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INTERPRETABLE KALMAN FILTER COMPRISING NEURAL NETWORK
COMPONENT(S) FOR AUTONOMOUS VEHICLES
RELATED APPLICATION
[0001] This PCT international application claims the benefit of priority of U.S. Patent Application
No. 17/896,778, filed August 26, 2022, the entirety of which is incorporated by reference herein for
all purposes.
BACKGROUND

[0002] Autonomous vehicles may use sensors to capture data regarding an environment through
which the autonomous vehicles traverse. Autonomous vehicles use this sensor data to detect objects in
the environment to avoid collisions. However, sensors are not perfectly accurate and/or precise all the
time and may even output large measurement errors, at times, which can put systems that rely on the
sensors at risk. Moreover, methods of dealing with such errors may reduce or eliminate the ability to

preserve the human interpretability of such methods.

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] The detailed description is described with reference to the accompanying figures. In the
figures, the left-most digit(s) of a reference number identify the figure in which the reference number
first appears. The same reference numbers in different figures indicate similar or identical items.
[0004] FIG. 1 illustrates an example scenario in which an autonomous vehicle uses two Kalman
filters with interpretable components that improve the Kalman filters’ operations for different
operations on the vehicle. A first Kalman filter may use the techniques discussed herein to determine
an estimated speed of the autonomous vehicle and a second Kalman filter may determine an estimated
object position and/or velocity.
[0005] FIG. 2 illustrates a block diagram of an example system comprising a Kalman filter
comprising the interpretable components that realize the improvements discussed herein.
[0006] FIG. 3A illustrates a block diagram of a motion model of a Kalman filter where the motion
model includes a state transition model and a neural network to account for unknown and/or undefined
control signal(s) for an autonomous vehicle.
[0007] FIG. 3B illustrates a block diagram of a neural network included in a Kalman filter to alter
a measurement to account for sensor bias.
[0008] FIG. 4 illustrates a block diagram of a Kalman filter architecture modified according to the
discussion herein.
[0009] FIG. 5A illustratcs a block diagram of an cnscmblc of ncural nctworks included in a Kalman

filter to determine a more accurate predicted measurement based at least in part on sensor type.
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[0010] FIG. 5B illustrates a block diagram of an ensemble of neural network included in a Kalman
filter to determine a more accurate gain based at least in part on sensor type.

[0011] FIG. 5C illustrates a block diagram of a set of Kalman filter blocks that can each
independently determine a state estimate and where the resultant state estimates may be fused to
determine a more accurate state estimate.

[0012] FIGS. 6 and 7 illustrate flow diagram of example processes for determining an estimated

state using a Kalman filter comprising various neural network architectures.

DETAILED DESCRIPTION

[0013] As discussed above, sensors may not always perform perfectly, due to limitations of sensor
design, environmental interferences (e.g., cloud cover, solar glare, humid conditions, seismic activity),
and/or adverse sensor conditions, such as overheating, broken parts, wear and tear, or the like. At times,
errors in sensor output may be extreme enough to negatively impact systems that rely thereon, such as
an autonomous vehicle, which may include systems that use sensor data to determine what is in the
environment surrounding the autonomous vehicle and how to navigate. This application relates to
techniques for minimizing the impact of such errors. Examples described herein apply to Kalman filters,
in particular.

[0014] A Kalman filter is a hardware and/or software system that can account for bounds of a
sensor’s ability to measure noise from the sensor and/or other variables in determining an estimated
state based on a measurement output by the sensor. For example, the sensor could be a wheel speed
sensor, which outputs a value indicative of a number of times a vehicle wheel has turned within a time
period. The number of times measured may have an error associated with it due to inaccuracies and/or
limitations of the wheel speed sensor, noise (e.g., various interference in the environment and/or in the
sensor), efc. A Kalman filter can be designed to estimate an uncertainty associated with the
measurement and use that estimated uncertainty to account for potential errors in the measurement. The
Kalman filter then can determine an estimated state using the uncertainty, which may functionally result
in an estimated state that is slightly different than the measurement would indicate. Returning to the
wheel speed sensor example, the measurement might indicate a certain number of revolutions and it
would be expected that the certain number of revolutions would result in a vehicle speed of 10 miles
per hour, for example, but the Kalman filter’s estimate of the vehicle speed may be 9.8 miles per hour
after accounting for the uncertainty associated with the measurement.

[0015] A Kalman filter’s estimate of the uncertainty associated with a measurement can be based
on predicting a next statc of the system and dctermining how good the prediction was using a next

measurement once it is received. For controlled systems, such as a wheel that is being controlled by an
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autonomous vehicle system, the Kalman filter may factor in the controls. Although, in some examples,
the control instructions for controlling the autonomous vehicle system may be unavailable or corrupted,
which may degrade the accuracy of the Kalman filter. Returning to the wheel encoder example, the
Kalman filter may predict a vehicle speed at a next time step (e.g., 0.1 seconds in the future, 0.2 seconds
in the future, 0.5 seconds in the future, 1 second in the future), based on the current uncertainties
associated with the currently estimated vehicle speed. A measurement may come in at that next time
step and the Kalman filter may determine how closely the predicted vehicle speed matches the vehicle
speed that the measurement seems to indicate. The Kalman filter can use the difference between the
predicted vehicle speed and the measured vehicle speed (i.e., the vehicle speed that the measurement
scems to indicate) to update the uncertainty associated with the sensor. The larger the difference
between the prediction and the actual state, the greater the uncertainty .

[0016] If the measurement includes a large amount of error, the difference between the prediction
and the state the measurement seems to indicate will also be large and the updated uncertainty that the
Kalman filter determines will also grow. This increase in uncertainty can destabilize the system and
cause the estimated states output by the Kalman filter to be less accurate and/or precise. Bias in the
measurcment, introduced by skew in the sensor data (which may be introduced by drift in calibration
or other natural causes in the sensor itself) may cause the system to be destabilized or destabilized
sooner.

[0017] The techniques discussed herein include one or more neural networks that replace or
augment portions of a Kalman filter to remedy various deficiencies of Kalman filters. For example, a
Kalman filter may assume zero-mean Gaussian noise, both for the measurement and the motion model.
This is unlikely to realistically be the case and may cause inaccuracy of the Kalman filter. Moreover,
the measurement covariance is very difficult to determine for a single sensor and even more difficult
when multiple sensors and multiple sensor types are involved, as in an autonomous vehicle system.
Even if the noise profiles for different types of sensors was Gaussian, which is unlikely, the properties
of the different types of noise experienced by those sensors would be completely different. Moreover,
fusion of noise estimations is difficult, causing over- and under-segmentation of the sensor data.
[0018] The techniques include a reconfiguration of a Kalman filter that accounts for these
unaddressed issues and maintains the human interpretability of the outputs of the intermediate
components of the Kalman filter, which is not typical for neural network components. The techniques
discussed herein may improve the accuracy and/or precision of a Kalman filter, protect accuracy of the
Kalman filter from bias or errors in sensor output, and may improve the predictions of the Kalman
filtcr. Additionally, the techniques may improve the safcty and/or cfficacy of an autonomous vchicle.

For example, the techniques discussed herein may allow the autonomous vehicle to determine its own
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speed more accurately, track other objects more accurately (such as by determining a position and/or
velocity of an object more accurately), and/or predict other objects’ future actions more accurately

(such as by predicting a future position and/or future velocity of an object more accurately).

EXAMPLE SCENARIO

[0019] FIG. 1 illustrates an example scenario 100 including a vehicle 102. In some instances, the
vehicle 102 may be an autonomous vehicle configured to operate according to a Level 5 classification
issued by the U.S. National Highway Traffic Safety Administration, which describes a vehicle capable
of performing all safety-critical functions for the entire trip, with the driver (or occupant) not being
expected to control the vehicle at any time. However, in other examples, the vehicle 102 may be a fully
or partially autonomous vehicle having any other level or classification. It is contemplated that the
techniques discussed herein may apply to more than robotic control, such as for autonomous vehicles.
For example, the techniques discussed herein may be applied to mining, manufacturing, augmented
reality, efc. Moreover, even though the vehicle 102 is depicted as a land vehicle, vehicle 102 may be a
spacecraft, watercraft, and/or the like. In some examples, vehicle 102 may be represented in a
simulation as a simulated vehicle. For simplicity, the discussion herein does not distinguish between a
simulated vehicle and a real-world vehicle. References to a “vehicle” may therefore reference a
simulated and/or a real-world vehicle.

[0020] According to the techniques discussed herein, the vehicle 102 may receive sensor data from
sensor(s) 104 of the vehicle 102. For example, the sensor(s) 104 may include a location sensor (e.g., a
global positioning system (GPS) sensor), an inertia sensor (e.g., an accelerometer sensor, a gyroscope
sensor, efc.), a magnetic ficld sensor (e.g., a compass), a position/velocity/acceleration sensor (e.g., a
speedometer, a drive system sensor), a depth position sensor (e.g., a lidar sensor, a radar sensor, a sonar
sensor, a time of flight (ToF) camera, a depth camera, an ultrasonic and/or sonar sensor, and/or other
depth-sensing sensor), an image sensor (e.g., a camera), an audio sensor (e.g., a microphone), and/or
environmental sensor (e.g., a barometer, a hygrometer, efc.).

