wo 2014/081719 A1 |1 I} NN TP OO0 R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/081719 A1

30 May 2014 (30.05.2014) WIPOIPCT
(51) International Patent Classification: (72) Inventors: SNELGROVE, Martin; 118 Fuclid Avenue,
G11C 16/00 (2006.01) HO1L 27/00 (2006.01) Toronto, Ontario M6J 2J9 (CA). MCKENZIE, Robert;
(21) International Application Number: 676 Shaw Stre?t, Toronto, Ontario M6G 3L7 (CA). SNEL-
PCT/US2013/070789 GROVE, Xavier; 51 Dewson St. Apt. 5, Toronto, Ontario
MG6H 1G6 (CA).

(22) International Filing Date:19 N ber 2013 (19.11.2013 (74) Agent: NICHOLS, Steven L.; Van Cott, Bagley, Cornwall
ovember 2013 (19.11.2013) & MoCarthy P.C., 36 S. State Street, Ste 1900, SLC, Utah

(25) Filing Language: English 84111 (US).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
L. kind of national protection available). AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
61/728,394 20 November 2012 (20.11.2012) us BZ. CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM
61/775,327 8 March 2013 (08.03.2013) us DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(72) Inventor; and HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(71) Applicant : PEDDLE, Charles I. [US/US]; 135 Shelter KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

Lagoon Dr., Santa Cruz, California 95060 (US).

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

[Continued on next page]

(54) Title: SOLID STATE DRIVE ARCHITECTURES

CPU CPU
Memory
Data Transfer ~ Mishandled File Snapshot FastLoad
{Logical Record) Recovery Transfer an_ oBa
Figs. 5A,5B, 6A, 68 Fig. 10 Fig. 7 18-
Y Y v
é Working Area
L Y
= — - -
_% Limited History File . Protected
] [: Sn/ilfa ot | Program
]
z Working | I Mishandled! Area
x Files || Files |
1 I
] ! :
Z e
a 3
o
©
B t
2 Data Transfer Dump/
FastLoad
3 (Logical Record) Recovery Fig. 8
Figs. 5A,5B, 6A, 6B Process '
Fig. 9
|
v)
Protected
g‘ Program
£ Area
b Dump Active
Working Area
[Stored
Programs

(57) Abstract: A solid state drive includes DRAM logical flash and
flash memory, in which system processor reads and writes only to
the DRAM logical flash which minimizes writes to the flash
memory. A method for operation of a solid state flash device in-
cludes writing, by a CPU, to a solid state drive by sending com-
mands and data to DRAM logical flash using flash commands and
formatting.

WO 20147081719 A1 |IIWAIK 00T 000 A AR

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Published:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — before the expiration of the time limit for amending the
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, claims and to be republished in the event of receipt of
GW, KM, ML, MR, NE, SN, TD, TG). amendments (Rule 48.2(h))

— as to the identity of the inventor (Rule 4.17(i))

— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

SOLID STATE DRIVE ARCHITECTURES

RELATED APPLICATIONS
[0001] The present application claims the benefit under 35 U.S.C. § 119(e) of
U.S. Provisional Application No. 61/728,394 filed November 20, 2012 and U.S.
Provisional Application No. 61/775,327 filed March 8, 2013, which applications

are incorporated herein by reference in their entirety.

BACKGROUND
[0002] Computing devices preserve program executables and data in
nonvolatile memory. This makes the files available to the computing devices
after being restarted or after power interruptions. Traditionally, the preferred
nonvolatile storage for large files has been a hard disk drive. Hard disk drives
include rotating rigid platters on a motor driven spindle. Data is magnetically
read from and written to the platter by heads that float on a film of air above the
platters. These platters typically spin at speeds of between 4,200 and 15,000
revolutions per minute (rpm). Hard disk drives have a number of disadvantages,
including access times that are related to the mechanical nature of the rotating
disks and moving heads, high power consumption, mechanical failure, and low
shock resistance.
[0003] Solid State Drives (SSDs) are nonvolatile storage devices that use
integrated circuits to store data and consequently contain no moving parts.
SSDs have a number of advantages over hard disk drives including higher
shock resistance, lower access times, and more variable form factors.
Additionally SSDs typically consume far less power during operation than hard
disk drives. Consequently, SSDs allow for smaller, thinner device profiles and

for longer operation on a battery charge.

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The accompanying drawings illustrate various examples of the
principles described herein and are a part of the specification. The illustrated
examples are merely examples and do not limit the scope of the claims.
[0005] Fig. 1 is a block diagram of an illustrative solid state drive
architecture, according to one example of principles described herein.
[0006] Fig. 2 is a block diagram of a flash memory module, according to one
example of principles described herein.
[0007] Fig. 3 is a block diagram of an illustrative solid state drive architecture
that incorporates flash memory modules shown in Fig. 2, according to one
example of principles described herein.
[0008] Fig. 4 is a diagram various interactions and processes that occur
between the CPU/CPU memory, DRAM logical flash, and flash memory,
according to one example of principles described herein.
[0009] Fig. 5A shows data flow during writing of data to the solid state drive,
according to one example of principles described herein.
[0010] Fig. 5B is a flow chart describing a method for writing data to the solid
state drive, according to one example of principles described herein.
[0011] Fig. 6A shows data flow during reading data from the solid state drive
to CPU memory, according to one example of principles described herein.
[0012] Fig. 6B is a flow chart describing a method for reading data from the
solid state drive to CPU memory, according to one example of principles
described herein.
[0013] Fig. 7 is a flow chart showing a method for saving snapshot of a
system state, according to one example of principles described herein.
[0014] Fig. 8 is a flow chart of an illustrative method for fast loading program
files from the SSD to the CPU memory, according to one example of principles
described herein.
[0015] Fig. 9is a flow chart of a method for data dump/recovery, according to
one example of principles described herein.
[0016] Fig. 10 is a flow chart of a method for mishandled file recovery,

according to one example of principles described herein.

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0017] Throughout the drawings, identical reference numbers designate

similar, but not necessarily identical, elements.

DETAILED DESCRIPTION
[0018] Solid State Drives (SSDs) are nonvolatile storage devices that use
integrated circuits, such as NAND flash memory, to store data. SSDs have a
number of advantages, such as high shock resistance, low power requirements,
faster access times, and more variable form factors. However, integrated
circuits that are used as memory in solid state drives have a limited lifetime.
Typical specifications for NAND flash specify that NAND flash can only reliability
be used for 1000-3000 write/erase cycles before failure. This lifetime limitation
is particularly troublesome because, in the current architectures, a block of
NAND flash must be erased and rewritten each time any part of the data
contained with the block is changed. Thus, the more frequently a SSD drive is
used, the faster it will fail. Many operating systems write to the non-volatile
memory frequently. For example, File Access Tables (FAT tables) are rewritten
every time a file changes. Each FAT table update includes multiple erase/write
cycles. Additionally, many operating systems periodically save “snapshots” of
the current state of the computing device into nonvolatile memory. While this
can be beneficial in recovering the operation of the computing device, routinely
saving the large snapshots on to the NAND flash can significantly shorten the
lifetime of the SSD. Consequently, SSDs can fail to meet the customer
expectations and may require frequent replacement.
[0019] A number of principles are described below that allow for flash
memory to be used effectively as non-volatile storage despite its finite number
of erase/write cycles. The solid state drive (SSD) architectures described below
address the limitations of NAND flash memory by creating DRAM logical flash to
act as an intermediary between the flash memory and then independently
assessing when data should be written to the NAND flash memory. This
significantly improves the operational speed and lifetime of the SSD and allows

the SDD to be used as a plug and play alternative to hard disk drives.

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0020] Data usage within a computing device typically falls into two
categories: a high amount of usage during creation/manipulation of the data and
then a far lower amount of usage when the data is archived or stored as a
functioning program. The illustrative SSD separates the process of storing data
related to the transient state of the computing device and the permanent
storage capability of the flash.

[0021] When the computing device is powered down, the data stored by the
volatile memory of the computing device is lost. The SSD described below
facilitates the creation of data files by allowing the data to be stored during
development of the program or data file and protecting against data loss when
the computing device powers down.

[0022] The SSD includes several flash interface controllers managing an
optimum number of flash memory devices. In a simple system like a USB2
device one intermediate controller can be used to manage the flash directly.
However, in a high speed system several controllers can be operated in parallel
to manage the data much more rapidly. Principles described below can also be
applied to a wide variety of bus and device technologies, including SATA 3 (500
megabytes per second), USB 3.0 “Superspeed” devices, including USB 3.0
solid state drives and storage devices. The USB 3.0 specification specifies
transfer rates of up to 4.8 gigabits per second, increased maximum bus power
and more efficient power management.

[0023] In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
present systems and methods. It will be apparent, however, to one skilled in the
art that the present apparatus, systems and methods may be practiced without
these specific details. Reference in the specification to “an example” or similar
language means that a particular feature, structure, or characteristic described
in connection with the example is included in at least that one example, but not
necessarily in other examples.

[0024] In several instances below, a controller is described that includes at
least one microprocessor, read only memory (ROM) and random access

memory (RAM). The microprocessor, ROM and RAM work together to

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

implement the functions of the controller. The use of a different microprocessor
with different controls and/or hardware implementation can be used to
implement the principles described herein.

[0025] Fig. 1 shows one implementation of a solid state drive that includes
logical flash and nonvolatile flash memory. The logical flash includes an
independent controller and a segment of volatile memory. The logical flash is
configured to implement all the functions of a flash controller such that the
central processing unit (CPU) thinks it is reading and writing to flash, when it is
actually reading and writing to logical flash. The logical flash implements flash
memory behavior, but without the lifetime, speed, or addressing limitations of
flash memory. The logical flash stores files in the same way as the flash
memory and responds to flash commands. Further, the logical flash uses the
FAT table, updates logical records, combines files, and is attached to a SATA 3
bus. Because the volatile memory of the logical flash has a virtually unlimited
number of read/write cycles, the system processor and operating system can
store as many updates and snap shots as desired. Further, the logical flash is
extremely fast in both reading and writing data. The CPU reads from and writes
exclusively to the logical flash while writes and reads to the flash memory are
controlled exclusively by the solid state drive. The use of logical flash allows all
flash commands to be handled at full interface speeds and minimizes writes to
the flash memory. This is different from caching, because caching ultimately
writes everything to flash memory and is implemented only to increase speed
and to handle short read and writes.

[0026] A master controller within the SSD independently determines when
data should be transferred to or from the flash memory. This significantly
reduces the number of write/erase cycles for the flash memory because the
CPU does not directly access the flash memory.

[0027] The flash memory includes a number of flash memory modules. Each
flash memory module includes an independent controller and a number of flash
die. By using independent controllers, the SSD can perform multiple operations

in parallel. This leads to significantly faster read and write times.

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0028] The paragraphs below describe a variety of principles for developing
an SSD that incorporates logical flash and multiple controllers. SSDs are
currently more expensive per gigabyte of storage than hard disk drives. This is
primarily due to the cost of the nonvolatile memory die that are used to store the
data in the SSD. The memory die are typically flash memory, although other
types of memory have been proposed, including Ferroelectric Random Access
Memory (FeERAM), Magnetoresistive Random Access Memory (MRAM),
Programmable Metallization Cell (PMC), Phase-Change Memory (PCM), and
other technologies. Each of these types of nonvolatile memory types has
advantages and disadvantages. However, flash memory is the most mature
technology and has the lowest cost per unit of storage capacity. There are two
predominant types of flash memory: NOR type and NAND type. Both NOR and
NAND flash store data in memory cells made from floating gate transistors.
These floating gate transistors have a finite number of program-erase cycles
before wear begins to deteriorate the integrity of the storage. For example,
NOR flash memory may have a typical endurance rating of 100,000 cycles and
NAND flash memory may have a typical endurance ratings between 1,000 to
3000 cycles.

