woO 2020/051540 A1 | NI 0000 KO Y0000 0 0 000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
12 March 2020 (12.03.2020)

(10) International Publication Number

WO 2020/051540 A1

WIPO I PCT

(51) International Patent Classification:
G060 20/00 (2012.01)

(21) International Application Number:
PCT/US2019/050075

(22) International Filing Date:
06 September 2019 (06.09.2019)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
. . (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available). ARIPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
62/727,868 06 September 2018 (06.09.2018) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Applicant: CLAUSE, INC. [US/US]; 246 5th Avenue, 3rd EE. ES, FIL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Floor, New York, NY 10001 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Inventors: HUNN, Peter, Geoffrey Lerato; 246 5th Av- TR), OAPI (BF, B, CF, CG, CI. CM, GA, GN, GQ, GW,
enue, 3rd Floor, New York, NY 10001 (US). SELMAN, KM, ML, MR, NE, SN, TD, TG).
Daniel, Charles; 246 5th Avenue, 3rd Floor, New York,
NY 10001 (US). SIMEON, Jerome; 246 5th Avenue, 3rd Published:

Floor, New York, NY 10001 (US). ROBERTS, Matthew;
246 5th Avenue, 3rd Floor, New York, NY 10001 (US).

Agent: VAN OSDOL, Brian; 968 Rose Ave., Piedmont,
CA 94611 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR A HYBRID CONTRACT EXECUTION ENVIRONMENT

External Resource:
e.g.Signature Service
{Input)

Contract

120

II

140

........ Contract Log

130
Contract Event(s)

Runtime (Offchain)

(e.g. Obligation)
: 150
Task Management
CcMms
10
BDL 120
. 110
Sceript(s)
External Resource:
e.g. Equity Management «-«--
Web Service
Transaction
Runtime

FIGURE 1

(57) Abstract: A system and method for managing an electronic con-
tract for hybrid runtime execution, which includes a contract execution
service that comprises an internal runtime environment and a set of in-
tegrations to external resources with at least one integration to an on-
chain runtime, wherein the contract execution service comprises config-
uration to: establish the electronic contract, wherein the electronic con-
tract comprises a set of executable programmable components and a set
of natural language components; change the state of the electronic con-
tract and generate a contract event; and in response to the contract event:
extend execution of the electronic contract to an on- chain environment,
when the contract event includes an associated on-chain integration; and
extend execution of the electronic contract to an external application re-
source, when the contract event includes an associated external service
integration.

WO 2020/051540 PCT/US2019/050075

SYSTEM AND METHOD FOR A HYBRID CONTRACT EXECUTION
ENVIRONMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This Application claims the benefit of U.S. Provisional Application No.
62/727,868, filed on 06-SEP-2018, which is incorporated in its entirety by this
reference.

TECHNICAL FIELD
[0002] This invention relates generally to the field of electronic documents and

transaction management, and more specifically to facilitating the formation, versioning,

execution, and management of contracts.

BACKGROUND

[0003] A contract is a legally enforceable agreement to exchange value such as
goods, services, or property. Contracts are a fundamental tool for coordinating economic
activity. Four of the basic stages of contracting are: formation, performance,
renegotiation and amendment (if applicable), and termination/completion. Written
contracts are typically paper-based or computer-based digital representations of paper-
based contracts; often filed and stored in PDF format. Contracts are typically composed
of numerous distinct clauses that establish basic information and contain the parties’
agreed upon rights and obligations. Clauses may be made up of a single sentence or a
paragraph, and are grouped together topically, and often hierarchically, by sections.

Contracts are typically structured so that clauses make intra-document references to one

WO 2020/051540 PCT/US2019/050075

another, either in the same section or across different sections. Clauses and sections that
may appear in modern contracts often include: a preamble, identification of the parties,
recitals, definitions, the exchange of value and the parties’ other obligations (including
actions the parties should and should not undertake), representations, warranties,
conditions, and several boilerplate clauses such as choice of law, assignment, and entire
agreement (merger) clauses. Contract documents often incorporate by reference other
documents, appendices, laws, and standards into the agreement. Under existing
technology and practices, the contract serves as a static documentary record of the
agreement as of the date of execution. As such, although the external environment that
relates to the contract and the parties’ conduct pursuant to the contract may change
over time, the terms and conditions of the clauses do not change after the contract is
formed unless there is a legal amendment/modification. Commercial enterprises will
often manage legal contracts using Contract Lifecycle Management (CLM) software.
[0004] CLM software typically operates by creating a centralized repository of
documents that captures and/or extracts data, often from paper-based documents or
PDFs, relevant to the user’s obligations under each contract. This static data is stored
and tracked to monitor the performance of obligations, manage business milestones,
and provide the basis for basic business analytics. CLM software creates a system and
layer of software and data separate from the actual contracts the CLM system assists in
managing. CLM software cannot provide real-time state or visibility of contracts and
contractual performance, and no aspect of CLM software, by itself, has the ability to
constitute or amend legally enforceable contract rights, obligations, or parameters,
distinct from the underlying contracts that are managed. Management of contracts and
associated administrative actions/operations are largely performed manually by users of
the CLM software.

[0005] Various initiatives are also underway to automate and execute aspects of
contract performance, often by using distributed ledger implementations, sometimes
referred to as “smart contracts”. Distributed ledgers (also known as “shared ledgers”,
“replicated ledgers” or, in specific implementations, “blockchains®), are a type of
database architecture where a single record of data is spread throughout and viewable

by numerous entities, and typically updated according to a robust consensus

WO 2020/051540 PCT/US2019/050075

protocol/algorithm. Despite many of these more recent developments, legal contracts
are still executed and managed in their static states (with the same terms and conditions
as they are initially formed). In addition, despite the use of the term contract, smart
contracts are often simply coded scripts (often with state) that execute and perform
processes or transactions on a blockchain or distributed ledger and are often divorced
from any legally enforceable contract and the contractual rights and obligations of any
party. A smart contract may have legal application or legal effects, but may equally not
have legal application. Contracts will often benefit from ‘smart contract’ technologies,
but can be limited by capabilities of smart contracts. The term contract in the foregoing
sense may therefore be somewhat of a misnomer. Furthermore, many smart contract
systems suffer from significant technical drawbacks that may limit their enterprise and
legal suitability, including issues pertaining to scalability, privacy, security, architecture,

and consensus management.

[0006] Thus, there is a need in the electronic document and transaction
management fields to create a new and useful system and method for facilitating the
formation, versioning, execution, and management of computable legal contracts.
Additionally, there is a need to improve existing smart contract systems for enterprise
and/or legal application. This invention provides such a new and useful system and
method.

BRIEF DESCRIPTION OF THE FIGURES

[0007] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which:

[0008] FIGURE 1 is a schematic description of a system of a preferred
embodiment;

[0009] FIGURE 2 is a depiction of an exemplary structure of exemplary
components within an embodiment of a programmable clause within a contract;

[0010] FIGURE 3 is a schematic depicting an exemplary input/output integration

architecture with a server embodiment;

WO 2020/051540 PCT/US2019/050075

[0011] FIGURE 4 is a schematic depiction of an exemplary server-based
embodiment interacting with a repository system, a business network application on a
blockchain/distributed ledger system;

[0012] FIGURE 5 is a schematic depiction of an exemplary
blockchain/distributed ledger runtime embodiment;

[0013] FIGURE 6 is a schematic depiction of an outbound integration
architecture;

[0014] FIGURE 7 is a depiction of an exemplary on-chain asset transfer
configuration executed from a programmable clause within a contract by integration
with a BDL system;

[0015] FIGURE 8 is a schematic depiction of an exemplary embodiment of an
interface between an off-chain contract runtime and a blockchain/distributed ledger

runtime and system;

[0016] FIGURE 9 is a schematic depiction of an exemplary abstraction of a
contract management system;

[0017] FIGURE 10 is a flowchart depicting an exemplary signature event;

[0018] FIGURE 11 depicts an exemplary signature workflow from a contract

management system (CMS);

[0019] FIGURE 12 depicts an exemplary natural language component of a
signable document;

[0020] FIGURE 13 depicts an exemplary representation of a contract log shown
on a contract management service;

[0021] FIGURE 14 depicts an exemplary user interface for a contract log;

[0022] FIGURE 15 depicts an exemplary payment executed through an API;
[0023] FIGURE 16 depicts an exemplary transformation via an HTTP request;
[0024] FIGURE 17 depicts an exemplary transformation via an HTTP request;
[0025] FIGURE 18 depicts an exemplary set of transaction data;

[0026] FIGURE 19 depicts an exemplary set of transaction data;

[0027] FIGURE 20 depicts an exemplary set of transaction data;

[0028] FIGURES 21A and 21B depicts an exemplary BDL connector;

WO 2020/051540 PCT/US2019/050075

[0029] FIGURE 22 depicts an exemplary transformation via an HTTP request;
[0030] FIGURE 23 depicts one exemplary contract logic flow;
[0031] FIGURE 24 is a schematic depicting an implementation of a runtime

comprising an off-chain and an on-chain runtime component.

[0032] FIGURE 25 is a schematic depiction of exemplary data from a contract log
being referenced within an object on a blockchain/distributed ledger;

[0033] FIGURE 26 is a schematic showing instantiation and execution of an

electronic contract of preferred embodiment;

[0034] FIGURE 27 is an exemplary depiction of a signature event integrated into
a contract management service;

[0035] FIGURE 28 depicts an exemplary protocol to receive an event;

[0036] FIGURE 29 depicts an exemplary transformation flow of a contract event

to an external resource application;

[0037] FIGURE 30 is an exemplary response object for a sales contract for goods;
[0038] FIGURE 31 is an exemplary transformation for a sales contract for goods;
[0039] FIGURE 32 is an exemplary message for a programmable clause for a sales

contract for goods;

[0040] FIGURE 33 is an exemplary sales contract for goods;

[0041] FIGURE 34 depicts an exemplary transformation for a webhook within a
workflow system;

[0042] FIGURE 35 depicts an exemplary flow for a programmable clause to
trigger a workflow;

[0043] FIGURE 36 depicts an exemplary workflow for the creation and payment
of an invoice;

[0044] FIGURE 37 is a schematic depiction of exemplary processing of a clause or
contract;

[0045] FIGURE 38 is a depiction of an exemplary embodiment of a Merkle tree

contract log data structure transition;
[0046] FIGURE 39 is a depiction of an exemplary embodiment of a Merkle tree

contract log data structure transition;

WO 2020/051540 PCT/US2019/050075

[0047] FIGURE 40 is a depiction of a comparison of the root of the contract log of
two contracting parties;

[0048] FIGURE 41 is a depiction of a task management user interface;

[0049] FIGURES 42A-42C depicts exemplary user interactions with a generated
task;

[0050] FIGURE 43 is a flowchart of a method of a preferred embodiment; and
[0051] FIGURE 44 is an alternative flowchart of a method of a preferred
embodiment.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0052] The following description of the embodiments of the invention is not
intended to limit the invention to these embodiments but rather to enable a person
skilled in the art to make and use this invention. In other instances, well-known
methods, procedures, components, and circuits have not been described in detail as not
to unnecessarily obscure aspects of the present invention. Various modifications to the
exemplary embodiments and the generic principles and features described herein will be
readily apparent. The exemplary embodiments are mainly described in terms of
particular methods and systems provided in particular implementations. However, the
methods and systems will operate effectively in other implementations. Phrases such as
“exemplary embodiment”, “one embodiment” and “another embodiment” may refer to
the same or different embodiments. The embodiments will be described with respect to
systems and/or devices having certain components. However, the systems and/or
devices may include more or less components than those shown, and variations in the
arrangement and type of the components may be made without departing from the
scope of the invention. The present invention is not intended to be limited to the
embodiments shown, but is to be accorded the widest scope consistent with the

principles and features described herein.

WO 2020/051540 PCT/US2019/050075

[0053] Reference numbers may be made in association with their respective
figures for convenience, and are not intended to strictly identify or define elements

throughout.

1. Overview

[0054] The system and method functions to enable contracts to be managed and
executed in a manner in which at least part of the execution of a legal contract is
automatable. A contract is preferably at least partially computable/machine readable.
Such contracts may be termed ‘data-driven’, ‘programmable’, ‘computable’, and/or
‘smart’. Execution of a contract is preferably achieved by exposing external data to the
contract to drive the computable aspects of the logic of the contract. A contract may be
composed of one or many machine executable clauses. These may, for example, take the
form of ‘programmable clauses’ such as those described in US Patent Application no.
15/476,791, filed 31-MAR-2017, which is hereby incorporated in its entirety by this
reference. A programmable clause, however, may take any suitable form comprising
executable logic. Contract documents may also consist of natural language elements
(e.g. clauses entirely composed of natural language). Other approaches may be used
with the system and method. FIGURE 1 provides an exemplary structure of a
programmable clause within a contract, and the relationship it may take to external
resources. In some variations, other document types may be used with the system and
method, but the system and method has particular applicability to contracts. A
programmable clause may be a subset of a generic programmable component.

[0055] The system and method comprises providing an environment for the
execution and management of computable contracts and other documents. The system
and method can enable a contract to be executed and managed in a hybrid environment,
enabling transactions to be executed on external resources whilst maintaining the
document state and managing document execution between contracting parties.

[0056] The system and method may provide the benefits of creating and verifiably
executing a legal contract or other document with executable elements in conjunction
with prose-based content. As such, executable elements may be used alongside natural

language content (e.g., legal prose) within a document; thereby enabling documents to

WO 2020/051540 PCT/US2019/050075

act as more formal legal contracts, and capable of including provisions that cannot or
users elect not to, make executable. This may be achieved with or without a
blockchain/distributed ledger (BDL) system.

[0057] The system and method may provide benefits in implementing
decentralized execution of components of legal contracts or other documents. The
system and method may offer a more suitable technical solution over existing solutions,
which often provide self-executing or automatic enforcement of code; making
traditional BDL-based smart contract systems unsuitable for many legal
applications/contracts. As one example, legal contracts are typically ‘incomplete’ in
nature, as the future state of the world cannot be entirely known at the point of contract
execution. Future contingencies may not be capable of description, and contracting
parties cannot commit themselves to never engage in renegotiation. The system and
method can be flexible to such scenarios. In another example, amendments may still be
made to contract terms, which contrasts with the technical limitations of immutable on-
chain smart contract code. As a third example, it is often desirable to waive rights
against, and obligations imposed upon, counterparties in legal contracts. For example,
commercial exigencies or best practices may dictate that a particular right or obligation
is not enforced. In which case, automated enforcement can be detrimental, and
enforcement should be waived and not automatically executed. The system and method
may be used to selectively enforce a contract, or part thereof, when required. Unlike a
system in which computation is performed entirely on-chain, the disclosed invention
provides a mechanism in which execution of contract code may be separated between
off-chain and on-chain environments. At least part of the code of a computable contract
may be executed off-chain, interacting with an on-chain environment where beneficial.
For example, a computable contract may compute a portion of its state at an off-chain
runtime, and execute on-chain transactions (e.g. storing state on-chain; executing an
on-chain digital asset transaction; updating/executing/deploying/calling an on-chain
smart contract/script) pursuant to a computed off-chain state, where required.

[0058] By providing a computation abstraction layer to a BDL-based system, the
system and method can avoid issues of coupling computation and enforcement together.

The system and method may enable decoupling of state and consensus; providing a BDL

WO 2020/051540 PCT/US2019/050075

agnostic off-chain computing substrate The system and method facilitates contracts that
may operate both on-chain and off-chain, rather than requiring all, or even part, of the
executable logic of a smart contract to run on a BDL. This may mitigate or alleviate a
number of technical issues with the operation of BDL-based smart contracts, such as
improving BDL transaction throughput and scalability; improving privacy of contract
code and operations; facilitating versioning and increasing flexibility/amendment of
contract code; and improving on-chain security by limiting code and transaction
exposure to non-contracting parties and through standardization of on-chain code (e.g.
via an on-chain library).

[0059] Unlike smart contracts, legal contracts typically do not require global state
consensus. The system and method enables legal contracts to be executed and managed
without requiring global state consensus on all operations, whilst retaining beneficial
properties of BDL data structures. The system and method provides pre- and post-
formation versioning and ensures the integrity of code execution. A contract log may be
used to store and version the state of the contract document (e.g. executable code,
configurations, prose etc.). By doing so, contracting parties may be assured that the

state of the contract that is being executed is the same state as negotiated/formed.

