PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

HO04L 29/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/52895

8 September 2000 (08.09.00)

(21) International Application Number: PCT/US00/05243

(22) International Filing Date: 29 February 2000 (29.02.00)

(30) Priority Data:

09/260,367 us

1 March 1999 (01.03.99)
(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventor: GENTRY, Denton; 34892 Sea Cliff Terrace, Fre-
mont, CA 94555 (US).

(74) Agents: VAUGHAN, Daniel, E. et al.; Park & Vaughan LLP,
Suite 5, 399 Sherman Avenue, Palo Alto, CA 94306 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND APPARATUS FOR SUPPRESSING INTERRUPTS IN A HIGH-SPEED NETWORK ENVIRONMENT

CLOCK SIGNAL 110

(57) Abstract

CLEAR FROM HOST
|- BEGISTER COMPUTER
STATUS
PACKET TRANSFER SIGNAL 112 REGISTER
PACKET
THRESHOLD
108 PACKET
! COUNTER
1T RGKET ™ 18
1 [N
| THRESHOLD INITIALIZE
| REGISTER t PACKETS
1 108b EXCEEDED
-------- SIGNAL INTERRUPT SIGNAL
} 124 126 194
FINAL PACKET
COUNT
122 2 TOHOST
— 128 COMPUTER
FINAL TIME
COUNT INTERRUPT ENABLED
118 TIME EXPIRED SIGNAL
TIME 118 SIGNAL
THRESHOLD o
104a WATIALIZE
L—b TIME
v COUNTER INTERRUPT MODULATOR
TIME 102
D
REGISTER
1040

A network interface is polled by a host computer system process to whether any packets have been received. Interrupts that would
normally be issued by the network interface in response to the transfer of packets to the host system are suppressed during polling. If,
however, a predetermined period of time elapses or a predetermined number of packets are received after a previous poll or a previous
interrupt, then an interrupt may be generated. A time counter may track the passage of time; a packet counter may track the number of
packets. After each polling operation or processing of an interrupt, the time and packet counters are reset to threshold values and decrement
toward a final time count and a final packet count. Thus, a packet transferred after one polling operation or interrupt does not cause the
issuance of an interrupt to the host processor unless a time or packet counter reaches its final value.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
M

Cu
Ccz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/52895 PCT/US00/05243

METHOD AND APPARATUS FOR SUPPRESSING
INTERRUPTS IN A HIGH-SPEED NETWORK
ENVIRONMENT

BACKGROUND

This invention relates to the field of computer networks. In particular, the present
invention provides a system and method for modulating or suppressing the issuance of
interrupts from a communication device such as a network interface circuit (NIC).

The interface between a computer and a network is often a bottleneck for
communications passing between the computer and the network. While computer
performance (e.g., processor speed) has increased exponentially over the years and
computer network transmission speeds have undergone similar increases, inefficiencies in
the way network interface circuits handle communications have become more and more
evident. With each incremental increase in computer or network speed, it becomes ever
more apparent that the interface between the computer and the network cannot keep pace.
These inefficiencies involve several basic problems in the way communications between a
network and a computer are handled. Similar inefficiencies exist in other communication
devices and conduits, including network devices such as routers, gateways, switches and
input/output devices such as media (e.g., disk drive) controllers.

Today’s most popular forms of networks tend to be packet-based. These types of
networks, including the Internet and many local area networks, transmit information in the
form of packets. Each packet is separately created and transmitted by an originating
endstation and is separately received and processed by a destination endstation. In addition,
each packet may, in a bus topology network for example, be received and processed by
numerous stations located between the originating and destination endstations.

One basic problem with packet networks is that it may take many packets to
communicate a given amount of data from one endstation to another. When data
transmitted between stations is longer than a certain minimal length, the data is divided into
multiple portions, and each portion is carried by a separate packet. The amount of data that
a packet can carry may be limited by the network that conveys the packet and is often

expressed as a maximum transfer unit (MTU). The original aggregation of data is

10

15

20

25

30

WO 00/52895 PCT/US00/05243

sometimes known as a “datagram,” and each packet carrying part of a single datagram may
be processed very similarly to the other packets of the datagram.

As the amount of data to be transmitted increases, the number of packets that must
be sent to, and processed by, a destination endstation increase as well. Naturally, the more
packets that must be processed, the greater the demand placed upon an endstation’s
processor and the network interface serving that endstation. The number of packets that
must be processed is affected by factors other than just the amount of data being sent in a
datagram. For example, as the amount of data encapsulated in a packet increases, fewer
packets need to be sent. As stated above, however, a packet may have a maximum
allowable size, depending on the type of network in use (e.g., the maximum transfer unit
for standard Ethernet traffic is approximately 1,500 bytes). The speed of the network also
affects the number of packets that a NIC may handle in a given period of time. For
example, a gigabit Ethernet network operating at a peak rate may require a NIC to receive
approximately 1.48 million packets per second. Thus, the number of packets to be
processed may place a significant burden upon a computer’s processor. The situation is
exacerbated by the need to process each packet separately even though each one will be
processed in a substantially similar manner.

Another obstacle to the efficient interaction of network interface circuits and host
computers or other communication devices arises from the decreased host processor
utilization that results when a network interface circuit issues numerous interrupts. In
particular, in many present network interface circuits an interrupt may be issued to a host
processor for each packet transferred to a host computer from a network. As the rate of
network traffic increases, the rate of interrupt generation increases commensurately. The
more packets that arrive at a network interface circuit, therefore, the more time the
processor must spend on context switches and processing the interrupt, and the lower the
effective utilization of the processor.

As the performance of a network interface circuit increases and packets are
transferred to a host processor at a faster and faster rate, the rate of interrupt generation may
approach a level that, given the time necessary for the processor to process an interrupt,
monopolizes processor utilization. In fortuitous circumstances a processor may be able to
process multiple packets during one interrupt service routine, but this may be offset by the
high rate of packet arrival. Without a mechanism for suppressing or modulating the rate at

which interrupts are generated from a network interface, a network interface capable of
2

10

15

20

25

30

WO 00/52895 PCT/US00/05243

high performance may overwhelm a host processor. The rate of arrival of packets at a
network interface circuit may become so high that the processor must spend an inordinate
amount of time just servicing the interrupts and processing the packets received in between
interrupts, thus severely diminishing its ability to perform other tasks.

Another method by Which a host processor may learn of the receipt of network
traffic is polling. An endstation may, for example, poll a network interface circuit to
determine if there are any packets to be processed. Polling is inefficient, however, unless
the level of network traffic is relatively high. In addition, if polling should be blocked or
otherwise become unable to continue operation in existing implementations, network traffic
may be brought to a standstill.

Thus, present methods of alerting host processors to the receipt of network traffic
often fail to provide adequate performance to interconnect today’s high-end computer
systems and high-speed networks. A network interface circuit that cannot make allowance
for an over-burdened host computer may seriously degrade the computer’s performance. In
particular, the use of interrupts may degrade a host processor’s performance during a high

level of traffic, and polling may be unsuitable for lower levels of traffic.

SUMMARY

In one embodiment of the invention a system and method for polling a network
interface are provided. In this embodiment an interrupt that would normally alert a host
processor to the arrival of a network packet is suspended during a polling mode of
operation. Each time the network interface is polled, any waiting packets are processed. If
a threshold amount of time or a threshold number of packets are received without being
processed, however, interrupts may be enabled to ensure the packets are serviced. Thus, a
polling mode of operation may be combined with interrupt modulation in one embodiment
of the invention.

A network interface receives packets from a network for transfer to a host
computer. Prior to the commencement of polling, when a packet is received by the network
interface and transferred to the host computer an interrupt may be generated to alert a host
processor. However, processing interrupts may cause significant overhead for the
processor depending upon the level of traffic received at the network interface. Therefore,
one or more embodiments of the present invention are configured to decrease the number

of interrupts generated in response to the transfer of network packets without preventing the
3

10

15

20

25

30

WO 00/52895 PCT/US00/05243

packets from being processed in a timely manner. More specifically, the generation of
interrupts is suspended during a polling mode of operation. Each time the network
interface is polled, received packets may be processed without having to wait for an
interrupt. Thus, in one embodiment of the invention no interrupts are generated during a
polling mode of operation. |

If polling should fail or be blocked, however, the generation of interrupts may be re-
enabled. The rate at which interrupts may then be issued to the host computer may be
modulated in order to ensure that the host computer has time to perform other functions. In
particular, in one embodiment an interrupt is not issued for a received packet unless a
minimum period of time has passed or a minimum number of packets have been received
since a previous poll of the network interface or since a previous interrupt was processed.

Each time the network interface is polled, and upon the completion of processing of
a interrupt by a host processor, a time counter and/or a packet counter are initialized.
Ilustratively, the counters are set to programmable threshold values representing a
maximum period of time that is allowed to pass and a maximum number of packets that
may be received before issuing another interrupt. After initialization, the counters begin
decrementing toward final programmable values (e.g., zero). As long as polling continues
in this embodiment, the counters will be repeatedly re-initialized and will therefore never
expire and no interrupts will be generated. In an alternative embodiment the counters are
initialized to initial values and thereafter increment toward threshold values.

In one embodiment of the invention a polling process or software module operating
on a host computer polls the network interface by examining a virtual or “alias” register
that mirrors the network interface’s status register. Such an alias register serves as an
alternative path (e.g., address) by which to read the status register. Therefore, when an
indicator in the status register changes state to indicate a specific event or condition in the
network interface, the corresponding indicator in the alias register also changes. When the
network interface is polled, if an indicator in the alias register is set to a state indicating the
transfer of a packet, the polling module processes the waiting packet(s). Because the
polling module reads the alias register instead of the status register, the alias register is
cleared each time the polling module polls the network interface. When the alias register is
cleared one or more indicators in the status register may also be cleared, as determined by a
programmable mask. Illustratively, the mask comprises a number of entries, each of which

corresponds to both an indicator in the status register and a matching indicator in the alias
4

10

15

20

25

30

WO 00/52895 PCT/US00/05243

register. The value in each mask entry determines whether an associated status register
indicator is cleared when a corresponding alias register indicator is cleared.

