
(19) United States
US 2015.0089575A1

(12) Patent Application Publication (10) Pub. No.: US 2015/0089575A1
Vepa et al. (43) Pub. Date: Mar. 26, 2015

(54) AUTHORIZATION POLICY OBJECTS
SHARABLE ACROSSAPPLICATIONS,
PERSISTENCE MODEL AND
APPLICATION-LEVEL
DECISION-COMBINING ALGORTHM

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Sirish V. Vepa, Bangalore (IN); Hari
Sastry, San Jose, CA (US); Alan Cao,
Beijing (CN); Cynthia Ding, Beijing
City (CN)

(72)

(21) 14/484,050

(22)

Appl. No.:

Filed: Sep. 11, 2014

Related U.S. Application Data
Provisional application No. 61/880,745, filed on Sep.
20, 2013.

(60)

104

Publication Classification

(51) Int. Cl.
G06F2L/62 (2006.01)

(52) U.S. Cl.
CPC G06F 21/6281 (2013.01)
USPC .. 726/1

(57) ABSTRACT

A global policy store, in which policies applicable to multiple
applications in an enterprise environment can be stored, can
be stored in association with that environment. An applica
tion-level policy combining algorithm can be associated with
a specific application to resolve conflicts between the results
of evaluating policies that pertain to that applications
resources. A persistent model is defined for an Extensible
Access Control Markup Language (XACML) target defini
tion.

-100

POLICY STORE
106

GLOBALCONTAINER
112

GLOBALPOLICES

108A
APPLICATION
CONTAINER

110A
POLICES

102A
APPLICATION

102B

108B
APPLICATION
CONTAINER

11OB
POLICIES

APPLICATION

108N
APPLICATION
CONTAINER

11ON
POLICIES

102N
APPLICATION

Patent Application Publication Mar. 26, 2015 Sheet 1 of 11 US 2015/0089575 A1

-100

104.
POLICYSTORE

106
GLOBAL CONTAINER

112
GLOBAL POLICES

108A 108B 108N
APPLICATION APPLICATION APPLICATION
CONTAINER CONTAINER CONTAINER

110A 11 OB 11ON
POLICES POLICIES POLICES

102A 102B 102N
APPLICATION APPLICATION APPLICATION

FIG. 1

Patent Application Publication Mar. 26, 2015 Sheet 2 of 11 US 2015/0089575 A1

202
RECEIVE REQUEST FROMSUBJECT TO ACCESS RESOURCE OF PARTICULAR

APPLICATION

204
SELECT PARTICULARAPPLICATION CONTAINER ASSOCATED WITH

PARTICULARAPPLICATION

206
SELECT FROMPARTICULARAPPLICATION CONTAINER, APPLICATION-LEVEL
POLICIES THAT ARE APPLICABLE TO RECQUEST'S SUBJECT AND RESOURCE

208
SELECT, FROM GLOBAL CONTAINER, GLOBAL-LEVEL POLICIES THAT ARE

APPLICABLE TO REOUEST'S SUBJECT AND RESOURCE

210
APPLY SELECTED APPLICATION-LEVEL POLICIES TO REQUEST TO PRODUCE

APPLICATION-LEVEL RESULT

212
APPLY SELECTED GLOBAL-LEVEL POLICIES TO REOUEST TO PRODUCE

GLOBAL-LEVEL RESULT

214
RESOLVE ANY CONFLICTS EXISTING BETWEEN APPLICATION-LEVEL RESULT

AND GLOBAL-LEVEL RESULT TO PRODUCE FINAL RESULT

216
GRANT ORDENY REQUEST'S SUBJECTPERMISSION TO PERFORMREQUEST'S

ACTION ON REOUEST'S RESOURCE BASED ONFINAL RESULT

FIG. 2

Patent Application Publication Mar. 26, 2015 Sheet 3 of 11 US 2015/0089575 A1

308A
APPLICATION
CONTAINER

320
TOPPOLICY

322

TOPPOLICY APPLICATION- 336
324 LEVEL APPLICATION

TOPPOLICY SET 332 POLICY LEVEL
330 SET. COMBINING RESULT

SET-LEVELPOLICYLEVEL ALGORITHM
COMBINING RESULT
ALGORTHM

308B
APPLICATION
CONTAINER

340
TOPPOLICY

354
TOPPOLICYSET 362

360 SET
SET-LEVEL POLICYLEVEL 384

COMBINING RESUT APPLICATION- 386
ALGORTHM LEVEL APPLICATION

POLICY LEVEL
COMBINING RESULT
ALGORTHM

382
SET

SET-LEVEL POLICYLEVEL
COMBINING RESULT
ALGORTHM

FIG. 3

Patent Application Publication Mar. 26, 2015 Sheet 4 of 11 US 2015/0089575 A1

1. AllOf

Y-400

FIG. 4

Patent Application Publication Mar. 26, 2015 Sheet 5 of 11 US 2015/0089575 A1

PermissionEntry
Grantee

Resource, Action(s)

Assignees: granteeDN+policyRef

Y-500

FIG. 5

Patent Application Publication Mar. 26, 2015 Sheet 6 of 11 US 2015/0089575 A1

Grantee: Principal AND/OR
PrincipalConstraint PermissionEntry

Resource, Action(s)

ReSourceConstraints:
EnvironmentConstaints:

Assignees: granteedn+policyRef
Assignees: granteedn+ruleRef
ASSignees: granteednpolicySetRef

Y-600

FIG. 6

Patent Application Publication Mar. 26, 2015 Sheet 7 of 11 US 2015/0089575 A1

Perissio
Assignee: granteeC+(Rule)+AnyOf 2

Rule Policy PolicySet
Y a sis: AnyOf 1:3's sis

AnyOf 2: Perrin

Assignee: granteeA + (Rule)+AnyOf 1

v-700

FIG. 7

Patent Application Publication Mar. 26, 2015 Sheet 8 of 11 US 2015/0089575 A1

S D O a Sa Sa
DATABASE DATABASE

814 816

COMPONENT COMPONENT

818 820

COMPONENT

822

SERVER
812

NETWORK(s)

808

FIG. 8

US 2015/0089575 A1 Mar. 26, 2015 Sheet 9 of 11 Patent Application Publication

|-EOLAHES
9Z6 |-|-HOIABC] [[n CinOTO[[n CinOTO[[n CinOTO#796 LSE'n OEM, EOIA) ES

US 2015/0089575 A1

0 || 0 ||ETEWOVE», Å??OWEW WELSÅSHELDdWOO

| | WELSÅSanS SNOLIVOINn|NWOO

Mar. 26, 2015 Sheet 10 of 11

€)NISSE OO(l)? ? ?

EHOVOEHOVOEHOVO EHOOE&JOOEHOO

000 ||?700||
LINn ©NISSE OO(l)

Patent Application Publication

Patent Application Publication Mar. 26, 2015 Sheet 11 of 11 US 2015/0089575 A1

1102
RECEIVE REQUEST SPECIFYING SUBJECT AND APPLICATION STRIPE

1104
LOOK UP DIRECT APPLICATION ROLES GRANTED TO SUBJECT'S USER

PRINCIPAL IN GLOBAL CONTAINER

1106
FOREACH PARTICULAR GROUP PRINCIPAL OF THE SUBJECT'S GROUP

PRINCIPALS, LOOK UP DIRECT APPLICATION ROLES GRANTED TO PARTICULAR
GROUPPRINCIPAL INGLOBAL CONTAINER

1108
FOREACH PARTICULAR DIRECT APPLICATION ROLE DETERMINED IN BLOCKS
1104AND 1106, COMPUTE CORRESPONDING INDIRECT APPLICATION ROLES

GRANTED TO PARTICULAR DIRECTAPPLICATION ROLE IN GLOBAL CONTAINER

1110
LOOK UP DIRECT APPLICATION ROLES GRANTED TO SUBJECT'S USER

PRINCIPAL IN APPLICATION CONTAINER CORRESPONDING TO APPLICATION
STRIPE

1112
FOREACH PARTICULAR GROUP PRINCIPAL OF THE SUBJECT'S GROUP
PRINCIPALS, LOOK UP DIRECT APPLICATION ROLES GRANTED TO THAT

PARTICULAR GROUPPRINCIPAL IN APPLICATION CONTAINER CORRESPONDING
TO APPLICATION STRIPE

1114
FOREACH PARTICULAR ROLE LOCATED IN GLOBAL CONTAINER IN BLOCKS

1104-1108, LOOK UP DIRECT APPLICATION ROLES GRANTED TO THAT
PARTICULAR ROLE IN APPLICATION CONTAINER CORRESPONDING TO

APPLICATION STRIPE

1116
FOREACH PARTICULAR DIRECT APPLICATION ROLE LOCATED IN GLOBAL

CONTAINER IN BLOCKS 1104 AND 1106, LOOK UPINDIRECT APPLICATION ROLES
GRANTED TO THAT PARTICULAR DIRECT APPLICATION ROLE IN GLOBAL

CONTAINER

FIG 11

US 2015/0089575 A1

AUTHORIZATION POLICY OBJECTS
SHARABLE ACROSSAPPLICATIONS,

PERSISTENCE MODEL AND
APPLICATION-LEVEL

DECISION-COMBINING ALGORTHM

CROSS-REFERENCES TO RELATED
APPLICATIONS

0001. This application claims priority to U.S. Provisional
Patent Application No. 61/880,745 filed on Sep. 20, 2013
titled AUTHORIZATION POLICY OBJECTS SHAR
ABLE ACROSS APPLICATIONS, SIMPLIFIED TARGET
DEFINITION, AND APPLICATION-LEVEL DECISION
COMBINING ALGORITHM...” which is herein incorporated
by reference in its entirety for all purposes.

BACKGROUND

0002. In many cases, an enterprise has some common
security policies to enforce in all applications. If the polices
are defined in each application scope, the policy will be
redundant and hard to maintain.

0003. In the field of computer security, general access
control includes authorization, authentication, access
approval, and audit. Access control involves access approval,
whereby a computing system makes a decision to grant or
reject an access request from an already authenticated Sub
ject, based on what the subject is authorized to access.
Authentication and access control are often combined into a
single operation, so that access is approved based on Success
ful authentication, or based on an anonymous access token.
Authentication methods and tokens may include passwords,
biometric scans, physical keys, electronic keys and devices,
hidden paths, social barriers, and monitoring by humans and
automated systems.
0004. In an access control model, the entities that can
perform actions in the system are usually called Subjects, and
the entities representing resources to which access may need
to be controlled are usually called objects. Subjects and
objects may be software entities rather than human users. In
Some models, such as the object-capability model, a Software
entity can potentially act as both a Subject and object. Objects
can include computing system resources (referred to herein
briefly as “resources') such as executable application pro
grams (referred to herein briefly as “applications'), file sys
tem structures such as files and directories, communication
ports, Volatile memory segments, etc.
0005 Access control models used by current systems can
be based upon capabilities or upon access control lists
(ACLS). In a capability-based model, holding an unforget
table reference or capability to an object provides access to
the object (roughly analogous to how possession of a house
key grants one access to his house); access is conveyed to
another party by transmitting Such a capability over a secure
channel. In an ACL-based model, a Subject’s access to an
object can depend on whether its identity is on a list associ
ated with the object (roughly analogous to how a bouncer at a
private party would check one's ID to see whether his name is
was the guest list); access can be conveyed by editing the list.
Both capability-based and ACL-based models can include
mechanisms to allow access rights to be granted to all mem
bers of a group of subjects. Sucha group itself can be modeled
as a Subject.

