 7.38-7.53 (m, 3H), 7.77-7.91 (m, 1H),
                                                        7.99-8.12 (m, 1H), 8.34-8.48 (m, 2H); MS (ES) 513.95 [MH^{+}], t_R (method A) = 7.37 min.
[1523]
[1524]
                                                     N-(2-{6-[4-(3,4-디클로로페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)
                                                     -아세트아미드(26.235):
                                                          N-(2-{6-[4-(3,4-Dichlorophenoxymethyl)-piperidine-1-carbonyl]-2-phenyl-7H-
                                                           pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.235): <sup>1</sup>H NMR (d<sub>6</sub>-DMSO,
                                                           200 MHz): \delta = 1.20-1.45 (m, 2H), 1.80 (s, 3H), 1.81-1.97 (m, 2H), 2.20-2.23 (m, 1H),
[1525]
                                                          2.92-3.17 (m, 2H), 3.32-3.47 (m, 2H), 3.58-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H, J = 6.8 Hz), 4.35-3.72 (m, 2H), 3.95 (d, 2H), 3.95 (d
                                                          4.53 (m, 2H), 6.94 (s, 1H), 6.99 (dd, 1H, J = 8.8, 3.0 Hz), 7.27 (d, 1H, J = 2.8 Hz), 7.39-
                                                          7.57 (m, 4H), 7.76-7.89 (m, 1H), 7.99-8.12 (m, 1H), 8.35-8.49 (m, 2H); MS (ES) 580.80
                                                          [MH^{+}], t_R (method A) = 9.40 min.
[1526]
[1527]
                                                     N-(2-{6-[4-(2-시아노페녹시메틸)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아
                                                     세트아미드(26,236):
```

N-(2-{6-[4-(2-Cyanophenoxymethyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.236): ¹H NMR (d₆-DMSO, 200 MHz): δ = 1.27-1.48 (m, 2H), 1.78 (s, 3H), 1.82-1.99 (m, 2H), 2.06-2.26 (m, 1H), 2.93-3.16 (m, 2H), 3.31-3.42 (m, 2H), 3.53-3.73 (m, 2H), 4.06 (brd, 2H, J = 6.2 Hz), 4.31-4.53 (m, 2H), 6.93 (s, 1H), 7.07 (t, 1H, J = 7.7 Hz), 7.26 (d, 1H, J = 8.4 Hz), 7.37-7.50 (m, 3H), 7.58-7.76 (m, 2H), 7.77-7.85 (m, 1H), 7.97-8.08 (m, 1H), 8.34-8.45 (m, 2H); MS (ES) 538.12 [MH $^{+}$], t_{R} (method A)= 6.22 min.

[1528] [1529]

N-(2-{6-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26,237):

 $N-(2-\{6-[4-(2-Chlorophenyl)-4-cyanopiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.237):

^IH NMR (d₆-DMSO, 200 MHz): <math>\delta = 1.80$ (s, 3H), 2.02–2.24 (m, 2H), 2.54–2.70 (m, 2H), 3.3–3.5 (m, 4H), 3.56–3.74 (m, 2H), 4.50–4.70 (m, 2H), 7.02 (s, 1H), 7.40–7.53 (m, 5H), 7.54–7.65 (m, 2H), 7.74–7.84 (m, 1H), 7.99–8.10 (m, 1H), 8.35–8.48 (m, 2H); MS (ES) 541.99 [MH $^+$], t_R (method A) = 6.5 min.

[1530] [1531]

N-(2-{6-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드 메탄설폰산 염(26.237·MsOH):

N-(2-{6-[4-(2-Chlorophenyl)-4-cyanopiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide methanesulfonic acid salt (26.237-MsOH): ¹H NMR (CD₃OD, 200 MHz): δ = 1.90 (s, 3H), 2.08–2.32 (m, 2H), 2.66 (brs, 2H), 2.72 (brs, 3H), 3.57 (brt, 2H, J = 6.4 Hz), 3.93 (brt, 2H, J = 6.2 Hz), 4.73 (brd, 2H, J = 12.8 Hz), 7.18 (brs, 1H), 7.35–7.49 (m, 2H), 7.50–7.74 (m, 5H), 8.07–8.31 (m, 2H); MS (ES) 541.8 [MH $^+$], t_R (method A) = 7.7 min.