In another embodiment of the invention a feedback indicator is added to or
associated with the network interface’s status register. The feedback indicator helps avoid
an interrupt-claiming problem that may otherwise occur when the polling module clears the
status register before an interrupt handler responding to an interrupt can examine the status
register and determine why it was called. In particular, when an interrupt is generated
because of a status register indicator (other than the feedback indicator) changing state, the
feedback indicator is set to a state that indicates an interrupt was generated. Then, although
the rest of the status register may be cleared by the polling module by the time the interrupt
handler reads the register, the feedback indicator will reveal that a valid interrupt was
issued. Without the feedback indicator an error recovery procedure may be initiated, thus
hindering the operation of the network interface, if the interrupt handler cannot determine
why it was invoked. In this embodiment the polling software may examine the status
register directly during each poll, or an alias register may be employed as described above.
If an alias register is used, the mask discussed above is configured so that the feedback

indicator is not cleared when the alias register is cleared.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is an interrupt modulator for modulating interrupts generated by a network
interface circuit in accordance with an embodiment of the invention.

FIG. 2 is a state diagram depicting the activity of the interrupt modulator of FIG. 1
as it enables and disables interrupts in accordance with an embodiment of the invention.

FIG. 3 is a flow chart depicting one method of operating the interrupt modulator of
FIG. 1 in accordance with an embodiment of the invention.

FIG. 4 is a state diagram depicting the use of polling and interrupt modulation to
decrease the number of interrupts processed by a host computer in accordance with an
embodiment of the invention.

FIG. 5 is a diagram of a network interface status register for indicating the
generation of an interrupt in accordance with an embodiment of the invention.

FIG. 6 is a diagram of an alias register and mask for use with a network interface
status register to decrease the number of interrupts processed by a host computer in

accordance with an embodiment of the invention.
5

10

15

20

25

30

WO 00/52895 PCT/US00/05243

FIG. 7 is a flow chart demonstrating one method of decreasing the number of packet
transfer interrupts processed by a host computer through polling and interrupt modulation

in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to
make and use the invention, and is provided in the context of particular applications of the
invention and their requirements. Various modifications to the disclosed embodiments will
be readily apparent to those skilled in the art and the general principles defined herein may
be applied to other embodiments and applications without departing from the spirit and
scope of the present invention. Thus, the present invention is not intended to be limited to
the embodiments shown, but is to be accorded the widest scope consistent with the
principles and features disclosed herein.

In particular, embodiments of the invention are described below in the form of a
network interface circuit (NIC) receiving communication packets formatted in accordance
with certain communication protocols compatible with the Internet. One skilled in the art
will recognize, however, that the present invention is not limited to communication
protocols compatible with the Internet and may be readily adapted for use with other
protocols and in communication devices other than a NIC.

The program environment in which a present embodiment of the invention is
executed illustratively incorporates a general-purpose computer or a special purpose device
such a hand-held computer. Details of such devices (e.g., processor, memory, data storage,
input/output ports and display) are well known and are omitted for the sake of clarity.

It should also be understood that the techniques of the present invention might be
implemented using a variety of technologies. For example, the methods described herein
may be implemented in software running on a programmable microprocessor, or
implemented in hardware utilizing either a combination of microprocessors or other
specially designed application specific integrated circuits, programmable logic devices, or
various combinations thereof. In particular, the methods described herein may be
implemented by a series of computer-executable instructions residing on a storage medium

such as a carrier wave, disk drive, or other computer-readable medium.

10

15

20

25

30

WO 00/52895 PCT/US00/05243

Introduction

In one embodiment of the present invention, a network interface circuit (NIC) is
configured to receive and process communication packets exchanged between a host
computer system and a network such as the Internet. In particular, the NIC is configured to
receive and manipulate packefs formatted in accordance with a protocol stack (e.g., a
combination of communication protocols) supported by a network coupled to the NIC.

A protocol stack may be described with reference to the seven layer [ISO-OSI
(International Standards Organization - Open Systems Interconnection) model framework.
Thus, one illustrative protocol stack includes the Transport Control Protocol (TCP) at layer
four, Internet Protocol (IP) at layer three and Ethernet at layer two. For purposes of
discussion, the term “Ethernet” may be used herein to refer collectively to the standardized
IEEE (Institute of Electrical and Electronics Engineers) 802.3 specification as well as
version two of the non-standardized form of the protocol. Where different forms of the
protocol need to be distinguished, the standard form may be identified by including the
“802.3” designation.

Other embodiments of the invention are configured to work with communications
adhering to other protocols, both known (e.g., Appletalk, IPX (Internetwork Packet
Exchange), ATM (Asynchronous Transfer Mode) etc.) and unknown at the present time.
One skilled in the art will recognize that the methods provided by this invention are easily
adaptable for new communication protocols.

In addition, the processing of packets, modulation of interrupts, and polling
operations described below may be performed on communication devices other than a NIC.
For example, a modem, switch, router or other communication port (e.g., serial, parallel,
USB, SCSI) or device may be similarly configured and operated. Although information is
conveyed in packet form in one or more embodiments of the invention described below, in
other embodiments “packets” may comprise other aggregations of data or information. For
example, an embodiment discussed below may be applicable to a disk controller (e.g., for a
magnetic or optical disk) or other media controller that receives or processes data in units
other than packets.

In previous implementations of network interface circuits an interrupt may be
generated by the NIC for every, or almost every, packet transferred by the NIC to a host
computer. With such a NIC, as the level of traffic received from a network increases a host

processor responsible for process network traffic may become unduly burdened by the
7

10

15

20

25

30

WO 00/52895 PCT/US00/05243

processing requirements of so many interrupts. Therefore, various embodiments of the
invention discussed below provide methods of modulating, limiting or suppressing the
issuance of interrupts to a host computer system in response to the receipt of packets from a
network.

Illustratively, different embodiments of the invention are directed to different levels
of network traffic. In particular, as network traffic increases, more and more interrupts may
need to be suppressed. However, as this is done a host processor may encounter more and
more packets to be processed during each interrupt. Therefore, for even higher levels of
network traffic a polling mode of operation may be initiated in order to eliminate the need
for interrupts altogether.

In a polling mode of operation interrupts may be completely suppressed as long as
the polling module (e.g., software operating on a host computer) continues to operate with
the desired frequency. Interrupts may be re-enabled, with or without modulation, if the

polling module is blocked or otherwise ceases to function.

An Interrupt Modulator for Moderate Network Traffic

In one embodiment of the invention an interrupt modulator is provided for
modulating the rate at which interrupts are issued to a host computer in response to the
transfer of packets by a network interface circuit (NIC). In this section, an interrupt
modulator and methods of modulation are described that are particularly suitable for
moderate levels of traffic and beyond.

Defining the scope of a particular level of traffic, whether “light,” “moderate,”
“heavy” or otherwise, is necessarily imprecise. However, one method of classifying a level
of traffic may take into account both the number of packets received at the network
interface and the power or capability of a processor that will process the packets. This
method takes into account the fact that a faster or more capable processor may be able to
process a greater number of packets in a given period of time than a slower or less capable
processor. In other words, receiving one million packets per second and an interrupt for
each packet may seem like a heavy load to one processor, but may place little burden on a
faster processor.

In order to take into account both the rate of packet transfers to a host computer and
a host processor’s speed, the level of traffic received at the network traffic may be

measured by the number of packets processed each time an interrupt from the network
8

10

15

20

25

30

WO 00/52895 PCT/US00/05243

interface is serviced. Typically, a network interface circuit issues an interrupt to a host
processor when a packet arrives from a network and is transferred to the host computer.
Depending upon the speed or configuration of the processor, it may not be able to
immediately perform the necessary interrupt processing before another packet is received
and another interrupt is issued. Thus, by the time the processor actually responds to the
first interrupt, it may end up processing a number of packets that arrived soon after the first.
If, on the other hand, the processor is very fast, it may be able to respond to each individual
interrupt in such a timely manner that it rarely, if ever, processes more than one packet at a
time. _

Therefore, for purposes of describing the level of traffic received at a network
interface circuit in a present embodiment of the invention, a moderate load may be
considered to exist when a host processor processes approximately ten packets during an
interrupt. If less than ten packets are processed in an interrupt, the traffic level may be
considered light. And, a heavy load may be marked by the processing of approximately
fifty packets during an interrupt service routine. These packet measures may be averages or
median values taken over a given period of time or may be instantaneous measurements
made during the processing of an individual interrupt. In addition, these figures are not
rigid and may be altered in accordance with factors such as the size and types of packets
(e.g., in terms of protocols).

In this section a method of modulating interrupts generated in response to the
receipt of a moderate level of traffic is described. The following section describes a
method of modulating or suppressing interrupts in a heavy traffic environment. The
interrupt modulators and methods of modulating interrupts described in these sections may
also be applied to modulate the rate of interrupts issued in response to the transmission of
packets from the network interface circuit to a network.

As already described, in some network interface circuits an interrupt might be
issued to a host computer for every packet received from a network or transferred to the
host computer. The faster the rate at which packets are transferred, the more time a host
processor must spend handling interrupts associated with the network traffic and the less
time that the processor may spend on other tasks. By modulating the rate at which
interrupts are issued to a host computer from a communication device such as a network
interface circuit, the ratio of interrupts to packets may be decreased from 1:1 to 1:N, where

N>1. Decreasing the number of network interface interrupts that a host computer must
9

10

15

20

25

30

WO 00/52895 PCT/US00/05243

respond to allows it to be more responsive to other tasks (e.g., user activity) and may
decrease the amount of processor time used to process network traffic. In particular, once
network traffic increases to what may be considered a moderate level, a host processor will
likely benefit from a decrease in the number of interrupts that must be handled.

In one embodiment of fhe invention interrupts normally generated when packets are
received by a NIC and transferred to a host computer are alternatingly disabled and
enabled. In particular, after one interrupt is issued to and serviced by a host processor,
another interrupt is not generated until a predetermined period of time has passed or a
specified amount of network traffic has been sent to the host computer system. In this
embodiment a time counter may be used to track the passage of time (e.g., as indicated by a
clock signal) and/or a packet counter may be used to track the transfer of packets to the
host. In an alternative embodiment of the invention a content counter may be used to track
the amount of traffic sent to the host in units other than packets (e.g., bytes, datagrams).

Illustratively, the time counter and packet counter are set to threshold values after a
host computer processes an interrupt. Suitable threshold values, which may be stored in
programmable registers or other data structures, are twenty microseconds of time and seven
packets for a moderate level of traffic. Thereafter, the time counter decrements (e.g.,
counts down toward zero) in response to a clock signal or other means of noting the
passage of time, and the packet counter decrements in response to a packet transfer signal
or other indicator that a packet was transferred to the host computer. A packet transfer
signal may, for example, be generated by a NIC module responsible for copying a packet to
host memory. Until either of the time counter or packet counter reaches zero or some other
final value, which may be stored in a register or other programmable data storage unit, an
interrupt will not be generated in response to the transfer of a packet. After a final value is
reached, an interrupt may be generated for a packet transferred after the last interrupt was
processed by the host computer.

