Office de la Propriete Canadian CA 2484694 A1 2006/04/14

Intellectuell Intellectual P
du Canada_ Office T oy 2 484 694
g,rngags?:i‘:g:na " ﬁgﬁg‘?y‘éyaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2004/10/14 (51) Cl.Int./Int.Cl. GO6F 12/02 (2006.01),

GO6F 17/30(2006.01), GO6F 13/38 (2006.01)

(71) Demandeur/Applicant:
ALCATEL, FR

(72) Inventeurs/Inventors:
PIPER, RICH, CA;
PILON, MARK, CA;
LANDRY, FELIX, CA

(74) Agent: MARKS & CLERK

(41) Mise a la disp. pub./Open to Public Insp.: 2006/04/14

(54) Titre : MEMOIRE CACHE RAM POUR BASE DE DONNEES
(54) Title: DATABASE RAM CACHE

REQUESTING 12

PROCESS —
o

REQUESTING 12
PROCESS S

API 18

1
SHARED ._

CACHE

e

4
CONTROL -

PROCESS

10

DATABASE

(57) Abrégée/Abstract:
A system and method are provided for providing a shared RAM cache of a database, accessible by multiple processes. By sharing
a single cache rather than local copies of the database, memory Is saved and synchronization of data accessed by different

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2484694 A1 2006/04/14

(21) 2 484 694
(13) A1

(57) Abrege(suite)/Abstract(continued):

processes Is assured. Synchronization between the database and the shared cache Is assured by using a unidirectional notification
mechanism between the database and the shared cache. Client APIs within the processes search the data within the shared
cache directly, rather than by making a request to a database server. Therefore server load Is not affected by the number of
requesting applications and data fetch time Is not affected by Inter-Process Communication delay or by additional context

switching. A new synchronization scheme allows multiple processes to be used In building and maintaining the cache, greatly
reducing start up time.

CA 02484694 2004-10-14

Abstract

A system and method are provided for providing a shared RAM cache ofl
a database, accessible by multiple processes. By sharing a single cache rather
than local copies of the database, memory is saved and synchronization of data
accessed by different processes is assured. OSynchronization between the
database and the shared cache is assured by using a unidirectional notification
mechanism between the database and the shared cache. Client APIs within the
processes. search the data within the shared cache directly, rather than by
making a request to a database Server. Therefore server load is not affected by
the number of requesting applications and data fetch time is not affected by
Inter-Process Communication delay or by additional context switching. A new
synchronization scheme allows. mﬁltiple précesses to be used in bu-ﬂding and

maintaining the cache, greatly reducing start up time.

CA 02484694 2004—.10—14

137988

DATABASE RAM CACHE

Field of the invention

[01] The invention relates to database caches, and more particularly to the use

of shared caches in multi-threaded processes.

Background of the invention

[02] In multi-process applications which require access to a shared database, a
requesting process requiring database access makes a request to a central
meméry sharing process, such as a database server. The database server
retrieves the required data and copies it to an Inter-Process Communication
(IPC) mechanism, from where the requesting process can access the data.
However, this requires synchronization between the database server and the

requesting processes, which leads to delays and time inetficiencies.

[03] One solution 'Would be to have each requesting process cache its own
copy of the database. Although memory intensive, this approach may be
feasible for small databases. However for large databases, such as on the order
of 4 GB as is typical for network management systems, this approach is clearly

not realistic.

Summary of the invention

[04] In accordance with one aspect of the invention, a method is provided for
providing multiple processes with access to data stored in a database. Data is
copied from the database to a cache in shared meniory, the shared memory
being accessiblé by each process. Synchronicity between the database and the
cache is maintained. Each process is provided with an Application Program

Interface (API) containing instructions for accessing the data within the cache.

CA 02484694 2004-10-14

137988

[05] In accordance with another aspect of the invention, a cache is provided
for storing data from a database stbring tables. The cache has a data structure
which includes, for each table, at least one linked list of data segments storing
data from the table. * For each table, the data structure includes a control
segment storing an address of the first data segment in each linked list. The
data structure includes a master segment storing an address for each control

segment.

[06] In accordance with yet another aspect of the invention, a method is
provided for providing job synchronization. For each job, the job is divided
into tasks. The tasks are grouped ‘into one or more task groups, each task group
being a single operation for synchronization purposes and comprising at least
one of the tasks. Each of the tasks is executed on a worker thread belonging to a
specific thread server pool. All waiting client applications are notified of

completion of the job only upon completion of the last task of the job.

