
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0137178A1

BARSNESS et al.

US 20120137178A1

(43) Pub. Date: May 31, 2012

(54)

(75)

(73)

(21)

(22)

STREAM BASED DEBUGGING TECHNIQUES

Inventors:

Assignee:

Appl. No.:

Filed:

ERIC L. BARSNESS, PINE
ISLAND, MN (US); RYAN K.
CRADICK, ORONOCO, MN
(US); MICHAEL D. PFEIFER,
ROCHESTER, MN (US); JOHN
M. SANTOSUOSSO,
ROCHESTER, MN (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

12/956,424

Nov.30, 2010

IODEVICES

ODEVICE
INTERFACES

Publication Classification

(51) Int. Cl.
G06F II/36 (2006.01)

(52) U.S. Cl. 714/35: 714/E11.21
(57) ABSTRACT

Techniques are described for debugging a processing element
(or elements) in a stream based database application in a
manner that reduces the impact of debugging the processing
element (or elements) on the overall running environment by
selectively fusing (or un-fusing) processing elements running
on a group of compute nodes. In addition to fusing and un
fusing processing elements or otherwise modifying a state of
the stream application, a debugging application and stream
manager may modify data flows within the application stream
in a variety of ways to minimize any disruption resulting from
a debugging session.

312

TO COMMUNICATIONS
NETWORK 120

NETWORK
INTERFACE

INTERCONNECT (BUS)

MEMORY

STREAMDEBUGGER 335

STREAMCOMPLIER 340

STREAM MANAGER 132

MANAGEMENT SYSTEM

STORAGE

OPERATOR GRAPH 134

PEOPERATOR
SOURCE CODE 345

105

May 31, 2012 Sheet 1 of 8 US 2012/0137178A1 Patent Application Publication

Patent Application Publication May 31, 2012 Sheet 2 of 8 US 2012/0137178A1

212

I/O DEVICES TO COMMUNICATIONS
NETWORK 120

205

CP I/O DEVICE NETWORK
U INTERFACE INTERFACE

INTERCONNECT (BUS)

MEMORY STORAGE

OPERATIONS 240
BUFFERED STREAM

FUSED PROCESSING DATA 260
ELEMENTS 235

DEBUG DATA 265

UNFUSED PROCESSING
ELEMENT (PE UNDER
DEBUG) 245

DEBUGGER 250

STREAM CONNECTION
DATA 255

FIG. 2 130

Patent Application Publication May 31, 2012 Sheet 3 of 8 US 2012/0137178A1

312

I/O DEVICES TO COMMUNICATIONS
NETWORK 120

I/O DEVICE NETWORK
INTERFACES INTERFACE

INTERCONNECT (BUS)

305

MEMORY STORAGE

STREAMDEBUGGER 335 OPERATOR GRAPH 134

PEIOPERATOR
STREAMCOMPLIER 340 SOURCE CODE 345

STREAM MANAGER 132

MANAGEMENT SYSTEM

105

FIG. 3

Patent Application Publication May 31, 2012 Sheet 5 of 8 US 2012/0137178A1

505
RECEIVE INDICATION OF BREAKPOINT FOR

PROCESSINGELEMENT IN OPERATOR GRAPH

510
IDENTIFYPOSITION OF PROCESSINGELEMENT

IN AN OPERATOR GRAPH

515

500

SELECTIVELY FUSE/UNFUSE ONE ORMORE
PROCESSINGELEMENTS BASED ON POSITION

OF PROCESSINGELEMENT

520
RESTART FUSED/UNFUSED PROCESSING

ELEMENTS

525
WHILE PROCESSING DATA THROUGH NODES

OF OPERATOR GRAPH, PERFORM
DEBUGGING OPERATIONS

530
FOLLOWING DEBUGGING SESSION, RE-FUSE/
UNFUSE SELECTED PROCESSINGELEMENTS

FIG. 5

May 31, 2012 Sheet 6 of 8 US 2012/0137178A1 Patent Application Publication

?07 INEWETE €)NISSE OORHd CEST)-|

EGION EL?ldWOO (HECINEÐ ‘AHVTVS ºldEG 'EWWN)

Patent Application Publication May 31, 2012 Sheet 7 of 8 US 2012/0137178A1

H
Z

d
-
L

US 2012/0137178A1

EGION E|| [lc][WOO

May 31, 2012 Sheet 8 of 8

G07 Eld WOH-]

G08 INEWETEO?º INEWETE ?NISSEOONd
€)NISSE OORHc]

