
(19) United States
US 2011 0131555A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0131555 A1
Varanasi et al. (43) Pub. Date: Jun. 2, 2011

(54)

(75)

(73)

(21)

(22)

(63)

EXTERNAL PROGRAMMATIC INTERFACE
FOROS CL COMPLIANT ROUTERS

Inventors: Sankara Sastry Varanasi,
Sunnyvale, VA (US); Jung Tjong,
Sunnyvale, CA (US); Anil Bansal,
Fremont, CA (US); Prakash
Bettadapur, San Jose, CA (US);
Janakiraman Mohanaraman,
Bangalore (IN)

Assignee: Cisco Technology, Inc., San Jose,
CA (US)

Appl. No.: 13/023,428

Filed: Feb. 8, 2011

Related U.S. Application Data

Continuation of application No. 1 1/192,951, filed on
Jul. 29, 2005, now Pat. No. 7,908,594.

SO2
COMFONENT CAN

FES

300 304
FEPROCESSOR

306
PARSE CAN
ANALYZER

FURTHER PROCESSING
(OPTIONAL)

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl. .. 717/136

(57) ABSTRACT

A method of receiving and translating data within an external
programmatic interface (EPI) is described. The method calls
for receiving input into the EPI. The input is traversed. Where
the input is presented in a prescribed format other than CLI, it
is translated into a corresponding CLI statement, with refer
ence to a representation of the CLI syntax. Where the input is
presented in CLI, it is translated into a corresponding pre
scribed output format, with reference to a model of the pre
scribed output format derived from the CLI syntax. The trans
lated input is output.

PARSE NODES

SUMMARY REPORT
PARSE GRAPH (e.g. XML)
PARSE GRAPH (TEXT) .

Patent Application Publication Jun. 2, 2011 Sheet 1 of 14 US 2011/O131555 A1

ii.2

DATA ROM RAM
PROCESSOR NoNWOATLs WOLATLE SSES

0. 103 102
104.

APHA DISPLAY NUMERIC
DEVICE NPUT

CURSOR INPUTIOUTPU
CONTROL OEVICE

5. 06 O7 198

Figure 1

Patent Application Publication Jun. 2, 2011 Sheet 2 of 14

202
PARSER CODE

204
PARSE GRAPH.

206
AND/OR COMMAND

TREE

2O6
COMMAND DATA MODEL

Figure 2

US 2011/0131555A1

Patent Application Publication Jun. 2, 2011 Sheet 3 of 14 US 2011/O131555 A1

SO2
COMPONENT CHAN

FES

PREPROCESSOR PARSE NODES

306. SUMMARY REPORT
PARSE CAN b. PARSE GRAPH (e.g. XML)
ANALYZER PARSE GRAPH (TEXT)

FURTHER PROCESSENG
(OPTIONAL)

Figure 3

Patent Application Publication Jun. 2, 2011 Sheet 4 of 14 US 2011/0131555A1

400 - 4)
ACCESS MACROINSTRUCTIONSWRITTEN ACCORDING
TO A 1st LANGUAGE AND USED TO ANALYZEAN INPUT

420
WRITE THE MACRONSTRUCTIONS AS STRINGS

ACCORDING TO A 2nd LANGUAGE (e.g., ASSOCATE XML.
TAGS WITH ELEMENTS OF THE MACROINSTRUCTIONS)

430
NCUDE THE STRINGS IN AN EXPORTABLE

REFRESENTATION

44C)
GENERATE ATEX VERSION OF THE

MACROINSTRUCTIONS

Figure 4

Patent Application Publication Jun. 2, 2011 Sheet 5 of 14 US 2011/0131555A1

PARSE GRAPH
204

GRAPH-TO-COMMAND AND/OR COMMAND TREE
TREE TRANSFORMER DOCUMENTATION

510 DEVELOPMENT TOOLS

FURTHER PROCESSING
(OPTIONAL)

Figure 5

– – – – – – – – – – – – – – ~ ~ ~ – ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

US 2011/0131555 A1

·)

“)} | HONVÈJE “IOOH) Z dnOJSpueuuuu00e0d

Jun. 2, 2011 Sheet 6 of 14 Patent Application Publication

Patent Application Publication Jun. 2, 2011 Sheet 7 of 14 US 2011/0131555 A1

700

Traverse PARSENODEs in A PARSE
GRAPH,

702

HIDE SELECTED INFORMATION CONTAINED
WITH IN PARSENODESTO CREATE CONDENSED
PARSE NODES.

704.

SIMPLIFYSELECTED COMPLEX PATTERNS IN THE
PARSE GRAPH TO CREATE SIMPLIFEED PARSE
GRAPH PATTERNS.

706

CREATE BRANCHES ON AN AND/OR COMMAND
TREE FROM THE PARSE NODES, CONDENSED
PARSENODES, AND THE SIMPLIFIED PARSE GRAPH
PATTERNS,
708

SIMPLIFYSELECTED BRANCHES ON THE AND/OR
TREEN ACCORDANCE WITH A PLURALITY OF
AND/OR COMMAND TREE SIMPLIFICATION CASES.

710

MERGE SELECTED CASES IN THE AND/OR
COMMAND TREE THAT HAVE COMMON END OF
LINE TERMINATIONS.

712

CREATE AN EXPORTABLE REPRESENTATION OF
THE AND/OR COMMAND TREE.

714.

Figure 7

Patent Application Publication Jun. 2, 2011 Sheet 8 of 14 US 2011/O131555 A1

wire art at a rur in pri was it is was a will it wo

PARSEGRAPH
GENERATOR

800

AND-OR-COMMAND
TREE

3O
COMMAND DATA

MODEL GENERATOR

- COMMAND DATA
MODEL (XM)

820 - STRUCTURED
COMMAND DATA - DATA MODEL
MODEL SIMPLIFER - METADATA

GENERATORS

r - COMMAND DATA
USER. MODEL (XML)

COMMAND DATA - STRUCTURED
Er -- MODEL REFINER > DATA MODEL
INPUTS ----------------- - METADATA y GENERATORS

FURTHER
PROCESSING
(OPTIONAL)

FIGURE 8

Patent Application Publication Jun. 2, 2011 Sheet 9 of 14 US 2011/O131555 A1

900

-
910 (A) 930 GB)

() 920 (NE) 950 (C)
CONTAINER OE) COMMAND (NE) 960 (D)

CONTANER DATA (CE)

EOL1 DATA (E)
970

940 GEO

()-2
COMMAND GE)

O

FIGURE 9

Patent Application Publication Jun. 2, 2011 Sheet 10 of 14 US 2011/0131555 A1

GENERATE A PARSE GRAPH FROM A SELECTED SET OF
COMMAND LINE INTERFACE (CLI) INSTRUCTIONS.
1010

GENERATE AN AND/OR COMMAND TREE FROM THE
PARSE GRAPH.