[0060] The system and method may reduce computation costs and increase on-
chain transaction throughput by selectively using BDL systems thereby providing a
hybrid execution of a contract. Currently, BDL transaction throughput is often limited
as compared to other enterprise transaction-based systems. All validating nodes on a
BDL (another suitable network) may not have to process every transaction in some
variations. In some preferred implementations of the system and method computations
may occur primarily off-chain. As such, transaction or computation costs may be
reduced as only the transactions/state that require global state are actually executed or
broadcast on-chain’. Furthermore, the system and method may enable an increase in
the complexity of contract logic and associated computation. For example, the
computation (either in whole or in part) for a data-driven legal contract may be
computed off-chain and the output pushed on-chain either to an on-chain script in an
on-chain library to instantiate, deploy, or execute an on-chain

transaction/operation/script; in a field in an on-chain transaction (e.g. as an opcode

WO 2020/051540 PCT/US2019/050075

instruction, in a transaction data field, etc.); provide data inputs as an off-chain ‘oracle’;
or any other suitable approach/mechanism. The system and method may provide
superior privacy and security properties as computation may not be performed entirely
on-chain, but may be performed at least partially off-chain, but may still retain the
benefits of performing actions on-chain where beneficial). These technical benefits may
provide substantial improvements for legal and enterprise application of computable

and smart contracts.

[0061] Where a BDL is used, the system and method may provide a means to
store data off-chain in a manner that removes the need for this to be stored on-chain.
This may have the benefit of decreasing the size of the BDL state history and minimizing
storage on-chain, whilst retaining many of the benefits of immutability and consensus
provided by BDLs that are required for legal contract execution.

[0062] The computation environment may also be integrated with a multiplicity
of BDL protocols and instances of each. For example, a contract executed using the
system and method may integrate with two or more ledgers of the same or different
protocols at the contract level. This is beneficial as various operations, transactions, and
state may be needed to be performed or shared not solely on a single blockchain or
distributed ledger (e.g., a tokenized asset transfer may be performed on a first
chain/ledger, a payment performed on second chain/ledger, and state shared on a third
chain/ledger).

[0063] Various regulatory issues may particularly affect the use of a BDL-based
smart contract system. For example, laws and regulations may impose certain data
privacy requirements (e.g. rights of access to or amendment/deletion of personal data).
Where contract operations are executed on-chain this privacy requirements present a
potential issue for the use of BDL systems; particularly given that most BDL-based
smart contract systems bundle enforcement and computation together. By removing the
computation of code pertaining to the contract from the BDL layer, or at least reducing
it (e.g. by only using on-chain code to execute transactions emanating from off-chain
contract computation), the BDL-system may limit data storage to the transaction

record.

10

WO 2020/051540 PCT/US2019/050075

[0064] As another potential benefit, the system and method may also improve the
lifecycle management process of contracts and transactions. CLM currently requires
manual management of static documents, as those documents cannot connect to
existing information technology infrastructure to provide real-time state. The CLM
process typically involves managing contracts indirectly by extracting data from a static,
natural language, document that is then subsequently managed by users. The system
and method provides the potential benefit of enabling contract data to be managed
directly and/or natively without the requirement for a software middleware layer to
manage contracts by proxy. Technically, this may improve the efficacy of contract
management systems, with attendant commercial benefits. Furthermore, the system
and method can enable transactions to be executed (manually or automatically) based
upon the state of a legal contract, such as by enabling that state to be used in other
systems. The system and method may enable contracts to provide real-time state across
systems thereby providing a verifiable contract lifecycle, and doing so without external
management of the document itself. For example, the state of a payment provision
within a contract document may be computed based upon a data input, and that state
used to execute an operation upon an external resource such as an accounting system,
payment gateway, or similar. Similarly, the real-time price payable under a contract may
be computed from delivery data and utilized in, or reconciled with, an accounting
system to raise an invoice). Data from contracts may be referenced in operations
performed on external resources (e.g., BDLs and via. APIs) to create associations
between systems. As such, the system and method may enable contracts to become part
of the enterprise information technology architecture and systems. Instead of being
managed separately from one another, contracts may form part of the fabric of an
organization’s infrastructure. This is particularly important given that contracts
establish and govern the relationships between constituents that comprise an
organization, such as shareholders, financiers, employees, contractors, suppliers, and

customers.

[0065] As a further potential benefit, the system and method may improve the
administration of legal transactions by managing interests and obligations between

contracting parties in real-time or near real-time. This may have significant benefits by

11

WO 2020/051540 PCT/US2019/050075

enabling contracting parties to verifiably prove (e.g. to third parties) that a given
obligation or interest exists. An example may be provided by way of a series of assets
held on trust. For the purposes of this example, those assets comprise real property. A
variety of different interests may need to be managed. An ownership interest may accrue
to the trust vehicle. A beneficial interest in the properties may be established in the
trust. If the properties are rented and generating income, the income may be distributed
to the beneficiaries. The properties may themselves have encumbrances over them, such
as a mortgage interest or easement. All of these interests are created, and may be
disposed of, by contract. Managing these interests can be complex and inefficient,
particularly if administered incorrectly. The system and method may assist in the
administration and management of these interests, especially where they are affected by
multiple contracts (e.g. mortgage contracts, contracts for sale, trust documentation,
etc.). Numerous other examples of the application of the system and method are
possible.

[0066] As another potential benefit, the system and method may enable the
creation of a verifiable rights management system for blockchain and distributed ledger
systems (e.g. intangible digital assets and digital representations of tangible assets
represented on BDL systems). As such, the system and method may improve the
management of interests and obligations pertaining to digitized systems. Verifiable
contract obligations and interests may be used to administer the state of digital,
programmable, assets that exist on blockchain and distributed ledger or other systems.
For example, the system and method may be used to prove that a given interest exists
under a contract at a given period of time and to manage a digital asset in accordance
with the current state of that contract. One discrete example may be the ability for a
contract to manage the right to create interests (e.g. a loan) over a given digital asset
(e.g. a digital representation of real property) only when certain contractual conditions
prevail (e.g. mortgage payments are not in arrears). Another such example may be
where royalty streams programmatically generated by a digital asset are transferred to a
given entity when the beneficial interest in the property is transferred under contract.

Numerous other examples are possible. This enables a linkage between legal rights and

12

WO 2020/051540 PCT/US2019/050075

obligations mediated by legal contract and their digital existence and representation on
BDL systems.

[0067] Importantly, the system and method may be equally applicable to internal
management of contracts, as well as management of contracts between counterparties.
In the latter instance, the system and method may be used to execute and version state
between counterparties in pre-formation, formation, and as well as execution stages of

the contract lifecycle.

2. System

[0068] As shown in FIGURE 1, a system of a preferred embodiment preferably
includes: a set of input/output integrations, comprising one or more external resources
110 and a runtime 120, operable to process an electronic contract (also referred to as
data-driven contract). In some variations, the external resources 110 may include API
services and/or Blockchain and/or Distributed Ledger systems. The system may
additionally include: contract events 130 generated by the runtime, a contract log 140,
and a task management component 150. The system may include other services and/or
functions as desired. The system functions to enable execution of the logic (i.e.
programmable components) within the electronic contract both on a local server and on
external resources 110, particularly on a blockchain and/or distributed ledger (BDL).
Additionally, the system may function to enable interactions with external resources 110
that modify details of the electronic contract, modify execution of the electronic
contract, and enable generation of events in relation to the execution(s) of the electronic
contract. In variations including a contract log 140, the system may additionally enable
upkeep of an audit log that stores state changes of the electronic contract that may in
turn be used to generate new instantiations of the electronic contract on external

resources 110.

[0069] The system is preferably used in the execution of a data-driven documents,
more specifically electronic contracts (also referred to as contracts within this
document) composed of one or more programmable components (e.g. programmable
clauses) and natural language components. FIGURE 2 shows one example of an

electronic contract. Programmable clauses, or more specifically the clause logic, may

13

WO 2020/051540 PCT/US2019/050075

consist of one or more functions, which are comprised of one or more statements and
simple flow control (if-then-else, bounded loops). Various approaches may be used in
defining or designing a contract and its clauses. A programmable clause is preferably a
programmable component. In one embodiment, a programmable clause may be
substantially similar to the programmable clauses described in U.S. Patent Application
No. 15/476791, filed on March 31st, 2017, which is hereby incorporated in its entirety.
An electronic contract for use with the system and may take any suitable form. In one
embodiment, a contract may be expressed solely as executable logic scripts.

[0070] Natural language may be included in inline comments, markup, or other
form. In a preferred variation, a formal template model is used to define the parameters
in the natural language text and logic. Together, the text and logic components may be
considered an instance of a template. Logic may be expressed in any general purpose
language, high level language, low level language, machine code, byte code, or any other
suitable approach. Many different execution paradigms (e.g., rule-based, logic inference,
temporal, finite state machine, functional, etc.) may be used. A domain specific language
for expressing the logic of legal contracts may be used. A domain specific language may
have human readable components, grammar, and/or syntax.

[0071] Other clause and contract embodiments may be used with the system and
method. For example, contract logic may be embedded into a markup language used to
markup natural language text of a clause or contract, or contract logic may be run on
separate service without being bound with the natural language text, or logic and
natural language may be bound together without a data model. Furthermore, the logic of
a contract may be located both on- and off-chain, such as where part of a contract logic
is executed off-chain and outputs passed to on-chain code to trigger on-chain
operations.

[0072] Where applicable, the natural language component of the data-driven
contract preferably exposes variables (parameters) through the use of a markup
language or similar. Where applicable, a data model may define the data types
associated with the variables. Parameters are preferably passed to the executable logic of

the clause/contract.

14

WO 2020/051540 PCT/US2019/050075

[0073] Typically, where a contract document is at issue, the source application
will take the form of a contract management system (CMS) for computable or data-
driven contracts. The CMS mentioned can in some variations be substantially similar to
that described in U.S. Patent Application No. 15/476,791. The contract management
system (CMS) is preferably a document management system that includes a document
editor. The CMS may additionally be used to access documents, manage the lifecycle of
contracts in the pre-formation to post-formation stages, which may include the creation
of a compound contract as well as facilitate document analytics and/or similar
functions. The CMS may additionally be involved in input/output integrations with

external resources 110.

Input/Output Integrations

[0074] A programmable component (e.g. a clause within a contract) may utilize
input data from external resources 110 (e.g. APIs, BDLs, IoT/network-connected devices
via MQTT, databases, applications, systems, BDL system oracles, etc.), and may output
data to external resources 110. In one example, data may be input from an external
resource 110, and output to an event log (see FIGURE 26). FIGURE 3 provides an
exemplary integration architecture in which a document, such as a contract, is executed
using a server-based runtime. A server-based runtime is preferably, in some
embodiments, used with an on-chain runtime (e.g. a BDL-based virtual machine
runtime or a container-based runtime). FIGURE 4 provides an exemplary server
architecture whereby a contract can be processed and processed in an off-chain runtime
and then interface with an on-chain runtime. A server architecture may be run in, or as
part of, any appropriate architecture. Alternatively, a peer-to-peer architecture (see e.g.
FIGURE 5) or other suitable architecture may be used. FIGURE 6 provides a depiction
of an exemplary outbound integration architecture. Data may be output to any suitable
external resource 110 to perform any arbitrary operation (e.g., a fiat payment through an
integrated transaction processing system, performing an action on an accounting system
via API to raise an invoice, instantiating records of a document state on a BDL system).
FIGURE 7 provides an example of an integration performing a BDL-based asset

transaction. Inbound and outbound operations may use any appropriate messaging,

15

WO 2020/051540 PCT/US2019/050075

communication, or other protocol (e.g., MQTT, AMQP, API, RPC, TLS, HTTP, HTTPS,
websockets, etc.). FIGURE 8 provides an example of exemplary integrations between a
contract and a BDL.

[0075] One significant potential benefit of the system and method is that
programmable components within documents may be used to synchronize the state of a
document and other systems used within a transaction, business process, or other
appropriate process, or otherwise interact with external resources 110. In one
embodiment, programmable components may function as services that accept requests
and produce responses. Programmable components within documents preferably
perform transactions, operations, events, or similar on a system/application external to
the document itself. Examples of external resources 110 include: contract management
systems, accounting systems, payment systems, blockchain/distributed ledger systems
and environments, payroll and employment systems, contract lifecycle management
systems, ERP systems, CRM systems, supply chain management systems, e-signature
systems, identity systems, credentialing systems, or any other appropriate system,
application, or similar.

[0076] Interfaces with external resources 110 may be configured in a variety of
ways as disclosed herein. In a preferred embodiment, an interface between
programmable components within a document and external resources 110 occurs
through the input to, and output of data from execution of the programmable
components through resource interfaces (see FIGURE 9). Preferably, the interface
occurs through mapping data to outbound events during the programmable component
runtime (e.g. interest events, obligations events, etc.) to external resources 110. An
inbound interface preferably occurs by mapping data to inbound requests. Interface
with external resources 110 may be through API integration, webhooks, or any other
suitable mode of communication. The interface to an external resource 110 may include
the transmission of a digital communication to an external server. API integration can
be used to establish programmatic integration with any suitable type of service such as a
payment service, a data/analytics service, an IoT platform, web service, a

communication/messaging service, and/or any suitable type of service. FIGURE 3

16

WO 2020/051540 PCT/US2019/050075

depicts an exemplary schematic for interfacing with external resources 110. Integration
may be inbound and/or outbound. Other forms of integrating a resource may be used.
[0077] Electronic signature services (“e-signature”) provide one particular form of
resource interface. Where appropriate, an e-signature service may be used to sign a
document. Whereas e-signatures are often used with static, natural language,
documents to signal a party’s intention to be bound by the terms of a contractual
agreement, e-signatures may be used in conjunction with the system and method to
trigger computation of at least a portion of the current state of the interests, obligations,
and similar that emanate from terms and conditions of a contract or other document. As
such, the use of an e-signature service with programmable components instantiated
within a document may extend the functionality of such a service. An e-signature service
may be external to, or included in, a CMS.

[0078] A signature process preferably comprises generating a signable
representation of the document, such as a PDF or other appropriate document format
(see FIGURE 10). The signable representation is preferably a document with the natural
language components of the document; comprising the natural language of the
document and the natural language element of the programmable components (see
FIGURE 12). A signature workflow preferably involves a user of a CMS configuring the
signatories to a contract (or other document) as depicted in FIGURE 11. Configuration
may be performed through a CMS, through an e-signature service, or a combination. In
a preferred embodiment, configuration data (e.g. email for notifications and access to
the signable representation of the document) for the signatories is preferably sent from
the CMS to the e-signature service. As part of the configuration process, a user
preferably configures the document for signature by configuring areas for signature on
the signable representation of the document, the signatories that should sign in the
configured areas, and the order (if any) in which the configured signatories should sign.
In variations, configuration may include providing an email address for the signatories.
Where applicable, this may be inherited from a CMS (e.g. an organization account of a
party configuring and signing). Where obtained via a CMS, data is passed from a CMS to
an e-signature service. Once a signature process is initiated, the lifecycle of a document

is preferably transitioned to a signing state, and editing of the document is locked at a

17

WO 2020/051540 PCT/US2019/050075

CMS. An e-signature service preferably handles the signature process of the signable
representation of the document. Actions performed by signatories through use of the e-
signature service are preferably provided as events to a CMS, which may take a form
similar to any other resource integration. The nature and granularity of event
notifications is preferably dependent upon the features and configuration of an e-
signature service. Signature events may be used in a manner similar to any other input
event or request to trigger computation/execution of a programmable component or
otherwise. In a preferred embodiment, an e-signature service provides at least events
denoting a completed signature process of the parties. Additionally, an e-signature
service may provide an ‘all signed’ event to denote that all of the configures signatories
have completed their respective signature processes on the e-signature service. Where
the latter is not so provided, an ‘all signed’ event may be constructed by a CMS based
upon the configuration of the signature process and the individual signature events
provided. Signature events are preferably instantiated in a log for the document. An ‘all
signed’ event may be configured to trigger execution of a contract or other document, or
perform some other operation configured under the programmable components

instantiated in the document (e.g. to execute at a configured time).

[0079] A wallet component of a system (see FIGURE 8) may be used to store,
manage, access, and otherwise interact with or deal with BDL assets, tokens, on-chain
contracts, claims, credentials, or other data. The wallet may take any suitable form. In a
preferred embodiment, the wallet is operated and secured through a cryptographic
public-private key pair. Signing transactions (8-104) may occur through a private key
stored within, or associated with, the wallet. In a preferred embodiment, on-chain
operations may be surfaced in a user interface (preferably a GUI) as depicted in
exemplary fashion in FIGURE 13 and/or an interface for exposing transactions
pertaining to the wallet to one or more users (see FIGURE 14). Data may be surfaced in
both components.