Patent Application Publication

US 2012/01371 78 A1

STREAM BASED DEBUGGING TECHNIQUES

BACKGROUND

0001. While computer databases have become extremely
Sophisticated, the computing demands placed on database
systems have increased at a rapid pace. Database systems are
typically configured to separate the process of storing data
from accessing, manipulating or using data stored in the
database. More specifically, databases use a model where
data is first stored, then indexed, and then queried. However,
this model cannot meet the performance requirements of
Some real-time applications. For example, the rate at which a
database system can receive and store incoming data can limit
how much data can be processed or otherwise evaluated,
which, in turn, limits the utility of database applications con
figured to process large amounts of data in real-time.
0002 To address this issue, stream based computing and
stream based database computing is emerging as a developing
technology for database systems. And products are available
which allow users to create applications that process and
query streaming data before it reaches a database file. With
this emerging technology, users can specify processing logic
to apply to inbound data records while they are “in flight.”
with the results available in milliseconds. Constructing an
application using this type of processing has opened up a new
programming paradigm that will allow for a broad variety of
innovative applications, systems and processes to be devel
oped as well as present new challenges for application pro
grammers and database developers.

SUMMARY

0003 Embodiments of the invention provide techniques
for debugging a processing element (or elements) in a stream
based database application. For example, one embodiment of
the invention includes a method of debugging a stream appli
cation composed from a plurality of processing elements
executing on one or more compute nodes. The method may
generally include receiving an indication of a location for a
debugging breakpoint in a first one of the plurality of process
ing elements and evaluating an operator graph to identify a
position of the first processing element, relative to one or
more other processing elements, of the plurality. This method
may also include modifying a state of the stream application
to allow the first processing element to be debugged and
initiating a debug session for the first processing element.
0004 Another embodiment of the invention includes a
computer-readable storage medium containing a program
which, when executed, performs an operation for debugging
a stream application composed from a plurality of processing
elements executing on one or more compute nodes. The
operation itselfmay generally include receiving an indication
of a location for a debugging breakpoint in a first one of the
plurality of processing elements and evaluating an operator
graph to identify a position of the first processing element,
relative to one or more other processing elements, of the
plurality. The operation may further include modifying a state
of the stream application to allow the first processing element
to be debugged and initiating a debug session for the first
processing element.
0005 Still another embodiment of the invention includes a
system having a plurality of compute nodes, each including a
processor and a memory. The compute nodes are configured
to execute processing elements of a stream application. The

May 31, 2012

system may also include a management system also having a
processor and a memory. The memory stores a stream debug
ging application, which, when executed on the management
system, is configured to perform an operation for debugging
the stream application executing on the plurality of compute
nodes.
0006. The operation itselfmay generally include receiving
an indication of a location for a debugging breakpoint in a first
one of the plurality of processing elements and evaluating an
operator graph to identify a position of the first processing
element, relative to one or more other processing elements, of
the plurality. The operation may further include modifying a
state of the stream application to allow the first processing
element to be debugged and initiating a debug session for the
first processing element.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 So that the manner in which the above recited
aspects are attained and can be understood in detail, a more
particular description of embodiments of the invention,
briefly summarized above, may be had by reference to the
appended drawings. Note, however, that the appended draw
ings illustrate only typical embodiments of this invention and
are therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodiments.
0008 FIGS. 1A-1B illustrate a computing infrastructure
configured to execute a stream database application, accord
ing to one embodiment of the invention.
0009 FIG. 2 is a more detailed view of a distributed com
puting node of FIG. 1, according to one embodiment of the
invention.
0010 FIG. 3 is a more detailed view of a management
computing system in a stream database application, accord
ing to one embodiment of the invention.
0011 FIG. 4 illustrates an example of compute nodes in a
stream database application, according to one embodiment of
the invention.
0012 FIG. 5 illustrates a method for debugging a process
ing elementina stream database application, according to one
embodiment of the invention.
0013 FIG. 6-8 provide examples of the compute nodes
and stream application first shown in FIG. 4 modified to
illustrate scenarios for debugging the stream application,
according to embodiments of the invention.