[07] Apparatus are provided for carrying out the methods of the invention.
The methods may be stored in the form of software instructions stored on

computer-readable media.

[08] The methods and apparatus of the present invention allow multiple
processes to access a common database with minimal memory usage, while also
keeping synchroni'zatidn times to a mmimum. By sh'aring a single cache,
memory is saved and synchronization of data accessed by different processes is
assured. Synchronization between the database and the shared cache is assured
by using a unidirectional notification \mechanisr‘n between the database and the
shared cache. Since the APIs searches the data within the shared cache directly,
rather than by makin_g a request to a database server, the server load is not
affected by thé number of requesting applications, and data fetch time is not
affected by Inter-Process Communication delay or by additional context
switching. A new synchronization scheme allows.multiple processors to be

used in building and maintaining the cache, greatly reducing start up time.

CA 02484694 2004-10-14

137988

Brief description of the drawings

[09] The features and advantages of the invention will become more apparent
from the following detailed description of the preferred embodiment(s) with

reference to the attached figures, wherein:

FIG. 1 is a block diagram of a shared RAM cache system according to one

embodiment of the invention;

FIG. 2 is a block diagram of messaging during the maintenance of the

shared RAM cache of FIG. 1 according to one embodiment of the invention;

"FIG. 3 is a flowchart of a method by which the worker threads of FIG. 2

maintain the shared cache according to one embodiment of the invention;

FIG. 4 is a block diagram of objects used for synchronizing requests

according to one embodiment of the invention;

FIG. 5 is a block diagram of messaging during creation of a notification

group;

FIG. 6 is a block diagram of messaging during creation of a request; and
FIG. 7 is a block diagram of messaging when a request is completed.

[10] It will be noted that in the attached figures, like features bear similar
labels.

Detailed description of the embodiments

[11] Referring to FIG. 1, an example system of implemehtihg a shared RAM
cache according to one embodiment of the invention is shown. A database 10
stores data which is of interest to one or more requesting processes 12. A
control process 14 has read-write acéess to the database 10. The control process

14 also has read-write access to a shared cache 16 stored in RAM. Each

CA 02484694 2004-10-14

137988

requesting process 12 has an API 18, which has read-only access to the shared
RAM cache 16. Broadly, in operation the shared cache 16 stores copies of data
“stored in the database 10, for direct access by each of the requesting processes 12
| thr‘ough their respective APIs 18. Creation of the shared cache 16 and
maintenance of the shared cache 16 (synchronization between the shared cache

and the database 10) is carried out by the control process 14.

[12] When the control process 14 is first turned on or created, the control
procéss 14 determines whether the shared cache 16 exists. If the shared cache 16
does not exist, the control process 14 creates one or more worker threads, which
copy the contents of the database to the shared cache 16. The worker threads
preferably use the synchronization scheme described below, in order to

accelerate the build time of fhe shared cache 16.

[13] The shared cache 16 is structured in a way that allows the worker threads
to build the shared cache 16 in parallel. The control process 14 creates a master
segment within the shared cache 16. The master segment contains a plurality of
entries. Each master segment entry stores the location of a ditferent control
segment within the shared cache 16, each control segment corresponding to a
unique table within the database 10. Each control segment contains at least one
entry. Each control segment entry stores the location of a different first data
segment, each first data segment corresponding to a unique worker thread.
- When a worker thread responsible for particular data within a particular table
within the database 10 begins copying data from the table to the shared cache
16, the worker thread is therefore able to locate the first data segment to which
the data is to be copied. Any first data segment may have as its last entry the
address of a second data segment, to which the corresponding worker thread
copies data once the first data segment is full. This may be repeated, until a
data segment stores an invalid address in its last entry. In effect, each control
segment lists the Starting address of a linked list of data segments to be filled by
a corresponding worker thread with data from the table corresponding to the

control segment.

CA 02484694 2004-10-14

137988

[14] Referring to FIG. 2, messaging during synchronization of the database 10
and the shared cache 16 is shown according to one embodiment of the
invention. The database server includes a function for initializing an IPC for
communicating with the control process 14. Each table within the databasé 10
includes a trigger. When the contents of a table within the database 10 are
altered, by adding a record, deleting a record, or updating a record, the trigger
is activated and a stored procedure within the database server of the database '
10 is called. The stored procedure creates a message 30, and appends the
message 30 to a first queue 32 of messages. The message 30 includes a table
identifier (ID), a row ID, and an action. The message is preferably three integers
in length, one integer for each of the three fields. The action is a flag signifying

one of “addition”, “deletion”, and “update”.

