wo 2016/044321 A1 | I 00N OO O 00 R A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

24 March 2016 (24.03.2016)

(10) International Publication Number

WO 2016/044321 Al

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

(72)
1

74

International Patent Classification:
GO6F 17/27 (2006.01)

International Application Number:
PCT/US2015/050263

International Filing Date:
15 September 2015 (15.09.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/051,292 16 September 2014 (16.09.2014) US

Inventor; and
Applicant : TANG, Min [CN/US]; 12196 Ne 24th Street,
Bellevue, WA 98005 (US).

Agents: KOO, Hean L. et al.; Sheppard Mullin Richter &
Hampton LLP, 2099 Pennsylvania Avenue, N.W., Suite
100, Washington, DC 20006 (US).

(84)

(81) Designated States (uniess otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Bz, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: INTEGRATION OF DOMAIN INFORMATION INTO STATE TRANSITIONS OF A FINITE STATE TRANSDUCER
FOR NATURAL LANGUAGE PROCESSING

PROCESSOR(S) 112

STORAGE DEVICE(S) 114

INFORMATION RETRIEVAL AND SEMANTIC
INTEGRATION APPLICATION 120

DOMAIN FST PARSER NATURAL LANGUAGE
GENERATOR 130 INPUT PROCESSOR 140

Information
Domain(s) 150

FIG. 1

(57) Abstract: The invention relates to a system and method
for integrating domain information into state transitions of a
Finite State Transducer ("FST") for natural language pro-
cessing. A system may integrate semantic parsing and in-
formation retrieval from an information domain to generate
an FST parser that represents the information domain. The
FST parser may include a plurality of FST paths, at least one
of which may be used to generate a meaning representation
from a natural language input. As such, the system may per-
form domain-based semantic parsing of a natural language
input, generating more robust meaning representations using
domain information. The system may be applied to a wide
range of natural language applications that use natural lan-
guage input from a user such as, for example, natural lan-
guage interfaces to computing systems, communication with
robots in natural language, personalized digital assistants,
question-answer query systems, and/or other natural lan-
guage processing applications.

WO 2016/044321 A1 |IIWAT 00N 000 0

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2016/044321 PCT/US2015/050263

INTEGRATION OF DOMAIN INFORMATION INTO
STATE TRANSITIONS OF A FINITE STATE TRANSDUCER FOR NATURAL
LANGUAGE PROCESSING

CROSS REFERENCE TO RELATED APPLICATION

[001] This application claims the benefit of U.S. Provisional Patent Application Serial No.
62/051,292 filed September 16, 2014 entitled “INTEGRATION OF DOMAIN INFORMATION
INTO STATE TRANSITIONS OF A FINITE STATE TRANSDUCER FOR NATURAL LANGUAGE

PROCESSING”, the entirety of which is incorporated herein by reference.

FIELD OF THE INVENTION

[002] The invention relates to systems and methods of integrating domain information into

state transitions of a Finite State Transducer for natural language processing.

BACKGROUND OF THE INVENTION

[003] Semantic parsing is a process that transforms natural language (NL) input (e.g.,
sentences, phrases, words, etc.) into computer executable complete meaning representations
(MRs) for domain-specific applications, where Meaning Representation Language (MRL) for an
application is assumed to be present. Part of the job of semantic parsing is to extract the
domain information from a natural language input. For example, if a user queries “find Dixie’s
Grill,” a semantic parser should be able to determine that the user is looking for a restaurant
named “Dixie’s BBQ.”

[004] Semantic parsing is a difficult computational problem. One reason for this is that NL
inputs and their meanings may have many-to-many relationships. For example, multiple NL
inputs may correspond to a single meaning, a single input could have different meanings
(usually users intend to convey a single meaning, so system would need to interact with/learn
from the user to disambiguate them), and other many-to-many relationships can occur.

Conventional semantic parsers typically are inefficient at disambiguating a potential meaning

WO 2016/044321 PCT/US2015/050263
2

of an NL input, particularly when the criteria size is large. Furthermore, conventional semantic
parsers typically have sub-optimal matching capabilities. As a result, conventional semantic
parsers do not scale well for complicated information domains and often produce inaccurate
MRs.

[005] Other types of information retrieval systems may scale better than some semantic
parsers. For example, conventional Inverted-Index-Search (“IIS”) information retrieval
systems, which are premised on keyword search, typically employ indexed information
domains to facilitate efficient search. However, these systems typically ignore structural
information (e.g., semantic structural information) that may be included in an NL input and
therefore may not account for a user’s intent. For example, for an NL input “find bus stop
near VOICEBOX,” the results from a conventional IIS information retrieval system may relate
to documents (e.g., webpages) that contain the keywords in the search input, without
semantic information to help determine the intent of the user. Thus, the results may be
irrelevant to the user’s intended request.

[006] Thus, what is needed is to improve semantic parsing for enhanced user intent
recognition, improve the relevancy of information retrieval results, and improve recognition of

NL, whether uttered, typed, or otherwise provided by a user. These and other problems exist.

SUMMARY OF THE INVENTION

[007] The invention addressing these and other drawbacks relates to systems and methods
of integrating domain information into state transitions of a Finite State Transducer (“FST”) for
natural language processing. A system may integrate semantic parsing and information
retrieval from an information domain to generate an FST parser that represents the
information domain. The FST parser may include a plurality of FST paths, at least one of which
may be used to generate a meaning representation from a natural language input (e.g., a
natural language string based on a natural language utterance or other input). As such, the
system may perform domain-based semantic parsing of a natural language input to generate
robust meaning representations (e.g., search queries, commands, etc.) using domain
information. By generating more relevant meaning representations, results obtained by

executing the meaning representations may be more accurately aligned with the user’s intent.

WO 2016/044321 PCT/US2015/050263
3

[008] The system may be applied to a wide range ot natural language applications that use
natural language input from a user. For example, and without limitation, applications of
domain-based semantic parsing may include natural language interfaces to computing
systems, communication with robots in natural language, personalized digital assistants,
guestion-answer query systems, and/or other natural language processing applications.

[009] To generate an FST parser, the system may obtain a semantic grammar and then
structure a given FST path based on the semantic grammar. An FST path may therefore have a
semantic structure based on the semantic grammar. The semantic grammar may include
various criteria. For example, a semantic grammar “find <business names>" includes an action
criterion (“find”) and a subject criterion (“<business names>"). Other semantic grammars
having additional and/or different criteria may be used as well.

[010] An FST path may include a plurality of states, where at least two states are separated
by a state transition. An initial state transition may be associated with an action criterion such
as “find.” The system may add subsequent state transitions to an FST path based on an
information domain. For example, subsequent state transitions may be associated with a
token (e.g., word) that appears in an entry of an information domain. For an FST parser that
represents an information domain related to businesses, a state transition from one state to
another state may be associated with a token (e.g., word) that is part of a business name.
Other tokens in the business name may be associated with other state transitions, thus
growing the FST path.

[011] For example, an entry “Burnstead Construction Inc.” may include tokens “Burnstead,”
“Construction,” and “Inc.” Each token may be associated with a state transition. For example,
the token “Burnstead” may yield an FST path corresponding to “find Burnstead.” Other tokens
of the entry may be used as well, either to add to the existing FST path or create a new FST
path. For instance, another token “Construction” may result in an FST path corresponding to
“find Burnstead Construction.” The system may generate an FST path that includes some or
all tokens in a given entry, and may generate one or more FST paths for each entry of an
information domain. The system may also generate different FST paths for different
permutations of an entry in an information domain. For example, one FST path may

correspond to “find Construction Burnstead Inc.” while another FST path may correspond to

WO 2016/044321 PCT/US2015/050263
4

“find Burnstead Construction Inc.” Still other FST paths may omit certain tokens. For
example, such an FST path may correspond to “find Burnstead Inc.” The system may repeat
these operations until all entries in the information domain are similarly processed into
respective FST paths. The FST parser may therefore be representative of an information
domain.

[012] The system may associate a token appearing in an information domain with a weight
based on its frequency of appearance in the information domain and/or other domains. For
example, the system may associate a weight with a token in proportion to a frequency of the
token’s appearance in an information domain. In a particular example, the token
“Construction” may be weighted differently (e.g., less or more depending on the weighting
system) than “Burnstead” if “Construction” appears in various business names but
“Burnstead” appears only in one business name. As such, a state transition associated with a
token may be weighted accordingly.

[013] The system may score an FST path based on cumulative weights associated with its
state transitions. For example, the system may score an FST path by summing the weights
associated with state transitions in the FST path. The system may use the score to determine
whether a given FST path should be used to generate a meaning representation for a given
natural language input. For example, the system may use the FST parser to determine a best
FST path (or n-best FST paths) by identifying an FST path that is: (1) associated with tokens
that have (exact or fuzzy) matches to tokens of a natural language input, and (2) has the
highest (or lowest, depending on the scoring system) score. For instance, if tokens of a natural
language input match tokens associated with two or more FST paths, then the FST path having
the highest score (or n-highest scores) will be selected. In this manner, a semantic grammar
(which is used to structure FST paths of a FST parser) integrated with information retrieval
from an information domain (which may be used to weight tokens associated with state
transitions of FST paths) may be used to generate more robust, relevant meaning
representations.