In one embodiment of the invention the programmable threshold time and packet
values may be increased as the rate of packets arriving at the network interface increases or
the number of packets processed during each interrupt increases. And, although the
counters decrement from threshold values toward final values (e.g., zero) in this
embodiment of the invention, in an alternate embodiment they are set to initial values (e.g.,

zero) and thereafter incremented toward their threshold values.

10

10

15

20

25

30

WO 00/52895 PCT/US00/05243

U.S. Patent 5,659,758 (the “*758 patent™), issued on August 19, 1997, describes an
Interrupt Modulator for Receiving Bursty High Speed Network Traffic and is hereby
incorporated by reference. The ‘758 patent describes the use of counters that are reset upon
the issuance of an interrupt to a host computer. In other words, in the “758 patent a time or
packet counter is reset at the time an interrupt is generated by a network interface and
thereafter increments — even during the servicing of the interrupt.

Interrupt modulation according to the present invention differs from that of the ‘758
patent in how the time and packet counters are reset. In particular, rather than being reset at
the time the interrupt is issued, in a present embodiment of the invention the counters are
not reset until after the host computer processes an interrupt. As described above, in one
embodiment of the invention a second interrupt is not initiated by a network interface until
a minimum period of time passes or a specified number of packets are received after a host
processor completes servicing a first interrupt. One skilled in the art will recognize that the
present scheme provides additional time separation between successive interrupts and thus
further decreases the amount of host processor time expended in servicing interrupts from
the network interface. Under the ‘758 patent, if a host processor requires nearly a full
threshold of time (e.g., twenty microseconds) to finish its processing of one interrupt,
interrupts may be enabled and an interrupt issued shortly after the first one is serviced.

FIG. 1 is a diagram of an interrupt modulator for a NIC according to one
embodiment of the invention. In this embodiment time and packet counters are set to their
threshold values (e.g. twenty microseconds and seven packets, respectively) after an
interrupt is processed by a host computer and then decremented in accordance with the
passage of time and the transfer of packets. A counter expires when it reaches a final value
(e.g., zero), at which time another interrupt may be generated. Although threshold values
of approximately twenty microseconds and approximately seven packets are employed in
embodiments of the invention discussed below, in alternative embodiments a wide range of
thresholds will be suitable. In particular, one network environment in which an
embodiment of the invention may be practiced (e.g., such as the Internet) employs Ethernet,
IP and TCP protocols, respectively, at layers two, three and four of an associated protocol
stack. In this environment a range of twenty to fifty microseconds may be appropriate for a
time counter and a range of four to ten packets may be appropriate for a packet counter.

Suitable thresholds may be determined in accordance with the protocols to which

packets received at a particular NIC conform or some other characteristic of a particular
11

10

15

20

25

30

WO 00/52895 PCT/US00/05243

network environment. Some protocols may be able to function properly even when the
processing of packets and interrupts is delayed longer than seven packets or twenty
microseconds. For example, the Network File System (NF S) protocol may be able to use a
time threshold of approximately one millisecond and a packet threshold of approximately
fifty. |

In the illustrated embodiment of the invention, interrupts are transmitted to a host
processor by a PCI (Peripheral Component Interconnect) bus. In particular, the issued
interrupt corresponds to the PCI INTA signal that may be generated in response to the
transfer of a packet from a network interface to a host computer.

In FIG. 1, interrupt modulator 100 includes time counter 102 and packet counter
106. Time counter 102 is associated with one or more time threshold registers (e.g.,
threshold registers 104a, 104b) which store threshold time counts to which time counter
102 may be set when initialized or re-initialized. Packet counter 106 is associated with one
or more packet threshold registers (e.g., threshold registers 108a, 108b) which store
threshold packet counts to which packet counter 106 may be set when initialized or re-
initialized.

The time threshold registers and packet threshold registers depicted in FIG. 1 are
implemented in programmable memory (e.g., register, RAM, flash memory). Thus, they
may be set or modified by software (e.g., a device driver) operating on a host computer. As
depicted in FIG. 1, multiple threshold registers may be coupled to a time and/or packet
counter in order to allow the counters to be reset to different values depending on the level
of network traffic. In particular, different threshold values may be desirable depending on
the level of traffic received at the NIC or processed by a host processor. The time and
packet counters may therefore be re-initialized to different thresholds as the traffic
fluctuates. An interrupt modulator is not limited to a particular number of threshold
registers and may include any number of them greater than or equal to one. In another
alternative embodiment, threshold time and/or packet counts are stored in read-only
memory.

Time counter 102 and packet counter 106 may be reset (e.g., initialized) to the
values in a time threshold register and packet threshold register upon initialization (e.g.,
power on) of the NIC. They may also be reset when a host computer served by the NIC

finishes processing an interrupt, as described below.

12

10

15

20

25

30

WO 00/52895 PCT/US00/05243

Clock signal 110 is coupled to time counter 102 and may be used for timing
purposes. Time counter 102 may be decremented or incremented for each clock cycle or
for a combination of cycles carried by clock signal 110. In the presently described
embodiment time counter 102 is decremented for each unit of time (e.g., microsecond)
signaled or indicated by clock. signal 110.

Packet transfer signal 112 signals the transfer of a packet from the network interface
to a host computer. Packet transfer signal 112 is thus coupled to packet counter 106 and
status register 114. Packet transfer signal 112 may be generated by the NIC module that
transfers the packet into host memory or some other module.

Ilustratively, status register 114 is comprised of one or more status indicators. In
one embodiment of the invention a status indicator may be set in response to an action,
occurrence or error in the NIC. As one skilled in the art will appreciate, a PCI INTA
interrupt may be generated in a previous network interface circuit each time a status register
indicator is set (e.g., stores a value of one). As described herein, however, interrupt
modulator 100 is designed to modulate those interrupts associated with the receipt and/or
transmission of a network packet by the host. In other words, interrupts caused by the
transfer of packets from a network to a host computer may be suppressed until a time or
packet counter exceeds a predetermined value, but other types of interrupts may not be
suppressed. In particular, one or more error conditions (e.g., incomplete packet, out of
order packet, counter overrun) may be permitted to generate interrupts as usual.

Final time register 116 and final packet register 122 store final values (e.g., zero) for
comparison to time counter 102 and packet counter 106 and for determining when
interrupts should be enabled or re-enabled. In the illustrated embodiment of the invention
these registers are programmable data storage units (e.g., RAM, flash memory).

When initialized, time counter 102 is set to the threshold value stored in time
threshold register 104a (e.g., or an alternate time threshold register such as register 104b).
As the time counter is decremented in response to clock signal 110, it is compared to the
value in final time register 116 by comparator 118. If time counter 102 is decremented to
or beyond the value in final time register 116 (e.g., indicating the passage of at least twenty
microseconds of time), then time expired signal 120 is activated. The value stored in time
threshold register 104a may be modified (e.g., increased) as the rate of receipt of network
traffic increases. Or, as shown in FIG. 1, a different threshold value may be loaded from a

different time threshold register depending upon the level of traffic (e.g., number of packets
13

10

15

20

25

30

WO 00/52895 PCT/US00/05243

processed in an interrupt, number of packets received in a given period of time). The
determination of which time threshold register’s value to use for initializing time counter
102 may be made on the basis of the amount of traffic being transferred to the host
computer. The value in final time register 116 may also be altered.

Similarly, when packet counter 106 is initialized, it is set to the threshold value
stored in packet threshold register 108a (or an alternate packet threshold register such as
register 108b). As the packet counter is decremented in response to packet transfer signal
112, it is compared to the value in final packet register 122 by comparator 124. If packet
counter 106 is decremented to or beyond the value in final packet register 122, then packets
exceeded signal 126 is activated. The value stored in packet threshold register 108a may be
modified (e.g., increased) as the rate of receipt of network traffic increases. Or, as shown
in FIG. 1, a different threshold value may be loaded from a different packet threshold
register depending upon the level of traffic (e.g., number of packets processed in an
interrupt, number of packets received in a given period of time). The value in final packet
register 122 may also be altered.

If either time expired signal 120 or packets exceeded signal 126 is activated, OR
gate 128 is enabled and interrupt enabled signal 130 of AND gate 132 is activated. The
other input to AND gate 132 is provided by status register 114 and is activated when a
status bit is set in response to packet transfer signal 112. Thus, interrupt signal 134 (e.g.,
PCIINTA) is activated only when a packet is transferred and interrupts are enabled because
of the expiration of time counter 102 or packet counter 106.

In an alternative embodiment of the invention the initial and final time or packet
values may be exchanged. In other words, the time threshold registers and packet threshold
registers in FIG. 1 may be swapped with final time register 116 and final packet register
122, respectively. Thus, in this embodiment a time and/or packet counter is initialized to
an initial value (e.g., zero) and then incremented toward a threshold value.

In the illustrated embodiment of the invention interrupt signal 134 is received by a
processor (e.g., a SPARC™ processor by Sun Microsystems, Inc.) in a host computer. As
one skilled in the art will recognize, status register 114 (e.g., a status register indicator
corresponding to packet transfer signal 112) is cleared by the host processor when it
finishes processing the interrupt signal. In response to the clearing of the status indicator,

time counter 102 and packet counter 106 are re-initialized.

14

10

15

20

25

30

WO 00/52895 PCT/US00/05243

Resetting the time and packet counters after an interrupt is processed by a host
processor allows the host processor to perform other functions and duties for what may be a
significant period of time before having to process another interrupt associated with the
transfer of a packet. In particular, approximately twenty microseconds must pass or
approximately seven packets fnust be received by the NIC in this embodiment before
another packet-transferred interrupt is sent to the host processor.

One skilled in the art will recognize that the interrupt modulation mechanisms and
methods described in this section may be applied in communication devices other than a
network interface circuit. In particular, the mechanisms and methods may be implemented
in gateways, routers, bridges, modems and other communication devices that receive
packets. Input and output devices, such as media controllers, may also benefit from the
disclosed interrupt modulation techniques.

FIG. 2 is a state diagram demonstrating one set of states, and transitions between
such states, that may be employed in the embodiment of the invention depicted in FIG. 1.
As described above, interrupts associated with the transfer of packets from a network
interface may be either disabled or enabled by interrupt modulator 100. Thus, two primary
states exist in FIG. 2 — interrupt disabled state 202 and interrupt enabled state 204.
Ilustratively, in interrupt disabled state 202 an interrupt is suppressed that may otherwise
be generated in response to the transfer of a packet. In interrupt enabled state 204, an
interrupt that may be generated in response to the transfer of a packet is not suppressed.