[0080] In a preferred embodiment, an interface for the wallet may display any or
all data returned/provided by a Listener such as in FIGURE 8. The data may depend
upon the BDL implementation. Exemplary data that may be provided may include any

on-chain operation or operation that pertains to a BDL, such as (but not limited to)

18

WO 2020/051540 PCT/US2019/050075

transaction data (e.g. transaction addresses, internal state/storage of on-chain scripts,
contracts, block details, transaction fees, transaction submission metadata and hashes,
where applicable), timestamp(s), BDL state changes related to the transaction(s), on-
chain script/contract addresses, on-chain object data, and other data/metadata.

[0081] On-chain operations and data stored in a wallet may pertain to tokens,
represent legal claims (e.g. a token representing a lien, mortgage, interest in property,
etc.), digital assets, verifiable claims (e.g. using Decentralized Identifiers), or other
data/operations. For example, a programmable clause instantiated within a contract
may be configured to emit a payment obligation object (see FIGURE 15) in response to
inbound events. A payment obligation may be configured to generate a task denoting the
obligation to make payment at a task management component. A task may be
configured to perform a specified operation (e.g. on a defined external resource) or the
external resource 110 upon which the operation is to be performed may be undefined. A
user of the system and method may utilize the task management component to execute
an operation or series of operations on an external resource 110 (see FIGURE 9) which
may include one or more on-chain transaction(s) on a BDL system or across BDL
systems (see, for example, FIGURE 8). On-chain data, tokens, and similar may be used
to configure configuration flows, execute on-chain operations (e.g. transferring a
specific on-chain asset to a counterparty under a contract) or otherwise. For example, a
Listener may listen for an on-chain transaction confirmation, which may be used to
subsequently initiate an off-chain operation such as a payment through a payment
gateway.

[0082] Executing an operation on an external resource 110 enables associations
between data and operations on distinct services, as depicted in exemplary form by
FIGURE 15. For example: contract identifying data may be linked to an on-chain
transaction (e.g. recording state computed contract/document state on-chain), and
payment transaction performed (or scheduled to be performed) on a payment gateway.
Further, non-limiting, examples may include instantiating invoices or line items in
invoices, triggering instant message notifications, triggering or scheduling emails,
initiating requests for payment, workflows, and more. Tasks and operations may be

configured using configuration flows of inbound and outbound actions.

19

WO 2020/051540 PCT/US2019/050075

[0083] A workflow process may enable actions, such as business processes, to be
triggered from a programmable component. Triggering a workflow on an external
resource 110 from a programmable component instantiated within a document enables
a single programmable component to be integrated within an entire workflow process
that is configured externally from the programmable component itself. For example, a
single programmable clause template may be configured to perform a variety of
different workflows for different contract types, or the workflow configuration may be
modified over time without substantial modifications to the logic or operation of the
template. An external resource 110 may be configured for any arbitrary workflow for use
with the system and method. A programmable clause template may be linked to a
defined workflow for instantiation in each document to avoid re-configuration upon
each use of a given clause-workflow combination. Instances of programmable clauses
with preconfigured workflows may be stored and accessible from within a CMS.

[0084] Multiple operations may be configured to be initiated from one instance of
an update to a programmable component. For example, a single response or contract
event may be configured to return a notification message and initiate a workflow
process.

[0085] Actions performed on external systems may include metadata and other
references between documents, programmable components to associate transactions
and systems. The identifiers in metadata may function to link systems together. Data
may be generated by a programmable component, a CMS, and/or an external resource
110. For example, a programmable clause may emit a state object and a contract event
(e.g. a payment obligation), each with their own identifiers/metadata, the payment on
an external system may be approved as a task at a task management component which
may itself carry a reference or identifier, and the operation on external resources 110
may themselves have identifying data and metadata. FIGURE 16 and 17 depict an
exemplary implementation in which a payment transaction is performed through a
payment gateway API by transforming a payment obligation object via a connector.
[0086] The system may include a blockchain/distributed ledger (BDL) component
and/or integration with a BDL component. A BDL may be a type of external resource

110 accessed through a resource interface. A blockchain/distributed ledger component

20

WO 2020/051540 PCT/US2019/050075

of a preferred embodiment may be used for data exchange, contract storage and
contract execution. All, some, or none of these operations may occur on the BDL
component. Any suitable blockchain or distributed ledger system may be used. More
than one BDL network or data structure may be used in any given implementation of the
system. Transactions may be performed on a BDL (see e.g. FIGURE 8). A transaction
may include any suitable operation or series of operations (e.g. updates to the state of
multiple on-chain smart contracts/scripts) performed at least partially on-chain.

FIGURE 1 depicts an exemplary interaction between an off-chain programmable

component in a contract and an on-chain script as a component part of a hybrid

computable contract. More than one script may be used in a given embodiment of the
system and method (e.g., one on-chain script may call another on-chain script).

[0087] A BDL may be its own distinct system component or an external resource

110. Any suitable form of blockchain or distributed ledger may be used. As per US

Patent Applications no. 15/476,791 and 15/640276, contracts may use BDL in the

aforementioned approaches, using additional approaches, and/or using alternative

approaches. In one variation the BDL may be composed of a business network layer in
addition to a distributed ledger layer. In one implementation, the system may be used as
an overlay to existing BDL systems. More than one BDL network or data structure may

be used in any given implementation of the system. Transactions and operations from a

contract and any other appropriate or necessary action may be performed on a BDL. A

transaction may include any suitable operation performed at least partially on-chain. A

contract may use a BDL in a variety of ways which may include (but are not limited to):

e Storing/pushing data to a BDL (e.g., an object on a BDL to reflect a contract
event/state, passing data from the contract to on-chain code to execute a transaction,
etc.) (see, e.g. FIGURES 18-20);

e Interacting with on-chain code to perform transactions (e.g. FIGURES 21A, 21B and
22), where on-chain code can provide any arbitrary functionality, such as calling or
passing messages to on-chain code (see, e.g. FIGURE 8); and

e Instantiating code on-chain or compiling to the bytecode of a BDL system for

execution on-chain (e.g. using a compiler - see FIGURES 8, 22, and 16. A compiler

21

WO 2020/051540 PCT/US2019/050075

may trans-/cross-compile to any other appropriate platform(s) e.g. BDL system
virtual machine bytecode, or any other suitable platform) (see FIGURE 16).
[0088] As per US Patent Application No.15/476,791, contracts (and other
documents) may use BDL in the aforementioned approaches, using additional

approaches, and/or using alternative approaches.

Runtime

[0089] A system of a preferred embodiment includes a contract execution service
(i.e. runtime). The runtime may include (but is not limited to) a compiler, and an
execution engine. The runtime may additionally include other components and may be
connected to input/output integrations. The runtime may consist of both off-chain and
on-chain runtime environments, as depicted in FIGURE 8, wherein on-chain refers to
management (e.g. execution) of the contract on a BDL and off-chain refers to
management of the contract on a local server. Not all components may be used in any
given embodiment. Additional and/or alternative components may be used (e.g. a
compiler may not be used in variations). In variations, objects may be emitted at the
runtime. These may include, but are not limited to: environmental obligations (e.g. for
carbon off-set for travel, office conditions such as air conditioning usage),
reporting/compliance/corporate governance obligations, legal interests (e.g. liens, titles,
mortgages, beneficial interests, and other security interests), etc.

[0090] A compiler of preferred embodiment functions to generate lower level
code from the component logic for execution. The compiler may take any suitable form.
Prior to execution, the compiler may generate code for execution using the contract logic
(see FIGURE 23). In one variation, the compiler generates code from a template stored
in a repository. The generated code for execution may be for any variety of suitable
platforms (e.g. an off-chain runtime such as a server, BDL runtime such as a container
or virtual machine of a BDL node) as depicted in FIGURE 23. The compiler may exist
for any suitable target runtime. For example, the compiler in the system and method

may generate binary code/bytecode for a BDL smart contract runtime.

[0091] The compiler may include, but is not limited to: a parser that parses a

contract logic syntax tree to an executable syntax tree; a type checker that checks the

22

WO 2020/051540 PCT/US2019/050075

validity of the programmable component logic against a model and checks the validity of
the contract; a translator that translates the contract logic syntax tree to a calculus, that
may “de-sugar” syntactic sugar to improve code-generation from a simpler calculus; and
a code-generator that generates code from the calculus to a target language. In
variations, not all components may be used. Alternative and/or additional components
may be used in variations.

[0092] A compiler may also include target-specific runtime libraries (e.g.
JavaScript operations to create a new contract). In addition, user-level standard
libraries, for core operations (e.g. math libraries) may also be included. Preferably, the
compiler supports formal verification. A reference interpreter may be called from the
compiler to get expected behavior. Compiled code may be executed and checked against
a reference interpreter. The compiler may also cross-compile to generate executable
code for any other platform (e.g. a given BDL system, virtual machine, a microcontroller
of a resource constrained device such as an IoT device, etc.). A compiler in a given

embodiment may also take the form of a source-to- source compiler.

[0093] The execution engine (see FIGURE 9) may be embedded across a wide-
variety of form factors such as web-based, middleware, SaaS, on-chain execution, off-
chain execution, and/or other suitable form factors. The execution engine may handle a
variety of input types such as data input accessed over a programmatic interface (e.g. a
REST API, GraphQL API, SOAP API, etc.) or other appropriate interface, simple
mathematical transformations of the data from those APIs, event notifications,
webhooks, remote procedure calls, data from various blockchain/distributed ledger
systems, data from the execution of the contract off-chain and/or on-chain, and/or
other various sources.

[0094] The execution engine may be run in a shared execution environment such
as public, dedicated, or private cloud environment, on a private or shared server, on a
peer-to-peer, distributed or decentralized network (e.g., within a node/client on a BDL
network or without a BDL. component), or other appropriate execution environment. In
one particular embodiment, the execution engine may be on one or more servers. A
server may be coupled with a BDL node. FIGURE 3 provides an exemplary depiction of

an integration architecture using a server-based embodiment of the system and method.

23

WO 2020/051540 PCT/US2019/050075

FIGURE 6 provides a depiction of an exemplary outbound integration architecture. A
‘serverless’ implementation may be used.

[0095] The execution engine may be a virtual machine (VM) or may form part of
one (e.g. FIGURE 24). A VM can be stack based, register based, a business rules engine,
a program interpreter, or any other suitable type of VM. A VM may be web-based, cloud-
based, run on a cluster, on a BDL node/client, or in any other suitable environment. In
some implementations, the system and method are distributed through a peer-to-peer
system. Peers may be: contract participants, with some interest or involvement in the
contract execution; other parties, other computing systems, and/or any other suitable
entity. In some variations, the system and method may be implemented within a private
computing system or other suitable computing architecture, such as a cloud-based
environment.

[00946] The computing environment of the execution engine may be usable for
both on-chain and/or off-chain related applications. In a preferred embodiment, the
execution engine provides an off-chain runtime environment and integrates with an on-
chain runtime environment. FIGURE 4 provides an exemplary depiction of a runtime
coupled to a BDL node. On-chain can refer to transactions, smart contract code,
chaincode or executable scripts of a BDL system, objects, transactions or other data;
added to, computed, or otherwise processed on a BDL data structure or BDL system.
The term on-chain is preferably not limited to a blockchain implementation, but is
intended to refer to all forms of blockchain, distributed ledger, distributed database, and
related or similar implementations or embodiments. Off-chain can refer to computing
interactions not on a BDL. The term on-chain is preferably not limited to a blockchain
implementation, but is intended to refer to all forms of blockchain, distributed ledger,
distributed database, and related or similar implementations or embodiments. In some
instances the system and method may support the integration of off-chain systems with
on-chain systems. Furthermore, the system and method can act as a computing
environment capable of bridging distinct systems whether on-chain or off-chain. As
such, the system and method may be a hybrid. For example, a contract may be executed
off-chain without a number of the associated drawbacks (e.g., privacy of execution and

network scalability), as well as integration with on-chain system components (e.g., a

24

WO 2020/051540 PCT/US2019/050075

distributed ledger or similar data structure) by performing transactions on a virtual
machine or other runtime mechanism of the BDL system. The interaction may be with
one or more BDLs, and may occur through a variety of different approaches (see US
Patent Application no. 15/476,791). The interaction may also make use of the Contract
Log. For example, the state of a contract may be stored in the contract log, which may
then subsequently be used on one or more BDLs. This may occur in a manner that is
substantially similar to those outlined in US Patent Application no.15/640,276, which
was filed 30-JUN-2017, which is hereby incorporated in its entirety by this reference.
For example, data from the Contract Log may be referenced in on-chain
transactions/operations. FIGURE 25 depicts one possible implementation of doing so,
in which object data and the Merkle root of the contract log are included/referenced in
an object on a BDL system. This object may pertain to an on-chain transaction (e.g., an
asset transfer that references an event in the contract Log relating to the transfer) or
instantiating/sharing state of the contract on-chain. This is not intended to be limiting.
Other approaches may be taken.

[0097] A blockchain or distributed ledger (BDL) system can store the state of
assets of a blockchain or distributed ledger, while the contract execution service can
execute contract logic off-chain. A BDL system may be used for any arbitrary purpose.
Herein, blockchain/distributed ledger (BDL) is used to refer to distributed ledgers
and/or more specific consensus-based blockchain solutions, wherein any suitable
variation of such systems may be used. References to BDL systems, platforms,
integrations, transactions and the like could be distributed ledger wvariations or
blockchain variations. Cryptographic databases, and/or other suitable systems with
BDL-like features may be additionally or alternatively used as BDL components.

[0098] In one embodiment, the runtime may be embedded within a node of a
BDL system. The node may operate on both the off-chain contract computation and any
on-chain computation. The node may include a separate VM, or a VM may perform both
functions. FIGURE 5 depicts an execution engine embedded within a node on a BDL
system. The execution engine may take any suitable form of computing/runtime
environment for executing contracts. In a preferred embodiment, off-chain execution

occurs through the execution engine, and on-chain execution occurs through the BDL

25

WO 2020/051540 PCT/US2019/050075

runtime such as a BDL VM, container, or other appropriate runtime environment (see
FIGURE 8).

Contract Events

[0099] Contract execution may also emit event objects (i.e. contract events) in
addition to a response object. Contract events are typically used by the contract to
indicate that some asynchronous action should occur in the real-world such as a
transaction (e.g. a payment of currency, transfer of an asset, triggering a workflow, etc.).
Such event objects may also be modeled in a similar manner to requests and responses.
Other additional types may be used with the system and method. A contract event is
demonstrated in one exemplary implementation in FIGURE 25. Contract events may be
of any arbitrary type. For example, an obligation type contract event (see FIGURE 27)
may be used to indicate the requirement to perform or refrain from some action.
[00100] A contract event may take at least three forms. In one form, a contract
event is generated by logic running solely off-chain (i.e. without execution on a BDL). In
such an embodiment, logic may be run on a server, virtual machine, container, or other
appropriate environment. No on-chain runtime operations are performed. In another
form, a contract event is generated by contract logic running on-chain. This
embodiment may enable contract logic to run where this is only instantiated on-chain,
such as where scripts embedded into natural language contract documents. A contract
event may take the form of any on-chain operation performed by the on-chain contract
logic, such as a configured transfer of a digital asset or cryptocurrency, the updating of
data stored by an on-chain script, or any other on-chain operation. In such an
embodiment, an off-chain environment may operate to trigger execution of on-chain
scripts (e.g. upon signature).

[00101] In another form, a contract event is generated by executing contract logic
both off-chain and on-chain. For example, a programmable clause may run off-chain
and call a script or series of scripts instantiated on-chain and pass in data (e.g.
parameters) to execute an on-chain transaction to transition the state of the network
(e.g. a transfer of a digital asset). Alternatively, logic may be compiled from an off-chain

environment to an on-chain runtime (see FIGURE 28). For example, the logic of a

26

WO 2020/051540 PCT/US2019/050075

document may be compiled down to a BDL runtime such as a virtual machine (e.g.
WASM, eWASM, JVM, etc.) as depicted in exemplary fashion by FIGURE 8. In another
embodiment, logic may run in an off-chain environment data and execution data (e.g.
contract events) may be mapped to external systems (e.g. instantiating objects on a BDL
or other systems such as a peer-to-peer filesystem, database, application, API, or other
appropriate system). Where on-chain operations are performed, an off-chain
component may listen for on-chain operations and pass this to an off-chain runtime or
component that mediates off-chain operations such as the creation of contract audit logs
(see below) or other appropriate functionality (see e.g., FIGURE 8). The latter may
occur even where the off-chain component(s) do not operate to run the logic (e.g. in an
embodiment where all contract logic is run in an on-chain runtime).