[014] Once an information domain FST parser has been generated, it may be used to
compose an input string FST used to generate a meaning representation from a natural

language input. In the example that follows, the natural language input “Coffee find Seattle

WO 2016/044321 PCT/US2015/050263
5

Best Starbucks Coffee” will be used, although other types of queries/commands/input may be
used as well. For example, the system may initialize (e.g., structure) an input FST using the
natural language input. The system may compose the input FST based on an information
domain FST parser.

[015] The system may find the shortest path (or n-best shortest paths) in the composed
input FST, remove redundant epsilon arcs (if any), topologically order the arcs, and generate a
parsing result based on the topsorted arcs. Based on the parsing result, an action such as
“find” will be mapped its semantic meaning (e.g., “[Action:find]” and the criterion (e.g,
“Seattle Best Starbucks Coffee”) will be mapped to an entry in an information domain
corresponding to businesses, such as “[BusinessName:Best Starbucks Coffee WA].” The
system may generate the query string based on the criteria content, i.e., the string between
“I“and “1”, which is “Best Starbucks Coffee.”

[016] In an implementation, the system may compose the input FST with an Information
Extraction FST that is used to ignore irrelevant words in the natural language input, add
additional words that may relate to the natural language input but were not included in the
input, and/or otherwise modify the input FST based on known information. In this manner,
the natural language input may be augmented with relevant information (or stripped of
irrelevant noise) so that the resulting meaning representation, when executed, causes more
relevant results to be returned.

[017] In an implementation, the system may process the input FST to account for phoneme
errors. For example, the system may use a phoneme confusion matrix that is trained from
speech data to further refine the natural language input to result in a more robust meaning
representation that accounts for similar-sounding or otherwise indistinguishable words.

[018] In an implementation, the system may integrate dynamic data, such as information
from a personal phonebook, by generating a dynamic data FST based on the dynamic data and
insert the dynamic data FST into a dynamic slot of a domain information FST parser. In this
manner, dynamic data may be integrated into semantic parsing to generate a meaning
representation based on both domain information and dynamic data.

[019] When the input FST is composed (regardless of whether an information extraction FST,

a phoneme confusion matrix, or dynamic data is used), the system may find the shortest path

WO 2016/044321 PCT/US2015/050263
6

(or n-best shortest paths) from the input FST, remove redundant epsilon arcs (if any), and
topsort the arcs. The system may calculate the ID of the best-matched path corresponding to
an entry in the information domain based on the sum of the weights along the input FST and
generate a meaning representation based on the best-matched path.

[020] Accordingly, the system may generate a meaning representation from a natural
language input by using tokens that appear in the natural language input (also referred to
herein as input tokens) to select a relevant FST path (which was formed using a semantic
grammar and tokens that appear in an information domain (also referred to herein an domain
tokens to distinguish from input tokens)). The meaning representation may then be used to
extract information from and/or execute a command on an appropriate information domain.
In this manner, the system may efficiently generate more robust meaning representations that
may lead to more accurate, less error-prone, results.

[021] These and other objects, features, and characteristics of the system and/or method
disclosed herein, as well as the methods of operation and functions of the related elements of
structure and the combination of parts and economies of manufacture, will become more
apparent upon consideration of the following description and the appended claims with
reference to the accompanying drawings, all of which form a part of this specification, wherein
like reference numerals designate corresponding parts in the various figures. It is to be
expressly understood, however, that the drawings are for the purpose of illustration and
description only and are not intended as a definition of the limits of the invention. As used in

"

the specification and in the claims, the singular form of “a”, “an”, and “the” include plural

referents unless the context clearly dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

[022] FIG. 1 illustrates a system of integrating domain information into state transitions of a
Finite State Transducer for natural language processing, according to an implementation of
the invention.

[023] FIG. 2 which depicts a process of generating an FST parser, according to an
implementation of the invention.

[024] FIG. 3 depicts an FST path structured by a semantic grammar, according to an

WO 2016/044321 PCT/US2015/050263

implementation of the invention.

[025] FIG. 4 depicts a process of integrating information from an information domain to
generate semantically structured FST paths based on tokens from the information domain,
according to an implementation of the invention.

[026] FIG. 5 depicts an FST parser structured by a semantic grammar and expanded using
information and weights from an information domain, according to an implementation of the
invention.

[027] FIG. 6 schematically depicts an optimized version of the FST parser illustrated in FIG. 5,
according to an implementation of the invention.

[028] FIG. 7 depicts a process of composing a meaning representation from a natural
language input using an FST parser, according to an implementation of the invention.

[029] FIG. 8 depicts an input string FST that is initialized, according to an implementation of
the invention.

[030] FIG. 9 depicts an input string FST that is composed using a domain information FST
parser, according to an implementation of the invention.

[031] FIG. 10 depicts a 1-best FST selected using the input string FST, according to an
implementation of the invention.

[032] FIG. 11 depicts an input FST composed with an information extraction FST, according to
an implementation of the invention.

[033] FIG. 12 depicts a process of generating a domain information extraction FST, according
to an implementation of the invention.

[034] FIG. 13 depicts an FST that expands every possible FST path at the terminal level,
according to an implementation.

[035] FIG. 14 depicts a process of using wildcards to process a natural language input having
variable text, according to an implementation of the invention.

[036] FIG. 15 illustrates an input FST generated for an input string in which state transitions
and a temporary symbol table are generated, according to an implementation of the
invention.

[037] FIG. 16 illustrates an example of an input string FST composed with an FST parser,

according to an implementation of the invention.

WO 2016/044321 PCT/US2015/050263
8

[038] FIG. 17 depicts a modified and expanded input string FST, according to an
implementation of the invention.

[039] FIG. 18 depicts a recreated input string FST, according to an implementation of the
invention.

[040] FIG. 19 depicts an input string FST composed from a recreated input string FST and a
modified and expanded input string FST, according to an implementation of the invention.
[041] FIG. 20A depicts a dynamic data FST using an exact match, according to an
implementation of the invention.

[042] FIG. 20B depicts a dynamic data FST using fuzzy matching, according to an
implementation of the invention.

[043] FIG. 21A depicts an FST parser in which a dynamic slot is filled with a dynamic data FST,
which uses exact matching, according to an implementation of the invention.

[044] FIG. 21B depicts an FST parser in which a dynamic slot is filled with dynamic data FST,
which uses fuzzy matching, according to an implementation of the invention.

[045] FIG. 22 depicts an FST having two phonemes and allowing up to two errors (including
insertions, deletions, and replacements), with a penalty of 100 corresponding to each error,
according to an implementation of the invention.

[046] FIG. 23 depicts a flow diagram of FST parsing at the phoneme level, according to an

implementation of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[047] FIG. 1 illustrates a system 100 of integrating domain information into state transitions
of a Finite State Transducer for natural language processing, according to an implementation
of the invention. A system may integrate semantic parsing and information retrieval from an
information domain to generate an FST parser that represents the information domain. The
FST parser may include a plurality of FST paths, at least one of which may be used to generate
a meaning representation from a natural language input (e.g., natural language utterance
and/or other natural language input).

[048] The meaning representation may be used to execute an action (e.g., a search, a

command, and/or other action) related to an information domain. As such, in an

WO 2016/044321 PCT/US2015/050263
9

implementation, the meaning representation is not necessarily a search result itself, but
rather a semantically parsed translation of a natural language input that uses domain
information to help understand the intent of the natural language input. Thus, the system
may receive a user request in the form of a natural language input from a user (which may or
may not have been recognized from an utterance), generate a meaning representation as
described herein, and execute the meaning representation responsive to the user’s request.
[049] Examples of an FST parser are used herein throughout for illustration and not
limitation. The principles of integrating semantic parsing and information retrieval may be
applied to other semantic parsing systems and other contexts as well. For example, more
generically: [describe claim 1].

[050] Other uses of system 100 are described herein and still others will be apparent to
those having skill in the art. Having described a high level overview of some of the system
functions, attention will now be turned to various system components that facilitate these and
other functions.

[051] System 100 may include a computer system 104, one or more information domains
150, one or more computing device(s) 160, and/or other components.

[052] Information Domains

[053] An information domain 150 may include a set of information that includes subject
matter that may be searched or otherwise executed on. For example, an information domain
150 may include a listing of businesses, a listing of addresses, a listing of songs, a listing of
personal contacts, and/or other corpus of information that may be searched, played or
otherwise executed. Each information domain 150 may have its own type of information. For
example, one information domain 150 may relate to businesses while another information
domain 150 may relate to songs. In an implementation, an information domain 150 may
include a combination of different types of information. For example, one information
domain 150 may relate to businesses and songs.

[054] An information item in an information domain 150 may be associated with a token or
keyword. For example, a listing of businesses may include the name of a business and/or
other business-related information. A listing of songs may include a song title, artist name,

genre, and/or other song-related information. An information domain 150 may be indexed to

WO 2016/044321 PCT/US2015/050263
10

facilitate rapid searching of its content, such as its tokens.

[055] Computer system 104

[056] Computer system 104 may include one or more computing devices 110. Each
computing device 110 may include one or more processors 112, one or more storage devices
114, and/or other components. Processor(s) 112 may be programmed by one or more
computer program instructions, which may be stored in storage device(s) 114.

[057] The one or more computer program instructions may include, without limitation, an
information retrieval and semantic integration application 120 (“IRSI application 120”). IRSI
application 120 may itself include different sets of instructions that each program the
processor(s) 112 (and therefore computer system 104). For example, IRSI application 120 may
include a domain FST parser generator 130, a natural language input processor 140, and/or
other instructions that program computer system 104. As used herein, for convenience, the
various instructions will be described as performing an operation, when, in fact, the various
instructions program computer system 104 to perform the operation.