DETAILED DESCRIPTION

0014. In a stream application, operators are connected to
one another such that data flows from one processing element
to the next (e.g., over a TCP/IP socket). Scalability is reached
by distributing an application across nodes by creating many
Small executable pieces of code (operators), as well as repli
cating processing elements on multiple nodes and load bal
ancing among them. Processing elements (and operators) in a
stream application can be fused together to form a larger
processing element. Doing so allows processing elements to
share a common process space, resulting in much faster com
munication between operators than is available using inter
process communication techniques (e.g., using a TCP/IP
Socket). Further, processing elements can be inserted or
removed dynamically from an operator graph representing
the flow of data through the stream application, as well as
fused or un-fused from a stream application during runtime.

US 2012/01371 78 A1

0015 While processing elements in a distributed stream
environment may be debugged by reviewing log files gener
ated by running code, frequently a complete debug session is
needed. However, running a debugger slows down a process
being debugged, regardless of whether a breakpoint is hit, and
triggering a breakpoint can result in a substantial slowdown
(if not complete halt) to data flowing through an operator
under debug. Thus, running a processing element under
debug can cause “stream backup.” as data streams flowing to
the operators in that processing element do not stop flowing.
More generally, stream computing is based on the premise
that streams continuously flow through the operators.
0016. When multiple processing elements are fused
together to form a single running process, triggering a break
point in one causes all of the fused processing elements to
stop processing, potentially turning off a large portion of an
operator graph. On the other hand, a set of un-fused process
ing elements may include a first processing element config
ured to join data streamed from a second and third processing
element. If a breakpoint is triggered in either the second or
third processing element, the stream processing results can be
disrupted.
0017 Embodiments of the invention provide techniques
for debugging a processing element (or elements) in a stream
based application. In particular, embodiments of the inven
tion provide techniques for modifying a state of the stream
application during debugging a processing element in a man
ner that reduces the impact of debugging the processing ele
ment (or elements) on the overall running environment. For
example, assume that one operator within a fused processing
element of twenty operators needs to be debugged. In Such a
case, a stream debugger may be configured to remove the
fused processing element from the running stream, un-fuse
the operators, and re-insert them into the running stream. The
processing element with the single operator being debugged
may then execute as an independently running process (with
its own process ID (PID) and memory space), which allows
that operator to be debugged independently from the other
nineteen. Once the debugging session is complete, the debug
ger may re-fuse the un-fused operator, restoring the process
ing element of twenty fused operators to the same running
state that existed prior to debug session.
0018. In another embodiment, the debugger may fuse mul

tiple independent processing elements together as part of a
debug session. This may be useful to halt a portion of an
operator graph from running when one operator is being
debugged. For example, doing so may allow any dependen
cies between processing elements to be satisfied. Similarly,
the debugger may in appropriate cases prevent data from
flowing into the stream while a given processing element is
being debugged. This can occur at any point upstream (or
downstream) from a processing element in the operator graph
being debugged. More specifically, the debugger may prevent
data from flowing to a source operator (i.e., a processing
element that is the source point for data flowing through an
operator graph) or from flowing to a specific part (or specific
processing element) in the operator graph. Conversely, the
debugger may be configured to recognize some tuples of
incoming data as being exempt from a breakpoint.
0019. As an alternative to preventing data from flowing,
data may be "loadshed at a processing element under debug
(or selectively allowed to flow under some conditions). Doing
so may help avoid overloading the system with data when the
debugging session is complete; particularly in cases where

May 31, 2012

data may not have value if not processed promptly. In still
another embodiment, the debugger may be configured to
duplicate a processing element Such that debugging occurs in
the duplicated one. Data flowing out of the debugged process
ing element may be shed instead of being sent to the linked,
downstream operators. Further, the results output by the
operator under debug may be compared to the real operator as
a check on the accuracy of the debugging process.
0020. In the following, reference is made to embodiments
of the invention. However, it should be understood that the
invention is not limited to specific described embodiments.
Instead, any combination of the following features and ele
ments, whether related to different embodiments or not, is
contemplated to implement and practice the invention. Fur
thermore, although embodiments of the invention may
achieve advantages over other possible solutions and/or over
the prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting of the invention. Thus,
the following aspects, features, embodiments and advantages
are merely illustrative and are not considered elements or
limitations of the appended claims except where explicitly
recited in a claim(s). Likewise, reference to “the invention
shall not be construed as a generalization of any inventive
subject matter disclosed herein and shall not be considered to
be an element or limitation of the appended claims except
where explicitly recited in a claim(s).
0021. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0022. Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus or
device.
0023. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag

US 2012/01371 78 A1

netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0024 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0025 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0026. Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (Systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0027. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0028. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0029 Embodiments of the invention may be provided to
end users through a cloud computing infrastructure. Cloud
computing generally refers to the provision of scalable com
puting resources as a service over a network. More formally,
cloud computing may be defined as a computing capability