[0021] In at least one example, a sensor may generate sensor data 106 in association with a time,
which may be referred to herein as a time step — a reference to a discrete point in time that is indexed
by time steps. Sensor data may be generated at intervals between time steps, such as 5 milliseconds, 10
milliseconds, 20 milliseconds, 100 milliseconds. 250 milliseconds, 0.5 seconds, 1 second, 2 seconds, 5
seconds, or any other time interval. In some examples, the frequency of the time steps may be based at
least in part on sensor output, a digital signal processing component, and/or a computing and/or time-

keeping component of the vehicle 102. Each time step of scnsor data may include a measurcment that
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will depend on the sensor type. For example, radar, sonar, and/or lidar sensors may output a time
between a signal emission and a return; an accelerometer may output a

[0022] In some examples, the autonomous vehicle 102 may include computing device(s) 108 that
may include a perception component 110 and/or a planning component 112, all or some of which may
receive sensor data 106 from sensor(s) 104. The sensor(s) 104 may generate sensor data, which may be
received by computing device(s) 108. However, in other examples, some or all of the sensor(s) 104
and/or computing device(s) 108 may be separate from and/or disposed remotely from the vehicle 102
and data capture, processing, commands, and/or controls may be communicated to/from the vehicle 102
by one or more remote computing devices via wired and/or wireless networks.

[0023] In general, the perception component 110 may determine what is in the environment
surrounding the autonomous vehicle 102 and the planning component 112 may determine how to
operate the autonomous vehicle 102 according to information received from the perception
component 110 regarding the environment. The perception component 110 may include one or more
ML models and/or other computer-executable instructions for detecting, identifying, segmenting,
classifying, and/or tracking objects from sensor data collected from the environment of the autonomous
vehicle 102.

[0024] Although a Kalman filter may be used in any of a number of different components of the
autonomous vehicle in addition to or instead of the perception component 110 and/or the planning
component 112, for the sake of brevity the function of two Kalman filters are discussed in regard to
FIG. 1 as part of the perception component 110.

[0025] A first Kalman filter 114 may receive a first type of sensor data from the sensor(s) 104. For
example, the first Kalman filter 114 may receive wheel encoder signals indicating a number of times
that a motor associated with a wheel has rotated, a float value representing a torque from a torque
sensor, or the like. Using the techniques discussed herein, the Kalman filter 114 may determine an
estimated state 116 based on a measurement indicated in the sensor data. The particular Kalman
filter 114 1n this instance may determine a vehicle speed as the estimated state 116 using wheel encoder
and/or torque sensor measurements. In other words, the measurement in such a case may be a number
of times a wheel turned and the estimated state 116 may be a vehicle speed.

[0026] To give another example, a second Kalman filter 118 may receive a second type of sensor
data from the sensor(s) 104. Such sensor data may include an image, lidar and/or radar data, or the like
(i.e., raw sensor data), and/or perception data generation by the perception component, such as an object
detection, region of interest (ROI) (e.g., a bounding box, a mask), semantic segmentation, instance
scgmentation, point cloud scgmentation, and/or the like, as discussced in morc detail in U.S. Patent

Application No. 16/386,249, filed April 16, 2019, the entirety of which is incorporated herein by
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reference for all purposes; and U.S. Patent Application No. 16/866,839, filed May 05, 2020, the entirety
of which 1s incorporated herein by reference for all purposes. The Kalman filter 118 may use such data
to determine an estimated state 120 that indicates a predicted position, heading, velocity, acceleration,
or the like of a detected object, such as vehicle 122. In some examples, the prediction may be indicated
in a sensor space (e.g., the estimated state may indicate an estimated position of an object within a
camera frame) and/or the prediction may be indicated in coordinates associated with a representation
of the real-world. In an additional or alternate example, the estimated state 120 determined by the
Kalman filter 118 may indicate a current position, heading, velocity, acceleration, or the like of a
detected object. Regardless, the current and/or predicted state associated with a detected object may be
used by a tracking component 124 that creates, maintains, and/or retires tracks associated with objects.
[0027] The tracking component 124 may receive one or more environment representations and/or
object detections from respective perception pipelines (e.g., vision pipeline, lidar pipeline, hybrid
vision-lidar pipeline, radar pipeline, hybrid vision-lidar-radar pipeline, and/or the like) and determine
whether or not to associate a formerly generated track with a current object detection or to generate a
new track in association with a current object detection. The tracking component 124 may additionally
or alternatively determine a final environment representation and/or an estimated object detection that
may act as a summary of the different object detections. The tracking component 124 may use the
estimated state 120 to determine whether or not to associate an object detection with a track. For
example, the tracking component 124 may use the predicted position and/or heading and/or the Kalman
filter’s estimate of the current position of the detected object to determine whether such data
corresponds with a track indicating previous positions, headings, efc. of a detected object. For example,
the tracking component 124 may determine whether a previously predicted position/heading predicted
by the Kalman filter 118 corresponds with a current position/heading output by the Kalman filter 118.
[0028] Ultimately, the tracking component 124 may output a track in association with a detected
object, such as vehicle 122. In some examples, the track may associate a current object detection with
one or more previous object detections and/or may indicate data related thereto, such as a velocity,
acceleration, heading, object classification, unique identifier, occlusion status (e.g., whether the object
is currently/previously occluded partially or totally from one or more sensors). In another example
where the track is determined to be associated with an object that has newly been detected, the current
object detection may be the only object detection associated with the track.

[0029] The planning component 112 may use the perception data received from perception
component 110, such as estimated state 116, estimated state 120, and/or a track from the tracking
component 124, to detcrmine onc or morc trajectorics, control motion of the vehicle 102 to traverse a

path or route, and/or otherwise control operation of the vehicle 102, though any such operation may be
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performed in various other components (e.g., localization may be performed by a localization
component, which may be based at least in part on perception data). For example, the planning
component 112 may determine a route for the vehicle 102 from a first location to a second location;
gencrate, substantially simultancously and based at least in part on the perception data and/or simulated
perception data (which may further include predictions regarding detected objects in such data), a
plurality of potential trajectories for controlling motion of the vehicle 102 in accordance with a receding
horizon technique (e.g., 1 micro-second, 100 milliseconds, half a second, 6 seconds, any other number)
to control the vehicle to traverse the route (e.g., in order to avoid any of the detected objects); and select
one of the potential trajectories as a trajectory 126 that may be used to generate a drive control signal
that may be transmitted to drive components of the vehicle 102. FIG. 1 depicts an example of such a
trajectory 126, represented as an arrow indicating a heading, velocity, and/or acceleration, although the
trajectory itself may comprise instructions for controller(s) of the vehicle 102, which may, in tum,

actuate a drive system of the vehicle 102.

EXAMPLE SYSTEM

[0030] FIG. 2 illustrates a block diagram of an example system 200 that implements the techniques
discussed herein. In some instances, the example system 200 may include a vehicle 202, which may
represent the vehicle 102 in FIG. 1. In some instances, the vehicle 202 may be an autonomous vehicle
configured to operate according to a Level 5 classification issued by the U.S. National Highway Traffic
Safety Administration, which describes a vehicle capable of performing all safety-critical functions for
the entire trip, with the driver (or occupant) not being expected to control the vehicle at any time.
However, in other examples, the vehicle 202 may be a fully or partially autonomous vehicle having any
other level or classification. Moreover, in some instances, the techniques described herein may be
usable by non-autonomous vehicles as well.

[0031] The wvehicle 202 may include a wvehicle computing device(s) 204, sensor(s) 206,
emitter(s) 208, network interface(s) 210, and/or drive component(s) 212. Vehicle computing
device(s) 204 may represent computing device(s) 108 and sensor(s) 206 may represent sensor(s) 104,
The system 200 may additionally or alternatively comprise computing device(s) 214.

[0032] In some instances, the sensor(s) 206 may represent sensor(s) 104 and may include lidar
sensors, radar sensors, ultrasonic transducers, sonar sensors, location sensors (e.g., global positioning
system (GPS), compass, efc.), inertial sensors (e.g., inertial measurement units (IMUs), accelerometers,
magnetometers, gyroscopes, efc.), image sensors (e.g., red-green-blue (RGB), infrared (IR), intensity,
depth, timc of flight camcras, efc.), microphoncs, wheel cncoders, cnvironment scnsors (e.g.,

thermometer, hygrometer, light sensors, pressure sensors, efc.), efc. The sensor(s) 206 may include
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multiple instances of each of these or other types of sensors. For instance, the radar sensors may include
individual radar sensors located at the corners, front, back, sides, and/or top of the vehicle 202. As
another example, the cameras may include multiple cameras disposed at various locations about the
exterior and/or interior of the vehicle 202. The sensor(s) 206 may provide input to the vchicle
computing device(s) 204 and/or to computing device(s) 214.

[0033] The vehicle 202 may also include emitter(s) 208 for emitting light and/or sound, as
described above. The emitter(s) 208 in this example may include interior audio and visual emitter(s) to
communicate with passengers of the vehicle 202. By way of example and not limitation, interior
emitter(s) may include speakers, lights, signs, display screens, touch screens, haptic emitter(s) (e.g.,
vibration and/or force feedback), mechanical actuators (e.g., scatbelt tensioners, scat positioners,
headrest positioners, erc.), and the like. The emitter(s) 208 in this example may also include exterior
emitter(s). By way of example and not limitation, the exterior emitter(s) in this example include lights
to signal a direction of travel or other indicator of vehicle action (e.g., indicator lights, signs, light
arrays, efc.), and one or more audio emitter(s) (e.g., speakers, speaker arrays, horns, efc.) to audibly
communicate with pedestrians or other nearby vehicles, one or more of which comprising acoustic
beam steering technology.

[0034] The vehicle 202 may also include network interface(s) 210 that enable communication
between the vehicle 202 and one or more other local or remote computing device(s). For instance, the
network interface(s) 210 may facilitate communication with other local computing device(s) on the
vehicle 202 and/or the drive component(s) 212. Also, the network interface(s) 210 may additionally or
alternatively allow the vehicle to communicate with other nearby computing device(s) (e.g., other
ncarby vehicles, traffic signals, efc.). The network interface(s) 210 may additionally or alternatively
cnable the vehicle 202 to communicate with computing device(s) 214. In some examples, computing
device(s) 214 may comprise one or more nodes of a distributed computing system (e.g., a cloud
computing architecture).