Mar. 26, 2015

0006. Access control systems can provide the services of
authorization, identification and authentication, access
approval, and accountability. Authorization involves specify
ing the actions that a Subject is permitted to perform. Identi
fication and authentication prevents illegitimate Subjects
from accessing a system. Access approval involves granting
access during operations, by associating users with the
resources that they are allowed to access based on an autho
rization policy. Accountability identifies the actions that a
subject performed.
0007 Authorization can involve defining access rights for
Subjects. An authorization policy can specify the operations
that subjects are allowed to perform within a system. Some
operating systems implement authorization policies as for
mal sets of permissions that are variations or extensions of
three basic types of access. With read access, a Subject can
read file contents and list directory contents. With write
access, a subject can change the contents of a file or directory
by adding data to an existing file structure, creating a new file
structure, deleting an existing file structure, or renaming an
existing file structure. With execute access, a subject can
cause the system to execute (run) a program. These rights and
permissions can be implemented differently in Systems hav
ing different access control models. Access control models
are sometimes categorized as being either discretionary or
non-discretionary. Some widely recognized models include
discretionary access control (DAC), mandatory access con
trol (MAC), role-based access control (RBAC), and attribute
based access control (ABAC).
0008. In attribute-based access control (ABAC), access is
granted not necessarily based on the rights of the Subject
associated with a user after authentication, but based on
attributes of the user himself. The user can be asked to satisfy,
to an access control engine, claims about his attributes. An
attribute-based access control policy specifies which claims
need to be satisfied in order to grant access to an object. For
example, the claim could be "older than 18.” Under such
circumstances, a user that could prove this claim would be
granted access. Under this model, users can be anonymous
because authentication and identification are not strictly
required. Means for proving claims anonymously can be
achieved using anonymous credentials. Extensible Access
Control Markup Language (XACML) is a standard for
attribute-based access control.

0009 Discretionary access control (DAC) involves a
policy determined by the owner of an object. The owner
decides which users are allowed to access the object and what
privileges those users have with respect to the object. In a
DAC-based system, each object in the system can have an
owner. In some DAC-based systems, each objects initial
owner can be the subject that caused that object to be created.
The access policy for an object can be determined by that
objects owner. In a DAC-based system, an owner can assign
access rights and permissions for specific resources such as to
other subjects.
0010 Mandatory access control (MAC) involves allowing
a user to access a resource if rules exist that allow that user to
access that resource. Management of a MAC-based system
can be simplified when the objects are protected using hier
archical access control, and/or through the implementation of
sensitivity labels. In a system using sensitivity labels, a sepa
rate sensitivity label can be assigned to each Subject and
object. A subject's sensitivity label can specifies its level of
trust. An object’s sensitivity label can specify the level of trust

US 2015/0089575 A1

required to access that object. A subject is permitted to access
an object if the Subject's sensitivity level is equal to or greater
than the level of trust required by the object. MAC-based
system can use rule-based access control. Rule-based control
can involve determining whether a subject should be granted
or denied access to an object by comparing the objects sen
sitivity label to the subjects sensitivity label.
0011 Role-based access control (RBAC) can involve an
access policy determined by a system in which an object
exists. RBAC systems can be non-discretionary, in that access
can be controlled at the system level (by a system adminis
trator instead of by an objects owner. RBAC systems can
control collections of permissions. A role in an RBAC system
can be viewed as a set of permissions. In an RBAC system, a
Subject can access a resource if the Subject has been assigned
a role that is permitted to access that resource. Roles can be
combined in a hierarchy in which higher-level roles subsume
permissions owned by Sub-roles.
0012 Challenges may arise in an enterprise that involves
heterogeneous authorization (or access control) environ
ments. Such heterogeneous authorization environments may
employ disparate access control models. An enterprise might,
for example, involve some components that employ Oracle
Platform Security Service (OPSS) as an authorization envi
ronment and other components that employ Oracle Access
Manager (OAM) as an authorization environment. The access
controls provided by OPSS can be application-specific; such
access controls can be implemented within applications by
the designers of those applications, often with a deployment
in a specific type of enterprise—often one that is expected to
use the RBAC model enterprise-wide in mind. Thus, the
OPSS access controls that application designers incorporate
into their applications can be role-based. In contrast, the
access controls provided by OAM can be enterprise-wide
(generally applicable rather than specific to any particular
application), and specified at application deployment time
rather than at application design time. The access controls
provided by OAM can be based on a DAC-based model that
permits policy administration to be delegated. Implementing
both types of systems in a separate and segregated manner can
be wasteful of system resources and duplicative of efforts.

BRIEF SUMMARY

0013. In order to avoid wasteful duplication, some
embodiments involve a global container that contains policies
that are applicable to multiple separate applications in the
environment. Artifacts, including but not limited to authori
Zation policies, which are common to multiple applications in
the environment, are stored in the global container. In this
manner, the artifacts stored in the global container can be
defined just once but still used by many applications.
0014. According to some embodiments, application
administrators for different applications can specify applica
tion-level policies that are specific to the applications that
they administer. These application-level policies are used to
resolve conflicts between results of evaluations oftop policies
and top policy sets relative to specific applications resources.
The application-level policy specified for one application can
differ from the application-level policy specified for another
application.
0015. In some embodiments, a persistent model for an
XACML target definition can be defined.

Mar. 26, 2015

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 is a diagram that illustrates an example of an
environment that includes multiple applications and a policy
store that has both a global container and multiple applica
tion-specific containers, according to some embodiments.
0017 FIG. 2 is a flow diagram that illustrates an example
of an technique for evaluating, based on both global policies
and application-specific policies, whethera Subject is permit
ted to access an application’s resource, according to some
embodiments.
0018 FIG. 3 is a diagram that illustrates a set of top poli
cies and policy sets whose potentially conflicting evaluation
results can be resolved through the use of an application-level
policy combining algorithm, according to some embodi
mentS.

0019 FIG. 4 is a diagram that illustrates an example of a
target model, according to some embodiments.
0020 FIG. 5 is a diagram that illustrates an example of
how a grant is a represented in the LDAP/DB Persistent store,
according to some embodiments.
0021 FIG. 6 is a diagram that illustrates an example of a
persistence model for a Permission and Grantee, according to
Some embodiments.
0022 FIG. 7 is a diagram that illustrates an example of
how a target can be represented in a policy store, and at
runtime, according to some embodiments.
0023 FIG. 8 depicts a simplified diagram of a distributed
system for implementing some embodiments.
0024 FIG. 9 is a simplified block diagram of one or more
components of a system environment by which services pro
vided by one or more components of an embodiment system
may be offered as cloud services, in accordance with some
embodiments.
0025 FIG. 10 illustrates an example computer system in
which various embodiments may be implemented.
0026 FIG. 11 is a flow diagram that illustrates an example
of a technique for computing application roles from a global
container in addition to application roles granted in a specific
application stripe to which access is requested, according to
Some embodiments.

DETAILED DESCRIPTION

0027 Disclosed herein are techniques for establishing a
global policy Store in which policies applicable to multiple
applications in an enterprise environment can be stored. Also
disclosed herein are techniques for associating an applica
tion-level policy combining algorithm with a specific appli
cation. Also disclosed herein is a persistent model for an
XACML target definition.

Authorization Policy Objects Sharable Across Applications
0028. An enterprise environment can include multiple
various applications. These applications can have different
functions, can be used by different groups of users, and can be
administered by different administrators. However, often
these applications will end up needing at least some of the
same objects, or artifacts. Such artifacts can include authori
Zation policies that are applicable to the users of the applica
tions, for example.
0029 Such authorization policies indicate who is allowed
to access what. Even though artifacts such as authorization
policies often are needed by multiple applications, some
approaches have involved the duplication of such artifacts for

US 2015/0089575 A1

each separate application that uses Such artifacts. This dupli
cation is wasteful of storage resources and time.
0030. In order to avoid such wasteful duplication, some
embodiments involve a global container that contains policies
that are applicable to multiple separate applications in the
environment. Artifacts, including but not limited to authori
Zation policies, which are common to multiple applications in
the environment are stored in the global container. In this
manner, the artifacts stored in the global container can be
defined just once but still used by many applications.
0031. Various different kinds of artifacts can be stored in
the global container. Policies contained in the global con
tainer are applicable to all applications in the environment.
Other kinds of artifacts can represent resource types,
resources, application roles, rules, and entitlements. Applica
tion policies can be constructed based on resource types,
resources, rules, and entitlements.
0032 Each application in the environment has its own
resources that are possessed only by that application. Each
applications resources can be protected by application poli
cies, which restrict access to those resources. Application
policies specify the conditions that are to be satisfied before
access to any of the application’s resources is granted to a
USC.

0033 For example, an enterprise environment might
include a banking application, among other applications.
Artifacts applicable to the banking application might include
a resource type called bank account. Different users of the
banking application can be associated with separate resources
that possess this resource type; these users each have their
own separate bank accounts. Artifacts applicable to the bank
ing application also might include a role called customer.
Users having accounts with the banking application possess
this role. A policy associated with the banking application can
indicate that a particular customer is to be granted access to
that particular customer's own bank account during specified
times of day and specified days of the week. In this case, the
policy protects the bank account resource.
0034) For another example, an enterprise environment
might include separate applications such as a banking con
Sumer application, a banking loan application, and a premier
banking application. Each of these applications can have its
own policy artifacts that protect that application’s resources.
An application's policies might be relevant only that that
application and not to other applications in the same environ
ment.

0035 However, there can be some policies that are appli
cable to all applications in the environment. For example, a
particular policy might be applicable to each of the banking
consumer application, the banking loan application, and the
premier banking application. Policies that are applicable to all
applications in the environment are called global-level poli
cies. These global-level polices can be distinguished from the
application-level policies that are applicable only to indi
vidual applications. Global-level policies are enforced across
all of the applications in an environment.
0036. In some embodiments, policies become global-level
policies by virtue of an administrator of some application in
the environment placing those policies into the global con
tainer. Thus, in some embodiment, at least some of the global
level policies are products of the administrators of the indi
vidual applications.
0037. In some embodiments, when an application is going
to be deployed into the environment, that application is placed

Mar. 26, 2015

into a package for deployment. An application developer can
attach a policy file to that application's package prior to
deployment. When the application is deployed into the envi
ronment, the deployment mechanism (an application deploy
ment bootstrap process) obtains the policy file that is attached
to the application's package and places the policies described
in the file into a policy store in the environment.
0038. The policy store includes application-specific con
tainers and a global container. The policy file can include a
global policy section, which specifies global-level policies,
and an application policy section, which specifies applica
tion-level policies. The deployment mechanism places the
policies found in the global policy section of the file into the
global container of the policy store. The deployment mecha
nism places the polices found in the application policy section
of the file into the application-specific container that pertains
specifically to that application (and not to other applications).
0039. As is discussed above, each application in the envi
ronment can be associated with a separate application admin
istrator. The environment provides a console through which
an application administrator can view policies in, modify
policies in, add policies to, and delete policies from the appli
cation container (in the policy store) that is associated with
the application administrator. The console does not permitan
application administrator to view policies in, modify policies
in, add policies to, or delete policies from other application
containers in the policy store.
0040. In some embodiments, the console further permits
multiple application administrators for different applications
to view policies in, modify policies in, add policies to, and
delete policies from the global container in the policy store.
When an application administrator adds a policy to the global
container, that policy automatically becomes a global-level
policy by virtue of its presence within the global container. In
Some embodiments, a Super-administrator for the environ
ment grants, to individual application administrators, privi
leges (entitlements) that enable the application administrators
to perform these one or more of these operations relative to
the global container and the policies contained therein.
Entitlements can be fine-grained to permit the performance
just a limited subset of the possible operations relative to
specific policies.
0041 FIG. 1 is a diagram that illustrates an example of an
environment 100 that includes multiple applications and a
policy store that has both a global container and multiple
application-specific containers, according to some embodi
ments. Environment 100 includes applications 102A-N and
policy store 104. Policy store 104 includes a global container
106 and application containers 108A-N. Application contain
ers 108A-N are specifically associated, one-to-one, with
applications 102A-N, respectively, Such that each application
container is associated with just one application. Global con
tainer 106 is associated with all of applications 108A-N and
environment 100 as a whole.
0042 Applications containers 108A-N contain polices
110A-N, respectively. Policies 110A apply specifically to
application 102A and to no other application, while policies
110B apply specifically to application 102B and to no other
application, and so forth, to policies 110N, which apply to
application 110N and to no other application. Global con
tainer 106 containers global policies 112. Global policies 112
apply to each and every one of applications 102A-N.
0043. According to some embodiments, an administrator
of application 102A is the only application administrator that

US 2015/0089575 A1

is permitted to view policies in, modify policies in, add poli
cies to, and delete policies from application container 108A.
Similarly, an administrator of application 102B is the only
application administrator that is permitted to view policies in,
modify policies in, add policies to, and delete policies from
application container 108B. However, both the administrator
of application 102A and the administrator of application
102B are permitted to view policies in, modify policies in,
add policies to, and delete policies from global container 106.
0044 FIG. 2 is a flow diagram that illustrates an example
of an technique for evaluating, based on both global policies
and application-specific policies, whethera Subject is permit
ted to access an application’s resource, according to some
embodiments.