1020

GENERATE AN UNSIMPLIFIED COMMAND DATA MODEL
FROM THE AND/OR COMMAND TREE BY EXPRESSING
THE AND/OR COMMAND TREEASA COMMAND TREE
WRITTEN IN ANOTATION USINGELEMENTS OF EBNF
(EXTENDED BACKUS-NAUR-FORM) NOTATION.
1030

SIMPLIFY SELECTED STRUCTURES WITH IN THE
UNSIMPLIFIED COMMAND DATA MODEL TO CREATE A
SIMPLIFIED COMMAND DATA MODEL.

1040

REFINE THE SIMPLIFIED COMMAND DATA MODEL BY
ALLOWING RENAMING OF SELECTED ELEMENTS OF THE
COMMAND DATA MODEL TO CREATE AREFINED
COMMAND DATA MODEL.

1050

EXPORT THE REFINED COMMAND DATA MODEL ASAN
XML (EXTENSIBLE MARKUP LANGUAGE) FILE.
O6 O

Figure 10

Patent Application Publication Jun. 2, 2011 Sheet 11 of 14 US 2011/O131555 A1

1100 1110
12O 130

102 || || A Object => CLI

Object Metadata IOS
Device

104 4

150 CL Metadata 40

1108
CL => Object

Figure 11

Patent Application Publication Jun. 2, 2011 Sheet 12 of 14 US 2011/O131555 A1

1210
Receive Data

1220
Group by Command

Attribute

1230
Lookup EOL Node &

Recursively try Connect

240
If Delete, Omit Prefix &

Output

FOWChart 1200

Figure 12

Patent Application Publication Jun. 2, 2011 Sheet 13 of 14 US 2011/O131555 A1

310
Receive Data

1320
lf a "no" Command,

Obiect Delete Reduest

1330
Parse Data, Access CL

Metadata Model

1340
Insert Parameters &

Output

Flowchart 1300

Figure 13

Patent Application Publication Jun. 2, 2011 Sheet 14 of 14 US 2011/O131555 A1

40
Receive Data

1420
Traverse input

1430 1435
Translate From CL Translate to CL.

FOWChart 1400

Figure 14

US 2011/013 1555 A1

EXTERNAL PROGRAMMATIC INTERFACE
FOROS CL COMPLIANT ROUTERS

RELATED UNITED STATES PATENT
APPLICATIONS

0001. This application is a continuation of and claims
priority to pending U.S. patent application Ser. No. 1 1/192,
951, by Sankara Sastry Varanasi et al., filed on Jul. 29, 2005,
entitled “External Programmatic Interface For IOSCLI Com
pliant Routers, which is incorporated by reference in its
entirety.
0002 This Application is related to U.S. patent application
Ser. No. 1 1/149,052, now issued as U.S. Pat. No. 7,779,398,
by J. Tong et al., filed on Jun. 8, 2005, entitled “Methods and
Systems for Extracting Information from Computer Code.”
which is incorporated by reference in its entirety.
0003. This Application is related to U.S. patent application
Ser. No. 1 1/149,063, now issued as U.S. Pat. No. 7,784,036,
by J. Tong et al., filed on Jun. 8, 2005, entitled “Methods and
Systems for Transforming a Parse Graph into an AND/OR
Command Tree,” which is incorporated by reference in its
entirety.
0004. This Application is related to U.S. patent application
Ser. No. 11/178,136 by J. Tiong et al., filed on Jul. 8, 2005,
entitled “Method and System of Receiving and Translating
CLI Command Data within a Routing System, which is
incorporated by reference in its entirety.
0005. This Application is related to U.S. patent application
Ser. No. 1 1/148,694, now issued as U.S. Pat. No. 7,698,694,
by J. Tong et al., filed on Jun. 8, 2005, entitled “Methods and
Systems For Transforming an And/Or Command Tree into a
Command Data Model.” which is incorporated by reference
in its entirety.

BACKGROUND

0006 1. Field of the Invention
0007. The present invention relates to routing systems for
computer networks, and more particularly to the transmission
of instructions to and receipt of data from Such routing sys
temS.

0008 2. Related Art
0009. Access and configuration of a routing system
involves sending commands and instructions to and receiving
information from the router itself. For routers using a version
of the internetwork operating system (IOS), access is accom
plished through the use of the IOS command line interface
(CLI). IOS CLI is a comprehensive interface, which has
expanded continuously as technology has improved over the
past twenty years. Many companies now strive to Support
Some variation on IOSCLI in their routing systems, and many
consumers have invested heavily in IOS CLI support, devel
oping complicated Scripts to handle various configuration and
access needs. As such, it is desirable for any improvements to
router access and control to acknowledge the existing invest
ments of consumers.

0010 IOS CLI is not the most program-friendly of inter
faces, however. Twenty years of consistency and backwards
compatibility, when coupled with continual improvements to
the hardware and implementation of new features, has created
an extensive interface. While a human user of IOS CLI may
be able to sort through the complicated input and output

Jun. 2, 2011

scheme to input information and extract important data, it has
proven to be a very difficult and cumbersome task to auto
mate.