[058] Generating an FST Parser Representative of an Information Domain

[059] Domain FST parser generator 130 may generate an FST parser that integrates
information retrieval from an information domain 150 and a semantic grammar. For example,
FIG. 2 depicts a process 200 of generating an FST parser, according to an implementation of
the invention. The various processing operations and/or data flows depicted in FIG. 2 (and in
the other drawing figures) are described in greater detail herein. The described operations
may be accomplished using some or all of the system components described in detail above
and, in some implementations, various operations may be performed in different sequences
and various operations may be omitted. Additional operations may be performed along with
some or all of the operations shown in the depicted flow diagrams. One or more operations
may be performed simultaneously. Accordingly, the operations as illustrated (and described in
greater detail below) are exemplary by nature and, as such, should not be viewed as limiting.

[060] Structuring FST paths of an FST Parser using a semantic grammar

[061] In an operation 202, FST parser generator 130 (or other instructions) may obtain a
semantic grammar and structure an FST path based on the semantic grammar. An FST path

may include a plurality of states, where at least two states are separated by a state transition.

WO 2016/044321 PCT/US2015/050263
11

A semantic grammar may include at least an action criterion and a subject criterion. For
example, a semantic grammar “find <BusinessNames>" includes an action criterion (“find”)
and a subject criterion (“<BusinessNames>"), in which an initial state is depicted using bold
and a final state is depicted with double circles. Other semantic grammars having additional
and/or different criteria may be used as well.

[062] FST parser generator 130 may structure an FST path using the criteria of the semantic
grammar to form state transitions from one state to another state such that each criterion is
represented as a node in the FST path. For example, FIG. 3 depicts an FST path 300 structured
by a semantic grammar (in the illustrated example: “find <BusinessNames>"), according to an
implementation of the invention. A given state (or node 0, 1, 2, 3, 4 as illustrated in FIG. 3)
may be transitioned to another state via a state transition, which is illustrated by an arrow
(also described herein as an “arc,” which may be labeled).

[063] Integrating domain information into semantically structured FST paths of an FST Parser

[064] In an operation 204, FST parser generator 130 may integrate information from an
information domain 150 to generate semantically structured FST paths based on tokens (e.g.,
words) from the information domain. For example, FST parser generator 130 may add state
transitions to a semantically structured FST path based on tokens from an information
domain. Subsequent state transitions may be associated with a token that appears in an entry
of an information domain 150.

[065] Table 1 illustrates non-limiting examples of entries in an information domain related to
businesses. Such an information domain will typically have many more entries (e.g., an entry
for each known business), but the illustrated information domain is illustrated with five entries
for illustrative purposes. Furthermore, an information domain may include alternative or
additional types of information. The following table is therefore included solely to illustrate

aspects of the disclosure and will be described in conjunction with FIGS. 4, 5, and 6 that follow.

WO 2016/044321 PCT/US2015/050263

12
entry weight | Entry Full Name
3 Best Starbucks Coffee WA
1 Burnstead Construction Inc WA
1 Microsoft WA
1 Seattle Best Coffee WA
1 VoiceBox Technologies Inc WA

[066] For an FST parser representing an information domain illustrated in Table 1, a state
transition from one state to another state may be associated with a token that is part of a
business name. Other tokens in the business name may be associated with other state
transitions, thus growing an FST path that corresponds to an entry in the information domain.
[067] For example, an entry “Burnstead Construction Inc.” may include tokens “Burnstead,”
“Construction,” and “Inc.” Each token may be associated with a state transition. The token
“Burnstead” may vyield an FST path corresponding to “find Burnstead.” Other tokens of the
entry may be used as well, either to add to the existing FST path or create a new FST path. For
instance, another token “Construction” may yield an FST path corresponding to “find
Burnstead Construction.” The system may generate an FST path that includes some or all
tokens in a given entry, and may generate one or more FST paths for each entry of an
information domain. The system may also generate different FST paths for different
permutations of an entry in an information domain. For example, one FST path may
correspond to “find Construction Burnstead Inc.” while another FST path may correspond to
“find Burnstead Construction Inc.” The system may repeat these operations until all entries in
the information domain are similarly processed into respective FST paths. The FST parser may
therefore be representative of an information domain 150.

[068] FST parser generator 130 may associate a token appearing in an information domain
with a weight based on its frequency of appearance in the information domain and/or other
domains. For example, FST parser generator 130 may associate a weight with a token in
proportion to a frequency of the token’s appearance in an information domain. In a particular
example, the token “Construction” may be weighted differently (e.g., less or more depending

on the weighting system) than “Burnstead” if “Construction” appears in various business

WO 2016/044321 PCT/US2015/050263
13

names but “Burnstead” appears only in one business name.

[069] The token weight may serve to indicate which tokens may be more relevant than
others when matching input tokens from an input request (e.g., a user search request) with
tokens from an FST path (e.g., so that the relevance of a given FST path to the input tokens
may be determined). For example, an FST path having matching tokens that commonly
appear in an information domain may be less relevant to an input request than an FST path
having matching token that do not commonly appear in the information domain.

[070] FST parser generator 130 may score an FST path based on cumulative weights
associated with its state transitions. For example, the system may score an FST path by
summing the weights associated with state transitions in the FST path. FST parser generator
130 may use the score to determine a relevance of a given FST path to a given natural
language input. For example, the system may use the FST parser to determine a best FST path
(or n-best FST paths) by identifying an FST path that is: (1) associated with tokens that have
(exact or fuzzy) matches to tokens of a natural language input, and (2) has the highest (or
lowest, depending on the scoring system) score. For instance, if tokens of a natural language
input match tokens associated with two or more FST paths, then the FST path having the
highest score (or n-highest scores) will be selected. In this manner, a semantic grammar
(which is used to structure FST paths of a FST parser) integrated with information retrieval
from an information domain (which may be used to weight tokens associated with state
transitions of FST paths) may be used to generate more robust, relevant meaning
representations.

[071] FIG. 4 depicts a process 400 of integrating information from an information domain
150 to generate semantically structured FST paths based on tokens from the information
domain, according to an implementation of the invention. Operation 204 illustrated in FIG. 2
may use some or all of the processing operations of process 400 to integrate information from
an information domain 150.

[072] In an operation 402, domain FST parser generator 130 may obtain a criteria list, which
may include entries in an information domain. For example, domain FST parser generator 130
may obtain the business name entries in the exemplary information domain illustrated in

Table 1.

WO 2016/044321 PCT/US2015/050263
14

[073] In an operation 404, domain FST parser generator 130 may determine a weight, such
as a term frequency inverse document frequency value (“TF-IDF”) value, for each token in the
criteria list. For example, domain FST parser generator 130 may determine a TF-IDF value for
each token that appears in the criteria list, whether in a single entry or multiple entries. As
would be appreciated, a more common token (e.g., one that occurs more than another token)
may be associated with a lower TF-IDF value while a less common token may be associated
with a higher TF-IDF value.

[074] In an operation 406, domain FST parser generator 130 may obtain and process a next
entry in the criteria list. For example, once tokens for each entry of an information domain
have been assigned a TF-IDF value depending on their appearance in the information domain,
domain FST parser generator 130 may iteratively obtain and process a next business name in
the information domain.

[075] In an operation 408, domain FST parser generator 130 may obtain a list weight for a
given entry (if any). For example, a given business name entry may be weighted more or less
heavily than another business name entry.

[076] In an operation 410, domain FST parser generator 130 may determine a token weight
for each token in an entry. The token weight may include a TF-IDF value of the token and may
be adjusted based on the list weight (if any) for an entry in which the token appears.

[077] In an implementation, each token in each list may have a different weight. For

example, a TF-IDF value may be calculated for each token using equation (1):

TE-IDF = number of occurancesof iinlist j 1o Total number of lists

(1),
document length of list j number of lists that contain token i

wherein:
listj corresponds to an entry in an information domain (also referred to herein as list
entry;);

i = a given token;

document length of list j = g\/number of words;

WO 2016/044321 PCT/US2015/050263
15

[078] In an implementation, Fy; (the closeness of the candidate i for list entry;) may be
calculated using equation (2):
Fij:

C, * (# of matchedtokens)+C, * ZTFIDF(x, J)+C; *(word positionmetrics)+ C, *Weight,
each token x in List Entryi

(2),

wherein:
C1,C,,C5,Cq are pre-defined weights; Weight; is the priori-likelihood for j (e.g.,
“Starbucks” may be given more weight than “Dixie’s BBQ”); and

Csis 0.

[079] According to equation (2), a higher closeness value indicates a better candidate.
Referring to equation (2), “word position metrics” refers to a level of closeness of candidate i
to list entry j in terms of word order/position.

i n
|

[080] In the non-limiting example that follows, the “word position metrics” between “i” and

i n
|

“k” should be 1, because it is an exact match. The “word position metrics” between “i” and

i
should be 0.8, because one word (“wa”) is not in the same order between Candidate | and List
entry j:

Candidate i : “burnstead construction inc. wa”

List entry j: “wa burnstead construction inc.”