[15] The control process 14 includes a controller 34 and preferably at least one
redundancy 36 for fhe controller 34. If the controller 34 fails, the redundancy 36
takes over the actions of the controller described below. The controller 34
listens to the IPC, created by the database server, for database table updates in
the form of messages from -thé first queue 32. For each message, the controller
34 determines the table ID and the row ID. If the action is a “deletion” or an
"‘update”, the controller 34 sets a row status flag 38 to the appropriate table and
row within the shared cache 16, thereby locking the row and preventing any of
the requesting processes 12 from accessing any record which has just been
updated or deleted. The controller 34 then forwards the message to a second |
queue 40 of messages within the control process 14, and deletes the message

from the first queue 32.

[16] The control process 14 also includes at least one worker thread 42. The
worker threads form a multi-thread process responsible for the actual update of
the shared cache 16. Each worker 42 thread reads messages from the second
queue 40, using a synchronization scheme described below. Referring to FIG. 3,
a flowchart of a method by which a worker thread 42 updates the shared cache

16 according to one embodiment of the invention is shown. The worker thread

CA 02484694 2004-10-14

137988

42 reads a message from the second queue 40, then at step 50 the worker thread
determines the action of the message. If_‘ at step 52 the Workér thread
determines that the action is a “deletion”, then at step 54 the worker thread
consults the database 10 to verify that the row identified by the row ID and the
table ID within the message has actually been deleted from the database. If the
deletion is verified, then at step 56 the worker thread deletes the corresponding
row from the shared cache 16. If the deletion is not verified at step 54, then at
step 58 the worker thread discards the message and creates an error report, and
changes the row status flag to a value signifying that the row is to audited. The |
row remains accessible to requesting processes, but will be re-examined for

possible deletion by an audit portion of the control process (not shown in

FIG. 2).

[17] If at step 52 the worker thread determines that the action is not a
”deletioh”, then at step 60 the worker thread determines whether the action is
an “addition”. If the action is an “addition”, then at step 62 the worker thread
consults the database 10 to verify that the row identified by the row ID and the
table ID within the message has actually been added to the database. If the
addition is verified, then at step 64 the worker thread copies the contents of the
- row within the database 10 to the shared cache 16. If the addition is not verified'
at step 62, then at step 65 the worker thread copies the contents of the row to the
shared cache 16, but discards the message and creates an error report at 'step 66

and marks the row as to be audited as in step 58.

[18] If at step 60 the worker thread determines that the action is not an
“addition”, then at step 70 the worker thread determines whether the action is
an “update”. If the actidn is an “update”, then at step 72 the worker thread
consults the database 10 to verity that the row identified by the row ID and the
table ID within the message has actually been updated. If the update is verified,
then at step 74 the worker thread copies the contents of the row within the -
database 10 to the shared cache 16 in order to update the shared cache 16. At

step 75 the worker thread resets the row status flag to remove the rowlock that

CA 02484694 2004-10-14

137988

had been set by the controller 34. If the update is not verified at step 72, then at
step 76 the worker thread discards the message and creates an error report, and

marks the row as to be audited as in step 58.

[19] If at step 70 the worker thread determines that the action is not an
“update”, then the action is of an unknown type. The worker thread generates

an error report at step 80, and discards the message.

[20] The shared cache 16 has no equivalent to a database server. Rather, the

APT 18 within each requesting process 12 accesses data within the shared cache

16 directly. Each API 18 accesses the data in the shared memory segments of
the shared cache 16 through the master segment and does not directly interact
with the server process. If the row status flag of a row being accessed by an API
18 is marked as update pending or deletion pending, the API 18 does not
retrieve the data for the row. Synchronization is thereby achieved by use of row
status flags, set by the controller 34 (or the redundancy 36) when a row is being
updated or deleted and by the worker threads 42 once the update or deletion is

verified.