[00102] Objects generated from execution of programmable component(s) may be
instantiated on a BDL. Contract events may be configured to transfer existing digital
assets that are held on-chain (e.g. in a smart contract script) and/or generated through
interaction with an on-chain script (e.g. by calling functions to generate an asset) or
otherwise interacting with a BDL system for the same (see e.g. FIGURE 27). Emitted
objects may be used to execute on-chain operations at any arbitrary point in the
document lifecycle. For example, a programmable component may be configured to
execute an on-chain operation or series of operations upon a signature input event (e.g.
a request) wherein the signature event (e.g. an ‘all signed’ event) executes a
programmable component and the on-chain operation(s). In other implementations,
on-chain operations may occur after signature events (where applicable) and may
continue to be wupdated thereafter, with attendant effects based upon the
configuration(s) for on-chain operations.

[00103] A contract event may be mapped to perform actions on external resources
110 (e.g. devices, applications, systems, databases, BDLs, APIs, etc.). These actions may
be of any arbitrary type such as notifying a party to the contract that they need to take
some action, or triggering an automated payment, invoicing, or other desired action. For
example, a contract event may be mapped to a connector to perform an operation on an
external resource 110, such as via an API. FIGURE 26 depicts a schematic of an

exemplary mechanism for instantiating and executing a contract, including the

27

WO 2020/051540 PCT/US2019/050075

emittance of contract events and mapping to external operations. In FIGURE 26, 26-101
depicts a template to generate the contract; 26-102 depicts the contract parameters; 26-
103 depicts a sample implemented contract, 26-104 depicts a request sent to the
contract instance and 26-105 depicts the generated contract response; 26-106 depicts
the state change of the contract; 26-107 depicts an emitted contract event; and 26-108
depicts the mapping of the contract event to external operations. 1The process of
mapping a contract event to an operation on an external resource 110 may take any
appropriate form. In one embodiment, mapping a contract event to an on-chain script
may include passing data (e.g. via API calls) to an on-chain script (or series of scripts) to
instantiate a contract event, or representation of a contract event, on a BDL. Operations
may be initiated via callbacks/API integrations, webhooks, and similar from external

systems such as e-signature services.

[00104] In one embodiment, contract events may be transformed through
connectors to external resources 110. FIGURE 29 provides an exemplary transformation
flow of a contract event with an operation on an external resource 110. FIGURES 21A
and 21B provides an example BDL connector for the transformation in FIGURE 22.
FIGURES 16 and 17 provide exemplary transformations by way of a HTTP request and
an off-chain payment charge for a payment gateway respectively. The former makes a
HTTP request when invoked. In the latter example, response.amount references a
‘monetary amount’ object, which may reference the value
(response.amount.doubleValue) and currency (response.amount.currencyCode).

[00105] Mapping and transformation for objects emitted from a runtime for a
programmable component may be configured prior to being executed which may
include (but is not limited to): (a) direct configuration at the point of instantiation of the
component within a document (e.g. configured by a user when added to a document);
(b) configuration at the template level (e.g. each programmable component template in
a repository or similar is pre-configured), or may be configured subsequent to a
component within a document being executed, such as through a task management
module in which emitted objects are surfaced as tasks for automated, partially

automated, or manual management by a user of the system and method (see FIGURE

29).

28

WO 2020/051540 PCT/US2019/050075

[00106] In a preferred embodiment, a transform may combine the response object
and the event object (the raw contract event object that causes an operation to be
processed). Other approaches to executing programmable clauses and performing
transformations may be utilized with the system and method. FIGURES 30-32 depict an
exemplary response object, transformation, and message respectively for a
programmable clause. In this example, a programmable clause within a sales contract
for goods is passed delivery data as a request and payment data is returned as a
response when triggered, as depicted by FIGURE 33. The response object is
transformed into a notification message (e.g. to notify a user of a contract-related
event). In one example, the notification message may be a JSON data transformation
(io.clause.outbound.physical.alerts.SlackMessage). FIGURE 22 depicts an exemplary
transformation for a BDL-based runtime to execute an on-chain transaction.

[00107] FIGURE 35 depicts an exemplary flow for a programmable clause to
trigger a workflow, which may make use of the FIGURE 34 exemplary transformation
for a webhook operable within an exemplary workflow system. FIGURE 36 depicts an
exemplary workflow for the creation and payment of an invoice from a programmable
component within a contract. In this example, a HTTP action is invoked when a
programmable component is triggered per the logic of the clause. The HTTP action
utilizes a webhook for an external workflow system that itself is used to configure, by
way of API integrations, workflow operations upon external systems such as accounting,
ERP, and payment systems.

[00108] Other approaches besides transformation or mapping a contract event to
an external resource 110 may be used to utilize external resources 110. In one variation,
a contract event may be compiled to the bytecode of a BDL runtime. In another
embodiment, data may be passed from the document to trigger operations on external

resources 110 (e.g. RPC calls).
Contract Log

[00109] A contract log is preferably an append-only, auditable, change log based

upon the lifecycle of a contract. The contract log entries may include any operation,

29

WO 2020/051540 PCT/US2019/050075

transaction, event, or any other action or similar. The contract log may take the form of
a generalized document log.

[00110] The state of a programmable component is preferably computed and
output to the contract log, as depicted in exemplary fashion in FIGURES 37 and 26.
Each operation is preferably appended to the contract log to provide an auditable
lifecycle of the contract execution. In some variations, the contract log may also include
operations that occur not only in the post-formation execution phase of the contract
lifecycle, but also in the pre-formation phase. For example, changes to the
programmable logic, natural language text, templates, models, and any other contract-

related content and metadata may be added to the contract log.

[00111] The contract log data structure may be stateful or stateless, and may be
stored in any suitable storage infrastructure (e.g., database, graph database, datastore,
relational database, etc.). In one particular embodiment, the contract log data structure
may be stored in a decentralized or distributed file system (e.g. Interplanetary File
System) or other peer-to-peer system. The contract log preferably has a cryptographic
data structure (preferably in the form of a Merkle or hash tree), although other data
structures may be implemented. In some embodiments, a Merkle directed acyclic graph
may be used. In one embodiment, each new log entry may result in a new graph node
with a Merkle root hash that represents the current state of the contract (i.e. the
aggregate of all entries in the log). Objects added to the data structure may represent
any data about the state of the contract. FIGURE 38 provides an example in which two
objects are added in each entry (e.g. an object referencing the log entry and an object
referencing the party signatures for that object).

[00112] In one embodiment, entries to the contract log may be signed using a
Public Key Infrastructure (PKI) asymmetric cryptographic key pair used by each
contracting party. Keys may be managed in any suitable way. For example, a key
management module (as shown in FIGURE 8 (8-105) may be used to store and/or
manage keys for signing contracts, transactions, and the like. In one embodiment, the
system and method may utilize a distributed ledger to manage identities of contracting
parties. A key pair may be associated with a Distributed Identifier (DID) and DID
Document. The key pair may be a cryptographic key pair. A DID and DID Document

30

WO 2020/051540 PCT/US2019/050075

may take any suitable form. Each user may have multiple public/private key pairs for a
contract. A unique DID may be used for every contract and DIDs may use pairwise-
unique public keys and pairwise-unique service endpoints to ensure contracting parties
cannot correlate contracts from a given entity on the ledger. Alternatively, subkeys may
be used. A private key may be used to sign the contract after negotiation to execute the
contract, as well as to sign state updates to the contract during execution. A contract
identifier and/or metadata may be added to the DID Document or shared between the
parties using the DID data off-ledger. A service endpoint may be exposed to the contract
management system and/or other identity management system. In one variation, access
to the contract management system may be via a DID-based system or other identity
management system/integration. Alternatively, no such signature mechanism, or other
appropriate approaches to key management and identity may be used in conjunction
with the system and method.

[00113] As depicted in FIGURE 39, in one embodiment, each contracting party
may compute the state of the contract and generate a contract log using data inputs.
Each new state of the contract may be signed by the private key of the contracting party
(which may relate to a DID associated with the contract and appended to the contract
log of the contracting party. In an alternative embodiment, a single, shared, log may be
used in which both parties sign an entry (see FIGURE 38). Where asynchronous signing
may occur, the contract log may act as a staging environment. The contract log may be
used to capture both pre-formation state prior to computation/execution (e.g.
negotiation) as well as post-formation execution (e.g. contract execution).

[00114] The contract log data structure is preferably accessed through a contract
management system (CMS). In one embodiment, the contract management system may
take a form substantially similar to the contract management system described in US
Patent Application no. 15/476,791 (see FIGURE 9). In some implementations the CMS
may be a client application. In some implementations, the CMS may utilize browser
extensions.

[00115] In variations where a contract is computed by more than one entity (e.g.

two or more contracting parties), the contract state may need to be synchronized

31

WO 2020/051540 PCT/US2019/050075

between the entities to ensure consensus upon the contract state. Consensus may be

implemented in a variety of ways, which may include (but are not limited to):

e Instantiating objects with a timestamp and/or other metadata containing Merkle
roots on-chain within a BDL system. The BDL system may take any suitable form
(e.g. it be public or private, permissioned or permissionless);

e Instantiating objects containing Merkle roots on-chain and using on-chain code
within a BDL system to compare the root hashes between peers. This may occur at
any arbitrary interval (e.g. every state change, at timed intervals, etc.). Where
applicable, each hash may be added to the state database of an on-chain script;

e Instantiating objects containing Merkle roots on-chain and using an off-chain
mechanism to compare the root hashes;

e Comparing Merkle roots between the data structures of the contracting parties by
sharing the hash (e.g., between peers in a peer-to-peer network) (see FIGURE 40);

e Through use of state-based or operation-based conflict-free replicated data types
(CRDTSs) or similar; and

e Through use of a consensus protocol.

[00116] The state generated by the computation of a contract or other document
may be instantiated on-chain as the contract log. This may act as a distributed audit trail
or record of the state of a contract/document. In one embodiment, the audit trail or the
smart contract is used to generate a new instantiation of the contract, or other
document, on a BDL system (see FIGURE 19). The instantiated state may take suitable
form (see e.g. FIGURE 19-20). In variations, this may include various forms of
metadata, such as (but not limited to): account scopes, content-addressed hashes of
programmable clauses and other components, operation timestamps, data received
from listeners for on-chain transaction data such as transaction confirmations,
transaction state, state of BDL addresses and accounts, and similar. Any suitable
combination of metadata may be used.

[00117] In variations, this may be achieved across BDL systems. For example, the
state may be updated using an on-chain listener on BDL1 and then used as part of the

state instantiated on a second BDL system, BDL2. In one particular variation, BDL1 may

32

WO 2020/051540 PCT/US2019/050075

take the form of a private and permissioned BDL system, and BDL2 may take the form
of a permissionless and public BDL system. FIGURE 27 depicts an exemplary
implementation, in which state objects are computed at a runtime 27-101, a state proof
is instantiated on a BDL system (e.g. a private permissioned BDL system) through an
on-chain script or series of scripts, BDL transaction data reflecting the transaction
and/or other on-chain operations are exposed to the environment exogenous to the BDL
system (such as through a listener - see FIGURE 28). A signature service 27-102 may be
used in providing signing functionality to the contract runtime 27-101. An output of the
contract runtime 27-101 can be recorded in the audit log 27-103. At execution, a contract
event may be generated 27-104 (e.g. an obligation transaction), which may then
generate a task 27-105. Subsequently, the state may be instantiated on a second BDL
system, which may be exogenous to the first BDL system (e.g. a public permissionless
BDL system) 27-106. Additionally or alternatively the event may lead to an external
execution (e.g. on an equity management web service). These examples are non-

limiting; BDL systems may take any suitable form in each instance.

Task Management

[00118] In some preferred variations, the system may include a task management
component. The task management component may also form part of a CMS (or other
document management system). A task management component preferably exposes
contract events and external actions to a user of a CMS. Events may be pulled directly
from the same source as the contract log for a contract and/or from the runtime
environment (see FIGURE 27). In a preferred embodiment, a task management module
aggregates and collates events scoped by contract for display to an end user. Display to
an end user preferably occurs through a user interface such as a GUI In one
embodiment, a task management component may expose data to a user of the system
and method as a dashboard or series of dashboards, as depicted in exemplary fashion in
FIGURE 41. In variations, a multiplicity of data visualization tools may be used to
provide analytics and other data to users on the status of tasks. For example, data
exposed in contract event objects may be used to show changes to the status of contract

obligations over time, time elapsed since obligations became -effective, overdue

33

WO 2020/051540 PCT/US2019/050075

obligations, etc. Dashboards may also provide analytics and data visualization across a
corpus of contracts (e.g. all contracts with an overdue obligation).

[00119] The task management component preferably enables users to interact with
contract events and other forms of contract action. For example, a configured action
such as a payment may be queued as a task (e.g. pre- or post-transformation) requiring
user initiation (e.g. a signatory to a contract or a user within the signatory’s organization
scope), such as approval, before being pushed to a payment gateway. This enables the
state of a contract to be computed, including contract operations on external systems,
without triggering execution on the external system directly from a programmable
clause. A programmable component may be configured to bypass task management
where required. Similarly, exceptions (e.g. configured parameters such as payment
values) may be defined to automatically approve/execute suitably configured
operations. For example, a configuration may be set to automate all payments with a
defined range such as $0-$1,000. Alternatively, tasks may be assigned to users of the
CMS based upon similar configurations (e.g. certain users are assigned certain tasks
based upon the value of a payment obligation emitted at the contract runtime). In one
embodiment, this may be based upon a data model of the contract/clause (e.g. where a
payment with a defined monetaryAmount is within a defined range). A task
management component may be permissioned such that access to certain tasks is only
accessible to certain users of an organization with a CMS. Conditionals, permissions, or
workflows of any arbitrary complexity may be supported. For example, approval for
payments within a defined range except where a contract from the same counterparty
has not be paid and that contract includes a netting provision that is in a defined state
(e.g. active). This may, therefore, enable a contracting party to offset the payments
owing from that contract against the aforementioned amount payable. In an alternative
embodiment, such a function may be delegated to a suitably configured external
workflow system, as disclosed herein (see FIGURE 42B). In further embodiments, no

task management component may be used.

[00120] A task management component may be used to trigger notifications and
messages between users of the CMS or contracting parties using the CMS. For example,

in the former instance, configured users of the CMS may be notified of a contract event

34

WO 2020/051540 PCT/US2019/050075

being generated as a task. In the latter instance, where the aforementioned exemplary

netting process occurs, a notice may be sent to the counterparty.

[00121] A task management dashboard may enable users of the system and
method to track operations that have occurred, or should occur, under a given
document. The task management dashboard preferably displays all of the tasks
pertaining to contracts/documents to a user of the system and method. A task may
include any operation performed in relation to a contract or other document. In one
embodiment, a task may include an operation that is performed as a result of execution
of a contract/document, or requires operations to be performed by a user of the system
and method, such as a contract manager, based upon computational operations of
components (such as programmable clauses) within a document. For example, a
payment event emitted by a component (see FIGURE 26-107) may be transformed to a
payment to be made on a payment gateway (see FIGURE 15) but queued up as a task
pending approval/execution by a user (i.e. not yet executed on the payment gateway).
[00122] Tasks may be scoped to the user-level and organization level of the CMS.
For example, tasks may be permissioned (e.g. only users on the CMS with certain
credentials/authorization may view and/or execute) or assigned to users within the
scope of an account, such as an organization, based upon rules (e.g. parameters in the
programmable components meet certain rules such as a price not exceeding a stipulated
value).

[00123] Task management may specifically include management of operations,
tokens, digital assets, objects, addresses, claims, and others on-chain. As depicted in
exemplary fashion by FIGURE 8, one embodiment of the system and method may
include a listener, wallet(s), and RPC interface. Additional and/or alternative
components may be used without diverging from the spirit and scope of the invention.
Utilizing such components, the system and method may enable the management of
tokenized assets, obligations, interests, claims, and similar.