[0029] NOR type flash memory allows for a single byte to be written and/or
read independently. However, this random access feature makes NOR memory
less dense per unit area and more expensive per unit of storage. NAND type
flash is very high density and has a correspondingly lower cost per unit of
storage. However, in current chip architectures, NAND type flash must be read
and programmed in larger segments called blocks. This limitation is significant
because altering a single bit in a block requires the erasure and rewriting of the
entire written space in a block. For purposes of explanation, NAND type flash
will be used in illustrative examples of solid state drive architectures. However,
the principles described herein can be applied to a wide variety of nonvolatile
memory types.

[0030] As discussed above, NAND type flash is inexpensive and compact
but has the disadvantages of having a finite number of program-erase cycles

before wear begins to deteriorate the integrity of the storage. This challenge is

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

compounded by fact that, while NAND type flash can be read at the bit level,
NAND type flash must be written and erased in large segments (“blocks”) rather
than at the bit level. Consequently, when any bit in a block changes, the all the
data in the block must be copied to a new block. During the copying process,
the new bit(s) are incorporated into the data stored on the new block. The old
block is then erased and used again. Programs and operating systems on
many computing devices frequently read and write to the hard drive, which
could lead to rapid degradation of the NAND flash. In these industry standard
operations, changing even one bit in a block requires the copying and erasure
of the entire block. In the discussion below, principles are described that
provide from holding a block until it is full and only updating the pages that have
already been written.

[0031] In some Apple® operating systems, the user’s files are continuously
written to the hard drive to allow the user to restore the machine to a previous
state. Not only does the system recover to latest state, there is a program called
a “time machine” that allows the system to be restored to any previous state for
months before. This program compresses the snapshots and allows recovery to
a day but not any period during that day. However, the snapshots can be
maintained so that recovery to a particular point for the previous few days is
possible. This time machine feature can be very useful in recovering files that
were mishandled or lost. Recovering to time before the mistake was made
allows for fully recovery of the file and system state.

[0032] These and other frequent write operations can lead to the early failure
of flash memory because the limited amount of write/erase cycles can quickly
be exceeded. Every new write requires a copy of the old data to a new block to
add the new data. As discussed above, each memory location in the NAND
memory can only be updated on the order of 1,000 to 3,000 times without
substantially increasing the likelihood of failure. There are many algorithms that
try to work around this problem, such as over-provisioning the memory with
spares and wear leveling algorithms that attempt to spread the wear uniformly

over the entire flash memory rather than concentrating it in the same blocks.

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

However, these techniques may increase the cost and decrease the
performance of solid state drives.

[0033] The examples below describe various solid state drive (SSD)
architectures, methods and principles. These SSDs incorporate flash memory
for nonvolatile storage and are designed to have an order of magnitude longer
lifetime than conventional SSDs and operate at full bus speeds despite the

limitations of the flash memory.

lllustrative Flash Memory Module

[0034] Fig. 2 is a diagram of an illustrative flash memory module. As
discussed above, flash memory is nonvolatile computer storage that can be
electrically erased and reprogrammed. As discussed above, flash memory has
a high resistance to mechanical shock, small foot print, relatively fast read times
that are comparable to dynamic Random Access Memory (RAM), is energy
efficient and can store data for years without power. Flash memory is used in a
variety of applications, including personal computers, mobile devices, digital
cameras, video games, scientific instrumentation, industrial robots, medical
electronics and other devices. Flash memory has several limitations, including
slow write times and limited lifetime. For flash memory, the write times are
typically order of magnitude greater than the read times. The lifetime of various
types of flash memory typically ranges from 1000 to 3000 erase cycles. The
erasure of the flash memory causes incremental damage that eventually leads
to failure of the memory mechanism in the flash memory.

[0035] The illustrative flash memory module shown in Fig. 2 includes a
number of NAND flash die. The memory controller includes a processor, a
small amount of Random Access Memory (RAM), a small amount of Read Only
Memory (ROM), and a number of memory buffers. Examples of this memory
controller are given U.S. Pat. App. No. 61/774,175; attorney docket number
034901-303891, entitled “High Speed USB Controllers,” to Charles |. Peddle,
which is hereby incorporated by reference above in its entirety. For example,
the memory controller may be based on a 6502 processor, with 20 kilobytes of

processor addressable RAM, 40 kilobytes of ROM to store operating code, and

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

eight memory buffers. The memory controller accepts data from an external
bus, accumulates the data in the buffers, and writes the data to the NAND flash
die. The external bus may be a USB bus or a high-speed internal bus.

[0036] The memory controller also includes a high speed Direct Memory
Access (DMA) and a flash DMA. In general, a DMA protocol includes an
address counter that automatically and progressively increments the memory
addresses during data transfers. The DMA protocol also includes a counter that
keeps track of the number of bytes transferred. To begin a DMA transfer, two
commands are given, the memory location to start at and a count that tells the
DMA how many bytes to transfer. The DMA independently transfers the data
starting at the designated memory location until the count is exhausted. The
purpose of the DMA protocol is to allow full speed transfers to and from a
memory without the need for external inputs other than the memory clock and
enables. This entirely eliminates the requirement for the microprocessor to
directly be involved with data transfers. This enables higher transfer speeds
because the data transfer is not limited by the microprocessor speed or
interrupted when the MPU is redirected to a different task.

[0037] In this application there are two independent DMAs with different
functionality. The high speed DMA (“bus DMA”) controls the transfer of data
from the high speed bus to a bank of memory buffers and the flash DMA
transfers data to and from the flash. In one embodiment, data transfer from the
high-speed bus to the memory buffers is the highest priority process and is
interrupt driven. Data movement to or from the flash is done with polling
because the process can be interrupted with little disturbance. Further, the
polling generates positive control on the timing signals to the flash memory.
[0038] The use of two separate DMA modules (the high speed DMA module
and the flash DMA module) provides several advantages. First, by including
two separate DMA modules, data can be simultaneously written to and read
from the memory buffers. Additionally, the separate DMA modules can operate
differently and be controlled differently to facilitate data transfers. For example,
the high speed DMA may be operating on a high speed clock and write data to

one memory buffer while the flash DMA is reading data out of a different

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

memory buffer at slower speeds. In contrast, the flash DMA may operate on a
flash clock and be operated by polling. Additionally, the flash memory module
generates, stores, and uses error correction code (ECC) to automatically
recover data that has a limited number of errors due to write and/or storage
failure. In addition to the data received on the high speed bus, the flash
memory module also writes additional information to the flash memory including
wear number, logical record number, update number, and other data. This
process is described in greater detail below. The registers can run at various
clock rates and be switched between various functions.

[0039] The structure and architecture given above is only one example of a
flash memory device. A variety of other structures could be used. For example,
larger memory buffers, larger sector sizes, more memory buffers, different
numbers of memory buffers and different numbers flash die could be included in

the architecture.

lllustrative Solid State Drive Architecture

[0040] Fig. 3 shows an illustrative example of a SSD architecture that
incorporates a number of flash memory modules such as those described above
with respect to Fig. 2. The SSD architecture is capable of sustaining SATA data
rates and mitigating the limited lifetime of the NAND flash memory. In this
example, a central processing unit (CPU) external to the SSD is connected to a
SATA bus. The SSD drive accepts data input, commands, and outputs data via
the SATA bus. This output data is initially stored in DRAM logical flash. The
DRAM logical flash includes a DRAM controller and a large bank of Dynamic
Random Access Memory (DRAM). The DRAM logical flash is connected to a
high speed internal bus. In addition to the connection to the DRAM logical flash,
the high speed internal bus is connected to a bank of flash memory devices,
and a master controller. In some embodiments, there may be a separate bus
controller that controls operation of the high speed internal bus. Alternatively,
the functionality of the master controller and bus controller can be combined so
that the master controller performs the functions of the bus controller. The high

speed internal bus allows bidirectional communication between any of these

10

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

entities. The bus controller (or master controller acting as a bus controller)
independently selects the device that is going to receive or transmit data. This
allows the data flow to be controlled for each device individually (and in some
examples sequentially). For example, the DRAM controller can accept data
from the SATA bus while the bus controller is transferring data out of the DRAM
and into the flash memory devices. These simultaneous operations allow for
more efficient operation and higher overall throughput. Flash operations can
have temporal variations so the final synchronization of the data is done by the
master/bus controller managing the high speed bus and coordinating with the
logical flash controller. This balancing approach allows SATA interface or other
interface to run at full bus speed when reading or writing to the SSD.
Controllers
[0041] The SSD architecture uses a number of controllers to manage internal
data flow. The master controller receives instructions from the central
processing unit of the computing device and manages the operation of the solid
state flash drive to perform the instructions. The master controller directs the
operation of the bus, flash memory controllers in each of the flash memory
devices, and logical flash controller. In one implementation, each of these
controllers is a simple microprocessor system as described. According to one
illustrative example, each of the controllers (master controller and optional Bus
controller, DRAM controller, eight flash controllers) is a completely independent
system with its own microprocessor, ROM for storing code, RAM, and bank of
registers. For example, the controllers may be based a 6502 processor
combined with 32 kilobytes of RAM and 24 kilobytes of ROM. The logical flash
controller manages data transfer into and out of the DRAM by controlling DMA
transfers and interfacing with the logical flash controller. The logical flash
controller manages the DRAM logical flash under the direction of the master
controller. The master controller manages the transfer of data between the
DRAM and flash memory. The individual flash controllers deal with the page
mode structure for the flash memory, error correction, and wear leveling. The
memory controller in each of the flash memory devices manages transfer of
data between the high speed internal bus and the NAND flash die.

11

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0042] The use of multiple internal controllers provides a number of benefits.
The controllers can perform dedicated functions that are specifically adapted to
the device they are controlling while flexibly coordinating with other controllers.
For example, the memory controllers may interface with the high speed bus at a
first clock speed and then manage data being written to the NAND flash die at a
different clock speed. Additionally, the memory controllers may signal the
master controller when they have completed a task. This allows the master

controller to intelligently allocate resources to maximize data transfer rates.

Direct Memory Access Interfaces
[0043] Direct Memory Access (DMA) interfaces manage the transfer of data
for each controller that is connected to a bus. As discussed above, DMA is a
hardware implemented protocol that allows hardware subsystems within the
computer to access system memory independently of a controller. The
controller can initiate a transfer, do other work while the transfer is in progress,
and receive a feedback from a DMA controller once the transfer is complete.
For example, a SATA DMA handles transfer of data from the SATA bus to the
DRAM Logical Flash. A bus DMA handles transfer of data between the DRAM
Logical Flash and the high speed internal bus. Similarly, DMA interfaces
between the high speed internal bus and each of the flash memory devices
manage data transfer into and out of the flash memory devices.
[0044] Using DMA techniques maintains the speed for both writing the flash
and transferring data to/from the interface. As discussed above, a DMA
protocol includes an address counter that automatically and progressively
increments the memory addresses during data transfers. The purpose of the
DMA protocol is to allow full speed transfers across an interface without external
inputs other than the memory clock and enables. This entirely eliminates the
requirement for a microprocessor to be directly involved with data transfers and
enables higher transfer speeds because the data transfer is not limited by the
controlling processor or interrupted when the controlling processor is redirected

to a different task.

12

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0045] To begin a DMA transfer, the controlling processor may load control
registers with addresses, a count for the number of DMA operations and other
enabling functions. The data transfer then occurs as a function of the
parameters in the control registers. The DMA may be configured such that
other data may be added during the transfer such as error correction data,
logical records, and housekeeping functions. The DMA protocol can trigger a
variety of responses to signal the controlling processor that a data transfer is
complete or to provide a status update. This allows the data to be accessed as
soon as the DMA transfer is complete. Additionally, the use of interrupts to
signal the status of data transfers allows for polling style parallel distribution of

data between multiple memory storage components within the SSD.