May 31, 2012

that provides an abstraction between the computing resource
and its underlying technical architecture (e.g., servers, Stor
age, networks), enabling convenient, on-demand network
access to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal
management effort or service provider interaction. Thus,
cloud computing allows a user to access virtual computing
resources (e.g., storage, data, applications, and even complete
virtualized computing systems) in “the cloud, without regard
for the underlying physical systems (or locations of those
systems) used to provide the computing resources.
0030 Typically, cloud computing resources are provided
to a user on a pay-per-use basis, where users are charged only
for the computing resources actually used (e.g., an amount of
storage space consumed by a user or a number of virtualized
systems instantiated by the user). A user can access any of the
resources that reside in the cloud at any time, and from any
where across the Internet. In context of the present invention,
a user may access applications or related data available in the
cloud. For example, the nodes used to create a stream data
base application may be virtual machines hosted by a cloud
service provider.
0031 FIGS. 1A-1B illustrate a computing infrastructure
100 configured to execute a stream application, according to
one embodiment of the invention. As shown, the computing
infrastructure 100 includes a management system 105 and a
plurality of compute nodes 130, each connected to a com
munications network 120. Also, the management system 105
includes an operator graph 132 and a stream manager 134. As
described in greater detail below, the operator graph 132
represents a stream application beginning from of one or
more source processing elements (PEs) through to one or
more sink PEs. Data elements flow into a source PE of a
stream application and are processed by that PE. Typically,
processing elements receive an N-tuple of data elements from
the stream as well as emitan N-tuple of data elements into the
stream (except for a sink PE where the stream terminates). Of
course, the N-tuple received by a processing element need not
be the same N-tuple sent downstream. And the processing
elements could be configured to receive or emit data in for
mats other than an N-tuple (e.g., the processing elements
could exchange data marked up as XML documents). Addi
tionally, each processing element may be configured to carry
out any form of data processing functions on the received
tuple, including, e.g., writing to database tables or performing
other database operations such as data joins, splits, reads, etc.,
as well as performing other data analytic functions or opera
tions.
0032. The stream manager 134 may be configured to
monitor a stream application running on the compute nodes
130 as well as change the structure of the operator graph
134. For example, the stream manager 134 may move pro
cessing elements (PEs) from one compute node 130 to
another, e.g., to manage the processing loads of the compute
nodes 130 in the computing infrastructure 100. Further,
stream manager 134 may control the stream application by
inserting, removing, fusing, un-fusing, or otherwise modify
ing the processing elements (or what data-tuples flow to the
processing elements) running on the compute nodes 130.
0033 FIG. 1B illustrates an example operator graph that
includes ten processing elements (labeled as PE1-PE10) run
ning on the compute nodes 130. While a processing ele
ment may be executed as an independently running process
(with its own process ID (PID) and memory space), multiple

US 2012/01371 78 A1

processing elements may be fused to run as single process
(with a PID and memory space). In cases where two (or more)
processing elements are running independently, inter-process
communication may occur using a network Socket (e.g., a
TCP/IP socket). However, when processes arefused together,
the fused processing elements can use more rapid communi
cation techniques for passing N-tuples (or other data) among
processing elements (and operators in each processing ele
ment).
0034. As shown, the operator graph begins at a source PE
135 (labeled as PE1) and ends at sink PEs 140 (labeled as
PE6 and PE10). Compute node 130, includes source PE1
along with PE2 and PE3. Source PE1 emits tuples received by
PE2 and PE3. For example, PE1 may split data elements
received in a tuple and pass some data elements to PE2 others
to PE3. Data that flows to PE2 results intuples emitted to PE4
on compute node 130. And data tuples emitted by PE4 flow
to sink PE6 140. Similarly, data tuples flowing from PE3 to
PE5 also reach sink PE6 140. Thus, in addition to being a
sink for this example operator graph, PE6 could be configured
to perform a join operation, combining tuples received from
PE4 and PE5. This example operator graph also shows data
tuples flowing from PE3 to PE7 on compute node 130, which
itself shows data tuples flowing to PE8 and looping back to
PE7. Data tuples emitted from PE8 flow to PE9 on compute
node 130, which emits tuples processed by sink PE10 140.
0035 FIG. 2 is a more detailed view of the compute node
130 of FIGS. 1A-1B, according to one embodiment of the
invention. As shown, the compute node 130 includes, without
limitation, a central processing unit (CPU) 205, a network
interface 215, an interconnect 220, a memory 225, and stor
age 230. The compute node 130 may also include an I/O
devices interface 210 used to connect I/O devices 212 (e.g.,
keyboard, display and mouse devices) to the compute node
130.

