
IN
US 20200137189A1

(19) United States
(12) Patent Application Publication

Steele , III et al .
(10) Pub . No .: US 2020/0137189 A1
(43) Pub . Date : Apr. 30 , 2020

(54) FLEXIBLE CACHING

(71) Applicant : Shape Security , Inc. , Santa Clara , CA
(US)

continuation of application No. 14 / 542,994 , filed on
Nov. 17 , 2014 , now Pat . No. 9,405,851 , which is a
division of application No. 14 / 160,105 , filed on Jan.
21 , 2014 , now Pat . No. 8,893,294 .

(72) Inventors : Oscar H. Steele , III , San Jose , CA
(US) ; Justin D. Call , Santa Clara , CA
(US)

(73) Assignee : Shape Security , Inc. , Santa Clara , CA
(US)

Publication Classification
(51) Int . Ci .

H04L 29/08 (2006.01)
G06F 16/957 (2006.01)
G06F 40/14 (2006.01)

(52) U.S. CI .
CPC H04L 67/2842 (2013.01) ; G06F 40/14

(2020.01) ; G06F 16/9577 (2019.01) ; G06F
16/9574 (2019.01)

(21) Appl . No .: 16 / 732,248
(22) Filed : Dec. 31 , 2019

Related U.S. Application Data
(60) Continuation of application No. 15 / 224,985 , filed on

Aug. 1 , 2016 , now Pat . No. 10,554,777 , which is a
(57) ABSTRACT
Techniques are provided for flexible caching .

120
144

Re - Coder 124 Web Server 126
142A

HomStatic DOM
134 132A

Mapping Data AST
Repository Intermediate 122 XXL

XXC

130A
Dynamic

128A 130

136 140A Analysis 142B
Itt 128B

138 130B
Re - Coder
Module

DOM
132B

AST
Intermediate *

YYC
YYI 140B

146)
Ad

Server

Patent Application Publication Apr. 30 , 2020 Sheet 1 of 7 US 2020/0137189 A1

Client Network
112 114

Map
110

FIG . 1A

>
104 108

1 ' 2 ' n .

102 106

120

144

Re - Coder

124

Web Server 126

142A

AM Static

DOM

134 132A

Mapping Data

AST

Repository
Intermediate

Patent Application Publication

130A

122

XXS Dynamic

130

128A 140A

136

Analysis
ARRATIA

142B

OL

128B

Apr. 30 , 2020 Sheet 2 of 7

138 28DDDDDD

130B

Re - Coder Module

DOM
132B

AST Intermediate *

YYC YYL YYS

140B

146
Ad Server

US 2020/0137189 A1

FIG . 1B

200

204a

207

Web Servers

Single Security Console

204n

Patent Application Publication

202a

Security Servers
220

222

208

1

Central Security Console

n

Policy

Rules

Engine 224
Decode , Analysis , and

Re - encode Module
226 Instrumentation

Apr. 30 , 2020 Sheet 3 of 7

202n

210

218a

212a

214a

-218n

US 2020/0137189 A1

FIG . 2

-212n

214n

Patent Application Publication Apr. 30 , 2020 Sheet 4 of 7 US 2020/0137189 A1

Receive Content
302

Analyze Internal and
External Connections in

Content Using Intermediate
Representations 304

Serve Re - Coded Content
306

Receive Content
308

Identify Differences
310 Compared to Prior

Intermediate Representation

Use Prior Mappings to Re
Analyze Part of the Content

312

Serve Re - Coded Content
314

Update Mappings
316

FIG . 3A

Patent Application Publication Apr. 30 , 2020 Sheet 5 of 7 US 2020/0137189 A1

320
Receive
Content

324
322

No Previously
Analyzed

Analyze
Content
(Fig . 30)

326

Yes

Yes
328 Does

Primary Content Match
Intermediate Representation

Store
Results

3307 ?
Re - use

Prior Results
No 332

Locate Regions of
Modified Content

334
Replace Old Locations /
Symbols / Cross - Refs

with New

3367
Update Cross - Reference

Table

3387
Store Results

340

Re - code Page According
to Analysis

342

Serve Re - coded
Page

FIG . 3B

Patent Application Publication Apr. 30 , 2020 Sheet 6 of 7 US 2020/0137189 A1

360

Identify References
to Supplemental Content

362

Retrieve Supplemental
Content

364
Identify Location and

Extent of , and References
to , Relevant Elements

366
Parse Content Portions

into Intermediate Representations
368

Identify Symbols and Cross
References Between Symbols

370
Record Position of Each
Element in Intermediate

Representation
3727
Update Symbol Table - Index of
Position Between Buffers and
Intermediate Representations

374)

Store Results in Cache

FIG . 3C

400 2005

Patent Application Publication

Processor 410

OO

-420

Memory

450

Input / Output
440 2 Devices

Storage Device

Apr. 30 , 2020 Sheet 7 of 7

O
430

Input / Output

US 2020/0137189 A1

FIG . 4

US 2020/0137189 Al Apr. 30 , 2020

FLEXIBLE CACHING

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit under 35 U.S.C.
§ 120 as a Continuation of U.S. patent application Ser . No.
15 / 224,985 , filed Sep. 1 , 2016 , which is a Continuation of
U.S. patent application Ser . No. 14 / 542,994 , filed Nov. 17 ,
2014 , which is a divisional of U.S. application Ser . No.
14 / 160,105 , filed Jan. 21 , 2014 , the entire contents of which
are incorporated herein by reference .

TECHNICAL FIELD

[0002] This application generally relates to computer
security .

BACKGROUND
[0003] Content is generally delivered to computers over
the internet (and using Web technologies) under the HTTP
specification , which defines the format for requests for data
and responses to those requests . Under that specification , the
GET method is used to request data from a specified
resource , while the POST method submits to a specified
resource data that is to be processed . A server system may
respond to such methods by transmitting content , such as
web page content (using , e.g. , HTML , JavaScript , and the
like) to the requesting computer (e.g. , desktop , laptop ,
smartphone , watch , or tablet) .
[0004] Certain requests may be made frequently and may
result in the same content being served . Such repeated
requests can place a load on an originating server system and
on the network , and can also lead to latency in the operation
of the requesting computer . As a result , information can be
cached to address some of these issues . For example , a
server system can cache information that does not change
and may perform “ expensive ” operations on it only periodi
cally , and instead serve a more static version of the infor
mation . Also , components in the network (e.g. , at large
internet service providers) can save copies of some web
pages , serve those cached copies across multiple requests ,
and only periodically obtain up - to - date copies from the
original server system . And at the client , information can
also be cachede.g . , if a user moves quickly to a page and
then arrows back to a prior page , a browser might not fetch
the prior page , but may instead rely on a version of the page
that was acquired before the user moved to the second page .

illegitimate attempts on the client computer to interact with
the content (e.g. , software that uses a function name that is
in the original code but is replaced in the re - coded code ,
could indicate that the software is a bot or other malware ,
because it interacts with the “ wrong ” version of the code) .
[0006] In order to make such changes consistently across
different web resources related to a web page (e.g. , the
HTML and CSS for the page itself , to JavaScript code
referenced from the HTML code , and other relevant code) ,
the web page code needs to be analyzed for connections
within and between the pieces of code , and such analysis can
be computationally expensive .
[0007] To lower the level of analysis needed to serve web
page code , the systems and techniques below may form
intermediate representations of the web page code the first
time a page is served (or even before the page is requested) ,
and may identify and map active content in the code (content
that changes between different requests from the web server
that originates the page , such as content that is specific to a
particular user who requests the page or content that changes
frequently over time) and connections between and among
different pieces of the code . The intermediate representa
tions may include , for example , DOMs (Document Object
Models) made from HTML code , ASTs (Abstract Syntax
Trees) from JavaScript code , and ASTs from style sheets .
The static elements may then be re - coded to interfere with
malware , and the system may store information that indi
cates locations and relationships between elements that are
part of the web page code on the one hand , and elements that
are not in the web page code , on the other hand (referenced
here as “ supplemental ” content , which may be content from
other systems and other domains than the system that served
the web page code) .
[0008] When the same page is later to be served (e.g. ,
because a different user (via a different computing device)
requests it or the same user requests it later) , the web server
system may again pass the primary content to the interme
diary system . That system may then create intermediary
content out of the second - served web page and compare it to
the intermediary content that was previously created for the
first - served web page . If the two match , then there is no
relevant dynamic content that has changed in the code to be
served , and the intermediary system may simply re - code the
page by making changes that produce a polymorphic rep
resentation of the code and that are not visible to the user
(e.g. , by changing names of elements in the code to essen
tially random or arbitrary alphanumeric representations) .
Such an effort is much less expensive than was the initial
analysis and re - coding , so that , in effect , the system gains the
benefit of caching an analyzed copy of the web page content .
[0009] If the second - served intermediate representation
does not match the first served intermediate representation
of the content , additional analysis may be performed . The
additional , second - time - around analysis may be relatively
limited and more efficient , however , than an initial , full
analysis would be . In particular , the analysis may use
information from the comparison to identify areas in the
content that have changed from the prior serving . Also , a
map that identifies the prior changes that were made and the
links between the changed portions of the content , may be
consulted so that any changes needed in the subsequent
serving may be propagated through the content . Such propa
gation may be through the “ internal " content that is provided
by the web server system , and the supplemental content that

SUMMARY

[0005] This document discusses systems and methods for
providing security in an efficient manner to operators (e.g. ,
on - line retailers or banks) that serve content over the inter
net . The security may be provided by making changes to
web page code that is normally static , where the changes are
made differently each time the web page code is served
producing polymorphic code that is difficult for malware to
exploit because it presents a “ moving ball ” to the malware .
The changes may be made by an intermediary system that
sits between client computers that request content , and a web
server system that serves the content . The intermediary
system may make the changes in the served code , and may
make inverse changes to responses received from client
computers that render the web page content (i.e. , so that the
web server understands the requests) , and may also identify