[00124] In a preferred embodiment, a contract/document is executed at an off-
chain runtime. Objects emitted at an off-chain runtime (see FIGURE 26), such as
contract events, may be mapped to tasks that may be managed at a task management

function within a client application, such as the CMS. A task (see FIGURE 27) may be

35

WO 2020/051540 PCT/US2019/050075

used to execute an operation on any external resource 110 and/or within the CMS. A
task may be used to enable a user of the system and method to approve execution of an
operation on an external resource 110 or CMS. Tasks surfaced in the task management
dashboard may also be surfaced in audit trail/contract log (see FIGURE 13) for the
appropriate document/contract. Completed and pending tasks are preferably added as
log entries/events on the contract log to provide a history of the contract. For example,
an object may be added to an audit trail when a task is created, including (but not
limited to) the timestamp of the task, assignee within the scope of an organization
within the CMS, pending external transactions linked to the task (e.g. a pending
payment, token transfer, etc.). In variations, a task management function may not be
used.

[00125] An operation on an external resource 110 (whether by way of a task,
mapping/linking or use of an emitted object) may take the form of an API operation or
series of operations, over a remote procedure call, HTTP, webhook, MQTT, or any other
suitable mode or means of communication. An external resource 110 may include a BDL
system or series of BDL systems. An on-chain operation may be performed by calling,
deploying, initiating, or otherwise interacting with on-chain scripts of a BDL system 8-
101; 8-107-108. On-chain script(s) may be executed or otherwise interacted with
through an off-chain runtime 8-101. On-chain operations may be listened for by a
Listener 8-109. Updates/events received through a Listener may be used by an off-chain
runtime to perform computation (e.g. as an input event), surfaced in a contract
log/audit trail (see FIGURE 13), used to update tasks in a task management function, to
update a wallet interface of a CMS, or in another appropriate form.

[00126] An exemplary overview of one possible BDL implementation during
runtime is depicted by FIGURE 8. The BDL may be an account-based BDL system,
“Unspent Transaction Output”-based system (UTXO), or any other form of BDL system.
Multiple BDL systems may be used with an off-chain contract. A ‘Call’, and a ‘Create’ are
examples of on-chain operations that may be performed (e.g. via API) 8-101. Parameters
and other data may be passed to on-chain code from the off-chain contract 8-102 to
perform the on-chain computation/transaction. For example, on-chain code may be

instantiated upon execution/signature of the off-chain contract (e.g. by compilation or

36

WO 2020/051540 PCT/US2019/050075

cross-compilation - 8-103) or on-chain code may be an on-chain library of standardized
operations, transactions, events etc. This script/on-chain code may later be called by the
system. The transaction may be signed by the private key(s) of public-private key pair
for a contracting party 8-104. In one embodiment, management of keys may be
delegated to a key management module 8-105. The module may, in one embodiment, be
an external service or resource or series or services/resources. Private keys may be
generated per contract for each contracting party, or pre-existing keys may be utilized
(e.g., from an external service or held by the system). A contracting party may initiate
the signing of a transaction, or signing may be delegated to the key management module
or other service. The signed transaction/operation is then sent to a local node 8-106
(any appropriate approach of doing so may be used, e.g. RPC). The local node may
validate the transaction/operation for the BDL network. The transaction/operation is
then propagated to the BDL network 8-107, executed by the runtime of the BDL system
(e.g., a container or virtual machine), and may be finalized as a confirmed transaction
within the BDL data structure 8-108. A module may be used to listen for on-chain
operations, events, transactions, etc. 8-109. Data from the listener may be passed to the
execution engine to update the state of the contract when a transaction is confirmed.
The state of the legal contract may then be updated in the contract log or other state
storage mechanism. Data storage for the contract log and/or the contract repositories 8-
110 may take any suitable form (e.g., decentralized, distributed, centralized, cloud-
based, on-premise, etc.). Additional or alternative components and interactions between
components may be used. Additional and/or alternative steps may be used. Not all
components depicted may be used in an implementation.

[00127] FIGURE 24 provides a further exemplary embodiment of another
implementation of a runtime comprising an off-chain and an on-chain runtime
component 24-106. An off-chain runtime may be an execution engine, server, virtual
machine, image/container, or any other suitable runtime environment that executes a
contract in whole or part off-chain. An on-chain runtime may be a VM or other runtime
of a BDL system for executing on-chain code. The off-chain component may
communicate with the on-chain component (e.g., to pass messages to the VM of a BDL

system) to perform on-chain script execution or any other on-chain operation. For

37

WO 2020/051540 PCT/US2019/050075

example, a programmable component may execute off-chain, and perform an on-chain
operation. Communication may be through any suitable communication or transport
mechanism (e.g., RPC, API, etc.). In one variation, the VM may comprise a combination
of a VM or node client of a BDL system and an off-chain execution runtime. The VM
may itself form part of a client of a BDL system.

[00128] One or more on-chain objects (e.g. scripts) are instantiated upon
formation of the contract or may exist as a library of on-chain scripts that may be called
24-101. An on-chain object may be compiled from higher level source code (e.g., it may
exist as bytecode on-chain). An on-chain script may perform any arbitrary operation. An
on-chain script may form part of a programmable clause or may be unrelated to a
clause. The on-chain script is called by the off-chain contract runtime and a transaction
payload is generated through which parameters (e.g. from the off-chain contract
runtime based upon the state of the contract - such as the current price) may be passed
to the on-chain script 24-102. The transaction is signed -- either by the parties or the
off-chain runtime on behalf of the parties (e.g. as the parties have delegated signing
authority and keys to the runtime or a Signature Module) 24-103. The signed
transaction may be submitted to the node of the BDL system (where separate) or to the
on-chain runtime system to validate the correctness of the signature. The on-chain
runtime broadcasts the signed transaction to the BDL network 24-104. Where a
blockchain data structure is used, when a new block is generated containing the
transaction, the BDL system runtime synchronizes its copy of the blockchain data
structure including the updated state 24-105 caused by execution of the on-chain code

based upon the state of the off-chain component 24-106.

3. Method
[00129] As shown in FIGURE 43, a method for managing an electronic contract, in

a contract pre-formation stage, includes: establishing the electronic contract Si1o,
wherein the electronic contract includes a set of executable programmable components
and a set of natural language components; and in a contract post-formation stage, the
method includes: changing the state of the electronic contract S132; generating a

contract event S134, and in response to the contract event: extending execution of the

38

WO 2020/051540 PCT/US2019/050075

electronic contract to an on-chain environment, when the contract event is associated
with an on-chain integration S140; and extending execution of the electronic contract to
an external application resource, when the contract even is associated with an external
service integration S150. In a pre-formation stage, in some variations, the method may
further include: forming a contract S120, comprising adding a plurality of participants
S122 to the electronic contract; and adding at least one set of contract stipulations S124
to the electronic contract. In a post-formation stage, in some variations, the method may
further include: updating the electronic contract S130. FIGURE 44 shows one preferred
variation with the additional steps. The method functions to manage an electronic
contract and to enable a hybrid execution with contract events, resulting in on-chain
and off-chain actions. Hybrid execution can enable execution of the electronic contract
in a public environment (e.g. a public blockchain distributed ledger such as Ethereum),
server-side actions, and/or through an external application resource (e.g. through an
application programming interface). The method may be utilized with any appropriate
system to establish, maintain, modify, and/or execute an electronic contract, and/or any
other type of data-driven contract or document.

[00130] As a significant portion of this method pertains to on-chain and off-chain
actions, these terms will be discussed here in detail. On-chain actions (e.g. contract
execution) refer to types of actions taken on a blockchain and/or distributed ledger.
Thus, on-chain or on-chain environment may refer to a blockchain, a distributed ledger,
and any and/or all platforms related to distributed ledger technology (DLT).
Consequently, on-chain or on-chain environment may be used to reference any
combination of blockchain, DLTs, and/or computing environments similar to either
blockchain or DLT. Unless explicitly stated otherwise, or stated in a specific
implementation (e.g. a private blockchain server, Bitcoin, or Ethereum), the terms on-
chain, on-chain environment, blockchain, distributed ledger, and BDL are used herein
synonymously to refer to all technologies described by these terms. Dependent on
implementation, these terms may refer to both internal and external BDL structures. In
contrast, off-chain actions refer to any type of action that does not occur on a BDL; and

off-chain or off-chain environment may refer to any non-BDL computing environment.

39

WO 2020/051540 PCT/US2019/050075

Examples of possible off-chain platforms include: internal servers and external servers,
public and private APIs, and/or any other non-BDL platform.

[00131] Hybrid actions refer to actions that occur both on-chain and off-chain.
Generally speaking, a hybrid action only refers to where an action is taking place (i.e.
both on-chain and off-chain). Unless stated, the very specifics of a hybrid action may not
be identical on-chain and off-chain. For example, generating a contract both on- and
off-chain may create an identical contract representation that is stored exactly in the
same data structure both on- and off-chain, while executing the contract both on- and
off- chain may execute different portions of the contract on-chain as compared to off-
chain.

[00132] Block Si10, which includes establishing the electronic contract S100,
functions to create an electronically executable contract. Establishing the electronic
contract S100 preferably occurs at the pre-formation stage of the contract; that is, prior
to when the contract may be executed. The electronic contract is preferably comprised of
a set of programmable components and a set of natural language components.
Programmable components are preferably electronically executable logic components.
In some variations, programmable components may take the form of programmable
clauses as outlined in US Patent Application no. 15/476,791, filed 31-MAR-2017, which
is hereby incorporated in its entirety by this reference. Programmable components may
alternatively be other types of executable language components, such as tags, or scripts.
[00133] Establishing the electronic contract S100 preferably includes "gathering”
the appropriate sets of components, both programmable components and natural
language components to give the electronic contract a desired functionality and legality.
Gathering the appropriate sets of components may include creating/writing
components, obtaining the components from a database, modifying previously existing
components, or through some other means. In some preferred variations, establishing
an electronic contract S100 is accomplished in association with a contract management
system (CMS). The CMS may enable gathering programmable components and natural
language components that are standardized to electronic contracts (e.g. from a contract

database) and may include specific functionalities of electronic contracts.

40

WO 2020/051540 PCT/US2019/050075

[00134] Additionally, the CMS may enable utilizing a template system for
programmable components in establishing the electronic contract S100. The template
system preferably functions as the template system as outlined in US Patent Application
no. US 62/580,407, filed on 1-NOV-2017, which is hereby incorporated in its entirety by
this reference. The template system may function as a template system for
programmable components enabling acquiring programmable component templates
that can be instantiated, with the desired attributes, into the electronic contract.
[00135] Establishing the electronic contract S110 may further include generating a
document entity. A document entity may function to define the scope of the current
instance of the electronic contract. A document entity may be a word processed
document (e.g., in “.doc” format, in Portable Document Format, HTML or other
markup/markdown language, or any other appropriate format). Any suitable
application may be used for establishing a document entity. The scope of the electronic
contract may be identified by document identifying data within the document entity.
[00136] Document identifying data preferably comprises a document identifier. In
a preferred embodiment, a document identifier is a unique reference to the electronic
contract. The unique reference may take any suitable form. In one embodiment, this
may take the form of a content-addressed identifier. A content-addressed identifier may
be generated by applying a cryptographic hash function (e.g., SHA-256) to the electronic
contract. Document identifying data may comprise one or more components. For
example, document identifying data may include (in whole or in part), natural language
components of the electronic contract; or the natural language components, model, and
logic of the electronic contract. Additionally, an electronic contract may include
identifiers for the individual programmable components instantiated within the
document. For example, a programmable component representing a clause within an
electronic contract may be referenced by its contents independently of the rest of the
electronic contract. In such instances, the electronic contract may have a document level
identifier and a separate identifiers for each of the programmable components
instantiated within it.

[00137] In some variations, establishing the electronic contract S110 may further

include establishing a mapping event. Establishing a mapping event functions to

41

WO 2020/051540 PCT/US2019/050075

connect a potential contract event with an external application resource; thereby
enabling an external application resource to execute the electronic contract (or a portion
of the electronic contract) if/when the potential contract event occurs. Establishing a
mapping event may be automated or may be implemented through consensus of the
contract participants. Establishing a mapping event preferably includes mapping the
potential contract event to the appropriate application protocol interface (API) call for
the specific external application resource. For example, establishing a mapping event
may set a date event (e.g. March 1st, 2019) for the purchase of a product (e.g. furniture)
from an e-commerce store utilizing a specific external application resource (e.g. Stripe).
[00138] Block S120, which includes forming a contract S120, functions to complete
and enable execution of the electronic contract. Forming a contract S120 preferably
occurs at the pre-formation stage of the electronic contract and, if successful, changes
the state of the electronic contract to the post-formation stage. Forming a contract S120
preferably includes adding a plurality of contract participants S122, and adding at least
one set of contract terms to the electronic contract S124.

[00139] Adding a plurality of contract participants S122 is preferably a component
of forming a contract S120. Adding a plurality of contract participants S122 functions in
binding a plurality of contract parties to the contract, and to add any additional third
parties to the contract.

[00140] Contract parties are preferably contract participants that will be bound by
contract terms and obligations, as agreed upon by the contract participants through
mutual assent. A single contract party may be an individual, group, or any other legal
entity. In preferred variations, a contract party may be any entity, or group of entities,
that can be legally bound as a party to a contract.

[00141] This parties can have different levels of participation with respect to the
contract. Third parties can be contract participants that are not bound by the contract
terms and obligations. Third parties may be purely observational participants that are
not involved in a mutual assent decision pertaining to the contract. Alternatively, third
parties may be the only members from the contract participants that are involved in a

mutual assent decision pertaining to the contract.

42

WO 2020/051540 PCT/US2019/050075

[00142] In some variations, adding at least one set of contract stipulations to the
electronic contract S124, is preferably a component of forming a contract S120. Adding
at least one set of contract stipulations to the electronic contract S124 functions to give
rise to a contractual obligation to the electronic contract. That is, each set of contract
stipulations includes a set of conditions that must be met (or not met), and an
associated obligation that must be carried out once the set of conditions have been met
(herein referred to as meeting a set of contract stipulations). Adding at least one set of
contract stipulations to the electronic contract S124 may add any number sets of
contract stipulations as desired and agreed upon by the contract participants. Contract
stipulations may be unilateral (i.e. obligations for a single party) or multilateral (i.e.
obligations for more than a single party). Types of contract stipulations may vary
depending on the type of the contract, laws pertaining to the contract, and desire of the
contract participants. In some implementations, contract stipulations may include
legally implied contract terms that are not explicitly stated in the contract (e.g. legal
stipulations due to regional laws).

[00143] Adding at least one set of contract stipulations S124 may include adding
contract stipulations as programmable components, as natural language components, or
both. In some variations, programmable components may be automatically added to the
electronic contract to account for implied contract stipulations or legal requirements, for
example to follow regional licensing laws with certain types of transactions (e.g. house
purchase).

[00144] Forming a contract S120 may further include signing the document.
Signing the document may function to ensure mutual assent of the contract participants
and to transition the contract into a post-formation stage. Signing the document may
have multiple variations. In one variation, signing the document legally binds parties to
the contract terms of the electronic contract. Prior to signing the document, editing the
electronic contract is preferably restricted. Such a restriction may be enforced through
whatever application generated the electronic contract (e.g. CMS). Editing restrictions
may be in place for subsets of natural language components and/or the subsets of

programmable components as desired in the implementation.

43

WO 2020/051540 PCT/US2019/050075

[00145] Signing the document may include using an electronic signature (“e-
signature”) service, cryptographic key pair (PKI), or other appropriate authentication
method. In a preferred embodiment, signing the document includes using an e-
signature service. The e-signature service is preferably integrated into a CMS, either as a
component of the CMS or as an external service application as depicted in FIGURES 10

and 27.

[00146] In some variations, signing the document may include
authentication/credential methods that may be used to control/condition contract
execution across runtime environments. Credential methods may generate credentials
that may then be checked through the logic of a programmable component. Examples of
credential methods include: A counterparty or other entity signing a transaction under
the control of another party; an asset/token being moved in a specific way (e.g.
deposited on a multi-signature on-chain contract); and giving a contract participant
certain attributes or permissions, such as giving the contract participant the authority to
work in a certain jurisdiction, wherein the participant’s state may be verifiable through a
“Decentralized Identifier-based system” or other authentication system.