0011. A system and/or method that allows for an easy,
more structured approach to accessing and configuring a
router, while still making use of the significant advantages
and experience associated with IOS CLI, would be advanta
geous.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The accompanying drawings, which are incorpo
rated in and form a part of this specification, illustrate
embodiments of the invention and, together with the descrip
tion, serve to explain the principles of the invention:
0013 FIG. 1 is a block diagram of an exemplary computer
system upon which embodiments of the present invention
may be implemented.
0014 FIG. 2 is a block diagram showing the processing of
information in a parse chain analyzer according to one
embodiment of the present invention.
0015 FIG. 3 is a block diagram of a system for extracting
and manipulating parse chain information according to one
embodiment of the present invention.
0016 FIG. 4 is a flowchart of a method for extracting and
manipulating parse chain information according to one
embodiment of the present invention.
0017 FIG. 5 is a block diagram of a system for transform
ing a parse graph into an AND/OR command tree according
to one embodiment of the present invention.
0018 FIG. 6 is a block diagram of a parse graph-to-com
mand tree node traversal according to one embodiment of the
present invention.
0019 FIG. 7 is a flowchart of a method for transforming a
parse graph into an AND/OR command tree according to one
embodiment of the present invention.
0020 FIG. 8 is a block diagram of a system for transform
ing an AND/OR command tree into a command data model
according to one embodiment of the present invention.
(0021 FIG. 9 illustrates an example AND/OR command
tree block diagram according to one embodiment of the
present invention.
0022 FIG. 10 is a flowchart of a method for transforming
an AND/OR command tree into a command data model
according to one embodiment of the present invention.
0023 FIG. 11 is a block diagram of an external program
matic interface, in accordance with one embodiment of the
present invention.
0024 FIG. 12 is a flowchart of a method for translating
object operations into CLI commands, in accordance with
one embodiment of the invention.
0025 FIG. 13 is a flowchart of a method for translating
CLI information into object information, in accordance with
one embodiment of the invention.
0026 FIG. 14 is a flowchart of a method of receiving and
translating data within an external programmatic interface, in
accordance with one embodiment of the invention.

DETAILED DESCRIPTION

0027. A method of receiving and translating data within an
external programmatic interface (EPI) is disclosed. Refer
ence will now be made in detail to several embodiments of the
invention. While the invention will be described in conjunc
tion with the alternative embodiment(s), it will be understood

US 2011/013 1555 A1

that they are not intended to limit the invention to these
embodiments. On the contrary, the invention is intended to
cover alternative, modifications, and equivalents, which may
be included within the spirit and scope of the invention as
defined by the appended claims.
0028. Furthermore, in the following detailed description
of the present invention, numerous specific details are set
forth in order to provide a thorough understanding of the
present invention. However, it will be recognized by one
skilled in the art that the present invention may be practiced
without these specific details or with equivalents thereof. In
other instances, well-known methods, procedures, compo
nents, and circuits have not been described in detail as not to
unnecessarily obscure aspects of the present invention.

Notation and Nomenclature

0029. Some portions of the detailed descriptions, which
follow, are presented in terms of procedures, steps, logic
blocks, processing, and other symbolic representations of
operations on data bits that can be performed on computer
memory. These descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. A procedure, computer-executed step, logic
block, process, etc., is here, and generally, conceived to be a
self-consistent sequence of steps or instructions leading to a
desired result. The steps are those requiring physical manipu
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated in a computer system. It has
proven convenient at times, principally for reasons of com
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.
0030. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms
Such as “accessing.” “writing.” “including.” “testing.”
“using.” “traversing.” “associating.” “identifying or the like,
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti
ties within the computer system's registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other Such
information storage, transmission or display devices.
0031 Referring now to FIG. 1, a block diagram of an
exemplary computer system 112 is shown. It is appreciated
that computer system 112 described herein illustrates an
exemplary configuration of an operational platform upon
which embodiments of the present invention can be imple
mented. Nevertheless, other computer systems with differing
configurations can also be used in place of computer system
112 within the scope of the present invention. That is, com
puter system 112 can include elements other than those
described in conjunction with FIG. 1.
0032 Computer system 112 includes an address/data bus
100 for communicating information, a central processor 101
coupled with bus 100 for processing information and instruc
tions; a volatile memory unit 102 (e.g., random access
memory RAM, static RAM, dynamic RAM, etc.) coupled

Jun. 2, 2011

with bus 100 for storing information and instructions for
central processor 101; and a non-volatile memory unit 103
(e.g., read only memory ROM, programmable ROM, flash
memory, etc.) coupled with bus 100 for storing static infor
mation and instructions for processor 101. Computer system
112 may also contain an optional display device 105 coupled
to bus 100 for displaying information to the computer user.
Moreover, computer system 112 also includes a data storage
device 104 (e.g., disk drive) for storing information and
instructions.

0033. Also included in computer system 112 is an optional
alphanumeric input device 106. Device 106 can communicate
information and command selections to central processor
101. Computer system 112 also includes an optional cursor
control or directing device 107 coupled to bus 100 for com
municating user input information and command selections
to central processor 101. Computer system 112 also includes
signal communication interface (input/output device) 108,
which is also coupled to bus 100, and can be a serial port.
Communication interface 108 may also include wireless
communication mechanisms. Using communication inter
face 108, computer system 112 can be communicatively
coupled to other computer systems over a communication
network Such as the Internet or an intranet (e.g., a local area
network).

Overview

0034 FIG. 2 is a block diagram showing the processing of
information in a parse chain analyzer (PCA) system 200
according to one embodiment of the present invention. In the
present embodiment, PCA system 200 extracts command line
interface (CLI) command definitions from parse chain source
codes and generates a programmatic interface (PI) object
model. PCA system 200 can also be used to generate CLI
command definitions and provide the definitions in formats
that represent the syntax (structure or grammar) of the CLIS.
This information can be used, for example, for CLI syntax
documentation, CLI parsing, and CLI development tools.
0035. In one embodiment, parser code 202 defines mecha
nisms for interpreting and validating the inputs (e.g., com
mands) that can be received in response to a CLI prompt. In
one such embodiment, parser code 202 includes C-language
constructs such as C chain files, C files, C macroinstructions
(macros), and Cheader files. The macros define nodes in the
parser data structure (the parse chain or parse graph). The
macros are defined in C header files that are included in a C
chain file. The nodes are interconnected to form the parse
graph, which can be constructed of different types of nodes
that are represented by different macros.
0036. In the present embodiment, parse graph 204 is gen
erated by extracting information from parser code 202. Spe
cifically, in one embodiment, the information is extracted
from the aforementioned C chain files, C files, C macros, and
Cheader files. Additional information is provided in conjunc
tion with FIGS. 3 and 4 below.