US 2020/0137189 Al Apr. 30 , 2020
2

the internal content references . Thus , only the portion of the
material that is affected by the change in the material will
need to be re - analyzed . The mapping and other meta data
may then be updated and stored (for use when the web page
is next requested) , the static elements of the code may be
substituted as dictated by the analysis (to create polymor
phism in the code) , and the code may be served .
[0010] In this manner , web content may be constantly
re - coded to create moving target for malware , in a complex
manner that requires knowledge of interconnections in the
code (both internal and supplemental) , but in an efficient
manner that does not require re - analysis of all the intercon
nections each time the content is served even if the original
content is itself changing . Such techniques may also permit ,
in certain implementations , the caching of POST requests
and GET requests with query strings in a safe manner , which
are not generally cachable under specification .
[0011] In some implementations , a computer - imple
mented method can include receiving , from a web server
system , web page code to be provided over the internet to a
computing device , the web page code corresponding to a
particular web page served by the web server system ; at least
partially executing the web page code to generate an inter
mediate representation of the web page code ; comparing the
intermediate representation to a prior intermediate represen
tation of the particular web page ; and based on a result of the
comparison , determining what portion of the web page code
to analyze for re - coding of the web page code before serving
the web page code to the computing device .
[0012] These and other implementations can optionally
include one or more of the following features . The method
can further include recoding a portion of the web page code
that has been previously re - coded in a prior serving of the
web page code , and not recoding another portion of the web
page code that has been previously re - coded in the prior
serving of the web page code . If the result of the comparison
is a determination that the intermediate representation fully
matches the prior intermediate representation , then the web
page code can be re - coded without performing analysis of
the web page code to replace analysis that was previously
performed . The prior intermediate representation may have
been created and saved in response to a prior request for the
web page by the computing device or another computing
device .
[0013] Generating the intermediate representation can
include creating a document object model from HTML code .
[0014] The method can further include using a mapping
between elements of the web page code to identify elements
that are to be re - coded before serving the webpage code , the
mapping having been generated as part of an analysis of the
web page code performed before a request for the web page
was received from the computing device . The method can
further include updating the mapping based on a re - analysis
of the web page code , the re - analysis being performed on
portions of the web page code identified as being different
between the intermediate representation and the prior inter
mediate representation . Prior to receiving a request from the
computing device , the method can include determining that
the web page code has not been previously analyzed , and
analyzing the web page code to identify connections
between elements in the web page code , wherein the con
nections represent repeated uses of element names that are
invisible to a user at a browser that renders the web page
code . The method can include creating and storing a map

ping of the connections between elements in the web page
code for use in later analysis of the web page code . The
mapping can define connections between elements within
web page code served by the web server system , and
between the web page code served by the web server system
and web page code served by other server systems . The
method can include repeatedly serving the web page code by
replacing elements of the web page code with different
arbitrarily - selected names in different servings of the web
page code so as to interfere with malware that attempts to
interact with the web page code .
[0015] In some implementations , a computer - imple
mented method can include receiving content to be provided
to a requesting computing device over the internet ; convert
ing , using a first method , the received content into an
intermediate representation of the received content ; com
paring the intermediate representation to a prior intermediate
representation that was converted using the first method ; and
based on a result of the comparison , determining what
portion of the content to analyze for re - coding of the content
before serving the content to the computing device .
[0016] These and other implementations can optionally
include one or more of the following features . The interme
diate representation and the prior intermediate representa
tion can both include document object models created from
the content . If the result of the comparison is a determination
that the intermediate representation fully matches the prior
intermediate representation , then the content can be re
coded without performing analysis of the content to replace
analysis that was performed in a prior serving of the content .
Generating the intermediate representation can include cre
ating a document object model from HTML code . The
method can further include using a mapping between par
ticular elements in the content to identify elements that are
to be re - coded before serving the content , the mapping
having been generated as part of an analysis of the content
performed before a request for the content was received
from the computing device . The method can further include
updating the mapping based on a re - analysis of the content ,
the re - analysis being performed on portions of the content
identified as being different as between the intermediate
representation and the prior intermediate representation .
[0017] In some implementations , a computer - imple
mented system can include stored maps that correlate web
code elements whose representations in web code are depen
dent on each other , and locations of the web code elements ;
a comparator executable on one or more processors and
programmed to determine whether a first representation of
web page code matches a second representation of the web
page code , and to effect a particular analysis of the web page
code based on the determination , and an analysis module
programmed to perform analysis of the web page code based
on the determination made by the comparator , and using the
stored maps .
[0018] These and other implementations can optionally
include one or more of the following features . Representa
tions of the web page code can include document object
models formed from the web page code . The stored maps
can correlate web code elements served by a first server
system with (a) other web code elements served by the first
server system , and (b) other web code elements served by a
second server system that is operated by an organization
separate form an organization that operates the first server

US 2020/0137189 A1 Apr. 30 , 2020
3

system . The representations of the web page code can
include abstract syntax trees formed from the web page
code .
[0019] In yet another implementation , a computer - imple
mented method comprises analyzing code for a web page to
identify portions that do not change , and caching an ana
lyzed copy of the code for the web page . The cached
materials may include the initial code for the web page ,
along with pointers that identify portions of the code that can
be changed from one serving of the code to a next serving
of the code so as to interfere with malware attempts to
exploit the code . The pointers may also identify similar
elements across different files in the code , such as HTML ,
CSS , and JavaScript files , so that changes in serving the code
may be made consistently across the code . At a next serving
of the web page , a process may first determine whether the
page has changed with respect to any element identified
during the first analysis as being an element to be changed
from one serving of the code to the next . If no such element
has changed , the pointers from the initial analysis may be
applied to the most recent serving of code , the changes may
be applied according to the initial analysis , and the page may
be served as modified according to the initial analysis . If any
of the elements has changed since the initial analysis ,
additional analysis may be performed for that element ,
though not for the entire set of code for the web page , and
the pointers or other elements for mapping changes may be
updated accordingly , and then used to modify the code for
the current serving and for future servings of the code .
[0020] Other features and advantages will be apparent
from the description and drawings , and from the claims .

DESCRIPTION OF DRAWINGS

that request such resources . Polymorphic code is generally
code that changes over multiple servings in manners that do
not relate to the presentation that is ultimately made by the
code at a client , but is instead “ behind the scenes , " so that
the changes interfere with the ability of malware to exploit
the code , while not interfering with a good and consistent
user experience for the code that is served .
[0029] In the figure , pages 102 and 104 represent the code
for two different servings of a particular resource , such as the
web page code for www.example.com/index.html . The code
may include a number of components , such as mark - up code
(HTML) , CSS , and JavaScript , among other things . Certain
of the code may be the same each time it is generated by or
for a web server system , and certain may change , such as
code that is specific to the particular user requesting the
code .
[0030] Pages 106 , 108 represent intermediate representa
tions of each of the two to - be - served versions of the
resource , where the intermediate representations may be
DOMs or other such representations . The intermediate rep
resentations may better represent the operative code within
the pages 102 , 104 and provide a mechanism by which to
identify functional changes that have occurred in the code
between the two servings . As indicating by the equality /
inequality question between the pages 106 , 108 , the pages
106 , 108 may be tested to determine whether they match ,
and also where and how they match or do not match . That
determination may lead to a determination of what portions
of the code need to be analyzed to determine how polymor
phism rules are to be applied in processing the code when it
is served . A prior analysis may have been performed with
respect to page 102 , and may have resulted in the creation
of a map 110 of changes to be made to the code . The
comparison may then be used to perform a limited subse
quent analysis (e.g. , only re - analyzing portions that the
comparison shows to require re - analysis) rather than a full
re - analysis , and to them update the map for use in re - coding
the resource for subsequent servings .
[0031] As indicated , the re - coded code may be served
hrough network 112 to a client 114 that sted the code .
Such comparisons of intermediate code and updating of the
map may occur continuously over time , with each request
and serving of the resource , so that the system dynamically
updates the map 110. These techniques may allow the
system 100 to avoid conducting a full re - analysis each time
the resource is to be served , and in many instances , to avoid
any reanalysis because the comparison indicates that such
re - analysis is not necessary due to the type of changes made
in the code between servings .
[0032] FIG . 1B depicts a schematic diagram of an
example system 120 for analyzing , in a cached manner , web
code provided by a web server 126 prior to being delivered
to a requesting client device 122. In general , the system 120
is directed to safely modifying web code so as to interfere
with attempts by third - parties and third - party software to
exploit the web server 126 , an organization that operates the
web server 126 , and / or users or customers that interact with
the web server 126. For example , web code that is served by
the web server 126 in response to an HTTP request origi
nating from a client device 122 may include elements , such
as forms , that enable users to submit information to the web
server 126 , which may include personal data such as social
security numbers , banking and payment information , or
other personally identifying information . In order to thwart

[0021] FIG . 1A is a conceptual diagram of an example
system for analyzing and re - coding web content using
caching techniques .
[0022] FIG . 1B is a schematic diagram of a system for
analyzing , in a cached manner , web code for re - coding .
[0023] FIG . 2 is a schematic diagram of a system for
performing deflection and detection of malicious activity
with respect to a web server system .
[0024] FIGS . 3A and 3B are flow charts of an example
process for analyzing , in a cached manner , web code for
re - coding
[0025] FIG . 3C is a flow chart of an example process for
initially analyzing web code and mapping relationships in
the code .
[0026] FIG . 4 is a schematic diagram of an example
computer system that can be used in implementing the
systems and processes described in this document .
[0027] Like reference symbols in the various drawings
indicate like elements .

DETAILED DESCRIPTION

[0028] FIG . 1A is a conceptual diagram of the analysis and
re - coding of web content in a cached system 100. The
presentation here is highly schematic so as to represent
certain operations at a general level of abstraction in an
effort to better explain the overall operation of the system
100. Generally , the processes performed by the system 100
and depicted in the figure relate to efforts to improve the
manner in which web pages and other resources and can be
served so as to present polymorphic coding to client devices

US 2020/0137189 Al Apr. 30 , 2020
4

attempts by malware or other software to determine the
content or structure of web code served to the client device
122 , or to carry out other attacks (e.g. , phishing , modifying
user input , listening for user input) , the system 120 can
modify the web code for a particular resource each time the
resource is served . For example , a user that corresponds to
a first client device 122 and another user that corresponds to
a second client device 122 may each request a common
resource from the web server 126 multiple times , in different
sessions , for example . Each time the common resource is
served , the re - coder 124 can modify the web code underly
ing the resource differently so that a different version of the
web code is served each time to each different client device
122 , as well as in each session or request from the same
client device 122. The modifications do not generally impact
the presentation or functionality of the resource from the
user's perspective , but they create a moving target that
makes it more difficult for the web code to be exploited .
[0033] The system 120 is generally configured to analyze
web code from one or more resources in response to a
request , and to perform coordinated modifications or other
re - coding of the web code . For instance , to satisfy a request
for a particular resource , both primary content and supple
mental content may be served to the client device 122 , and
re - coded modifications between the primary and supplemen
tal content are coordinated so that the presentation and
functionality of the resource does not appear to the user to
have been changed when executed by the client device 122 .
Primary content is generally the specific resource requested
by the client device 122 , and supplemental content generally
includes one or more resources that are referenced by the
primary content and that are generally served to the client
device in addition to the primary content so as to support
complete execution of the requested resource .
[0034] In one example , a user may direct the client device
122 to request a web page from http://www.example.com
using an HTTP GET request method . The web server 126
responds to the request by serving index.html , which may be
hosted by the web server 126. The index.html file includes
primary content because it is the file that is served directly
in response to the HTTP request . Moreover , index.html may
include various types of web code such as HTML ,
JavaScript , inline CSS , and others . The primary content in
index.html may reference various external resources that
define supplemental content for the web page , such as
JavaScript , CSS , HTML , images , applets , and more that are
provided in separate files . The supplemental content may be
hosted by the same web server 126 that hosts the primary
content , or they may be hosted by other web servers and on
other domains . Together , the primary content and supple
mental content operate to provide a complete user experi
ence for the requested resource at the client device 122 .
[0035] FIG . 1B generally depicts a system 120 that
includes a network of computing devices that include client
device 122 , re - coder subsystem 124 , and web server 126. In
some implementations , the system 120 shown in FIG . 1B
can be implemented by like components in system 200 that
is described below with respect to FIG . 2 , described below .
In some implementations , systems 120 and system 200 can
be the same system . The web server 126 is generally
configured to receive requests for resources over a network
and to respond to such requests by serving resources (e.g. ,
web pages , multimedia , files , documents , etc.) . Requests can
be made to the web server by a client computing device 122 .