[0035] The network interface(s) 210 may include physical and/or logical interfaces for connecting
the vehicle computing device(s) 204 to another computing device or a network, such as network(s) 216.
For example, the network interface(s) 210 may enable Wi-Fi-based communication such as via
frequencies defined by the IEEE 200.11 standards, short range wireless frequencies such as
Bluetooth®, cellular communication (e.g., 2G, 3G, 4G, 4G LTE, 3G, efc.) or any suitable wired or
wireless communications protocol that enables the respective computing device to interface with the
other computing device(s). In some instances, the vehicle computing device(s) 204 and/or the
scnsor(s) 206 may scnd scnsor data, via the nctwork(s) 216, to thc computing device(s) 214 at a

particular frequency, after a lapse of a predetermined period of time, in near real-time, efc.
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[0036] In some instances, the vehicle 202 may include one or more drive components 212. In some
mstances, the vehicle 202 may have a single drive component 212. In some instances, the drive
component(s) 212 may include one or more sensors to detect conditions of the drive component(s) 212
and/or the surroundings of the vehicle 202. By way of example and not limitation, the sensor(s) of the
drive component(s) 212 may include one or more wheel encoders (e.g., rotary encoders) to sense
rotation of the wheels of the drive components, inertial sensors (e.g., inertial measurement units,
accelerometers, gyroscopes, magnetometers, efc.) to measure orientation and acceleration of the drive
component, cameras or other image sensors, ultrasonic sensors to acoustically detect objects in the
surroundings of the drive component, lidar sensors, radar sensors, efc. Some sensors, such as the wheel
encoders may be unique to the drive component(s) 212. In some cases, the sensor(s) on the drive
component(s) 212 may overlap or supplement corresponding systems of the vehicle 202 (e.g.,
sensor(s) 206).

[0037] The drive component(s) 212 may include many of the vehicle systems, including a high
voltage battery, a motor to propel the vehicle, an inverter to convert direct current from the battery into
alternating current for use by other vehicle systems, a steering system including a steering motor and
steering rack (which may be electric), a braking system including hydraulic or clectric actuators, a
suspension system including hydraulic and/or pneumatic components, a stability control system for
distributing brake forces to mitigate loss of traction and maintain control, an HVAC system, lighting
(e.g., lighting such as head/tail lights to illuminate an exterior surrounding of the vehicle), and one or
more other systems (e.g., cooling system, safety systems, onboard charging system, other electrical
components such as a DC/DC converter, a high voltage junction, a high voltage cable, charging system,
charge port, efc.). Additionally, the drive component(s) 212 may include a drive component controller
which may receive and preprocess data from the sensor(s) and to control operation of the various
vehicle systems. In some instances, the drive component controller may include one or more processors
and memory communicatively coupled with the one or more processors. The memory may store one or
more components to perform various functionalities of the drive component(s) 212. Furthermore, the
drive component(s) 212 may also include one or more communication connection(s) that enable
communication by the respective drive component with one or more other local or remote computing
device(s).

[0038] The vehicle computing device(s) 204 may include processor(s) 218 and memory 220
communicatively coupled with the one or more processors 218. Computing device(s) 214 may also
include processor(s) 222, and/or memory 224. The processor(s) 218 and/or 222 may be any suitable
proccssor capablc of cxccuting instructions to process data and perform opcrations as described hercin.,

By way of example and not limitation, the processor(s) 218 and/or 222 may comprise one or more
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central processing units (CPUs), graphics processing units (GPUs), integrated circuits (e.g.,
application-specific integrated circuits (ASICs)), gate arrays (e.g., field-programmable gate arrays
(FPGAs)), and/or any other device or portion of a device that processes electronic data to transform
that clectronic data into other clectronic data that may be stored in registers and/or memory.

[0039] Memory 220 and/or 224 may be examples of non-transitory computer-readable media. The
memory 220 and/or 224 may store an operating system and one or more software applications,
instructions, programs, and/or data to implement the methods described herein and the functions
attributed to the various systems. In various implementations, the memory may be implemented using
any suitable memory technology, such as static random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any other type of memory capable of storing
information. The architectures, systems, and individual elements described herein may include many
other logical, programmatic, and physical components, of which those shown in the accompanying
figures are merely examples that are related to the discussion herein.

[0040] In some stances, the memory 220 and/or memory 224 may store a localization
component 226, perception component 228, planning component 230, Kalman filter 232 and/or system
controller(s) 236. Perception component 228 may represent perception component 110, planning
component 230 may represent planning component 112, and/or Kalman filter 232 may represent
Kalman filter 114 and/or 118. The memory 220 may additionally or alternatively comprise map(s),
which are unillustrated.

[0041] In at least one example, the localization component 226 may include hardware and/or
software to receive data from the sensor(s) 206 to determine a position, velocity, and/or orientation of
the vehicle 202 (c.g., onc or more of an x-, y-, z-position, roll, pitch, or yaw). For example, the
localization component 226 may include and/or request/receive map(s) of an environment and can
continuously determine a location, velocity, and/or orientation of the autonomous vehicle within the
map(s). In some instances, the localization component 226 may utilize SLAM (simultancous
localization and mapping), CLAMS (calibration, localization and mapping, simultaneously), relative
SLAM, bundle adjustment, non-linear least squares optimization, and/or the like to receive image data,
lidar data, radar data, IMU data, GPS data, wheel encoder data, and the like to accurately determine a
location, pose, and/or velocity of the autonomous vehicle. In some instances, the localization
component 226 may provide data to various components of the vehicle 202 to determine an initial
position of an autonomous vehicle for generating a trajectory and/or for generating map data, as
discussed herein. In some examples, localization component 226 may provide, to the tracking
component 234, a location and/or oricntation of the vchicle 202 relative to the cnvironment and/or

sensor data associated therewith.
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[0042] In some instances, perception component 228 may comprise a primary perception system
and/or a prediction system implemented in hardware and/or software. The perception component 228
may comprise one or more perception pipelines that may detect object(s) in in an environment
surrounding the vehicle 202 (e.g., identify that an object exists), classify the object(s) (e.g., determine
an object type associated with a detected object), segment sensor data and/or other representations of
the environment (e.g., identify a portion of the sensor data and/or representation of the environment as
being associated with a detected object and/or an object type), determine characteristics associated with
an object (e.g., atrack identifying current, predicted, and/or previous position, heading, velocity, and/or
acceleration associated with an object), and/or the like. Data determined by the perception
component 228 is referred to as perception data.

[0043] The planning component 230 may receive a location and/or orientation of the vehicle 202
from the localization component 226 and/or perception data from the perception component 228 and
may determine instructions for controlling operation of the vehicle 202 based at least in part on any of
this data. In some examples, determining the instructions may comprise determining the instructions
based at least in part on a format associated with a system with which the instructions are associated
(e.g., first instructions for controlling motion of the autonomous vehicle may be formatted in a first
format of messages and/or signals (e.g., analog, digital, pneumatic, kinematic) that the system
controller(s) 236 and/or drive component(s) 212 may parse/cause to be carried out, second instructions
for the emitter(s) 208 may be formatted according to a second format associated therewith).

[0044] Any of the components discussed, including any component associated with a sensor and/or
that generates data based on a sensor, such as localization component 226, perception component 228,
planning component 230, and/or system controller(s) 236 may comprise a Kalman filter 232 that
functions as described herein. In some examples, the Kalman filter 232 may include a simple Kalman
filter, a Kalman-Bucy filter, an extended Kalman filter (EKF), and/or the like, including the additional
and alternate components discussed herein. The Kalman filter 232 may be implemented in hardware,
software, and/or a combination thereof (e.g., a field-programmable gate array (FPGA) or the like).
[0045] The memory 220 and/or 224 may additionally or alternatively store a mapping system (e.g.,
gencrating a map based at least in part on sensor data), a planning system, a ride management system,
efc. Although localization component 226, perception component 228, planning component 230,
Kalman filter 232, and/or system controller(s) 236 are illustrated as being stored in memory 220, any
of these components may include processor-executable instructions, machine-learned model(s) (e.g., a
neural network), and/or hardware and all or part of any of these components may be stored on

memory 224 or configurcd as part of computing device(s) 214.

11



WO 2024/044032 PCT/US2023/029551

[0046] As described herein, the localization component 226, the perception component 228, the
planning component 230, and/or other components of the system 200 may comprise one or more ML
models. For example, the localization component 226, the perception component 228 and/or the
planning component 230 may cach comprise different ML model pipelines. In some examples, an ML
model may comprise a neural network. An exemplary neural network is a biologically inspired
algorithm which passes input data through a series of connected layers to produce an output. Each layer
in a neural network can also comprise another neural network, or can comprise any number of layers
(whether convolutional or not). As can be understood in the context of this disclosure, a neural network
can utilize machine-learning, which can refer to a broad class of such algorithms in which an output is
generated based on learmned parameters.