DRAM Logical Flash
[0046] The DRAM in the DRAM logical flash uses arrays of capacitors to
store data. The capacitor may be either charged or discharged. These two
states represent the two values of a bit. Since the capacitors leak charge, the
state of the capacitor eventually fades unless the capacitor charge is refreshed
periodically. This refreshing occurs over intervals on the order of 10 to 100
milliseconds. DRAM is very simple, has negligible read/write cycle wear, and
can be very densely packed onto a die. Additionally, DRAM provides extremely
fast write and read times (on the order of 10 to 100 nanoseconds). The
operation of the DRAM is controlled by a DRAM controller. In this example, the
DRAM has a total capacity of 8 Gigabytes of Double Data Rate type three
Synchronous Dynamic Random Access Memory (DDR3 SDRAM). In other
implementations, the DRAM may have larger (e.g. 16GB Gigabytes) or smaller
amount of memory. For power management, the DRAM can operate at a clock
speed of 800 Megahertz. However, any suitable clock speed and amount of
DRAM can be included in the design. The DRAM logical flash stores files in the
same way as flash and responds to flash commands. Further, the DRAM
logical flash uses a file allocation table, updates logical records, combines files,
and is attached to a SATA bus.

13

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0047] DRAM logical flash is not cache for a number of reasons. For
example, cache is an alternative location for the CPU to look for data. If the
data isn’t in the cache, the CPU accesses the underlying nonvolatile memory.
In contrast, the DRAM logical flash is the only memory in the SSD that is directly
accessible to CPU. The actual NAND flash is under control of a master
controller and is not directly accessible to the CPU. The DRAM logical flash
acts as a gatekeeper between the CPU and the NAND flash. By separating the
NAND flash from the CPU instructions, the NAND flash is not subject to
numerous peculiarities of the operating system, including frequent writes. This
allows the operating system to run without modification while protecting the
lifetime of the NAND flash.

[0048] Data and files are only stored to the DRAM logical flash until deleted
or no activity is observed. In general, data in the DRAM logical flash is
organized by logical record for the user control of the data and referenced by
the FAT table to control the operations of the various data records. However, in
some instances, the DRAM logical flash may receive, store, and transfer data
without the use of logical records. For example, the Snapshot and FastLoad
procedures described below do not use logical records. However, all the data
transfer modes the movement of data out of the DRAM logical flash to the flash
memory is governed only by the master controller. The master controller may
make decisions about when the data or files are moved out of the DRAM logical
flash based on a number of factors, including the lack of use of the file. CPU
commands received by the master controller may have some influence on the
master controller moving data into/out of the flash, but it is the master controller
that makes actually makes the decision about retrieving data from or writing
data. For example, if the CPU requests a data file the master controller
determines if the file is in the DRAM logical flash. If the requested data isn’t in
the DRAM logical flash, the master controller retrieves it from the flash and
stores it in the DRAM logical flash.

[0049] In some instances, files and/or data may only be stored on the DRAM
logical flash and never transferred to the flash memory. For example, a

temporary data file may be created for a transient operation (such as a search).

14

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

In other examples, a file may be created for a letter or email that will be sent to
another system or stored by a remote system. When the file is sent to the
remote system, the file can be deleted.

[0050] Cache appears to the CPU to have exactly the amount of physical
memory that is actually present in the cache. In contrast, the DRAM logical
flash appears to have a capacity that is much greater than the physical capacity
of the memory that makes up the DRAM logical flash. The DRAM logical flash
appears to have a capacity that is equivalent to the total working nonvolatile
memory of the NAND flash.

[0051] Cache appears to the CPU to be volatile memory. In contrast, DRAM
logical flash appears to be extremely fast nonvolatile memory. When a CPU
writes data to cache, the CPU doesn’t assume that the data is actually in
nonvolatile storage. The CPU continues to manage the data flow until the data
is actually stored in the nonvolatile storage that follows the cache. When power
is unexpectedly lost to the cache, the data in the cache is lost and the CPU
must recover without it. All cache transactions either fail or are written to
nonvolatile flash memory increasing the wear and delaying the system.

[0052] In contrast, the CPU and operating system assume that the DRAM
logical flash is the nonvolatile memory storage. The DRAM logical flash reports
that data written to it is stored on the nonvolatile flash memory even through it
actually stored in the DRAM logical flash. When the power to the SSD is lost,
the CPU correctly assumes the data stored in the DRAM logical flash is stored
in nonvolatile memory. This is correct because the SSD has a self-contained
and self-powered system for dumping the data in the DRAM logical flash to
NAND flash. In one implementation, the NAND flash is configured with an extra
provision of spares to accommodate a data dump of all the data that can be
stored in the DRAM logical flash.

[0053] Cache is designed to minimize access time to data stored in a slower
memory. In typical cache operations, the cache writes data as quickly as
possible to the nonvolatile storage but continues to hold the data written to
minimize access times. In contrast, the DRAM logical flash is designed to

minimize writes to the underlying memory. The master controller in the SSD

15

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

only targets data that is not being used for transfer from the DRAM logical flash

to the flash memory.

High Speed Internal Bus
[0054] As discussed above, the high speed internal bus allows bidirectional
communication between any of these components connected with it. In one
example, the master controller individually directs data to the memory
controllers over the high speed internal bus. To implement the write transfer to
the flash, the logical flash controller/interface connects the DRAM logical flash to
the high speed internal bus and uses DRAM DMA to make the transfer to a
designated file location. Using this technique, data could be directly transferred
from the CPU, through the DRAM logical flash, to the flash memory. For
example, high speed internal bus may be 8 bits wide and capable of operating
at speeds of at least 400 megabytes (MB) per second. Data transfer rates over
an 8 bit bus operating at 400 megahertz (or higher) would be approximately 400

megabytes per sec.

Flash Memory Devices
[0055] As discussed above with respect to Fig. 2, each of the flash memory
devices includes a memory controller and a number of NAND flash die that
make up the flash memory. The flash memory is divided into sectors, pages,
blocks and planes. In this example, a sector is approximately 512 bytes with
additional room for header and error correction code (ECC) information. In other
implementations, the sector may be larger. A page is a group of sectors, a
block is group of pages, and a plane is a collection of pages. In one example, a
page includes 8192 bytes for data and additional room for header information.
A block may be a group of 256 pages and a plane is a group of 2096 blocks. A
device may include any number of planes. For example, a 32 gigabyte device
may include 2 planes or 8,192 blocks. A 256 gigabyte device may include 16
planes or 65,536 blocks. Typically when a non-recoverable or repairable flash
data error occurs in a sector, the entire block is marked as bad. However, using

a page mode controller, only the offending page is marked as bad and is

16

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

mapped around. This is further described in U.S. Pat. No. 8,122,319 to Charles
|. Peddle, which is hereby incorporated by reference in its entirety.

[0056] As discussed above, an entire block of flash memory is traditionally
considered unusable when a single bit in one of the pages in the block is
inoperable. Consequently, a defective bit may reduce the storage capacity of
the flash memory by 128 KB or more. When multiple defective bits are
dispersed among many blocks, a flash memory may fail to meet capacity
standards and may be discarded. However, many completely functional pages
remain within each failed block. As shown below, by identifying inoperable
pages rather than inoperable blocks, much of the storage capacity of the flash
memory may be reclaimed.

[0057] Various commands are used to access a flash memory. For example,
read and write commands to a flash memory may operate on a single page.
Erase commands, however, affect an entire block. With the exception of block
erase operations, nearly all operations may be performed on a single page.
Once the pages in a block are erased, they may be selectively written in a
manner that avoids inoperable pages.

[0058] Although the flash memory itself may not include logic to select only
operable pages within a block, a memory controller may be configured to
identify, select, and operate on only the operable pages. The memory controller
may be implemented as a semiconductor chip separate and distinct from the
flash memory. The memory controller coordinates the transfer of data to and
from the flash memory. The memory controller processes requests from
external devices by sending appropriate commands and memory addresses to
one or more flash devices. According to one embodiment, the memory controller
may generate chip select, block select, row select, and column select signals to
transmit to one or more flash memories. The memory controller may also
monitor control signals, status signals, timing constraints, and other aspects of
data transfers to and from a flash memory device.

[0059] The memory controller may translate a virtual memory address (such
as a logical record) from an external system to a physical address on one or

more flash memory devices. A memory controller may receive a query from a

17

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

processor requesting certain data. In response, the memory controller may
determine the corresponding block, page, and byte where the requested data is
physically stored in one or more flash memory devices. The memory controller
may then issue the correct sequence of control signals and memory address
values to the flash memory device to retrieve the requested data.

[0060] Similarly, the memory controller may translate write requests into an
appropriate sequence of block erase, address select, and write commands to
store data on a flash memory device. In effect, the memory controller may allow
various systems and components access to the storage of the flash memory
devices while concealing the complexity of the page mode interface with the
flash memory devices. For example, when previously written data in a flash
memory device is updated, the old data as well as the new data is written to a
new block and the old block is erased. The memory controller may generate and
execute the correct sequence of operations to carry out the storage operation.
The memory controller may also identify which blocks contain a sufficient
number of operable pages to complete an operation. Where data is transferred
from a source block to a destination block, the destination block is selected to
contain at least the same amount of storage capacity as the source block, but
the destination block may still include one or more inoperable pages or sectors.
[0061] To track the number of operable pages in within each block, the
memory controller may build a “good page” table, a “bad block” table, a table
that has a “good” or “bad” designation for each page of the memory, or other
indicator. The “bad block” table may identify inoperable pages and thus identify
operable pages indirectly. The memory controller or other element may then be
configured to read and write to any page except those listed as inoperable. An
indication of operable pages may include one or more references, pointers,
addresses, tables, lists, sets, identifiers, labels, signs, tokens, codes, or
equations, or other information that may allow an operable page to be identified.
[0062] In one embodiment, a table of operable pages may be stored in the
designated block or blocks of the flash memory. For example, thorough testing
of an entire flash memory device by a memory controller may occur when an

indication is incomplete, unreadable, missing, or damaged. This type of testing

18

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

may occur when the memory controller and/or flash memory devices are
powered on for the first time. Additional tests, for example by an error
correction code (ECC) module may be performed during operation of a flash
memory device to detect pages that fail during use. Error detection methods
used during flash memory operation may include, but are not limited to,
generating checksums, comparing checksums, performing redundancy checks,
generating parity values, performing parity checks, and executing other error
detection algorithms. If a failure is detected in a page, the ECC module may
alert the flash controller that a failure occurred or that an operation in progress
was unsuccessful. The flash controller may then repeat the operation in a new
page or otherwise correct the error. If a page has recoverable repeatable errors
then that page is discarded. The master controller than takes appropriate action
to exclude these pages by their designation in the table. From this point on the
defective page is not used.

[0063] When one or more indications are updated, internal operations and
data transfers may be completed to hide failures and reconfigurations from
systems accessing the flash memory devices and ultimately from a human user
of the flash memory devices. Consequently, a failure will not disturb the overall
experience of a user and will not require compensation by outside systems.
According to one embodiment, this may be accomplished with spare blocks,
pages, and/or sectors that may be reserved during an initialization, testing, or
other phase. As failures occur, data and addresses for failing blocks, pages,
and/or sectors may be replaced by spare blocks, pages, and/or sectors. One or
more indications may then be updated to reflect the new logical memory
addresses and physical memory addresses for the data.