List entry k: “burnstead construction inc. wa”
[081] In an implementation, to yield the lowest (positive) value for the best candidate, Fy;
(the closeness of the candidate j for token i for which the lowest value indicates the best
candidate) may be calculated using equation (3):

Foj=C, * (#of notmatchedtokens +C, *Z(TFIDFM ~tfidf;) +C, *(Weight,, —Weight) (3),

wherein:

TFIDFmax = the maximum value of all TFIDF values for all tokens in all list entries; and

Weight ., = the maximum value of all TFIDF values for all tokens in all list entries.

WO 2016/044321 PCT/US2015/050263
16

[082] Assuming N is the total number of words in the query string, then:
C, *(N—# of not matched tokens)+C, * ZTFIDFmax -C,* thidflj

T C, *Weight,, —C, *Weight,

C,*N+C,* Y TFIDF, +C, *Weight,,,
s C, * (#of not matched tokens) —C, * thidflj - C, *Weight,
=C, *N+C,* Y TFIDF +C, *Weight,, —F,, (4).

wherein:

TFIDFax is the maximum value of all TFIDF values for all tokens in all list entries;

Weightmax is the maximum value of all weights for all list entries; and

Weight;j is the weight for list entry j.
[083] In an implementation, the token weight may be further weighted based on a list
weight (if any) associated with the entry.
[084] In an operation 412, domain FST parser generator 130 may create an arc from the start
point (e.g., a command state or node) to each token such that a state transition from the start
point to a given token node (e.g., state associated with a token) is associated with the token
weight.
[085] In an operation 414, domain FST parser generator 130 may create another arc from a
previous token node (if it exists) to the current token node such that a state transition from
the previous token node to the current token node is associated with the token weight.
[086] In an operation 416, domain FST parser generator 130 may mark all token nodes as a
final state.
[087] In an operation 418, domain FST parser generator 130 may determine whether more
entries in the list are to be processed. If more entries are to be processed, domain FST parser
generator may return to operation 406. Otherwise, FST parser generator 130 may complete
generation of the FST parser in an operation 420.
[088] FIG. 5 schematically depicts an FST parser 500 structured by a semantic grammar and
expanded using information and weights from an information domain, according to an
implementation of the invention. FST parser 500 schematically depicts results from the
processing operations of process 400 using the information domain illustrated in Table 1. FST

parser 500 may include a plurality of nodes (0-21). A given node (0-21) may be associated

WO 2016/044321 PCT/US2015/050263
17

with a token, an arc, and/or an end point. Each node (0-21) may be part of an FST path.

[089] Optimizing an FST parser

[090] Returning to FIG. 2, in an operation 206, domain FST parser generator 130 may
optimize the FST parser generated from operation 204 (additional details of which were
described with respect to process 400 in FIG. 4).

[091] For example, domain FST parser generator 130 may determinize an FST parser such
that each state may have at most one transition with any given input label and empty labels
are eliminated. The resulting FST may contain at most one patch matching any given input
string, therefore reducing the time and space needed to process the string. Conditions of a
determinizable FST include, for example, weakly left divisible semirings, a determinization
algorithm can finish on M, all unweighted acceptors are determinizable, all acyclic acceptors
are determinizable, not all weighted acceptors or transducers are determinizable, and
characterization based on the twins property.

[092] In animplementation, domain FST parser generator 130 may further reduce the size of
an FST parser by applying minimization, saving space and processing time. In an
implementation, domain FST parser generator 130 may further reduce the size of an FST
parser by performing an arc sort, which sorts the arcs in an FST per state. FIG. 6 schematically
depicts an optimized version 600 of the FST parser 500 illustrated in FIG. 5, according to an
implementation of the invention. As illustrated, optimized version 600 includes only nodes 0-
11, in which various nodes and arcs have been removed from FST parser 500 during an
optimization process to generate optimized version 600.

[093] Composing a Meaning representation from a Natural Language Utterance using the
FST Parser

[094] In an implementation, natural language input processor 140 may generate a meaning
representation from a natural language input by selecting and applying an FST parser, which is
generated by FST parser generator 130. The natural language input may include an input
string. The input string may have been converted from a user utterance using conventional
speech-to-text techniques or may have been input as text from the user. In any event, the
natural language input may be processed to generate a meaning representation using an FST

parser (e.g., an FST parser generated by domain FST parser generator 130).

WO 2016/044321 PCT/US2015/050263
18

[095] For example, FIG. 7 depicts a process 700 ot composing a meaning representation from
a natural language input using an FST parser, according to an implementation of the invention.
[096] In an implementation, in an operation 702, natural language input processor 140 may
initialize (e.g., structure) an input string FST using the input string. For example, for each word
in the query string, natural language input processor 140 may:
. add an arc from a current node (corresponding to a given word of the input
string being processed) to a next node depending on whether the given word matches
with a word from an information domain. For example, natural language input
processor 140 may add one arc from a current node to a next node with an input label
being the word ID, an output label being the word ID, and a weight being 0. This arc
means there is no cost when the input word is matched. Natural language input
processor 140 may add one arc from a current node to a next node with an input label
being the word ID, an output label being epsilon, and a weight being C1. This arc means
the cost will be C1 when the input word is not matched.
. add one self-loop arc to a current node with an input label being epsilon, an
output label being left boundary, and a weight being 0. This arc means the left
boundary could happen at any location of the input string without consuming any
input label.
. add one self-loop arc to next node with input label being epsilon, output label
being right boundary, and weight being 0. This arc means the right boundary could
happen at any location of the input string without consuming any input label.
[097] For the last word of the input string, natural language input processor 140 may set the
last node as the final state. FIG. 8 depicts an input string FST (having nodes 0-8) that is
initialized according to operation 702 if the input query string is “Coffee find Seattle Best
Starbucks Coffee,” according to an implementation of the invention.
[098] In an operation 704, natural language input processor 140 may compose the input FST
based on an information domain FST parser (e.g., an FST parser generated by domain FST
parser generator 130). FIG. 9 depicts an input string FST 900 that is composed using a domain
information FST parser, according to an implementation of the invention. Input string FST 900

is composed in operation 704 using, for example, a domain information FST parser that is

WO 2016/044321 PCT/US2015/050263
19

based on Table 1 (e.g., FST parser 500 or FST parser 600). For example, an output of the
domain information FST parser may be used as in put to FST 900.

[099] In an operation 706, natural language input processor 140 may find the shortest path
(or n-best shortest paths) in the composed input FST. FIG. 9 depicts an input string FST 900
(having nodes 0-24) that is composed using a domain information FST parser, according to an
implementation of the invention. FIG. 10 depicts a 1-best FST 1000 (having nodes 0-8)
selected using the input string FST, according to an implementation of the invention.

[0100]In an operation 708, natural language input processor 140 may remove redundant
epsilon arcs (if any).

[0101]In an operation 710, natural language input processor 140 may topologically order (i.e.,
“topsort”) the arcs.

[0102] In an operation 712, natural language input processor 140 may generate a parsing
result based on the topsorted arcs. For example, for the following represent an input, parsing

result, and weight:

[0103]Input: Coffee find Seattle Best Starbucks Coffee
[0104]Parsing Result: find [Best Starbucks Coffee]
[0105] Weight: 0 148.92 85.92 148.92

[0106]Based on the parsing result, “find” will be mapped its semantic meaning (e.g.,
“[Action:find]” the string “Seattle Best Starbucks Coffee” will be mapped to an entry in an
information domain, such as “[BusinessName:Best Starbucks Coffee WA]” as it appears in
Table 1.

[0107]In an operation 714, natural language input processor 140 may generate the query
string based on the criteria content, i.e., the string between “[“ and “]”, which is “Best
Starbucks Coffee.”

[0108]In an operation 716, natural language input processor 140 may compose the input FST
with the Information Extraction FST (the generation of which is illustrated with respect to FIG.
12). FIG. 11 depicts an input FST 1100 (having nodes 0-24) composed with an information
extraction FST, according to an implementation of the invention.

[0109]In an operation 718, natural language input processor 140 may find the shortest path

(or nbest shortest paths) from the input FST (e.g., input FST 1100).

WO 2016/044321 PCT/US2015/050263
20

[0110]In an operation 720, natural language input processor 140 may remove redundant
epsilon arcs (if any) and topsort the arcs.

[0111]In an operation 722, natural language input processor 140 calculate the ID of the best-
matched path corresponding to an entry in the information domain based on the sum of the
weights along the FST. The query input may be generated based on the best-matched path.
In some implementations, by selecting the best-matched path (and corresponding entry in the
information domain), natural language input processor 140 may ignore words in the input
string that may be irrelevant to the information domain while using words in the input string
that are relevant to the information domain to formulate a meaning representation that,
when used to obtain information from the information domain, will result in more relevant
results.

[0112] Generating an Domain Information Extraction FST

[0113]In an implementation, natural language input processor 140 may generate a domain
information extraction FST to obtain detailed information related to an input string. For
example, a domain information extraction FST may be used to ignore irrelevant (“noise”)
words, add relevant words that are likely related to the input string but have not been
included in the input string, and/or otherwise use domain information to fine tune an input
string (such as by obtaining a full title of a song when only a portion of the song title is
included in the input string).