0037. In the present embodiment, parse graph 204 of FIG.
2 is transformed into an AND/OR command tree 206. Addi
tional information is provided in conjunction with FIGS. 5
through 7 below.
0038. In the present embodiment, AND/OR command tree
206 of FIG. 2 is transformed into a command data model 208.

US 2011/013 1555 A1

Additional information is provided in conjunction with FIGS.
8 through 10 below.
Extracting Information from Computer Code
0039 FIG. 3 is a block diagram of a system 300 for
extracting and manipulating parse chain information accord
ing to one embodiment of the present invention. In the present
embodiment, system 300 includes preprocessor 304 and
parse chain analyzer (PCA) 306.
0040 Component chain files (e.g., parse chain macros)
302 are input to preprocessor 304. In one embodiment, pre
processor 304 extracts parse chain information from the com
ponent chain files 302 by redefining each parse chain macro
as an Extensible Markup Language (XML) string that encap
Sulates information in the macro' arguments as well as infor
mation in the macro' definitions. That is, a macro can include
explicitly named elements as well as elements not explicitly
named in the macro but pointed to by the macro, and both of
these types of information are captured and written as XML
Strings.
0041. In one embodiment, the output of preprocessor 304
includes a file that contains the parse node information
derived from the component chain files 302 and written in
XML format. In one such embodiment, the XML file con
taining the parse nodes is then fed to PCA306, which stitches
together the unconnected parse nodes into one or more parse
graphs (in an XML format). In another such embodiment, this
is accomplished using a Java program.
0042. The resulting parse graph (e.g., in an XML format)

is a Superset of the information extracted from the component
chain files 302. For example, the resulting parse graph can
include the runtime metadata parse graph used by CLI parsers
to validate an input, symbol information, and other informa
tion embedded in the parse nodes (e.g., the information
pointed to by a macro).
0043. In practice, there may be definition files (e.g., chain

files) for multiple components, in which case a parse graph
(or graphs) is generated for each component. In that case, the
different parse graphs (that is, the XML-formatted parse
graphs from PCA 306) can be linked together, in essence
creating a single parse graph that consists of the multiple,
individual parse graphs.
0044. In one embodiment, the outputs of PCA306 include
a Summary report written to a first file, a parse graph in an
XML format written to a second file, and an easier to read
text-based diagram of the parse graph written to a third file.

Jun. 2, 2011

The outputs of PCA 306 can be optionally processed further
as described above (e.g., blocks 206 and 208 of FIG. 2).
Furthermore, the outputs of PCA 306 provide information
that is externally available (e.g., available outside the com
puter system to a human user), and thus can be used, for
example, in external management systems, for validation of
CLI syntax before product delivery, for processing of CLI
inputs for discovery, in development and test processes, for
transformation to still other formats, and for creating auto
mated documentation from code.
0045. To summarize, embodiments inaccordance with the
present invention are used for generating XML-tagged lines
for each of the parser code macros in the component chain
files 302, for linking the XML-tagged lines into a parse graph,
for linking different XML-formatted parse graphs, and for
generating an external representation of a parse graph (e.g., as
an XML document).
0046. The discussion above is illustrated by way of an
example. Table 1 below contains an example of a parser
definition according to one embodiment of the present inven
tion. The example of Table 1 uses C-code to define a valid
command.

TABLE 1

An Example of a Parser Definition

EOLS (cdp int duplex eol, cdp intfo command,
CDP INT LOG DUP MISMATCH);
(cdp int duplex, cap int duplex eol, no alt,
'duplex', 'Log the duplex-mismatches
generated by CDP,
PRIV CONFIPRIV SUBIF);
(cdp int mismatch, cap int duplex, no alt,
mismatch', 'Log the CDP mismatches',
PRIV CONFIPRIV SUBIF);
(cdp int log, cap int mismatch, no alt,
log, Log messages generated by CDP,
PRIV CONFIPRIV SUBIF);

KEYWORD

KEYWORD

KEYWORD

0047. In one embodiment, the C macros that represent the
parse nodes are redefined to generate XML-tagged lines. In
Such an embodiment, information associated with a parse
node is wrapped around a corresponding XML element.
Table 2 contains an example of XML-tagged parse nodes for
the parser definition of Table 1 according to one embodiment
of the present invention. In one embodiment, the example of
Table 2 represents the output of preprocessor 304 of FIG. 3.

TABLE 2

An Example of an XML-Tagged Parser Definition

spca pnode>spca types-EOLSs.pca type-spca file> cfg int cop.h. spca file>
spca name> colp int duplex eol spca name>spca acc-spca acc-spca alt
</pca alt-<pca funcleols actions/pca func-spca args--&
Lcdp int duplex ecolspca args spca arg func-cop intfc command
</pca arg func-spac arg Subfunc{((((((O + 1) + 1) + 1) + 1) + 1) + 1) + 1)
</pca arg Subfunc-spca pnode> ; ;
<pca pnode><pca type-KEYWORD-pca type-spca file>
cfg int cop.h.</pca file>spca name> colp int duplex <pca name>spca acc

colp int duplex eol spca acc-spca alt- no alt
</pca altispca funckeyword actions.pca funckltipca args-&#38;
Lcdp int duplex <pca args spca arg stro

duplex</pca arg strespca arg helps Log the duplex-mismatches
generated by CDP <?pca arg helps-pca arg privo Oxf| 0x08000000
</pca arg priv-spca pnode> ; ;
<pca pnode><pca type-KEYWORD-pca type-spca file>
cfg int cop.h.</pca file>spca name>

US 2011/013 1555 A1

TABLE 2-continued

An Example of an XML-Tagged Parser Definition

colp int mismatchspca name>spca acc
colp int duplex: <pca acc-spca alt- no alt

Jun. 2, 2011

</pca altispca funckeyword actions/pca functs.pca args &#38;
Lcdp int mismatch spca args->spca arg stro

mismatch.</pca arg stro-spca arg helps Log the CDP mismatches
<?pca arg helps-Spac arg privo Oxf| 0x08000000
</pca arg priv-spca pnode> :
”; <pca pnode><pca types KEYWORD-?pca types:<pca file>
cfg int cop.h.</pca file>spca name> colp int Log spca name>spca acc

colp int mismatch spca acc-spca alt> no alt
</pca altispca funckeyword actions/pca func-spca args->&#38;
Ldcp imt logs/pca argS><pca arg str

logs/pca arg stro-spca arg helps Log messages generated by CDP
<?pca arg helps-Spca arg privo Oxf| 0x08000000
</pca arg priv-spca pnode> :

0048. In the example of Table 2, “pca file” refers to the
configuration file (or in Some cases, the chain file) where the
macro is instantiated; “pca type” refers to the macro name:
“pca name refers to the name of the parse node; and “pca
acc’ and “pca alt' refer to the accept and alternate transitions
for parse nodes.