FIG . 1B illustrates a single instance of a client device 122 ,
but in practice , many client devices 122 such as desktop
computers , notebook computers , mobile devices , and the
like , may communicate with and submit requests to the web
server 126. The client device 122 can communicate with the
re - coder 124 and web server 126 over any appropriate
network such as the Internet , a wired local area network ,
wireless local area network , or other networks . The re - coder
subsystem 124 is generally located in the network between
the client device 122 and the web server 126. The re - coder
124 intercepts communications between the client device
122 and the web server 126 , and can act as a reverse proxy
such that requests addressed to the web server 126 are first
received and processed by the re - coder 124 before being
forwarded to the web server 126. Additionally , the re - coder
124 processes responses from the web server 126 to , for
example , re - code resources in the responses , before forward
ing the processed responses to the client device 122 .
[0036] FIG . 1B generally depicts two versions of a web
page , 128A and 128B , respectively , that are served and
re - coded in a cached manner in response to respective
requests for the web pages 128A and 128B from the client
device 122. Each version of the web page 128A , 128B can
be nominally located at a common URL or other web
address . However , web pages 128 and 128B may include
portions of content or structure that differ from each other .
For example , web page 128A may have been requested at an
earlier time than web page 128B , and in the interim time , the
page may have been updated or otherwise modified . Or , web
page 128 A may include content that is custom for a par
ticular user , while web page 128B may include content that
is custom for another user (e.g. , the users ' names if they are
currently logged in with the system) . In one example , the
web pages 128A and 128B may include portions of different
content resulting from personalization based on an identity
of the requesting user or client device . The portions of
content (or structure) of the web pages 128A , 128B that have
not been modified or that are otherwise equivalent is referred
to as static content . For instance , the displayed text of each
version of the web pages 128A , 128B is unchanged and is
therefore static . The displayed text is also included in the
respective HTML files that are directly served in response to
a request , and so the displayed text is also primary content .
The two versions of the web page 128A , 128B are also
shown to include supplemental static content in images
142A and 142B . The images 142A and 142B can be refer
enced , for example , by an < img > tag in the pages ' HTML
code . The images 142A and 142B are thus external to the
web page code itself , and therefore constitute supplemental
content . Moreover , because the images 142A and 142B are
unchanged , they are static content .
[0037] The web pages 128A , 128B also include dynamic
content that differs between respective requests for the web
pages . For example , the web pages 128A , 128B have
dynamic primary content illustrated by tables 130A and
130B . The content of the tables may depend on some
specific information known about respective users who
submitted the requests for the web pages 128A or 128B . For
example , the requests from client device 122 can include
information that identifies the user to the web server , such as
a cookie stored by a web browser on the client device 122 ,
so that personalized information may be determined to
populate the content of tables 130A and 130B . For instance ,
the web server may use the cookie , an IP address , or other

US 2020/0137189 A1 Apr. 30 , 2020
5

means to determine a location associated with the request
and local news or weather content can be provided in the
primary content of the web page in tables 130A and 130B .
[0038] The respective versions of the web pages 128A and
128B also include dynamic supplemental content . The
examples of dynamic supplemental content depicted in FIG .
1B are externally referenced advertisements that are targeted
or otherwise customized to particular users . For example , in
responding to a request for a first user who is known to have
an interest in automobiles and mechanics , the web page
128A is served along with an auto - mechanic related adver
tisement 140A . The advertisement is supplemental because
it may be referenced with JavaScript code that calls for an
appropriate advertisement to be provided from an external
advertisement server 146. The second web page 128B is
served in response to a request from a different user who
may , for example , have interests in live stage productions .
The ad server 146 can thus provide different advertisements
140B related to the user's interest in live stage productions ,
for example .
[0039] The re - coder subsystem 124 coordinates re - coding
of web code , in a cached manner , of primary content and
supplemental content associated with a particular requested
resource (e.g. , web page) . Generally , the re - coder 124
retrieves both primary and supplemental content that is to be
served in response to a particular request , and analyzes the
content to ensure that re - coding modifications are safely
made among the multiple pieces of content in a way that
does not break the presentation or functionality of the
resource . For example , a web page may include various
form fields that are configured to receive user input and that
are identified by particular names in the HTML tags that
specify the form fields . JavaScript functions that are pro
vided in supplemental content may be programmed to
perform various operations with respect to the form fields .
Accordingly , if the re - coder 124 modifies the original names
of the form fields as provided by the web server 126 , the
re - coder 124 can coordinate the name change with respec
tive portions of the JavaScript code that reference the form
fields so as to maintain functionality of the JavaScript code .
Likewise , similar modifications may be made to other
supplemental content such as CSS , plugins , applets , and the
like in a coordinated fashion with modifications of the
primary HTML content before the content is ultimately
served to the client device 122 .
[0040] The re - coder 124 generally analyzes web code to
be served using caching techniques that reduce the expen
sive computational processes associated with such analysis
and that can also reduce the latency in responding to client
requests . As described , in order to safely re - code a resource
within and among multiple pieces of content , the system 120
first analyzes the multiple pieces of content to identify their
interrelationships . Using the results of such analysis , the
re - coder 124 applies coordinated modifications to web code
that correspond to both primary and supplemental content
(e.g. , changing form field names in HTML code and making
corresponding changes to JavaScript functions that refer
ence the form field names) . The processes for performing
such analysis can be computationally expensive and increase
latency in responding to client requests . Therefore , the
re - coder 124 may cache the results of analyses for particular
resources so that when a resource that has previously been
analyzed is subsequently requested , the re - coder 124 can
reuse at least a portion of the cached analysis without having

to perform the entire analysis all over again . Caching can be
beneficial because many web resources include a substantial
amount of static content that changes relatively infrequently .
When the static content in a resource has not been updated
between multiple requests for the resource , the re - coder 124
can forgo analysis of the static content , and instead use a
cached analysis of the static content to apply coordinated
re - coding modifications in the manner described herein .
[0041] The example re - coder 124 shown in FIG . 1B
includes several modules for performing analysis and re
coding of requested web resources . An analysis module 136
generally performs the analysis of a resource provided by
the web server 126 so that the resource can be safely
re - coded . Results of the analysis are cached or otherwise
recorded in data repository 134. After a resource has been
analyzed , or the re - coder 124 has determined that a previ
ously cached analysis of the resource may be reused , the
re - coder module 138 generates re - coded code for the
resources that is then transmitted to the client device 122 .
[0042] In the schematic diagram of FIG . 1B , the first
version of the web page 128A is initially provided to the
re - coder 124 in response to a first request for the web page .
The re - coder 124 determines that the web page has not been
previously analyzed by the re - coder 124 , or that any previ
ous analysis that may have been done is no longer available
or is no longer usable . The web page 128A is then processed
by the analysis module 136 in the re - coder 124 .
[0043] The analysis module 136 performs a detailed initial
analysis of the web page 128. The aim of the analysis is to
collect all the information that is needed to safely and
efficiently re - code the web page in a manner that obscures its
operation without affecting the presentation or functionality
of the page . The analysis module 136 analyzes the primary
and supplemental content of the web page 128A to identify
the location , and interrelationships between elements in the
page 128A . Such analysis may be done with respect to the
original web code or upon one or more intermediate pre
sentations of the web page 128A , or both . For example , the
analysis module 136 can parse the web code for the web
page 128A to generate intermediate representation 132A of
the web page 128A . The intermediate representation 132A
may be a unified structure or it may include multiple parts
that correspond to different types of web code in the web
page 128A . For instance , a Document Object Model (DOM)
can be generated as an intermediate representation of HTML
code , and Abstract Syntax Trees (ASTs) can be generated for
JavaScript code or CSS style sheets in some implementa
tions .
[0044] In one example , the intermediate representation of
the web page 128A is used to identify and record informa
tion about elements in the web page . Location and other
positional information of elements , the extent of the ele
ments , and cross - references between elements , whether in
primary or supplemental content , are recorded . The recorded
information can be stored (e.g. , cached) in data repository
134 , such in a table or database , and information about the
elements can be correlated between their representations in
the original web code and in the intermediate representation
of the web page 128A . For example , the analysis module
136 may identify the static text from primary content of the
web page 128A , the dynamic primary content such as the
personalized weather information in table 130A , the static
supplemental content referenced by , e.g. , an < img > tag for
image 142A , and the dynamic supplemental content refer

US 2020/0137189 Al Apr. 30 , 2020
6

that correspond to modified elements in 128B , and updates
location or other positional information , extent indicators ,
and cross - references among the elements as appropriate to
reflect the changes in the web page 128B . However , because
the re - coder 124 is able to reuse much of the initial analysis
of web page 128A , including the analysis of static content ,
the re - coder 124 is able to operate more efficiently than if a
complete re - analysis of the same resource was required each
time that a web page was requested .
[0050] In some cases , where the requested web page or
other resource is completely static , the re - coder does not
need to update analysis results at all , and previous analysis
results can be re - used completely . When the re - coder 124
updates analysis results for dynamic content , the updated
results can be cached and re - used for the next time the
resource is requested . Even with dynamic pages , analysis
results can be re - used completely in many instances . That is
because the dynamic portion of a page or other resource may
be content that is separate from the modifications that are
being made to the page (e.g. , ads , weather , or a table of data
related to the requesting user , rather than modified tables and
JavaScript) . As a result , all analysis may be able to be
re - used even with highly dynamic pages or other such
resources .

enced by , e.g. , JavaScript code to load an advertisement
140A from remote ad server 146. Interrelationships among
the elements are recorded so that the re - coder module 138
can apply consistent changes between interrelated elements .
For example , if CSS selectors or JavaScript functions refer
to particular HTML elements , the relationship would be
noted so that a name or ID of the HTML elements is
re - coded consistently with a re - coded reference from the
CSS or JavaScript .
[0045] After the web page 128A has been analyzed , the
results of the analysis are recorded and then used by the
re - coder module 138 to safely re - code the web page 128A .
The re - coder subsystem 124 then forwards the re - coded web
page 128 A to client device 122 that requested the web page
128A .
[0046] Next , a client device 122 submits a subsequent
request to the web server 126 for the same web page that was
made in the initial request . However , a context of the
subsequent request may be different in a way that causes a
modified version of the web page 142B to be served rather
than the originally served version of the page 128A . For
example , dynamic content on the page may be updated
periodically to reflect current news , weather information ,
social media activity , and more . In some examples , a loca
tion associated with the request or an identifier of the user or
client device may cause the web page 128B to change from
a version that was previously served to the first user under
different circumstances .
[0047] The re - coder 124 intercepts the web page 128B
before it is delivered to client device 122 and determines
whether the web page has been previously analyzed . If a
web page or other resource has not been previously ana
lyzed , then the analysis module 136 will perform a detailed
analysis as described above and below with respect to FIG .
3C , for example . Because an earlier version of web page
128A was previously analyzed , however , the re - coder 124
may not perform a complete re - analysis of the page . Gen
erally , using cached analysis results from data repository 134
based on a previous analysis of a requested resource will is
faster and less computationally intensive than a detailed
re - analysis of the resource .
[0048] Upon determining that web page 128B corresponds
to a previously analyzed resource , the re - coder 124 com
pares representations of the earlier version 128A and latest
version of the web page 128B . The comparison may be
between original web code representations of the web pages
128A and 128B , such as by performing a byte - by - byte
analysis , and / or comparing intermediate representations of
the page . For example , cached DOM and AST representa
tions of the earlier web page 128A can be compared against
like DOM and AST representations generated for the sub
sequent webpage 128B . Regions of modified content are
determined in the primary and supplemental content so that
the re - coder knows what portions of the web page have
changed . For instance , the dynamic content including table
130 and advertisement 140 have changed since the system
120 responded to the original request for the web page .
[0049] The re - coder 124 then uses the information about
modified regions of content in the web page 128B to update
portions of the cached analysis results . In this way , the
re - coder 124 avoids doing a complete re - analysis and analy
sis results that pertain to static content does not need to be
changed . Instead , the re - coder 124 identifies the relevant
elements from the cached analysis results for the web page