0036. The CPU 205 retrieves and executes programming
instructions stored in the memory 225. Similarly, the CPU
205 stores and retrieves application data residing in the
memory 225. The interconnect 220 is used to transmit pro
gramming instructions and application data between the CPU
205, I/O devices interface 210, storage 230, network interface
215, and memory 225. CPU 205 is included to be represen
tative of a single CPU, multiple CPUs, a single CPU having
multiple processing cores, and the like. And the memory 225
is generally included to be representative of a random access
memory. Storage 230, such as a hard disk drive, solid state
device (SSD), or flash memory storage drive, may store non
volatile data.

0037. In this example, the memory 225 includes a fused
processing element (PE) 235, an un-fused PE245, a debugger
application 250, and stream connection data 255. The fused
PE 235 includes a collection of operators 240. As noted
above, each operator 240 may provide a small chunk of
executable code configured to process data flowing into a
processing element (e.g., PE 235) and to emit data to other
operators 240 in that PE and to other PEs in the stream
application. Such PEs may be on the same compute node 130
(e.g., un-fused PE 245) or on other compute nodes accessed
over the data communications network 120. The stream con
nection data 255 represents the connections between PEs on
compute node 130 (e.g., a TCP/IP socket connection between
the fused PE 240 and un-fused PE 245), as well as connec
tions to other compute nodes 130 with upstream and or down

May 31, 2012

stream PEs in the stream application, also via TCP/IP sockets
(or other inter-process data communication mechanisms).
0038 Buffered stream data 260 represents a storage space
for data flowing into the compute node 105 from upstream
processing elements (or from a data source for the stream
application). For example, buffered stream data may include
data tuples waiting to be processed by one of the PEs 240 or
245. Buffered stream data 260 may also store the results of
data processing performed by PEs 240 or 245 that will be sent
to downstream processing elements (or load shed).
0039. The debugger 250 provides a software application
configured to allow a developer to debug processing element
245 running on the compute node 130. For example, the
debugger 250 may be used to set breakpoints, to execute
instructions step into (or over) function calls in the instruc
tions, to inspect variables, etc., as well as provide a variety of
other functions and/or features used for debugging the pro
cessing element 245. In context of the present invention, the
debugger 250 may be configured to selectively fuse and un
fuse PEs (or otherwise modify a state of the stream applica
tion) to facilitate the debugging process. In one embodiment,
e.g., the debugger may fuse and un-fuse PEs as specified by
the developer. Alternatively, the debugger 250 may be con
figured to propose a stream state for debugging a given pro
cessing element (or elements). To do so, the debugger 250
may interact with a stream debugger on the management
system 130 to analyze an operator graph as well as a distri
bution of processing elements across a collection of compute
nodes 105 in order to determine how to modify the operator
graph associated with a stream application. In addition to
fusing and un-fusing processing elements, the debugger 250
may modify the running state of the stream application by,
e.g., halting (or limiting) data flows across a PE being
debugged, specifying data exempt from the debugging pro
cess, duplicating PES to create a debug copy of a PE, or
performing other actions to allow a processing element (or
elements) to be debugged.
0040 FIG. 3 is a more detailed view of the server comput
ing system 105 of FIG.1, according to one embodiment of the
invention. As shown, server computing system 105 includes,
without limitation, a central processing unit (CPU) 305, a
network interface 315, an interconnect 320, a memory 325,
and storage 330. The client system 130 may also include an
I/O device interface 310 connecting I/O devices 312 (e.g.,
keyboard, display and mouse devices) to the server comput
ing system 105.
0041. Like CPU 205 of FIG. 2, CPU 305 is configured to
retrieve and execute programming instructions stored in the
memory 325 and storage 330. Similarly, the CPU 305 is
configured to store and retrieve application data residing in
the memory 325 and storage 330. The interconnect 320 is
configured to move data, Such as programming instructions
and application data, between the CPU 305, I/O devices inter
face 310, storage unit 330, network interface 305, and
memory 325. Like CPU 205, CPU 305 is included to be
representative of a single CPU, multiple CPUs, a single CPU
having multiple processing cores, and the like. Memory 325
is generally included to be representative of a random access
memory. The network interface 315 is configured to transmit
data via the communications network 120. Although shown
as a single unit, the storage 330 may be a combination offixed
and/or removable storage devices, such as fixed disc drives,
removable memory cards, optical storage, SSD or flash