0049. In one embodiment, the XML-tagged parse nodes
are processed and connected together in a parse graph. Table
3 contains an excerpt of an XML document that describes a
parse graph based on the XML-tagged parser definitions of
Table 2 according to one embodiment of the present inven
tion. In one embodiment, the example of Table 3 represents
the output of PCA 306 of FIG. 3.

TABLE 3

An Example of an XML Document Describing a Parse Graph

<trans name=alt
spnode name='cop int log

type="KEYWORD
Subsys='cdp'
chainFile='cclp chain.c'
configFile=cfg int codp.h.
priv-Oxf| 0x08000000
help=":Log messages generated by CDP":
str=":log":

>

<trans name='acc
spnode name='cop int mismatch

type="KEYWORD
Subsys='cdp'
chainFile="colp chain.c
configFile=cfg int codp.h.
priv-Oxf| 0x08000000
help=":Log the CDP mismatches":
str=":mismatch":

>

<trans name='acc
spnode name='cop int duplex

type="KEYWORD
Subsys='cdp'
chainFile="colp chain.c
configFile=cfg int codp.h.
priv-Oxf| 0x08000000
help=":Log the duplex-mismatches generated by

CDP"
str=":mismatch":

<trans name='acc
spnode name='cop in

type=EOLS
Subsys='cdp'
chainFile='cclp chain.c'
configFile=cfg int codp.h.
priv-Oxf| 0x08000000
Subfunc=(((((((0 + 1) + 1) + 1) + 1) + 1) + 1) + 1)

duplex eol

US 2011/013 1555 A1

TABLE 3-continued

An Example of an XML Document Describing a Parse Graph

func=cop intfc command
>

0050 FIG. 4 is a flowchart 400 of a method for extracting
and manipulating parse chain information according to one
embodiment of the present invention. Although specific steps
are disclosed in flowchart 400, such steps are exemplary. That
is, embodiments of the present invention are well suited to
performing various other (additional) steps or variations of
the steps recited in flowchart 400. It is appreciated that the
steps in flowchart 400 may be performed in an order different
than presented, and that not all of the steps in flowchart 400
may be performed. In one embodiment, flowchart 400 is
implemented as computer-readable program code stored in a
memory unit of computer system 112 and executed by pro
cessor 101 (FIG. 1).
0051. In step 410 of FIG. 4, in one embodiment, macro
instructions that are used to analyze an input are accessed. In
one embodiment, the input is a command that is entered in
response to a command line interface prompt. In another
embodiment, the macroinstructions define parse nodes in a
data structure (e.g., a parse graph or a parse chain) that is used
for testing the input for proper syntax. The macroinstructions
are written according to a first computer system language. In
one embodiment, the macroinstructions are written in a C
language.
0052. In step 420, in one embodiment, the macroinstruc
tions are rewritten as Strings according to a second computer
system language. In one embodiment, XML tags are associ
ated with elements of the macroinstructions, such that the
macroinstructions are rewritten in an XML format.

0053. In step 430, in one embodiment, the strings are
included in an exportable representation. In one such embodi
ment, the exportable representation is an XML document. In
step 440, in another embodiment, the strings are used to
generate a textual version of the data structure.
Transforming a Parse Graph into an and/or Command Tree
0054 FIG. 5 is a block diagram of a system 500 for trans
forming a parse graph into an AND/OR command tree
according to one embodiment of the present invention. In the
present embodiment, system 500 includes an optional parse
chain analyzer 306, a parse graph 204, and a graph-to-com
mand tree transformer 510. This portion of the present inven
tion is used to better express the underlying CLI syntax by
transforming parse graph 204 structure into a tree structure
containing non-terminal AND/OR nodes that represent a
sequence or choice of other AND/OR nodes or terminal token
nodes.

0055. The functionality of the optional parse chain ana
lyzer 306 was previously described in conjunction with FIG.
3. One of the outputs of parse chain analyzer 306 is a parse

Jun. 2, 2011

graph 204. Parse graph 204 is a representation of CLI instruc
tions. Parse graph 204 is an input to system 500.
0056 the branch to fork out. Branches and nodes lead to or
terminate in End of Line (EOL) nodes. Each branch, or node
on a branch, of parse graph 204 that terminates in a common
EOL node, translates into a command that is processed by the
action function associated with that EOL node.
0057 The graph-to-command tree transformer 510 oper
ates by recursively traversing the branches in parse graph 204.
While traversing several things are being done. Parse nodes
within the branches of parse graph 204 that lead to or termi
nate in a common EOL node are collected into a command
subtree rooted in an AND node. A command subtree set that
shares common prefixes is created, and the branches that
terminate in common EOL nodes are kept as a class. Nodes
are collected based on their EOL because branches of parse
graph 204 that terminate in common EOL nodes represent a
single CLI command line.
0.058 FIG. 6 is a block diagram of a parse graph-to-com
mand tree node traversal according to one embodiment of the
present invention. FIG. 6 illustrates a simple example parse
graph 620; with three parse nodes (615, 617 and 619). Parse
node 615 is a root node, while parse nodes 617 and 619 are
fork nodes. The parse graph 620 has two branches shown,
branch one 601 and branch two 610. Branch one 601 is shown
with three EOL nodes (607, 608, and 609). Branch two 610 is
also shown with three EOL nodes (611, 612, and 613). The
parse nodes (615, 617, and 619) in parse graph 620 are recur
sively traversed starting at a particular node continuing until
a termination is reached. For example starting from root parse
node 615 and traversing across branch 601, through fork node
617, across fork 602, and to the termination EOL1 607, con
stitutes a partial traversal of one path from the root parse node
615 to a termination point (such as 607). Each possible path
way from a parse node such as the root node 615 or a fork
node (such as 615) to a termination (such as EOL1 607)
constitutes a parse node traversal that is performed in the
parse graph-to-command tree traversal and transformation.
Parse node traversals in other parse graphs could be more or
less complex.
0059. During the traversal portion of the graph-to-com
mand tree transformation (510 of FIG. 5), one task that takes
place is the conversion of parse graph branches into branches
on a command tree. In FIG. 6, the converted branch 601
appears under the headings “PeacommandGroup 1645 and
the converted branch 610 appears under the heading “Pea
CommandGroup 2' 647 in the AND/OR command tree 640.
As part of the traversing, if commands in a parse graph branch
are found to lead to a common EOL, they will be grouped