0045. In block 202, an authorization engine receives a
request from a subject to access a resource of a particular
application.
0046. In block 204, the authorization engine selects, from
among multiple application-specific containers within a
policy store, a particular application-specific container that is
associated with the particular application.
0047. In block 206, the authorization engine selects, from
among policies contained in the particular application-spe
cific container, one or more application-level policies that are
applicable to the subject and the resource specified in the
request. These application-level policies can have been added
to the particular application-specific container by an applica
tion administrator for the particular application.
0.048. In block 208, the authorization engine selects, from
among policies contained in a global container, one or more
global-level policies that are applicable to the subject and the
resource specified in the request. These global-level policies
can have been added to the global container by application
administrators for any application in the environment, includ
ing application administrators for applications other than the
particular application.
0049. In block 210, the authorization engine applies the
one or more selected application-level policies to the request
to determine whether the subject specified in the request
should be granted or denied permission to perform an action
specified in the request relative to the resource specified in the
request. This policy evaluation produces an application-level
result.

0050. In block 212, the authorization engine applies the
one or more selected global-level policies to the request to
determine whether the subject specified in the request should
be granted or denied permission to perform the action speci
fied in the request relative to the resource specified in the
request. This policy evaluation produces an global-level
result.

0051. In block 214, the authorization engine resolves any
conflicts that might exist between the application-level result
and the global-level result. Such resolution can be performed
based on a policy-combining algorithm as discussed in
greater detail below. The resolution produces a final result
that is either to grant or deny the Subject permission to per
form the action relative to the resource.

0052. In block 216, the authorization engine grants or
denies the subject permission to perform the action relative to
the resource in accordance with the final result produced by
the resolution.

0053 FIG. 11 is a flow diagram that illustrates an example
of a technique for computing application roles from a global

Mar. 26, 2015

container in addition to application roles granted in a specific
application stripe to which access is requested, according to
Some embodiments.
0054 Blocks 1102-1108 generally describe how global
application roles can be computed for a user. In block 1102,
an authorization engine receives a request. The request can
specify a subject and an application stripe to which access is
requested. The Subject can include a user principal. The Sub
ject also can include group principals.
0055. In block 1104, the authorization engine looks up
direct application roles granted to the Subjects user principal
in a global container.
0056. In block 1106, for each particular group principal of
the Subject’s group principals, the authorization engine looks
up direct application roles granted to that particular group
principal in the global container.
0057. In block 1108, for each particular direct application
role determined in blocks 1104 and 1106, the authorization
engine computes corresponding indirect application roles
granted to that particular direct application role in the global
container.
0.058 Blocks 1110-1116 generally describe how applica
tion roles in an application Stripe being accessed can be com
puted. In block 1110, the authorization engine looks up direct
application roles granted to the Subjects user principal in the
application container corresponding to the application stripe.
0059. In block 1112, for each particular group principal of
the Subject’s group principals, the authorization engine looks
up direct application roles granted to that particular group
principal in the application container corresponding to the
application stripe.
0060. In block 1114, for each particular role—direct or
indirect previously located in the global container in blocks
1104-1108, the authorization engine looks up direct applica
tion roles granted to that particular role in the application
container corresponding to the application Stripe.
0061. In block 1116, for each particular direct application
role previously located in the global container in blocks 1104
1106, the authorization engine looks up indirect application
roles granted to that particular role in the global container.

Policy-Combining Algorithms

0062. In some cases, the evaluation of a global-level
policy to determine whether access to a particular resource is
to be granted or denied can produce a result that conflicts with
the result produced by the evaluation of an application-level
policy to determine whether access to that particular resource
is to be granted or denied. Under Such circumstances, a
policy-combining algorithm can be used to resolve the con
flict.
0063 Evaluation of the policy-combining algorithm can
be used to determine which of several policies producing
conflicting results should take effect. The policy-combining
algorithm can select between multiple polices and/or multiple
sets of policies. For example, the policy-combining algorithm
can specify "grant override. In that case, any applicable
policy that grants access to a particular resource when evalu
ated will take effect even if other applicable policies deny
access to that particular resource when evaluated. For another
example, the policy-combining algorithm can specify “deny
override. In that case, any applicable policy that denies
access to a particular resource when evaluated will take effect
even if other applicable policies grant access to that particular
resource when evaluated.

US 2015/0089575 A1

0064. Other possible policy-combining algorithms can
include “first applicable,” which accepts, as the final and
definitive result of policy evaluation, the result that is pro
duced by the first-found policy that is applicable to the subject
and resource specified in a request. After Such a result is
produced, an authorization engine does not need to evaluate
other policies that might also be applicable to the request.
0065 Other possible policy-combining algorithms can
include “only applicable,” which results in grant only if all
applicable polices harmoniously produce a grant result, a
deny only if all applicable policies harmoniously produce a
deny result, and an indeterminate result otherwise. In practi
cal terms, the indeterminate result may have the same effect
as a deny result regarding the Subjects access to the applica
tion’s resource.

0066. In the absence of a policy-combining algorithm
being specified by an administrator, a system can follow a
default policy-combining algorithm. In some embodiments,
the default policy-combining algorithm specifies a “deny
override' behavior, discussed above.
0067. In some embodiments, policy sets can be defined. A
policy set is a group of two or more policies. An administrator
can group two or more policies into a policy set. The admin
istrator can define a policy-combining algorithm that is appli
cable to the policies in the set. After all of the policies in a
policy set have been evaluated, if there is any conflict in the
results produced by the policies in that policy set, then the
policy-combining algorithm for that policy set is evaluated to
see which of those results will be the result for the whole
policy set.
0068 A policy set can include, or refer to, individual poli
cies. The policies to which apolicy set refers are deemed to be
included within that policy set. A policy set also can include,
or refer to, other policy sets. Thus, policy sets can be nested
within other policy sets. An individual policy that is not
referred to by, or included in, any policy set is called a top
policy. Administrators who define policy sets can associate
set-level policy combining algorithms with those policy sets.
Conflicts between results of evaluations of individual policies
(and/or nested policy sets) within a policy set can be resolved
by apply that policy sets set-level policy combining algo
rithm to those results.

0069. However, in the case in which there exist multiple
policy sets that do not belong to any other policy set (“top
policy sets’), and/or top policies that do not belong to any
other policy set, it is possible that Some such policy sets
and/or top policies might produce different results. Some
embodiments include techniques for resolving these situa
tions through the specification and use of application-level
policy combining algorithms.

Application-Level Policy Combining Algorithms

0070 FIG. 3 is a diagram that illustrates a set of top poli
cies and policy sets whose potentially conflicting evaluation
results can be resolved through the use of an application-level
policy combining algorithm, according to some embodi
ments. According to some embodiments, application admin
istrators for different applications can specify application
level policies that are specific to the applications that they
administer. These application-level policies are used to
resolve conflicts between results of evaluations oftop policies
and top policy sets relative to specific applications resources.

Mar. 26, 2015

The application-level policy specified for one application can
differ from the application-level policy specified for another
application.
0071 FIG. 3 shows application containers 308A and
308B, which can correspond to application containers 108A
and 108B of FIG. 1. The policies in application container
308A therefore can be applicable to the resources of applica
tion 102A of FIG. 1 (and only that application), while the
policies in application container 308B can be applicable to
the resources of application 102B of FIG. 1 (and only that
application).
0072 Application container 308A includes top policies
320 and 322. Application container 308A further includes a
top policy set 324. Top policy set 324 includes policies 326
and 328. Top policy set 324 is associated with a set-level
policy combining algorithm 330 that is used to resolve con
flicts between the results of evaluating the policies in top
policy set 324. Set-level policy combining algorithm 330
produces set-level result 332.
0073. An application-level policy combining algorithm
334 associated with the application with which application
container 308A is associated resolves conflicts between set
level result 332 and the results of the evaluations oftop policy
320 and top policy 322. If no application-level policy com
bining algorithm is specified for the policies in application
container 308A, then a default application-level policy com
bining algorithm, Such as “deny overrides.” can be used.
Application-level policy combining algorithm 334 produces
application-level result 336.
0074 Application container 308B includes top policy
340. Application container 308B further includes top policy
sets 354 and 374.
(0075 Top policy set 354 includes policies 356 and 358.
Top policy set 354 is associated with a set-level policy com
bining algorithm 360 that is used to resolve conflicts between
the results of evaluating the policies in top policy set 354.
Set-level policy combining algorithm 360 produces set-level
result 362.
(0076 Top policy set 374 includes policy set 376 and policy
378. Top policy set 374 is associated with a set-level policy
combining algorithm 380 that is used to resolve conflicts
between the results of evaluating the policies and policy set
results in top policy set 374. Set-level policy combining algo
rithm 380 produces set-level result 382. Set-level policy com
bining algorithm 380 can differ from set-level policy com
bining algorithm 360. Additionally, policy set 376 can be
associated with its own separate set-level policy combining
algorithm (not illustrated).
0077. An application-level policy combining algorithm
384 associated with the application with which application
container 308B is associated resolves conflicts between set
level results 362 and 382 and the results of the evaluations of
top policy 340. If no application-level policy combining algo
rithm is specified for the policies in application container
308B, then a default application-level policy combining algo
rithm, Such as “deny overrides.” can be used. Application
level policy combining algorithm 384 produces application
level result 386. Application-level policy combining
algorithm 384 can differ from application-level policy com
bining algorithm 334.
0078. In some embodiments, the resolution of conflicts
between the results produced by evaluating applicable global
level policies and applicable application-level policies is per
formed by the application of the application-level policy

US 2015/0089575 A1

combining algorithm that is associated with the application to
which the requested resources belong.

XACML Target

0079. In XACML, the target essentially defines how the
Subject, resource, action and environment in the policy defi
nition are to be matched against the incoming request. A
target can be defined as part of a Rule, Policy or Policy Set.
Thus, when a target matches an incoming request, the rule,
Policy or PolicySet is said to be an applicable entity. FIG. 4
shows an example of a target model 400, according to some
embodiments.

0080. An AllOf includes one or more conjunctive
sequence of Matches of the attributes in the request context to
values defined in the Match. An AnyOf includes one or more
disjunctive AllOffs. Finally, a target may have a Zero or more
conjunctive sequences of AnyOffs.
0081 For example, the following matching rule can be
considered: Jcloe can update the Payroll Ledger. The target
can be written, pseudo XML-XACML representation, as:

<target
<anyOf>

<aOf>
<Match access-subject-id=jdoef>

<gaOf>
<anyO
<anyOf>

<aOf>
<Match resource-id=Payroll Ledger?