Within interrupt disabled state 202 interrupt modulator 100 may be in either
initialize counter state 206 or decrement counter state 208. In particular, in state 206 a
counter (e.g., time counter 202 and/or packet counter 206 from FIG. 1) is initialized to an
initial, or threshold, value. In decrement counter state 208 a time counter, packet counter or
other counter decrements. For example, a time counter may decrement in response to a
clock signal or a packet counter may decrement in response to the arrival or transfer of a
packet. In an alternative embodiment of the invention in which counters increment toward
threshold values rather than decrement from them, state 208 is an increment counter state.

In the illustrated embodiment of the invention interrupt modulator 100 changes
from an initialize counter state to a decrement counter state via transition 210 automatically
upon the storing of an initial value in a counter. Alternatively, this transition may occur in

response to receipt of a time signal or receipt of a packet.

15

10

15

20

25

30

WO 00/52895 PCT/US00/05243

While in decrement counter state 208, the interrupt modulator may transition to
interrupt enabled state 204 through transition 212. In a present embodiment of the
invention transition 212 is initiated when a counter reaches a final value, as described
above in conjunction with FIG. 1.

Transition 214, from ihterrupt enable state 204 to initialize counter state 206, may
be initiated when a host processor completes processing an interrupt generated during
interrupt enable state 204. In the presently described embodiment of the invention, the
completion of interrupt processing may be indicated by the clearing of one or more status
indicators in a status register. _

Finally, in one alternative embodiment of the invention an interrupt modulator may
transition from decrement counter state 208 to initialize counter state 206 via transition
216. Transition 216 may indicate that the status register was read (e.g., because of an
interrupt associated with an event other than the receipt of a packet from a network). In
particular, an interrupt may be generated by the NIC because of an error condition. An
interrupt service routine may then be called to handle the reported error and may also
process any packets that have been received since the last interrupt. By processing any
waiting packets the situation after the processing of an interrupt associated with an error
condition is similar to the situation that exists after a host processor finishes processing an
interrupt associated with a packet transfer. Therefore, the counter(s) maintained by the NIC
may be re-initialized as though a interrupt associated with the normal transfer of a packet
had just been processed.

FIG. 3 is a flow chart demonstrating one method of modulating interrupts with
interrupt modulator 100. State 300 is a start state, which may correspond to the application
of power to a network interface that includes interrupt modulator 100. Start state 300 may
alternatively comprise the processing, by a host processor, of an interrupt generated in
response to the transfer of a packet by the network interface.

In state 302, time and packet counters are initialized in response to a power-on
condition or the completion of processing of an interrupt by a host processor. Illustratively,
a time counter is set to twenty microseconds (or other suitable programmable time period)
and a packet counter is set to seven packets (or other suitable programmable number of
packets). After initialization, and as described below, the time and packet counters will
decrement toward programmable final values (e.g., zero microseconds and zero packets,

respectively). In one alternative embodiment of the invention time and packet counters are
16

10

15

20

25

30

WO 00/52895 PCT/US00/05243

set to zero or other initial values in state 302 and then subsequently incremented from these
values toward their threshold values.

In state 304, interrupts associated with the transfer of packets from a network
interface are temporarily disabled. Certain steps toward the issuance of an interrupt may
still be performed in responsevto the transfer of a packet, such as the setting of an indicator
in a status register. As described below, however, no packet transfer interrupt will be
transmitted to a host processor until either the time or packet counter reaches its threshold
value.

In state 306, one or both of the time and packet counters decrement (e.g., increment
negatively, or toward zero). In particular, the time counter will generally continuously
decrement, from the time it is initialized, until it is re-initialized. It may, however, be
halted or suspended (e.g., cease decrementing) when interrupts are enabled. After an
interrupt is processed the time counter is re-initialized to a threshold value and once again
begins decrementing. A packet counter, however, decrements in response to an event that
is less certain than the passage of time — the transfer of a packet from the network interface.

Ilustratively, for each packet transferred by the network interface to a host computer the
packet counter count decreases by one.

In state 308, it is determined whether one or both of the time and packet counters
have reached their final values. As long as neither of the counters has reached its final
value, the illustrated procedure returns to state 306 to continue decrementing the counters.
Once a counter has reached its threshold, however, the procedure continues at state 310.

In state 310, interrupts associated with the transfer of network packets are enabled
because one or both of the time and packet counters have reached their threshold values.
[lustratively, the next packet that is transferred to the host computer will result in the
transmission of an interrupt to a host processor. Alternatively, if one or more packets were
received at the network interface (e.g., for transfer to the host computer) since the last
interrupt, then an interrupt may be issued close in time to the beginning of state 310.

After an interrupt is issued during or following state 310, interrupt modulator 100
detects the completion of interrupt processing (e.g., by detecting the clearing of the status
register indicator that was set when a packet was transferred). At this time the counters are
re-initialized and the procedure continues as indicated above. The illustrated procedure

ends at end state 312.

17

10

15

20

25

30

WO 00/52895 PCT/US00/05243

In the procedure described above, interrupts from the network interface that are
associated with the transfer of packets to or from a network are modulated. Other
interrupts, such as those reflecting an error condition within the network interface or an
invalid packet, may still be issued as normal. In another embodiment of the invention,

however, one or more interrupts other than packet arrival interrupts are also modulated.

Suppressing Interrupts During Heavy Network Traffic

In the previous section an interrupt modulator and methods of modulating interrupts
for packets transferred by a network interface during moderate or comparable levels of
traffic were presented. Such an interrupt modulator may use a time counter and/or a packet
counter to temporarily disable and enable the generation of interrupts from the network
interface to a host computer processor. As a result, the number of interrupts that are
generated by the interrupt modulator and that must be serviced by the host processor may
be significantly decreased. By spending less time servicing interrupts, the host processor
may be more responsive to substantive tasks. Advantageously, even though an interrupt
designed to signal the arrival of a packet at a host computer from a network interface may
be temporarily suppressed, the modulation scheme ensures that packets are processed in a
timely fashion.

As the rate of packet arrival increases, however, each time that the processor
responds to an interrupt it may have more and more packets to process. Or, the rate of
packet arrival at the host may be so high as to generate numerous interrupts despite the use
of a time or packet counter. Either way, the benefits of interrupt modulation may be
somewhat attenuated in an environment of very heavy traffic. As described previously, in
one embodiment of the invention a heavy traffic environment at a network interface circuit
may encompass situations in which a host processor processes approximately fifty packets
each time it responds to an interrupt issued in response to the receipt of a packet.

When packets are transferred from a network interface at a very high rate, a packet
counter’s threshold may be quickly surmounted each time it is reset. Each time the
threshold is exceeded another interrupt would then be generated to a host processor. Of
course the packet counter threshold may be set to a relatively high value in response (e.g.,
by loading a threshold value from a different packet threshold register), but if the transfer
rate remains very high then each time the processor receives an interrupt it may expend an

inordinate amount of time processing a large number of packets. Some communication
18

10

15

20

25

30

WO 00/52895 PCT/US00/05243

protocols may not be able to adequately function in such an environment. Or, if the rate of
packet transfer to the host computer decreases precipitously after the packet counter
threshold is increased, then the next interrupt, and the subsequent processing of one or
more packets, may be delayed.

Even the use of a time counter may not alleviate the problems associated with heavy
traffic levels. In particular, if the time counter has a relatively high time threshold, the
number of packets transferred by a network interface before the threshold is exceeded may
again require the processor to spend a significant period of time processing the packets
when an interrupt is generated. If the time threshold is set to a low value (e.g., by using a
different time threshold register), then the processor may be over-burdened with interrupts
— similar to the result of employing a low packet counter threshold.

Thus, in heavy traffic the amount of time a host processor may spend processing
packets or interrupts may degrade a host computer’s responsiveness to other tasks. When
the amount of network traffic (e.g., packets) received at a network interface or other
communication device reaches a high level, some mechanism for alerting a host computer
to the transfer of packets, other than interrupts, may be more efficient.

Therefore, in one embodiment of the invention a polling mode of operation is
enabled for a network interface or other communication device that receives a large amount
of traffic (e.g., packets). In this embodiment the network interface is regularly polled to
determine if any packets have been transferred to a host computer or are ready to be
processed by a host processor. If so, the packets may then be processed without incurring
the overhead associated with dispatching an interrupt. The use of polling may, however, be
supplemented with interrupt modulation. In particular, an interrupt modulator may
suppress interrupts as long as the network interface is polled on a recurring basis. If,
however, polling operations are stalled or blocked, an interrupt modulator may ensure that
interrupts are periodically generated so that the host processor will attend to received
packets in a timely manner.

This section should therefore be understood in light of an interrupt modulator and
methods of modulating interrupts described in the preceding section. Likewise, concepts
introduced in this section may be applied in whole or in part to the system and methods of
interrupt modulation discussed in the previous section.

As discussed previously, traffic levels in this embodiment may be defined by the

number of packets that are processed each time a host processor responds to an interrupt.
19

10

15

20

25

30

WO 00/52895 PCT/US00/05243

In particular, if approximately fifty packets are processed during an interrupt the traffic may
be considered heavy. In another embodiment of the invention a measure of network traffic
may consider the size and/or type of packets, not just the number of packets.

In one embodiment of the invention a network interface is repeatedly polled by
software operating on a host computer (e.g., a program module or other series of computer-
executable instructions). The frequency of polling may be on the order of once every 500
to 1000 microseconds. The polling software may, for example, comprise part of a device
driver for the network interface. Further, it may execute as a thread on a processor such as
a SPARC™ processor by Sun Microsystems, Inc. As one skilled in the art will recognize,
an executable thread may be blocked on a condition variable in between polling operations.

In one embodiment the polling software may detect the transfer of a packet by
examining a status register of the network interface or an indicator (e.g., bit) in the status
register. Illustratively, the indicator that is checked is changed from a first state to a second
state in response to the transfer of a packet and is reset to the first state after being polled.

In an embodiment of the invention in which polling is supplemented by interrupt
modulation, each time the software polls the network interface an interrupt modulator is re-
initialized (e.g., its time and/or packet counters are reset to threshold values). Therefore, as
long as polling continues the counters are repeatedly re-initialized and any interrupts that
may otherwise be generated because of the receipt of network packets are forestalled.