US 2011/013 1555 A1

together during the conversion. More complex parse graphs
can involve nodes that are referenced from multiple points.
This represents either a loop or a sharing of a common branch
from different points in the parser graph.
0060. With reference again to FIG. 5, a more in depth
example of one operation that occurs during the traversal of
parse graph 204 is shown by the example traversal of the
command line shown in Table 4.

TABLE 4

An Example of a CLI Command Line

mpls' range''<min 'static <static mind <static max

0061 Table 5 shows an example of a stand-alone AND/
OR command tree representation of the CLI command line of
Table 4. During traversal, over-arching command structures
in parse graph 204 are identified, and at a lower level, defini
tions of commands are grouped based on a common root
parse node.

TABLE 5

Example of an AND/OR Tree Representation of a Command Line

Command-AND-node
{

keyword ("mpls')
keyword (label')
keyword (range’)
number (<min)
number (<max>)
Data-AND-Node

keyword ('static')
keyword (<static min)
keyword (<static max>)

eol (<mpls range function>)

Commands rooted in a common node generally share the
same prefix. For example, the command “mpls label proto
col’shares the same root node with the command “mpls label
holddown” and the command “mpls label range.” A complete
AND/OR command tree that represents these three com
mands would group them togetherina single container rooted
to a single AND node. Table 6 shows an example representa
tion of an AND/OR command tree of these three related
commands.

TABLE 6

An Example of an AND/OR Command Tree
of Three Commands Sharing a Root

Command-AND-node
{

keyword ("mpls')
keyword (label')
Container-OR-node

Command-AND-node
{

keyword (range’)
number (<min)
number (<max>)
Data-AND-Node

Jun. 2, 2011

TABLE 6-continued

An Example of an AND/OR Command Tree
of Three Commands Sharing a Root

keyword ('static)
keyword (<static min)
keyword (<static max>)

eol (<mpls range function>)

Command-AND-node
{

keyword (protocol)
options(tdp, ldp')
ol(<mpls protocol function>)

Command-AND-Node
{

keyword (holddown)
number (<holddown time>)
number(<interval)
eol (<mpls holddown function>)

0062. In one embodiment of the present invention, as the
traversing during graph-to-command tree transformation 510
takes place, some information in parse graph 204 is hidden
from further processing. This hiding is done prior to the
transformation from parse graph 204 to AND/OR command
tree 206 (see FIG. 2). This hiding can be thought of as hiding
the noise in parse graph 204. Hiding does not erase informa
tion in parse graph 204. Rather, hiding minimizes internal
nodes in parse graph 204 that contain information unneces
sary to the grammar of a CLI command, such as directions for
implementing the command. After this “noise' is hidden, it is
easier to identify the actual command nodes and their asso
ciated command attributes. Hiding the information about
command implementation also simplifies the syntax of the
commands in parse graph 204, which makes it easier to rec
ognize patterns within the structure of the commands.
0063 As the traversing takes place, some simplification
occurs to prepare for conversion of commands from parse
graph 204 to AND/OR command tree. This simplification is
part of the graph-to-command tree transformer 510. The sim
plification reduces complex patterns within parse graph 204.
and eliminates nodes that do not contribute to the overall
structure of parse graph 204 or the commands in parse graph
204. Parse graph 204 is checked for patterns that indicate
optional nodes, false nodes, alternate nodes, and nodes that
can be skipped. The identified nodes are either simplified or
eliminated from being transformed to the AND/OR command
tree, according to simplification rules.
0064. As the traversing continues, creation of individual
branches on the AND/OR command tree takes place as part of
the graph-to-command tree transformer (510 of FIG. 5). The
building of the AND/OR command tree is an iterative process
that happens piecemeal during the traversing, rather than all at
once at the end of the traversing process. As parse graph 204
is traversed, and after a particular portion of the graph, branch
on the graph, or node on the graph has had any possible hiding
or simplification done to it, it is compared to a set of parse
graph-to-command tree conversion cases. As matches are
detected, conversions are made. Table 7 shows an example of
a simple conversion case. Table 7 shows that when a parse
graph pattern matching the pattern shown under the heading

US 2011/013 1555 A1

“Parse Graph' is detected, it is converted to the pattern shown
under the heading “Command Tree.” The converted com
mand is then added to the AND/OR command tree that is
being created. There are many more conversion cases,
describing conversions for known cases or patterns in parse
graph 204 command structures. The conversion cases are
selectively applied based on how the portion of a branch on
parse graph 204 that is currently being analyzed by the tra
versal fits into the overall hierarchy of parse graph 204.

TABLE 7

An Example of a Parse Graph-to-Command Tree Conversion
Case Parse Graph

Parse Graph Command Tree

A-B-C-EOL

EOL

A. (B+C)

0065. After parse graph 204 has been traversed and the
AND/OR command tree has been built, refining of the AND/
OR tree structure takes place. One phase of the refining is
simplification of the AND/OR command tree branches. Each
branch is analyzed for ways that the AND/OR expressions
within it can be simplified according to rules of logical opera
tion. Logical operations such as factoring out, eliminating
optional nodes, and simplifying take place, according to a
selected set of AND/OR command tree simplification cases.
Table 8 is not an inclusive list of all possible simplifications,
but it shows some before and after example cases of AND/OR
command tree simplification.