[0047] Although discussed in the context of neural networks, any type of machine-leaming can be
used consistent with this disclosure. For example, machine-leaming algorithms can include, but are not
limited to, regression algorithms (e.g., ordinary least squares regression (OLSR), linear regression,
logistic regression, stepwise regression, multivariate adaptive regression splines (MARS), locally
estimated scatterplot smoothing (LOESS)), instance-based algorithms (e.g., ridge regression, least
absolute shrinkage and sclection operator (LASSO), clastic net, least-angle regression (LARS)),
decisions tree algorithms (e.g., classification and regression tree (CART), iterative dichotomiser 3
(ID3), Chi-squared automatic interaction detection (CHAID), decision stump, conditional decision
trees), Bayesian algorithms (e.g., naive Bayes, Gaussian naive Bayes, multinomial naive Bayes,
average one-dependence estimators (AODE), Bayesian belief network (BNN), Bayesian networks),
clustering algorithms (e.g., k-means, k-medians, expectation maximization (EM), hierarchical
clustering), association rule learning algorithms (e.g., perceptron, back-propagation, hopfield network,
Radial Basis Function Network (RBFN)), deep learning algorithms (e.g., Deep Boltzmann Machine
(DBM), Deep Belief Networks (DBN), Convolutional Neural Network (CNN), Stacked Auto-
Encoders), Dimensionality Reduction Algorithms (e.g., Principal Component Analysis (PCA),
Principal Component Regression (PCR), Partial Least Squares Regression (PLSR), Sammon Mapping,
Multidimensional Scaling (MDS), Projection Pursuit, Linear Discriminant Analysis (LDA),
Mixture Discriminant Analysis (MDA), Quadratic Discriminant Analysis (QDA),
Flexible Discriminant Analysis (FDA)), Ensemble Algorithms (e.g., Boosting, Bootstrapped
Aggregation (Bagging), AdaBoost, Stacked Generalization (blending), Gradient Boosting Machines
(GBM), Gradient Boosted Regression Trees (GBRT), Random Forest), SVM (support vector machine),
supervised learning, unsupervised learning, semi-supervised learning, etc. Additional examples of
architccturcs include ncural nctworks such as ResNet-50, ResNet-101, VGG, DensceNcet, PointNct,

Xception, ConvNeXt, and the like or visual transformer(s) (ViT(s)), such as a bidirectional encoder
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from image transformers (BEiT), visual bidirectional encoder from transformers (VisualBERT), image
generative pre-trained transformer (Image GPT), data-efficient image transformers (DeiT), deeper
vision transformer (DeepViT), convolutional vision transformer (CvT), detection transformer (DETR),
Miti-DETR, or the like. and the like. In some examples, the ML model discussed herein may comprise
PointPillars, SECOND, top-down feature layers (e.g., sece U.S Patent Application No. 15/963,833,
which is incorporated by reference in its entirety herein for all purposes), and/or VoxelNet. Architecture
latency optimizations may include MobilenetV2, Shufflenet, Channelnet, Peleenet, and/or the like. The
ML model may comprise a residual block such as Pixor, in some examples.

[0048] Memory 220 may additionally or alternatively store one or more system controller(s) 236,
which may be configured to control steering, propulsion, braking, safety, emitters, communication, and
other systems of the vehicle 202. These system controller(s) 236 may communicate with and/or control
corresponding systems of the drive component(s) 212 and/or other components of the vehicle 202. For
example, the planning component 230 may generate instructions based at least in part on perception
data generated by the perception component 228, and may validate and the perception data /or transmit
the instructions to the system controller(s) 236. The system controller(s) 236 may control operation of
the vehicle 202 based at least in part on the instructions received from the planning component 230.
[0049] It should be noted that while FIG. 2 is illustrated as a distributed system, in alternative
examples, components of the vehicle 202 may be associated with the computing device(s) 214 and/or
components of the computing device(s) 214 may be associated with the vehicle 202. That is, the
vehicle 202 may perform one or more of the functions associated with the computing device(s) 214,

and vice versa.

EXAMPLE KALMAN FILTER COMPONENTS

[0050] FIG. 3A illustrates a block diagram of a motion model 300 of a Kalman filter where the
motion model includes a state transition model 302 and a neural network 304 to account for unknown
and/or undefined control signal(s) for an autonomous vehicle. The Kalman filter may comprise
hardware and/or software for accomplishing a prediction operation and an update operation to
ultimately determine an estimated state of a system or object. For example, the estimated state may
indicate a state of a system, such as an autonomous vehicle’s position, heading, speed, acceleration, or
the like or an object’s position, heading, speed, acceleration, and/or the like, the difference
predominantly being what the Kalman filter is being used to estimate, as discussed above in reference
to FIG. 1. In some examples, the estimated state ultimately output by the Kalman filter may indicate a
currcnt and/or futurc statc of the system or objcct. Hercinafter, the discussion predominantly references

a state of an object, although it is understood that, depending on where the Kalman filter is implemented
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in the computing device(s) of the autonomous vehicle, the Kalman filter may determine a state of a
system of the autonomous vehicle itself, instead of an external object, such as for tracking vehicle 122
in the example given in FIG. 1.
[0051] Regardless, the motion model 300 may be implemented as hardware and/or software as part
of a prediction operation of the Kalman filter. The Kalman filter may receive a prior predicted state 306,
X—1k—1, and/or prior uncertainty 308, Py_y,_q. If this if the first time step, no such priors may exist,
so an initialization state and/or initialization uncertainty may be used. Such mitialization values may
be based at least in part on the sensor data received from one or more sensors and/or stored values
retrieved by the Kalman filter. In some examples, the prior predicted state (and/or the preliminary
predicted state and/or predicted state) may include a matrix or tensor, meaning that the state may be
multi-dimensional and/or multiple states may be determined. In an additional or alternate example, such
as for estimating a state for a system of the vehicle the state may be a single value. In some examples,
the uncertainty may be a single value or a matrix or tensor when the state is also a matrix or tensor. The
uncertainty may include a covariance or field of covariances.
[0052] The motion model 300 may determine a preliminary predicted state 310, Xy 1, by the state
transition model 302 according to:

Rijk—1 = FXp—qjx-1 + BrUg 6y
where k is the &-th time tick, F is the state transition model 302, U is a control/input variable (if any,
depending on what system is being monitored, and/or if any is available, which it may not be) (i.e., a
measurable (deterministic) input to the system, such as steering commands, applied torque) B is a
control/input transition matrix mapping control to state variables. In some examples, F, the state
transition model 302, may be a model of a linear or nonlinear dynamic system, such as a transfer
function. In other words, the Kalman filter uses a model of the system for which a state estimation is
being generated to predict, using a previous state of the system and/or any controls provided to the
system (if the system is a controlled system) to predict a next state of the system. This may be prediction
of a next state of a system of the autonomous vehicle or a prediction of a next state of an object being
tracked by the autonomous vehicle, for example.
[0053] However, in some examples, the controls, B, may be unavailable, corrupted (e.g., due to a
softwarc back, such as a stack overflow or the likc), or the likc. For cxample, the Kalman filtcr may
exist at a point in the autonomous vehicle’s computing pipeline where such controls have not yet been
determined by the autonomous vehicle hardware and/or software. In such an instance, the motion
model 300 may further comprise a neural network 304 that may be trained based at least in part on a

data set that maps prior predicted states and/or prior uncertainties to the controls that the autonomous
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vehicle generated at the next time step. In other words, the neural network 304 may learn the controls
that the vehicle is likely to determine/exert on the vehicle in response to the prior predicted state 306
and/or prior uncertainty 308. In some examples, the neural network 304 may additionally or
alternatively receive a measurement as input, such as when the neural network 304 is not a recurrent
neural network. In an additional or alternate example, the neural network 304 may be a recurrent neural
network that learns (encodes) a correction 312 for such controls to the preliminary predicted state 310,
In other words, the output of the neural network 304 may not be an indication of the controls
themselves, but a delta (difference) between the controls and a preliminary predicted state output by
the state transition model 302. Such a correction may have a same set of dimensions as the preliminary
predicted state 310 (e.g., the correction may be multi-dimensional). In some examples, the neural
network 304 may comprise a transformer or another self-attention model to further preserve the
mterpretability of the Kalman filter. For example, the transformer architecture may include a
bidirectional encoder from image transformers (BEiT), visual bidirectional encoder from transformers
(VisualBERT), image generative pre-trained transformer (Image GPT), data-efficient image
transformers (DeiT), deeper vision transformer (DeepViT), convolutional vision transformer (CvT),
detection transformer (DETR), Miti-DETR or the like
[0054] Regardless, the correction 312 (or the indication of the controls output by the necural
network 304) may be used to modify the preliminary predicted state 310. For example, the
correction 312 may be summed to (or subtracted from) the preliminary predicted state 310 to determine
a predicted state 314 output by the motion model 300, hereinafter referred to as Xy x4 .
[0055] In some examples, the Kalman filter may additionally or alternatively determine a measure
of uncertainty associated with the predicted state 314, i.e., the predicted uncertainty 316, Py ,_4, as
part of the prediction operation. This measure of uncertainty may be a covariance matrix associated
with the predict state given by:

Pr—1=FeProq—1FY + Qi (2)
where ) is a process noise matrix that may be independent or dependent on the state variables,
depending on the type of system being monitored. Q may be given by Q@ = E (WkWI) where FE is the
expected value and w is the process noise vector. The process noise matrix may, itself, include
covariances associated with noise of the process.
[0056] FIG. 3B illustrates a block diagram of a neural network 318 included in a Kalman filter to
alter a measurement to account for sensor bias. The Kalman filter may receive a measurement 320, z,
from one or more sensors. This measurement may be provided to the neural network 318, which may

be trained to output a bias adjustment 322 to account for a bias in the sensor data, which may be caused
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by noise, a flaw in a sensor, calibration drift, or the like. Training the neural network 318 may comprise
at least two stages. The first stage may comprise training the first neural network using simulated sensor
data that has zero bias or a first bias less than a threshold bias. In some examples, during this stage of
the training the first neural network being trained to limit an output of the first neural network to zero
or a value that is less than the threshold bias. For example, this limitation may include determining a
loss based at least in part on any value that exceeds zero or the threshold bias that is output by the neural
network 318. This loss may be used to alter the neural network 318 to minimize the loss.

[0057] During a second stage of the training, the neural network 318 may be trained using real-
world sensor data and the limitation on the bias adjustment output by the neural network 318 may be
relaxed (e.g., the threshold bias may be increased) or removed entirely. If a bias in the sensor data is
known, as determined by other methods, this known bias may be used to determine a loss used to
modify component(s) of the neural network 318 to drive the output of the neural network 318 towards
the known bias. Additionally or alternatively, the bias need not be known for training the neural
network. In such an example, an actual measurement may be determined, such as via a canonical source
of truth or via a more accurate sensor (e.g., setting a sensor at a known distance from an object or other
calibration-type methods). Training the ncural network 318 m such an example may include
determining a loss based at least in part on a difference between the measurement and the actual
measurement and using that difference as part of the loss for modifying the neural network 318. In
some examples, the difference may include a principle component analysis or other analysis means to
determine a portion of the difference attributable to bias.