[0051] FIG . 2 is a schematic diagram of a system for
performing deflection and detection of malicious activity
with respect to a web server system . The system 100 may be
the same as the system 100 discussed with respect to FIG .
1A , and is shown in this example to better explain the
interrelationship of various general features of the overall
system 200 , including the use of instrumentation code for
detection and deflection that is discussed in greater detail
throughout this document .
[0052] The system 200 in this example is a system that is
operated by or for a large number of different businesses that
serve web pages and other content over the internet , such as
banks and retailers that have on - line presences (e.g. , on - line
stores , or on - line account management tools) . The main
server systems operated by those organizations or their
agents are designated as web servers 204a - 204n , and could
include a broad array of web servers , content servers ,
database servers , financial servers , load balancers , and other
necessary components (either as physical or virtual servers) .
[0053] A set of security server systems 202a to 202n are
shown connected between the web servers 204a to 204n and
a network 210 such as the internet . Although both extend ton
in number , the actual number of sub - systems could vary . For
example , certain of the customers could install two separate
security server systems to serve all of their web server
systems (which could be one or more) , such as for redun
dancy purposes . The particular security server systems
202a - 202n may be matched to particular ones of the web
server systems 204a - 204n , or they may be at separate sites ,
and all of the web servers for various different customers
may be provided with services by a single common set of
security servers 2020-202n (e.g. , when all of the server
systems are at a single co - location facility so that bandwidth
issues are minimized) .
[0054] Each of the security server systems 202a - 202n may
be arranged and programmed to carry out operations like
those discussed above and below and other operations . For
example , a policy engine 220 in each such security server
system may evaluate HTTP requests from client computers
(e.g. , desktop , laptop , tablet , and smartphone computers)

US 2020/0137189 A1 Apr. 30 , 2020
7

based on header and network information , and can set and
store session information related to a relevant policy . The
policy engine may be programmed to classify requests and
correlate them to particular actions to be taken to code
returned by the web server systems before such code is
served back to a client computer . When such code returns ,
the policy information may be provided to a decode , analy
sis , and re - encode module , which matches the content to be
delivered , across multiple content types (e.g. , HTML ,
JavaScript , and CSS) , to actions to be taken on the content
(e.g. , using XPATH within a DOM) , such as substitutions ,
addition of content , and other actions that may be provided
as extensions to the system . For example , the different types
of content may be analyzed to determine naming that may
extend across such different pieces of content (e.g. , the name
of a function or parameter) , and such names may be changed
in a way that differs each time the content is served , e.g. , by
replacing a named item with randomly - generated characters .
Elements within the different types of content may also first
be grouped as having a common effect on the operation of
the code (e.g. , if one element makes a call to another) , and
then may be re - encoded together in a common manner so
that their interoperation with each other will be consistent
even after the re - encoding .
[0055] A rules engine 222 may store analytical rules for
performing such analysis and for re - encoding of the content .
The rules engine 222 may be populated with rules developed
through operator observation of particular content types ,
such as by operators of a system studying typical web pages
that call JavaScript content and recognizing that a particular
method is frequently used in a particular manner . Such
observation may result in the rules engine 222 being pro
grammed to identify the method and calls to the method so
that they can all be grouped and re - encoded in a consistent
and coordinated manner .
[0056] The decode , analysis , and re - encode module 224
encodes content being passed to client computers from a
web server according to relevant policies and rules . The
module 224 also reverse encodes requests from the client
con iters to the relevant web server or servers . For
example , a web page may be served with a particular
parameter , and may refer to JavaScript that references that
same parameter . The decode , analysis , and re - encode mod
ule 224 may replace the name of that parameter , in each of
the different types of content , with a randomly generated
name , and each time the web page is served (or at least in
varying sessions) , the generated name may be different .
When the name of the parameter is passed back to the web
server , it may be re - encoded back to its original name so that
this portion of the security process may occur seamlessly for
the web server .
[0057] A key for the function that encodes and decodes
such strings can be maintained by the security server system
202 along with an identifier for the particular client com
puter so that the system 202 may know which key or
function to apply , and may otherwise maintain a state for the
client computer and its session . A stateless approach may
also be employed , whereby the system 202 encrypts the state
and stores it in a cookie or other hidden parameter that is
saved at the relevant client computer . The client computer
may then pass that cookie or other hidden parameter data
back when it passes the information that needs to be decoded
back to its original status . With the cookie or other hidden
parameter data , the system 202 may use a private key or

shared secret to decrypt the state information and use that
state information in real - time to decode the information
from the client computer . Such a stateless implementation
may create benefits such as less management overhead for
the server system 202 (e.g. , for tracking state , for storing
state , and for performing clean - up of stored state informa
tion as sessions time out or otherwise end) and as a result ,
higher overall throughput .
[0058] An instrumentation module 226 is programmed to
add instrumentation code to the content that is served from
a web server . The instrumentation code is code that is
programmed to monitor the operation of other code that is
served . For example , the instrumentation code may be
programmed to identify when certain methods are called ,
when those methods have been identified as likely to be
called by malicious software . When such actions are
observed to occur by the instrumentation code , the instru
mentation code may be programmed to send a communica
tion to the security server reporting on the type of action that
occurred and other meta data that is helpful in characterizing
the activity . Such information can be used to help determine
whether the action was malicious or benign .
[0059] The instrumentation code may also analyze the
DOM on a client computer in predetermined manners that
are likely to identify the presence of and operation of
malicious software , and to report to the security servers 202
or a related system . For example , the instrumentation code
may be programmed to characterize a portion of the DOM
when a user takes a particular action , such as clicking on a
particular on - page button , so as to identify a change in the
DOM before and after the click (where the click is expected
to cause a particular change to the DOM if there is benign
code operating with respect to the click , as opposed to
malicious code operating with respect to the click) . Data that
characterizes the DOM may also be hashed , either at the
client computer or the server system 202 , to produce a
representation of the DOM (e.g. , in the differences between
part of the DOM before and after a defined action occurs)
that is easy to compare against corresponding representa
tions of DOMs from other client computers . Other tech
niques may also be used by the instrumentation code to
generate a compact representation of the DOM or other
structure expected to be affected by malicious code in an
identifiable manner .
[0060] As noted , the content from web servers 204a - 204n ,
as encoded by decode , analysis , and re - encode module 224 ,
may be rendered on web browsers of various client com
puters . Uninfected client computers 212a - 212n represent
computers that do not have malicious code programmed to
interfere with a particular site a user visits or to otherwise
perform malicious activity . Infected client computers 214a
214n represent computers that do have malware or malicious
code (218a - 218n , respectively) programmed to interfere
with a particular site a user visits or to otherwise perform
malicious activity . In certain implementations , the client
computers 212 , 214 may also store the encrypted cookies
discussed above and pass such cookies back through the
network 210. The client computers 212 , 214 will , once they
obtain the served content , implement DOMs for managing
the displayed web pages , and instrumentation code may
monitor the respective DOMs as discussed above . Reports
of illogical activity (e.g. , software on the client device

US 2020/0137189 Al Apr. 30 , 2020
8

calling a method that does not exist in the downloaded and
rendered content) can then be reported back to the server
system .
[0061] The reports from the instrumentation code may be
analyzed and processed in various manners in order to
determine how to respond to particular abnormal events , and
to track down malicious code via analysis of multiple
different similar interactions across different client comput
ers 212 , 214. For small - scale analysis , each web site opera
tor may be provided with a single security console 207 that
provides analytical tools for a single site or group of sites .
For example , the console 207 may include software for
showing groups of abnormal activities , or reports that indi
cate the type of code served by the web site that generates
the most abnormal activity . For example , a security officer
for a bank may determine that defensive actions are needed
if most of the reported abnormal activity for its web site
relates to content elements corresponding to money transfer
operations — an indication that stale malicious code may be
trying to access such elements surreptitiously .
[0062] A central security console 208 may connect to a
large number of web content providers , and may be run , for
example , by an organization that provides the software for
operating the security server systems 202a - 202n . Such con
sole 208 may access complex analytical and data analysis
tools , such as tools that identify clustering of abnormal
activities across thousands of client computers and sessions ,
so that an operator of the console 208 can focus on those
clusters in order to diagnose them as malicious or benign ,
and then take steps thwart any malicious activity .
[0063] In certain other implementations , the console 208
may have access to software for analyzing telemetry data
received from a very large number of client computers that
execute instrumentation code provided by the system 200 .
Such data may result from forms being re - written across a
large number of web pages and web sites to include content
that collects system information such as browser version ,
installed plug - ins , screen resolution , window size and posi
tion , operating system , network information , and the like . In
addition , user interaction with served content may be char
acterized by such code , such as the speed with which a user
interacts with a page , the path of a pointer over the page , and
the like .

[0064] Such collected telemetry data , across many thou
sands of sessions and client devices , may be used by the
console 208 to identify what is “ natural ” interaction with a
particular page that is likely the result of legitimate human
actions , and what is “ unnatural ” interaction that is likely the
result of a bot interacting with the content . Statistical and
machine learning methods may be used to identify patterns
in such telemetry data , and to resolve bot candidates to
particular client computers . Such client computers may then
be handled in special manners by the system 200 , may be
blocked from interaction , or may have their operators noti
fied that their computer is potentially running malicious
software (e.g. , by sending an e - mail to an account holder of
a computer so that the malicious software cannot intercept it
easily) .
[0065] FIG . 3A depicts a flowchart of an example process
for analyzing , in a cached manner , web code that is to be
re - coded in advance of being ultimately transmitted to a
client device . The depicted process may be implemented , for
example , by the systems in FIGS . 1A , 1B , and / or 1C .