TABLE 8

AND/OR Command Tree Simplification Case Examples

Case Before After

Factor Out Suffix ((A : X) + (B. X) + (C - X)) ((A + B + C) X)
Merge Single Node (A. (B)) (A, B)
Merge Empty Node (A. ()) (A)
Merge Subtrees (A + (B + C)) (A+B+C)
Merge Subtrees (A. (B - C)) (A, B, C)

0066. Another simplification operation that takes place is
merger of duplicated branches. This is similar to the logical
mergers that are performed on a single branch in Table 8.
Normally, the branches of the parse graph that leads to a
common EOL node are contiguous; when a new EOL node is
seen the line for the previous EOL is completed. However
updates to the parser code may result in non-contiguous
branches of parser graph that lead to the same EOL. When a
line or branch on the AND/OR command tree is created, it is
checked to see if there is an existing branch that terminates on
the same EOL. If there is, the existing line and new line need
to be merged. If the existing line is part of a command group
that contains another EOL, it is extracted from that command
group before being merged with the new line. The lines are
then merged together according to logical rules, which merge
together common prefixes, Suffixes, or pre-fixes and Suffixes
shared by the lines. Table 9 shows an example of merging an
existing line and new line that share common prefixes. Table
9 also shows an example of merging an existing line and new
line that share common Suffixes. Many other merger cases are
possible based on variations in prefixes, suffixes, or both.

Jun. 2, 2011

TABLE 9

Command Tree Merger Case Examples

Case Before After

Merge Existing:
Prefix A, B, C (D. E. F. EOL1) (...)}

New:
A. B. G. D. E. F. E.OL1

Merg Existing:
Suffix A, B, C (D. E. F. EOL1) (...)}

New:
A. B. C. X. Y. Z. EOL1

A. B. (C + G). D. E.
F. EOL1

A. B. C. (D - E - F) +
(X,Y,Z)). EOL1

0067. The graph-to-command tree transformer (510 in
FIG. 5) iteratively creates an AND/OR command tree in
XML. After completion of graph-to-command-tree transfor
mation 510 an exportable representation of the AND/OR
command tree exists. Optionally, this exportable representa
tion can be exported as is, or can be converted to other lan
guages. Optionally, this exportable representation can be
modified for use as a documentation tool and/or as a devel
opment tool. Optionally, this exportable representation can be
processed further.
0068 FIG. 7 is a flowchart 700 of a method for transform
ing a complex representation of computer code into a simpli
fied representation of computer code. Although specific steps
are disclosed in flowchart 700, such steps are exemplary. That
is, embodiments of the present invention are well suited to
performing various other (additional) steps or variations of
the steps recited in flowchart 700. It is appreciated that the
steps in flowchart 700 may be performed in an order different
than presented, and that not all of the steps in flowchart 700
may be performed. In one embodiment, flowchart 700 is
implemented as computer-readable program code stored in a
memory unit of computer system 112 and executed by pro
cessor 101 (FIG. 1).
0069. In step 702 of FIG. 7, in one embodiment, parse
nodes in a parse graph are traversed. The parse nodes are
traversed depth-wise, to the EOL nodes at the end of each
traversed branch. The parse nodes are also traversed breadth
wise, to get an overview of the graph and detect an overarch
ing command structure or structures in the parse graph. As the
traversing takes place, parse nodes that terminate in a com
mon EOL are identified. The identified parse nodes are col
lected into groups or sets. The groupS/sets are converted into
branches on an AND/OR command tree, with each group/set
rooted in a common AND node on the command tree.

(0070. In step 704 of FIG. 7, in one embodiment, selected
information, contained within parse nodes, is hidden to create
condensed pares nodes. The information in the parse nodes of
the parse graph is not deleted, but merely hidden to prevent
further processing during follow on portions of the transfor
mation from parse graph to AND/OR command tree. Infor
mation about how to carry out commands is hidden or de
emphasized, so that the actual commands, and patterns
associated with the actual commands, are easier to discern.
(0071. In step 706 of FIG. 7, in one embodiment, selected
complex patterns in the parse graph are simplified to create
simplified parse graph patterns. The simplification is done
piecemeal on whatever portion of the parse graph is being
analyzed during the traversal. In other words, one branch or
one portion of a branch in the parse graph is simplified at a
time. Other processes can then be applied to the simplified

US 2011/013 1555 A1

piece of the parse graph, before traversing to another portion
of the parse graph. Simplification is done by comparing pat
terns in portions of the parse graph with known simplification
cases, to determine which nodes can be skipped or eliminated
during follow-on conversion steps. Simplification makes pat
terns associated with commands in the parse graph easier to
identify and convert into AND/OR command tree equiva
lents.
0072. In step 708 of FIG. 7, in one embodiment, branches
on an AND/OR command are created from parse nodes,
condensed parse nodes, and the simplified parse graph pat
terns. As traversing continues, and after simplification and
hiding have been accomplished (if applicable), portions of the
parse graph are converted into AND/OR command tree
branches. Cases that are applicable to the portion of the parse
graph being traversed are compared to the portion of the parse
graph. When a case matches, that portion of the parse graph
(which may contain hidden or simplified information) is con
verted to an AND/OR command tree equivalent.
0073. In step 710 of FIG. 7, in one embodiment, selected
branches on the AND/OR command tree are simplified in
accordance with a plurality of AND/OR command tree sim
plification cases. This is done to refine the command tree, and
is done iteratively as each piece of the command tree is
constructed. These simplifications are logical simplifications.
A non-inclusive list of example simplifications is shown and
described in conjunction with Table 8.
0074. In step 712 of FIG. 7, in one embodiment, selected
cases in the AND/OR command tree that have common end of
line terminations are merged. This is an iterative process that
is done as cases are created. If a newly created branch or line
is found to share a common EOL with a previously created
line or branch, the cases are merged. A non-inclusive list of
example merger cases is shown and described in accordance
with Table 9.
0075. In step 714 of FIG. 7, in one embodiment, an export
able representation of the AND/OR command tree is created.
This exportable representation can be in XML, which is what
is used to create the AND/OR command tree during the
graph-to-command tree transformation (510 of FIG. 5).
Optionally, Some embodiments of the present invention can
have exportable representations of the AND/OR command
tree in other languages. Optionally, other exportable products
can be created for use as development tools and/or documen
tation tools. Optionally, the AND/OR tree can be exported for
further processing.
Transforming an and/or Command Tree into a Command
Data Model
0076 FIG. 8 is a block diagram of a system 800 for trans
forming an AND/OR command tree into a command data
model, in order to clearly express the AND/OR command tree
structure containing non-terminal AND/OR nodes as a com
mand data model of CLI commands that can be used as an
operational tool, a development tool, or as a foundation for
other models. In the present embodiment, system 800
includes an optional parse graph generator 300, an optional
AND/OR command tree generator 500, an AND/OR com
mand tree 206 as an input, a command data model generator
810, a command data model simplifier 820, and a optional
command data model refiner 830. The work being performed
by system 800 is unique, in the sense that the CLI instructions
taken as an initial input source to parse graph generator 300
do not have to be designed with a command data model in
mind. The present system and method facilitate the incremen