[0058] Regardless, once trained, the neural network may determine a bias adjustment 322 for a
measurement received by the neural network 318 and pushed through the nodes of the neural
network 318. This bias adjustment 322 may be used to determine an updated measurement 324, such
as by summing the bias adjustment 322 and the measurement 320. Note that the measurement 320
and/or the bias adjustment 322 may be multi-dimensional matrices, tensors, vectors, or the like. In some
examples, the neural network 318 may comprise a transformer or another self-attention model to further
preserve the interpretability of the Kalman filter. In some examples, the measurement 320 may be
accompanied by an indication of the sensor type and the neural network 318 may be a neural network
trained for that sensor type (modality). In such an example, there may be different neural networks
trained to handle different sensor types. This may help the neural network 318 accurately encode sensor
accuracy drift that may occur over time, such as may be aggravated by environmental conditions such
as extreme heat or cold or the like, between calibrations. Additionally, this may allow the sensor to be

uncalibratcd or to opcrate longer between calibrations.
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[0059] FIG. 4 illustrates a block diagram of at least part of a Kalman filter 400 architecture
modified according to the discussion herein. In some examples, the Kalman filter 400 may further
include the state transition model 302, the motion model 300 that includes both the state transition
model 302 and the neural network 304, and/or the neural network 318, or any combination thereof. For
example, the Kalman filter 400 may receive a predicted state 402, which may be a modified predicted
state, i.e., predicted state 314, as modified according to the discussion of FIG. 3A or a predicted state
that is the preliminary predicted state 310 (in an example that doesn’t include the neural network 304).
The Kalman filter may additionally or alternatively receive a predicted uncertainty 404 associated with
the predicted state 402, such as predicted uncertainty 316. The Kalman filter may additionally receive
the measurement 320 or the updated measurement 324, although FIG. 4 depicts the latter example
where the received uncertainty is an updated measurement 406, which may be the updated
measurement 324.
[0060] The Kalman filter may additionally include a measurement model 408 and a Kalman gain
neural network 410. In other words, the Kalman filter 400 architecture may include any of the following
examples of combinations of components:
e State transition model 302, measurement model 408, and Kalman gain neural network 410;
e Motion model 300 (comprising state transition model 302 and neural network 304),
measurement model 408, and Kalman gain neural network 410;
e State transition model 302, neural network 318, measurement model 408, and Kalman gain
neural network 410; or
e Motion model 300 (comprising state transition model 302 and neural network 304), neural
network 318, measurement model 408, and Kalman gain neural network 410.
[0061] In some examples, the measurement model 408 may receive the predicted state 402,
whether the predicted state 314 or the preliminary predicted state 310 depending on the Kalman filter
configuration, and/or the predicted uncertainty 404. The mcasurement model 408 (also called a state-
observation emission model) may determine a predicted measurement 412, ¥4, based at least in part
on the predicted state 402 and/or the predicted uncertainty 404. This determination of the predicted

measurement 412 may be part of an prediction operation of the Kalman filter and may be given by:

Yik—1 = H X1 (3)

where H is the transfer/emission function that composes the measurement model 408, also called an

observation or observation matrix.
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[0062] In some examples, the measurement model 408 may additionally or alternatively determine
an innovation covariance, S, i.e., the pre-fit residual covariance, which may be given by:

Sk = HiPyu—1Hip + R, (4
where R is the measurement noise, which may be uncertainty associated with the sensor itself and may
be given by R, = E (vka wherein v is the measurement noise vector. In other words, this and the
other prediction operations may be based on the known past estimation and the present estimation, and
updating the uncertainty matrix to reflect how closely the prediction and the present cstimation
correspond.
[0063] In some examples, the predicted measurement 412 may be used to determine the
mnovation 416, Ay, which may indicate the difference between the predicted measurement 412 and
the updated measurement 406. For example, the innovation may be given by:

Ayp = ¥ — HiXpe-1 %)
[0064] The Kalman gain neural network 410 may comprise a neural network trained to determine
again 418 (e.g., Kalman gain) based at least in part on the innovation 416 and/or the predicted state 402.
In some examples, the Kalman gain neural network 410 may comprise a transformer or another self-
attention model to further preserve the interpretability of the Kalman filter. In an additional or alternate
example, the Kalman filter may additionally or alternatively determine an observation difference (e.g.,
A¥y = Yk — Yk-1) . a forward transition difference (e.g., AXy = Xy, — Xy _1)k—1) that indicates the
difference between two consecutive posterior state estimates where for time step & the available feature
is A¥;_1, and/or the forward update difference (e.g., AXy = Xy — X r—1) that indicates the difference
between the posterior state estimate and the prior state estimate where for time step £ the available
feature is AX,_;. In some examples, the Kalman gain neural network 410 may receive the observation
difference, innovation difference, forward transition difference, and/or forward update difference as
input. This allows the Kalman gain neural network 410 to predominantly be trained on the noise
signature of the sensor(s) and thereby allows the gain 418 to decrease as the sensor reliability increases
and vice versa. The gain 418 may be applied to the innovation 416 may multiplying the gain 418 with
the innovation 416 and this product may be summed with the predicted state 402 to determine estimated
state 420, which 1s the final predicted state associated with the system or object being tracked. For
example, the estimated state may be given by:

Xk = Xp-1 + Kby (6)
where K is the gain 418 at time step & determined by the Kalman gain neural network 410. In some
examples, the Kalman gain neural network 410, the neural network 304, and/or the fneural network 318

may comprise a transformer
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[0065] In some examples, the gain 418 may be weighted according to techniques discussed in U.S.
Patent Application No. 17/508,811, filed October 22, 2021, the entirety of which is incorporated by
reference herein for all purposes.
[0066] In some examples, the gain 418 may additionally or alternatively be used to determine a
measure of uncertainty of the estimation state. For example, the uncertainty associated with the
estimated state 420 may be determined according to:

Py = U= K H )Py (I — KiH )T + K R K (7)
where [ is the identity matrix and where

Pij—1 = FPy_qji-1F8 + Qi = Ag_1 A1 + Qy (3)

where A, = Felp, and Af_; = L;k—1|k—1 FJ and L is a real lower triangular matrix with

positive diagonal entries such that Ppk_1I ey = LPk—1| k—1L;k—1| et

-
St = HPye—sHL + Ry = HLp,_ (HLp,, ) +Ry 9)
where L is a real lower triangular matrix with positive diagonal entries such that Py =

T .
LPk|k—1LPk|k—1’ and

Pk|k =- K;Hk)quk—l(I - K;HR)T + K;RRK*T = - K;Hk)LPk“c_l ((I -

KiBiLey,.,) +Kika, (Kile)" (10
where R, = LRleEk. Remember, too, that  may be a process noise matrix that may be independent
or dependent on the state variables, depending on the type of system being monitored, given by @, =
E (Wk WD In some examples, the squares in the above equation may be determined using a squared
decomposition that may include a Cholesky decomposition, eigen decomposition, rank factorization,
QR decomposition, LU decomposition, Jordan decomposition, and/or the like.

[0067] In the following figures, alternate configurations of the measurement model 408 and/or the
Kalman gain neural network 410 are discussed. Either or both of the measurement model 408 and the
Kalman gain neural network 410 may be modified as discussed below with reference to FIGS. SA-5C.
[0068] FIG. 5A 1illustrates a block diagram of an ensemble 500 of neural networks included in a
Kalman filter to determine a more accurate predicted measurement based at least in part on sensor type.
In particular, the ensemble 500 may replace the measurement model 408 in some examples, according
to different example Kalman filter configurations discussed herein. The ensemble 500 architecture may
mclude a model selection component 502 and measurement neural networks 504(1)-504(x), where »
is a positive integer associated with a number of different sensor types available to the autonomous

vehicle. In some examples, the model selection component 502 may receive the updated
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measurement 406, which may indicate a type of sensor with which the updated measurement 406 is
associated. The measurement neural networks 504(1)-504(n) may each be trained on different sensor
data and the model selection component 502 may determine one of the neural networks 504(1)-504(n),
the m-th neural network 504(m) where m is a positive integer between 1 and #, to process the predicted
state 402 based at least in part on the type of sensor indicated by the updated measurement 406 (and
also associated with the predicted state 402. The determined neural network 504(m) may received the
predicted state 402 as input and may be trained to determine a predicted measurement 506 based at
least in part on the predicted state 402, thereby replacing the transfer function and increasing the ability
to accurately model non-linear behavior. The predicted measurement 506 may also be associated with
a particular sensor type (modality). Where multiple predicted states associated with different sensor
modalitics are received, multiple predicted measurements may be determined by the respective
different measurement neural networks. In some examples, the measurement neural networks 504(1)-
(n) may comprise different transformers or other self-attention neural networks.