[0066] The process can begin at box 302 , where content is
received , for example , by re - coder 124. The content may be
any form of web code provided by web server 126 , or from
other sources , in response to a request from a client device
122. The content may include primary and supplemental
content . Primary content includes web code that is served
directly in response to a request , whereas supplemental
content is generally other , external content that the primary
content refers to as part of a complete representation of the
requested resource . For example , a client device 122 may
transmit an HTTP request for a webpage , “ home.html , ” to a
web server 126 that serves the domain , www.example.com .
Responsive to the request , the web server 126 locates or
generates the home.html file , and provides the file to re
coder 124 for analysis , re - coding , and delivery to the client
device 122. The HTML code within home.html constitutes
primary content . However , the page can also include refer
ences to various external articles such as styles , scripts , and
images that are to be loaded and executed in conjunction
with home.html to provide a complete experience for the
webpage . These referenced articles constitute supplemental
content . Supplemental content may be hosted by the same
domain and web server that hosts the primary content or it
may be hosted by another domain and / or web server . More
over , some portions of the received content may be static ,
while other portions may be dynamic .
[0067] Static content changes relatively infrequently , and
in particular does not change each time a requested resource
is served . Dynamic content , in contrast , may be personalized
and time - dependent such that it changes or otherwise varies
each time a resource is served . For example , home.html may
include a site banner and navigation menu that is static
because it does not change from one request to the next ,
whereas a portion of the page that includes targeted adver
tisements may frequently be updated for a given user , and
may also vary among different users each time the page is
served .
[0068] At box 304 , an initial analysis of the received
content is performed . FIG . 3C describes additional detail
about the process of initially analyzing content . Generally ,
an initial analysis is performed whenever the content has not
been previously analyzed or when cached analysis results
for the content are unavailable or expired . With reference
again to the example of home.html , the re - coder 124 can
determine whether the webpage has been previously ana
lyzed , and if not , then it will proceed to perform a full , initial
analysis of the page . Otherwise , the process may proceed to
box 310 .
[0069] Content is analyzed in order to determine how the
content can be safely re - coded without affecting the presen
tation or function of the content when it is loaded on the
client computing device 122. For example , the re - coder 124
may be configured to re - code content in different ways each
time it is served so as to create a moving target that
obfuscates the operation of a web server and that thwarts
unwanted attempts to compromise the content . For re
coding to work properly without disrupting the user's expe
rience with the content , the content can be analyzed to
ensure that all transformations in the re - coding are safe and
that the transformations are coordinated among all interre
lated elements of the content . For example , home.html may
include certain < div > and < span > HTML tags that have
particular identifiers corresponding to identifiers referenced
in an external stylesheet . During initial analysis , the re - coder

US 2020/0137189 Al Apr. 30 , 2020
9

124 can determine the connections between these tags and
the stylesheet , so that the identifiers may be later re - coded to
maintain such connections .
[0070] During initial analysis , the entirety of the received
content is generally analyzed to determine and record all
internal and external connections in the content . In some
implementations , this can be accomplished using one or
more intermediate representations of the received content .
For example , the home.html page may be parsed into a
DOM tree structure to represent the page . Using the DOM
intermediate representation of the page , connections
between elements within the page may be identified between
nodes in the DOM . Other types of intermediate representa
tions may also be generated , including , for example ,
Abstract Syntax Trees for JavaScript code .
[0071] The process can also identify external connections ,
such as connections between elements in primary content
and elements in supplemental content . For example , home .
html may include a reference to an external JavaScript file ,
and any connections that are determined between the HTML
and JavaScript can be recorded using identifiers for the
connected elements in the intermediate representations of
the content . Results of the initial analysis are stored in a
cached manner that enables later re - use of all or a portion of
the analysis when a later request for the content is made .
[0072] At box 306 , upon completion of the initial analysis ,
the content is re - coded and served to the client computing
device 122 that requested the content . The re - coded content
includes different web code than the code that was originally
provided by the web server that hosts the content , but it is
re - coded in a manner that does not substantially affect the
presentation or functionality of the web page from the user's
perspective . For example , hidden forms may be inserted in
the code , and various elements of the code may be renamed
so that the code is processed differently by the client
computing device 122 , even though such changes would not
be obvious from a user's normal interaction with the web
page . The re - coding process uses the results of the initial
analysis to ensure that only safe transformations are made
during re - coding
[0073] At box 308 , content is received at a later time that
is related to the content that was previously received at box
302. For instance , the content can correspond to a resource
has previously been requested , analyzed , cached , re - coded ,
and served . Thus , is one example , the content received at
box 308 may have been provided from a web server in
response to a subsequent request for a resource that is
located at the same web address as the resource that was
previously received in box 302 , such as home.html . As
described above , the content may include any form of web
code such as HTML , CSS , and JavaScript , and may be
comprised of various combinations of primary and supple
mental content , and static and dynamic content . The content ,
whether primary or supplemental , may have changed from
when it was previously received , or it may be the same .
[0074] Upon receiving the content , the process proceeds to
box 310 , where differences are identified between the sub
sequently received content from box 308 and the previously
received content from box 302. If the content includes both
static and dynamic content , then the static portions may be
unchanged , and the dynamic portions may be different . For
example , the static banner logos and navigation menus in
home.html may be defined by the same web code in both the
previous and subsequent versions of the page , and is there

fore unchanged . However , dynamic content that corresponds
to targeted advertisements and a personalized dashboard for
the page may differ between the earlier and later versions of
the page . The differences between the pages can be identi
fied in any suitable manner , including by a comparison of
intermediate representations of the pages . For example , the
re - coder 124 can parse the most recently received version of
home.html into an appropriate intermediate representation
such a DOM tree structure or Abstract Syntax Trees , and
then identify which portions of the intermediate represen
tations are changed and which portions are unchanged .
[0075] At box 312 , the process uses cached results from
the initial analysis of the received content to safely re - code
the subsequently received content . By reusing at least a
portion of the initial analysis , which can be a computation
ally expensive process , the subsequently received content
can be re - coded and served more efficiently . To re - use the
cached analysis results , the re - coder 124 or other system that
implements the process , identifies the portions of the content
that have changed , and updates its analysis for the content
only with respect to those portions of the content that are
impacted by the changes . For example , the targeted adver
tisement in home.html that changed from the first version to
the second may include JavaScript function names or param
eters that have changed so as to cause the displayed adver
tisement to change . The re - coder 124 can identify the
elements in the cached analysis results that correspond to the
changed elements in the JavaScript code , and update these
elements accordingly . However , the portions of the cached
analysis results that correspond to static content in the page
and that are not impacted by the updated advertisement or
other changes , can be re - used without analyzing the full
extent of the page again . In cases where the subsequently
received content has not changed at all from the previously
received content , the cached initial analysis results can be
re - used in whole without needing to do any new analysis of
the subsequent content .
[0076] Using the updated analysis results from box 312 ,
the process then re - codes the subsequently received content ,
serves the re - coded content to a client device at box 314 , and
updates the mappings of elements in the cached analysis
results at box 316. Thereafter , when another request for the
content is made , the process returns to box 308 , where the
updated analysis results are used in analyzing and re - coding
the content in a cached manner . Further implementations of
the process will now be described with reference to FIGS .
3B and 3C .

[0077] FIG . 3B is a flow chart of an example process for
analyzing , in a cached manner , web code that is to be
re - coded prior to being served . In certain implementations ,
the process shown in FIG . 3B may be performed by the
system 120 described above with respect to FIG . 1B , and / or
the system 200 described above with respect to FIG . 2 .
[0078] At box 320 , the process includes receiving content
that is to be re - coded . The content may be received by an
intermediate computing system logically located between a
web server and a client device , such as the re - coder 124
shown in FIG . 1B . The content may include web code that
corresponds to a resource provided by a web server , such as
web server 126 , in response to a request for the resource . The
request may have been made by a client computer such as
client device 122 in FIG . 1B . The content is received so that
it may be re - coded from an original form provided by the

US 2020/0137189 Al Apr. 30 , 2020
10

web server 126 to a modified form before being delivered
over a network , such as the Internet , to the client device 122 .
[0079] The received content can include primary content
and supplemental content , either of which may include static
and / or dynamic content . Primary content is generally con
tent that is served directly in response to a client request . For
example , in a request for a web page , the primary content
may be the HTML that defines the structure of the web page
and that is located at a web address , such as a URL or URI ,
indicated in the request . Supplemental content can include
any number of resources that are referenced by the primary
content . In one example , the primary content includes
HTML web code that includes an image tag that references
a source address for an image file . The image , then , consti
tutes supplemental content . Supplemental content , such as
the image referenced by the image tag , may be served from
the same domain and / or web server that served the primary
content , or it may be hosted and served from another domain
and / or computing system . In another example , the primary
content may reference supplemental content such as
JavaScript or CSS . The JavaScript or CSS may be refer
enced from another file , or they may be provided , for
example , in separate portions of the same file from which the
HTML or other primary content was received .
[0080] At box 322 , the process determines whether the
received content has been previously analyzed . The analysis
of the content is used to in order to perform coordinated
modifications of the content so that the content can be
re - coded without substantially affecting how the content is
presented on a client computing device and to maintain
equivalent functionality of the content from a user's per
spective when it is executed on the client computing device .
If it is determined that the content has not been previously
analyzed , then the process proceeds to box 324 , in which an
initial analysis of the content is performed . The process of
initially analyzing the content will be further described with
respect to FIG . 3C .
[0081] FIG . 3C is a flowchart of an example process for
initially analyzing web code and mapping relationships in
the web code . At box 360 , the process includes identifying
references to supplemental content . As has been described ,
the content initially received from a web server 126 in
response to a request may be primary content , such as a web
page or other web application , which includes references to
supplemental content . The supplemental content can be
located in a file or other data source external to the primary
content , or even within a file or other data source that
includes the primary content . Generally , however , the
supplemental content is separate from the primary content in
some logical fashion such that the primary content refer
ences the supplemental content and / or the supplemental
content references the primary content . For instance , style
information for a web page may be defined by CSS web
code , interactive features of a web page may be executed
according to JavaScript code , and other applications may be
executed as applets , each of which can be referenced by a
respective address to such supplemental content provided in
the primary content web code .
[0082] At box 362 , the process retrieves the supplemental
content that was identified in box 360. For example , in the
system depicted in FIG . 1B , the re - coder 124 determines an
address , such as a URL or URI , for each identified instance
of supplemental content , and then uses the identified
addresses to retrieve the each instance of supplemental

content . In one example , the re - coder 124 may determine
that supplemental content for a particular resource includes
CSS code and JavaScript code that are each hosted by the
same web server that provided the primary content . The
re - coder 124 may then generate separate HTTP requests to
the web server to retrieve the CSS code and JavaScript code ,
respectively so that the supplemental content is available for
analysis . Likewise , either or both of primary content and
supplemental content may include further references to other
supplemental content . Where the supplemental content is
hosted by a web server other than the web server 126 that
provided the primary content , the re - coder 124 may make
separate requests to retrieve the supplemental content . For
example , the primary content could include references to
advertisements or images that are provided by a remote
server different than the server that provided the primary
content . In like manner , such as by using HTTP requests or
another communication protocol , the supplemental content
can be retrieved from the remote server and at least tempo
rarily stored at the re - coder 124 for analysis .
[0083] At box 364 , the process for initially analyzing web
code that is to be re - coded includes identifying the location
and extent of elements of the primary content and all
references to those elements in either the primary content or
supplemental content . Depending on the extent of the analy
sis , only a portion of all the elements in the primary content
may be identified , or the process may identify the location
and extent of elements in an entirety of the primary content .
The elements in the primary content may correspond to
elements of the web code for the primary content . For
example , HTML elements may correspond to HTML tags
such as < input > , < p > , < div > , < span > , and others .
[0084] Locations of the elements can be recorded in
various manners . In some implementations , a unique ID or
address of each element within a structure of the primary
content is recorded . Other context information associated
with the elements , such as content within or surrounding the
elements may be recorded . In some examples , the locations
can be recorded by noting an offset of the element within the
content . For instance , an input element provided by the tag
< input name = " field1 " > can be signified by a value that
represents it is in a particular position from the start of the
document , such as the 120th tag in the document . In some
implementations , the locations of elements can be deter
mined using CSS3 selectors (e.g. form [id = " forml "]) ,
JavaScript query / select statements (e.g. , document.getEle
mentByID (“ Foo ")) , and / or using XPATH selectors , for
example .
[0085] The process can also determine and record an
extent of the elements included in the content . The extent of
an element can be an indication of a portion of the content
that the element spans . In the example of HTML , content is
often nested within particular elements in a hierarchical
fashion so that , for example , lower - level content inherits the
properties of higher - level content . In one example a < form >
tag may indicate the start of a particular form , which define
various attributes for the elements within the form , and any
form - related tags such as an < input > tag provided subse
quent to the < form > tag and until a closing < / form > tag is
provided are deemed to be elements within the particular
< form > . Thus , the < form > element can be said to extend
within the content until the < / form > tag is reached , and an
indication of the extent of the element can be recorded along
with a location identifier for the element .