[21] In order to accelerate creation and maintenance of the shared cache by
the worker threads, a synchronization schemed described with reference to FIG.
4 to FIG. 7 is used. Referring to FIG. 4, a block diagram of objects used for
synchronizing reCiuests according to one embodiment of the invention is shown.
An application thread 90 communicates with a thread server manager 92. The
application thread 90 sends requests for notification groups and task requests to
the thread server manager 92. In the case of building and maintaining the
shared cache 16, the application thread would be an application\ within the
control process 14, such as the controller 34. The thread server manager 92 is
responsible for creating and destroying one or more worker threads 94, which
may be grouped into one or more worker thread groups 96. The thread server
manager 92 also serves as the worker server main command loop. Although

only one application thread 90 is shown in FIG. 4, it is to be understood that

CA 02484694 2004-10-14

137988

there will generally be more than one application thread 90 requesting task

requests and notification groups.

[22] The thread server manager 92 sends requests for task requests to a
requeét manager 100. The request manager 100 creates task i‘equests 102, which
are sent to the work threads 94 on internal request manager queues 104, one
request manager Queue 104 per worker thread group 96. The worker threads 94
continuously attempt to read task requests 102 from the corresponding request
manager queue for execution, access to the each request manager queue being
restricted by use of counting semaphores to prevent access when the request

manager queue 1s empty.

[23] The thread server manager 92 also sends requests for notification groups
(described in more detail below) to a notification manager 110. The notification
manager 110 is responsible for task synchronization, and creates and deletes
notification groups. The notificatioh manager 110 stores a global list 112 of all
open and/or executing notification group objects 114 which it has created. The
notification manager 110 also stores one or more thread specific lists 116 of
handles 118 to the notification group objects 114. Each thread specific list 116

lists handles 118 to notification group objects for a particular application thread.

[24] Referring to FIG. 5, a block diagram of messaging when requesting a
notification group according to one embodiment of the invention is shown. The
application thread 90 sends a request for a notification group to the thread sever
manager 92. The thread server manager 92 forwards the request to the
notification manager 110. In response {0 the request, the notification manager
110 creates a notification group object (NGO) 114. The NGO 114 allows the
application thread 90 to be informed when all the tasks that the application
thread 90 has requested (betweén creation of the NGO and the NGO being set
to inactive) have been completed. The NGO is ah object-oriented programming

object, and includes as values a group status, a request count, a completed

ca 02484694 2004-10-14

137988

request count, a blocked status, and a condition variable used for blocking

application threads.

[25] The group status has a value of ‘active’ if the notification group is still
accepting requesfs, and the group can not complete until the group status is set
to ‘inactive’. The group status is set to ‘inactive” when the application thread 90

closes the group via the handle of the NGO. When the NGO 114 is first created,

the group status is set to "active’.

[26] The request count is a count of the number of requests that have been
added to the group since the NGO was created. The initial value of the request
count is ‘0’. The completed request count is a count of the number of requests
that have been added to the group and that have been completed. The initial

value of the completed request count 1s ‘0.

[27] The blocked status is used to bypass the condition wait if the notification
group does not currently warrant being blocked. This may arise only if the
group' status is set to ‘inactive’, and either no requests have been made to the
group or all requests have been completed. The initial value of the blocked
status is ‘blocked’. The blocking condition variable is used in a condition wait
call. The blocking condition variable will block all threads that perform a
condition wait on the variable. This block will c_dntinue until a signal or a
broadcast is performed on the variable. A blocked status of ‘blocked, signifies
that the group has not completed, and any thread that blocks on this group will
not bypass the condition variable block. Once a thread reaches the condition
variable, it is blocked until it receives a continue signal from another thread.
The block status also acts as a guard that will not allow the thread to continue,
even if released by signal, until the blocking status is “unblocked’. This prevents
inadvertent release of the condition variable. However, once the group status is
closed and the number of completed requests equals. the number of sent
requests (the request count equals the completed request count), it should be

impossible to reach a blocked state. Under these conditions the blocked status

CA 02484694 2004-10-14

137988

prevents the thread from blocking on the condition variable and never being

woken up.

[28] More particularly, an application thread makes a call to wait until a
specific NGO completes. If the NGO has not already compléted then the
internal routine in the NGO calls a function pthread_cond_wait(), passing in the
address of the condition variable that exists within the NGO. This effectively
blocks the execution of the application thread until another thread calls the
function pthread_cond;signél(), which releases a single application thread that
is blocked on the argument condition Variab]e, or the function
pthread_condition_broadcast(), which releases all application threads blocked
on the argument condition variable. Both pthread__cond_signal() and
pthread_cond_broadcast() are atomic operations and do not affect the
\functionality of subsequent calls to pthread_cond_wait() using the same

argument variable.