In particular, if the polling module is blocked a time counter or a packet counter
within the interrupt modulator may reach its final value. An interrupt is then generated if
any packets were transferred since the last polling operation or interrupt. The threshold
values for the counters in this embodiment may be higher than the threshold values
described for embodiments of the invention discussed in conjunction with FIGs. 1-3. For
example, in a network environment such as the Internet, in which packets conform to the
Ethernet, IP and TCP protocols, a suitable range of time thresholds is one to five
milliseconds and a suitable range of packet thresholds is 500 to 2500 packets. In particular,
in one embodiment of the invention a time counter threshold may be approximately two
milliseconds and a packet counter threshold may be approximately one thousand.

Other values may be suitable in other embodiments of the invention and in different
network or operational environments. And, threshold values may be adjusted as the

amount of traffic received from a network fluctuates. As described previously, different

20

10

15

20

25

30

WO 00/52895 PCT/US00/05243

threshold registers may store different threshold values for re-initializing time and/or packet
counters during different levels of traffic.

As described above, a polling operation may be conducted by a thread or other
execution module in a multi-tasking environment. A thread may, for example, be blocked
on a condition variable when hot polling. The thread may be released to execute, however,
with a predetermined or variable (e.g., programmable) frequency, such as 1000 to 2000
times per second. The timing of each polling operation may be determined by the passage
of time reflected by an interrupt modulator’s time counter or a separate timer maintained by
the polling software or host computer. Advantageously, the use of a thread or other process
or module that can remain dormant in between polling operations avoids the processing
overhead (e.g., loading, initialization, context switching) associated with a module that
must be loaded into memory each time it is to execute. In one alternative embodiment,
however, the polling software constitutes a series of executable instructions that are loaded
and executed each time the network interface is to be polled. In other words, in this
alternative embodiment the polling software terminates after each polling operation rather
than simply entering a suspended state.

Polling may begin when a particular level of network traffic is detected (e.g., fifty
packets are processed in a single servicing of an interrupt). As one alternative, polling may
begin when a host computer processor’s load reaches a particular level (e.g., ninety percent
utilization).

As described above, polling software may be prevented from executing or from
completing execution. If an interrupt modulator’s counter reaches its final value before the
polling software can finish and reset the counter, interrupts may be enabled. Interrupts may
then be repeatedly disabled and enabled (as discussed in the previous section) if the polling
software remains unable to execute. When the polling software recovers it may resume
polling — especially if the level of network traffic is still heavy. Alternatively, the network
interface may transition from a polling mode of operation to interrupt modulation if the
level of network traffic has fallen. This transition may occur whenever the level of traffic
falls, not just after the polling software is blocked. Alternatively, a transition from polling
mode back to interrupt modulation may occur if the software polls a predetermined number
of times without retrieving any packets (or less than a threshold number of packets). As

part of a transition between different modes of operation, different time and/or packet

21

10

15

20

25

30

WO 00/52895 PCT/US00/05243

thresholds from different threshold registers may be used to initialize the time and packet
counters.

FIG. 4 is a state diagram illustrating the operation of one embodiment of the
invention for conducting polling operations with or without interrupt modulation. Two
primary states are represented in FIG. 4 — interrupt disabled state 402 and interrupt enabled
state 404. It is envisioned that disabled state 402 will be the principal state for a network
interface receiving a very high number of packets.

Within interrupt disabled state 402 are three sub-states, polling state 406, initialize
counter state 408 and decrement counter state 410. During polling state 406, a network
interface is polled to determine if any packets were transferred since the previous poll (or
interrupt). In one method of polling a network interface, described in detail below, a status
register of the network interface is examined by a polling module operating on a host
computer. Illustratively, the status register comprises one or more indicators that change
state depending on an event or condition within the network interface. One such indicator
may reflect the transfer of a packet.

In initialize counter state 408, one or more counters are initialized (e.g., set to their
threshold or other initial values). As described previously, the interrupt modulator may
employ a time counter and/or a packet counter to determine when interrupts should be
enabled (e.g., in the event that polling is blocked). Also, polling software or a host
computer may maintain a separate polling timer to determine when the network interface
should be polled.

In decrement counter state 410 a time and/or packet counter are decremented toward
zero. In addition, a polling timer described above for timing each polling operation may be
incremented or decremented (e.g., depending upon whether it is set to a threshold value or
an initial value such as zero). Although time and packet counters are described as
decrementing (e.g., incrementing in a negative direction from a threshold value toward
zero) in the presently described embodiment, in an alternative implementation the counters
are set to initial (e.g., zero) values and increment toward their threshold values.

A number of transitions are illustrated in FIG. 4 for changing from one state to
another. Transition 412, from polling state 406 to initialize counter state 408 may occur
after the network interface has been polled. Transition 412 may also be initiated when a
polling module needs to reset a counter during a poll. For example, a large number of

packets may need to be processed during one poll, thus requiring a relatively large amount
22

10

15

20

25

30

WO 00/52895 PCT/US00/05243

of processor time. In order to fend off an interrupt that would be issued after the expiration
of a counter, the polling module may suspend its operation long enough to re-initialize one
or more counters.

After resetting a counter, decrement counter state 410 is entered via transition 414.
Transition 414 may represent an event (e.g., receipt of a packet) that signals the need to
begin counting packets or time in order to either enable interrupts or poll the network
interface again. Illustratively, however, transition 414 occurs automatically upon the re-
initialization of the counters.

From decrement counter state 410, polling state 406 may be entered because a
polling timer expires or reaches its threshold, as represented by transition 416. A polling
timer’s threshold is preferably lower than the interrupt modulator’s time threshold to reflect
the preference for a polling operation over the generation of an interrupt. If, however, the
time counter expires or reaches its final value before a polling operation can be completed
(after which the time counter is re-initialized), transition 418 illustrates the entry into
interrupt enabled state 418 from decrement counter state 410. Transition 418 may also be
initiated by the receipt of a threshold number of packets. From interrupt enabled state 404,
initialize counter state 408 is entered after an interrupt is serviced by a host processor, as
indicated by transition 420.

Polling state 406 may proceed directly to interrupt enabled state 404, via transition
422, if the polling software is blocked or otherwise prevented from completing its
execution. To enable this transition, the time and/or packet counters employed by an
interrupt modulator may continue to decrement during polling state 406. Transition 422
may therefore be very similar to transition 418 except for the state from which the
transition occurs.

Finally, in one embodiment of the invention transition 424 from decrement counter
state 410 to initialize counter state 408 may occur due to the issuance of an interrupt
associated with an event other than the receipt of a packet from a network (e.g., such as an
erToT).

In one embodiment of the present invention a polling operation comprises an
examination of a network interface’s status register. As mentioned above and as known to
those of ordinary skill in the art, a network interface may employ a status register or other
data structure to signal a condition or action within the interface. A status register may, for

example, comprise a number of status bits or indicators related to the receipt and/or
23

10

15

20

25

30

WO 00/52895 PCT/US00/05243

transmission of packets by the network interface. Illustrative indicators related to packet
reception include a packet transfer indicator, an overflow indicator (e.g., to indicate that a
packet was dropped), one or more roll over indicators (e.g. to indicate the roll over of
counters that track events such as packet receipt, CRC errors and length errors), etc.
Illustrative indicators related fo packet transmission include a packet transmission
indicator, an underflow indicator (e.g., to indicate that an incomplete packet was dropped),
a packet oversize indicator, and one or more roll over indicators (e.g., to indicate the roll
over of counters tracking transmission errors). Each indicator is generally in a first state
(e.g., it stores a first value, such as zero) under normal circumstances and during the NIC’s
inactivity and may be reset to the first state upon initialization of the network interface or
some other event. An indicator may be set to a second state (e.g., store a second value,
such as one) in response to a particular event or condition associated with the indicator.

For example, a packet transfer indicator may be set to its second state when a packet
is received from a network and is transferred to a host computer. A packet transmission
indicator may be set to a second state when a packet is transmitted from the network
interface to the network. Yet another bit or indicator may be set to its second state in
response to an error condition (e.g., receipt of an out-of-order packet, error in receiving a
packet).

When an indicator in a status register is set to its second state, an interrupt may be
automatically issued to a host processor. An interrupt service routine (ISR) is then
executed by the host processor to determine the cause of the interrupt (e.g., packet transfer,
packet transmission, error). The ISR may then perform some function in response to the
interrupt (e.g., process a received packet through its protocol stack, execute an error
recovery procedure). In a typical implementation of a status register, an indicator that
causes the generation of an interrupt is returned to its first state by the interrupt service
routine. Further, all of the status indicators, not just the one that caused the interrupt, are
generally cleared (e.g., returned to their first state) when the ISR reads the status register.

For a network interface operating in an environment of heavy traffic, a problem
associated with the claiming of interrupts may arise. Specifically, an interrupt service
routine called in response to an interrupt (e.g., signaling the transfer of a packet) may find
that the status register has already been cleared. The ISR thus cannot determine why the
interrupt was issued. As a result, it may appear that the ISR was called by mistake and this

may be interpreted as a severe error in the operation of the network interface. The network
24

10

15

20

25

30

WO 00/52895 PCT/US00/05243

interface may then undergo re-initialization or a diagnostic routine in the hope of clearing
the assumed problem. This naturally has a deleterious effect upon the processing of
network traffic and the operation of the network interface.

An embodiment of the. present invention that uses polling may not be immune to
this problem. In particular, in a present embodiment polling software checks for the
transfer of a packet by examining a status register’s packet transfer indicator. Because the
polling software may clear the status register or packet transfer indicator in conjunction
with this examination, an ISR called in response to an interrupt caused by the packet’s
transfer may be too late to determine the cause of the interrupt, thus leading to some form
of error recovery.

In one embodiment of the invention this “interrupt-claiming” problem may be
addressed by adding an extra bit or other indicator (e.g., a feedback indicator) to the status
register. FIG. 5 depicts a status register suitable for implementation in this embodiment.

In FIG. 5, status register 502 of a network interface includes packet transfer
indicator 504, packet transmission indicator 506, a first error indicator 508 and ISR
indicator 514. Other unlabelled indicators in status register 502 correspond to other
conditions or events encountered in the network interface. Illustratively, each indicator
(except, possibly, ISR indicator 514) is placed into a first state (e.g., characterized by the
value zero) upon initialization and after each polling operation, and may be placed into a
second state in response to its corresponding action or condition. Each indicator in the
status register (other than indicator 514) is connected to the input end of OR gate 510.
Illustratively, if any of the indicators coupled to OR gate 510 enters a second state (e.g.,
characterized by the value one), an interrupt is generated on interrupt line 512 and
transmitted to a host processor or interrupt handler.