US 2020/0137189 Al Apr. 30 , 2020
11

[0086] Further in box 362 , the process includes identifying
references to the elements in the received content . Identify
ing the references can include , in certain implementations ,
identifying those elements in the primary content and / or the
supplemental content that refer to another element that has
been identified within the primary content . For example , a
simple web page may be defined by the following HTML
code :

< html >
< head >
< link rel = " stylesheet " type = " text / css " href = " shapeStyle.css " >
< script >
function shape Function ()
{
document.getElementByld (“ shape ") . innerHTML =
“ Exampie Function Text " ;

}
< / script >
< / head >
< body >
< p id = " shape " > Dynamic Text < / p >
< button name = " exampleButton ” type = " button " onclick =
" shapeFunction () " > Click

to Change < / button >
< / body >
< / html >

[0087] In this example , the HTML code is primary content
because it was provided by the web server 126 to the
re - coder 124 in response to a particular request for a web
page corresponding to the HTML code . The HTML includes
a JavaScript function inline in the body of the page , and also
includes a reference to an external stylesheet , shapeStyle .
css . The shapeStyle.css file is supplemental content that is
identified and retrieved by the re - coder 126 , as described in
boxes 360 and 362. The JavaScript function , however , is
included in the primary content . One of the elements iden
tified in the analysis of the page is the element corresponding
to the < button > tag . The < button > tag includes an " onclick ”
attribute that causes the “ shapeFunction () ” JavaScript to be
called when the button is selected by a user . Accordingly , the
re - coder 124 determines that the < button > element refer
ences the JavaScript function , which is another element
within the primary content . Likewise , the document.getEle
mentByID element references the < p > tag whose id is
“ shape , ” and this reference is also recorded in the analysis .
In like manner , the process identifies and records references
between elements in the primary HTML content and the
supplemental content , shapteStyle.css .
[0088] The process illustrated in FIG . 3C can include a
“ full analysis ” of all elements in the primary content , or may
instead include an analysis of just a portion of the elements
in the primary content . The latter case may be referred to as
a " modification - specific analysis . " The full analysis pro
vides the most flexibility in re - coding content because a
complete representation of the web code corresponding to a
requested resources is analyzed and stored . Results of the
full analysis can then be used to perform coordinated
modifications of any portion of the web code . In other
implementations , the process may perform modification
specific analysis to reduce the computational expense of the
analysis and to minimize latency in responding to a request
as compared to the full analysis . Under the modification
specific analysis model , less than all of the elements in the
primary content are analyzed . The portion of the elements

that are selected for analysis can be determined in various
manners . For instance , an operator of the system 120 may
configure the system to operate in various modes that govern
the types of re - coding that will occur . For example , in a
mode in which only particular types of elements are to be
recoded , such as form tags in HTML code , the system may
focus its analysis on those types of elements in the modifi
cation - specific analysis . In certain implementations , the
analysis may be limited to dynamic content - i.e . , portions
of content that change relatively frequently between requests
for the content . Often , a requested resource includes both
static content that change relatively infrequently , and
dynamic content that changes more frequently . Using modi
fication - specific analysis , only information related to the
dynamic content is recorded . For example , in a web page
that has a standard structure served to all users , but that also
includes personalized modules such as advertisements that
are uniquely targeted to particular users , the process may
limit the analysis of the web page in subsequent requests for
the page to only those portions of the web page that
correspond to the personalized modules . In certain imple
mentations , an operator may configure a system 120 that
implements the process to operate in either a full - analysis
mode or a modification - specific analysis mode . Thus , in the
modification - specific analysis mode , only locations , extent
of , and references to a portion of the elements are identified
and recorded . The system 120 may also select one mode
over the other automatically based on an optimization tech
nique and desired system performance characteristics .
[0089] At box 366 , the process parses the web code for a
requested resource into intermediate representations . FIG .
3C shows the web code as being parsed in box 366 after the
operations of identifying the location , extent of , and refer
ences to relevant elements in box 365. In certain implemen
tations , however , the order of operations may be reversed
such that the intermediate representations are determined
before the operations of box 365. In such implementations ,
the relevant elements can be identified from the intermediate
representations rather than , for example , the original web
code .

[0090] The web code may be parsed to generate various
types of intermediate representations . In some examples , the
type of intermediate representation that is generated from
the parsing depends on the type of web code being parsed .
For instance , HTML code may be parsed into a Document
Object Model (DOM) intermediate representation , while
JavaScript code may be parsed into an Abstract Syntax Tree
(AST) intermediate representation . Thus , when all of the
web code for a requested resource is parsed , including web
code for both primary and supplemental content , multiple
intermediate representations of different types may be gen
erated that represent respective types of web code for the
requested resource . For example , a web page that includes
both HTML in its primary content and that references
JavaScript as supplemental content may be parsed to gen
erate a first intermediate representation in the form of a
DOM for the HTML primary content , and a second inter
mediate representation in the form of an AST for the
JavaScript supplemental content . In other implementations ,
a common intermediate representation type may be used to
represent multiple different types of web code as well .
Notably , the information determined in box 365 , including
location , extent , and references to relevant elements can be
determined from and recorded in either its original repre

US 2020/0137189 Al Apr. 30 , 2020
12

sentation in the web code (e.g. , JavaScript , HTML) , or its
intermediate representations (e.g. , AST , DOM) , or both .
[0091] The process of analyzing web code that is to be
re - coded continues at box 368 , where symbols and cross
references between the symbols are identified within the
primary and supplemental content . The symbols correspond
to elements in either the primary or supplemental content ,
and can be represented either in original form from received
web code or by representations in the intermediate repre
sentations generated at box 366. For example , a symbol for
a < form > tag may be represented by its HTML tag or by an
identifier of the tag in a DOM representation of the HTML
page from which it was parsed .
[0092] Moreover , the process at box 368 further includes
identifying cross - references between symbols in the primary
and supplemental content . In some implementations , the
cross - references may have been identified at box 364 in
which references were identified to relevant elements of the
web code . Identifying cross - references among the symbols
can be carried out in a similar fashion . Cross - references
between symbols that correspond to elements in both pri
mary and supplemental content are identified . The cross
references can be identified between symbols within the
primary content , symbols within the supplemental content ,
or between symbols in primary and supplemental content .
One example of a cross - reference between symbols within
primary content is a CSS selector in an inline style sheet that
refers to elements within an HTML page . Another example
is an inline JavaScript function that is called as an event
handler of an HTML input element . Examples of cross
references of symbols between primary and supplemental
content include a CSS selector in an external style sheet that
refers to elements within an HTML page , and a JavaScript
function from an external library that is used in an inline
function on primary HTML page .
[0093] At box 370 , information about each element in the
intermediate representations of the analyzed web code is
recorded . The recorded information can include a location or
other positional information for each element in the inter
mediate representations . In some examples , the location or
positional information can be recorded as data that indicates
a relative position or offset of the element , as a node location
in a hierarchical representation (e.g. , in a tree structure a
third - generation element might be indicated in a represen
tation as 3.12.7 , in which each (.) separated numeral iden
tifies a node in the tree hierarchy at respective levels /
generations of the tree) , using CSS3 selectors , and / or by
using XPATH selectors . In certain implementations , the
recorded information for each element can correspond to
information about the symbols for each element identified in
box 368 .
[0094] Information that is stored for each element in the
intermediate representation can be associated with respec
tive information for the elements from the original web
code . In this manner , location or positional information for
each element may be recorded from both the originally
received and intermediate representations of web code for
each element . The elements may be indexed and the location
information stored in a database or other information reposi
tory to support efficient , bi - directional lookup of an
element's location in either an original representation of web
code or an intermediate representation . For example , an
intermediate representation of a < div > tag location in a
DOM can be stored or otherwise recorded in association

with other information that indicates where the < div > tag
was located in the original web code (e.g. , a byte - level
location of the tag in a data stream for the original web code ,
or other relative positional information) . When a symbol is
identified that corresponds to the < div > tag in either the
original code or the intermediate representation , its corre
sponding location can be quickly identified from one rep
resentation to the other using the lookup table .
[0095] At box 374 , the results of the initial analysis of a
requested resource are cached so that all or a portion of the
analysis can be reused in subsequent requests for the
resource . In some implementations , a re - coder system can
maintain separate caches for primary and supplemental
content . For example , a primary content cache can include
the results of the analysis of primary content , such as
identified elements and corresponding symbols , location and
extent information of the elements , cross - reference data , a
representation of the original web code , the intermediate
representation , and a lookup table to correspond location or
other positional information for the elements between the
original web code representation and the intermediate rep
resentation of the primary content . A separate , supplemental
cache can be maintained in a like manner for supplemental
content . Some or all of the information described herein may
be stored , and in some instances , the primary content cache
may include different types or quantity of information than
the supplemental content cache . For example , the primary
content cache may include all information resulting from a
detailed analysis of a requested resource , whereas the
supplemental cache includes just a portion of the results .
[0096] In some implementations , the supplemental con
tent cache may be configured to only store the original code
or another representation of the most recently retrieved
supplemental content , and to not retain results of the detailed
analysis of the supplemental content . For example , in an
initial request for a resource , detailed analysis can be per
formed on the resource's primary and supplemental content .
The results of the analysis for the primary content may be
cached , whereas the results of the supplemental content may
not be retained for use in subsequent requests . In certain
implementations , however , the full results of an analysis of
supplemental content may be cached so that the results may
be reused in subsequent requests for the same resource , or
the results may be shared and reused if the same content is
also referenced by other requested resources . For example ,
multiple pages in a website may each reference the same
external CSS stylesheet . The first time that one of the pages
is requested , the stylesheet may be analyzed and analysis
results stored in supplemental content cache . In subsequent
requests by the same or different users for the same page or
other pages in the website , the initial analysis results for the
stylesheet can be reused from cache without having to do a
completely new analysis of the stylesheet each time a page
is requested .
[0097] The extent of the analysis results that are cached in
either the primary content cache or the supplemental content
cache can be selectively varied . In one example , the re - coder
124 can operate in either a full - analysis mode or a modifi
cation - specific analysis mode . In full - analysis mode , upon
performing detailed analysis of a web resource , the re - coder
124 can cache full results of the analysis , at least of the
primary content . In this way , the re - coder 124 will have all
the information that it needs to perform a wide range of
re - coding operations for the resource , even if the re - coder