<gaOf>

<aOf>
<Match action-id=update f>

<gaOf>

<aOf>
<Match environment attribute=intranet -

<gaOf>
<anyO

</target

0082 An AllOfis a conjunctive sequence of Matches. This
corresponds to a Grant in a proprietary policy model. There
fore a target could be viewed as multiple anyOfs, where each
anyOf spans one or more grants.
0083. An Grant is a building blocks of the proprietary
policy model, and the target definition can re-use this notion:

<target
<anyOf>

<grant -
</anyOf>
<anyOf>

<grant -
</anyOf>
<anyOf>

<grant -
</anyOf>

<anyOf>
<grant f>

</anyOf>
<targets

Mar. 26, 2015

I0084. In some embodiments, a persistence representation
is used in a policy store to represent a target. An example
approach is discussed below.
I0085. An existing createPolicy API takes the list of Prin
cipals and Resource-actions. This API creates a policy, where
each principal is granted each resource. XACML 3.0 Target
definition permits arbitrary combinations while defining the
target of a policy. A Target notion can be exposed in the MAPI
in order to support the XACML 3.0 Target.
I0086 Policy management APIs that accept a list of Prin
cipals, List of Resources, and PermissionSets can be retained.
Create APIs accept a Target. Modify apis can be modified to
Support the modification of the target.
I0087. The target syntax permits the following policy to be
authored. As an example, a Subject identified by name Jaloe
having role as Administrator is an applicable target OR a role
is Administrator and a subject with a role by the name
MyGroup is an applicable policy. This is a valid policy from
the XACML schema definition. The resources, actions and
Environment constraints have been removed from this
example:

<target
<anyOf>

<aOf>
<Match access-Subject-id=jdoef>

<AaOf>
<aOf>

<Match subject-Attribute-role= MyGroup? -
KallOf>

</anyOf>
<anyOf>

<aOf>
<Match subject: Attribute-role = Administratorf

<gaOf>
</anyOf>

</targets

I0088 A MAPI Target Object is defined to support author
ing Such policies.
I0089. The XACML standard defines a target. The policy
paradigm model using a Target is different from a proprietary
model offered by the management application programming
interface (MAPI). Using a Target, it is possible to define a
Policy such that different Subjects are granted different
resource-actions and under possibly different environment
constraints. A target in which all Subjects are uniformly
granted all the resource-actions (under the same environment
constraints) is also referred to as a Simple Target.
0090 A Policy created using Principals, Resource-Ac
tions and an Environment Constraint can be represented as a
Target. The Target definition can be obtained from the Poli
cyEntry. The following Target Definition can returned pro
vided that the PRINCIPAL SEMANTICS is OR:

<target-f
<anyOf>

<!-- each principal listed below
<allOf Subject:Subject-id string-equals principal1,
mustBePresent = true <fallOf>
<allOf Subject:Subject-id string-equals principal2,
mustBePresent = true <fallOf>
<allOf Subject:Subject-id string-equals principal3,
mustBePresent = true <fallOf>

... (repeats for each principal)

US 2015/0089575 A1

-continued

<anyOf>
<!-- is granted each resource below
<aOf>

resource: resource-id string-equals resource1,
mustBePresent = true

action:action-id string-equals action1, mustBePresent = true
<gaOf>
<aOf>

resource: resource-id string-equals resource2,
mustBePresent = true

action:action-id string-equals action2, mustBePresent = true
<gaOf>

... (repeats for each resource-Actions combo)
</anyOf>
<anyOf>

<!-applying the environment constraint
<allOf>environment matching constraint<tallOf>

</anyOf>
</targets

0091) If the PRINCIPAL SEMANTICS is AND, the fol
lowing Target Definition can be returned:

<target-f
<anyOf>

<aOf>
<!-- each principal listed below

Subject:Subject-id string-equals principal1,
mustBePresent = true

<gaOf>
</anyOf>
<anyOf>

<aOf>
Subject:Subject-id string-equals principal2,
mustBePresent = true

<gaOf>
</anyOf>
<anyOf>

<aOf>
Subject:Subject-id string-equals principal3, mustBePresent =
true
<gaOf>

</anyOf>
... (repeats for each principal)

<anyOf>
<!-- is granted each resource below

<aOf>
resource: resource-id string-equals resource1,
mustBePresent = true

action:action-id string-equals action1, mustBePresent =
true

<gaOf>
<aOf>

resource: resource-id string-equals resource2,
mustBePresent = true

action:action-id string-equals action2, mustBePresent =
true

<gaOf>

... (repeats for each resource-Actions combo)
</anyOf>
<anyOf>

<!-applying the environment constraint
<allOf>environment matching constraint<tallOf>

</anyOf>
</targets

0092. The number of anyOfs, allOffs per principal in the
target can be reduced by defining a custom Principal Attribute
data type and its matching function.
0093. If a customer wishes to take advantage of the Target
definition, and alter his current Policy definition, he can
author a new policy using the TargetFntry from the old Policy

Mar. 26, 2015

as a starting point and proceed to delete the old Policy and
modify the Target in the new Policy as desired.
0094. This sample code illustrates how to construct Target
definition that corresponds to a Simple target. Principalsijdoe
and mdoe are each granted access to two resource name
expressions.

PrincipalEntry principal =
new BasicPrincipalEntry(“wlsUserImpl”, “doe');

ResourceNameExpression expr =
new ResourceNameExpression(“HTTPResourceType”, “..*):

List<String actions = new ArrayList<String ();
actions.add (“put');
Resource ActionsEntry rae = new BasicResource ActionsEntry (expr,
actions);
EnvironmentConstraint ec = null:
BasicCompositeMatchEntry cme = new
BasicCompositeMatchEntry (principal,
BasicCompositeMatchEntry.PRINCIPAL SEMANTIC.OR, rae, ec):
AllOf oneAllOf = new AllOf (cme);
List<AllOf> listOfAllOfs = new ArrayList<AllOf >();
istOfAllOfs.add (oneAllOf);
AnyOf anyOf = new AnyOf (listOfAllOfs):
List<AnyOf> listOfAnyOfs = new ArrayList<AnyOf>();
istOfAnyOfs.add(anyOf);
BasicTargetEntry target = new BasicTargetEntry(listOfAnyOfs):
if constructing an simple target
PrincipalEntry principal1 = new BasicPrincipalEntry(“wlsUserImpl”,
doe”);

PrincipalEntry principal2 = new BasicPrincipalEntry(“wlsUserImpl”,
"mdoe”);
List<PrincipalEntry> principals = new ArrayList<PrincipalEntry>();
principals.add (principall);
principals.add (principal2);
ResourceNameExpression expr1 =

new ResourceNameExpression(“HTTPResourceType”, “..*):
ResourceNameExpression expr2 =
new ResourceNameExpression(“HTTPResourceType”, “?myl Jrl?.');

ResourceActionsEntry rael =
new BasicResource ActionsEntry(expr1, actions);

ResourceActionsEntry rae2 =
new BasicResource ActionsEntry(expr2, actions);

List<ResourceActionshentry> res.Actions = new
ArrayList<ResourceActionsBntry>();
res.Actions.add(rael);
res.Actions.add(rae2);
// FINALLY DEFINE THE Simple TARGET
TargetEntry uniformTarget = new SimpleTargetEntry (principals,
TargetEntry.PRINCIPAL SEMANTIC.OR, res.Actions, null);

0.095 This sample code illustrates how to construct a non
simple target:

PrincipalEntry principal =
new BasicPrincipalEntry(“wlsUserImpl”, “doe');

ResourceNameExpression expr =
new ResourceNameExpression(“HTTPResourceType”, “..*):

List<String actions = new ArrayList<String ();
actions.add (“put');
Resource ActionsEntry rae = new BasicResource ActionsEntry (expr,
actions);
EnvironmentConstraint ec = null:
BasicCompositeMatchEntry cme = new
BasicCompositeMatchEntry (principal, rae, ec);
AllOf oneAllOf = new AllOf (cme);
List<AllOf> listOfAllOfs = new ArrayList<AllOf>();
listOfAllOfs.add (oneAllOf);
principal = new BasicPrincipalEntry(“wlsUserImpl”, “mdoe');
expr = new ResourceNameExpression (HTTPResourceType”, “myUrl");
actions = new ArrayListsString();
actions.add ('get');
rae = new BasicResource ActionsEntry(expr, actions);
cme = new BasicCompositeMatchEntry (principal, rae, ec);

US 2015/0089575 A1

-continued

oneAllOf = new AllOf(cme);
listOfAllOffs.add (oneAllOf);
AnyOf anyOf = new AnyOf (listOfAllOfs):
List<AnyOf> listOfAnyOfs = new ArrayList<AnyOf>();
listOfAnyOfs.add(anyOf);
BasicTargetEntry target = new BasicTargetEntry (listOfAnyOfs):

0.096
simple:

This sample code determines whether a target is

PolicyEntry policyEntry = PolicyManager.getPolicy (“intranetPolicy):
Target target = policyEntry.getTarget();
if (target instanceof SimpleTarget) {
if this is a simple target

SimpleTarget St = (SimpleTarget) target;
if these are convenience methods to quickly get the Subject resource

actions environment
association.

List<PrincipalEntry> principals = St.getPrincipals();
PRINCIPAL SEMANTICS semantics = St.getPrincipal Semantics();
List<ResourceActionsBntry> realist = St.getResourceActionsBntries.(
);
EnvironmentConstraint ec = St.getBnvironmentConstraint();

0097. The association between the subjects, resource-ac
tions is a grant. FIG. 5 is a diagram that illustrates an example
500 of how a grant is a represented in the LDAP/DB Persis
tent store, according to some embodiments. A Principal is
represented as a Grantee. A Resource-Action(s) is repre
sented as a PermissionEntry. The grantee reference is placed
in the Permission in the assignee attribute. To further qualify
the context in which the association is made, the policy ref
erence is also added to the assignees. The above representa
tion is also employed by the runtime authorization engine.
0098. In XACML, a target can be defined in a rule too. To
handle this situation, the rule reference can be encoded as part
of the assignee. Further, a target can be part of a PolicySet. To
accommodate this requirement, a policySetName can be

Mar. 26, 2015

encoded as part of the assignee. Finally, when a target is
defined, an environmental construct can be part of one all Cof
definition. This implies a conjunctive match between the
environment constraints and a resource, for example. To
facilitate this requirement, an Environment constraint can be
persisted along with the PermissionEntry.
(0099 FIG. 6 is a diagram that illustrates an example 600 of
a persistence model for a Permission and Grantee, according
to some embodiments. The PrincipalConstraint is persisted in
the Grantee. A Grantee may have one or more PrincipalEn
coding, where a PrincipalEncoding is either a Principal or a
PrincipalConstraint.
0100. The following can be considered as an example:

<MatchId=urn:Oasis:names:tc:xacml:1.0:function:string-regexp-match
<Attribute Value
Data Type="http://www.w3.org/2001/XMLSchematistring

John.*
<AttributeValues

<AttributeDesignator
Category="urn:oasis:names:tc:xacml:1.0:Subject category:access
Subject"

AttributeId=urn:oasis:names:tc:xacml:1.0:Subject:Subject-id
Data Type="http://www.w3.org/2001/XMLSchematistring

<Match->

0101. In some embodiments, the foregoing code is
encoded as one Constraint in the Grantee as:

{eMatchId=string-regexp-match +eValue=John.*]+(eAttrDesgID=
Subject:Subject
id)+<eDType= string >+|ePresenceReq=false|

0102. A multi-valued Attribute is added to the Grantee
Object class.
(0103 ResourceConstraint is a multi-valued attribute,
where each value of attribute is used to store the resource
constraint. This target definition fragment can be considered
for purposes of example:

MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal's
<AttributeValue Data Type="http://www.w3.org/2001/XMLSchematianyURI">

urn:example:med:Schemas: record
</AttributeWalue
<Attributedesignator

MustBePresent=false'
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource
Attributed='''urn:oasis:names:tc:xacml:2.0:resource:target-namespace
DataType="http://www.w3.org/2001/XMLSchematianyURI/>

<Match->
<Match

MatchId="urn:Oasis:names:tc:xacml:3.0:function:Xpath-node-match' >
<Attribute Value
Data Type="urn:oasis:names:tc:xacml:3.0:data-type:XpathExpression

XPathCategory="urn:oasis:names:tc:xacml:3.0:attribute-category:resource''>
md:record?md:medical

</AttributeWalue
<AttributeDesignator

MustBePresent=true
Category="urn:Oasis:names:tc:xacml:3.0:attribute-category:resource
Attributed='''urn:oasis:names:tc:xacml:3.0:content-selector
Data Type="urn:Oasis:names:tc:xacml:3.0:data-type:XpathExpression's

US 2015/0089575 A1

0104. In some embodiments, the above code is persisted
with the resourceConstraint attribute value set to:

{eMatchId=any URI-equal +eValue=
urn:example:med:schemas: record+(eAttrDesgD=
target-namespace)+sel Type=
http://www.w3.org/2001/XMLSchematianyURID-lePresenceReq=false|

{eMatchId= xpath-node-match +eValue=
md:record?md:medical+(eAttrDesgID=

content-selector)+KeDType= data-type:XpathExpression >+|ePresenceReq=
true

0105. In some embodiments, the resourceConstraint is a
multi-value persistence schema attribute in which each value
will be used to store one encoded value. Similarly, the Envi
ronmentConstraint is a multi-valued attribute, and each value
of the attribute is used to store the environmental constraint.

0106. In some embodiments, the ActionConstraints are
persisted along with the PermissionEntry as a multi-valued
schema attribute.

0107 As an example, the below target definition can be
considered to be scoped to a Rule, Policy or Policy Set. There
fore, the complete representation would appear as:

<rule policy policy set
<target

<anyOf>
<grant A -
<grant B f>

</anyOf>
<anyOf>

<grant C.-
</anyOf>

</targets
</rule policy policy set

0108 FIG. 7 is a diagram that illustrates an example 700 of
how a target can be represented in a policy store, and at
runtime, according to Some embodiments. The target illus
trated in FIG. 7 is representative of the target definition pre
sented above.