As described above, an ISR called in response to an interrupt will attempt to read
status register 502 in order to determine the reason for the interrupt. However, a polling
module operating on a host computer may clear the status register in conjunction with a
polling operation. If the polling module clears the status register before the ISR can read
the status register and determine why an interrupt was issued, a time-consuming error
recovery procedure may be invoked.

Therefore, in the illustrated embodiment ISR indicator 514 has been added to status
register 502 and coupled to interrupt line 512. Illustratively, ISR indicator 514 remains in a

first state (e.g., characterized by the value zero) until an interrupt is issued on interrupt line
25

10

15

20

25

30

WO 00/52895 PCT/US00/05243

512. At that time, ISR indicator 514 transitions to a second state (e.g., characterized by the
value one). An ISR indicator may thus be considered a feedback indicator or summary
indicator to reflect when an interrupt has been generated due to a change in state of a
component of status register 502. Significantly, however, OR gate 510 is not activated
when the ISR indicator enters 1ts second state.

During polling in the presently described embodiment of the invention, status
register 502 is examined by a polling module to determine whether a packet has been
transferred by the network interface. When the software examines the register it may clear
or zero one or more status indicators (e.g., return them to their first state), just like an ISR
would. If an interrupt had been generated (e.g., because of an error condition indicated by
error indicator 508) shortly before the interface is polled, the polling software may clear the
status register before an interrupt handler can determine the reason for being called.
Therefore, in the illustrated embodiment of the invention the interrupt handler can examine
ISR indicator 514 and thus determine that there was a valid interrupt and that it need not re-
initialize the network interface or perform an error recovery procedure. The ISR will
typically clear the status register, possibly including ISR indicator 514, after examining the
register.

In one embodiment of the invention the polling module is specifically configured to
avoid clearing ISR indicator 514 (e.g., returning it to zero) when polling status register 502.

Illustratively, ISR indicator 514 is cleared via a write operation from the host computer
that may be conducted in response to a particular event, such as the invocation of an
interrupt service routine in response to an interrupt. Thus, the polling module may clear
other indicators in the status register during a poll but the ISR indicator is cleared
separately. In another embodiment of the operation, discussed immediately below in
conjunction with FIG. 6, indicators within status register 502 are selectively cleared
through the use of a virtual or alias status register. In this implementation a separate write
operation to clear an ISR indicator is unnecessary.

FIG. 6 illustrates one enhancement to the embodiment of the invention depicted in
FIG. 5. In this enhancement an alias register is associated with the status register. The
alias register in the illustrated embodiment is essentially the status register, but is accessed
through a different address. Thus, the alias register mirrors or mimics the status register in
that each time a bit or indicator in the status register is set or cleared the corresponding bit

or indicator in the alias register is set to the same state. However, clearing an indicator in
26

10

15

20

25

30

WO 00/52895 PCT/US00/05243

the alias register (e.g., by clearing the alias register) does not necessarily clear the
corresponding status register indicator. Instead, a mask is used to allow status register
indicators to be selectively cleared. Thus, in one particular embodiment of the invention
the alias register is a “virtual” register providing an alternative yet traceable path to the
status register.

In the illustrated embodiment of the invention, instead of examining (e.g., reading)
the status register to determine if a packet has arrived, the polling software examines the
alias register. Each time the alias register is examined by the polling software one or more
alias register indicators may be returned to their first state (e.g., the alias register is cleared
when read). In addition, a mask is applied to determine which status register indicators are
cleared when the alias register is cleared. Illustratively, the mask has an entry for every bit
or indicator of the status register — and thus also has an entry for every indicator in the alias
register. The value stored in each mask entry indicates whether or not the corresponding
status register indicator should be cleared (e.g., returned to a value of zero) when the
associated alias register indicator is cleared. A first value (e.g., one) in a mask entry
indicates that the corresponding status register bit should be cleared; a second value (e.g.,
zero) indicates that it should not.

One skilled in the art will appreciate the benefit of employing an alias register and
masking it from the status register. In particular, as a result of this configuration the polling
software that reads the alias register only needs to be configured to handle events associated
with the status register indicators that it clears. Where, for example, the polling software
only handles packet transfer events, and therefore only clears a packet transfer indicator in
the status register, the software need not be configured to handle other events or conditions.
By contrast, in an embodiment of the invention without an alias register the polling
software will clear all status register indicators and thus may need to be capable of handling
all associated errors or conditions reported by those indicators.

With reference now to FIG. 6, status register 502 is configured as described in
conjunction with FIG. 5. ISR indicator 514 is optional, however, in the presently illustrated
embodiment.

Alias register 602 is equivalent in size to status register 502, with the possible
exception that alias ISR indicator 614, a counterpart to ISR indicator 514, may be omitted.
Thus, packet transfer indicator 604, packet transmission indicator 606 and a first error

indicator 608 in alias register 602 correspond to similar entries in status register 502.
27

10

15

20

25

30

WO 00/52895 PCT/US00/05243

Although each indicator in alias register 602 changes state to match its counterpart
in status register 502 whenever that counterpart changes, mask 610 filters the reverse action
when alias register 602 is cleared. In particular, when one or more alias indicators in alias
register 602 are cleared (e.g., in response to being polled), only the specified indicators in
status register 502 are cleared.A In the illustrated implementation mask 610 stores a one for
each indicator in the status register that clears with the alias register. Thus, in FIG. 6, when
alias register 602 is cleared (e.g., when it is read by the polling module), only packet
transfer indicator 504 and packet transmission indicator 506 will be cleared in status
register 502. The remaining indicators maintain their current states.

In one embodiment in which an ISR indicator is used in addition to an alias register
and a mask, the mask entry corresponding to the ISR indicator will store a value (e.g., zero)
indicating that the ISR indicator in the status register is not to be cleared when the alias
register is cleared.

The programmable mask (which may be implemented in a register or other data
structure) may be configured by software operating on the host computer. In particular, the
setting of each mask entry may be determined in accordance with those actions handled by
the software. For example, in an embodiment in which the software only handles “normal”
events — such as the transfer or transmission of a packet — the mask may be configured to
clear only the corresponding indicator(s) in a status register when the alias register is read.
In alternative embodiments the polling software may handle virtually any condition or
event associated with a status register indicator.

Although alias register 602 in FIG. 6 is a virtual register for accessing status register
502 in the illustrated embodiment, when the status register is read it can be determined
whether the status register was accessed directly (i.e., as status register 502) or indirectly
(i.e., through alias register 602). As one skilled in the art will recognize, examining the
address associated with the access will reveal whether the status register is being accessed
directly or through its alias.

Ilustratively, the status register is accessed through an alias register (e.g., alias
address) during heavy levels of network traffic (e.g., when a polling mode of operation is
active). Otherwise, the status register may be accessed directly. In addition, it was
described above that different threshold values for time and/or packet counters in an
interrupt modulator may be desirable for different levels of traffic. Therefore, in an

embodiment of the invention in which an interrupt modulator stores multiple time and/or
28

10

15

20

25

30

WO 00/52895 PCT/US00/05243

packet threshold values (e.g., in separate threshold registers), the threshold value that is
loaded into a counter may be determined by how the status register is accessed.

In particular, during a less-than-heavy level of traffic (e.g., when less than
approximately fifty packets are processed during an interrupt), status register 502 may be
accessed directly. Each time itis cleared a first time threshold value and/or packet
threshold value is loaded into the time and packet counters. When the traffic becomes
heavy and an alias register is implemented, each time the alias register is cleared a second
time threshold value and/or packet threshold value is loaded into the time and packet
counters. |

FIG. 7 is a flow chart depicting one method of employing polling and interrupt
modulation to suppress the generation of interrupts by a network interface without
significantly delaying the processing of packets received from a network. In the illustrated
procedure a network interface transitions from an interrupt mode of operation to a polling
mode. State 700 is a start state.

In state 702, an interrupt mode of operation is active. In this mode of operation
packets from a network are processed by a host computer processor in response to
interrupts generated from the network interface. The rate at which interrupts are generated,
however, may be modulated as described above. If, for example, a moderate level of traffic
is being received at the network interface, a method of interrupt modulation described in
the previous section may be employed.

In state 704, it is determined whether the level of traffic or rate of interrupts or some
other traffic measure indicates that it would be more efficient to implement a polling mode
of operation. It may, for example, be determined that the number of packets processed
during an interrupt exceeds a programmable threshold (e.g., fifty). Other criteria for
making this determination include the rate at which interrupts are issued by the network
interface for packets transferred to the host (e.g., approximately 10,000 per second) or the
level of processor utilization (e.g., approximately ninety percent). These thresholds may be
measured on a one-time or instantaneous basis or may be averaged or otherwise combined
over a period of time or a number of interrupts. The illustrated procedure returns to state
702 if an applicable threshold is not met.

In state 706 a polling mode of operation is initiated. In one embodiment of the
invention a polling module is activated, or loaded for execution, by a host computer

processor. Illustratively, the polling module or thread resides in host computer memory
29

10

15

20

25

30

WO 00/52895 PCT/US00/05243

and, as described below, is periodically activated to poll the network interface to determine
if any packets have been received from the network interface. If so, the module processes
the packets before returning to a suspended mode.

In state 708 thresholds for one or more interrupt modulator counters (e.g., a time
and/or packet counter) are Set.or increased from lower values used during interrupt
modulation. The counters are activated and thereafter decrement or increment as described
previously. By increasing the thresholds, any interrupts that may be issued by the interrupt
modulator are issued with less frequency, if at all. Delaying interrupts allows the polling
module to perform its polling and packet processing and allows a host processor to avoid
the overhead involved in servicing an interrupt.

In this embodiment an interrupt modulator may store multiple threshold values in
multiple registers for a packet and/or a time counter in order to facilitate the modification
of counter thresholds. With multiple threshold registers, the counters may be easily re-
initialized or switched to use different thresholds. In particular, when operating in a
moderate level of network traffic (e.g., without using an alias register) a packet or time
counter may be re-initialized to a first threshold every time a status register is cleared (e.g.,
because of an interrupt). However, when operating in a heavier traffic environment
characterized by the use of polling and, possibly, an alias register, a counter may be re-
initialized to a second threshold when the alias register is read by the polling software.

In state 710, a time or packet counter is examined to determine if it expired or
reached its limit (e.g., zero). If so, then in state 712 an interrupt is issued to inform a host
processor that a packet awaits its attention if a packet was transferred since the last poll or
interrupt. The illustrated procedure then ends with end state 718.

If no counter expired in state 710, then a polling timer is examined in state 714. If
the polling timer expired or indicates that it is time for a polling operation, the polling
module polls the network interface in state 716 and processes any waiting packets. The
polling timer may or may not be separate from an interrupt modulator's time counter.