[1532] [1533]

N-(2-{6-[4-(2-메탄설피닐페닐)-피페라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세 트아미드(26,238):

N-(2-{6-[4-(2-Methanesulfinylphenyl)-piperazine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.238): ¹H NMR (CD₃OD, 200 MHz): δ = 1.86 (s, 3H), 2.89 (brs, 5H), 3.13-3.38 (m, 3H), 3.46-3.60 (m, 2H), 3.75-3.90 (m, 2H), 3.91-4.08 (m, 3H), 6.95 (s, 1H), 7.20-7.63 (m, 6H), 7.70-7.96 (m, 1H), 8.30-8.59 (m, 2H); MS (ES) 545.85 [MH $^+$], t_R (method A) = 6.12 min.

[1534] [1535]

N-{4-[4-(2-아세틸아미노에틸아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-피페라진-1-일}-벤즈아미드(2 6.239):

2-{4-[4-(2-Acetylaminoethylamino)-2-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carbonyl]-piperazin-1-yl}-benzamide (26.239): 1 H NMR (d₆-DMSO, 200 MHz): δ = 1.78 (s, 3H), 2.92-3.09 (m, 4H), 3.31-3.42 (m, 2H), 3.54-3.70 (m, 2H), 3.80-3.96 (m, 4H), 6.98 (s, 1H), 7.06-7.22 (m, 2H), 7.35-7.55 (m, 5H), 7.67 (dd, 1H, *J* = 7.6, 1.8Hz), 7.74-7.86 (m, 1H), 7.97-8.80 (m, 1H), 8.32-8.44 (m, 2H); MS (ES) 526.89 [MH⁺], t_R (method B) = 12.60 min.

[1536]

[1537] N-(2-{6-[4-시아노-4-(2-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸) -아세트아미드(26.240):

N-(2-{6-[4-Cyano-4-(2-methoxyphenyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.240): ¹H NMR (CD₃OD, 200 MHz) δ = 1.85 (s, 3H), 1.98-2.22 (m, 2H), 2.35-2.55 (m, 2H), 3.40-3.64 (m, 4H), 3.83 (t, 2H, J = 5.8 Hz), 3.92 (s, 3H), 4.70 (brd, 2H, J = 14.2 Hz), 6.96 (s, 1H), 6.98-7.14 (m, 2H), 7.26-7.53 (m, 5H), 8.31-8.51 (m, 2H); MS (ES) 537.93 [MH $^+$], t_R (method A) = 7.55 min.

[1538] [1539]

N-(2-{6-[4-(3-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26,241):

N-(2-{6-[4-(3-Chlorophenyl)-4-cyanopiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo-[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.241): ¹H NMR (CD₃OD, 200 MHz): δ = 1.86 (s, 3H), 2.03-2.35 (m, 4H), 3.36-3.63 (m, 4H), 3.83 (brt, 2H, J = 6.2 Hz), 4.74 (brd, 2H, J = 13.8 Hz), 6.98 (s, 1H), 7.32-7.56 (m, 6H), 7.57-7.66 (m, 1H), 8.34-8.52 (m, 2H); MS (ES) 541.91 [MH $^{+}$], t_R (method A) = 8.14 min.