[0069] If the Kalman filter400 is configured to replace measurement model 408 with
ensemble 500, the Kalman filter 400 may additionally be modified to replace the Kalman gain neural
nctwork 410 with an ensemble 508 of Kalman gain neural networks 510(1)—(72), as depicted in FIG. 5B.
Similarly to the ensemble 500, ensemble 508 may include a model selection component 512 that
determines one of the Kalman gain neural network models 510(1)—(#2) based at least in part on a sensor
data type associated with the predicted state 402 and/or innovation 416. The determined Kalman gain
neural network 510(m) in such a configuration may be downstream from an associated measurement
neural network 504(m) such that both the Kalman gain neural network 510() and associated
measurcment neural network 504(m) are associated with a same sensor type. Such a Kalman gain neural
network 510(m) may receive feature(s) 516 associated with a same sensor type as the upstream
measurement neural network 504(m). Such feature(s) 516 may include the innovation, observation
difference, forward transition difference, and/or forward update difference as determined for that sensor
type (and by the sensor-specific measurement neural network 504(m) where relevant). The Kalman
gain network 310(m) may determine a gain 514 and/or covariance associated therewith determined
based at least in part on the trained properties of the Kalman gain neural network 510(m). In some
examples, where multiple gains are determined by different Kalman gain neural networks, the gains
may be weighted based at least in part on their associated weights and summed to determine the final
gain 514 output by ensemble 508 to replace gain 418. In some examples, the Kalman gain neural
networks 510(1)—(») may comprise different transformers or other self-attention neural networks.
[0070] FIG. 5C illustratcs a block diagram of an additional or altcrnatc configuration 518 where

multiple Kalman architectures independently determine (preliminary) state estimates and these
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preliminary state estimates are fused as a final state estimate. In other words, a set of Kalman
architectures 520(1)-(n) may each comprise components discussed above. For example, Kalman
architecture 520(1) may comprise the Kalman filter 400 and may optionally additionally include
motion model 300 and/or neural network 318. This configuration 518 may be used in addition to or
regardless of whether the measurement model 408 is modified according to the discussion associated
with FIG. 5A. Each Kalman architecture 520 of the configuration 518 may be trained using data
associated with different sensor types. For example, an m-th Kalman gain neural network 520() may
be trained on an m-th type of sensor data (i.e., sensor data associated with an m-th sensor modality,
such as one of camera sensor data, lidar data, radar data, or the like). In such an example, the m-th
Kalman gain neural network 520(m) may receive feature(s) 522(m) associated with an m-th sensor type
and may determine an m-th preliminary state estimate 524(m) and/or covariance based thereon. In such
an example, the preliminary state estimate 524(m) may be determined in a same manner as the estimated
state 420 according to the independent training of the m-th Kalman architecture, which may comprise
Kalman filter 400. In some examples, the feature(s) 522 may include the innovation, observation
difference, forward transition difference, and/or forward update difference.

[0071] In an example where multiple preliminary state estimates 524 are determined by the
respective Kalman architectures of the configuration 518, such preliminary state estimates 524(1)—(m)
may be considered preliminary state estimates in that they may be fused to form a final state estimate.
Each preliminary state estimate may be independently determined separate from the other preliminary
state estimates. In some examples, a Bayesian fusion component 526 may determine a final state
estimate 528 based at least in part on the preliminary state estiamtes 524(1)—(m) and their associated
covariances. In some examples, the preliminary state estimates 524(1)—(m) may cach include a mean,
covariance, or Gaussian mixture. Determining the final state estimate 528 by the Bayesian fusion
component 526 may comprise determining a covariance intersection of the preliminary state
estimates 524(1)—(m) based at least in part on their associated respective covariance, and determining
a fusion rule based at least in part on the covariance intersection. In an example where the preliminary
state estimates 524(1)—(m) include Gaussian components, the Bayesian fusion component 326 may add
the Gaussian components, renormalize, and then expand the tree to allow for a multi-hypothesis
cstimated state (e.g., multiple cstimated states with potentially different likelihoods associated
therewith). In such an example, a planning component or a further component of the Kalman filter may
determine to prune or act on different ones of the estimates based at least in part on the Gaussian
components.

[0072] In somc cxamples, any of the disparatc componcnts discussed in FIGS. SA-5C may be

determined using distributed computing between multiple vehicles and/or edge computing devices. For
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example, a first computing resource (e.g., a vehicle, a remote computing device such as an edge
computing device) may run measurement neural network 504(1) and/or Kalman gain neural
network 510(1), an »-th computing resource may run measurement neural network 504(») and/or
Kalman gain neural network 510(n). A respective computing resource may transmit the output of the
respective neural network to one or more computing resources and may receive outputs from the other
computing resources such that one or more of the computing resources may determine the final gain 514
using all or Iess than all of the outputs. In another example, a first computing resource may run Kalman
gain network 520(1) and an m-th computing resource may run Kalman gain network 520(m). Any of
the computing resources that receive outputs from such networks from other computing resources may

run the Bayesian fusion component 526 to determine the final state estimate 528.

EXAMPLE TRAINING

[0073] In some examples, training the Kalman filter described herein, in any of the combinations
described, may be implemented without end-to-end training and may, instead, be conducted
component-wise since the components are interpretable. In other words, a loss may be determined
separately for cach of the neural networks or ensembles. In an additional or alternate example, the
Kalman filter may be trained end-to-end.

[0074] In some examples, the training may comprise a reinforcement learning-type strategy that
batches the training data into different sets based on complexity. The training may progress by stages
of increasing training data complexity. For example, a first training data batch may include sensor data
and vehicle controls for short and straight trajectories, a second training data batch may include sensor
data and vehicle controls for longer straight trajectorics, a third training data batch may include sensor
data and vehicle controls for a short trajectory that turns a little, a fourth training data batch may include
sensor data and vehicle controls for a short trajectory that tums a little more, and so on. The training
may also progress from a first meta-stage where the training data is simulated to a second meta-stage
where the training data is real-life sensor data and/or controls, which may be labeled for ground truth.
The simulated sensor data may allow some of the neural network components discussed herein to train
on zero-mean Gaussian noise and become sensitive to deviations therefrom (non-zero mean, biased
noise, non-Gaussian noise).

[0075] In some examples, the loss may be propagated through the whole Kalman filter. For
example, the loss may be determined based at least in part on a root mean-squared error with a
regularizing coefficient determined based at least in part on a difference between the estimated state 420
and an actual statc, which may be derived from human or machinc-labelled data. Additionally or

alternatively, the root mean-squared error can be parameterized using sine/cosine and using a cosine
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similarity loss. Additionally or alternatively, the loss may comprise a weighted root mean-squared error,
where the weights adjust the root mean-squared error such that neural network components of the
Kalman filter are not altered until they output O error but error less than a threshold (tolerable) error.

Regardless, the loss may be used to modify the neural network components to reduce the loss.

EXAMPLE PROCESS

[0076] FIG. 6 and FIG. 7 illustrate flow diagrams of example processes 600 and 700 for
determining an estimated state associated with a system or object using a Kalman filter comprising
various neural network architectures, as discussed herein. Depending on what the Kalman filter is being
used for, various components of the autonomous vehicle may conduct example processes 600
and/or 700, such as the perception component, a tracking and/or prediction component of the
perception component, a raw sensor data processor (e.g., a wheel encoder processor, a GPS processor),
a planning component, a localization component, and/or the like.

[0077] At operation 602, example process 600 may comprise receiving sensor data indicating a
measurement, according to any of the techniques discussed herein. As discussed above, the sensor data
and measurement will depend on the component in which the Kalman filter is located. For example,
the measurement may be anumber of rotations of a motor or a wheel, three or four float values received
from an accelerometer, perception data associated with an image and/or lidar data, efc.

[0078] At operation 604, example process 600 may comprise determining, by a first neural network
and based at least in part on the measurement, a bias output, according to any of the techniques
discussed herein. For example, operation 604 may be accomplished by neural network 318. Neural
network 318 may be trained using different batches of training data of increasing complexity and/or in
stages — a first stage with simulated data that may be closer to zero-mean Gaussian noise and a second
stage with real-life data that may have non-zero-mean and/or non-Gaussian noise.

[0079] At operation 606, example process 600 may comprise modifying, as an updated
measurement, the measurement based at least in part on the bias output, according to any of the
techniques discussed herein. This updated output may be determined based at least in part on summing
the measurement and the bias adjustment determined by the neural network 318.

[0080] At operation 608, example process 600 may comprise determining a predicted state of a
system or object, according to any of the techniques discussed herein. In some examples, operation 608
may at least comprise operation 608(a). In some examples, the Kalman filter may additionally include
neural network 304 and, in such an example, operation 608 may additionally include operations 608(b)

and 608(c).

23



WO 2024/044032 PCT/US2023/029551

[0081] At operation 608(a), example process 600 may comprise determining, by state transition
model and based at least in part on the prior predicted state and/or prior uncertainty, a preliminary
predicted state, according to any of the techniques discussed herein. In some examples,
operation 608(a) may be conducted by a transfer function modelling the object or system’s dynamics.
[0082] At operation 608(b), example process 600 may comprise determining, by a neural network
and based at least in part on the prior predicted state of the object and/or a prior uncertainty, a correction
for unknown control(s), according to any of the techniques discussed herein. In some examples, neural
network 304 may execute operation 608(b).

[0083] At operation 608(c), example process 600 may comprise determining the predicted state
based at least in part on modifying the preliminary predicted state based at least in part on the correction
output by the neural network at operation 608(b), according to any of the techniques discussed herein.
In some examples, operation 608(c) may include summing or multiplying the preliminary predicted
state and the correction.

[0084] Turning to FIG. 7, example process 700 may comprise operation 702 or operation 704,
according to any of the techniques discussed herein. Operation 704 includes using an observation
cmission function (e.g., measurement model 408) to determine a predicted measurement, whercas
operation 702 includes using one or more neural networks to determine the predicted measurement.
[0085] At operation 702, example process 700 may comprise determining a predicted measurement
by a measurement model comprising one or more neural networks and based at least in part on a
predicted state of an object and/or a sensor type associated with the measurement and/or predicted state,
according to any of the techniques discussed herein. For example, operation 702 may include using the
ncural network(s) described in reference to FIG. 5A to determine a predicted measurement, such as
predicted measurement 506.

[0086] At operation 704, example process 700 may comprise determining a predicted measurement
by a measurement, such as an observation emission function, according to any of the techniques
discussed herein. For example, the observation emission function may be a nominal Kalman filter
measurement model.