[00147] Block S130, which includes updating the electronic contract, functions to
change the details of the electronic contract, as desired and/or stipulated, in the post-
formation stage of the contract. In some variations, updating the electronic contract
S130 includes changing the state of the electronic contract S132 and generating a
contract event S134. In other preferred variations, blocks S132 and S134 may be
independent of updating the electronic contract S130. Updating the electronic contract
S130 preferably occurs whenever the electronic contract, or any subcomponent of the
electronic contract, is changed. Updating the electronic contract S130 may occur to:
change the contract participants; change a set of contract stipulations; update an
instance of a programmable component (e.g. updating a transaction price, or a date);
executing an automated component of the contract; executing a component of the
contract, when a set of contract stipulations have been met, executing the entire
contract, when a set of contract stipulations have been met; terminating the contract; or
any other action that changes the electronic contract. Depending on the type of update,

updating the electronic contract S130 may or may not require mutual assent of the

44

WO 2020/051540 PCT/US2019/050075

contract participants (e.g. Adding a time-stamp may not require mutual assent, while
adding participants to the contract may require mutual assent).

[00148] Block S132, which includes changing the state of the electronic contract
S132 may function in creating a new instantiation of the electronic contract. In preferred
variations, changing the state of the electronic contract S132 may be involved in creating
an audit trail of the contract. In these variations, changing the state of the electronic
contract S132 may include updating a contract log.

[00149] The contract log may be an append-only structure, wherein updating a
contract log, includes adding the current contract state to the contract log. In an append
only structure, the contract log preferably includes all current and prior states of the
contract. Alternatively, the contract log may include only some prior states of the
contract. In some variations, the contract log may be changed by contract participants
(preferably by mutual assent). In other variations, the contract log is a “permanent” log
of the contract and, as an append-only structure, only new contract states may be added
to the contract log. In some variations, updating the contract log may also include
updating the contract log not only in the post-formation stage but also in the pre-
formation stage. In these variations, changes to the programmable components, natural
language components, templates, and any other contract-related content and metadata
may be added to the contract log. In some preferred variations, the rate and detail of
creating an audit trail may be modified. For example, through a CMS or other
application service, the frequency and type of updates that are recorded on to the
contract log may be increased, modified, or decreased. In one specific market
implementation, adding the current contract state to the contract log occurs only occurs
only when the price/cost of a transaction changes, while otherwise the contract log stays

unchanged regardless of other contract state changes.

[00150] The contract log may have any desired structure. In one preferred
example, the contract log has a Merkle directed acyclic graph data structure. Updating
the contract log then includes adding the current state of the contract as an object that is
a new graph node with a Merkle root hash (i.e., the aggregate of all entries in the log).
Objects added to the data structure may represent any data about the state of the

contract. FIGURE 38 provides an example in which two objects are added in each entry

45

WO 2020/051540 PCT/US2019/050075

(e.g., an object referencing the log entry and an object referencing the party signatures
for that object). The contract log object may include data relating to a task (e.g. an
identifier) such as to associate the operation performed with the task pertaining to the
operation. Metadata pertaining to an operation on an external application resource may
be included in the object. For example, in the case of a payment executed through an
API, transaction metadata as depicted by FIGURE 15 may be contained in the object.
FIGURE 13 shows a sample “audit trail”, i.e. a graphical representation of the contract
log seen using a contract management system.

[00151] Block S134, generating a contract event S134 functions to create an object
indicating that a contract related action should occur in the real world, e.g. a
transaction. Typically, a contract event indicates an asymmetric contract related action
(e.g. a payment for receiving goods). Contract events may be of any arbitrary type. For
example, one type of contract event may be an "obligation"; an indication to perform or
refrain from some action. Contract events may be interpreted as requests and responses.

A contract event is demonstrated in one exemplary implementation in FIGURE 26.

[00152] Generating a contract event S134 may occur in at least three different
ways: Contract logic running off-chain may generate a contract event, contract logic
running on-chain may generate a contract event, or contract logic running both on-
chain and off-chain may generate a contract event. Contract logic running off-chain may
be run from any server, virtual machine, container, or other appropriate runtime
environment that is not executed on any type of blockchain distributed ledger (BLT).
Generating a contract event S134 may generate a contract event on-chain (e.g., on an
Ethereum BDL) or off-chain (e.g. private server database or private blockchain) as
desired. In one preferred variation, generating a contract event includes storing the
contract event on a task manager (on-chain or off-chain). In preferred variations, the
contract event and contract event related data will also be stored in the contract log.

[00153] Other types of objects may be emitted by a runtime, not limited to event
objects. Responses FIGURE 26-105 and state objects FIGURE 26-106 may also be used
as non-limiting examples. Objects emitted from a runtime may be appended to a

contract log, as well as used in external operations/actions as depicted in FIGURE 26-

46

WO 2020/051540 PCT/US2019/050075

108, or in any appropriate form. Additional and/or alternative objects may be used in
variations.

[00154] Block S140, which includes extending execution of the electronic contract
to an on-chain environment, functions to execute some, or all, of the electronic contract
on a BDL in response to a contract event that is associated with an on-chain integration.
As discussed previously, the BDL may be any desired blockchain, distributed ledger,
and/or DLT technology. Extending execution of the electronic contract to an on-chain
environment S140, may occur either through meeting a set of contract stipulations,
wherein the set of contract stipulations include an associated on-chain integration; or in
response to a contract event with an associated on-chain integration. The associated on-
chain integration may be an internal on-chain integration (e.g. to a private server
blockchain), or may be an external resource on-chain integration (e.g. public distributed
ledger). Thus, the on-chain environment may be an internal and/or external BDL
resource. Extending execution may include any actions stipulated by the contract, such
as: creating, and/or updating a transaction.

[00155] For example, extending execution of an electronic contract to an on-chain
environment S140 may include initiating a transaction on a blockchain when a set of
BDL related contract stipulations are met. Once the set of BDL related contract
stipulations are met, initiating a transaction on a blockchain includes applying the
associated obligations (e.g. through programmable components), therein executing the

electronic contract (or electronic contract components) on the BDL.
[00156]

[00157] Block S150, which includes extending execution of the electronic contract
to an external application resource, functions to execute some or all of the electronic
contract through an external application resource in response to a contract event that is
associated with an external service integration. Furthermore, block Si50 preferably
synchronizes involved transaction systems with the state of the electronic contract.
Extending execution to an external application resource S150 preferably occurs via
mapping an event to an external application resource, but may occur through other
means. Mapping an event to an external application resource may occur either by a

previously established contract event mapping, from the establishing a contract event

47

WO 2020/051540 PCT/US2019/050075

mapping, in the contract pre-formation stage; or by creating a contract event
transformation. Contract event mappings may be implemented by other means as

desired.

[00158] In one preferred variation, extending execution to an external application
resource S150 comprises mapping an event to an external application resource. In this
variation, block S150 occurs through a previously established potential contract event
and the associated contract event mapping. Once a contract event occurs that matches
the potential contract event, the associated contract event mapping may be utilized in
extending execution to an external application resource S150. Necessary details of an
external application resource, e.g. the type of execution, the time of execution, and all
other details, are preferably previously defined in the pre-formation stage of the
contract, during establishing the contract S100. As implied by the description, mapping
an event to an external application resource may further occur in the contract pre-

formation stage, but may occur at different times as desired.

[00159] In a second preferred variation, extending execution to an external
application resource S150 occurs through the task manager. For contract events stored
in the task manager, extending execution to an external application resource S150
further includes creating a contract event transformation. Creating a contract event
transformation preferably includes creating the appropriate API call to execute a
contract event action (or a contract event type action, e.g. a payment action) on a
specific external application resource (e.g. PayPal). Creating a contract event
transformation may occur anytime, both prior to or after generation of the coinciding
contract event. That is, a potential contract event and the associated contract event
transformation may be created and maintained in the task manager until a contract
event that matches the potential contract event is generated (similar to pre-formation
generated contract event mappings). Creating a contract event transformation may be
utilized for any possible contract action or accessible external application resource, as
desired and mutually assented to by the contract participants. Creating a contract event
transformation is preferably implemented through a task manager(e.g., task manager
GUI on any appropriate electronic device). Creating a contract event transformation

may be implemented through some alternate resource as desired.

48

WO 2020/051540 PCT/US2019/050075

[00160] Extending execution to an external application resource Si50 enables
utilizing programmable components and/or programmable component functionality on
an external application resource. Programmable components within electronic contracts
preferably perform transactions, operations, events, or other actions on an external
application resource. Examples of external application resources include: a CMS
(contract management system), accounting systems, payment systems,
blockchain/distributed ledger systems, payroll and employment systems, contract life-
cycle management systems, ERP systems, CRM systems, or any other appropriate

systems and/or applications.

[00161] The interface with an external application resource may be through an API
integration, webhooks, or any other suitable mode of communication. The interface to
an external application resource will preferably include the transmission of a digital
communication to an external server. API integration can be used to establish
programmatic integration with any suitable type of service such as a payment service, a
data/analytics service, an IoT platform, shipment/delivery service, a
communication/messaging service, and/or any suitable type of service.

[00162] Mapping an event to an external application resource may include
generating a task (e.g. using a programmable component) based upon generating the
associated contract event. A task may be of any arbitrary form including, but not limited
to: operations requiring user input prior to execution (e.g. a payment requiring user
approval) or a specific state change of a programmable component (e.g. a new state as
exemplified in the penalty calculation of FIGURE 26). For example, a contract event
may be mapped to a connector to perform an operation on an external resource.
FIGURE 26 depicts a schematic of an exemplary mechanism for establishing and
executing an electronic contract, including generating contract events and mapping to
external application resources. The process of mapping a contract event to an action on
an external application resource may take any appropriate form. In one variation,
mapping a contract event to an on-chain script may include passing data (e.g. via API
calls) to another on-chain script (or series of scripts) to generate a contract event on a
BDL. Actions may be initiated via callbacks/API integrations from external systems such

as e-signature services.

49

WO 2020/051540 PCT/US2019/050075

[00163] Generating a task may include generating a notification, queuing
operations, or performing other arbitrary events/operations. The action of generating a
task may be modified and observed through a task manager or similar component. In
some variations, generating a task may be a user desired operation that occurs
independent of contract events. Examples of such a scenario include generating a task
for: a user notification, to enable contract management, or to provide an update to the
computed state of a programmable component of the electronic contract. Generating a
task to provide an update to the computed state may facilitate contract participants to
use the computed state to perform operations, such as to approve of a payment prior to
execution of the payment operation on an external payment gateway.

[00164] In a preferred embodiment, tasks are preferably exposed to a user through
a graphical user interface for task management. Each task is preferably assigned a
unique identifier. Tasks may be exposed to users with a scoped instance of a CMS such
as within an organization. Task management may involve a variety of operations being
performed with respect to a task or series of tasks; such as confirming an operation (e.g.
a payment), or modifying an operation (e.g. changing values of a queued up operation
such as a payment). FIGURE 42A depicts an exemplary process of generating a task and
managing the task by a user. Tasks may be configured for association with workflows.
[00165] Certain tasks may be linked to pre-configured workflows, such that a given
task needs to fulfill the workflow requirements prior to the operation being initiated. In
a first variation, the workflow may be initiated automatically upon generating a task, or
may be initiated from the task management interface by a user. Upon generating a task,
a task management component may match the type of contract event generated to an
appropriate workflow based upon configured parameters (e.g. a payment event with a
monetary amount within a defined range). The process of the workflow may be handled
by a workflow engine. In one embodiment, the workflow engine may be an external
application resource. FIGURE 42C depicts an exemplary variation of generating and
managing a task by filtering the workflow based upon a task management configuration.
[00166] In an alternate variation, the workflow may be initiated at the point of
instantiation of the programmable component. That is, establishing the electronic

contract S100 may further include initiating a workflow. FIGURE 42B depicts an

50

WO 2020/051540 PCT/US2019/050075

exemplary variation of generating and managing a task as a workflow by configuring a
programmable component within the electronic contract. A user may select, from a task
management interface, an appropriate process for the workflow to be initiated with
respect to a given task. The process for the workflow may be triggered on an external
application resource (e.g., through an API, webhook, or other appropriate interface).
[00167] The systems and methods of the embodiments can be embodied and/or
implemented at least in part as a machine configured to receive a computer-readable
medium storing computer-readable instructions. The instructions can be executed by
computer-executable components integrated with the application, applet, host, server,
virtual machine, network, website, communication service, communication interface,
hardware/firmware/software elements of a user computer or mobile device, wristband,
smartphone, or any suitable combination thereof. Other systems and methods of the
embodiment can be embodied and/or implemented at least in part as a machine
configured to receive a computer-readable medium storing computer-readable
instructions. The instructions can be executed by computer-executable components
integrated with apparatuses and networks of the type described above. The computer-
readable medium can be stored on any suitable computer readable media such as RAMs,
ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy
drives, or any suitable device. The computer-executable component can be a processor
but any suitable dedicated hardware device can (alternatively or additionally) execute
the instructions.

[00168] As a person skilled in the art will recognize from the previous detailed
description and from the figures and claims, modifications and changes can be made to
the embodiments of the invention without departing from the scope of this invention as

defined in the following claims.

51

WO 2020/051540 PCT/US2019/050075

CLAIMS

We Claim:

1. A method for managing an electronic contract through a hybrid runtime
environment comprising;:

o establishing the electronic contract that includes a set of executable
programmable components and a set of natural language components;

o changing the state of the electronic contract and generating a contract
event; and

o inresponse to the contract event:

m extending execution of the electronic contract to an on-chain
environment, when the contract event is associated with an on-
chain integration, and;

m extending execution of the electronic contract to an external
application resource, when the contract event is associated with an
external service integration.

2. The method of claim 1, wherein the on-chain environment is a blockchain
environment.

3. The method of claim 1, wherein the on-chain environment is a distributed ledger
environment.

4. The method of claim 1, wherein changing the state of the electronic contract
occurs when the electronic contract is modified.

5. The method of claim 1, where the electronic contract further comprises at least
one set of contract stipulations and changing the state of the electronic contract
occurs when a contract stipulation is met.

6. The method of claim 1, wherein generating a contract event comprises generating
the contract event on a private server.

7. The method of claim 1, wherein generating a contract event comprises generating

the contract event on an on-chain environment.

52

WO 2020/051540 PCT/US2019/050075

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20

The method of claim 1, wherein extending execution of the electronic contract to

the on-chain environment comprises performing an operation on a blockchain.

. The method of claim 8, performing an operation on a blockchain comprises

initiating a transaction on the blockchain.

The method of claim 1, wherein generating a contract event, further comprises
appending the contract event to an contract log of the electronic contract.

The method of claim 10, wherein appending the contract event to an audit log of
the electronic comprises storing the audit log on a blockchain.

The method of claim 1, wherein the external application resource is located on a
public blockchain, distributed ledger network.

The method of claim 1, wherein the external application resource is located on a
private server.

The method of claim 1, wherein extending execution of the electronic contract to
an external application resource occurs through an application programming
interface integration.

The method of claim 1, wherein extending execution to an external application
resource comprises mapping the contract event to an external application
resource.

The method of claim 15, wherein mapping a contract event to an external
application resource further comprises mapping the contract event to an external
application resource prior to executing the contract.

The method of claim 1, further comprising, at a contract management system,
during a pre-formation stage of the electronic contract, forming a contract, which
comprises of adding a plurality of participants to the electronic contract, and
adding at least one set of contract stipulations to the electronic contract.

The method of claim 1, wherein changing the state of the electronic contract and
generating a contract event occur on-chain environment.

The method of claim 1, wherein changing the state of the electronic contract and

generating a contract event occur off-chain.

.The method of claim 1, wherein changing the state of the electronic contract and

generating a contract event, occur both on the on-chain environment and an off-

chain environment.

53

WO 2020/051540 PCT/US2019/050075

21. A system for hybrid runtime execution of an electronic contract comprising:

o acontract execution service that comprises an internal runtime
environment and a set of integrations to external resources with at least
one integration to an on-chain runtime, wherein the contract execution
service comprises configuration to:

m establish the electronic contract, wherein the electronic contract
comprises a set of executable programmable components and a set
of natural language components,

m change the state of the electronic contract and generate a contract
event, and

m extend execution of the electronic contract to an on-chain
environment, when the contract event includes an associated on-
chain integration; and extend execution of the electronic contract to
an external application resource, when the contract event includes

an associated external service integration.