[0064] Insummary, page based failure management in a flash memory
controller allows a memory controller to access a “good page” table or other
indicator of the functionality of each of the pages within flash memory blocks.
The memory controller can then execute read, write and erase commands
utilizing the operable pages in each block, even if the block contains one or
more inoperable pages. The use of page mode allows for a significant

extension of the life of the flash memory. Further, the use of page mode allows

19

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

for more efficient use of flash memory that has lower lifetime ratings and/or a
higher number of errors. Rather than discard these flash memory chips with
errors, these chips can be effectively used and have an extended lifetime in a
device that implements page mode failure management as described above.
[0065] The memory controller accepts data from the high speed internal bus
using DMA protocols, accumulates the data in its internal buffers and writes the
data to the NAND flash die. Each flash memory module is configured to provide
data transfer speeds of approximately 40 megabytes per second to and from the
flash die. These parallel flash memory modules may have a number of
configurations, including those described in U.S. Pat. App. No. 61/774,175;
attorney docket number 034901-303891, entitled “High Speed USB
Controllers,” to Charles Peddle, which is hereby incorporated by reference in its
entirety. For example, there may be parallel eight flash memory modules. In
one implementation each of the flash drives includes four flash dies. Each flash
die includes 8 Gigabytes of storage, resulting in a total flash storage of 256
Gigabytes. These drives are configured to operate in parallel, providing
approximate transfer rates of 320 Megabytes per second for data writing.
Reading data from flash memory is significantly faster than writing data to the
flash memory. Consequently, the flash memory modules may exhibit

correspondingly higher data transfer rates during reading operations.

Moving Data between the CPU memory, DRAM logical flash, and Flash
memory

[0066] Fig. 4 is a diagram that shows an overview of various methods used
to transfer data between the CPU memory, DRAM logical flash, and flash
memory. Each of the methods for transferring data is described in more detail in
the figures and description below.

[0067] The system shown in Fig. 4 includes a CPU that is operably
connected to a CPU memory. As shown in Fig. 3, the CPU and CPU memory
are connected to the DRAM logical flash in the solid state drive by the system
bus (SATA bus). The DRAM logical flash is connected to the flash memory by a

high speed internal bus.

20

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

[0068] As discussed above, the movement of data between the DRAM
logical flash and the flash memory is independently managed by the master
controller. The master controller may act in response to commands received
from the CPU, but CPU has no direct control over transfers to the flash memory
and is unaware that these transfers occur.

[0069] The system can implement a variety of data transfers between
memories to accomplish specific objectives. In general, the computing device
sends commands about data collections called files. The commands are quite
simple: read this file, write the file, or update an existing file. The command
comes to the SSD as SATA commands which are interpreted by the master
controller. The data from the external bus is streamed into the logical flash at
full speed and the logical flash controller is directed to store or replace previous
versions of the associated data file. The external bus may be a SATA bus, USB
bus, or any other appropriate protocol or technology. When the computing
device wants to read back a file or part of a file, the read command is initially
given to the logical controller which is directed to retrieve the desired data from
data stored in its memory. If the data is not in the DRAM logical flash, it is
stored there under direction of the master controller from the flash devices and
then transferred at high speed to the computing device. This data is maintained
in the DRAM logical flash because it is likely to be updated and reloaded.
[0070] Fig. 4 shows illustrative examples of five different data transfer
techniques. A first technique is data transfer using logical records which is
described in greater detail in Figs. 5A, 5B, 6A, and 6B. The processor deals with
logical records while the controllers deal with physical records. A translation
table is used to convert/index the relationship between logical records and
physical records. The translation table used for the SSD differs from the
translation tables used in hard disk storage systems. This data transfer
technique uses logical records to index and store data from the CPU memory to
the working area of the DRAM logical flash as directed by the CPU and to
subsequently store data files that are not being used to the working area of the
flash memory under direction of the master controller. The master controller

also directs retrieval of the data out of the working area in the flash memory into

21

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

the working area of the DRAM logical flash for direct retrieval by the CPU
memory.

[0071] A second data transfer technique is snapshot flow that allows for
snapshots of the system state to be saved periodically so that the system can
be recovered to a previous state. This technique is described in greater detail in
Fig. 7. In this implementation, the data is transferred to a specified snapshot
area within the DRAM logical flash without the use of logical records. Other
techniques, such as tables, can be used to index and recover the snapshot
data. In one example, the snapshots are indexed by time. The most recent
snapshots are most valuable in recovering the state of the computing device.
The older snapshots are overwritten by new snapshots during the use of the
system. This stores the most recent snapshots for use in future recovery
operations. The snapshots are stored DRAM logical flash and are not
transferred into the flash memory until power down. On power down, only
selected numbers of the snapshots are stored to the flash memory as part of the
dump process. This can significantly increase the lifetime of the flash memory
by reducing the number of writes made to the flash memory. In contrast, Apple
notebooks store the snapshots directly to flash memory. This snapshot
operation occurs frequently during use of the notebooks and results in
significant flash wear.

[0072] A third data transfer/storage technique is the FastLoad process
described in Fig. 8. The FastLoad process includes a protected program area in
the flash memory that stores program files. In this example, the protected
program area in the flash memory has two divisions, one for stored programs
and one for active programs. The FastLoad process is implemented by
additional circuitry and logic that are not part of a standard controller using
DRAM flash. When the user obtains permission to access the stored programs,
the FastLoad process can be used to move the program files to a protected
program area in the DRAM logical flash. From there, the CPU can request the
program files to be transferred to the CPU memory for execution.

[0073] A fourth data transfer/storage technique is a dump/recovery process

described in more detail in Fig. 9. The dump/recovery process occurs on power

22

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

down or power loss. The dump/recovery process moves data out of the DRAM
logical flash into a specified dump area in the flash memory. To recover, power
is restored to the computing device and the data in the dump area is transferred
back into DRAM logical flash and then to the CPU memory.

[0074] A fifth data transfer technique is a mishandled file recovery technique
described in Fig. 10. A “mishandled” refers to any instance where an
unintended and undesired change is made to a file. For example, all or a
portion of a file may be deleted, or a desired file may be overwritten by another
file. The mishandled file recovery technique provides for recovery of a file that
the CPU has instructed to be deleted from the DRAM logical flash to be
recovered from the DRAM logical flash. The DRAM logical flash has a latency
period during which the mishandled files can remain stored in the DRAM logical
flash. A limited history file is used to index and recover these mishandled files
that still reside on the DRAM logical flash. Each of these techniques is
described below.

[0075] Although the DRAM logical flash is illustrated as an integral physical
part of the SSD, in some implementations, the DRAM logical flash may be
constructed in the CPU volatile memory, with the CPU providing the control of
reading, writing, and flash operations of the DRAM logical flash. However, in
conventional CPU/CPU memory systems, there is no mechanism to maintain
the power while dumping the data to the volatile CPU memory when the power
goes down. To successfully implement the principles discussed herein, the
computing device could have an independent power source to allow the data
stored in the CPU memory to be dumped from the DRAM logical flash to the
flash in the solid state drive.

[0076] Additionally, the DRAM logical flash may be used or configured to
perform only part of the functions described above. For example, the DRAM
logical flash may be configured to provide FastLoad operations or Snapshot
operations without being used for logical record type data transfers. This may
significantly simplify the operation of the DRAM logical flash. In other
implementations, the DRAM logical flash may be segmented into operationally

specific parts. The volatile memory associated with the microcontroller may be

23

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

mapped into a snapshot/fastload segment (areas) and logical record segments
(areas). The snapshot/fastload segment may store data that is transferred to the
flash using special protocols and may or may not be indexed by logical records.
In some circumstances the amount of DRAM logical flash may be increased to
accommodate this mapping into separate segments/areas.

[0077] For example, the non-logical record area may store snapshot data or
fastload data. The data in the non-logical record area may or may not be
loaded into the flash. For example, if the non-logical record area of the memory
contains 4 snapshots that can be used to recover the state of the computing
device, only one or two of the most recent snapshots may actually be saved to
the flash on power down. The other older snapshots are simply discarded.
[0078] In another example, fastload programs may be loaded into the non-
logical record area of the volatile memory. These fastload programs are
executables that are typically modified during normal operation and are not
written back to the flash memory. There is an alternative logical path for
updating the programs. This alternative logical path allows software
programmers to update the software. Restrictions and protocols may restrict
anyone other than the software distributors from accessing the authorized
software programmers from accessing this area. This is because there are
specific commands for these areas that are not disclosed to any unauthorized
individuals or entities.

[0079] In order to protect copying of software, the operating system may not
allow the copying of code loaded to the fastload to user ports or any other port
in the system. Fastload is, in general, a read only function for the users. This
prevents modification and distribution of the programs by the users. As
discussed above, there may be separate commands in the protocol that are
available only to the software publishers (or other authorized users) so that only
they can update the software.

[0080] In other examples, there may be multiple separate memory
controllers. In one implementation there may be one controller for the standard
volatile memory included in the memory device and one for the DRAM logical

flash. Further, the standard volatile memory may be protected and not directly

24

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

addressable or accessible to the user and or computing device. In some
instances, the standard volatile may have special restrictions or usage. In some
embodiments, the memory may appear to be an extension of the system volatile

memory.

Writing Files to the Solid State Drive

[0081] During ordinary operation the CPU uses the same protocols to write
files to the SSD that it would use to write data to a typical hard drive. For
example, the CPU may use the technique of writing and reading to the SSD
using logical records. The internal operations of the SSD drive are independent
from the CPU operations and are hidden from the CPU. As discussed above,
the SSD drive accepts the data from CPU, but internally manages and stores
the data in a unique manner that overcomes speed and lifetime limitations of the
NAND flash memory. However, the SSD drive controls the interface between
the SSD drive and the CPU so that it fully appears to the CPU that it is writing to
hard drive or ordinary flash drive. Consequently, the SSD is a plug and play
memory storage device that can be used in any of a variety of computing
devices and transparently provides superior data transfer rates, long lifetime,
and low power consumption.

[0082] Fig. 5Ais a diagram that shows illustrative data flow through the SSD
architecture that allows for extremely fast data transfer rates. Data is initially
transferred by CPU operations over the system bus. For example, the system
bus may be a SATA bus. The data is transferred off the system bus using a
DMA process to the DRAM logical flash. As discussed above, the DRAM logical
flash stores the data for later retrieval by the CPU. The CPU is only aware of
the DRAM logical flash, which appears to be extremely fast non-volatile solid
state memory with a memory capacity of the flash memory.

[0083] If the master controller determines that it is appropriate, the master
controller decides to write data out of the DRAM logical flash to the flash
memory. There may be any number of flash memory modules within the SSD.
For example, the SSD architecture may include eight flash memory modules.

For purposes of illustration, Fig. 5A shows only four of those devices. As

25

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

discussed above with reference to Fig. 3, each of the flash memory devices
includes a memory controller with buffers and a number of flash memory die.
For example, each flash memory controller may control distribution to four,
eight, or sixteen separate die. The distribution of data among a number of flash
memory controllers provides a number of benefits including simultaneous writing
to multiple flash die. This compensates for the relative slow write times that are
inherent in the current implementation of flash memory. The independence of
the master controller and various flash memory controllers allows for parallel
data transfer with minimal latency. To enable parallel writes and parallel
reading operations, a file is striped across the various flash memory die. In Fig.
5A this is illustrated as numbered boxes in each of the flash memory die. When
a file is written the master controller sequentially address the individual flash
memory controllers, which in turn sequentially address the flash die they control.
This results in the file being distributed across the die and various portions of
the file being written in simultaneously to different flash die. When the file is
retrieved from the flash die, it can be read from the die in parallel. This is shown
in Fig. 6A.

[0084] An illustrative method for writing files to the SSD is shown in Fig. 5B.
In a first step, the CPU sends a write command and places data to be written to
the SSD on SATA bus (step 505). The write command is transferred to the
master controller, which instructs the DRAM controller to accept the data and
transfer it to the DRAM memory (step 510). The DRAM controller may be
configured to discriminate between commands and other data and send the
commands to the master controller over a separate bus. This example, the
DRAM controller sends a write commend to the master controller. When the
master controller interprets the write command, it alerts the DRAM controller
that new data is coming. The DRAM controller looks for the logical records in
the command and searches for the logical records in its tables to determine if
the data is already contained in the DRAM logical flash. For example, the
current logical record maybe part of another bigger file. The DRAM controller is
able to determine that the data is already in the DRAM logical flash by searching

for the beginning and end logical record for each file. If the current logical record

26

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

is between the beginning and end logical record for each file, the data is
currently stored in the DRAM logical flash and will be overwritten. To allow for
mishandled file recovery as described below, the logical record data is written in
a new space in the DRAM logical flash with a notation of the address of the
replaced file. However, if the logical record is not in DRAM logical flash and
represents new data, a new record is created for the new logical record and the
data is collected in the DRAM logical flash. When the writing is complete, a File
allocation Table (FAT) is updated and sent by the CPU over the SATA interface.
In some operating systems, the storage of each FAT table entry can involve
multiple, redundant write cycles. If the FAT table is requested from the SSD,
the request is serviced from the DRAM logical flash. The FAT tables are stored
in the DRAM logical flash and only saved to the flash memory on power down.
This can save thousands of erase/write cycles in the flash memory.