US 2020/0137189 Al Apr. 30 , 2020
13

124 only uses a portion of these operations in response to a
given request . However , because the full analysis results
have been cached , the re - coder 124 can apply any of the
re - coding operations in subsequent requests without needing
to perform another full analysis of the resource . Thus , full
analysis mode provides the re - coder 124 with the greatest
flexibility in its re - coding operations . In other implementa
tions , the re - coder 124 can be configured to operate in a
modification - specific analysis mode . In this mode , only a
limited portion of analysis results are cached that is relevant
to perform a specific set of re - coding operations on the
content . For example , if the re - coder 124 is configured to
obfuscate a web page only by changing the names or values
of existing elements in the page , then a narrower set of
re - coding operations are employed , and thus less informa
tion is needed to be cached from an analysis . On the other
hand , if the re - coder 124 is configured to perform additional
re - coding operations such as introducing distractor fields
that were not originally present in a web page , or to
otherwise change the structure of the page , then the system
may benefit from the full - analysis caching mode .
[0098] As another example full reanalysis may be espe
cially beneficial where a policy that defines what modifica
tions are to be performed on a page or other resource is
changing frequently . In such a situation , caches analysis
results would likely have to be discarded in a modification
specific analysis mode . In contrast , they would not have to
be discarded as much in a full analysis mode .
[0099] Returning now to the process shown at box 326 in
FIG . 3B , the results of the initial analysis are stored . The
results may be stored in a manner described above with
respect to box 374 in FIG . 3C .
[0100] At box 322 , the process can recognize when web
code for a particular requested resource has been previously
analyzed . To determine whether a subsequent request may
be for a resource that has been previously analyzed , a web
address to which the subsequent request is directed can be
compared to web addresses of previously analyzed
resources . For example , re - coder 124 may receive an HTTP
request from a client device 122 for a web page located at
www.example.com/news/2013/technology234.html . The re
coder 124 then compares the address of the requested page
with a stored list of identifiers for web pages and other
resources that have been previously analyzed . In some
instances , modified addresses , such as partial URLs , are
compared so as to isolate relevant address information from
portions of the address that may identify a user agent , for
example .
[0101] In cases where collisions occur (i.e. , where an
identifier for a subsequently requested resource potentially
matches identifiers of multiple previously analyzed
resources) , further operations can be performed to select a
particular one of the potential matches that likely corre
sponds to the intended resource . For instance , primary
content for the subsequently requested resource can be
retrieved and compared to representations of the potential
matches . A best match can be determined after comparing
the retrieved resource with each of the potential matches ,
and / or a most likely match can be determined when the
comparison satisfies a similarity threshold . For example , in
a collision that identifies four potential matches for a
requested resource , if the retrieved primary content was
determined to be sufficiently similar or identical to the first
potential match to which it is compared , then no further

comparisons of the other potential matches would be
required . If none of the potential matches are sufficiently
similar to the retrieved requested resource , then the process
may determine that the request is for a resource that has not
been previously analyzed , and the process proceeds to box
324 as described above .
[0102] Upon determining that the requested resource has
been previously analyzed , at box 328 , the process deter
mines whether the received content for the requested
resource matches an intermediate representation of a previ
ously analyzed resource . In some implementations , this
determination is made by comparing the primary content for
a requested resource with the corresponding intermediate
representation of the primary content of a previously ana
lyzed resource that was identified in box 322. For instance ,
the re - coder 124 implementing the process shown in FIG .
3B can obtain the requested resource , e.g. , technology234 .
html . The web code for technology234.html can be parsed to
generate a current DOM representation of the requested
resource , which is compared to the DOM of the matched
previously analyzed resource . If the DOMs are identical or
otherwise determined to be sufficiently equivalent , then the
process proceeds to box 330 and the cached results of the
prior analysis can be re - used . Others manners of comparing
content of the requested resource with a previously analyzed
resource can be employed as well , including a byte - by - byte
analysis of the web code of the resources if the web code for
the primary content of the previously analyzed resource has
been cached .
[0103] If the primary content of a requested resource
matches primary content from a previously analyzed
resource , further comparison is made between supplemental
content . Comparison of supplemental content can be per
formed in substantially the same manner as comparison of
primary content . In certain implementations , however , com
parison of supplemental content may be abbreviated or
otherwise less computationally expensive and faster than
comparison of primary content . For example , rather than
generating complex intermediate representations or per
forming byte - by - byte analysis of all the supplemental con
tent that a web page references , HTTP headers for the
supplemental content can be checked to determine whether
a cached representation of the supplemental content has
expired , or checksum techniques can be used . The process
may also periodically retrieve supplemental content to verify
that recorded information about the supplemental is current ,
and if it is not , then it may be flagged . In such implemen
tations , the process may only retrieve supplemental content
for further analysis if it has been flagged .
[0104] It should be noted that in certain implementations ,
the process may also forgo comparison of supplemental
content .
[0105] The process at box 328 can in some cases introduce
latency in responding to a request , and therefore the process
can determine whether re - use of cached results or re - analy
sis is likely to be most efficient . In some cases , the choice of
“ re - use ” or “ re - analysis ” can be determined upon receiving
the primary content for a requested resource . The process
determines if it would likely be faster or computationally
cheaper to perform re - analysis ex ante rather than first
determining whether the requested resource matches a pre
viously analyzed resource . For example , if the process can
perform a detailed analysis of a requested resource faster
than it can determine a match to a cached resource , then the

US 2020/0137189 Al Apr. 30 , 2020
14

process can elect to perform a detailed analysis and proceed
to box 324 and FIG . 3C rather than re - using a cached
resource . This may occur , for example , if a most recent
version of a web page has significantly changed , includes
fewer references to supplemental content , or when collisions
occur when identifying potentially matched web addresses .
[0106] If a requested resource does not identically or
nearly identically match (e.g. , does not match a threshold
similarity score) a cached representation of the resource ,
then the resource has been modified and the process pro
ceeds to box 332 , in which the results of a previous analysis
are at least partially re - used . Re - use of cached analysis
results is generally beneficial because it obviates the need to
perform detailed analysis of a resource each time it is
requested . For high volume requests of particular resources ,
re - using cached analysis results can significantly reduce
computational demands and also reduce latency associated
with analysis . In some implementations , the process can
determine that a resource has been modified in a manner that
requires re - analysis at least in part . In that case , the process
can return to box 324 and FIG . 3C . In other cases , re - use of
cached results is determined to be appropriate . For example ,
where the modifications to a requested resource do not affect
elements that are the subject of coordinated modifications or
other re - coding , then re - analysis is not necessary . For
instance , if planned re - coding only involves changing form
input field names in a webpage , and the requested webpage
does not include any modifications to its forms since the last
analysis of the page , then the process determines that further
analysis is not required and analysis re - use techniques can
be employed instead .
[0107] At box 332 , the process proceeds to locate regions
of modified content within the requested resource . Modified
content can include any changes to the web code of the
requested resource over its corresponding previously ana
lyzed resource . For example , in a web page , changes may
include differences in either the structural or non - structural
elements of the page . Structural changes can include , for
instance , the addition , modification , re - arrangement , or dele
tion of HTML tags . Non - structural changes can include
changes to textual content that is presented in a display of
the page , for example . In some implementations , the regions
of modified content can be identified by comparing a rep
resentation of the requested resource with information in the
cached analysis results , such as an intermediate representa
tion . For example , in a subsequent request for a personalized
homepage of a user that includes current news and weather
information , the process can determine that the either or both
of the news and weather sections of the page have changed
since prior information about the page was last cached . The
process can perform byte - by - byte analysis of the homep
age's primary content to determine an element of the page
that has been modified . In some implementations , another
intermediate representation of the page can be generated to
directly compare with the cached intermediate representa
tion . Thus , if a DOM or AST representation was cached
during prior analysis of the homepage , then a DOM or AST
representation can be similarly generated for the subse
quently requested resource , and the results compared . In
some implementations , location or other positional informa
tion for modified elements can be determined by referencing
a lookup table where such information has been stored . The

regions of modified content can thus be specifically identi
fied by location information of elements that correspond to
the modified content .
[0108] Located regions of modified content may be in
primary content , supplemental content , or both .
[0109] The process proceeds , at box 334 , to update por
tions of analysis results in the primary and supplemental
cache to reflect the identified modifications in the requested
resource . Old symbols , location data , extent data , cross
references , and other stored information about the previ
ously analyzed resources are replaced with similar informa
tion for the modified resource . In effect , a partial analysis of
the modified resource is performed with respect to relevant
elements in the resource that are affected by the modifica
tion . For example , if a < table > HTML tag that was originally
present in a web page is determined to have been deleted ,
then the corresponding representation of that tag is also
removed from the cached intermediate representation of the
web page . Other elements in the page may have assumed
new positions as a result of the tag having been removed ,
and thus location or other positional information for the
effected elements can be updated in the cache . Links and
references to the tag can also be changed accordingly .
[0110] The extent of the process at box 334 of updating
cached analysis results to reflect changes in a requested
resource can vary according to a mode of the process . As
described above with respect to FIG . 3C , the process can
operate in full - analysis mode or modification - specific analy
sis mode . In full - analysis mode , the process identifies all
regions of modified content for a requested resource and
updates the cached analysis results for each identified region
of modified content . In full - analysis mode , the cached
analysis is updated for a resource even when the identified
modifications do not pertain to elements in the resource that
will be re - coded to obfuscate operation of a website . By
contrast , in modification - specific analysis mode , cached
analysis results are updated only where the primary or
supplemental content for a requested resource has been
modified and the modifications are with respect to elements
in web code that are subject to be being re - coded .
[0111] Consider the following example of how full - analy
sis mode compares with modification - specific analysis
mode . First , the process can generate and record detailed
analysis results for an original web page defined by the
following example HTML code :

< html >
< head >
< title > Original Page < / title >
< / head >
< body >
< script >
function example Function ()
document.getElementByld (" example ”) . innerHTML = " Hello World ” ;

{

}
< / script >
< form name = " input " action = " get_request.asp " method = " get " >
Username : < input type = " text " name = " user " >
< input type = " submit " value = " Submit " >
< / form >
< p id = " paragraphIdentifier " > Web security < / p >
< img src " imagel.jpg "
< / body >
< / html >

US 2020/0137189 Al Apr. 30 , 2020
15

[0112] In a subsequent request for the above web page , the
code may be modified as follows :