State 710 demonstrates that if an interrupt modulator reaches a threshold value, the
network interface will not continue waiting for a polling operation. In one alternative
embodiment a polling timer may be examined more frequently than a packet or time
counter. In other words, states 710-712 and 714-716 may be reversed, such that the
interrupt modulator’s counters are only examined when it is determined that it is not time
for a polling operation.

30

10

15

20

25

30

WO 00/52895 PCT/US00/05243

After state 712 or state 716 the illustrated procedure ends at state 718. The
illustrated procedure thus depicts only one poll or interrupt. In one embodiment of the
invention, however, end state 718 is replaced by a test of whether an interrupt mode should
be resumed. If so, counter thresholds may be reset (e.g., decreased — possibly to values
held in different threshold registers) and the procedure returned to state 702. If not, the
procedure returns to state 710 or, if a counter needs to be adjusted, to state 708. As
described above, the test for determining whether an interrupt mode of operation should be
resumed may entail examining the level of network traffic, the rate of packet arrival or
transfer, the number of packets processed during an interrupt, the level of processor
utilization or some other measure. In particular, if the network interface is polled a
predetermined number of times without detecting the transfer of a packet, an interrupt
mode of operation may be adopted.

In order to implement the embodiments described above, software operating on a
host computer (e.g., a device driver) may require modification. In particular, the software
may be altered to maintain a timer to determine when the software should poll the network
interface. In addition, the software may be modified to examine (and clear) an alias register
instead of a status register.

During polling in a heavy traffic environment the software may have many packets
to process each time it examines a network interface’s status register or alias register. In
order to prevent an interrupt modulator’s counter from reaching its threshold during the
processing of the packets, the polling software may temporarily pause, suspend or interrupt
operation in order to re-initialize the counter(s). For example, if an interrupt modulator’s
time counter is set to one millisecond, the polling software will attempt to ensure that it re-
initializes the time counter less than one millisecond after it was last re-initialized. The
polling software may examine the time counter, its own counter, or another counter or
clock signal in order to determine when it should re-initialize a counter.

Illustratively, the threshold for an interrupt modulator’s time counter is determined,
at least in part, by the amount of time that the polling software is expected to need in order
to process an expected amount of traffic. The time counter threshold, and the frequency of
polling, may also be affected by the speed of a host computer processor.

In one embodiment of the invention in which an interrupt modulator is used to
control the number of interrupts issued to a host processor, an interrupt mask may be

associated with the status register. An interrupt mask is distinct from the alias register
31

10

15

WO 00/52895 PCT/US00/05243

mask described previously. In particular, an interrupt mask may contain an entry for each
status register indicator, and each entry’s value indicates whether or not an interrupt is
generated when the indicator changes from a first state to a second state. Therefore, an
interrupt mask could be logically visualized in position between status register 502 and OR
gate 510 in FIG. 5. Depending upon a particular operating environment, an interrupt mask

may or may not be used in the embodiments of the invention described above.

Sun, Sun Microsystems, SPARC and Solaris are trademarks or registered
trademarks of Sun Microsystems, Incorporated, in the United States and other countries.

The foregoing descriptions of embodiments of the invention have been presented
for purposes of illustration and description only. They are not intended to be exhaustive or
to limit the invention to the forms disclosed. Many modifications and variations will be
apparent to practitioners skilled in the art. Accordingly, the above disclosure is not
intended to limit the invention; the scope of the invention is defined by the appended

claims.

32

10

15

20

25

30

WO 00/52895 PCT/US00/05243

What Is Claimed Is:

1. A method of controlling the generation of interrupts from a communication
device, comprising:

operating a communicétion device in an interrupt mode until a rate of information
transfer from said communication device reaches a first level, wherein a host computer
identifies a transfer of a first packet of information in said interrupt mode by receiving an
interrupt generated by said communication device;

operating said communication device in a polling mode after said first level of
information transfer is detected, wherein said host computer identifies a transfer of a
second packet of information in said polling mode by polling said communication device;
and

returning said communication device to said interrupt mode of operation if a rate of

information transfer decreases to a second level.

2. The method of claim 1, further comprising returning said communication
device to said interrupt mode of operation if a predetermined length of time passes without

said communication device receiving a poll from said host computer.

3. The method of claim 1, further comprising returning said communication
device to said interrupt mode of operation if a predetermined amount of information is
transferred from said communication device without said communication device receiving

a poll from said host computer.

4, The method of claim 1, further comprising returning said communication
device to said interrupt mode if said communication device receives a predetermined

number of polls without detecting the transfer of a packet of information.

5. The method of claim 1, wherein said operating a communication device in
an interrupt mode comprises:

transferring a first packet of information from said communication device;

generating a first packet-transferred interrupt to a host computer from said

communication device;

33

10

15

20

25

30

WO 00/52895 PCT/US00/05243

initializing a time counter in response to completion of processing of said first
packet-transferred interrupt by said host computer, wherein said time counter is configured
to increment through a first range of time counts after said initializing;

initializing a packet counter in response to said completion of processing of said
first packet-transferred intemipt by said host computer, wherein said packet counter is
configured to increment through a first range of packet counts after said initializing; and

if either said time counter is incremented to a first final time count or said packet
counter is incremented to a first final packet count, issuing another packet-transferred

interrupt to said host computer in response to transfer of another packet.

6. The method of claim 5, wherein said initializing a time counter comprises

setting said time counter to a first initial time count.

7. The method of claim 6, wherein said initializing a packet counter comprises

setting said packet counter to a first initial packet count.

8. The method of claim 5, wherein said operating said communication device
in a polling mode comprises:

receiving a poll from a polling module operating on said host computer, wherein
said poll comprises an examination of said communication device to determine if a packet
of information has been transferred from said communication device;

re-initializing said time counter in response to said poll, wherein said time counter
is configured to increment through a second range of time counts after said re-initializing;
and

re-initializing said packet counter in response to said poll, wherein said packet
counter is configured to increment through a second range of packet counts after said re-

initializing.

9. The method of claim 8, wherein said polling mode further comprises:

transferring a second packet; and

if either said time counter is incremented to a second final time count or said packet
counter is incremented to a second final packet count, issuing a second packet-transferred

interrupt to said host computer in response to said transfer of said second packet.
34

10

15

20

25

30

WO 00/52895 PCT/US00/05243

10. The method of claim 8, wherein said initializing said time counter in

response to said poll comprises setting said time counter to a second initial time count.

11. The method of claim 10, wherein said initializing said packet counter in

response to said poll comprises setting said packet counter to a second initial packet count.

12. The method of claim 11, further comprising:

storing said first initial time count in a first time threshold storage device;

storing said second initial time count in a second time threshold storage device;
storing said first initial packet count in a first packet threshold storage device; and

storing said second initial packet count in a second packet threshold storage device.

13. The method of claim 8, wherein said second range of time counts is larger
than said first range of time counts and said second range of packet counts is larger than

said first range of time counts.

14. The method of claim 1, wherein said operating said communication device
in a polling mode comprises:

examining a set of alias indicators in said communication device, wherein each of
said alias indicators is configured to change from a first state to a second state in
association with a corresponding status indicator in a set of status indicators;

altering one or more of said alias indicators from said second state to said first state;
and

selectively altering one or more of said status indicators from said second state to

said first state.

15. The method of claim 14, wherein said set of status indicators includes a
packet-transferred indicator configured to change from said first state to said second state in

response to said transfer of said second packet from said communication device.

16. The method of claim 1, wherein said communication device is a network

interface.
35

10

15

20

25

30

WO 00/52895 PCT/US00/05243

17. A method of facilitating polling of a communication device, comprising:

maintaining a set of status indicators, including a packet-transferred indicator
configured to change from a first state to a second state in response to transfer of a packet
from a communication device;

maintaining a set of alias indicators, including an alias packet-transferred indicator
configured to change from said first state to said second state when said packet-transferred
indicator changes from said first state to said second state;

transferring a first packet from said communication device;

altering said packet-transferred indicator from said first state to said second state;

receiving a poll at said communication device from a polling module of a host
computer, wherein said polling module is configured to poll said communication device to
determine if a packet has been transferred;

returning said alias packet-transferred indicator from said second state to said first
state; and

selectively returning one or more of said status indicators from said second state to

said first state, including said packet-transferred indicator.

18. The method of claim 17, further comprising disabling issuance of a packet-
transferred interrupt from said communication device, wherein said packet-transferred

interrupt is normally issued in response to transfer of a packet.

19. The method of claim 18, further comprising:

enabling said issuance of a packet-transferred interrupt if a predetermined period of
time has elapsed after said returning said alias packet-transferred indicator or said
selectively returning said packet-transferred indicator; and

enabling said issuance of a packet-transferred interrupt if a predetermined number
of packets have been transferred from said communication device after said selectively
returning said alias packet-transferred indicator or said returning said packet-transferred

indicator.

20. The method of claim 18, wherein said disabling comprises initializing a time

counter to hold an initial time count, wherein said time counter is configured for
36

10

15

20

25

30

WO 00/52895 PCT/US00/05243

incrementing said time count toward a final time count after said initializing.

21. The method of claim 20, wherein said initial time count comprises a first
time threshold value stored in a first time threshold storage device and said incrementing

comprises incrementing said time count toward zero from said first time threshold.

22. The method of claim 18, wherein said disabling comprises initializing a
packet counter to hold an initial packet count, wherein said packet counter is configured for

incrementing said packet count toward a final packet count after said initializing.

23. The method of claim 22, wherein said initial packet count comprises a first
packet threshold value stored in a first packet threshold storage device and said

incrementing comprises incrementing said packet count toward zero.

24. The method of claim 17, wherein said poll comprises examining said set of

alias indicators.

25. The method of claim 17, wherein said selectively returning comprises
applying a mask, said mask comprising a mask indicator configured to indicate whether a
predetermined status indicator is to be altered from said second state to said first state when

a corresponding alias indicator is altered from said second state to said first state.

26. The method of claim 17, further comprising:

initializing a time count to a first threshold time count stored in a first time
threshold storage device associated with a first level of traffic transferred from said
communication device, wherein said time count is configured to decrement after said
initializing; and

initializing a packet count to a first threshold packet count stored in a first packet
threshold storage device associated with a first level of traffic transferred from said
communication device, wherein said packet count is configured to decrement after said
initializing;

wherein an interrupt normally issued in response to transfer of a packet from said

communication device is suppressed unless said time count reaches a final time count or
37

10

15

20

25

30

WO 00/52895 PCT/US00/05243

said packet count reaches a final packet count.