[29] Since a fhread should not be blocked on a gr;mp that has already
completed, the blocked flag variable is used to bypass the call to

pthread_cond_wait() during the time that an NGO has completed but has not
“yet been destroyed. Once the number of completed requests equals the number
of requests made and the NGO status is ‘inactive’, the blocked flag is set to
‘unblocked’ and a call is made to pthread_cond_broadcast() using the condition

variable of the NGO to free up any threads that are blocked on the NGO.

[30] Once the notification manag'e-r 110 has created the NGO 114, the
notification manager inserts the NGO 114 into the global list 112. The
notification manager also copies a handle to the NGO 114 and places the handle
in the thread specific list 116 corresponding to the applicaﬁoﬁ thréad 90. The
handle entry can then only be removed by the application thread 90 calling to
close the NGO 114. No other thread can add reques{s to or close the NGO.

[31] Referring to FIG. 6, a block diagram of messaging when requesting a task

according to one embodiment of the invention is shown. The application thread

10

CA 02484694 2004-10-14

137988

90 sends a request for a task to the thread sever manager 92. The request for a
task includes an address of a client-defined procedure and an address of any
parameters required by the client-defined procedure. The thread server
manager 92 forwards the request to the request manager 100. In response to the
request, the request manager 110 creates a new request object 102. Upon
creation, the request object 102 calls the notification manager. 110, which
increments the request count of the open NGOs 114 identitied by the handles
118 within the thread specific list 116 corresponding to the application thread
90. The notification manager 110 returns a copy of the list of handles to open
NGOs in the thread specific list 116 of the application thread 90 to the néw]y

created request object 102.

[32] In addition to the list of handles fo open NGOs, thé request object 102
also includes the address of the client-defined routine that is to be executed by a
worker thread, and the address of arguments used by the routine. The request
manager 100 then inserts the request object 102 into a request manager queue
104 corresponding tO the worker thread group associated with the application

thread, and increments the semaphore of the request manager queue.

[33] Referring to FIG. 7, a block diagram of messaging when a task completés
according to one embodiment of the invention is shown. When a task
completes, the request manager 100 deletes the request object 102 which
contained the task (or more precisely, contained the address of the routine that
was to be executed) terminates. The destructor function of the request object 102
notifies the notification manager 110 that the task request has been completed
and provides the notification manager with the list of handles of open NGOs.
The notification manager 110 then increments the completed request count in
each of the NGOs having hahdlés-in the list provided by the request object 102.
Since the list of handles contained in the request object 102 is a copy of the list of -
handles that existed at the time the request object was created, any NGOs
created after the request object was created will not have their completed

request count incremented.

11

CA 02484694 2004-10-14

137988

[34] If after incrementing the completed request count of an NGO the
incremented request count equals the request count, the NGO may be deleted
by the notification manager. The NGO is deleted if no threads are blocked on
the NGO, the NGO has a status of ‘inactive’, and the number of completed
requests equals the number of requests. Once these conditions are met, the

NGO will be deleted by the thread that caused the conditions to be met.

[35] In the preferred embodiment, the control process 14, the at least one API
18, and the triggered functions of the database and are in the form of software
within a processor, but may more generally be in the form of any combination
of software or hardware, including hardware within an integrated circuit. The
processor need not be a single device, but rather the instructions could be

located in more than one device.

[36] The invention has been described using a particular task synchronization
scheme. The invention can be use other synchronization schemes while still
realizing the benefit of reduced memory usage and faster fetch times, but

building of the cache will be slower.

[371 The synchronization scheme of the invention has been described as being
used within the control process during building of the cache. The
synchronization scheme can also be used by worker threads during
maintenance of the cache, or even by multi-thread processes within the
requesting processes. In fact, any multi-thread process can benefit from the

faster execution time provided by the synchronization scheme described herein.

[38] The embodiments presented are exemplary only and persons skilled in
the art would appreciate that variations to the embodiments described above
may be made without departing from the spirit of the invention. Methods that

are logically equivalent or similar to the method described above with reference

12

CA 02484694 2004-10-14

137988

to FIG. 3 may be used to implement the methods of the invention. The scope of

the invention is solely defined by the appended claims.