[0114]In another example, the following illustrates an input, a parsed input without domain
information extraction, and a parsed input with domain information extraction:

[0115]Input: find Cavanaugh Rd Normal Town Pennsylvania

[0116]After parser FST: find [Cavanaugh Rd Pennsylvania]

[0117] After Extraction FST: find [Cavanaugh Rd Normalville Pennsylvania]

[0118]In the foregoing example, input to the Extraction FST is “Cavanaugh Rd Pennsylvania”,
the output is “Cavanaugh Rd Normalville Pennsylvania,” where the city name “Normalville” is
added to fine tune the input.

[0119]In some implementations, natural language input processor 140 may extract (and add
to an input) only the best matched information, instead of N-best matches. In other

implementations, natural language input processor 140 may extract n-best matches using an

LY

WO 2016/044321 PCT/US2015/050263
21

inverted-index-search approach.
[0120]FIG. 12 depicts a process 1200 of generating a domain information extraction FST,
according to an implementation of the invention.
[0121]In an operation 1202, natural language input processor 140 may create an FST for the
list, adding a last arc with a last arc indicator (e.g., “list_N,” where “N” corresponds to a list
entry number that is incremented with each list entry) for each entry in the list.
[0122]In an operation 1204, natural language input processor 140 may optimize the FST, such
as by removing epsilons (if any), performing determinization, and/or other performing other
optimizations.
[0123]In an operation 1206, natural language input processor 140 may remove the non-sense
arcs from start state to end state directly. For each arc with input label being real words,
natural language input processor 140 may remove its weights. For each arch with input label
being list_N, for each pair of states, only keep only one outbound arc (leaving the state) which
has the smallest weight or which has the smallest ID when they have the same weights,
change the input label to <epsilon> and set the weight as the “N” (the number ID of the list).
[0124] In an operation 1208, natural language input processor 140 may optimize the FST by
removing epsilons (if any), performing determinization, performing minimization, and/or
performing other operations.
[0125]In an implementation, natural language input processor 140 may use the FST to return
the numeric ID of a best matched list as the weight given an input string.
[0126] Grammar to FST Conversion
[0127]In an implementation, the system may apply an FST only once, generating an FST such
that the FST expands every possible FST path at the terminal level. FIG. 13 depicts an FST 1300
(having nodes 0-9) that expands every possible FST path at the terminal level, according to an
implementation of the invention. FST 1300, as illustrated, is constructed based on the
following grammar:

public SRule1 = word1 SRule2 word2

protected SRule2 = word3

[0128]In the illustrated example, in order to show the rule information in the parse result, the

LY

WO 2016/044321 PCT/US2015/050263
22

system may create transitions such as “e:rule_beginning” and “s:rule_end”.
[0129] Matching Variable Text Using Wildcards
[0130]A natural language input may include variable text that may include different words
and meanings. In these instances, the system may need to process such variable text to
understand how to generate an input query from the natural language input. The system may
do so using wildcards. For example, in a natural language input that takes the form of “text
Stext_body to Sperson_name,” the variable text Stext_body and Sperson_name may include
any word or words.
[0131]The system may introduce a wildcard (e.g., a special word “__vbt_wild_card__") that
can match any word. For example, the foregoing example, with wildcard added, may be
represented as:

public SText=

text Stext_body to Sperson_name;

protected Stext_body=

__vbt wild _card _ <1->;

protected Sperson_name=

__vbt wild _card _ <1->;

[0132]In the description of FIGS. 14-19 that follows, the natural language input of “text lunch
together to min tang” will be used by way of illustration and not limitation. FIG. 14 depicts a
process 1400 of using wildcards to process a natural language input having variable text,
according to an implementation of the invention.

[0133]In an operation 1402, an input string FST may be generated for an input string (e.g., a
natural language input string). For each word in the input string, three state transitions may
be generated: (1) W:W/0, (2) W:e/Cy, and (3) W:*/C;1-C,. A temporary symbol table may also
be created, which stores the index of out-of-vocabulary words (e.g., words that do not appear
in an information domain). In this case, it contains the following words “lunch”, “together”,
“min” and "tang”. In an implementation, the life cycle of the temporary symbol table is only

one session. FIG. 15 illustrates an input FST 1500 (having nodes 0-6) generated for an input

LY

WO 2016/044321 PCT/US2015/050263
23

string in which state transitions and a temporary symbol table are generated, according to an
implementation of the invention. For example, input FST 1500 may be generated based on
operation 1402.

[0134]In an operation 1404, the input FST may be composed with a FST parser (e.g., a FST
parser generated by domain FST parser generator 130). In an implementation, project to
output label may be performed, epsilons may be removed, and the shortest path may be
found. FIG. 16 illustrates an example of an input string FST 1600 (having nodes 0-27)
composed with an FST parser according to an implementation of the invention. For example,
input string FST 1600 may be composed based on operation 1404.

[0135]In an operation 1406, input string FST 1600 may be modified and expanded. For

example, for each transition:

. If the output label w is not a terminal, change transition from w:w to O:w;
. If the output label w is a terminal;

. If wis the wildcard symbol, expand it to multiple transitions;

. Otherwise keep the transition as w:w.

[0136]FIG. 17 depicts a modified and expanded input string FST 1700 (having nodes 0-27),
according to an implementation of the invention. For example, modified and expanded input
string FST 1700 may be generated based on operation 1406.

[0137]In an operation 1408, the input string FST may be recreated without wildcards (since
such wildcards are accounted for in operation 1406). FIG. 18 depicts a recreated input string
FST 1800 (having nodes 0-6), according to an implementation of the invention. For example,
recreated input string FST 1800 may be generated based on operation 1408.

[0138]In an operation 1410, a final FST may be generated by composing recreated input
string FST 1800 and modified and expanded input string FST 1700, performing project to
output label, removing epsilons, and finding the shortest path. FIG. 19 depicts an input string
FST 1900 (having nodes 0-27) composed (e.g., using output) from recreated input string FST
1800 and modified and expanded input string FST 1700, according to an implementation of
the invention.

[0139]In an operation 1412, the parsing result may be output. For example, depth-first-

search may be used to traverse the final FST.

LY

WO 2016/044321 PCT/US2015/050263
24

[0140]For example, in XML format, the parsing result tor the above may include:
NBest 1: (score = 3960000)
<texis>
<Text>
text <text body> lunch together </text body> to <person_name> min tang </persen_name>
<fText>
<ftext>
NBest 2: (score = 3970000)
<texi>
<Texi>
text <texi_body> lunch together </text _body> to <person_name> tang </person_name>
</Text>
<fraxi>
NBest 3: (score = 3970000)
<text>
<Text>
text <text hody> together </text body> to <person_name> min tang </person_name>
<fTexi>

<ftext>

[0141]In JSON format, the parsing result for the above may include:
NBest 1: (score = 3960000)

[{"Text":{"text_body":" lunch together ","person_name":" min tang "}}]

NBest 2: (score = 3970000)

[{"Text":{"text_body":" lunch together ","person_name":" tang "}}]

NBest 3: (score = 3970000)

[{"Text":{"text_body":" together ","person_name™":" min tang "}}]

LY

WO 2016/044321 PCT/US2015/050263
25

[0142] Other output formats may be used as well to represent and view parsing results.
Furthermore, in an implementation, the wildcard could be also supported by using a
customized matchers, such as a SigmaMatcher<M> function.

[0143] Dynamic Update

[0144]In an implementation, instead of matching a predefined information domain or using
wildcards, users may wish to query dynamic data that regularly changes or is otherwise
frequently updated. For example, dynamic data may include a phone book (e.g., personal
contact lists), personal documents, and/or other information that may regularly change.
[0145]In an implementation, the use of dynamic data may be supported by defining a
dynamic slot in the grammar. For example, a dynamic data FST may be generated based on
dynamic data (similar to the manner in which FST parser generator 130 generates an FST
parser). The dynamic data FST may be used to fill a dynamic slot in an FST parser.
[0146]Table 2 illustrates non-limiting examples of dynamic data entries in a phone book.
Such dynamic data will typically have many more entries (e.g., an entry for each contact), but
the illustrated dynamic data is illustrated with two entries for illustrative purposes.
Furthermore, the dynamic data may include alternative or additional types of information.
The following table is therefore included solely to illustrate aspects of the disclosure and will

be described in conjunction with FIGS. 20A, 20B, 21A, and 21B that follow.

Phone_Book Name Weight
Person 1 min tang 1
Person 2 Obama 1

[0147]In an implementation, an exact match and/or a fuzzy match may be used when
generating a dynamic data FST. FIG. 20A depicts a dynamic data FST 2000A (having nodes 0-2)
using an exact match, according to an implementation of the invention. FIG. 20B depicts a
dynamic data FST 2000B (having nodes 0-2) using fuzzy matching, according to an
implementation of the invention.

[0148]In an implementation, a dynamic slot of an FST parser may be filled with dynamic data
FST 2000A or dynamic data FST 2000B. FIG. 21A depicts an FST parser 2100A (having nodes 0-
13) in which a dynamic slot is filled with dynamic data FST 2000A, which uses exact matching,

according to an implementation of the invention. FIG. 21B depicts an FST parser 2100B

LY

WO 2016/044321 PCT/US2015/050263
26

(having nodes 0-13) in which a dynamic slot is tilled with dynamic data FST 2000B, which uses
fuzzy matching, according to an implementation of the invention.