[1540] [1541]

N-(2-{6-[4-시아노-4-(3-메톡시페닐)-피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸) -아세트아미드(26.242):

 $\begin{tabular}{ll} N-(2-\{6-[4-Cyano-4-(3-methoxyphenyl)-piperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino\}-ethyl)-acetamide (26.242): $1H NMR (CD_3OD, 200 MHz): $$\delta=1.85 (s, 3H), 2.03-2.28 (m, 4H), 3.36-3.61 (m, 4H), 3.52-3.61 (m, 5H), 4.71 (brd, 2H, $J=14.4 Hz), 6.85-7.01 (m, 2H), 7.05-7.16 (m, 2H), 7.28-7.50 (m, 4H), 8.33-8.50 (m, 2H); MS (ES) 537.93 [MH$^+], $$t_R(method A)=7.66 min. $$$$$$

[1542] [1543]

N-(2-{6-[4-(4-클로로페닐)-4-시아노피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸)-아세트아미드(26.243):

N-(2-{6-[4-(4-Chlorophenyl)-4-cyanopiperidine-1-carbonyl]-2-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}-ethyl)-acetamide (26.243): .¹H NMR (CD₃OD, 200 MHz): δ = 1.86 (s, 3H), 2.00-2.31 (m, 4H), 3.36-3.62 (m, 4H), 3.83 (brt, 2H, J = 6.0 Hz), 4.73 (brd, 2H, J = 14 Hz), 6.97 (s, 1H), 7.33-7.49 (m, 5H), 7.50-7.61 (m, 2H), 8.34-8.50 (m, 2H); MS (ES) 541.92 [MH $^{+}$], t_R (method A) = 8.18 min.

[1544] [1545]

N-(2-{6-[4-시아노-4-(4-메톡시폐닐)-피폐리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}-에틸) -아세트아미드(26.244):

[1546]

200 MHz): δ = 1.87 (s, 3H), 1.97-2.32 (m, 4H), 3.42-3.60 (m, 4H), 3.80 (s, 3H), 3.81-3.89 (m, 2H), 4.72 (brd, 2H, J = 14 Hz), 6.88-7.04 (m, 3H), 7.34-7.53 (m, 5H), 8.34-8.49 (m, 2H); MS (ES) 537.94 [MH $^{+}$], t_R (method A) = 7.57 min.

[1547]

[1548] (S)-7-벤젠설포닐-4-(2,3-디하이드록시프로필아미노)-2-페닐-7H-피롤로[2,3-d]-피리미딘-6-카복실산(28.c):

[1549] 27(126 mg) 및 디하이드록시프로필아민(273 mg)을 80 ℃에서 질소 하에 4 시간 동안 무수 DMSO(2 mℓ) 중에서 교반하였다. 반응 혼합물을 실온으로 냉각시키고 물(10 mℓ)로 희석하였다. 생성 혼합물을 백색 고체가 형성될 때까지(pH ~ 3.5 내지 4.0) 0.5 N HCI로 산성화시켰다. 고체를 여과에 의해 수거하고, 냉수로 세척하고, 진공 하에서 건조시켰다. 백색 고체(131 mg)를 93% 수율로 수득하였다.

¹H-NMR (200 MHz, DMSO- d_6): δ = 3.30-3.33 (m, 2H), 3.57-3.60 (m, 2H), 3.65-6.71 (m, 1H), 3.82-3.97 (m, 2H), 7.32 (s, 1H), 7.46-7.50 (m, 3H), 7.55-7.68 (m, 3H), 8.38-8.49 (m, 4H). MS (ES): 468.9 (M⁺+1).

[1550]

- [1551] (S)-1-[7-벤젠설포닐-4-(2,3-디하이드록시프로필아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-(2-클로페닐)피페리딘-4-카보니트릴(31.c):
- [1552] (S)-7-벤젠설포닐-4-(2,3-디하이드록시프로필아미노)-2-페닐-7H-피롤로[2,3-d]-피리미딘-6-카복실산(28.c)(47 mg), 29.237(25 mg, 1.1 당량) 및 PyBop(100 mg, 2.0 당량)를 실온에서 질소 하에 6 시간 동안 교반하였다. DMF를 진공 하에서 제거하였다. 잔사를 DCM과 포화된 NaHCO3 수용액 사이에 분배시켰다. 수성 층을 DCM으로 2 회 추출하였다. 합한 DCM 층들을 포화된 NaHCO3 수용액, 염수로 세척하고, MgSO4 상에서 건조시켰다. 용 매를 제거한 후에, 희색 고체(163 mg)를 수득하였다. 순수한 생성물(63 mg)을 TLC 정제(실리카 젤, EtOAc/헥산 = 3/1)에 의해 94% 수율로 수득하였다.