[0085] The logical flash controller sets up the SATA DMA and manages the
transfer of the data into the DRAM logical flash (step 515). As discussed above,
the DRAM memory used in the DRAM logical flash is extremely fast random
access memory. The combination of DMA transfers, a dedicated DRAM
controller, and the extremely fast DRAM memory means that data stored in the
DRAM logical flash is easily and rapidly accessible to the CPU at speeds that
are typically limited by the SATA bus. The DRAM logical flash is used to store
data that is frequently accessed. This insulates the flash memory devices in the
SSD from excessive write cycles. The logical flash controller manages the data
in the DRAM as flash files, including using flash techniques to consolidate and
update the data (step 520). This allows the DRAM logical flash to interface with
the SATA bus in the same way as standard flash memory, but at much higher
speeds.

[0086] There is no temporal correlation between SATA data and the flash
data. The flash memory and data stored on the flash memory is not directly
accessible to the CPU, but is controlled by master controller. The CPU
interfaces only with the DRAM logical flash, with command data being
transferred from the DRAM logical flash to the master controller. The logical

flash controller periodically evaluates the usage of the data and determines if

27

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

the data should be written from the DRAM logical flash to the NAND flash
memory (step 525). For example, a file that is in use by the CPU may be saved
regularly to the SSD drive during the time that the user is working with the file.
After the user is finished with the file, the file can be dormant for days or months
before it is again accessed. The data stored in the DRAM logical flash is written
at specified save points to the NAND flash memory. For example, the data
stored in the DRAM logical flash may be transferred to the NAND flash memory
when the file is closed or when the computer is powered down. Other save
points may occur when the capacity of the DRAM logical flash is mostly
consumed. In this case, a file that is less frequently saved can be transferred to
the flash memory.

[0087] The transfer of data from the DRAM logical flash to the NAND flash
memory under control of the master controller will now be described. When the
master controller makes the decision to write the data from the DRAM logical
flash to the flash memory devices, it sends a command to the logical flash
controller that identifies the data that is to be transferred and alerts the bus
controller of the data transfer (step 530). The master controller places
command data onto the internal bus that alerts/enables the flash controllers so
that they can receive/retrieve the desired data. The logical flash controller sets
the appropriate register values to configure the internal bus DMA for the transfer
and the data identified by the master controller is placed on the high speed
internal bus by the bus DMA (step 535). The master controller (or alternatively
the optional bus controller) then begins transfer of the data with specific data
segments addressed to individual flash controllers (step 540). A variety of
techniques can be used to manage the transfer of data over the high speed
internal bus. In one implementation, data that is loaded onto the internal bus
includes a marker indicating the beginning of the data sequence, a marker
indicating the end of the data sequence, and a structure than identifies the
component the data is addressed to. Each flash controller watches for its
identifier in the data stream and diverts the appropriate data segments to its
internal storage. In other implementations, there may be a separate

command/enable lines that are connected to each of the memory controllers.

28

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

When data is intended for a specific flash memory module, the enable line
connected to this memory controller is asserted while the enable lines for the
other memory controllers are not asserted. This configuration is shown in Fig. 3.
[0088] The high speed bus operates on a clock that ensures that data
transfer to and from the bus is performed at 400 MB per second. The bus
controller directs transfer of the data from the DRAM logical to the flash memory
devices at the full data rate of 300+ MB per second. During a data transfer, the
master controller sequentially directs data to a first flash register during a first
DMA cycle and then to a second flash register during a second DMA cycle, and
so forth. The master controller distributes the data across the eight different
flash controllers sequentially (step 545). The data is sequentially read out of the
registers in the flash controllers to the flash die in parallel at 40 MB per second
(step 550). The registers (flash memory buffers) that are loaded have their
clock switched from the bus speed to the flash speed. Eight flash controllers
operating in parallel (at 40 MB per seconds for each) results in an overall
transfer rate of 320 MB per second. However, the extra 20 MB per second
allows for additional overhead data, such as error correcting code (ECC) to be
written into the flash memory. Additionally, there may be a number of additional
operations, such extra writes or reads that are performed during maintenance of
the flash memory. This additional overhead makes the 40 to 50 MB transfer
rates for the eight parallel flash drives approximately equal to the 400 MB per
second transfer rates on the internal bus.

[0089] The SSD may also have a number of additional features. For
example, the SSD may be partitioned into various sections that differing access
and security levels. For example, a protected portion of the SSD may be
designated for software executables. This protected portion of the SSD may not
be directly accessible by the user or by the operating system. For example, the
protected portion of the SSD may not be indexed by logical record numbers.
Consequently, there is no mechanism for the user or the operating system to
access the protected portion. Instead, the protected portion may be available
only to the software supplier for loading new software and updating existing

software. The protected portion can be addressed by a different technique with

29

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

special commands that are specific to this type of data. For example, an
address that is equivalent to a logical record could be used but be indexed on a
different lookup table.

[0090] To run the software contained in the protected portion(s), the software
could be transferred to a second “read only” section and accessed by the
operating system. One of the advantages of this technique is that the software
executables could be updated independently of what the user is doing. For
example, the user may be using the Windows® operating system and a
Microsoft Office ® application to edit a document. In the background, the
software supplier may be pushing out an update to the Windows® operating
system executable stored in the protected portion of the SSD. The user’s work
is not interrupted. In most user situations, such as document preparation or
accessing the internet, there is little or no communication traffic to/from the
SSD.

[0091] Consequently, the new data can be streamed into the protected
portion(s) of the SSD without adversely affecting the performance of the flash
drive. The next time the user boots up the system, the new version of the
operating system will be loaded from the protected portion of the drive into the
“read only” section and transferred to the CPU through the DRAM logical flash.
On shutdown or failure of power, there is no need for the computing system to
attempt to save these executable files because they have not been changed
and are already stored on the protected portion of the drive.

[0092] Additionally or alternatively there may be a special section of the drive
that is designated for storing snapshots. As discussed above, snapshots are
records of the complete state of the computing device at a given point in time.

The snapshots allow for recovery of the computing device to that state.

Retrieving Files from the Solid State Drive

[0093] Fig. 6Ais a diagram of read operations in the computing device. As
discussed above, the CPU communicates directly with the DRAM logical flash
over the SATA Bus and SATA DMA to retrieve data. When a read command is

received, the master controller determines if the data is stored in the DRAM

30

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

logical flash. If it is, the data is sent from the DRAM logical flash to the CPU. If
it is not, the master controller determines where it is stored on the flash memory
modules and retrieves it. In many instances, the data may be striped across
multiple flash memory modules and multiple die within each module. Thus, a
data file may be rapidly retrieved by simultaneously reading the data from
multiple die using multiple independent controllers.

[0094] Fig. 6B is a flow chart of an illustrative method (600) for reading data
from the flash memory. When a new or updated file is needed, the CPU sends
a read command with logical record numbers corresponding to the needed data
to the SSD via the SATA interface (step 605). The read command is received in
the DRAM logical flash and transferred to the master controller (step 610). For
example, the DRAM controller may be configured to recognize commands and
send them to the master controller over a special high speed bus, alerting the
master controller that a new command has been received. The master
controller or DRAM controller determines if the requested data is stored in the
DRAM logical flash (determination 612). In some implementations, the DRAM
controller tracks all the files as read or written so that, in response to a request
from the CPU or master controller, it can send the correct data to the SATA
interface. The DRAM controller looks for the logical records in the command
and searches for the logical records in its tables to determine if the data is
already contained in the DRAM logical flash. If the requested data is in the
DRAM logical flash (“Yes”), the master controller instructs the DRAM controller
to place the requested data on the SATA bus (step 614). The DRAM configures
the SATA DMA for transfer of the data (step 616). The data is placed on the
SATA bus and received by the CPU (step 618).

[0095] If the requested data is not stored in the DRAM logical flash (“No”),
the master controller sends instructions to the various flash controllers to place
the data on the internal bus. The flash controllers configure their individual
DMAs to make the transfer the data from the NAND flash die to the internal bus
(step 620). The logical flash controller configures the bus DMA to receive the
data and transfer it into the DRAM logical flash. The logical flash controller also
configures the SATA DMA to transfer the data out of the DRAM logical flash and

31

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

onto the SATA bus (step 625). This transfer from flash memory is made at 300
to 400 megabyte per second speeds. Subsequent requests for the same data
are fulfilled by the DRAM logical flash instead of from the flash memory at full
SATA rates (step 630). After the transfer of data from the flash memory, the
DRAM logical flash allows all subsequent transactions to be performed at
maximum SATA speeds (from 300 to 1000 MB per second).

[0096] The CPU uses the data in program operations and may periodically
rewrite the data to the SSD (step 635). The logical flash controller tracks the
changes to the data and consolidates the file so that it is always ready to be
written to the NAND flash devices in a single write (step 640). If a new file is
received from the CPU and it is an update to that a file that current exists in the
DRAM logical flash, all of the logical records associated with the new file are
written to a new location in the DRAM logical flash and the new file is written.
The locations of the old data file are made available for data contained in future
writes. This means that all of the current files are in one place in the DRAM so
that they can be efficiently stored in the flash memory upon power down.
However, if data in the DRAM logical flash has not been changed (as is the
case with many executable files), there is no need to write it back to the NAND
flash memory because an identical copy of it is already stored in the flash
memory. Changes to the data stored in the DRAM logical flash can be
designated using a “dirty bit.” If the file stored in the DRAM logical flash is not
changed, then the dirty bit remains unchanged and the file is not rewritten to the
flash memory at a save point. If the data has been changed while it is in DRAM
logical flash this indicated by the dirty bit and the data is written to the non-
volatile flash memory before power down of the system (step 645). The use of
a dirty bit to track changes to the data stored in the DRAM logical flash allows
the system to save time and wear on the NAND flash memory. Throughout the
process described above all communications are handled at the logical record
level. This makes the data handling process uniform and transparent for all

controllers and for the CPU.

32

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

Snapshots

[0097] Fig. 7 is a flow chart of an illustrative method for storing snapshots of
the system state. As discussed above, incorporation of DRAM logical flash into
the SSD allows for system “snap shots” and other frequent write operations to
be performed by the operating systems without negatively affecting the lifetime
of the flash memory. Snapshots are not transferred/stored as logical records.
As discussed above with respect to Fig. 4, a special path with separate
instructions is used for storing and retrieving snapshots. The snapshots are
stored in a snapshot area in the DRAM logical flash and are only transferred to
the flash memory at power down. The snapshots are not stored using logical
records. Instead, a table called a snapshot record is used. A special path with
special instructions is used for storing and retrieving snapshots. Because a
separate path and instructions are used for managing snapshots, the snapshots
can be saved without interfering with the normal data stream that uses logical
records. Most of the snapshots are not permanently stored on the non-volatile
flash memory but are temporarily stored in the DRAM logical flash. When the
computing device is shut down or loses power, selected snapshots are
transferred from the DRAM logical flash to the flash memory. This transfer and
recovery process is coordinated by the operating system.