13

CA 02484694 2004-10-14

137988

I/WE CLAIM:

1. A method of providing a plurality of processes with access to data stored

in a database, comprising:

copying the data from the database to a cache in shared memory, the

shared memory being accessible by each process;
maintaining synchronicity between the database and the cache; and

~ providing each process with an Application Program Interface (API)

~ containing instructions for accessing the data within the cache.
2. A system for carrying out the method of claim 1.

3. A computer-readable medium storing processor instructions for carrying

out the method of claim 1.

4. A cache for storing data from a database storing a plurality of tables, the

-cache having a data structure comprising:

for each table, at least one linked list of data segments storing data from

the table;

for each table, a control segment storing an address of the first data

segment in each linked list; and
a master segment storing an address for each control segment.

5. A method of providing job synchronization comprising, for each job:
dividing the job into a plurality of tasks;

grouping the tasks into at least one task group, each task group being a
single operation for synchronization purposes and comprising at least one of

the tasks;

14

CA 02484694 2004-10-14

137988

executing each of the tasks on a worker thread belonging to a specific

thread server pool; and

notifying all waiting client applications of completion of the job only

upon completion of the last tas_'k of the job.
6. A server for carrying out the method of claim 5.

7. A computer-readable medium storing processor instructions for carrying

out the method of claim 5.

15

CA 02484694 2004-10-14

1/7

REQUESTING

| REQUESTING
- PROCESS ~

- PROCESS —

16 |
SHARED

CACHE

| 14
CONTROL

PROCESS

10
DATABASE

FIG. 1

SHARED

CACHE

CA 02484694 2004-10-14

2/7

vl VS A D Aanih MO RS il AnligE: Al cupRs SaEEn O Alpee AR 0 Al Suwlaly

16

WORKER 22| __|
THREAD

|

I

|

I

I

I

I

|

|

. ~ | I

e] l
. |

|

I

I

I

I

I

I

}

| TABLEID |
| ROWID |
| ACTION

DATABASE

FIG. 2

CA 02484694 2004-10-14

3/7

oU

DETERMINE
ACTION

‘bbbl

Vi 54

CDELETION? ” VERIFY?

' 58
| ERROR, -
| AUDIT '
56

| DELETE FROM
| CACHE |

60

62 .
- 65

"~ VERIFY?

CADDITION?

| ADDTO |
71 CACHE |

64 Y 66
| ERROR,
. AUDIT

70
76

UPDATE? | ERROR,

AUDIT

74 75

. UPDATE [[unLock VY
rf CACHE ' | ROW |

80

| ERROR [

FIG. 3

CA 02484694 2004-10-14

4/7

90 |
APPLICATION %

THREAD

' WORKER 22 | |

I THREAD

'WORKERZ2 | |

Y1 THREAD

THREAD
SERVER
MANAGER

NOTIFICATION
MANAGER

REQUEST
MANAGER

CA 02484694 2004-10-14

5/7

vl A aas e v

90
APPLICATION ~—
THREAD

REQUEST

s

THREAD
SERVER
MANAGER

) Syl

92

REQUEST |

INSERT

INSERT

FI1G. 5

4| NOTIFICATION

' COMPLETED COUNT |

110§

MANAGER

fymry,

CREATE |

114

NGO

GROUP STATUS

REQUEST COUNT |

BLOCKED STATUS |

T CONDITION
VARIABLE

CA 02484694 2004-10-14

6/7
_ 90|
APPLICATION ~ |
THREAD
REQUEST
THREAD 92|
'SERVER
MANAGER | | INSERT
' 102]
| REQUEST OBJECT .
REQUEST | CREATE ' ROUTINE
g PARAMETERS |
NG HANDLES |
' 100 | L
REQUEST .
MANAGER

RETURN COPIES REQUEST '

if 110 |
| NOTIFICATION
i MANAGER

it

RETRIEVE

% 11181118 e o ¢ }118
116

i q

' REQUEST OBJECT

DESTRUCTOR()

102

———

NG HANDLES

CA 02484694 2004-10-14

.

_ NOTIFY

110 |

| NOTIFICATION
| MANAGER

| INCREMENT

B 114 |
| NOTIFICATION

| GROUP OBJECT

FIG. 7

REQUESTING 14

PROCESS —
| apr 18

REQUESTING
PROCESS

1
SHARED 16 |

CACHE

14

CONTROL
PROCESS

—— i - ~Pim— <y s .. s,

10
DATABASE

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - abstract drawing