¹H-NMR (200 MHz, DMSO-

 d_6 +MeOH- d_4): δ = 2.40-2.75 (m, 2H), 2.78-2.90 (m, 4H), 3.30-3.50 (m, 1H), 3.50-3.60 (m, 2H), 3.60-3.97 (m, 4H), 6.70 (s, 1H), 7.20-7.68 (m, 9H), 8.34-8.37 (m, 4H).

[1553]

- [1554] (S)-4-(2-클로로페닐)-1-[4-(2,3-디하이드록시프로필아미노)-2-페닐-7H-피롤로[2,3-d]-피리미딘-6-카보닐]피페 리딘-4-카보니트릴(26,245):
- [1555] (S)-1-[7-벤젠설포닐-4-(2,3-디하이드록시프로필아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-카보닐]-4-(2-클로로페닐)피페리딘-4-카보니트릴(31.c)(55 mg)를 MeOH 중에서 교반하고 실온에서 질소 하에 2 시간 동안 1 M NaOH로 처리하였다. 생성 혼합물을 3 M HCl 수용액(pH ~ 7)으로 중화시켰다. 이어서 용매를 진공 하에서 제거하였다. 잔사를 DCM + MeOH에 용해시키고 TLC 플레이트에 충전시켰다. 백색 포움(29 mg)을 67% 수율로수득하였다.

¹H-NMR (200 MHz,

CDCl₃+MeOH- d_4): $\delta = 1.95$ -2.20 (m, 2H), 2.50-2.70 (m, 2H), 3.40-3.70 (m, 4H), 3.78-3.95 (m, 3H), 4.65-4.78 (m, 2H), 6.75 (s, 1H), 7.25-7.47 (m, 7H), 8.18-8.23 (m, 4H). MS (ES): 531.0 [MH⁺].

[1556] [1557]

- 하기 화합물 26.246 내지 26.250을 동일한 방식으로 제조하였다:
- [1558] (S)-[4-(2,3-디하이드록시프로필아미노)-2-페닐-7H-피롤로[2,3-d]피리미딘-6-일]-{4-[3-(4-클로로페닐)프로필] 피페라진-1-일}메타논(26,246): 2% 수율.

¹H-NMR

 $\begin{array}{l} \mbox{(200 MHz, CDCl_3): } \delta = 1.50\text{-}1.70 \mbox{ (m, 2H), } 2.38\text{-}2.48 \mbox{ (m, 2H), } 2.50\text{-}2.60 \mbox{ (m, 4H), } 2.60\text{-}\\ 2.70 \mbox{ (m, 2H), } 3.60\text{-}3.70 \mbox{ (m, 2H), } 3.80\text{-}4.02 \mbox{ (m, 8H), } 4.18\text{-}4.25 \mbox{ (m, 2H), } 6.63 \mbox{ (s, 1H), }\\ 7.05\text{-}7.15 \mbox{ (m, 3H), } 7.40\text{-}7.60 \mbox{ (m, 5H), } 8.18\text{-}840 \mbox{ (m, 2H), } 9.52 \mbox{ (brs, 1H);} \end{array}$

[1559] MS (ES): $548.9 \text{ (M}^++1)$.

[1560] N-{2-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}아세트아미드(26.247): 2% 수율.

¹H-NMR (200 MHz,

CDCl₃+MeOH- d_4): δ = 2.10-2.30 (m, 2H), 2.60-2.75 (m, 2H), 3.10-3.25 (m, 2H), 3.65-3.75 (m, 2H), 4.30 (s, 2H), 7.02 (s, 1H), 7.38-7.45 (m, 5H), 7.48-7.60 (m, 2H), 8.38-8.40 (m, 2H). MS (ES): 513.9 (M⁺+1).