0109 The Grant can be persisted using Permissions and
Grantees. An assignee attribute on the permission is used to
establish a relation between the Permission and the Grantee,
thus establishing the notion of the Grant. However, as the
Scope of the grants is one allOf within a target, apsassignee
can be updated to include a reference to the AnyOf this AnyOf
is present in.
0110. A multi-valued attribute on the Rule, Policy and
PolicySet called TargetFxpression is introduced. Each value
of this attribute is used to represent one AnyOf. The Order of
AnyOfs in the Target are maintained. A unique name for the
AnyOf is persisted as part of this value. In the case of the
LDAP and DB Policy Store, as the grant is identified using the
permission, the permission reference is stored in this value.
Further, if there are two or more Grants/AllOfs in one AnyOf,
addition permission references are stored in this value. In the
above example, this corresponds to AnyOf 1: Perm AOR
Perm B

0111. Additional AnyOfare represented as another value
of this multi-valued attribute OrclOESTargetFxpression. In
the above example, this corresponds to AnyOf 2: PermC.
The definition of the Persisted PolicySet, Policy and Rule
object can be updated to include this multi-valued attribute.

Mar. 26, 2015

0112 The TargetFxpression is used at runtime to quickly
compute if a Target Matched. Instead of deriving this value
from the persisted Permission/assignees, this value is per
sisted along with the Policy (rule or PolicySet) definition. The
AnyOfidentifier is included as part of the assignee.
0113. In a CreatePolicy method that accepts a Target as a
parameter, the following logic can be implemented; this is in
addition to updating policy with the rule references:
1. Set up String targetExpression;
2. Set up String anyOfCorder;
3. numAnyOf -1;

4. Foreach AnyOf in the Target

0114 a.. numAnyOf-+:
0115 b. numAllOf -1;
0116 c. construct unique name for anyOf as “anyof +
num.AnyOf and add to anyOfCrder.

0117 d. Foreach AllOffrom the AnyOf
0118 i. numAllOf----.
0119 ii. Fetch the Composite Match Entry and split
into Principals, Resource-Actions and Environment
Attributes.

I0120 iii. Fetch Grantee identified by Principals
AND Semantics.

0121 iv. Construct Permission or re-use a Permis
sion, where target Resource, action Actions, and
environmentConstraint-Environment Attributes.

0.122 V. Set orclipsassignee in Permission to using
the grantee and the policy do name (rule name or
policy setset)+policyDomain Name and the unique
name of the anyOf.

I0123 vi. Save Permision guid in targetFxpression
numAllOf numAnyOf

5. Update Policy with the targetFxpression and anyOfCorder.
0.124. An XML representation of the target can be aligned
with the existing representation in XACML 3.0. A proprietary
XML representation uses a target within a Policy. A target
associates a Subject, resource (resource/permission sets) cur
rently. This definition can be enhanced to store a Principal
Constraint in the Subject section of the target and environment
constraint within the target. The following changes can be
made to an XML Schema. A top level element multi-target
can be added—either a multi-target or a target that may
appear as the root in a Policy Set, Policy or Rule:

<multi-targets
<anyOf>

<aOf>
<target
<targets

<AaOf>
<aOf>

<target
<targets

<AaOf>
</anyOf>

</multi-targets

0.125 Essentially, the <target definition can be re-used as
a grant, and the anyOf and allCfdefinitions can be intro
duced.

US 2015/0089575 A1

Platform Security Service
0126. According to some embodiments, a platform Secu

rity service provides a security framework as a part of a
middleware technology stack. The various security services
provided by the platform security service can include, for
example: an authentication service, an authorization service,
an identity store service, a credential store and credential
mapper service, a farm key store service, an audit service, and
a trust service.
0127. An entitlement service is a standards-based autho
rization service that can provide a fine-grained authorization
policy framework for applications. As used herein, a policy
administration point (PAP) is a service that allows policy
management. A policy decision point (PDP) is a service that
performs policy evaluation during handling of policy deci
sion requests. A policy information point (PIP) is a service
that fetches policy information from external repositories. A
policy enforcement point (PEP) is a service that enforces the
authorization policy decisions provided by the PDP. A policy
distribution service (PD) is a service that performs the policy
distribution from the central policy store to the Z. Controlled
policy distribution is a type of policy distribution that pro
vides policy administrators abilities such as when to PUSH
the on-going policy changes through explicit policy distribu
tion APIs. A non-controlled policy distribution is a type of
policy distribution in which on-going policy changes are
PULLED by PDP through explicit policy distribution APIs.
An attribute based access control (ABAC) is an authorization
system in which policies are defined using the attributes of
policy recipient, policy resource and environment. A role
based access control (RBAC) is an authorization system in
which policies are defined using roles and role hierarchies
where privileges are assigned to roles. Extensible Access
Control Markup Language (XACML) is an authorization sys
tem where policies are defined using attributes of policy
recipient, policy resource, environment and policy rules, and
can return obligations. Java 2 policy is an authorization stan
dard for J2SE and J2EE and is primarily permission based
policy system. Multi-tenancy refers to a principle in Software
architecture where a single instance of the Software runs on a
server, serving multiple client organizations (tenants). A
sandbox is a testing environment that isolates untested code
changes and outright experimentation from the production
environment or repository, in the context of software devel
opment including web development and revision control. An
obligation is an operation specified in a policy or policy set
that should be performed in conjunction with the enforcement
of an authorization decision. A policy is a set of rules, an
identifier for a rule-combining algorithm and (optionally) a
set of obligations, and may be a component of a policy set. A
policy-combining algorithm is a procedure for combining the
decision and obligations from multiple policies. A policy set
is a set of policies, other policy sets, a policy-combining
algorithm and (optionally) a set of obligations, and may be a
component of another policy set. An attribute is a character
istic of a Subject, resource, action, or environment that may be
referenced in a predicate or target.
0128. According to some embodiments, an XACML 3.0
core profile feature is provided in an authorization service.
Global shared policy artifacts can be provided across appli
cations managed by the authorization service.
0129. In any given enterprise, enterprise applications can
share many of the IDM components like identity store, pro
visioning, single sign-on, etc. This provides consistent usage

Mar. 26, 2015

of the identities and identity attributes and their usage for
security across the enterprise applications. A notion of shared
enterprise level authorization policy information (coarse
grained or fine-grained) across the enterprise applications can
be supported due to security governance and compliance
requirements, a centralized policy management paradigm,
the benefit of consistent and non-redundant authorization
policies, and a level of administration and delegation of these
shared authorization policies. AS is discussed above, a global
policy can be shared by multiple applications inapolicy Store.
0.130. In certain applications there can be many shared
secured application resources (both functional and data secu
rity) across all of the applications. The methodology of shared
resources and their authorization policies can be customized
for these applications. This sharing of authorization policies
in these applications can be accomplished differently for
function security polices and data security policies in a cus
tom fashion.

I0131 Some embodiments support a shared global policy
administrative domain where applications can publish their
shared policy artifacts like application roles, resource types,
resources and policies. This way, a central definition of shared
application policy artifacts under one shared security domain
can be provided, making it easy to administer the policies
with the required level of administration delegation for the
owners of the artifacts for these shared artifacts and specified
level of sharing of policy artifacts across the applications.
0.132. In a corporation, where there is an over-all corporate
wide business policy, and each business unit has its business
policy, the two policies ought to co-exist and share the same
set of resources. The corporate policy can be modeled as a
shared/global policy, and each business units policy can be
an application policy. In some embodiments, certain corpo
rate policies are made so that they cannot be over-ridden by
the business units policies. In some embodiments, some
corporate policies are made to over-ride the corporate policies
due to local laws or for other reasons.

I0133. In some embodiments, policies are modeled using
XACML PolicySets. Wherever a policy is to over-ridden by a
business unit, a PolicySet can be defined to include a corpo
rate-wide PolicySet. An appropriate policy combining algo
rithm can be combined to set the behavior.

0.134 Some embodiments support the XACML 3.0 notion
ofa target. A target is a collection between a Subject, resource,
actions and environment constraints. Some embodiments
Support defining a target in a rule. While evaluating a rule, the
target of the rule is taken into consideration. Some embodi
ments Support a policy including one or more rules. The rules
can be evaluated as part of the policy evaluation. Some
embodiments support rule combining algorithms with rule
combining parameter Support. Multiple rules in a policy may
return different or conflicting results. A rule combining algo
rithm determines how the results from each rule evaluation
should be combined, or returned as one effective result.
0.135 A persistence model described herein is enhanced to
cater to eXtensible Access Control Markup Language
(XACML) requirements for a target representation. The tar
get definition defined in the XACML standard does not pre
scribe how to persist a target, but only how to represent the
target. A persistence model described herein effectively and
efficiently represents and persists standard XACML targets.
The persistence model described hereinbestows runtime ben
efits.

US 2015/0089575 A1

0136. According to some embodiments, a target defined
according to the XACML standard is automatically trans
formed to conform to a proprietary model. The representation
according to the proprietary model is more susceptible to
optimization than the equivalent representation under the
XACML standard.
0.137. A proprietary model includes an entity called an
assignee. The assignee includes attributes used to represent a
grant and a rule name. By transforming a target defined in the
XACML standard to a form that incorporates the assignee,
existing techniques involving an assignee can be performed
relative to the target.
0138 Under the XACML standard, a target can be defined
within a rule, a policy, or a policy set. When policies are
evaluated at runtime, evaluation begins with the high level
structures of a rule or policy and proceeds downward to the
target in order to perform a match. During this process, a
determination can be made as to the rule to which the target
belongs. A key permission can be added to the policy struc
ture in order to key off of a target.
0.139. XACML policy matching calls for matching a
resource in the context of a target and a rule, policy, or policy
set. When Such matching is performed, a parent in which the
target is contained can be identified. By preserving the key
information within the rule, policy, or policy set, runtime
performance of policy evaluation can be enhanced.
0140. In some embodiments, an attribute called a target
expression is added to a policy definition. Additionally,
grantee and permission attributes of a policy are enhanced to
accept XACML-formatted data. Evaluation can be based on
an target attribute, value, and function. The proprietary model
can be enhanced to store the target attribute, value, and func
tion into the grantee attribute of the policy.
0141. In some embodiments, an anyOf index is added to
the policy definition. Elements of the anyOf index can point
back to other attributes and values in the definition. For
example, a first permission and a second permission can both
share a same index value in the anyOf index. An anyOf
element in an XACML target definition can include multiple
allOf elements. This can result in multiple separate permis
sion attributes in the proprietary model, indexed with the
same index value in the anyOf index. In contract, an anyOf
element that includes a single allOfelement can cause a single
permission attribute to be generated in the corresponding
proprietary model, so that just one permission is indexed with
a particular index value for that anyOf element.
0142. An Attribute AssignmentExpression evaluates to a
value of an Obligation or Advise Attribute. The following are
contained in an Attribute Assignment: Attribute ID (or name),
and the Category (type of the attribute), the issuer of the
attribute, and an expression that evaluates to the value of the
Attribute.
0143 An enhance Attribute Assignment Interface class is
enhanced with the following methods: Void setCategory
(String categoryId) sets a categorization of the Attribute;
String getCategory() returns the category: Void setIssuer
(String issuerID); String getIssuer() Void Attribute Assign
ment (ExpressionComponent expression); ExpressionCom
ponent getExpressionComponent().
0144. If an expressionComponent is present in an
Attribute Assignment, then the Attribute AssignmentExpres
sion can be persisted in a new multi-valued attribute.
Attributed, Category, Issuer and the Expression can be
encoded into one value of the attribute. As an Attribute As