US 2012/01371 78 A1

memory devices, network attached storage (NAS), or connec
tions to storage area-network (SAN) devices.
0042. As shown, the memory 325 stores a stream debug
ger 335, a stream compiler 300 and a stream manager 132.
And the storage 330 includes the operator graph 134. As
noted above, the stream debugger may be used to manage the
debugging of a processing element (PE) on one (or more) of
the compute nodes 105. For example, the stream debugger
335 may determine that one processing node should be fused
(or un-fused) with other PEs. In such a case, the stream
debugger could determine (from the operator graph) that a
large group of PEs have been fused on one compute node—
but that debug breakpoints are included in only few of the
processing elements. In Such a case, the stream debugger 335
could decide to un-fuse the PEs with the breakpoints from the
larger group. In one embodiment, the stream debugger 335
un-fuses the PE by invoking the stream compiler 340 to
recompile elements of the PE/operator source code as needed.
In the current example, the PEs with breakpoints could be
recompiled into a first PE, and the remaining PEs (from the
fused PE) are recompiled into a second PE. Once prepared,
the stream manager 132 may remove the fused PE from the
running stream and replace it with the first and second PE
generated by the stream compiler 340. Thereafter, break
points in the first PE are hit, the first PE stops executing
without disrupting any processing performed by the second
PE.

0.043 FIG. 4 illustrates an example of compute nodes in a
stream application, according to one embodiment of the
invention. As shown, a fused processing element 405 on
compute node 130 includes three processing elements (la
beled PE1-PE3), which receives an N-tuple data stream and
emits an N-tuple to a processing element 410 (labeled PE4)
on compute node 130s. In this example, the fused processing
element 405 includes source PE 135 (labeled PE1), which
receives a tuple which includes <name, department, salary,
genderd. PE1 takes this N-tuple and generates one set of
tuples sent to PE2 and another set of tuples sent to PE3, based
on the gender value in a tuple received by PE1. In turn, PE2
and PE3 perform a database write for each tuple received
from PE1 and generate a tuple of <name, department, salary>
sent to PE4. Once received, PE4 accesses a third-party web
service and generates a tuple sent further downstream in the
stream application.
0044 FIG. 5 illustrates a method 500 for debugging a
processing element in a stream database application, accord
ing to one embodiment of the invention. As shown, the
method 500 begins at step 505, where a debugger application
receives an indication of a breakpoint for a processing ele
ment included in an operator graph of a stream application. At
step 510, the debugger application may identify a position of
the processing element in the operator graph, relative to other
processing elements. Based on the position, the debugger
application may determine to fuse (or un-fuse) processing
elements in the operator graph (step 515). Additionally, the
debugging application may make other changes to the opera
tion of the stream application, e.g., by duplicating a process
ing element with the breakpoint or exempting certain data
tuples (or data flows) from being debugged. Similarly, the
debugging application could specify that certain processing
elements should be blocked from sending (or receiving) data
tuples or should load shed the results of data processing
generated during a debugging session.

May 31, 2012

0045. At step 520, any PEs that has been fused or un-fused
may be restarted and deployed to the application stream (in
cluding the PE with the breakpoint). At step 525, once the PEs
are running in the application stream (and any other changes
the debugger selected to make to the stream application), the
operations of the PE under debug may be evaluated. For
example, the PE under debug may halt execution when a
breakpoint is triggered, allowing a developer to then execute
the PE in a step-wise manner by stepping into (or over)
function calls, to inspect variables and to perform any other
debugging functions to evaluate the processing element. At
the same time, data tuples continue to flow to the PE being
debugged and may be stored in a buffer. That is, tuples flow
ing to the PE being debugged may be buffered once a break
point is triggered until the PE resumes execution.
0046. At step 530, once the debugging session is com
plete, the debugging application may restore the state of the
stream application, undoing any changes made to Support the
debugging session. Accordingly, PES fused (or un-fused) as
part of the debugging session may be un-fused (or re-fused),
tuple flows may be restored or buffered data results may be
load shed, duplicated processing elements may be removed,
etc.