54

WO 2020/051540 PCT/US2019/050075

11742

110

External Resource:

-+aeooo 1 @ g.Signature Service
Contract (Input)
120 140
Engine Logic Compiler T ContraCt LOQ

130

Runtime (Offchain) | Contract Event(s)

(e.g. Obligation)

‘ 150

Task Management

CMS
l I l I
110
BDL 120
_ 110
Script(s)
External Resource:
e.g. Equity Management
Web Service
Transaction
Runtime

FIGURE 1

WO 2020/051540 PCT/US2019/050075
2/42

IOT Device

API

Data-driven Contract

Programmable Clause

Programmable Logic

Resource Interface Configuration

Template Natural Language

BDL Script

Blockchain/
Distributed
Ledger

FIGURE 2

PCT/US2019/050075

3/42

WO 2020/051540

[=

-

I8, 100
1dy Duliensoyy

{drimmsry

AR Tt

H
7

'

WIEAS
LCH RIS

e

BAACHTIGI s

o

A 0y SO

HYIPIT L looo00000008

Saopieny
VS

€ ANOId

uding

Y

KL PO

upsieE

@
s
& L L)
i R
LA
Al rs0ronred
wyshs
% PIHAIIEIBIEIE e
43 YRR
Pl
wl-rlg e

AraeneBade

EAS

v L5

GRS

- SRS

& . 3

-+ s I

e GRS
Fivsiser i s
splepe | 7

Meecosssses SAHHNY ool

Ad L punogal

BT
piosz

BRI
gt

sa0BLL

WO 2020/051540 PCT/US2019/050075
4/42
: \ Contract
~ Transaction)
\\\ 3 .\‘\\\“““‘“\‘ e
BDL System Repository
Logic Output
(JSON)
Application/ . Template
On-Chain Code Engine Matching Template
Logic Input
(JSON)
Clause Data
BDL Logic (e.g. JSON) i Logic
{ World
{ State
Compiler Model

FIGURE 4

PCT/US2019/050075

5/42

WO 2020/051540

T e,

RN

s,
Yo, g
ctarrrt

=
\\“wﬁ‘

R

3

e

art L
S

RN

SN NN,
= o,

o g

i

%

IR

2

[%

2

H %
3 vy,
4 2
3 Gy
% 7
%, S
as
2,
K
K3
“
kA
K
7
7
7
F

\

%

s
’,

7,
2
%,
“,

A g e

o i 3 ;
%4 FIR PR]
T H i 33 5 o
jgossd 5 7 A % S,
P, i3 ; %
L gt : [
\M‘w [7 A % m
Y H 3 H s
o b : : ;
LA : i i
P : w7
oy I b 2 H 7
£ s : e H L
\&\. ot w e H P
x 4 H :
g oz 2
K ;4 A i Lok
bdd i i @4
1
W
%
w
o ¢
o
%
Yo A 3

25
o*

3
X

gine

o

FRY A
JRNN NG

o

Lxas

% "

AR RN RN KA
e e

S N

- S

e A
e N R AR A A A AR AR IR AR MY
%, %
Noao o
A JRRC
B

|

FIGURE 5

WO 2020/051540

6/42

PCT/US2019/050075

st g

L 4

ARty

SRUDICIRRONN
THasY
s RS
; .

N

FIGURE 6

BYSCHHGrRNR

<

scapstar

Oty
Aotns

WO 2020/051540 PCT/US2019/050075
7142

“target”: “io.clause.outbound.physical.payments.crypto.ethereum.EthereumTransfer”,
“transform”:
“‘N\’classV’:V’io.clause.outbound.physical.payments.crypto.ethereum.EthereumTransfer\”,
\'fromAccount\’:config.fromAccount, V'toAccount\’:config.toAccount,
V'welValue\’:response_amount, V'priateKey\”: config.privateKey }’,
“config”: {

“fromAccount”; “Oxd6a33a691¢c19169a9e8121d12cfc602fa29f3663”,

“toAccount”: “Oxf8ebf025868f897c1afc1d2ae54444f3e74677a05”,

“‘privateKey”: “Ox6afe5c024ae7c41983edc026f89238abc11”,

}

FIGURE 7

WO 2020/051540 PCT/US2019/050075

8/42
On-Chain ‘ 8-108 BDL Data Structure
FIGURE 8 Client Node BDL Network Transaction
8-107
e.g., RPC 8-106
Transaction/ Signed Off-Chain
Operation Transaction
8-104 Wallet(s
8-109 (®)
e
S
% Private Key Listener F--------- '
Q. i
! Key Management
! Module 8'1 05
8-101 |
Create Call Deploy .. f Storage
i Contract Log
8-102 ;
E 8-110 Data Storage
E Contract
; Repository
-+ Engine ﬁ;‘f&?ﬁg Template
Clause Data
Logic (e.9. JSON) | Logic
Off-Chain
8-103 Runtime
Compiler : Model

WO 2020/051540 PCT/US2019/050075
9/42

Wab App AR Notification Enging

Contraat BEgitor hverlace

Contract
Repository System Management
System

Contracts
3 by

SRR {

A o1 Legal Logie
ﬁ\\\\\\\‘i

PRSPPI S IR SIS I

Prog. Clauss

PO | Execution
L Frog Glsuse W Engine
L3k ;

Contract
Log

Resource intlegration interlaces

v/////////////////////////&a
z/r”””””””””””&w

44”””””””””””n

3
b
3
i '

M AR -
il Data anabiad Qﬁia
\ vt Q §~¥* S8 3 j35ed \\‘ 3 \.n,n:tg‘.f REHR
Flatlem Souress | Services Devioes

3 b s]
3 B3N SN
) §
s"“ X R - \N AN
o Beep RESEE
QY L N

Lavios Laviee

FIGURE 9

WO 2020/051540
10/ 42

47-105 Signature Event

PCT/US2019/050075

Signable
Representation

Signature

L
N

Signature Service | 47-106

Component

47-104

Generation

Document

Programmable
Component

4
I I ISS

o

47-101

47-103

Runtime 47-102

R

Event/Callback

47-108

FIGURE 10

47-107

Event(s)

\\\\\\\\\\\\“‘

WO 2020/051540 PCT/US2019/050075
11742

Review

untitled

Recioi Smart Clauses

ecipients

peaterhong laterdeliveryandpenality

peater@example.com
signatory

Peater Hong

Peater+2@example.com
signatory

When you have completed drafting your contract you can initiate the request for digital signatures from the
contract signatories by pressing the “Continue” button. Note that once you press “Continue” the contract can
no longer be edited.

Help Back Continue

FIGURE 11

Late Delivery and Penality. In Case of delayed delivery except for Force
Majeur cases, “Peter” (the Seller), shall pay to “Dan” (the Buyer) for every 2
days of delay penalty amounting to 10.5% of the total value of the Equipment
whose delivery has been delayed. Any fractional part of a day is to be
considered a full day. The total amount of penalty shall not however, exceed
55% of the total value of the Equipment involved in late delivery. If the delay
is more than 15 days, the Buyer is entitled to terminate the Contract.

FIGURE 12

WO 2020/051540

i Drafting
- Michael G
Mar 9 ¥ Contract Created
12:00 AM “John H. Design Agreement?”
- Michael G
Mar 9 3§ Michael G was added as a signatory
12:00 AM i Michael@example.com
Mar9 | Michael G
12:00 AM | Dan S. was added as a signatory
. dan@example.com
Mar9 & Michael G
12:00 AM | Smart Clause added

Michael G. added a fragile-goods

 Smart Clause
i Details

Mar9 &
R

12:00 AM :

Smart Clause triggered in test mode
The perishable-goods Smart Clause was
successfully triggered in test mode

& Details
i T

3
3 —

i Michael G

Mar9 &

12:00 AM |

Contract set to signatories
The contract is now awaiting signatures
from

Michael G.

Dan S.

FIGURE 13

PCT/US2019/050075
12/42
i Signing
Mar 9 \\ Dan S. signed the contract
12:00AM @ dan@example.com
Mar 9 = Michael G. signed the contract
12:00 AM micheael@example.com
Mar 9 All signatories signed the contract
12:00 AM | The contract is now running
: Running
Mar 9 Smart Clause Triggered
12:00 AM | The fragile-goods Smart Clause was triggereg
= Details
The fragile-goods Smart Clause
emitted a payment obligation for $195
Details
Mar 9 Actions completed
12:00 AM . These actions were initiated by the
= fragile -goods payment obligation at 12:00 AM
Payment from the buyer to seller’s account
Details
Ethereum Transfer
Details
Completed
Mar 9 All Smart Clauses completed
12:00 AM : The contract is now complete

WO 2020/051540 13/ 42 PCT/US2019/050075
OperationName TokenName X Pending 01/03/2019 12:54
OperationName TokenName TX Peniding 91/03/2019 12:54
OperationName TokenName TXContirmed 01/02/2019 17:28
OperationName TokenName TXCanfirmed 01/02/2019 17:17
OperationName TokenName TXCanfirmed 01/02/2019 17:13

FIGURE 14

WO 2020/051540 PCT/US2019/050075
14 /42

R X
5)

LI,

AN NN AN

e fere

rre srsr. cerre

rrir

s

i
i

R rrs ser

vrrs

#rrs srsn.

DO NN

speleq asnen sgeuwiuesfony

FIGURE 15

WO 2020/051540 PCT/US2019/050075
15/42

“"$class”: "io.clause.outbound.physical.Http™,
Turl”: Thittps: /X000 ngrok 1o/ YYYYYT,
"method” : "POST",
"body":{
"date” iresponse.timestanp,
"note”:"Fraglile Goods Update”,

"amount” iresponse. amount . doubleValue

FIGURE 16

WO 2020/051540 PCT/US2019/050075
16 /42

“$class”:
"io.clause.outbound . physical.payments.stripe.StripeCreateCharge”,

"accessToken™: "sk_test OGOGOOGOGOGOOOGGOGKNXT

"source”: "tok_wvisa",

"accountId” Macot OGGO00GKXRK"

"amount”: response.amount

FIGURE 17

WO 2020/051540 PCT/US2019/050075
17 142

Home | Smart Contracts Consensus poa | Block Heigh 474269

Transaction 0x72fa0233973016...1af45

Hash 0x7238af02ddb933a7630cf9fcd93209eabb3bce...f580
Block 474260

Time 2018-09-01 07:58:25 +0000 (43 seconds ago)

To 0xd19dd815a748744c68939d20fdf5a3...e58a

Gas Provided 1000000

Input Data 0=z
0{“contractld”."fdbf4....9201”, “organizationld”:"5d886...e54f", “userld”:5a89...e645", “timestamp”."2018-09-01 07:58:25

+0000”, “data”{\"documentHash\":\"29e3...9385\"}", "$class™:"io.clause.common.audit. SaveContract”}

{ Bytes | ASCIl | Copy |
Clause Blockchain
Network _ X
Block details
MY NETWORK | Invoke
uuID

| e64eefffb82af12f59af3ae18b50b2c5673f7f2b3f94916b2286

e Overview Chaincode ID(s)

clause
e Members |
Input
| [“storeAuditEvent”,”5b9b88a%aad698¢199ddcf27”,”
e Channels , o SN
|{\ contractiD\":\’5b9b88a9%aed698c199ddccf27V,\’organizationID\":\"5a88689160
L |409d0001fea53f\",\"timestamp\":\"2018-0914T10:11:19.8337\", \"$class\":\"io.claus|
¢ Notifications e.common.audit. ContractLifec|ycle StatusChanged\”,\'oldStatus\":V'DRAF TING\", "\
e Certtificate Output
Authority | WRITE 5b9b88a9aed698c199dddf27-AuditEvent =
|“contractID™:*5b9b88a9aed7088a9aed9199ddcf2”,"organizationID”:"5a886891704
d0ooj|1”,”
e APIs [timestamp™:"2018-09-14T10:11:19.8332","$class”:"io.clause.common.audit.Contra
ctLifecyclleStatusChanged”,”oldStatus”"DRAFTING”,”"newStatus™:"SIGN
MY CODE

e Developing Code
e Install Code
e Try Samples

Get Help

Cancel

FIGURE 18

PCT/US2019/050075

WO 2020/051540

181742

P
Il

e

Py

FIGURE 19

PCT/US2019/050075

WO 2020/051540

19742

tanyt

S

2ty

FIGURE 20

WO 2020/051540 PCT/US2019/050075
20/ 42

// @flow
const Web3 = require('web3');
const EventService = require('../EventService');

type Event = { fromAccount: string, contractAddress: string, contractInterface: string,
privateKey: string, data: {}, rpcUrl?: string,

gasLimit: number, gasPrice: number,}
type Web30ptions = { web3: Web3}

/**
* Execute an arbitrary Ethereum transaction in unattended mode.
*/
class NonInteractiveEthereumTransaction extends EventService {
constructor() {
super('io.clause.outbound.physical.dlt.ethereum.NonInteractiveEthereumTransaction');

}

async execute(e: Event) {
return this.executeWithOptions(e, null);

}

/**
* @param {io.clause.outbound.physical.payments.ethereum.NonInteractiveEthereumTransaction'}
e -
* the ethereum transaction to perform
*/
async executeWithOptions(e: Event, options: ?Web30ptions) {
const account = e.fromAccount;
const contractAddress = e.contractAddress;
const abi = JSON.parse(e.contractInterface);
const privateKey = e.privateKey;
const abiData = e.data;
// defaults to the Rinkeby test net, hosted by Infura
const rpcUrl = e.rpcUrl ? e.rpcUrl : "https://rinkeby.infura.io/RohGXTpKuclYPEGHeFu2";

// Optionally could cache for performance
const web3 = (options && options.web3) ? options.web3 :
new Web3(new Web3.providers.HttpProvider(rpcUrl));

// how much we are prepared to spend in gas executing a transaction
let gasLimit = e.gaslLimit;
if (lgasLimit) {
gasLimit = 200000;
}
this.log(gasLimit: ${gasLimit});
const gaslLimitHex = web3.utils.toHex(gaslLimit);

FIGURE 21A

WO 2020/051540 PCT/US2019/050075
21/42

// get the gas price used by recent blocks

let gasPrice = e.gasPrice;

if (lgasPrice) {
gasPrice = await web3.eth.getGasPrice();
// inflate by 20% so we can replace failed transactions and get validated quickly
gasPrice = Math.ceil(gasPrice * 1.2);

}

this.log(gasPrice: ${gasPrice});

const gasPriceHex = web3.utils.toHex(gasPrice);

this.log(using account: ${account});

// the nonce should be a monotonically increasing number. it is scoped to an account and
allows failed transactions to be retried

const nonce = await web3.eth.getTransactionCount(account);

this.log(nonce: ${nonce}’);

// create a contract instance, using the ABI - this generates dynamic methods
const contract = new web3.eth.Contract(abi, contractAddress, {

from: account,

gasPrice: gasPriceHex,

gasLimit: gaslLimitHex,

})s

// create the deploy smart contract transaction so we can sign it
const tx = {
nonce: web3.utils.toHex(nonce),
// gas : undefined, // calculate the gas required for the tx
// the higher this is the more likely the tx is to get included in a block

gasPrice: gasPriceHex,

// the max amount of gas we are prepared to pay for the computation fo this tx
gasLimit: gaslLimitHex,

data: abiData, // the RPC data

from: account, // the account performing the action that will be debited

to: contract.options.address, // the address of the contract

}s
this.log(signing transaction: ${JSON.stringify(tx)});

// we sign the transaction with the account's private key so we do not have to
// interactively unlock the account in geth
const signed = await web3.eth.accounts.signTransaction(tx, privateKey);

// submit the transaction
const receipt = await web3.eth.sendSignedTransaction(signed.rawTransaction);

// the transaction was validated
this.log(transfer completed: ${JSON.stringify(receipt)});
return receipt;

} } FIGURE 21B

module.exports = NonInteractiveEthereumTransaction;

WO 2020/051540 PCT/US2019/050075
22142

~~

"$class”: "io.clause.outbound. physical.dit.ethereum. NonInteractivebthereumTransaction”,
fromAcocount™: “Bxd6a333881¢1916%a%e8121di2cFchB2fFazotiesl”

"contractAddress”: "8xf&ebf925868f8387cliafcld2as5444F3e74677205",

"cantractInterface”: $string(]

"constant”true,

wL,on N no.n

inputs” i {{"name” ", "type” "address],

"name”:"balances”,

“outputs”: [{"name" """, "type”: "uint256"} 1,
“payable”:talse,

"stateMutability” "view”,
"type”"function”

¥

-~

"constant™:false,

[T

"inputs”:[{"nama”:”_to", "type":"address”},{"name” " _amount”, "type” "uint256"}],
"name” : "Lranstar”,
"outputsT (],
"payable” :false,
“stateMutability” "nonpavable”,
“type”: "function”
b
"inputs”:{],
"payable”:false,
“stateMutability” "nonpavable”,

(1]