Mar. 26, 2015

signementExpression is part of an Obligation and an Advice,
the object class definitions of the Obligation and Advice can
be updated to include an optional AttributeAssignmentEx
pression.
0145 XACML 3.0 supports a notion of ObligationExpres
sions in an Obligation. Essentially, an ObligationExpression
is an expression which evaluates to a value of an attribute (to
be returned as part of an Obligation). In some embodiments,
the following changes are made to an ObligationEntry defi
nition to accommodate the XACML 3.0 definition:
0146 FullFillOn on value can be set in the ObligationEn

try. The FullFillOnvalue is the effect for which this obligation
is honored by the PDP. The valid values are GRANT or
DENY. The FullFillOn value is treated as optional in the
INFO object, and in the persistent schema too.
0147 A list of Attribute AssignmentExpressions can
optionally be set in an ObligationEntry. An Attribute Assign
mentExpression is an expression that evaluates to attributes in
an Obligation.
0.148. In some embodiments, the following changes are
made to an ObligationEntry Interface: Void setFullFillOn
(EffectType effect) throws Policy StoreException; Effect get
FullFillOn() can return null if an effect was not set. If Effect
is not set, then the obligation is applicable to a deny or permit
result.
0149. In some embodiments, an LDAP schema definition
for an Obligation can be updated to include two new optional
case-sensitive, multi-valued attributes: ObligationDeny At
trassignExpr and ObligationAllowAttrassignExpr. The
name of a persisted obligation name can be made unique by
utilizing the calling contexts name too. The logical name of
the Obligation can be saved as-is in the persisted Obligation.
The Obligation schema definition is updated to have the logi
cal name.
0.150 Advice is a construct in XACML 3.0. It is meant to
bean optional piece of information provided to the PEP by the
PDP MAPI can be updated to support Advices, alongside
with Support in the persistent store. An Advice can be
included as part of a Rule, Policy or PolicySet definition as a
Set of AdviceExpression.
0151. An AdviceEntry Interface is an information object
that can consists of the following: AdviceID (name) and Set
of Attribute AssignmentExpressions. An AdviceEntry info
interface object can be defined as follows: AdviceEntry
(String adviceNameID, ExpressionComponent expression);
ExpressionComponent getExpressionComponent(); Void
setFullFillOn(EffectType effect) throws PolicyStoreExcep
tion; Effect getFullFillOn() is non-null, and the default is
DENY. Internally, an AdviceEntityManager can manage the
advice.
0152 While evaluating a decision request, it is possible an
attribute referenced in the policy is not available at runtime.
To provide a definite behavior to the runtime engine. XACML
allows the policy author to express the required behavior if the
attribute is not available. In some embodiments, a MustBeP
resent is defined on the AttributeSelector.
0153. An interface AttributeEntry<T extends DataType>
can be enhanced to include the following methods: setPres
enceRequired.(boolean presence); Boolean isPresenceRe
quired.();
0154) A presence attribute can be persisted along with the
Attribute in the following places: as part of the Condition,
Obligation definition, and constraints in the target (Subject,
environment or resource).

US 2015/0089575 A1

Hardware Overview

0155 FIG. 8 depicts a simplified diagram of a distributed
system 800 for implementing some embodiments. In the
illustrated embodiment, distributed system 800 includes one
or more client computing devices 802, 804, 806, and 808,
which are configured to execute and operate a client applica
tion Such as a web browser, proprietary client (e.g., Oracle
Forms), or the like over one or more network(s) 810. Server
812 may be communicatively coupled with remote client
computing devices 802, 804, 806, and 808 via network 810.
0156 Invarious embodiments, server 812 may be adapted
to run one or more services or software applications provided
by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or
cloud services or under a Software as a Service (SaaS) model
to the users of client computing devices 802, 804, 806, and/or
808. Users operating client computing devices 802, 804, 806,
and/or 808 may in turn utilize one or more client applications
to interact with server 812 to utilize the services provided by
these components.
0157. In the configuration depicted in the figure, the soft
ware components 818, 820 and 822 of system 800 are shown
as being implemented on server 812. In other embodiments,
one or more of the components of system 800 and/or the
services provided by these components may also be imple
mented by one or more of the client computing devices 802.
804, 806, and/or 808. Users operating the client computing
devices may then utilize one or more client applications to use
the services provided by these components. These compo
nents may be implemented in hardware, firmware, Software,
or combinations thereof. It should be appreciated that various
different system configurations are possible, which may be
different from distributed system 800. The embodiment
shown in the figure is thus one example of a distributed
system for implementing an embodiment system and is not
intended to be limiting.
0158 Client computing devices 802,804, 806, and/or 808
may be portable handheld devices (e.g., an iPhone(R), cellular
telephone, an iPadR), computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass(R)
head mounted display), running Software such as Microsoft
Windows Mobile(R), and/or a variety of mobile operating sys
tems such as iOS, Windows Phone, Android, BlackBerry 9,
Palm OS, and the like, and being Internet, e-mail, short mes
sage service (SMS), Blackberry(R), or other communication
protocol enabled. The client computing devices can be gen
eral purpose personal computers including, by way of
example, personal computers and/or laptop computers run
ning various versions of Microsoft Windows.(R), Apple Macin
tosh R, and/or Linux operating systems. The client computing
devices can be workstation computers running any of a vari
ety of commercially-available UNIX(R) or UNIX-like operat
ing systems, including without limitation the variety of GNU/
Linux operating systems, such as for example, Google
Chrome OS. Alternatively, or in addition, client computing
devices 802, 804, 806, and 808 may be any other electronic
device. Such as a thin-client computer, an Internet-enabled
gaming system (e.g., a Microsoft Xbox gaming console with
or without a Kinect(R) gesture input device), and/or a personal
messaging device, capable of communicating over network
(s) 810.
0159. Although exemplary distributed system 800 is
shown with four client computing devices, any number of

Mar. 26, 2015

client computing devices may be supported. Other devices,
Such as devices with sensors, etc., may interact with server
812.

(0160 Network(s) 810 in distributed system 800 may be
any type of network familiar to those skilled in the art that can
Support data communications using any of a variety of com
mercially-available protocols, including without limitation
TCP/IP (transmission control protocol/Internet protocol),
SNA (systems network architecture), IPX (Internet packet
exchange), AppleTalk, and the like. Merely by way of
example, network(s) 810 can be a local area network (LAN),
such as one based on Ethernet, Token-Ring and/or the like.
Network(s) 810 can be a wide-area network and the Internet.
It can include a virtual network, including without limitation
a virtual private network (VPN), an intranet, an extranet, a
public switched telephone network (PSTN), an infra-red net
work, a wireless network (e.g., a network operating under any
of the Institute of Electrical and Electronics (IEEE) 802.11
suite of protocols, Bluetooth R), and/or any other wireless
protocol); and/or any combination of these and/or other net
works.
0.161 Server 812 may be composed of one or more general
purpose computers, specialized server computers (including,
by way of example, PC (personal computer) servers, UNIX(R)
servers, mid-range servers, mainframe computers, rack
mounted servers, etc.), server farms, server clusters, or any
other appropriate arrangement and/or combination. In vari
ous embodiments, server 812 may be adapted to run one or
more services or software applications described in the fore
going disclosure. For example, server 812 may correspond to
a server for performing processing described above according
to an embodiment of the present disclosure.
0162 Server 812 may run an operating system including
any of those discussed above, as well as any commercially
available server operating system. Server 812 may also run
any of a variety of additional server applications and/or mid
tier applications, including HTTP (hypertext transport proto
col) servers, FTP (file transfer protocol) servers, CGI (com
mon gateway interface) servers, JAVAR servers, database
servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle,
Microsoft, Sybase, IBM (International Business Machines),
and the like.
0163. In some implementations, server 812 may include
one or more applications to analyze and consolidate data
feeds and/or event updates received from users of client com
puting devices 802, 804, 806, and 808. As an example, data
feeds and/or event updates may include, but are not limited to,
TwitterR) feeds, Facebook(R) updates or real-time updates
received from one or more third party information sources
and continuous data streams, which may include real-time
events related to sensor data applications, financial tickers,
network performance measuring tools (e.g., network moni
toring and traffic management applications), clickstream
analysis tools, automobile traffic monitoring, and the like.
Server 812 may also include one or more applications to
display the data feeds and/or real-time events via one or more
display devices of client computing devices 802, 804, 806,
and 808.

0164 Distributed system 800 may also include one or
more databases 814 and 816. Databases 814 and 816 may
reside in a variety of locations. By way of example, one or
more of databases 814 and 816 may reside on a non-transitory
storage medium local to (and/or resident in) server 812. Alter

US 2015/0089575 A1

natively, databases 814 and 816 may be remote from server
812 and in communication with server 812 via a network
based or dedicated connection. In one set of embodiments,
databases 814 and 816 may reside in a storage-area network
(SAN). Similarly, any necessary files for performing the func
tions attributed to server 812 may be stored locally on server
812 and/or remotely, as appropriate. In one set of embodi
ments, databases 814 and 816 may include relational data
bases, such as databases provided by Oracle, which are
adapted to store, update, and retrieve data in response to
SQL-formatted commands.
0.165 FIG. 9 is a simplified block diagram of one or more
components of a system environment 900 by which services
provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with
Some embodiments. In the illustrated embodiment, system
environment 900 includes one or more client computing
devices 904, 906, and 908 that may be used by users to
interact with a cloud infrastructure system 902 that provides
cloud services. The client computing devices may be config
ured to operate a client application Such as a web browser, a
proprietary client application (e.g., Oracle Forms), or some
other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system
902 to use services provided by cloud infrastructure system
902.
0166 It should be appreciated that cloud infrastructure
system 902 depicted in the figure may have other components
than those depicted. Further, the embodiment shown in the
figure is only one example of a cloud infrastructure system
that may incorporate an embodiment of the invention. In
some other embodiments, cloud infrastructure system 902
may have more or fewer components than shown in the figure,
may combine two or more components, or may have a differ
ent configuration or arrangement of components.
(0167 Client computing devices 904,906, and 908 may be
devices similar to those described above for 802, 804, 806,
and 808.
0168 Although exemplary system environment 900 is
shown with three client computing devices, any number of
client computing devices may be supported. Other devices
Such as devices with sensors, etc. may interact with cloud
infrastructure system 902.
0169 Network(s) 910 may facilitate communications and
exchange of data between clients 904,906, and 908 and cloud
infrastructure system 902. Each network may be any type of
network familiar to those skilled in the art that can support
data communications using any of a variety of commercially
available protocols, including those described above for net
work(s) 810.
0170 Cloud infrastructure system 902 may comprise one
or more computers and/or servers that may include those
described above for server 812.
0171 In certain embodiments, services provided by the
cloud infrastructure system may include a host of services
that are made available to users of the cloud infrastructure
system on demand. Such as online data storage and backup
solutions, Web-based e-mail services, hosted office Suites and
document collaboration services, database processing, man
aged technical Support services, and the like. Services pro
vided by the cloud infrastructure system can dynamically
scale to meet the needs of its users. A specific instantiation of
a service provided by cloud infrastructure system is referred
to hereinas a 'service instance.” In general, any service made

Mar. 26, 2015

available to a user via a communication network, Such as the
Internet, from a cloud service provider's system is referred to
as a "cloud service.” Typically, in a public cloud environment,
servers and systems that make up the cloud service provider's
system are different from the customer's own on-premises
servers and systems. For example, a cloud service provider's
system may host an application, and a user may, via a com
munication network Such as the Internet, on demand, order
and use the application.
0172. In some examples, a service in a computer network
cloud infrastructure may include protected computer network
access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud
vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to
remote storage on the cloud through the Internet. As another
example, a service can include a web service-based hosted
relational database and a script-language middleware engine
for private use by a networked developer. As another example,
a service can include access to an email software application
hosted on a cloud vendor's web site.

0173. In certain embodiments, cloud infrastructure system
902 may include a suite of applications, middleware, and
database service offerings that are delivered to a customer in
a self-service, Subscription-based, elastically scalable, reli
able, highly available, and secure manner. An example of
such a cloud infrastructure system is the Oracle Public Cloud
provided by the present assignee.
0.174. In various embodiments, cloud infrastructure sys
tem 902 may be adapted to automatically provision, manage
and track a customer's subscription to services offered by
cloud infrastructure system 902. Cloud infrastructure system
902 may provide the cloud services via different deployment
models. For example, services may be provided under a pub
lic cloud model in which cloud infrastructure system 902 is
owned by an organization selling cloud services (e.g., owned
by Oracle) and the services are made available to the general
public or different industry enterprises. As another example,
services may be provided under a private cloud model in
which cloud infrastructure system 902 is operated solely for a
single organization and may provide services for one or more
entities within the organization. The cloud services may also
be provided under a community cloud model in which cloud
infrastructure system 902 and the services provided by cloud
infrastructure system 902 are shared by several organizations
in a related community. The cloud services may also be pro
vided under a hybrid cloud model, which is a combination of
two or more different models.