< html >
< head >
< title > Dynamic Page < / title >
< / head >
< body >
< script >
function exannpleFunction ()

document.getElennentByld (" example ”) . innerHTML = " Hello World ” ;
{

}
< / script >
< form name = " input " action = " get_requestasp " method = " get " >
Username : < input type = " text " name = " user " >
< input type = " submit " value = " Submit " >
< / form >
< p id = " paragraphIdentifier " > Web security < / p >
< img src = " image2.jpg " >
< p id = " paragraphIdentifier " > Online security < / p >
< / body >
< / html >

new

[0113] In the modified version of the code , several
changes have been made , including to the title , the refer
enced image , and addition of a paragraph . In full analysis
mode , the process would identify and record the changes to
each of these elements , regardless of whether the modified
elements are subject to being re - coded . However , if a
particular re - coding scheme were limited to renaming form
field values none of which have changed in the updated
code — then under the modification - specific analysis mode ,
the process can determine that mapping and other informa
tion in cached results analysis does not need to be
modified .
[0114] At box 388 , the process stores results of the
updated analysis for a particular resource . In some imple
mentations , the manner and location of recording updated
analysis information may be different depending on whether
the changes were made in primary content or supplemental
content . The re - analysis results for primary content can be
updated in primary content cache , and the re - analysis results
for supplemental content can be updated in supplemental
content cache .
[0115] The process then proceeds to box 390 , where the
received content for a requested resource is re - coded using
a cached analysis for the requested resource . Re - coding is
generally performed so as to deflect automated attacks
against a user or a web server by illegitimate code that is
programmed to exploit the web code of a web page or other
requested resource on a client device . The process can
re - code the same resource differently each time that resource
is served in order to create a “ moving target ” against
attempts to exploit the code . For example , a first user at a
first client device can make an initial request for a resource .
In response , the process receives a response from a web
server , performs detailed initial analysis on the resource that
the web server provided in response , caches results of the
analysis , and uses the results to safely re - code elements of
the resource's web code in a coordinated manner between
the resource's primary content and supplemental content .
[0116] The safe , coordinated re - coding techniques ensure
that the resource maintains substantially the same presenta
tion and functionality from the user's perspective at the
client device . That is , the user should generally not be able
to tell when or how a requested page has been re - coded

when he or she interacts with the page . When the same user
makes a subsequent request from the first client device for
the same resource , such as in a separate session , the process
can perform the operations described herein of re - using at
least a portion of the previous analysis of the resource to
facilitate efficient re - coding . In like manner , when a second
user at a second client device makes multiple requests for the
resource that was initially requested by the first user , the
resource is re - coded differently in response to each request .
At box 392 , the re - coded page is served to the client device
in satisfaction of a request . Thus , when a page changes from
one serving to the next and the changes are not relevant to
the modifications that the re - coding makes , the process may
take the cached intermediate page , replace the relevant
portions with the changed content and apply the static
modifications , all without further analysis . Process perfor
mance improvements may thus be achieved by such effi
ciency increases .
[0117] The re - coded content may be statically recoded or
dynamically re - coded . Static re - coding occurs when a struc
tural modification is made to the code , but that modification
does not change across different servings of the resource .
Dynamic re - coding occurs when the code is re - coded , and
such re - coding changes with each act of serving the
resource . For example , if the process injects a
JavaScript element into the code , but in the same place in the
same page every time the corresponding resource is loaded ,
the re - coding is considered to be static (even though names
and such information inside the JavaScript element may
change)
[0118] In some implementations , the process can also
cache re - coded resources to facilitate even more efficient
operations . For example , each of the re - coding operations in
the process can be either a static re - coding operation or a
dynamic re - coding operation . Static re - coding operations do
not alter the structure of requested resource , whereas
dynamic re - coding operations do alter structure . Generally ,
the re - coding operations can occur in phases in which the
static re - coding is first performed in a static re - coding phase ,
and then dynamic operations follow in a dynamic re - coding
phase . For example , changing the names or values of
elements in a resource's web code are static changes . Thus ,
in the static modification phase , an example hyperlink in an
HTML document may changed from < a
href = " exampletarget.html ' > to ,
Other non - structural changes that , for example , do not
change the DOM structure of a web page , can be made to
elements throughout the HTML document and the changes
may be coordinated within and between primary and supple
mental content . After the static changes , the process can then
make structural changes in some implementations in the
dynamic re - coding phase . Dynamic changes can include
re - arranging existing elements in the page or inserting
elements in a page , such as distractor form fields , that were
not present in the resource as originally served .
[0119] Results of the static re - coding phase can be cached
as an intermediate re - coded response that can be re - used in
subsequent requests for a resource . In one implementation ,
when the process performs static re - coding operations on a
resource in response to a first request for the resource , and
after the initial detailed analysis of the resource is performed
as described with respect to FIG . 3C , placeholder values are
re - coded into the web code for the resource in each location
where a static modification is to be made . For example , if the

be

US 2020/0137189 Al Apr. 30 , 2020
16

static modifications include changing the name of each
JavaScript function in the web code , then distinct place
holder values can be coded into the JavaScript that replace
the names of the original functions . The re - coded resource in
which placeholder values have been inserted where static
modifications are to be made is an intermediate re - coded
response , which is cached for later re - use . The placeholder
values in the intermediate re - coded response are not the final
values that will be served to a client device . Instead , different
final values will replace the placeholder values in response
to each request for the resource so that the values change in
response to each request . The functions used to generate the
final values can also be cached with the intermediate re
coded response . By caching the intermediate - recoded
responses , the process is able to reuse the results of an initial
static re - coding phase for the resource . As such , in subse
quent requests for the resource , the static re - coding phase
can be bypassed . The process instead accesses the interme
diate re - coded response , identifies each placeholder value
using a search and replace algorithm or cached location
information for each placeholder value , and uses known
functions to generate final values to replace the placeholder
values . The process can then proceed with re - coding in the
dynamic re - coding phase .
[0120] FIG . 4 is a schematic diagram of a computer
system 400. The system 400 can be used for the operations
described in association with any of the computer - imple
ment methods described previously , according to one imple
mentation . The system 400 is intended to include various
forms of digital computers , such as laptops , desktops , work
stations , personal digital assistants , servers , blade servers ,
mainframes , and other appropriate computers . The system
400 can also include mobile devices , such as personal digital
assistants , cellular telephones , smartphones , and other simi
lar computing devices . Additionally the system can include
portable storage media , such as , Universal Serial Bus (USB)
flash drives . For example , the USB flash drives may store
operating systems and other applications . The USB flash
drives can include input / output components , such as a
wireless transmitter or USB connector that may be inserted
into a USB port of another computing device .
[0121] The system 400 includes a processor 410 , a
memory 420 , a storage device 430 , and an input / output
device 440. Each of the components 410 , 420 , 430 , and 440
are interconnected using a system bus 450. The processor
410 is capable of processing instructions for execution
within the system 400. The processor may be designed using
any of a number of architectures . For example , the processor
410 may be a CISC (Complex Instruction Set Computers)
processor , a RISC (Reduced Instruction Set Computer)
processor , or a MISC (Minimal Instruction Set Computer)
processor .
[0122] In one implementation , the processor 410 is a
single - threaded processor . In another implementation , the
processor 410 is a multi - threaded processor . The processor
410 is capable of processing instructions stored in the
memory 420 or on the storage device 430 to display graphi
cal information for a user interface on the input / output
device 440 .
[0123] The memory 420 stores information within the
system 400. In one implementation , the memory 420 is a
computer - readable medium . In one implementation , the
memory 420 is a volatile memory unit . In another imple
mentation , the memory 420 is a non - volatile memory unit .

[0124] The storage device 430 is capable of providing
mass storage for the system 400. In one implementation , the
storage device 430 is a computer - readable medium . In
various different implementations , the storage device 430
may be a floppy disk device , a hard disk device , an optical
disk device , or a tape device .
[0125] The input / output device 440 provides input / output
operations for the system 400. In one implementation , the
input / output device 440 includes a keyboard and / or pointing
device . In another implementation , the input / output device
440 includes a display unit for displaying graphical user
interfaces .
[0126] The features described can be implemented in
digital electronic circuitry , or in computer hardware , firm
ware , software , or in combinations of them . The apparatus
can be implemented in a computer program product tangibly
embodied in an information carrier , e.g. , in a machine
readable storage device for execution by a programmable
processor , and method steps can be performed by a pro
grammable processor executing a program of instructions to
perform functions of the described implementations by
operating on input data and generating output . The described
features can be implemented advantageously in one or more
computer programs that are executable on a programmable
system including at least one programmable processor
coupled to receive data and instructions from , and to trans
mit data and instructions to , a data storage system , at least
one input device , and at least one output device . A computer
program is a set of instructions that can be used , directly or
indirectly , in a computer to perform a certain activity or
bring about a certain result . A computer program can be
written in any form of programming language , including
compiled or interpreted languages , and it can be deployed in
any form , including as a stand - alone program or as a
module , component , subroutine , or other unit suitable for
use in a computing environment .
[0127] Suitable processors for the execution of a program
of instructions include , by way of example , both general and
special purpose microprocessors , and the sole processor or
one of multiple processors of any kind of computer . Gen
erally , a processor will receive instructions and data from a
read - only memory or a random access memory or both . The
essential elements of a computer are a processor for execut
ing instructions and one or more memories for storing
instructions and data . Generally , a computer will also
include , or be operatively coupled to communicate with , one
or more mass storage devices for storing data files ; such
devices include magnetic disks , such as internal hard disks
and removable disks ; magneto - optical disks ; and optical
disks . Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non - volatile memory , including by way of example semi
conductor memory devices , such as EPROM , EEPROM ,
and flash memory devices ; magnetic disks such as internal
hard disks and removable disks ; magneto - optical disks ; and
CD - ROM and DVD - ROM disks . The processor and the
memory can be supplemented by , or incorporated in , ASICS
(application - specific integrated circuits) .
[0128] To provide for interaction with a user , the features
can be implemented on a computer having a display device
such as a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor for displaying information to the user and
a keyboard and a pointing device such as a mouse or a
trackball by which the user can provide input to the com

US 2020/0137189 Al Apr. 30 , 2020
17

puter . Additionally , such activities can be implemented via
touchscreen flat - panel displays and other appropriate
mechanisms .
[0129] The features can be implemented in a computer
system that includes a back - end component , such as a data
server , or that includes a middleware component , such as an
application server or an Internet server , or that includes a
front - end component , such as a client computer having a
graphical user interface or an Internet browser , or any
combination of them . The components of the system can be
connected by any form or medium of digital data commu
nication such as a communication network . Examples of
communication networks include a local area network
(“ LAN ”) , a wide area network (“ WAN ”) , peer - to - peer net
works (having ad - hoc or static members) , grid computing
infrastructures , and the Internet .
[0130] The computer system can include clients and serv
ers . A client and server are generally remote from each other
and typically interact through a network , such as the
described one . The relationship of client and server arises by
virtue of computer programs running on the respective
computers and having a client - server relationship to each
other .
[0131] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of inventions or of what may be
claimed , but rather as descriptions of features specific to
particular implementations of particular inventions . Certain
features that are described inthis specification in the context
of separate implementations can also be implemented in
combination in a single implementation . Conversely , vari
ous features that are described in the context of a single
implementation can also be implemented in multiple imple
mentations separately or in any suitable subcombination .
Moreover , although features may be described above as
acting in certain combinations and even initially claimed as
such , one or more features from a claimed combination can
in some cases be excised from the combination , and the
claimed combination may be directed to a subcombination
or variation of a subcombination .
[0132] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus

trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system components in the implementations
described above should not be understood as requiring such
separation in all implementations , and it should be under
stood that the described program components and systems
can generally be integrated together in a single software
product or packaged into multiple software products .
[0133] Thus , particular implementations of the subject
matter have been described . Other implementations are
within the scope of the following claims . In some cases , the
actions recited in the claims can be performed in a different
order and still achieve desirable results . In addition , the
processes depicted in the accompanying figures do not
necessarily require the particular order shown , or sequential
order , to achieve desirable results . In certain implementa
tions , multitasking and parallel processing may be advanta
geous .
What is claimed is :
1. A method comprising :
generating a representation of a first set of code corre

sponding to a first version of a web page ;
performing an analysis on the first set of code to identify

connections between elements of the web page ;
storing a mapping of the connections between elements

for the web page ;
generating a representation of a second set of code

corresponding to a second version of the web page ;
comparing the representation of the first set of code to the

representation of the second set of code ;
in response to determining that the representation of the

first set of code matches the representation of the
second set of code , accessing the mapping of connec
tions and re - coding one or more particular elements in
the second set of code to produce a modified second set
of code based on the mapping of connections without
performing the analysis on the second set of code ;

serving the modified second set of code to a remote client
computer ;

wherein the method is performed by one or more proces

any

sors .