[0149]An example of an input and parsing output (in JSON format) based on use of dynamic
updates using dynamic data includes:

input: text talk to me to min tang

output In JSON format:

NBest 1: (score = 2970100)

[{"Text":{"text_body":" talk to me ","person_name":" min tang "}}]

NBest 2: (score = 2980100)

[{"Text":{"text_body":" talk me ","person_name™":" min tang "}}]

NBest 3: (score = 2980100)

[{"Text":{"text_body":" to me ","person_name":" min tang "}}]

[0150] Named Entity Extraction Support

[0151]In an implementation, FSTs generated herein may integrate character level information
in order to help the system determine intent.

[0152] For example, for the input: “call (425)123-4567 please,” a human being is able to figure
out the intent to make a phone call to (425)123-4567. However, in order for a computer to
recognize the intent, absent named entity information, wildcards may be required to create a
pattern such as “call *”. This is not an optimal solution, because the aggressive wildcard
would capture noise, such as “please” in the foregoing input example. To avoid abusing the
usage of wildcard, we apply Named Entity Extraction (“NER”) process before parsing.
[0153]For example, assuming that the NER process returns the following NBest result:

NBest 1: call (425)123-4567

NBest 2: call <_ vbtPN__>(425)123-4567 </__vbtPN__>

[0154] An input query FST may be created based on the above NBest result, and then parsed.

LY

WO 2016/044321 PCT/US2015/050263
27

Using such processing, an output may include, tor example:
NBest 1:
[{"CallByNumber":{"PhoneNumber":{"__vbtPN__":" (425)123-4567 "}}}]

[0155] Error Tolerance String Matching / Approximate String Matching

[0156]Errors in speech recognition may be caused by various error-introducing conditions.
Such conditions may include, for example, homonyms, compound words, text normalization,
and/or other issues that may cause errors in speech recognition. In the written language, for
example, the strings “call (425)123-4567” and “call 4 2 51 2 3 4 56 7” are two different
strings, but they share the same pronunciations (and could have different associated meanings
or intent).

[0157]In an implementation, to help address the foregoing issues, the system may perform
FST parsing at the phoneme level. By performing intent-recognition at the phoneme level, the
system may handle sound-alike, homonym, compound-words, text normalization issues,
and/or other error-introducing conditions. By injecting an error model (phonetic confusion
matrix), the system may be able to make the parsing process robust to ASR errors (to some
extent).

[0158]Table 3 illustrates a non-limiting example of a phoneme confusion matrix that is
trained from speech data. In Table 3, € stands for “null,” which indicates that a corresponding
phoneme is deleted or inserted; Pij is the penalty for phoneme i recognized as phoneme j,

which case P;; should be 0.

probability € Phoneme | Phoneme | ... | Phoneme | ... | Phoneme
1 2 i n

€ Poo | Pox Po2 Poi Pon

Phoneme 1 Pio | P11 P> P1i Pin

Phoneme 2 Py | P21 P> Pai Pan

Phoneme i PiO Pi1 Pi2 Pii Pin

LY

WO 2016/044321 PCT/US2015/050263
28

Phoneme n Pro | Pn1 Pno Pni Pin

[0159]To allow any number of phonetic errors may be too computational demanding
because. To restrict the size of possible candidates and limit the search space, the system may
limit the number of allowed phonetic errors.

[0160]FIG. 22 depicts an FST 2200 (having nodes 0-2) having two phonemes and allowing up
to two errors (including insertions, deletions, and replacements), with a penalty of 100
corresponding to each error, according to an implementation of the invention.

[0161]FIG. 23 depicts a flow diagram 2300 of FST parsing at the phoneme level, according to
an implementation of the invention. In an implementation, a Phoneme Error Model 2302 may
be generated using an input phoneme sequence/graph. Phoneme Error Model 2302 may
include an FST that allows a given phoneme to transduce to another given phoneme, with a
transition penalty (e.g., Pij defined in Table 3).

[0162]In an implementation, a Dictionary Model 2304 may be generated that includes an FST
that defines each pronunciation of words in a given path. In an implementation, a Word-level
Parser 2306 may be generated that includes an FST parser described herein, which is used to
generate an output used for semantic queries.

[0163] Examples of System Architectures and Configurations

[0164]In an implementation, various system architectures may be used. For instance, some
or all instructions of IRSI application 120 or other instructions may execute on different
components of system 100. In particular, voice recognition (e.g., speech-to-text), one or more
functions/operations of IRSI application 120, and/or other functions/operations described
herein may be performed at computing device 110 and/or computing device 160.

[0165]For instance, computing devices 110 may include server devices and computing devices
160 may include user devices that connect to the server devices. Other architectures may be
used as well.

[0166]Although illustrated in FIG. 1 as a single component, computer system 104 may include
a plurality of individual components (e.g., computer devices) each programmed with at least
some of the functions described herein. In this manner, some components of computer

system 104 may perform some functions while other components may perform other

LY

WO 2016/044321 PCT/US2015/050263
29

functions, as would be appreciated. The one or more processors 112 may each include one or
more physical processors that are programmed by computer program instructions. The
various instructions described herein are exemplary only. Other configurations and numbers
of instructions may be used, so long as the processor(s) 112 are programmed to perform the
functions described herein.

[0167]Furthermore, it should be appreciated that although the various instructions are
illustrated in FIG. 1 as being co-located within a single processing unit, in implementations in
which processor(s) 112 includes multiple processing units, one or more instructions may be
executed remotely from the other instructions.

[0168] The description of the functionality provided by the different instructions described
herein is for illustrative purposes, and is not intended to be limiting, as any of instructions may
provide more or less functionality than is described. For example, one or more of the
instructions may be eliminated, and some or all of its functionality may be provided by other
ones of the instructions. As another example, processor(s) 112 may be programmed by one or
more additional instructions that may perform some or all of the functionality attributed
herein to one of the instructions.

[0169] The various instructions described herein may be stored in a storage device 114, which
may comprise random access memory (RAM), read only memory (ROM), and/or other
memory. The storage device may store the computer program instructions (e.g., the
aforementioned instructions) to be executed by processor 112 as well as data that may be
manipulated by processor 112. The storage device may comprise floppy disks, hard disks,
optical disks, tapes, or other storage media for storing computer-executable instructions
and/or data.

[0170]The various components illustrated in FIG. 1 may be coupled to at least one other
component via a network, which may include any one or more of, for instance, the Internet,
an intranet, a PAN (Personal Area Network), a LAN (Local Area Network), a WAN (Wide Area
Network), a SAN (Storage Area Network), a MAN (Metropolitan Area Network), a wireless
network, a cellular communications network, a Public Switched Telephone Network, and/or
other network. In FIG. 1 and other drawing Figures, different numbers of entities than

depicted may be used. Furthermore, according to various implementations, the components

LY

WO 2016/044321 PCT/US2015/050263
30

described herein may be implemented in hardware and/or software that configure hardware.
[0171]The various information domains may be stored in one or more databases such as, for
example, an Oracle™ relational database sold commercially by Oracle Corporation. Other
databases, such as Informix™, DB2 (Database 2) or other data storage, including file-based, or
qguery formats, platforms, or resources such as OLAP (On Line Analytical Processing), SQL
(Structured Query Language), a SAN (storage area network), Microsoft Access™ or others may
also be used, incorporated, or accessed. The database may comprise one or more such
databases that reside in one or more physical devices and in one or more physical locations.
The database may store a plurality of types of data and/or files and associated data or file
descriptions, administrative information, or any other data.

[0172] Computing devices 110, 160 may each include a server computing device, a desktop
computer, a mobile device that is generally portable (e.g., a laptop computer, a tablet
computer, a “smartphone,” etc.), or other computing device that is programmed by IRSI 120
and/or other computer program instructions.

[0173]Other implementations, uses and advantages of the invention will be apparent to
those skilled in the art from consideration of the specification and practice of the invention
disclosed herein. The specification should be considered exemplary only, and the scope of the

invention is accordingly intended to be limited only by the following claims.

-~

WO 2016/044321 PCT/US2015/050263

31
CLaiMS
What is claimed is:
1. A computer implemented method for integrating domain information and semantic

parsing to generate meaning representations from natural language input, the method being
implemented on a computer system having one or more physical processors programmed
with computer program instructions to perform the method, the method comprising:

receiving, by the computer system, a natural language input comprising at least a first
input token;

obtaining, by the computer system, a semantic grammar;

determining, by the computer system, a semantic structure of the natural language
input based on the semantic grammar;

retrieving, by the computer system, from an information domain, a plurality of domain
tokens that match the first token of the natural language input; and

generating, by the computer system, a meaning representation based on the semantic
structure and the plurality of domain tokens, wherein the meaning representation is used to

execute a computer executable action.

2. The method of claim 1, wherein the plurality of domain tokens are structured into a
domain information FST parser that includes at least a first FST path comprising a first set of
domain tokens and a second FST path comprising a second set of domain tokens, and wherein
generating the meaning representation further comprises:

selecting the first FST path based on a first score of the first FST path and a second
score of the second FST path, wherein the first FST path is used to generate the meaning

representation.

3. The method of claim 2, wherein the first score is based on a first sum of weights of
each domain token among the first set of domain tokens and the second score is based on a
second sum of weights of each domain token among the second set of domain tokens, and
wherein a given weight for a domain token is based on a level of frequency that the domain

token appears in the information domain.

WO 2016/044321 PCT/US2015/050263
32

4, The method of claim 2, wherein retrieving the plurality of domain tokens comprises:
initializing an input FST based on the first token and the semantic structure; and
composing the input FST based on the first FST path and the second FST path, wherein

the first FST path and the second FST path are integrated with the input FST, and wherein the

first FST is selected from the input FST.