[0098] Now referring to Fig. 7, a user/Operating system/CPU decides that a
snapshot should be saved (705). The state of the computing device is saved to
a protected area (“Snapshot Area”) on the DRAM logical flash. The operating
system makes decisions about which data is saved. For example, there is no
reason to include data in a snapshot that has previously been saved to a file.
The snapshot transfer is not performed using logical records and the data is not
stored using logical records or block look up tables. Tables (“snapshot records”)
stored with the data in the snapshot area are used to index/organize the various
snapshots. Typically, the snapshots are organized by the time the snap shots
were taken (710).

[0099] When the CPU sends a shut down command or the power circuit
senses a loss of power and sends an interrupt, a snapshot saving sequence

stores the last two snapshots as a priority into the flash memory. This process

33

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

also does not use logical records or block lookup tables. Designated blocks are
ready to receive the snapshot data. Relevant data about the organization of the
snapshots and how to retrieve them is stored in tables with the snapshots (715).
[00100] When the system recovers/restarts, the snapshot recovery code
retrieves the snap shot from flash to the DRAM logical flash and back into the
CPU memory (720). The computing device can then resume operations from

the state saved by the snapshot.

FASTLOAD Operation

[00101] Fig. 8 is a flowchart of an illustrative method (800) for fast
load operations. Programs are stored in storage portion of a protected program
area of flash memory in the SSD during manufacturing/configuration. The user
is unable to directly access the protected program area (805). When a user
receives appropriate permission to use a particular program, the program is
transferred from the storage portion to the active portion of the protected
program area (810).

[00102] To prepare to use one or more programs in the active area,
the program files are moved into a protected program area of the DRAM logical
flash. This transfer does not use logical records, but is a bulk transfer. The
protected program area is similarly not directly accessible to the user (815).
[00103] The programs in the protected program area of the DRAM
logical flash are transferred to the CPU memory for execution. The program
files are not typically included in snapshots or dump/restore operations because
the program files are not changed during execution. Files generated by the
program files, including configuration and data files can be included in
snapshots and dump/recovery operations (820).

[00104] Updates to the program files, including program files that the
user does not yet have permission to access can be streamed from a network to
the protected program area of the SSD using background operations (825).
These updated programs can then be rapidly made available upon payment or

authorized request by the user.

34

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

Saving Data during Power Down

[00105] Fig. 9 is a flowchart of an illustrative method (700) for saving data
stored in the DRAM logical flash into non-volatile flash memory when the
machine turns off or loses power. A power capacitor circuit or other energy
storage device may also be included in the SSD. The energy storage device
stores sufficient energy to write all the data stored in the volatile DRAM memory
into the nonvolatile NAND flash memory (step 905). When there is a power
interruption to the SSD a sensor in the power supply starts the power down
store operation. Additionally, a power down store operation may be triggered by
the user or operating system (step 910). During the power down store
operation, energy from the power capacitor is used to refresh the DRAM to
preserve the data, operate the controllers, transfer the data to the memory
controllers, and write the data in the NAND flash memory. The master controller
sets up a data path and the DRAM controller begins sending the data via the
internal bus to the memory controllers. The data is written into each memory
module at full speed. Each data file includes a header that identifies the file as
part of a power down store operation (step 915). Each segment of data
includes a logical record flag allowing the dump and recovery program to restore
the logical flash data exactly as stored. Each of the eight flash memory
controllers watches for its logical record flag. When a flash controller identifies
its logical record flag, the controller stores the subsequent data in its flash
memory (step 920). Because the dump loads the entire flash memory in
sequence there are no erase cycles and the write speed can approach 300 MB
per second. In theory, the complete 8 GB DRAM memory can be dumped into
the flash in 24 seconds. Where the DRAM logical flash is not entirely full or
contains files that have not been changed, transfer times can be significantly
less. The energy storage device has a capacitive power circuit that is designed
to maintain power to the SSD drive for maximum speed data transfer of all data
in the DRAM logical flash to the flash memory.

[00106] In one embodiment, spare blocks in the flash die are used to store
the data during the power down store operation. The spare blocks are already

blank, so no erasure delays occur. The spare blocks are distributed throughout

35

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

each of the die. Consequently, the snap shot is not physically located in one
contiguous location. However, the header included in each of the data
segments identifies the next data segment. Consequently, by storing the first
data segment in a known location, the master controller can recover all of the
data files in the same order that they were written (first-in, first-out).

[00107] Before the capacitive power circuit is exhausted, pointers can be
stored to help with restart. In one implementation, the master processor
accumulates a directory of the logical records loaded into the flash. This
directory is written on the flash memory in a protected area. When the
computing device is restarted, the directory is retrieved from the protected area.
The master controller then uses the table to control the operations of the logical
flash.

[00108] The restore process is the reverse of the power down store
process. The operating system senses the restart and causes the snapshots to
be retrieved. Any necessary tables or other indexing data are first retrieved
from the dump area in the flash (935). These tables may be stored in the
memory of the master controller or stored in the DRAM logical flash. The
master controller then uses these tables to access the snapshot and reconstruct
the operating system state before the power down store operation (940). In one
implementation, the first segment of data saved is transferred back to the logical
flash, followed by the second segment of data and so forth until all the data is
again stored on the DRAM logical flash. This operation restores a cleaned-up
version of the data to the DRAM logical flash. The restored operating system
then uses logical record tables to instruct the master controller to retrieve
required files from the logical flash.

[00109] In general, the recovery sequence will be under control of the CPU
and operating system. The operating system will instruct the loading of the
various files as required. In some implementations, there may be dump
references for programs that were open. If the dump references are constant,
these are not rewritten. The master controller may maintain a set of bread

crumbs for each open program so that the recovery process can reset the code

36

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

to the last place running. However, not all programs will have bread crumbs but

will be loaded as part of the recovery sequence.

Mishandled File Recovery

[00110] Fig. 10 is a flowchart of an illustrative method (1000) for
recovering a mishandled data file stored in the DRAM logical flash. For
example, a user may accidentally close a file without properly saving it. CPU
sends instructions to the SSD to delete the file (1005).

[00111] The deletion of the file is recorded in the FAT table. However, the
data in the file remains stored in the DRAM logical flash for a period of time and
is indexed by a limited file history (1010). The user discovers that the file was
closed without properly saving it and requests that the operating system recover
the file (1015). The operating system accesses the limited file history to
determine if the data that makes up the “deleted” file is still present on the
DRAM logical flash (1020). If the “deleted” file is still present, it is retrieved from
the DRAM logical flash and sent to the CPU memory (1025).

Conclusion

[00112] In sum, the illustrative SSD architectures described above provide
plug and play alternatives to hard disk drives. A number of principles are
described above that allow for flash memory to be used effectively as non-
volatile storage despite its finite number of erase/write cycles. The use of
DRAM logical flash simulates flash behavior, allows all flash commands to be
handled at full interface speeds and minimizes writes to the NAND flash
memory. As far as the system processor is concerned, it is always writing to
flash memory within the SSD. However, the system processor is writing to
DRAM which acts as logical flash but without the life time or addressing
limitations of NAND flash memory. The DRAM logical flash stores files in the
same way as flash and responds to flash commands. Further, the DRAM
logical flash uses the FAT table, updates logical records, combines files, and is
attached to a SATA bus. Because the DRAM logical flash has a virtually

unlimited number of read/write cycles, the system processor and operating

37

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

system can store as many updates and snap shots as desired. Further, the
DRAM logical flash is extremely fast in both reading and writing data. The SSD
stores enough power to move the entire data content stored in the DRAM logical
flash to flash memory if the external power is interrupted.

[00113] The flash controllers in the SSD deal with logical record
translations, error detection and recovery, and device optimization. In some
embodiments, each of the flash interface devices may control 2 to 4 die for
speed and ease of use. The master controller (and in some embodiments the
bus controller) controls data transfer between the DRAM logical flash and each
flash controller.

[00114] As discussed above, the DRAM memory and its controller make
up the DRAM logical flash. The data in the DRAM logical flash is managed by
the local microprocessors (DRAM controller, logical flash controller, and master
controller) to fully appear to be the flash drive. All transactions for all
communication with the SATA system occur only through this interface. The
DRAM logical flash always reads from and writes to the SATA bus at full SATA
speed. Thus, the DRAM logical flash fully appears to be a flash device but has
significantly higher data transfer rates. This makes the SSD operation
transparent to the computing device, which can function just as if it were writing
to a standard flash or hard drive device.

[00115] The DRAM logical flash is not a cache and does not function as
cache. The files in the DRAM logical flash are written just as they would be in
flash, with logical record to physical location mapping and file management. The
DRAM controller accepts flash commands and implements them such that CPU
always believes it is writing to flash memory drive. However, the CPU is always
reading and writing to the DRAM logical flash. The CPU does not directly
access the flash memory. The flash is written to only at specific predetermined
points determined by the master controller. These points are independent of
the CPU commands and cannot be directly triggered by the CPU.

[00116] The implementations given above are only illustrative examples of
principles described herein. A variety of other configurations and architectures

can be used. For example, the functions of the DRAM controller and logical

38

10

15

20

25

WO 2014/081719 PCT/US2013/070789

flash controller could be combined into a single controller. In other
implementations, the functions of the master controller and bus controller could
be combined. The number and type of buses, volatile memory, and nonvolatile
memory devices could be varied to accommodate various design parameters
and new technologies. For example, although a SATA bus, DRAM memory,
and NAND memory are described in the example above, a variety of other bus
and memory technologies could be used.

[00117] Additionally, the architecture shown in Figs. 1-4 and described
above is only an example. A number of alternative architectures could be used.
Although the principles discussed above show a DRAM logical flash that acts as
a gatekeeper between a CPU and a bank of flash memory, the DRAM logical
flash could also be interposed between a CPU and a conventional spinning
platter hard drive or other nonvolatile memory.

[00118] Consequently, the SSD is a drop in replacement for standard
hard drives and does not require any programming or physical changes to the
computing device.

[00119] The preceding description has been presented only to illustrate
and describe examples of the principles described. This description is not
intended to be exhaustive or to limit these principles to any precise form
disclosed. Many modifications and variations are possible in light of the above

teaching.

39

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

CLAIMS

WHAT IS CLAIMED I[S:

1. A solid state drive comprising:
DRAM logical flash; and
flash memory;
in which a system bus reads and writes to the DRAM logical flash but not

the flash memory.

2. The drive of claim 1, in which the system processor cannot directly instruct

the solid state drive to write to the flash memory.

3. The drive of claim 1, in which the solid state drive writes data from the
DRAM logical flash to the flash memory at predetermined points that are

independent from commands issued by the system processor.

4. The drive of claim 3, in which the predetermined points are determined

by logic contained within the solid state drive.

5. The drive of claim 1, in which the DRAM logical flash simulates flash
memory by storing files in the same way as NAND flash and responds to

flash commands.

6. The drive of claim 5, in which the DRAM logical flash simulates flash
memory by using a FAT table, updating logical records, combining files, and

directly connecting to a SATA bus.
7. The drive of claim 1, further comprising an energy storage device storing

enough power to move the data content stored in the DRAM logical flash to

flash memory if external power to the solid state drive is interrupted.

40

5

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

8. The drive of claim 7, in which the energy storage device is contained

within a physical envelope of the drive.

9. The drive of claim 1, in which the DRAM logical flash implements all flash

commands full interface speed.

10. The drive of claim 1, in which the DRAM logical flash stores program
trace points and operation snapshots and minimizes writes to the flash

memory.

11. The drive of claim 1, in which the solid state drive is configured to
provide a full recovery of a last state of an attached computing device for any

power down.

12. The drive of claim 1, further comprising an independent microprocessor

for management of the DRAM logical flash.

13. The drive of claim 1, further comprising multiple microprocessors to
manage data transfers into and out of multiple flash memory devices in
parallel and at a speed equivalent to a designed operating speed of an

external interface with the solid state drive.

14. The drive of claim 1, in which pages of the NAND flash are individually
identified as having errors and eliminated from a block while other pages in

the block remain in use.

15. The drive of claim 14, in which the flash memory comprises multi-level
cell NAND flash, in which individually identifying pages as having errors and
eliminating them from a block while other pages in the sector remain in use
increases the lifetime of the flash memory by at least 10 times that of flash
memory that eliminates an entire sector when an error is detected in a page

within the sector.