0.175. In some embodiments, the services provided by
cloud infrastructure system 902 may include one or more
services provided under Software as a Service (SaaS) cat
egory, Platform as a Service (PaaS) category, Infrastructure as
a Service (IaaS) category, or other categories of services
including hybrid services. A customer, via a subscription
order, may order one or more services provided by cloud
infrastructure system 902. Cloud infrastructure system 902
then performs processing to provide the services in the cus
tomer's subscription order.
0176). In some embodiments, the services provided by
cloud infrastructure system 902 may include, without limita
tion, application services, platform services and infrastruc
ture services. In some examples, application services may be
provided by the cloud infrastructure system via a SaaS plat
form. The SaaS platform may be configured to provide cloud

US 2015/0089575 A1

services that fall under the SaaS category. For example, the
SaaS platform may provide capabilities to build and deliver a
Suite of on-demand applications on an integrated develop
ment and deployment platform. The SaaS platform may man
age and control the underlying Software and infrastructure for
providing the SaaS services. By utilizing the services pro
vided by the SaaS platform, customers can utilize applica
tions executing on the cloud infrastructure system. Customers
can acquire the application services without the need for
customers to purchase separate licenses and Support. Various
different SaaS services may be provided. Examples include,
without limitation, services that provide solutions for sales
performance management, enterprise integration, and busi
ness flexibility for large organizations.
0177. In some embodiments, platform services may be
provided by the cloud infrastructure system via a PaaS plat
form. The PaaS platform may be configured to provide cloud
services that fall under the PaaS category. Examples of plat
form services may include without limitation services that
enable organizations (such as Oracle) to consolidate existing
applications on a shared, common architecture, as well as the
ability to build new applications that leverage the shared
services provided by the platform. The PaaS platform may
manage and control the underlying software and infrastruc
ture for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure system
without the need for customers to purchase separate licenses
and Support. Examples of platform services include, without
limitation, Oracle Java Cloud Service (JCS), Oracle Database
Cloud Service (DBCS), and others.
0178. By utilizing the services provided by the PaaS plat
form, customers can employ programming languages and
tools Supported by the cloud infrastructure system and also
control the deployed services. In some embodiments, plat
form services provided by the cloud infrastructure system
may include database cloud services, middleware cloud Ser
vices (e.g., Oracle Fusion Middleware services), and Java
cloud services. In one embodiment, database cloud services
may support shared service deployment models that enable
organizations to pool database resources and offer customers
a Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for cus
tomers to develop and deploy various business applications,
and Java cloud services may provide a platform for customers
to deploy Java applications, in the cloud infrastructure sys
tem

0179 Various different infrastructure services may be pro
vided by an IaaS platform in the cloud infrastructure system.
The infrastructure services facilitate the management and
control of the underlying computing resources, such as Stor
age, networks, and other fundamental computing resources
for customers utilizing services provided by the SaaS plat
form and the PaaS platform.
0180. In certain embodiments, cloud infrastructure system
902 may also include infrastructure resources 930 for provid
ing the resources used to provide various services to custom
ers of the cloud infrastructure system. In one embodiment,
infrastructure resources 93.0 may include pre-integrated and
optimized combinations of hardware, such as servers, Stor
age, and networking resources to execute the services pro
vided by the PaaS platform and the SaaS platform.
0181. In some embodiments, resources in cloud infra
structure system 902 may be shared by multiple users and
dynamically re-allocated per demand. Additionally,

Mar. 26, 2015

resources may be allocated to users in different time Zones.
For example, cloud infrastructure system 93.0 may enable a
first set of users in a first time Zone to utilize resources of the
cloud infrastructure system for a specified number of hours
and then enable the re-allocation of the same resources to
another set of users located in a different time Zone, thereby
maximizing the utilization of resources.
0182. In certain embodiments, a number of internal shared
services 932 may be provided that are shared by different
components or modules of cloud infrastructure system 902
and by the services provided by cloud infrastructure system
902. These internal shared services may include, without
limitation, a security and identity service, an integration ser
vice, an enterprise repository service, an enterprise manager
service, a virus Scanning and white list service, a high avail
ability, backup and recovery service, service for enabling
cloud support, an email service, a notification service, a file
transfer service, and the like.
0183 In certain embodiments, cloud infrastructure system
902 may provide comprehensive management of cloud ser
vices (e.g., SaaS, PaaS, and IaaS services) in the cloud infra
structure system. In one embodiment, cloud management
functionality may include capabilities for provisioning, man
aging and tracking a customer's Subscription received by
cloud infrastructure system 902, and the like.
0184. In one embodiment, as depicted in the figure, cloud
management functionality may be provided by one or more
modules, such as an order management module 920, an order
orchestration module 922, an order provisioning module 924,
an order management and monitoring module 926, and an
identity management module 928. These modules may
include or be provided using one or more computers and/or
servers, which may be general purpose computers, special
ized server computers, server farms, server clusters, or any
other appropriate arrangement and/or combination.
0185. In exemplary operation 934, a customer using a
client device, such as client device 904, 906 or 908, may
interact with cloud infrastructure system 902 by requesting
one or more services provided by cloud infrastructure system
902 and placing an order for a subscription for one or more
services offered by cloud infrastructure system 902. In certain
embodiments, the customer may access a cloud User Inter
face (UI), cloud UI 912, cloud UI 914 and/or cloud UI 916
and place a subscription order via these UIs. The order infor
mation received by cloud infrastructure system 902 in
response to the customer placing an order may include infor
mation identifying the customer and one or more services
offered by the cloud infrastructure system 902 that the cus
tomer intends to subscribe to.
0186. After an order has been placed by the customer, the
order information is received via the cloud UIs, 912, 914
and/or 916.
0187. At operation 936, the order is stored in order data
base 918. Order database 918 can be one of several databases
operated by cloud infrastructure system 918 and operated in
conjunction with other system elements.
0188 At operation 938, the order information is for
warded to an order management module 920. In some
instances, order management module 920 may be configured
to perform billing and accounting functions related to the
order, Such as Verifying the order, and upon verification,
booking the order.
0189 At operation 940, information regarding the order is
communicated to an order orchestration module 922. Order

US 2015/0089575 A1

orchestration module 922 may utilize the order information to
orchestrate the provisioning of services and resources for the
order placed by the customer. In some instances, order
orchestration module 922 may orchestrate the provisioning of
resources to support the Subscribed services using the Ser
vices of order provisioning module 924.
0190. In certain embodiments, order orchestration module
922 enables the management of business processes associ
ated with each order and applies business logic to determine
whether an order should proceed to provisioning. At opera
tion 942, upon receiving an order for a new Subscription,
order orchestration module 922 sends a request to order pro
visioning module 924 to allocate resources and configure
those resources needed to fulfill the subscription order. Order
provisioning module 924 enables the allocation of resources
for the services ordered by the customer. Order provisioning
module 924 provides a level of abstraction between the cloud
services provided by cloud infrastructure system 900 and the
physical implementation layer that is used to provision the
resources for providing the requested services. Order orches
tration module 922 may thus be isolated from implementation
details, such as whether or not services and resources are
actually provisioned on the fly or pre-provisioned and only
allocated/assigned upon request.
0191 At operation 944, once the services and resources
are provisioned, a notification of the provided service may be
sent to customers on client devices 904,906 and/or 908 by
order provisioning module 924 of cloud infrastructure system
902.

0.192 At operation 946, the customer's subscription order
may be managed and tracked by an order management and
monitoring module 926. In some instances, order manage
ment and monitoring module 92.6 may be configured to col
lect usage statistics for the services in the Subscription order,
Such as the amount of storage used, the amount data trans
ferred, the number of users, and the amount of system up time
and system down time.
0193 In certain embodiments, cloud infrastructure system
900 may include an identity management module 928. Iden
tity management module 928 may be configured to provide
identity services, such as access management and authoriza
tion services in cloud infrastructure system 900. In some
embodiments, identity management module 928 may control
information about customers who wish to utilize the services
provided by cloud infrastructure system 902. Such informa
tion can include information that authenticates the identities
of such customers and information that describes which
actions those customers are authorized to perform relative to
various system resources (e.g., files, directories, applications,
communication ports, memory segments, etc.) Identity man
agement module 928 may also include the management of
descriptive information about each customer and about how
and by whom that descriptive information can be accessed
and modified.

0194 FIG. 10 illustrates an example computer system
1000 in which various embodiments may be implemented.
The system 1000 may be used to implement any of the com
puter systems described above. As shown in the figure, com
puter system 1000 includes a processing unit 1004 that com
municates with a number of peripheral Subsystems via a bus
subsystem 1002. These peripheral subsystems may include a
processing acceleration unit 1006, an I/O subsystem 1008, a
storage Subsystem 1018 and a communications Subsystem

Mar. 26, 2015

1024. Storage subsystem 1018 includes tangible computer
readable storage media 1022 and a system memory 1010.
0.195 Bus subsystem 1002 provides a mechanism for let
ting the various components and Subsystems of computer
system 1000 communicate with each other as intended.
Although bus subsystem 1002 is shown schematically as a
single bus, alternative embodiments of the bus Subsystem
may utilize multiple buses. Bus subsystem 1002 may be any
of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any
of a variety of bus architectures. For example, such architec
tures may include an Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard.
0196. Processing unit 1004, which can be implemented as
one or more integrated circuits (e.g., a conventional micro
processor or microcontroller), controls the operation of com
puter system 1000. One or more processors may be included
in processing unit 1004. These processors may include single
core or multicore processors. In certain embodiments, pro
cessing unit 1004 may be implemented as one or more inde
pendent processing units 1032 and/or 1034 with single or
multicore processors included in each processing unit. In
other embodiments, processing unit 1004 may also be imple
mented as a quad-core processing unit formed by integrating
two dual-core processors into a single chip.
0.197 In various embodiments, processing unit 1004 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time. Some or all of the program
code to be executed can be resident in processor(s) 1004
and/or in storage Subsystem 1018. Through Suitable program
ming, processor(s) 1004 can provide various functionalities
described above. Computer system 1000 may additionally
include a processing acceleration unit 1006, which can
include a digital signal processor (DSP), a special-purpose
processor, and/or the like.
(0198 I/O subsystem 1008 may include user interface
input devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices Such
as a mouse or trackball, a touchpad or touch screen incorpo
rated into a display, a scroll wheel, a click wheel, a dial, a
button, a Switch, a keypad, audio input devices with Voice
command recognition systems, microphones, and other types
of input devices. User interface input devices may include, for
example, motion sensing and/or gesture recognition devices
such as the Microsoft Kinect(R) motion sensor that enables
users to control and interact with an input device, such as the
Microsoft Xbox R360 game controller, through a natural user
interface using gestures and spoken commands. User inter
face input devices may also include eye gesture recognition
devices such as the Google Glass(R blink detector that detects
eye activity (e.g., blinking while taking pictures and/or mak
ing a menu selection) from users and transforms the eye
gestures as input into an input device (e.g., Google Glass(R).
Additionally, user interface input devices may include Voice
recognition sensing devices that enable users to interact with
Voice recognition systems (e.g., Siri(R) navigator), through
Voice commands.

0199 User interface input devices may also include, with
out limitation, three dimensional (3D) mice, joysticks or

US 2015/0089575 A1

pointing Sticks, gamepads and graphic tablets, and audio/
visual devices such as speakers, digital cameras, digital cam
corders, portable media players, webcams, image scanners,
fingerprint Scanners, barcode reader 3D scanners, 3D print
ers, laser rangefinders, and eye gaze tracking devices. Addi
tionally, user interface input devices may include, for
example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission
tomography, medical ultrasonography devices. User inter
face input devices may also include, for example, audio input
devices such as MIDI keyboards, digital musical instruments
and the like.