0047 FIG. 6-8 provide examples of the compute nodes
and stream application first shown in FIG. 4 modified to
illustrate scenarios for debugging the stream application,
according to embodiments of the invention. First, FIG. 6
illustrates an example of the fused processing element 405 of
FIG. 4 after being partially un-fused to allow one of the
processing elements to be debugged. Assume that a developer
adds one or more breakpoints in PE2. In such a case, the
debugger application could determine that PE2 can be
debugged independently from the processing performed by
PE1 and PE3 and un-fuse PE2 from the fused processing
element 405. Accordingly, as shown, fused PE 410 has been
modified to remove PE2, resulting in partially un-fused PE
405'. Additionally, PE2 is now executing as un-fused PE 605.
Running PE2 as an independent process allows PE2 to be
debugged without slowing down the application stream as
data tuples flow through partially un-fused PE 405'. At the
same time, the basic structure of the operator graph remains
unchanged; tuples still flow first to PE1, which generates
tuples sent to PE2 and PE3.
0048 Similarly, FIG. 7 illustrates an example of the pro
cessing element 410 of FIG. 4 after being fused with addi
tional PES. In this example, assume a user places a breakpoint
in PE4. In such a case, the debugger application could deter
mine that a downstream processing element (PE5) has a
dependency such that if PE4 stops executing PE5 should stop
executing as well. For example, PE5 may be configured to
receive data from PE4 regularly specified intervals. Given this
dependency, when the user inserts a breakpoint in PE4, the
debugger application may fuse PE4 and PE5 into a fused
processing element 410'. Doing so allows PE4 to be debugged
without disrupting the operations of PE5, as when the break
point is hit in PE4, the operations of both PE4 and PE5 stop
executing.
0049 FIG. 8 illustrates another example of modifying the
processing element 410 of FIG. 4. In this example, a user
again places a breakpoint in PE 410 (labeled PE4). However,
in this case assume that the debugger application determines
that debugging PE 410 should not disrupt data flowing
through the stream to PE 805 (labeled PE5). In such a case,
the debugger application could create debug clone 410' and

US 2012/01371 78 A1

insert it into the application stream. This result is shown in
FIG. 8, where the data flowing from PE405 is duplicated and
sent to both PE 410 and debug clone 410'. Thus, PE 410
continues to process the stream and emit tuples into the
stream received by the PE 805. At the same time, data flowing
from PE405 is also sent to debug clone 410 and outputs tuples
to a debug log. Doing so allows the debugger to run a debug
ging session for PE 410' without disrupting the application
Stream.

0050 Advantageously, embodiments of the invention
described above provide techniques for debugging a process
ing element (or elements) in a stream based application. In
particular, embodiments of the invention provide techniques
for debugging a processing element in a manner that reduces
the impact of debugging the processing element (or elements)
on the overall running environment by selectively fusing (or
un-fusing) processing elements running on a group of com
pute nodes. In addition to fusing and un-fusing processing
elements, a debugging application and stream manager may
modify data flows within the application stream in a variety of
ways to minimize any disruption resulting from a debugging
session.
0051. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0052 While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A method of debugging a stream application composed

from a plurality of processing elements executing on one or
more compute nodes, the method, comprising:

receiving an indication of a location for a debugging break
point in a first one of the plurality of processing ele
ments;

evaluating an operator graph to identify a position of the
first processing element, relative to one or more other
processing elements, of the plurality; and

modifying a state of the stream application to allow the first
processing element to be debugged; and

initiating a debug session for the first processing element.
2. The method of claim 1, wherein each processing element

executes as a computing process allocated a process ID (PID)
on a given one of the compute nodes.

May 31, 2012

3. The method of claim 1, wherein the first processing
element is configured to receive a first N-tuple, process the
first N-tuple, and generate a second N-tuple emitted to a
second processing element.

4. The method of claim 1, wherein modifying the state of
the stream application to allow the first processing element to
be debugged, comprises:

generating a debug clone of the first processing element;
inserting the breakpoint in the debug clone; and
inserting the debug clone into the stream application.
5. The method of claim 1, wherein modifying the state of

the stream application to allow the first processing element to
be debugged, comprises:

halting the execution of at least a second processing ele
ment;

generating a fused processing element from the first and
second processing elements;

inserting the breakpoint in the fused processing element;
and

inserting the fused processing element into the stream
application.