[1561]

[1562] 3-(6-{4-[3-(4-클로로페닐)프로필]피페라진-1-카보닐}-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)아세트아 미드(26.248): 5% 수율.

¹H-NMR (200 MHz, MeOH-d₄):

 $\delta = 1.80-1.95$ (m, 2H), 2.40-2.50 (m, 2H), 2.52-2.62 (m, 4H), 2.62-2.72 (m, 2H), 3.82-3.95 (m, 4H), 4.30 (m, 2H), 6.93 (s, 1H), 7.18 (d, 2H, J = 8.4Hz), 7.23 (d, 2H, J = 8.4Hz), 7.55-7.65 (m, 3H), 8.36-842 (m, 2H). MS (ES): 532.0 (M † +1).

[1563] [1564]

3-{6-[4-(2-클로로페닐)-4-시아노피페리딘-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노}프로피온아 미드(26.249): 1% 수율.

¹H-NMR (200 MHz,

CDCl₃): δ = 2.00-2.20 (m, 2H), 2.55-2.80 (m, 4H), 3.65-3.75 (m, 2H), 4.00-4.15 (m, 2H), 4.70-4.85 (m, 2H), 6.00 (brs, 1H), 6.20 (brs, 1H), 6.75 (s, 1H), 7.20-7.60 (m, 8H), 8.38-8.48 (m, 2H), 9.77 (brs, 1H). MS (ES): 527.9 (M⁺+1).

[1565] [1566]

- 3-(6-{4-[3-(4-클로로페닐)프로필]피폐라진-1-카보닐]-2-페닐-7H-피롤로[2,3-d]피리미딘-4-일아미노)프로피온 아미드(26.250): 2% 수율.
- [1567] 'H-NMR (200 MHz,

CDCl₃): δ = 1.35-1.55 (m, 2H), 1.78-1.95 (m, 2H), 2.34-2.43 (m, 2H), 2.45-2.58 (m, 4H), 2.60-2.70 (m, 2H), 2.70-3.76 (m, 2H), 3.80-3.95 (m, 4H), 4.00-4.18 (m, 2H), 5.41 (brs, 1H), 5.67 (brs, 1H), 5.91 (brs, 1H), 6.62 (s, 1H), 7.10 (d, 2H, J = 8.0Hz), 7.27 (d, 2H, J = 8.0Hz), 7.40-7.55 (m, 3H), 8.38-8.50 (m, 2H), 9.40 (brs, 1H). MS (ES): 546.0 (M⁺+1).

[1568]

[1569] 화합물의 활성

- [1570] 본 발명 화합물의 생물학적 활성을 방사성 리간드 결합 분석을 수행함으로써 예시한다. 본 원에 개시된 선택된 화합물들은 결합 분석에서 A_1 , A_{2a} 및 A_3 수용체에 대해 2 내지 57 배의 A_{2b} 아데노신 수용체에 대한 선택성을 나타낸다. 상기 결합 분석에 대한 준비를 하기에 개시한다.
- [1571] 구체적으로, A_1 , A_{2a} 및 A_3 수용체에 비해 하기와 같은 A_{2B} 수용체의 선택성이 관찰되었다:
- [1572] 17.7: 26x, 17.7·MsOH: 24x, 26.5: 20x, 26.42: 57x, 26.135: 19x, 26.135·MsOH: 17x, 26.237: 57x, 26.237·MsOH: 33x, 26.71: 82x의 A₁/A_{2B} 이중 길항물질.
- [1573] 구체적으로, 하기와 같은 A_{2B} 수용체에 대한 K_{i} 가 관찰되었다:
- [1574] 17.7: 5 nM.

[1575] 물질 및 방법

- [1576] 물질.