27. The method of claim 26, further comprising:

re-initializing said time count to a second threshold time count stored in a second
time threshold storage device associated with a second level of traffic transferred from said
communication device, wherein said time count is configured to decrement after said re-
initializing; and

re-initializing said packet count to a second threshold packet count stored in a
second packet threshold storage device associated with a second level of traffic transferred
from said communication device, wherein said packet count is configured to decrement

after said re-initializing.

28. The method of claim 17, wherein said returning said alias packet-transferred

indicator comprises clearing said set of alias indicators.

29. The method of claim 17, wherein said communication device is a network

interface.

30. An interrupt modulator for controlling the generation of interrupts from a
communication device, comprising:

an indicator configured to indicate the transfer of a packet from a communication
device, wherein said indicator is set from a first state to a second state in response to said
transfer of said packet and is reset to said first state when a poll is received;

a first time threshold storage device configured to store a first initial time count;

a second time threshold storage device configured to store a second initial time
count;

a time counter configured to store a time count, wherein said time count is
incrementable in response to a clock signal; and

an interrupt generator configured to generate an interrupt in response to said transfer
of a packet if said time count reaches a final time count;

wherein said time count is reset to one of said first initial time count and said
second initial time count in response to said poll or a termination of processing of said
interrupt.

38

10

15

20

25

30

WO 00/52895 PCT/US00/05243

31. The interrupt modulator of claim 30, further comprising:

a first packet threshold storage device configured to store a first initial packet count;

a second packet threshold storage device configured to store a second initial packet
count; and '

a packet counter configured to hold a packet count, wherein said packet count is
incrementable in response to transfer of packets;

wherein said interrupt generator is further configured to generate an interrupt in
response to said transfer of said packet if said packet count reaches a final packet count;
and

wherein said packet count is reset to one of said first initial packet count and said
second initial packet count in response to said poll or said termination of processing of said

interrupt.

32. The interrupt modulator of claim 30, wherein said indicator comprises a
packet-transferred indicator of a status module, said status module comprising a set of
indicators that change from said first state to said second state in response to predetermined

events.

33. The interrupt modulator of claim 30, wherein said indicator is a status
module comprising a packet-transferred indicator configured to enter a second state from a

first state in response to the transfer of a packet.

34. The interrupt modulator of claim 30, wherein said indicator comprises an
alias packet-transferred indicator of an alias module, wherein said alias module comprises a
set of virtual indicators configured to change from said first state to said second state when

corresponding indicators in a status module change from said first state to said second state.

35. The interrupt modulator of claim 30, wherein said indicator is an alias
module comprising an alias packet-transferred indicator configured to change from said
first state to said second state when a packet-transferred indicator of a set of status

indicators changes from said first state to said second state.

39

10

15

20

25

30

WO 00/52895 PCT/US00/05243

36. The interrupt modulator of claim 34, further comprising a mask, said mask
comprising a set of entries corresponding to said virtual indicators and said status register
indicators, and wherein a status register indicator changes state when a corresponding

virtual indicator changes state if said corresponding entry is set to a predetermined value.

37. The interrupt modulator of claim 30, further comprising:

a set of status indicators configured to change from a first status state to a second
status state in response to predetermined conditions in said communication device, wherein
said set of status indicators includes said indicator;

a set of virtual status indicators, wherein each of said virtual status indicators is
configured to change from said first status state to said second status state when a
corresponding status indicator in said set of status indicators changes from said first status
state to said second status state; and

a set of return indicators, wherein each of said return indicators is configured to
selectively indicate whether a predetermined status indicator in said set of status indicators
is to be returned to said first status state when a corresponding virtual status indicator in
said set of virtual status indicators returns to said first status state;

wherein one or more of said set of virtual status indicators are returned from said

second status state to said first status state when said poll is received.

38. The interrupt modulator of claim 30, wherein said poll is received from a

polling module of a host computer.

39. The interrupt modulator of claim 30, wherein said communication device is

a network interface.

40. A computer system for receiving packets from a network, comprising:

a packet-transferred indicator configured to indicate a transfer of a first packet from
a network interface, wherein said packet-transferred indicator changes from a first state to a
second state in response to transfer of said packet;

an alias packet-transferred indicator configured to change from said first state to
said second state when said packet-transferred indicator changes from said first state to said

second state;
40

10

15

20

25

30

WO 00/52895 PCT/US00/05243

a polling module for polling said alias packet-transferred indicator to determine if a
packet has been transferred;

a time counter configured to store a time count, wherein said time count is
initialized to an initial time count when said polling module polls said alias packet-
transferred indicator, and thefeafter increments toward a final time count;

a packet counter configured to store a packet count, wherein said packet count is
initialized to an initial packet count when said polling module polls said alias packet-
transferred indicator, and thereafter increments toward a final packet count;

an interrupt generator configured to generate an interrupt signal in response to a
transfer of a packet from said network interface if said time count reaches said final time
count or said packet count reaches said final packet count; and

a mask for selectively determining whether said packet-transferred indicator is
returned to said first state when said alias packet-transferred indicator is returned to said
first state;

wherein said alias packet-transferred indicator is returned from said second state to

said first state when polled by said polling module.

41. A method of polling a network interface to detect the transfer of a packet
from a network interface, comprising:

determining whether a level of traffic transferred from a network interface has
reached a first level;

loading a polling module;

periodically polling said network interface to determine if a packet has been
transferred from said network interface;

receiving an interrupt from said network interface if a predetermined amount of
time passes or a predetermined number of packets are transferred from said network
interface after a first poll; and

if a level of traffic transferred from the network interface decreases from said first
level to a second level, halting said periodic polling;

wherein interrupts from said network interface associated with the transfer of

packets are suppressed during said periodic polling.

42. The method of claim 41, wherein said polling comprises:
41

10

15

20

25

30

WO 00/52895 PCT/US00/05243

examining an alias indicator of a network interface to determine if said alias
indicator is in a second state, wherein said alias indicator enters said second state from a
first state when a packet-transferred indicator in said network interface changes from said
first state to said second state in response to a transfer of a packet from said network
interface;

returning said alias indicator to said first state from said second state; and

selectively returning said packet-transferred indicator to said first state from said

second state.

43, The method of claim 41, wherein said polling comprises:

processing one or more packets transferred from said network interface; and

suspending said processing prior to completion of processing of a number of
packets transferred from said network interface since a prior poll;

wherein said suspension of processing prevents said passing of said predetermined

amount of time.

44. A computer readable storage medium storing instructions that, when
executed by a computer, cause the computer to perform a method of polling a network
interface to detect the transfer of a packet from a network interface, the method comprising:

determining whether a level of traffic transferred from a network interface has
reached a first level;

loading a polling module;

periodically polling said network interface to determine if a packet has been
transferred from said network interface;

receiving an interrupt from said network interface if a predetermined amount of
time passes or a predetermined number of packets are transferred from said network
interface after a first poll; and

if a level of traffic transferred from said network interface decreases from said first
level to a second level, suspending said periodic polling;

wherein interrupts from said network interface associated with the transfer of

packets are suppressed during said periodic polling.

42

PCT/US00/05243

WO 00/52895

00l
dO1VINAON LdNYH3LNI

1 "'Old

0L 1 TVYNOIS X000

y

d431INNOD

JZIVILINI

20l

" avol

R ETEDEN
| GTOHSIYHL |
|
L

JNIL !

.I|I.4..I|I.._

JNLL A|||_

0cl

0ocl
TVYNOIS
a379VN3 LdNYYILINI

431NdNOD

1SOH OL cel

velL
IVNOIS LdNYH3LNI

ENIEYCELTER

147
318193y

IVNOIS

9l
1NNOD
INILL TVNId

A——————

44
1INNOD
\ 13X0vd TvNI4

9L
TVNOIS

a3a33ox3

S13Movd

[3

JZIVILINI

Y d431NNOD
13M0vd

ClL1 TIVNOIS d34SNVHL 13X40Vd

A

ey0l
4318193y
JT1OHSIHHL
JNIL

asol
NETESIOE R
| GTOHSIYHL |
I 13M0vd !

.|I.|||||||l_

]

eg01
318193y
QT0HS3HHL
13XM0vd

SNLVLS

H31LNdINOD ¥3LSIo3ad

1SOH WO¥A uVa10

/7

1

WO 00/52895 PCT/US00/05243

/ READ STATUS \
REGISTER 216

// ~

~

TIME/PACKET 210

INITIALIZE COUNTER
206

DECREMENT COUNTER
208

)

INTERRUPT DISABLED
202

o J

TERMINATION OF COUNTER
INTERRUPT REACHES FINAL
214 VALUE
212

INTERRUPT ENABLED
204

FIG. 2

2/ 7

WO 00/52895

START
300

TIME AND PACKET
COUNTERS INITIALIZED
302

A

DISABLE INTERRUPT
304

TIME AND PACKET
COUNTERS DECREMENT
306

NO

COUNTER
REACH FINAL
VALUE?
308

ENABLE INTERRUPT
310

END
312

FIG. 3

377

PCT/US00/05243

WO 00/52895 PCT/US00/05243

INTERRUPT 424
— ~ ~
INITIALIZE COUNTER TIME/PACKET 414 | DECREMENT COUNTER
408 410
POLL POLLING COUNTER
COMPLETED REACHES THRESHOLD
412 416
POLL
406
INTERRUPT
DISABLED
402

.

POLLING
BLOCKED
422

TERMINATION OF TIME/PACKET COUNTER
INTERRUPT REACHES FINAL VALUE
420 418

INTERRUPT ENABLED
404

FIG. 4

4 /17

WO 00/52895

TO HOST PROCESSOR

A

512

PCT/US00/05243

510

(&)
1N

T

STATUS
REGISTER
502

504

506

FIG. 5

577

508

PCT/US00/05243

WO 00/52895

TO HOST PROCESSOR

\

510

A

512

STATUS
REGISTER
502

ALIAS REGISTER

N

602

608

606

604

FIG. 6

6 /7

WO 00/52895

START
700

PCT/US00/05243

HOST PROCESSES
PACKETS IN RESPONSE TO
INTERRUPTS
702

NO

TRAFFIC
LEVEL >

INCREASE INTERRUPT
MODULATOR COUNTER
THRESHOLD(S)

708

A 4

THRESHOLD?
704

ACTIVATE POLLING MODE

706

REACH A FINAL
VALUE?
710

COUNTER NO

POLLING

ISSUE INTERRUPT
712

TIMER EXPIRE?
714

RECEIVE POLL AT
NETWORK INTERFACE
716

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