41

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

16. The drive of claim 1, in which all the data is retained in the DRAM logical

flash until the data is correctly written to the flash memory.

17. The drive of claim 1, further comprising high speed DMA for independent

read and write operations to the DRAM logical flash.

18. The drive of claim 1, further comprising a high speed internal bus, in
which the DRAM logical flash and the flash memory are separately
connected to the high speed internal bus, the flash memory being divided
into separate modules, each module controlled by a different microprocessor

configured to independently interface with the high speed internal bus.

19. The drive of claim 18, in which the microprocessors are based on a 6502

chipset running a new implementation of 6502 instructions.

20. The drive of claim 1, in which the DRAM logical flash simulates flash
memory storage by storing all the transfers to the flash memory and

selectively holding the transfers to minimize write wear on the flash memory.

21. The drive of claim 1, in which a readout speed from the flash memory is

at least 300 Megabytes per second.

22. The drive of claim 1, further comprising an independent microprocessor

to manage the SATA interface reading and writing to the DRAM logical flash.

23. The drive of claim 1, in which a master microprocessor receives a
command from a central processor unit external to the solid state drive, in
which the master microprocessor controls execution of the command by
sending sub-commands to other microprocessors without the master
microprocessor directly managing data transfers, in which each

microprocessor operates independently.

42

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

24. The drive of claim 1, further comprising a DRAM controller configured to
measure reading and writing activity for a file and, when the reading and
writing activity for a file stops for predetermined period of time, the DRAM
controller requests a master controller command the file to be moved to the

flash memory.

25. The drive of claim 1, further comprising:

an internal bus operably connecting the DRAM logical flash and the flash
memory; and

a master controller controlling data that sent over the internal bus

between the DRAM logical flash and the flash memory.

26. The drive of claim 1, further comprising multiple independent flash
controllers each within a separate flash memory module such that the

separate flash memory modules can be written in parallel.

27. The drive of claim 26, in which each of the flash memory modules
comprise:

a microprocessor;

flash memory;

memory buffers directly accessible to the microprocessor and flash
memory; and

an interface for writing data directly into the memory buffers.
28.The drive of claim 27, in which each of the flash memory modules is
configured to simultaneously write data into a first memory buffer and read

out of a second memory buffer.

29. The drive of claim 27, in which the transfer rates into the memory buffer

are at full bus speeds and under control of a bus clock, and transfer rates out

43

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

of the memory buffers are at flash or processor bus speeds and are

performed using polling.

30. The drive of claim 27, in which the memory controller is configured to
transfer data to flash die comprising data from the interface, internal control
data, and error correction code, in which the data from the interface, the
internal control data, and the error correction code are transferred to the

flash die by a single DMA action.

31. The drive of claim 27, further comprising a buffer switch to switch the
memory buffers between an external bus and an internal bus by transitioning

to a null state.

32. The drive of claim 1, in which the DRAM logical flash comprises:
a logical flash controller;
DRAM memory;
a DRAM interface;
a SATA DMA; and
a bus DMA.

33. A method for operation of a solid state flash device comprising writing, by
a CPU, to a solid state drive by sending commands and data to DRAM
logical flash using flash commands and formatting, in which the DRAM
logical flash appears to have a capacity of a combined working area of

multiple separate flash memory modules in the solid state device.

34. The method of claim 33, in which the CPU cannot directly instruct the

solid state drive to write to the flash memory modules.

35. The method of claim 34, in which a master controller instructs writing of

data from the DRAM logical flash to the flash memory modules at

44

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

predetermined points that are independent from commands issued by the
CPU.

36. The method of claim 33, further comprising simulating flash memory by
the DRAM logical flash by:

storing files in the same way as NAND flash in the DRAM logical flash;
and

responding, with the DRAM logical flash, to flash commands.

37. The method of claim 36, further comprising simulating flash memory by
the DRAM logical flash by:

using a FAT table;

updating logical records;

combining files; and

directly connecting to a SATA bus.

38. The method of claim 33, further comprising, in the event of a loss of
power to the solid state flash device:

activating an energy storage device storing enough power to move the
entire data content stored in the DRAM logical flash to flash memory; and

moving data stored in the DRAM logical flash to the flash memory.

39. The method of claim 38, further comprising:

sensing, with a sense circuit, loss of power to the solid state flash device;
and

setting up, by a master controller, a data path between the DRAM logical

flash and the flash memory modules.

40. The method of claim 39, further comprising:
sending tables to a designated location of the flash memory;
sending selected system snapshots to the dump the flash memory; and

writing data associated with unstored logical records to the flash memory.

45

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

41. The method of claim 40, further comprising, for recovery after a loss of
power to the solid state flash device:

retrieving tables from the designated location of the flash memory;

using, with the master processor, the tables to access a snapshot in the
flash memory;

reconstructing the operating system state before the loss of power to the
solid state flash device; and

using, by the reconstructed operating system, the logical records to

retrieve files from the flash memory.

42. The method of claim 33, further comprising:

storing programs in a protected program area of the flash memory
modules;

transferring one of the stored programs from the protected program area
to an active program area of the flash memory modules;

moving the program files from the active program area to a protected
program area in the DRAM logical flash; and

moving the program files from the DRAM logical flash to CPU memory at

the request of an operating system.

43. The method of claim 33, further comprising:
determining that a snapshot of a system state should be saved; and
saving the snapshot in a snapshot area of the DRAM logical flash using a
dedicated file transfer route that does not use logical record numbers;
when solid state drive shuts down, saving at least one selected snapshot

to the flash memory modules.

44, The method of claim 33, further comprising reading data from the solid
state flash device by:
receiving a read command from the CPU by a master controller in the

solid state flash device;

46

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

determining, with the master controller, if files requested by the read
command are stored in the DRAM logical flash;

if the files are stored in the DRAM logical flash, then transferring the files
to the CPU; and

if the files are not stored in the DRAM logical flash, then sending
instructions from the master controller to flash controllers in the flash
memory modules to retrieve the data and store it in the DRAM logical flash,
then transferring the data from the DRAM logical flash to the CPU.

45. The method of claim 44, further comprising:

upon receiving subsequent requests for previously requested data,
transferring the data to the CPU from the DRAM logical flash;

monitoring changes to the data; and

if the data changes, then, at a predetermined point, transferring the data

back to the flash memory modules.

46. The method of claim 33, further comprising writing to the solid state flash
device by:

sending, by the CPU, a write command and placing the data to be written
on a system bus;

receiving, by the solid state flash device, the write command and
accepting the data from the system bus;

storing the data on the DRAM logical flash; and

reporting to the CPU that the write to non-volatile memory is complete.
47. The method of claim 46, further comprising determining, with a master
controller, if the data stored on the DRAM logical flash should be stored in

the flash memory modules.

48. The method of claim 47, in which if the write command and data

comprises an update to a FAT table, then storing the data in the DRAM

47

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

logical flash and not sending the data to the flash memory modules until the

solid state drive shuts down.

49. The method of claim 46, further comprising, if the master controller
determines that the data in the DRAM logical flash is not being used, then
sending the data to the flash memory modules by:

sequentially enabling flash memory modules; and

transferring the data on the high speed internal bus sequentially to

enabled flash memory modules.

50. The method of claim 49, in which the data is striped over all of the flash

memory modules to allow for parallel writes to the flash memory modules.

51. The method of claim 33 wherein the DRAM logical flash comprises

volatile CPU memory.

52. The method of claim 33, wherein the CPU writing to the DRAM logical
flash minimizes wear on nonvolatile flash memory in the solid state drive and
wherein the DRAM logical flash has significantly faster read and write times

than the nonvolatile flash memory.

53. The method of claim 33, further comprising a fast load operation
comprising storing software executables on a protected area of the DRAM

logical flash that is not accessible to the user.

54. The method of claim 53, wherein the software executables are not

indexed using logical record numbers.
55. The method of claim 53, further comprising loading the software

executables into a CPU memory using a protocol path that is separate from

a logical record data transfer path.

48

10

15

20

25

30

35

WO 2014/081719 PCT/US2013/070789

56. The method of claim 53, further comprising updating the software
executables on the protected area of the DRAM logical flash as a

background operation.

57. A flash memory module in a solid state drive, the flash memory module
comprising:
a plurality of flash die; and
a flash memory controller comprising:
a micro-processor,;
a plurality of memory buffers;
a bus DMA interface to directly deposit data from an external bus
into the plurality of memory buffers; and
a flash DMA module to directly access data in the plurality of
memory buffers and transfer the data from a first memory buffer to a flash
die while the bus interface is depositing a data from the external bus in a

second memory buffer.

58. The drive of claim 1, wherein the DRAM logical flash is configured to
operate in at least one of the following modes: logical record indexed data

transfers and data transfers that are not indexed by logical records.

59. The drive of claim 58, wherein a portion of data written to the DRAM

logical flash is not written to the flash memory.

60. The drive of claim 59, wherein the data written to DRAM logical flash is

a snapshot, and the snapshot is not written to the flash memory.
61. The drive of claim 59, wherein the data written to DRAM logical flash is

a fastload program, and the fastload program is not back written to the flash

memory.

49

10

WO 2014/081719 PCT/US2013/070789

62. The drive of claim 58, wherein the DRAM logical flash is configured to
operate with data transfers that are not indexed by logical records, wherein
the data transfer comprises fast load operations that place executable files in

the DRAM logical flash for more rapid retrieval by the CPU.

63. The drive of claim 58, wherein the DRAM logical flash is configured to
operate with data transfers that are not indexed by logical records, wherein
the data transfer comprises snap shot operations to save host operating

configurations for system recovery.

50

PCT/US2013/070789

WO 2014/081719

1/12

L “B1A

SINPO
Aows|\ ysel4

SINPO
Aows|\ ysel4

Aows\ ysel4

Jojjonuo)n
Joisep

sng poadg
YbIH leusajui

AloWws\
SIJBJOA

Jajjonuon
Juspuadapu|

AL djelS plIos

yseld
[e21607

/

$S90IA8(] 9belI01g ssep J
aoepolu| Jeindwo)

"\

0}

Hun
Buisseoold
|[ejjuen

Z "bld

PCT/US2013/070789

2/12

slayng Sayoumg sng
alq fowspy— T | | +— Jaung poads ybiH
yse|4 - _ __ _ [eusalu|
| Joung | |

D_) usel | | | B

]
— = §
| 1 _) [e21607

[¢)
|) | I | LS

] sng _ |
yse|q 003 yserq || PeRdS
ubiH
_ _ _
sJ101s169y |01U0D
(naw)wun [AV
1ossa20.1d |
OIOIN NOY
Aowa yse|4 19]|0JJU0) AJoWs|
a|npoy Alows|p yse|q

WO 2014/081719

PCT/US2013/070789

WO 2014/081719

3112

£ "Bl

yse|d |ea1607
SINPO wosAg Jamod e
AIoWo dnyoeg |ewsiu|
yseld \
ag |, ANvdd X
se|l4 L
mz«ﬁ ! _ _ _ _ SVBLRI| < SngvIvS
WYXQ ﬁ
Jajjonuon NG M_ _M
Jajjonuon yse|d o160 VIVS NV
Aows i\ | Aows |\
[0 VIAQ NdO
& sng
]
= N4 nn
M Buisseooid
= sng |eulau| [enuen
A £ | peads ybiH
5
%&J
Jajjonuon sng (jeuondo) Ja[j0ju0) JBISE
90IA8(
aALQ Yse|d S1elS PIIoS Bupndwod

PCT/US2013/070789

WO 2014/081719
4/12
CPU |a—> CPU
Memory

+

Data Transfer

f

A

Mishandled File Snapshot

T

(Logical Record) Recovery Transfer FanitLosad
Figs. 5A,5B, 6A, 6B Fig. 10 Fig. 7 9
\ 4 y J
-(C% Working Area
L Y
3 Limited History File Protected
()]
9 rTTT T ! Sn:pshot Program
. | rea A

2 Working | I Mishandled| b
ac Files | Files !

| |

o |

Solid State Drive

T
Data Transfer
(Logical Record)

Figs. 5A,5B, 6A, 6B

}

Dump/
Recovery
Process
Fig. 9

|

FastLoad
Fig. 8

Flash Memory

v

Y

Y

Working Area

Dump
Area

Protected
Program
Area

Active
programs

Stored
Programs

Fig. 4

PCT/US2013/070789

WO 2014/081719

a1a yseld [T T T T T T T T
|
el fpesl ogsl begsd] ez Bxgsd e gz g] g g _
/ \\ |
_
_
_
_
. X _
_ SINPON
SJ18[|0J3U0D) _ Aowspy -
Aowsy N _ yseyd 7
yseld _ /
_ ;7
N /s
= L ____7
7o) VINQ snhg
/sng |eussaiu| peadg ybiH
_ TTTTTTTT
_
_ yseld “ yseld
Jsjjonuo)d _HHV lotbor “ [eolfio
IS =T | NvVdd | ANvdd
Use|d 0] S1M O} usym VINA V1VS/shd V1VS
SOpIDBP 19]|0JU0Y) JB)SEIN
suonelado

NOILVHIdO FLIHdM

N e e e = —————

Ndd

WO 2014/081719

500

PCT/US2013/070789

6/12

CPU sends a write command and
places data to be written to the SSD on
the SATA bus

— 505

!