6. The method of claim 1, wherein the first processing
element is a fused processing element that includes the first
processing element and a second processing element, and
wherein modifying the state of the stream application to allow
the first processing element to be debugged, comprises:

halting the execution of the first processing element;
generating a first un-fused processing element that

includes the first processing element;
inserting the breakpoint in the first un-fused processing

element;
generating a first un-fused processing element that

includes at least the second processing element;
inserting the first and second un-fused processing elements

into the stream application.
7. The method of claim 1, further comprising:
following the debugging session, restoring the state of the

stream application.
8. A computer-readable storage medium containing a pro

gram which, when executed, performs an operation for
debugging a stream application composed from a plurality of
processing elements executing on one or more compute
nodes, the operation, comprising:

receiving an indication of a location for a debugging break
point in a first one of the plurality of processing ele
ments;

evaluating an operator graph to identify a position of the
first processing element, relative to one or more other
processing elements, of the plurality; and

modifying a state of the stream application to allow the first
processing element to be debugged; and

initiating a debug session for the first processing element.
9. The computer-readable storage medium of claim 8.

wherein each processing element executes as a computing
process allocated a process ID (PID) on a given one of the
compute nodes.

10. The computer-readable storage medium of claim 8.
wherein the first processing element is configured to receive
a first N-tuple, process the first N-tuple, and generate a second
N-tuple emitted to a second processing element.

11. The computer-readable storage medium of claim 8.
wherein modifying the state of the stream application to allow
the first processing element to be debugged, comprises:

US 2012/01371 78 A1

generating a debug clone of the first processing element;
inserting the breakpoint in the debug clone; and
inserting the debug clone into the stream application.
12. The computer-readable storage medium of claim 8,

wherein modifying the state of the stream application to allow
the first processing element to be debugged, comprises:

halting the execution of at least a second processing ele
ment;

generating a fused processing element from the first and
second processing elements;

inserting the breakpoint in the fused processing element;
and

inserting the fused processing element into the stream
application.

13. The computer-readable storage medium of claim 8,
wherein the first processing element is a fused processing
element that includes the first processing element and a sec
ond processing element, and wherein modifying the state of
the stream application to allow the first processing element to
be debugged, comprises:

halting the execution of the first processing element;
generating a first un-fused processing element that

includes the first processing element;
inserting the breakpoint in the first un-fused processing

element;
generating a first un-fused processing element that

includes at least the second processing element;
inserting the first and second un-fused processing elements

into the stream application.
14. The computer-readable storage medium of claim 8,

wherein the operation further comprises:
following the debugging session, restoring the State of the

stream application.
15. A system, comprising:
a plurality of compute nodes, each comprising a processor

and a memory, wherein the compute nodes are config
ured to execute processing elements of a stream appli
cation; and

a management system comprising at least a processor and
a memory, wherein the memory stores a stream debug
ging application, which, when executed on the manage
ment system, is configured to perform an operation for
debugging the stream application executing on the plu
rality of compute nodes, the operation, comprising:
receiving an indication of a location for a debugging

breakpoint in a first one of the plurality of processing
elements,

evaluating an operator graph to identify a position of the
first processing element, relative to one or more other
processing elements, of the plurality,

May 31, 2012

modifying a state of the stream application to allow the
first processing element to be debugged, and

initiating a debug session for the first processing ele
ment.

16. The system of claim 15, wherein each processing ele
ment executes as a computing process allocated a process ID
(PID) on a given one of the compute nodes.

17. The system of claim 15, wherein the first processing
element is configured to receive a first N-tuple, process the
first N-tuple, and generate a second N-tuple emitted to a
second processing element.

18. The system of claim 15, wherein modifying the state of
the stream application to allow the first processing element to
be debugged, comprises:

generating a debug clone of the first processing element;
inserting the breakpoint in the debug clone; and
inserting the debug clone into the stream application.
19. The system of claim 15, wherein modifying the state of

the stream application to allow the first processing element to
be debugged, comprises:

halting the execution of at least a second processing ele
ment;

generating a fused processing element from the first and
second processing elements;

inserting the breakpoint in the fused processing element;
and

inserting the fused processing element into the stream
application.

20. The system of claim 15, wherein the first processing
element is a fused processing element that includes the first
processing element and a second processing element, and
wherein modifying the state of the stream application to allow
the first processing element to be debugged, comprises:

halting the execution of the first processing element;
generating a first un-fused processing element that

includes the first processing element;
inserting the breakpoint in the first un-fused processing

element;
generating a first un-fused processing element that

includes at least the second processing element;
inserting the first and second un-fused processing elements

into the stream application.
21. The system of claim 15, wherein the operation further

comprises:
following the debugging session, restoring the state of the

stream application.