- [1577] [³H]-DPCPX[사이클로펜틸-1,3-디프로필크산틴](120.0 Ci/밀리몰)을 뉴 잉글랜드 뉴클리어(New England Nuclear, Boston, MA)로부터 구입하였다. 아데노신 데아미나제 및 경쟁적인 프로테아제 억제제 칵테일 정제를 베링거 만하임 코포레이션(Boehringer Mannheim Corp. Indianapolis, IN)으로부터 구입하였다. 세포 배양 시약들을 하이클론(Hyclone, Logan, UT)으로부터의 혈청을 제외하고 라이프 테크놀로지스(Life Technologies, Grand Island, NY)로부터 구입하였다.

- [1578] 세포 주.
- [1579] 인간 A_{2B} 수용체를 안정하게 발현하는 HEK293을 방사성 리간드 결합 분석에 사용하였다. 세포를 10% FBS, 0.2 mg/mℓ G418을 함유하는 DMEM Glutamax중에서 37 ℃에서 5% CO2/95% 분위기 하에 증식시켰다.
- [1580] 세포막 제조.
- [1581] 세포를 냉 PBS 완충액으로 2 회 세척하고, 플레이트를 긁어내어 1000 x g에서 5 분간 원심분리시켰다. 세포를 5 mM 트리스(pH 7.4), 5 mM EDTA, 5 mM EGTA, 프로테아제 억제제 칵테일 정제의 빙냉 완충제로 균질화시키고, 얼음 상에서 10 분간 배양하였다. 상기 균질물을 32,000 x g에서 30 분간 원심분리시켰다. 막을 50 mM 트리스(pH 7.4), 0.6 mM EDTA, 5 mM MgCl₂의 완충액에 재 현탁시키고, 사용할 때까지 -80 ℃에서 보관하였다. 단백질 농도를 브래드포드의 방법에 의해 측정하였다.
- [1582] 방사성 리간드 결합 분석.
- 막들을 1.0 mM EDTA를 함유하는 10 mM HEPES-KOH(pH 7.4); 2 U/ml 아데노신 데아미나제; 및 0.1 mM 벤즈아미단을 함유하는 완충액에 균질화시키고 실온에서 30 분간 배양하였다. 방사성 리간드의 해리 상수(Kd 값) 및 최대결합 부위(Bmax)를 포화 결합 실험으로 측정하였다. 포화 결합 분석을 50 μl의 막 현탁액, 25 μl의 4% DMSO, 25 μl의 증가량의 방사성 리간드, [³H]-DPCPX(최종 농도 1 내지 200 nM)를 함유하는 반응 혼합물에서 수행하였다. 경쟁 결합 분석을 50 μl의 막 현탁액(~5 μl/웰), 25 μl의 [³H]-DPCPX(최종 농도는 ~22 nM이다), 및 25 μl의 화합물을 함유하는 반응 혼합물에서 수행하였다. 비 특이적 결합을 100 μM NECA의 존재 하에서 측정하였다. 화합물을 DMSO에 용해시키고, 이어서 4% DMSO로 희석하였으며; 최종 최대 DMSO 농도는 1%였다. 배양을 23.5 ℃에서 1 시간 동안 3 중으로 수행하였다. 반응을 세포 수확기를 사용하여 GF/C 필터 상에서 고속 여과에 의해종료시켰다. 필터를 10 mM HEPES-KOH(pH 7.4)를 함유하는 0.4 ml의 빙냉 완충액으로 10 번 세척하였다. 상기 필터를 건조시키고, 섬광 유체로 덮고 탑카운트(TopCount)로 카운트하였다.

[1584] 등가물

[1585] 당해 분야의 숙련가들은 본 원에 구체적으로 개시된 본 발명의 특정 실시태양들에 대한 많은 등가물들을 단지 통상적인 실험을 사용하여 인식하거나 확인할 수 있을 것이다. 상기와 같은 등가물들은 하기 청구의 범위에 포함시키고자 한다.