[510

Fig. 5B

The write command is transferred to the
master controller, which instructs the
Logical Flash Controller to accept the
data and transfer it the DRAM logical
flash. As part of each write, the CPU

sends multiple redundant writes to
update the FAT table for any file being
changed.

535

v

The master controller sends
command data (read and write
commands) onto the internal bus that
alerts the flash controllers that data is

'

1
[55

coming/going. The logical flash
controller sets the appropriate register

The logical flash controller sets up the
SATA DMA and manages the transfer
of the data into DRAM logical flash

values to configure the bus DMA for

the transfer and the data identified by

the master controller is placed on the
high speed internal bus by the bus

¢ (520

DMA

The logical flash controller manages the

data as flash files, including consolidating

and update the data stored in the DRAM
logical flash

l

540
(

The master controller begins transfer
of the data with specific data

!

525
r

segments addressed to individual
flash controllers

The master controller determines if and
when data should be transferred from the
DRAM logical flash to the flash memory.

'

545
f

l Va 530

During a data transfer, the master
controller sequentially directs data to

When the master controller makes the
decision to write the data from the
DRAM logical flash to the flash memory
devices, it sends a command to the
logical flash controller that identifies the
data that is to be transferred and alerts
the bus controller of the data transfer

a first flash interface during a first
DMA cycle and then to a second
flash interface during a second DMA
cycle. Within the each flash memory
device, the data is directed to flash
registers to be sequentially written to
flash chips in the device.

550
Y [

Simultaneously, the data is being
read out of the registers in the flash
controllers to the flash die in parallel

at 40 MB per second

PCT/US2013/070789

WO 2014/081719

sdiyo
Aows|p

yseld

e S

VIAQ yseld

712

SJI8||0U0D
Alows|p

yseld

e 1
_ _
pEs 08 e [E8E [KB Eest ot a8 pEndn] 8o e ! g
i |
_ _
|)
| /
| /
| \\
| 7/
_ S|Npo d
| /
e e s u _ Aowspy ~
_ uysel ,”
_ /7
| 7
7/
| \\
| /7
VINQ sng
/sng |eusaiu| psadg ybiH

yseld

(221607 yseld [e21607 Wvyd

Nvad 8y ul paials si 1 I NdD

ayy 01 Apoauip seob eleQq
VNQ V1VS/shg V1VS
suonesado
Ndo

NOILVH3d0O av3d

WO 2014/081719

PCT/US2013/070789

8/12 READ OPERATION
CPU sends a read command to the SSD 600
identifying desired data using logical — 605
record numbers
The read command received in DRAM logical [~ g10
flash and transferred to master controller
+ 612 Master controller instructs
Is the requested data stored in DRAM controller to place
the DRAM logical flash? - Yes | requested dabtsson the SATA
No 620 614
\ N

The master controller sends instructions to
the flash controllers, the flash controllers
configure their DMA and transfer the data

to the internal bus

l

DRAM controller configures
the SATA DMA for transfer

¢ 625

of the data
616

The logical flash controller configures the
bus DMA and SATA DMA to transfer the
data from the internal bus to the SATA bus

'

l 630

The data is placed on the
SATA bus and received by
the CPU

Subsequent requests for the same data
are fulfilled from the DRAM logical flash

618

v /635

The CPU uses the data in program operations
and periodically rewrites the data to the SSD

; /640

The logical flash controller tracks the
changes to the data, records changes and
consolidates the file so that the file is always
ready to be written to flash in a single write

¢ 645

On shut down or when the program becomes
inactive, the data is transferred from the
DRAM logical flash to the NAND flash
memory as a consolidated file

Fig. 6B

WO 2014/081719 PCT/US2013/070789

9/12
SNAPSHOT
OPERATION
700

User/Operating system/CPU decides that a
snapshot should be saved

105

'

The state of the computing device is saved to a protected area
(“Snapshot Area”)on the DRAM logical flash including all the data in the
CPU memory. This transfer is not performed using logical records and

the data is not stored using logical records or block look up tables.
Tables stored with the data in the Snapshot area are used to index/
organize the various snapshots. Typically, the snapshots are organized
by the time the snapshots were taken.

710

:

When the CPU sends an command or the power circuit sends an
interrupt, a snapshot saving sequence stores the last two snapshots as
a priority into the flash memory. This process also does not use logical
records or block lookup tables. Designated blocks are ready to receive

the snapshot data. Relevant data about the organization of the
shapshots and how to retrieve them is stored in tables with the
snapshots

715

l

When the system recovers/restarts the snap shot recovery code
retrieves the snap shot from flash to the DRAM logical flash and
back into the CPU memory

720

Fig. 7

WO 2014/081719 PCT/US2013/070789

FASTLOAD
OPERATION
800

10/12

Programs are stored in storage portion of a protected program
area of SSD during manufacturing/configuration. The useris
unable to directly access the protected program area.

805

'

When a user receives appropriate permission to use a
particular program, the program is transferred from the storage

portion to the active portion of the protected program area
810

:

To prepare to use one or more programs in the active area,
the program files are moved into a protected program area of
the DRAM logical flash. This transfer does not use logical
records, but is a bulk transfer. The protected program area is
not directly accessible to the user.

815

'

The programs in the protected program area of the DRAM logical
flash are transferred to the CPU memory for execution. The
program files are not typically included in snapshots or dump/
restore operations because the program files are not changed

during execution. Files generated by the program files, including
configuration and data files can be included in snapshots and

dump/recovery operations

820

l

Updates to the program files, including program files that the
user does not yet have permission to access can be
streamed from a network to the protected program area of
the SSD using background operations

825

Fig. 8

WO 2014/081719

11/12

900

Store sufficient energy in an energy

storage device to write all the data

stored in the DRAM logical flash to
NAND memory

905

PCT/US2013/070789

'

¢

Unstored logical records are
written to the flash memory

930

Sense circuit detects power failure and
triggers the emergency store operation

910

I

Master controller sets up a data path,
DRAM controller begins sending data at
full bus speeds to the flash. Each data
file includes a special header identifying
it as an emergency store file.
915

For recovery, the tables are first
retrieved from the dump area in
the flash

935

'

Sends tables to a designated location in
the dump area in the flash memory

920

The master controller then uses the
tables to access a snapshot in the
flash memory to reconstruct the
operating system state before the
emergency store operation

940

l

Sends selected snapshots to the flash
memory

925

The restored operating system
then uses logical record tables to
retrieve required files from the
DRAM logical flash

945

Fig. 9

WO 2014/081719 PCT/US2013/070789

DELETED FILE 12/12
RECOVERY

1000

.

A file is deleted or overwritten in error. CPU
sends instructions to the SSD to delete the file

1005

l

The deletion of the file is recorded in the FAT
table. However, the data in the file remains stored
in the DRAM logical flash for a period of time and

is indexed by a limited file history

1010

'

The user discovers that the file was closed without
properly saving it and requests that the operating
system recover the file

1015

'

The operating system accesses the limited file
history to determine if the data that makes up the
“deleted” file is still present on the DRAM logical

flash.

1020

'

If the “deleted” file is still present, it is retrieved from
the DRAM logical flash and sent to the CPU memory

1025

Fig. 10

International application No.

INTERNATIONAL SEARCH REPORT PCT/US 2013/070789

A CLASSIFICATION OF SUBJECT MATTER
G11C 16/00 (2006.01)
HOIL 27/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G11C 7/00, 11/00, 16/00, HO1L 27/00, GO6F 11/00, 11/30, 12/00, 13/00, G11B 5/00, 19/00-19/04, 19/045

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO internal), USPTO, PAJ, Esp@cenet, DWPI, EAPATIS, PATENTSCOPE, Information Retrieval System of

FIPS
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US 2006/0080501 A1 (HITACHI GLOBAL STORAGE TECHNOLOGIES)
13.04.2006,
X par. [0006], [0011], [0016], [0018], [0020]-[0022], [0025], claim 16 1-5, 16, 20-23, 25, 33-
36, 44, 46, 47, 52
Y 6-15, 17-19, 24, 26-
32,37-43, 45, 48-51,
53-56, 58-63
US 2011/0066837 A1 (SUPER TALENT ELECTRONICS INC.) 17.03.2011,
X par. [0052]-[0061], [0068], [0072]-[0074], [0076], [0094], [0132], [0136], 57
[0139], [0147], [0158], claim 2
Y 9,12-13,17-19, 26-
32, 50-51, 54-55, 58-
63
Y US 2010/0138591 Al (KABUSHIKI KAISHA TOSHIBA) 03.06.2010, 6, 10, 37, 40-41, 43,
par. [0044], [0045], [0069]-[0078] 48, 60
Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: “1” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
“A” document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance “X” document of particular relevance; the claimed invention cannot be
“E” earlier document but published on or after the international filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other “Y” document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than ~ “&” document member of the same patent family

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
05 February 2014 (05.02.2014) 27 March 2014 (27.03.2014)

IName and mailing address of the ISA/ FIPS Authorized officer

Russia, 123995, Moscow, G-52, GSP-5,

Berezlikovskaya nab., 30-1 N. Kryazhev

Facsimile No. +7 (499} 243-33-37 Telephone No. 499-240-25-91

Form PCT/ISA/210 (second sheet) (July 2009)

International application No.

INTERNATIONAL SEARCH REPORT PCT/US 2013/070789

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. |:| Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the

payment of a protest fee.
The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

International application No.

INTERNATIONAL SEARCH REPORT PCT/US 2013/070789

Box No. IV Text of the abstract (Continuation of item 5 of the first sheet)

Form PCT/ISA/210 (continuation of first sheet (3)) (July 2009)

International application No.

INTERNATIONAL SEARCH REPORT PCT/US 2013/070789

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010/0202238 Al (STEC, INC.) 12.08.2010, par. [0004], [0005], [0016], [0017], 7-8, 11, 14, 15, 38-40,
[0020], [0022], [0050], [0051], claim 2 42, 53-56
Y US 2007/0255898 Al (KABUSHIKI KAISHA TOSHIBA) 01.11.2007, par. [0015], 24-45,49-50

[0021], [0041], [0045], [0048]-[0051]

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US 2013/070789

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2013/070789

Form PCT/ISA/210 (extra sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - wo-search-report
	Page 66 - wo-search-report
	Page 67 - wo-search-report
	Page 68 - wo-search-report
	Page 69 - wo-search-report
	Page 70 - wo-search-report