[0087] At operation 706, example process 700 may comprise determining, based at least in part on
the predicted measurement and the updated measurement 406, a first innovation having multiple
dimensions, the dimensions being associated with different sensor types, according to any of the
techniques discussed herein. For example, there may be different predicted measurements determined
by the neural networks described in reference to FIG. SA and each of these may be used based at least
in part on thc updated mecasurcment 406 to detcrmine a different innovation. Thesc different

mnovations may be concatenated together and an indicator may encode the sensor type associated with
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cach innovation. In an additional or alternate example, the different innovations may be concatenated
together and no indication of sensor type may be encode and/or in another example, the different
mnovations may separately be provided to the Kalman gain neural network 410,

[0088] At operation 708, example process 700 may comprise determining, based at least in part on
the predicted measurement 412 and the updated measurement 406, a second innovation, according to
any of the techniques discussed herein.

[0089] At operation 710, example process 700 may comprise determining a gain by a set of neural
networks based at least in part on the measurement type (i.e., the associated sensor data type), the
mnovation, and the predicted state, according to any of the techniques discussed herein. For example,
operation 710 may be accomplished by a set of neural networks as described in reference to FIG. 5B.
A respective neural network may be determined to process the features based at least in part on a sensor
data type associated with the measurement. For example, the features may include the innovation, the
predicted state, and/or other variables that may be based thereon such as an observation difference, a
forward transition difference, and/or the forward update difference.

[0090] At operation 712, example process 700 may comprise determining a gain by a neural
nctwork based at least in part on the innovation and the predicted state, according to any of the
techniques discussed herein. For example, the neural network may include Kalman gain neural
network 410. In some examples, determining the gain may be additionally or alternatively based at least
in part on an observation difference, a forward transition difference, and/or the forward update
difference.

[0091] At operation 714, example process 700 may comprise determining an estimated state
(and/or uncertainty associated therewith) of the system/object based at Ieast in part on the mnovation,
the gain, and the predicted state, according to any of the techniques discussed herein.

[0092] For an example implementing a set of Kalman architectures as discussed with reference to
FIG. 5C, example process 700 may comprise executing operations 702, 706, 710, and 714 or
operations 704, 708, and 712 independently by different neural networks/transformers. In such an
instance, example process 700 may further include operation 716. In an instance where multiple
Kalman architectures aren’t used, operation 716 may be omitted.

[0093] At operation 718, example process 700 may comprise controlling an autonomous vehicle
based at least in part on the estimated state and/or the uncertainty, according to any of the techniques
discussed herein. For example, the localization component may use an estimated state indicating an
estimated vehicle speed to determine where the vehicle is in an environment, the planning component
may usc a vehicle speed and/or tracks associated with detected objects to plan a route and/or gencrate

a trajectory for controlling the vehicle, erc.
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EXAMPLE CLAUSES

[0094] A. A method comprising: receiving sensor data indicating a measurement associated with
an object; determining, by a first neural network and based at least in part on the measurement, a bias
output indicating a bias associated with the sensor data; modifying the measurement, as an updated
measurement, based at least in part on the bias output; determining, by a motion model and based at
least in part on a prior predicted state, a predicted state associated with the object; determining, by a
measurement model based at least in part on the prior predicted state, a predicted measurement;
determining, as part of an update operation by a Kalman filter, a first difference between the updated
measurement and the predicted measurement and a second difference between the prior predicted state
and the predicted state; determining, by a sccond neural network and based at least in part on the first
difference and the second difference, a gain; determining, based at least in part on the first difference,
the gain, and the predicted state, an estimated state associated with the object, the estimated state being
associated with a future time; and controlling an autonomous vehicle based at least in part on the
estimated state.

[0095] B. The method of paragraph A, wherein the second neural network comprises at least one
of a transformer or self-attention network.

[0096] C. The method of either paragraph A or B. wherein determining the predicted state further
comprises: determining, by a state transition model based at least in part on the prior predicted state, a
preliminary predicted state; determining, by a third neural network and based at least in part on the
prior predicted state, a correction associated with an undefined control parameter for controlling the
autonomous vehicle; and determining the predicted state by modifying the preliminary predicted state
based at least in part on the correction.

[0097] D. The method of any one of paragraphs A—C, wherein: the measurement model comprises
an ensemble of sub-neural networks associated with different sensor types; and determining the
predicted measurement further comprises determining the predicted measurement by a first sub-neural
network that is trained based at least in part on a first sensor type associated with both the sensor data
and the first sub-neural network.

[0098] E. The method of paragraph D, wherein: the second neural network comprises a second
ensemble of sub-neural networks; and determining the gain is further based at least in part on
determining the gain by one of the sub-neural networks from among the second ensemble of sub-neural
networks based at least in part on the sensor type associated with the sensor data.

[0099] F. The mcthod of any onc of paragraphs A—E, wherein: the cstimatced statc is a first cstimated

state; the first neural network, the motion model, the measurement model, and the second neural
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network are part of a first Kalman architecture; the sensor data is first sensor data associated with a first
sensor modality and the first Kalman architecture; the method further comprises: determining, by a
second Kalman architecture, a second estimated state based at least in part on second sensor data
associated with a second sensor modality different than the first sensor modality, the second Kalman
architecture being associated with the second sensor modality; and determining a final estimated state
based at least in part on determining a Bayesian fusion of the first estimated state and the second
estimated state; and controlling the autonomous vehicle is based at least in part on the final estimated
state.

[0100] G. A system comprising: one or more processors, and a memory storing processor-
executable instructions that, when executed by the one or more processors, cause the system to perform
operations comprising: receiving sensor data indicating a measurement; determining, by a first neural
network and based at least in part on the measurement, a bias output; modifying the measurement, as
an updated measurement, based at least in part on the bias output; determining, by a motion model and
based at least in part on a prior predicted state, a predicted state associated with an object; determining,
by a measurement model based at least in part on the prior predicted state, a predicted measurement;
determining a first difference between the updated measurement and the predicted measurement and a
second difference between the prior predicted state and the predicted state; determining, by a second
neural network and based at least in part on the first difference and the second difference, a gain;
determining, based at least in part on the first difference, the gain, and the predicted state, an estimated
state associated with the object; and controlling an autonomous vehicle based at least in part on the
estimated state.

[0101] H. The system of paragraph G, wherein the second neural network comprises at least one of
a transformer or self-attention network.

[0102] L. The system of either paragraph G or H, wherein determining the predicted state further
comprises: determining, by a state transition model based at least in part on the prior predicted state, a
preliminary predicted state; determining, by a third neural network and based at least in part on the
prior predicted state, a correction associated with an undefined control parameter for controlling the
autonomous vehicle; and determining the predicted state by modifying the preliminary predicted state
based at least in part on the correction.

[0103] J. The system of any one of paragraphs G-I, wherein: the measurement model comprises an
ensemble of sub-neural networks associated with different sensor types; and determining the predicted
measurement further comprises determining the predicted measurement by a first sub-neural network
that 1s traincd bascd at lcast in part on a first scnsor type associated with both the scnsor data and the

first sub-neural network.
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[0104] K. The system of paragraph J, wherein the first sub-neural network comprises a transformer.
[0105] L. The system of either paragraph J or K, wherein: the second neural network comprises a
second ensemble of sub-neural networks; and determining the gain is further based at least in part on
determining the gain by one of the sub-neural networks from among the second ensemble of sub-neural
networks based at least in part on the sensor type associated with the sensor data.

[0106] M. The system of any one of paragraphs G-L, wherein: the estimated state is a first
estimated state; the first neural network, the motion model, the measurement model, and the second
neural network are part of a first Kalman architecture; the sensor data is first sensor data associated
with a first sensor modality and the first Kalman architecture, the method further comprises:
determining, by a second Kalman architecture, a second estimated state based at least in part on second
sensor data associated with a second sensor modality different than the first sensor modality, the second
Kalman architecture being associated with the second sensor modality; and determining a final
estimated state based at least in part on determining a Bayesian fusion of the first estimated state and
the second estimated state; and controlling the autonomous vehicle is based at least in part on the final
estimated state.

[0107] N. The system of any one of paragraphs G—M, wherein training the first neural network
comprises: a first stage comprising training the first neural network using simulated sensor data that
has zero bias or a first bias less than a threshold bias, the first neural network being trained to limit an
output of the first neural network to zero or a value that is less than the threshold bias; and a second
stage comprising training the first neural network using real-world sensor data and removing the output
limit enforced during the first stage.

[0108] O. A non-transitory computer-readable medium storing processor-cxecutable instructions
that, when executed by one or more processors, cause the one or more processors to perform operations
comprising: receiving sensor data indicating a first measurement; determining a difference between the
first measurement and a predicted measurement; determining a weight based at least in part on the
difference; modifying a Kalman filter based at least in part on the weight; determining, by the Kalman
filter and based at least in part on the modification and the first measurement, an estimated state; and
controlling an autonomous vehicle based at least in part on the estimated state.

[0109] P. The non-transitory computer-readable medium of paragraph O, wherein the second
neural network comprises at least one of a transformer or self-attention network.

[0110] Q. The non-transitory computer-readable medium of either paragraph O or P, wherein
determining the predicted state further comprises: determining, by a state transition model based at least
in part on the prior predicted statc, a preliminary predicted state; determining, by a third ncural network

and based at least in part on the prior predicted state, a correction associated with an undefined control
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parameter for controlling the autonomous vehicle; and determining the predicted state by modifying
the preliminary predicted state based at least in part on the correction.

[0111] R. The non-transitory computer-readable medium of any one of paragraphs O-Q, wherein:
the measurement model comprises an ensemble of sub-neural networks associated with different sensor
types; and determining the predicted measurement further comprises determining the predicted
measurement by a first sub-neural network that is trained based at least in part on a first sensor type
associated with both the sensor data and the first sub-neural network.