“type”:"constructor®
b
A
]
"data”:
" @xassR3chbReoda06e0200062020026000d6a33a631¢1%916939a81 21 d1 2¢tHB2Ta20T38663D0062020006002002600208
loizlorelaldeisolaglalalelaiolaletaielolaiolae ietais iz clalolol stz o LY AN
"privateKay”: "Ox8ateSc924aa7¢418830dc26F212208024493401982b0d2d552Fbb224286bFdc”

FIGURE 22

WO 2020/051540

231/ 42
Contract
Logic
Farses
- Fre Type 1 (Typed)
Syntax Tree Chacker Syritax Tree

Optimsizes

Data
Request
{e.q. JSON}

Contract
Objent
{a.g. JSON}

Cadotilus

S
NoE

FIGURE 23

Reference
interpreter

PCT/US2019/050075

Evesution Targels

On-Chain
Execution

e.g. Compilation

Off-Chain
Runtime
Execution

Cutbound
Transactions
{2.9. JEON}

24-106

24-103

WO 2020/051540

24742

Runtime

‘Off-Chain’
Runtime

Parameters

‘On-Chain’
BDL System Runtime
(e.g. BDL Node/Virtual
Machine)

Signature Module

~\24-102

PCT/US2019/050075

24-101

Transaction

On-Chain
Object/Script/Library

Network
Propagation

Transaction Confirmation

FIGURE 24

24-104

24-105

WO 2020/051540

PCT/US2019/050075
25/42

Off-Chain Contract Log
@\“‘“\\\

s &
\\\\ ~—

Sy
\\\\\\

/I//,,”,
=
=
e
3

;
ity

e
& oy \

e \\\\\ e
AN AN AN \
{ 3 \ 3 3
COA { B . C { D
\\\\ o \\\“: \\\‘ o \\\\ \\\\\\\\
Entry Entry
Object 1 Object 2
Entry Entry
Object 3 Object 4

Referenced

On-Chain Object
(e.g. Transaction)

Blockchain/Distributed Ledger

FIGURE 25

Referenced

WO 2020/051540 PCT/US2019/050075
26 /42

-~

"$class": "org.sampleproject.latedeliveryandpenalty.LateDeliveryAndPenaltyContract"”,
"contractId”: "167e7b3d-71cf-4bfb-94dc-5f87447e9084",

"buyer": {"$class": "org.sampleproject.runtime.contract.Party”,"partyId": "Steve" }s
26-103 "seller": {"$class": "org.sampleproject.runtime.contract.Party","partyId": "Dan" }s
"forceMajeure": true,

"penaltyDuration”: {"$class": "org.sampleproject.time.Duration","amount": 2,"unit": “"days"},
"penaltyPercentage”: 1.5,

"capPercentage”: 55,

"termination": {"$class": "org.sampleproject.time.Duration","amount": 15, "unit": “"days" },
"fractionalPart": "days"}

.

26-101 ;- Template Parameters |-~

26-102

Late Delivery and Penalty. In case of delayed

i‘

delivery [{* except for Force Majeure cases, “:? { “forceMajeure” : false,
forceMajeure}] the Seller shall pay to the Buyer for “penaltyDuration”: { amount:2, unit:
every [{penaltyDuration}] of delay penalty amounting “days”}

to [{penaltyPercentage}]% of the... “penaityPercentage” : 10.5, ...}

Component Instantiation

AR AR AWM SRR AN OBH AR MBS AR AT ARN AWRT SRR WS ARV AR AR AN SAN AW ORY MW 9

Component Execution 26-105
Response

26-104

Y

¥

Request — Instance { “penalty”: 110.00000000000001,
“buyerMayTerminate”: true }

¥
{ *“agreedDelivery”: “December 17, 2017 23:59:00",
“deliveredAt”: “December 18, 2017 ©0:24:00”, External

“goodsvalue”: 200.00 Events _
goodsvatue ’ Operations

i State 26-107 26-108

¥

{"$class”: "org.sampleproject.runtime.contract.ContractState”,

"stateId": "f6de@cb®-ddfa-1le8-b4a9-e9f04d8adcaa"} :

¥
{"$class": "org.sampleproject.runtime.PaymentObligation";
"amount": {"$class": "org.sampleproject.money.MonetaryAmount"”, "doublevalue": 2306.304, "currencyCode":"USN" },
"description”: "In laborum duis.",
"contract”:"resource:org.sampleproject.latedeliveryandpenalty.LateDeliveryAndPenaltyContract#5647",
"promisor”: "resource:org.sampleproject.runtime.contract.Party#1133",
"promisee”: "resource:org.sampleproject.runtime.contract.Party#0122",
"deadline": "2018-11-01T17:24:18.811Z", "eventId": "f6de@cbl-ddfa-1le8-b4a9-e9f04d8a4dca4",
"timestamp”: "2018-11-01T17:24:18.811Z"}

FIGURE 26

WO 2020/051540 PCT/US2019/050075

27142
27-102 Y
Signature Service [« Contract
(Input) > (e.g. SPA) —»| Audit Log
»| Runtime 27-101 27-103
Contract Event(s) (e.g.
27-104 Obligation)
= == o Em o= } —————— 1
27-105 ll Task Management |
CMS
Connector Connector
Y
Script(s)
27-106
Y
Runtime Equity Management
27107 and Capitalization
y Table Web Service
Transaction
BDL

FIGURE 27

PCT/US2019/050075

WO 2020/051540

28/42

suoneladQ
|BuIsix3

Jojosuuo)

8¢ FANOIL

(uonewlojsuel |
‘6°9) Buiddey

SJUsA]
JoBIUOD

uonnoaxg
JoBIUOD

WO 2020/051540

29/42

PCT/US2019/050075

Applications
(e.g. Contact Management System)

Contract Contract Log

Peer-to-Peer Overlay
Networking Between Nodes

Blockchains/Distributed Ledger

FIGURE 29

WO 2020/051540 PCT/US2019/050075
30/42

P

"$class”: "io.clause.demo.fragileGoods. Paylut”,
“amount™: {
"$class™: "org.accordproject.monay.Monetaryvamount”,
“doubleValue': 186.82,
“rurrencyCode™: "USDT
s
“transactionId™: "@673928@-0tdb-11eR8-373b-edles7cabl80”,

"timestamp™: "2818-88-23T16:29:18.5492"

FIGURE 30

“$class™: “do.clause.outbound. physical.alerts,SiackMessage”,
arl™:

“https://hooks, slack.com/services / XXKKXXKX/NYYYYVYYYY /2272777277 7202Z72228222"

"message” " *Fragile Goods Payoul®™\n" & response.amount.doubleValue & " " &
response. amount . currencylode

b

FIGURE 31

"$rlass”: Tio.clause.outbound. physical.alerts.slackMessage™,
Turl®r "WEBHOOK _URLT,
"message™: "MY_MESSAGE™

[

FIGURE 32

WO 2020/051540

31/42

PCT/US2019/050075

\'I:\ DeliveryUpdate

e DateTime startTime
e DateTime finishTime
e ShipmentStatus status

¢ Double[] accelerometerReadings

\ T\ PayOut

¢ MonetaryAmount amount

FragileGoodsClause

e AccordParty buyer

e AccordParty seller

¢ MonetaryAmount deliveryPrice
¢ Double accelerationMin

¢ Double accelerationMax

(E) ShipmentStatus

3

LAY
1C/Request

{C)Response

o CREATED
e MonetaryAmount ¢ IN_TRANSIT
accelerationBreachPenalty * ARRIVED
3 e Duration deliveryLimitDuration
; ¢ MonetaryAmount lateDeliveryPenalty
{ i X
{ X
{ § \
i N
H A
org.acdprdproject.cicero.ru_g"ltime

AN
org.accordproj&:t.cicero.contract

N
X

SN

{C}AccordContract

FIGURE 33

WO 2020/051540 PCT/US2019/050075
32142

"$class”: "io.clause.outbound.physical . Hitp”,
Turl”: "WEBHOOK URLY,
"method” : "POST",
"hody":{
"date” :response. timestamp,
"note”:"Fragile Goods Update™,

"amount” :response.ampunt.doubleValue

FIGURE 34

WO 2020/051540 PCT/US2019/050075
33/42

Programmable
Clause

Webhook
Workflow
Trigger

Webhook in the
transformation

\ J

Configured
Workflow

FIGURE 35

WO 2020/051540

34 /42

Generate invoice with line
item

Send notification for
invoice approval

Send notification for
invoice approval

Upon approval initiate
payment per the line item
through payment gateway

FIGURE 36

PCT/US2019/050075

WO 2020/051540 PCT/US2019/050075

35/42
Inout Clause/Contract . Entry to Cong;itel_og
P Computation Contract Log Choaad

Actions on
External
Resources
(e.g. APIs, BDLs)

FIGURE 37

WO 2020/051540 PCT/US2019/050075
36 /42

State 0

v

Signature
Object

Transition

lfprrrinrris .

State 1 \ MR

‘\\\\\\

Rt \\\\\\\\\
\\\\\\
e

& N

%,
L

3

7,
Z

/
4

O
W)
%
it

P
/
e

rerare

7
7
?
%
%,

\\ o
~ &
e o i \\\
. ", o S
Rty o \\\\
‘\\ ',.»}‘“\\\ ey \\\\\\\\\\\\\
& & $ \ &
\ ¢ N § \
§ A § \ § Y § X
§ 3 { \ § N § 3
{ i i i 3 § } §
y ; kY J N ¥
$ &

e
-
/
4
7
%

Transition

ypwwirreeeeeeeereceeeeeee,

\ Q\\\\\\\\\\\\ & S

: : \ § §

\ \ \ 3 3

{OA i B} i D v E 3} v F 3§

\ \ AN / \ § A\ §
S e Do

AN

FIGURE 38

WO 2020/051540

PCT/US2019/050075

:,:""‘N \ A
State 1 \ MR \\\ Cryptographic Signature (e.g. PKI)

\\\ A

\\ Pat \

A \ B

\\\\w ’ \\\“

Entry Entry
Object 1 . Object 2
Transition

State 2

Entry
Object 2

Entry
Object 1

Aprrrrrrrrrrrrrrrssrssrs

Cryptographic Signature (e.g. PKI)

Entry
Object 3

Transition

. §\ - § <~ Cryptographic Signature (e.g. PKI)

7
7
7z
7
;
4
7
7
J
/
7

///”’""%/

9

\‘\\\\\\\\\

S

(@]
W)
s

&
R \\\‘\\
oo
e \\\\\\\\\\\\\\\
N PN
& & A
5 N 5
§ § X
§ A] %
{ { }
A § R §
3 d Y §
& N N
xade S ad
H
i

Entry
Object 1

Entry
Object 2

En.try
Object 3

Entry
Object 4

FIGURE 39

WO 2020/051540

Party 1

Compare Merkle Root

38/42

Entry
Object 1

fl

5 Ay,
// “,

&
o
o

\\\\\\\

Entry
Object 2

Party 2

Entry
Object 1

%,

PCT/US2019/050075

MR

A

Y

7
/

/

7

7

K} /////”%
/1/////

%
K=

O
lw}

\\\\\

-

&

ey

I,

%, /
Bttrr?

7
/

&
N
o

Entry
Object 3

Entry
Object 4

Entry
Object 2

FIGURE 40

™

MR

Entry
Object 3

Entry
Object 4

WO 2020/051540

39/42

PCT/US2019/050075

Payment

1d44868

$1,043.27

ForReview

01/03/2019

ch_1DpeX82eZvKY

Task

FIGURE 41

WO 2020/051540

Programmable component
configured

40/ 42

PCT/US2019/050075

///4””””””,”

Programmable component
configured with workflow
transformation

Programmable component
configured

Payment obligation event
emitted at runtime

////”,”,””””

///4”””””””4

///4””””””u

Payment obligation event
emitted at runtime

Payment obligation event
emitted at runtime

Emitted event transformed
for connector

//(,,,,,,,,,,,,,,

///4”””””””.

Emitted event transformed
for workflow connector

Emitted event transformed
for connector

////””””””n

Transformation queued as
atask

ifrsnsnsneseres)

1///”””””””.
%

o frrrnsrnsrnsrns

Workflow initiated

Transformation queued as
a task

Task managed by user (e.g.
approved, modified)

////4‘””””,”,”.

(//l””””””n

Afpsssssssson

Workflow completed

Task filtered to workflow
process by task
management configuration

Operation executed on
external resource

///J”,”””,”m

5

///[””””””

///4””””””,”

Operation executed on
external resource

Workflow completed

Operation execution added
as an audit log entry

////”,”,””””

,//4”””””””,

Operation execution added
as an audit log entry

Operation executed on
external resource

FIGURE 42A

FIGURE 42B

X o
A

Operation execution added
as an audit log entry

FIGURE 42C

PCT/US2019/050075

41742

\\\\\\\\\\\\\\\\\\\\\)

m,v.w
<% s
i3 Y
& s Z
- 5 %
rr 27
N $ m.«.w wHe m“m
o3 7 1 %
e ot A EN
44 w\. pon ks
£ 7 s &
% “ o s
= E i %
Tor e 2 £
Lt (5] = 3
i ot % gt
L2 4ot >
SO W\V .&\\ o
s 7 iy . &

N B 7 Y bt R R
v e, K 254 ‘ @
%5 7 2% . 7 g % 475

%5 5% 3 o e 7
s g4 4 4 For Mo
& & = A 24 74 47y
s vrss. @ poes X %4 g,
o ol b % # %

s % o o 7 et
0 2 5 Q %3 L 4 55
2 s o % S 4
et 5% g 4 Pooos 7%

“ ; s

%2 Zx i % Lt 4
73 sz e b b o

- 75 7 Yz
% by = o0 54 \m.w
po4 e
s w\b. [Ws\s. e
s 2] At %87 a3
3 £ o Wm
o s Z s
2 A T [
@ I e
ol T
ot o

WO 2020/051540

FIGURE 43

PCT/US2019/050075

WO 2020/051540

42 /42

~

NS

23
B

visation staae

£

t preeto

o~
X

I 2 oonds

DA
Lok
", e
e -
o ¥y
g 7%
A\.. ot
7
..« i
ek k9t
< ok
5% st
s 7Y
b %
S :
%7 %o
£4 i
2% o
s 45
g
¥ S,
z #
b b
s 53
L3 oe.
b
»\..\.\ K
7 %
ford Yo
7 s
bedd >
5 5%
3 ¥ 0ad
wn.&mu 2
4 1
K%
%
<z

<+
>

OV

oo S R 5

2 Y

g 7% .
hEA i oy
w L% 2
" Ho gt
ot Z ‘e
% % i
&% s rtprs
o, T s
g ' %
o G LA

0
3y

%
ot
@ ¥
0 o
@ b “
5 i . .
P Ak 4\«5.&\
[I % 7
P
Tl %y &
HorsS grre g
& e red
3 i &
it) 774
A R (627
\\W\ o : oo
5 T e
- e
s
Hrry
5%
23

P
i P,
7 453 7
Gon K4 4
7% 4

&4 153 5.3
£t o
% P o
T corry ﬁwk

o % o
o e o
7% L3 P
£ 82 iy
7 s b
Tt Ao
w A, M\&
2. \\9 g
m\,\\\ il \HN M\\\m e
; AN & s
@w 4 2 PO
e ot HE 5 B ged
% 3 7% 4 N B¢ 4
= £ % o 23]
D S

iract sve
W
naach
5

eSS

a0
ain
Y SREOL

=~
3

Y rasiones o
Exten
:
X

§

FIGURE 44

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 19/50075

A,
IPC -

CLASSIFICATION OF SUBJECT MATTER
G06Q 20/00 (2019.01)

G06Q 20/04

CPC - G06Q 50/188; G06Q 30/06; GO6Q 40/04; GOBQ 40/00; GO6Q 10/10; GO6Q 20/367; GO6Q
20/3674; G06Q 20/382; GO7F 7/1008; GO6Q 20/04; G06Q 20/102; GO6Q 20/10; GO6Q 30/04;

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are inctuded in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

{0187], [0212]

US 2018/0174255 A1 (CLAUSE, INC.), 21 June 2018 (21.06.2018), entire document, especially
Abstract; para [0030]-[0033], {0036), [0046)-[0047], {0074], [0080], [0089), (0117], [0128]-[0129],

1-21

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“D” document cited by the applicant in the international application

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which
is cited to establish t e_ﬁpubllcatlon date of another citation or other
special reason (as specified)

“O” documentreferringtoan oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

28 October 2019 (28.10.2019)

Date of mailing of the international search report

04DEC 2019

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Lee Young

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - wo-search-report