5. The method of claim 4, wherein selecting the first FST path comprises selecting a

shortest path in the input FST.

6. The method of claim 4, wherein retrieving the plurality of domain tokens comprises:
performing fuzzy or exact matching between domain tokens from the information
domain and the first token, wherein the plurality of domain tokens comprises fuzzy or exact

matches to the first token.

7. The method of claim 1, the method further comprising:
identifying a second token that is relevant to the first token and the information
domain, wherein the second token is not initially included in the natural language input; and

adding the second token to the meaning representation.

8. The method of claim 1, wherein the natural language input comprises at least a second
token, the method further comprising:
determining that the second token is not relevant to the information domain; and
omitting the second token from the meaning representation responsive to the

determination that the second token is not relevant.

9. The method of claim 1, the method further comprising:
obtaining a phoneme confusion matrix comprising at least two similar sounding words
that are disambiguated based on previous training from one or more user utterances; and

disambiguating the first token based on the phoneme confusion matrix.

WO 2016/044321 PCT/US2015/050263
33

10. The method of claim 1, the method further comprising:
obtaining one or more dynamic data tokens from a dynamic data source; and
integrating the one or more dynamic data tokens with the plurality of tokens from the
information domain, wherein the meaning representation is determined based on the

integrated dynamic data tokens.

11. The method of claim 10, wherein the plurality of domain tokens are structured into a
domain information FST parser that includes at least a first FST path comprising a first set of
domain tokens and a second FST path comprising a second set of domain tokens, and wherein
integrating the one or more dynamic data tokens comprises:
generating a dynamic FST based on the one or more dynamic data tokens; and
inserting the dynamic FST into a slot of the domain information FST parser reserved for

dynamic data.

12. The method of claim 1, wherein the computer executable action comprises an

execution of: a natural language-based search request or a natural language-based command.

13. The method of claim 1, wherein the information domain comprises a plurality of
entries of searchable information, and wherein retrieving the plurality of domain tokens that
match the first token comprises:

determining at least one entry, which includes the plurality of domain tokens, that is

likely being searched for based on the first token.

14, A system for integrating domain information and semantic parsing to generate
meaning representations from natural language input, the system comprising:

a computer system comprising one or more physical processors programmed with
computer program instructions to:

receive a natural language input comprising at least a first input token;

obtain a semantic grammar;

WO 2016/044321 PCT/US2015/050263
34

determine a semantic structure of the natural language input based on the semantic
grammar;

retrieve from an information domain, a plurality of domain tokens that match the first
token of the natural language input; and

generate a meaning representation based on the semantic structure and the plurality
of domain tokens, wherein the meaning representation is used to execute a computer

executable action.

15. The system of claim 14, wherein the plurality of domain tokens are structured into a
domain information FST parser that includes at least a first FST path comprising a first set of
domain tokens and a second FST path comprising a second set of domain tokens, and wherein
to generate the meaning representation, the computer system is further programmed to:
select the first FST path based on a first score of the first FST path and a second score
of the second FST path, wherein the first FST path is used to generate the meaning

representation.

16. The system of claim 15, wherein the first score is based on a first sum of weights of
each domain token among the first set of domain tokens and the second score is based on a
second sum of weights of each domain token among the second set of domain tokens, and
wherein a given weight for a domain token is based on a level of frequency that the domain

token appears in the information domain.

17. The system of claim 16, wherein to retrieve the plurality of domain tokens, the
computer system is further programmed to:
initialize an input FST based on the first token and the semantic structure; and
compose the input FST based on the first FST path and the second FST path, wherein
the first FST path and the second FST path are integrated with the input FST, and wherein the

first FST is selected from the input FST.

WO 2016/044321 PCT/US2015/050263
35

18. The system of claim 17, wherein to select the first FST path, the computer system is

further programmed to: select a shortest path in the input FST.

19. The system of claim 17, wherein to retrieve the plurality of domain tokens, the
computer system is further programmed to:

perform fuzzy or exact matching between domain tokens from the information domain
and the first token, wherein the plurality of domain tokens comprises fuzzy or exact matches

to the first token.

20. The system of claim 14, wherein the computer system is further programmed to:
identify a second token that is relevant to the first token and the information domain,
wherein the second token is not initially included in the natural language input; and

add the second token to the meaning representation.

21. The system of claim 14, wherein the natural language input comprises at least a second
token, and wherein the computer system is further programmed to:

determine that the second token is not relevant to the information domain; and

omit the second token from the meaning representation responsive to the

determination that the second token is not relevant.

22. The system of claim 14, wherein the computer system is further programmed to:
obtain a phoneme confusion matrix comprising at least two similar sounding words
that are disambiguated based on previous training from one or more user utterances; and

disambiguate the first token based on the phoneme confusion matrix.

23. The system of claim 14, wherein the computer system is further programmed to:
obtain one or more dynamic data tokens from a dynamic data source; and
integrate the one or more dynamic data tokens with the plurality of tokens from the
information domain, wherein the meaning representation is determined based on the

integrated dynamic data tokens.

WO 2016/044321 PCT/US2015/050263
36

24, The system of claim 23, wherein the plurality of domain tokens are structured into a
domain information FST parser that includes at least a first FST path comprising a first set of
domain tokens and a second FST path comprising a second set of domain tokens, and wherein
to integrate the one or more dynamic data tokens, the computer system is further
programmed to:

generate a dynamic FST based on the one or more dynamic data tokens; and

insert the dynamic FST into a slot of the domain information FST parser reserved for

dynamic data.

25. The system of claim 14, wherein the computer executable action comprises an

execution of: a natural language-based search request or a natural language-based command.

26. The system of claim 14, wherein the information domain comprises a plurality of
entries of searchable information, and wherein to retrieve the plurality of domain tokens that
match the first token, the computer system is further programmed to:

determine at least one entry, which includes the plurality of domain tokens, that is

likely being searched for based on the first token.

27. A method of generating an information domain FST parser for integrating domain
information with semantic parsing to generate a meaning representation, the method being
implemented on a computer system having one or more physical processors programmed
with computer program instructions to perform the method, the method comprising:

obtaining, by the computer system, a plurality of entries of an information domain,
wherein each entry comprises one or more domain tokens;

determining, by the computer system, a weight for each domain token, irrespective of
whether a given domain token appears in more than one entry, wherein the weight indicates a
level of frequency in which the given token appears in the information domain;

defining, by the computer system, for a given entry, a plurality of combinations of the

one or more domain tokens, wherein each combination of the one or more domain tokens

WO 2016/044321 PCT/US2015/050263
37

represent a different order of the one or more domain tokens and include some or all of the
one or more domain tokens for the given entry;

determining, by the computer system, a score for each combination, wherein the score
is based on the weight for each domain token involved in the combination; and

storing, by the computer system, the plurality of combinations for each of the plurality

of entries.

28. The method of claim 27, wherein the plurality of combinations for each of the plurality
of entries are collectively stored as an information domain FST parser, and wherein each

combination represents an FST path of the information domain FST parser.

29. The method of claim 28, wherein the score for each combination comprises a path

score for each FST path.

30. The method of claim 28, the method further comprising: optimizing the information

domain FST parser.

WO 2016/044321 PCT/US2015/050263
1/22

COMPUTER SYSTEM 104

COMPUTING DEVICE(S) 110

PROCESSOR(S) 112

STORAGE DEVICE(S) 114

INFORMATION RETRIEVAL AND SEMANTIC
INTEGRATION APPLICATION 120

DOMAIN FST PARSER NATURAL LANGUAGE
GENERATOR 130 INPUT PROCESSOR 140

Information Computing Device(s)
Domain(s) 150 160

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263
2/22

. 200

202 | OBTAIN A SEMANTIC GRAMMAR AND THEN STRUCTURE AN FST
e PATH BASED ON THE SEMANTIC GRAMMAR

204 | INTEGRATE INFORMATION FROM AN INFORMATION DOMAIN TO &
-~ GENERATE SEMANTICALLY STRUCTURED FST PATHS BASED ON ¢
TOKENS FROM THE INFORMATION DOMAIN '

206

OPTIMIZE THE FST PARSER

FIG. 2

300

e v N

(Do)t (7 10(3)

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263
3/22

402
by

OBTAIN CRITERIA LIST

404

3

DETERMINE A WEIGHT FOR EACH &
TOKEN THAT APPEARS IN CRITERIA
LIST

406
Aoy

OBTAIN AND PROCESS A NEXT
ENTRY IN CRITERIA LIST

408

b3

OBTAIN A LIST WEIGHT (IF ANY)
FOR THE NEXT ENTRY

410 416

b

ADJUST THE TKEN WEIGHT FOR &
EACH TOKEN BASED ON LIST
WEIGHT

MARK ALL TOKEN NODES AS A
FINAL STATE

CREATE AN ARC FROM THE START |
POINT TO EACH TOKEN

4 .
CREATE AN ARC FROM A
PREVIOUS NODE TO A CURRENT

NODE

GENERATE FST PARSER

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263
4/22

U Ay

/"‘””‘ e
- \:KJ \" 92 ; { Kj""‘“’ R]
/ / ff 8 s ;3 4 0Ad \

,.,..-—'*""' :‘ . m [4\ Ql AN
// e Cl‘fee' kﬁQV -~ \‘i\t’\"/\)‘_ H \ y
," 3‘33548“ “””"KS \/ 835 sl !4\(’/ |
{ / o e P - ; f}y,
|77 sty
[R
" e