[0112] S. The non-transitory computer-readable medium of any one of paragraphs O-R, wherein:
the estimated state is a first estimated state; the first neural network, the motion model, the measurement
model, and the second neural network are part of a first Kalman architecture; the sensor data is first
sensor data associated with a first sensor modality and the first Kalman architecture; the method further
comprises: determining, by a second Kalman architecture, a second estimated state based at least in
part on second sensor data associated with a second sensor modality different than the first sensor
modality, the second Kalman architecture being associated with the second sensor modality; and
determining a final estimated state based at least in part on determining a Bayesian fusion of the first
estimated state and the second estimated state; and controlling the autonomous vehicle is based at least
in part on the final estimated state.

[0113] T. The non-transitory computer-readable medium of any one of paragraphs O-S, wherein
training the first neural network comprises: a first stage comprising training the first neural network
using simulated sensor data that has zero bias or a first bias less than a threshold bias, the first neural
network being trained to limit an output of the first neural network to zero or a value that is less than
the threshold bias; and a second stage comprising training the first neural network using real-world
sensor data and removing the output limit enforced during the first stage.

[0114] While the example clauses described above are described with respect to one particular
implementation, it should be understood that, in the context of this document, the content of the example
clauses can also be implemented via a method, device, system, computer-readable medium, and/or
another implementation. Additionally, any of examples A-T may be implemented alone or in

combination with any other one or more of the examples A-T.

CONCLUSION

[0115] Although the subject matter has been described in language specific to structural features
and/or methodological acts, it 1s to be understood that the subject matter defined in the appended claims
is not nccessarily limited to the specific featurcs or acts described. Rather, the specific featurcs and acts

are disclosed as example forms of implementing the claims.
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[0116] The components described herein represent instructions that may be stored in any type of
computer-readable medium and may be implemented in software and/or hardware. All of the methods
and processes described above may be embodied in, and fully automated via, software code components
and/or computer-cxecutable instructions executed by one or more computers or processors, hardware,
or some combination thercof. Some or all of the methods may alternatively be embodied in specialized
computer hardware.

[0117] At least some of the processes discussed herein are illustrated as logical flow graphs, each
operation of which represents a sequence of operations that can be implemented in hardware, software,
or a combination thercof. In the context of software, the operations represent computer-executable
mstructions stored on one or more non-transitory computer-readable storage media that, when executed
by one or more processors, cause a computer or autonomous vehicle to perform the recited operations.
Generally, computer-executable instructions include routines, programs, objects, components, data
structures, and the like that perform particular functions or implement particular abstract data types.
The order in which the operations are described is not intended to be construed as a limitation, and any
number of the described operations can be combined in any order and/or in parallel to implement the
processes.

[0118] Conditional language such as, among others, “may,” “could,” “may” or “might,” unless
specifically stated otherwise, are understood within the context to present that certain examples include,
while other examples do not include, certain features, elements and/or steps. Thus, such conditional
language is not generally intended to imply that certain features, elements and/or steps are in any way
required for one or more examples or that one or more examples necessarily include logic for deciding,
with or without user input or prompting, whether certain features, elements and/or steps are included
or are to be performed in any particular example.

[0119] Conjunctive language such as the phrase “at least one of X, Y or Z,” unless specifically
stated otherwise, is to be understood to present that an item, term, efc. may be either X, Y, or Z, or any
combination thereof, including multiples of each element. Unless explicitly described as singular, “a”
means singular and plural.

[0120] Any routine descriptions, elements or blocks in the flow diagrams described herein and/or
depicted in the attached figures should be understood as potentially representing modules, segments,
or portions of code that include one or more computer-executable instructions for implementing
specific logical functions or elements in the routine. Alternate implementations are included within the
scope of the examples described herein in which elements or functions may be deleted, or executed out
of ordcr from that shown or discusscd, including substantially synchronously, in reverse order, with

additional operations, or omitting operations, depending on the functionality involved as would be
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understood by those skilled in the art. Note that the term substantially may indicate a range. For
example, substantially simultaneously may indicate that two activities occur within a time range of each
other, substantially a same dimension may indicate that two elements have dimensions within a range
of cach other, and/or the like.

[0121] Many variations and modifications may be made to the above-described examples, the
elements of which are to be understood as being among other acceptable examples. All such
modifications and variations are intended to be included herein within the scope of this disclosure and

protected by the following claims.
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CLAIMS

WHAT IS CLAIMED IS:

1. A method comprising:

receiving sensor data indicating a measurement associated with an object;

determining, by a first neural network and based at least in part on the measurement, a bias
output indicating a bias associated with the sensor data;

modifying the measurement, as an updated measurement, based at least in part on the bias
output;

determining, by a motion model and based at least in part on a prior predicted state, a predicted
state associated with the object;

determining, by a measurement model based at least in part on the prior predicted state, a
predicted measurement;

determining, as part of an update operation by a Kalman filter, a first difference between the
updated measurement and the predicted measurement and a second difference between the prior
predicted state and the predicted state;

determining, by a second neural network and based at least in part on the first difference and
the second difference, a gain;

determining, based at least in part on the first difference, the gain, and the predicted state, an
estimated state associated with the object, the estimated state being associated with a future time; and

controlling an autonomous vehicle based at least in part on the estimated state.

2. The method of claim 1, wherein the second neural network comprises at least one of a

transformer or self-attention network.

3. The method of claim 1, wherein determining the predicted state further comprises:

determining, by a state transition model based at least in part on the prior predicted state, a
preliminary predicted state;

determining, by a third neural network and based at least in part on the prior predicted state, a
correction associated with an undefined control parameter for controlling the autonomous vehicle; and

determining the predicted state by modifying the preliminary predicted state based at least in

part on the correction.

4. The mcthod of claim 1, wherein:
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the measurement model comprises an ensemble of sub-neural networks associated with
different sensor types; and

determining the predicted measurement further comprises determining the predicted
measurcment by a first sub-ncural network that is trained based at least in part on a first sensor type

associated with both the sensor data and the first sub-neural network.

5. The method of claim 4, wherein:

the second neural network comprises a second ensemble of sub-neural networks; and

determining the gain is further based at least in part on determining the gain by one of the sub-
neural networks from among the second ensemble of sub-neural networks based at least in part on the

sensor type associated with the sensor data.

6. The method of claim 1, wherein:

the estimated state is a first estimated state;

the first neural network, the motion model, the measurement model, and the second neural
network are part of a first Kalman architecture;

the sensor data is first sensor data associated with a first sensor modality and the first Kalman
architecture;

the method further comprises:

determining, by a second Kalman architecture, a second estimated state based at least in part
on second sensor data associated with a second sensor modality different than the first sensor modality,
the second Kalman architecture being associated with the second sensor modality; and

determining a final estimated state based at least in part on determining a Bayesian fusion of
the first estimated state and the second estimated state; and

controlling the autonomous vehicle is based at least in part on the final estimated state.

7. The autonomous vehicle comprising:

one or more processors; and

a memory storing processor-executable instructions that, when executed by the one or more
processors, cause the system to perform operations comprising the method recited by any one of

claims 1-6.

8. A systcm comprising;

one or more processors, and
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a memory storing processor-¢xecutable instructions that, when executed by the one or more
processors, cause the system to perform operations comprising:

receiving sensor data indicating a measurement;

determining, by a first ncural network and based at least in part on the measurement, a bias
output;

modifying the measurement, as an updated measurement, based at Ieast in part on the bias
output;

determining, by a motion model and based at least in part on a prior predicted state, a predicted
state associated with an object;

determining, by a measurement model based at least in part on the prior predicted state, a
predicted measurement;

determining a first difference between the updated measurement and the predicted
measurement and a second difference between the prior predicted state and the predicted state;

determining, by a second neural network and based at least in part on the first difference and
the second difference, a gain;

determining, based at least in part on the first difference, the gain, and the predicted state, an
estimated state associated with the object; and

controlling an autonomous vehicle based at least in part on the estimated state.

9. The system of claim 8, wherein the second neural network comprises at least one of a

transformer or self-attention network.

10. The system of claim 8, wherein determining the predicted state further comprises:

determining, by a state transition model based at least in part on the prior predicted state, a
preliminary predicted state;

determining, by a third neural network and based at least in part on the prior predicted state, a
correction associated with an undefined control parameter for controlling the autonomous vehicle; and

determining the predicted state by modifying the preliminary predicted state based at least in

part on the correction.
11. The system of claim 8, wherein:

the measurement model comprises an ensemble of sub-neural networks associated with

diffcrent sensor types; and
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determining the predicted measurement further comprises determining the predicted
measurement by a first sub-neural network that is trained based at least in part on a first sensor type

associated with both the sensor data and the first sub-neural network.

12. The system of claim 11, wherein the first sub-neural network comprises a transformer.

13. The system of claim 11, wherein:

the second neural network comprises a second ensemble of sub-neural networks; and

determining the gain is further based at least in part on determining the gain by one of the sub-
neural networks from among the second ensemble of sub-neural networks based at least in part on the

sensor type associated with the sensor data.

14. The system of claim 8, wherein:
the estimated state is a first estimated state;
the first neural network, the motion model, the measurement model, and the second neural
network are part of a first Kalman architecture;
the sensor data is first sensor data associated with a first sensor modality and the first Kalman
architecture;
the operations further comprise:
determining, by a second Kalman architecture, a second estimated state based at least
in part on second sensor data associated with a second sensor modality different than the first
sensor modality, the second Kalman architecture being associated with the second sensor
modality; and
determining a final estimated state based at least in part on determining a Bayesian
fusion of the first estimated state and the second estimated state; and

controlling the autonomous vehicle is based at least in part on the final estimated state.

15. The system of claim 8, wherein training the first neural network comprises:

a first stage comprising training the first neural network using simulated sensor data that has
zero bias or a first bias less than a threshold bias, the first neural network being trained to limit an output
of the first neural network to zero or a value that is less than the threshold bias; and

a second stage comprising training the first neural network using real-world sensor data and

removing the output limit cnforced during the first stage.
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