0200 User interface output devices may include a display
Subsystem, indicator lights, or non-visual displays Such as
audio output devices, etc. The display Subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that using
a liquid crystal display (LCD) or plasma display, a projection
device, a touchscreen, and the like. In general, use of the term
“output device' is intended to include all possible types of
devices and mechanisms for outputting information from
computer system 1000 to a user or other computer. For
example, user interface output devices may include, without
limitation, a variety of display devices that visually convey
text, graphics and audio/video information Such as monitors,
printers, speakers, headphones, automotive navigation sys
tems, plotters, Voice output devices, and modems.
0201 Computer system 1000 may comprise a storage sub
system 1018 that comprises software elements, shown as
being currently located within a system memory 1010. Sys
tem memory 1010 may store program instructions that are
loadable and executable on processing unit 1004, as well as
data generated during the execution of these programs.
0202 Depending on the configuration and type of com
puter system 1000, system memory 1010 may be volatile
(such as random access memory (RAM)) and/or non-volatile
(such as read-only memory (ROM), flash memory, etc.) The
RAM typically contains data and/or program modules that
are immediately accessible to and/or presently being operated
and executed by processing unit 1004. In some implementa
tions, system memory 1010 may include multiple different
types of memory, Such as static random access memory
(SRAM) or dynamic random access memory (DRAM). In
Some implementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer information
between elements within computer system 1000, such as
during start-up, may typically be stored in the ROM. By way
of example, and not limitation, system memory 1010 also
illustrates application programs 1012, which may include
client applications, Web browsers, mid-tier applications, rela
tional database management systems (RDBMS), etc., pro
gram data 1014, and an operating system 1016. By way of
example, operating system 1016 may include various ver
sions of Microsoft Windows.(R), Apple Macintosh(R), and/or
Linux operating systems, a variety of commercially-available
UNIX(R) or UNIX-like operating systems (including without
limitation the variety of GNU/Linux operating systems, the
Google Chrome(R) OS, and the like) and/or mobile operating
systems such as iOS, Windows(R Phone, Android R OS,
BlackBerry(R) 10 OS, and PalmR OS operating systems.
0203 Storage subsystem 1018 may also provide a tangible
computer-readable storage medium for storing the basic pro
gramming and data constructs that provide the functionality
of some embodiments. Software (programs, code modules,
instructions) that when executed by a processor provide the

Mar. 26, 2015

functionality described above may be stored in storage sub
system 1018. These software modules or instructions may be
executed by processing unit 1004. Storage subsystem 1018
may also provide a repository for storing data used in accor
dance with the present invention.
0204 Storage subsystem 1000 may also include a com
puter-readable storage media reader 1020 that can further be
connected to computer-readable storage media 1022.
Together and, optionally, in combination with system
memory 1010, computer-readable storage media 1022 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporarily
and/or more permanently containing, storing, transmitting,
and retrieving computer-readable information.
0205 Computer-readable storage media 1022 containing
code, or portions of code, can also include any appropriate
media known or used in the art, including Storage media and
communication media, Such as but not limited to, Volatile and
non-volatile, removable and non-removable media imple
mented in any method or technology for storage and/or trans
mission of information. This can include tangible computer
readable storage media such as RAM, ROM, electronically
erasable programmable ROM (EEPROM), flash memory or
other memory technology, CD-ROM, digital versatile disk
(DVD), or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or other tangible computer readable media. This can also
include nontangible computer-readable media, such as data
signals, data transmissions, or any other medium which can
be used to transmit the desired information and which can be
accessed by computing system 1000.
0206 By way of example, computer-readable storage
media 1022 may include a hard disk drive that reads from or
writes to non-removable, nonvolatile magnetic media, a mag
netic disk drive that reads from or writes to a removable,
nonvolatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such as
a CD ROM, DVD, and Blu-Ray(R) disk, or other optical
media. Computer-readable storage media 1022 may include,
but is not limited to, Zip(R) drives, flash memory cards, uni
versal serial bus (USB) flash drives, secure digital (SD) cards,
DVD disks, digital video tape, and the like. Computer-read
able storage media 1022 may also include, solid-state drives
(SSD) based on non-volatile memory such as flash-memory
based SSDs, enterprise flash drives, solid state ROM, and the
like, SSDs based on volatile memory such as solid state
RAM, dynamic RAM, static RAM, DRAM-based SSDs,
magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs
that use a combination of DRAM and flash memory based
SSDs. The disk drives and their associated computer-readable
media may provide non-volatile storage of computer-read
able instructions, data structures, program modules, and other
data for computer system 1000.
0207 Communications subsystem 1024 provides an inter
face to other computer systems and networks. Communica
tions Subsystem 1024 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 1000. For example, communications subsystem 1024
may enable computer system 1000 to connect to one or more
devices via the Internet. In some embodiments communica
tions subsystem 1024 can include radio frequency (RF) trans
ceiver components for accessing wireless voice and/or data
networks (e.g., using cellular telephone technology,
advanced data network technology, such as 3G, 4G or EDGE

US 2015/0089575 A1

(enhanced data rates for global evolution), WiFi (IEEE 802.
11 family standards, or other mobile communication tech
nologies, or any combination thereof), global positioning
system (GPS) receiver components, and/or other compo
nents. In some embodiments communications Subsystem
1024 can provide wired network connectivity (e.g., Ethernet)
in addition to or instead of a wireless interface.
0208. In some embodiments, communications subsystem
1024 may also receive input communication in the form of
structured and/or unstructured data feeds 1026, event streams
1028, event updates 1030, and the like on behalf of one or
more users who may use computer system 1000.
0209. By way of example, communications subsystem
1024 may be configured to receive data feeds 1026 in real
time from users of social networks and/or other communica
tion services such as Twitter(R) feeds, Facebook.(R) updates,
web feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information
SOUCS.

0210 Additionally, communications subsystem 1024
may also be configured to receive data in the form of continu
ous data streams, which may include event streams 1028 of
real-time events and/or event updates 1030, which may be
continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may
include, for example, sensor data applications, financial tick
ers, network performance measuring tools (e.g. network
monitoring and traffic management applications), click
stream analysis tools, automobile traffic monitoring, and the
like. Communications Subsystem 1024 may also be config
ured to output the structured and/or unstructured data feeds
1026, event streams 1028, event updates 1030, and the like to
one or more databases that may be in communication with
one or more streaming data source computers coupled to
computer system 1000.
0211 Computer system 1000 can be one of various types,
including a handheld portable device (e.g., an iPhone(R) cel
lular phone, an iPadR computing tablet, a PDA), a wearable
device (e.g., a Google Glass(R head mounted display), a PC,
a workstation, a mainframe, a kiosk, a server rack, or any
other data processing system.
0212. Due to the ever-changing nature of computers and
networks, the description of computer system 1000 depicted
in the figure is intended only as a specific example. Many
other configurations having more or fewer components than
the system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, firmware, Soft
ware (including applets), or a combination. Further, connec
tion to other computing devices, such as networkinput/output
devices, may be employed. Based on the disclosure and
teachings provided herein, a person of ordinary skill in the art
will appreciate other ways and/or methods to implement the
various embodiments. In the foregoing specification, aspects
of the invention are described with reference to specific
embodiments thereof, but those skilled in the art will recog
nize that the invention is not limited thereto. Various features
and aspects of the above-described invention may be used
individually or jointly. Further, embodiments can be utilized
in any number of environments and applications beyond
those described herein without departing from the broader
spirit and scope of the specification. The specification and
drawings are, accordingly, to be regarded as illustrative rather
than restrictive.

Mar. 26, 2015

What is claimed is:
1. A computer-implemented method comprising:
creating a global policy container that includes global poli

cies that are shared by multiple applications;
creating multiple application-specific policy containers

that include application-specific policies for individual
applications;

determining, based on a global policy in the global policy
container and a first application-specific policy in a first
application-specific policy container, whether a first
application is permitted to access a particular resource:
and

determining, based on the global policy in the global policy
container and a second application-specific policy in a
second application-specific policy container, whether a
second application is permitted to access the particular
SOUC.

2. The computer-implemented method of claim 1, further
comprising:

in response to determining that either the global policy or
the first application-specific policy does not permit the
first application to access the particular resource, deny
ing the first application access to the particular resource.

3. The computer-implemented method of claim 1, further
comprising:

in response to determining that either the global policy or
the second application-specific policy does not permit
the second application to access the particular resource,
denying the second application access to the particular
SOUC.

4. The computer-implemented method of claim 1, further
comprising:

in response to determining that both the global policy and
the first application-specific policy permit the first appli
cation to access the particular resource, permitting the
first application to access the particular resource.

5. The computer-implemented method of claim 1, further
comprising:

in response to determining that both the global policy and
the second application-specific policy permit the second
application to access the particular resource, permitting
the second application to access the particular resource.

6. An apparatus comprising:
means for creating a global policy container that includes

global policies that are shared by multiple applications;
means for creating multiple application-specific policy

containers that include application-specific policies for
individual applications;

means for determining, based on a global policy in the
global policy container and a first application-specific
policy in a first application-specific policy container,
whether a first application is permitted to access a par
ticular resource; and

means for determining, based on the global policy in the
global policy container and a second application-spe
cific policy in a second application-specific policy con
tainer, whether a second application is permitted to
access the particular resource.

7. The apparatus of claim 6, further comprising:
means for denying the first application access to the par

ticular resource in response to determining that either
the global policy or the first application-specific policy
does not permit the first application to access the par
ticular resource.

US 2015/0089575 A1

8. The apparatus of claim 6, further comprising:
means for denying the second application access to the

particular resource in response to determining that either
the global policy or the second application-specific
policy does not permit the second application to access
the particular resource.

9. The apparatus of claim 6, further comprising:
means for permitting the first application to access the

particular resource in response to determining that both
the global policy and the first application-specific policy
permit the first application to access the particular
SOUC.

10. The apparatus of claim 6, further comprising:
means for permitting the second application to access the

particular resource in response to determining that both
the global policy and the second application-specific
policy permit the second application to access the par
ticular resource.

11. The apparatus of claim 6, further comprising:
means for storing the global policy in a global container

that is accessible to administrators of both the first and
second applications;

means for storing the first application-specific policy in a
first application-specific container that is accessible to
an administrator of the first application but not to an
administrator of the second application; and

means for storing the second application-specific policy in
a second application-specific container that is accessible
to an administrator of the second application but not to
an administrator of the first application.

12. A computer-implemented method comprising:
storing first data that maps a first policy-combining algo

rithm to a first application in an environment;
storing second data that maps a second policy-combining

algorithm to a second application in the environment;
whenevaluating a first set of policies to determine access to

resources in the first application, reconciling results of
evaluation of policies in the first set using the first policy
combining algorithm; and

when evaluating a second set of policies to determine
access to resources in the second application, reconcil
ing results of evaluation of policies in the second set
using the second policy-combining algorithm;

wherein the first policy-combining algorithm differs from
the second policy-combining algorithm.

13. The computer-implemented method of claim 12,
wherein the first set of policies is identical to the second set of
policies.

14. The computer-implemented method of claim 13,
wherein the first set of policies differs from the second set of
policies.

15. The computer-implemented method of claim 13,
wherein the first set of policies and the second set of policies
both include global policies that are applicable to all applica

Mar. 26, 2015

tions in the environment; wherein the first set of policies
includes first application-scoped policies that are applicable
to the first application but not to the second application; and
wherein the second set of policies includes second applica
tion-scoped policies that are applicable to the second appli
cation but not to the first application.

16. The computer-implemented method of claim 15,
wherein reconciling results of evaluation of policies in the
first set using the first policy-combining algorithm comprises
reconciling results of evaluation of the global policies with
results of evaluation of the first application-scoped policies;
and wherein reconciling results of evaluation of policies in
the second set using the second policy-combining algorithm
comprises reconciling results of evaluation of the global poli
cies with results of evaluation of the second application
Scoped policies.

17. A computer-implemented method comprising:
setting up a targetFXpression array;
setting up an anyOfCrder variable:
initializing an anyOf count to an initial value;
for each particular anyOf element in a Target element,

performing first operations, and updating a policy based
on the targetFxpression array and the anyOfCorder vari
able;

wherein the first operations comprise:
incrementing the anyOf count;
initializing an allOf count to the initial value:
constructing a unique name for the particular anyOf

element based on the anyOf count;
adding the unique name to the anyOfCrder variable; and
for each particular allCfelement in the particular anyOf

element, performing second operations;
wherein the second operations comprise:

incrementing the allOf count;
fetching a composite match entry;
splitting the composite match entry into principals,

resource-actions, and environmental attributes;
fetching a grantee identified by the principals;
constructing a permission having a target equal to a

resource from the composite match entry, an action
equal to a resource-action from the composite
match entry, and an environment constraint equal
to an environmental attribute from the composite
match entry;

setting an assignee in the permission based on a
grantee, a rule name, a policy domain name, and a
unique anyOf name; and

saving a globally unique identifier for the permission
in an element of the targetFXpression array indexed
by values of the allOf and anyOf counts.

k k k k k