§ "J,..a—"""(—

T

{ —

| g s e
{ // anih

.i 4/ ,//:/M J LY 46

f e e P
Rurreiand/RTS e
!,/ éETﬁSGvCL‘VQ ? ™ u‘rskfu\;t(wfgng' -

/,/’"’- ~:-:““ M.g:i (‘ﬁj Al (1”\2
g e Ay Wi m) AT LY
¥, Fﬂ“ C’it 38'92 e \""“"*-»“...h f‘a"d H T
“"‘#"—"‘ MN“‘""%-&.‘...
e
WATME

t'W\ M{é\“‘“‘ = [S
ViR 1Y el 14
JE e
A
R (o e
B U
\.\v__\
; 7 F
e i S =) S ’ﬁm
- T \\
13 -) iy
SRV N
.—"""‘

g

LATA —
Af’ Nl?-v‘.? e

W 7
o Eﬂq“ 5{: #/

T R
et '< «') 3 T —
- - / *_\
....______D,G'}{'t 3’;(3

\.! TQ”’T} % gDS:?IIjCW «&‘4§;/
Tefi“o gesTz \\ T,)

e A " ;""w'“::#:%
e \,_-«e:'"” M- ‘Nr‘t ”"‘73
e
LRI £40
S WAZMIS o

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

5/22

oy

TN

N

vyl %xw:% £ u...i:li.a

;2

RGP ™
7 rzwwgc 2l m

TR G bt
i w«f@t@é o .n\M =/ ,!./1/«
\wﬁm — b
N

/

/

e,
—

/
Gnion; 4
. CEBMIRE] ™ o resafione)
////J/.\,. P - /N\» Fm.ll!s(\\\
{ ﬁ.ﬁa.iﬂ s \qom:ﬁmns 5}
e NI RS, \
T T I:V..\\.\\\\ -
S ey
ZRERCINISI0]

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263
6/22

-~ {100

INITIALIZE INPUT STRING FST
FROM INPUT STRING

704 714
ks ¥ -
COMPOSE INPUT STRING FST ¢
BASED ON A DOMAIN GENERATE QUERY STRING BASED |
ON CRITERIA CONTENT

INFORMATION FST PARSER

1,-\ % [y
SELECT BEST (ORN-BEST) FST ¢ COMPOSE INPUT FST STRING
BASED ON SHORTEST PATH OR (N- £ BASED ON INFORMATION

SHORTEST PATHS

EXTRACTION FST

SELECT BEST (OR N-BEST) FST ¢
BASED ON SHORTEST PATH OR (N-
SHORTEST PATHS)

Loy

REMOVE EPSILON ARCS (IF ANY)
AND TOPSORT THE ARCS

TOPSORT ARCS

GENERATE PARSING RESULT [DETERMINE BEST-MATCH PATH
BASED ON TOPSORTED ARCS |

USED TO GENERATE QUERY INPUT

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

7122

8 Old

~Bee

008

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263
8/22

WO 2016/044321

6 Ol

&) @e_ AORIC ™ d&/
) ig? i zm () ,@;:@a /JY

I i/ ot ..A\\l..s\s\.\\s\\\ll\)f
R () S
TRNERS

Lié LS, ?ﬂ‘m&

S LA!.!:!/
/ () Yl 0,) =0
N\ — T N A T g ETE
, \ oo % ,,\é?\? 3 e Is PR Tee:
ﬁ/ {Ep1ISHIT AT 1) skt S \J%\\.@%ﬁ@%mmm G048 /8:088%

N Rt ; APy
TR = (SN TRIS SHNRG 6) : YT
~D Y " v \\v/t\ 5] \\\»..!. 481815
AN g e g

HEIG -~
e 2D e (0" Syoopaes

9 A 137

Fa¥a)
008

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263
9/22

iy
o

Lo/ 4557

!
¥

(7 Cofiee
R

fresnd)
Lo

10

{

@B&b%
FIG. 10

{ l‘:-;)

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263
10/22

~1100
FIG. 11

rd

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263

11/22
1200
¥
1202 | CREATE AN FST FOR A LIST HAVING LIST ENTRIES, ADDING A
= LAST ARC INDICATOR FOR EACH ENTRY
¥
1204
S OPTIMIZE FST

1206
ey REMOVE NONSENSE ARCS

%

1208
- OPTIMIZE THE FST

FIG. 12

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

12/22

€l Ol

®

2

<Eiising /q\ 3 fw& TR

,/w\ <8

WS

\M/

=/ SRRSO

)
W %.@L

\ 7 e \ e
BN n Y N A\mésmhsvu

®

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321

PCT/US2015/050263
13/22

1400

1402

S

GENERATE AN INPUT STRING FST

1404

NN

COMPOGSE INPUT STRING FST WITH A PARSER FST

1406

N

MODIFY AND EXPAND THE INPUT STRING FST

RECREATE THE INPUT STRING FST WITHOUT WILDCARDS

GENERATE FINAL FST

OUTPUT PARSING RESULT

FIG. 14

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

14/22

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

15/22

——{(7)-o
<448 {aiiey aoﬁﬁ

9l Ol

@%

,a /z

/o\v > 2 \o/.. \"/T.. \)/ \w/k - 7
@uxiﬂ B tee el sRe= <Afeq = SR, o R e ,z g
\4 >/\lﬂ/ Q \u/ M: f/ u.. e d 1/ Wv
Wb N e YT Gl sS4 \14 ARG DBl e e85 m‘c i) ﬁ% g g
.@WA/, G,) PTTREN m@] &

v i

rEp \VA\._:

AT

0

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

16/22

0

) S —

g %@;!@éf/

I
.):OA

v

%

R

V-
e

GANNILNOD =

AR Ao

e

s

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

17/22

i

{(JENNILNGD

IARIE

- QEANLINGD

D (Dt GANINOD

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

18/22

8l Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

WO 2016/044321

19/22

TETR
g\.@g BIEUE] (_c, e Uoskt
(N
“V; e/

r:u _wg c(LT N
e 5 ey wsKGs

{06!

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321

20/22

 2000A

FIG. 20A

~ 20008

FIG. 20B

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/050263

PCT/US2015/050263

WO 2016/044321

21/22

SUBSTITUTE SHEET (RULE 26)

WO 2016/044321 PCT/US2015/050263

22/22
- 2200
¥
st e gl

£

. N e,
R Yaw

FIG. 22
-~ 2300
¥
2302 2304 2306
$ S S
input phoneme Phoneme Dictionary Word-level
sequence/graph | Error Model [] Model | ™ Parser | Outeut
FIG. 23

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2015/050263

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 17/27 (2015.01)

CPC - GO6F 17/271 (2015.10)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - GO6F 17/27, GO6F 17/28, GO6F 17/30 (2015.01)
USPC - 1/1, 704/9, 707/999.006, 707/E17.014

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
CPC - GO6F 17/271, GO6F 17/2785, GO6F 17/28, GO6F 17/3043, GO6F 17/3061 (2015.10) (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Orbit, Google Patents, Google Scholar, Google.
Search terms used: integrate domain information, semantic parsing, generate meaning representations from natural language input,
processor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US 2008/0104071 A1 (PRAGADA et al) 01 May 2008 (01.05.2008), entire document 1-30
US 2014/0236575 A1 (MICROSOFT CORPORATION) 21 August 2014 (21.08.2014), entire 1-30
document
Y US 2011/0119049 A1 (YLONEN) 19 May 2011 (19.05.2011), entire document 1-26
Y US 2003/0187643 A1 (VAN THONG et al) 02 October 2003 (02.10.2003), entire document 9,22
Y US 6,816,830 B1 (KEMPE) 09 November 2004 (09.11.2004), entire document 2-6, 11, 15-19, 24, 27-30
Y US 2008/0294437 A1 (NAKANO et al) 27 November 2008 (27.11.2008), entire document 3, 11, 16-19, 24, 27-30
Y US 2012/0046935 A1 (NAGAO) 23 February 2012 (23.02.2012), entire document 2-6, 15-19, 29
Y US 6,073,098 A (BUCHSBAUM et al) 06 June 2000 (06.06.2000), entire document 5,18
A US 2009/0248605 A1 (MITCHELL et al) 01 October 2009 (01.10.2009), entire document 1-30
A US 2007/0112555 A1 (LAVI et al) 17 May 2007 (17.05.2007), entire document 1-30
A US 5,265,065 A (TURTLE) 23 November 1993 (23.11.1993), entire document 1-30
A US 5,794,050 A (DAHLGREN et al) 11 August 1998 (11.08.1998), entire document 1-30

D Further documents are listed in the continuation of Box C. D See patent family annex.

the priority date claimed

* Special categories of cited documents: “T” later document published afier the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the aplghqatmn but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the intemational “X” document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
2"53;10 establish the pfgb:il)cauon date of another citation or other .«y» document of particular relevance; the claimed invention cannot be
pecial reason (as specific) o considered to involve an inventive step when the document is
“Q” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than «g» 4ocyment member of the same patent family

Date of the actual completion of the international search

31 October 2015

Date of mailing of the international search report

20 JAN 2016

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Blaine Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - wo-search-report