Jun. 2, 2011

tal generation of a command data model from Source code
that was designed without a model in mind.
(0077 System300, which was previously described in con
junction with FIG.3, is used in one embodiment of the present
invention to generate a parse graph 204 from CLI instruc
tions. System 300, the parse graph generator, is an optional
part of system 800. System 300 is coupled to the input of
system 500.
(0078 System 500, which was previously described in con
junction with FIG. 5, is optionally used in one embodiment of
the present invention to generate an AND/OR command tree
206 of CLI instructions from a parse graph 204 of CLI
instructions. AND/OR command tree 206 is an input for
command data model generator 810.
(0079 AND/OR command tree 206 was previously
described in conjunction with FIG. 2. AND/OR command
tree 206 is a representation of CLI instructions that serves as
a starting data file for what will eventually become a com
mand data model. In some embodiments of the present inven
tion, AND/OR command tree 206 is represented as an XML
file. AND/OR command tree 206 is used as an input to com
mand data model generator 810.
0080 FIG. 9 illustrates an example AND/OR command
tree block diagram 900. AND/OR command tree block dia
gram 900 shows an example of an AND/OR tree with several
levels of hierarchy. Logical operator nodes (ANDs and ORs)
at different levels within the hierarchy of AND/OR command
tree block diagram 900 serve different functions. Some logi
cal operator nodes such as AND node 910 and OR node 920
serve as containers for containing commands and data. Some
logical operator nodes such as AND node 930 and AND node
940 serve as command nodes for expressing commands.
Some logical operator nodes such as AND node 950 and OR
node 960 serve as data nodes for expressing data. The EOL1
node 970 represents a terminal node associated with com
mand AND node 930. The EOL2 node 980 represents a ter
minal node associated with command AND node 940. The
function of each particular node in an AND/OR command
tree is taken into account when the command data model is
generated by command data model generator 810.

TABLE 10

Example AND/OR Command Tree Structures Represented in Modified
Table 10 - Example AND/OR Command Tree Structures

Represented in Modified EBNF

CommendTree : (Container-AND-node | Command-AND
nodo) +
: (Token-node* Container-OR-node)
: (Commend-AND-node) +
: (Token-node || Data-AND-node I Data-OR
node) * EOL-node
-> (Container-AND-node) *
: (Token-node || Data-OR-node) +
: (Token-node || Data-AND-node) +

Container-AND-node
Container-OR-node
Command-AND-node

EOL-node
Data-AND-node
Data-OR-node

0081. The structure of the AND/OR command tree, which
is the source for the command data model can be described
using modified Extended Backus-Naur-Form (EBNF) nota
tion with “:” denoting containment and “->' denoting refer
ence. Table 10 shows Examples of various AND/OR com
mand tree structures such as Container-AND-nodes and
Data-AND-nodes represented with this modified EBNF nota
tion.
I0082. The structure of the generated command data model
(and the structured data model if one is generated) can also be
described using a modified EBNF notation with “:” denoting
containment and '-' denoting reference. Table 11 shows
examples of command data model structures represented in
modified EBNF.

US 2011/013 1555 A1

TABLE 11

Jun. 2, 2011

Example Command Data Model Structures Represented in Modified EBNF

1 . Component
2. ContainerObjectClass
3. CommandAttribute

: (ContainerObjectClass) +

ComplexTypedCommandAttribute)
- Command DataObjectClass
- ContainerObjectClass

4. ComplexTypedCommandAttribute
ContainerAttribute
Command DataObjectClass 2.

ChoiceCommand DataObjectClass)
Command DataObjectClass : (Data Attribute) +
DataAttribute
ComplexTypedDataAttribute
DataObjcetClass
DataObectClass

- DataObjectClass

: (DataAttribute) +

0083. In Table 11, item 1 shows that Components consist
of one or more ContainerObjectClass data types. Container
Attributes are simply attributes whose data type is another
ContainerObjectClass. Item 2 of Table 11 shows that Con
tainerObjectClass data types, which are like directories, can
contain CommandAttributes or ContainerAttributes. Item 3
of Table 11 shows that CommandAttributes can contain a
SimpleCommandAttributes or ComplexCommandAt
tributes. A CommandAttribute is an attribute that represents
one complete CLI command. A SimpleCommandAttribute is
one that has a simple value Such as a basic data type like
“number or “Boolean.” A complex data type means that the
data type is another ObjectClass.
0084. Line 4 of Table 11 shows that ComplexCommand
Type references another DataObjectClass at the command
level. Line 5 of Table 11 is similar to Line 2, and shows that a
ContainerAttribute can reference a ContainerObjectClass.
Line 6 of Table 11 shows that a CommandDataObjectClass
can contain, either a SequenceCommandDataObjectClass or
a Choice(CommandDataObjectClass. Line 7 of Table 11
shows that a CommandDataObjectClass contains one or
more CommandAttributes. Line 8 of Table 11 shows that a
DataAttribute contains a SimpleTypedDataAttribute or a
ComplexTypedDataAttribute. Line 9 of Table 11 shows that a
ComplexTypedDataAttribute references a DataObjectClass.
Line 10 of Table 11 shows that a DataObjectClass contains a
SequenceDataObjectClass or a ChoiceDataObjectClass.
Line 11 of Table 11 shows that a DataObjectClass contains
one or more DataAttributes.

I0085 Command data model generator 810, of FIG. 8,
follows a selected set of transformation rules to generate a
command data model from AND/OR command tree 206. The
resulting command data model is generated by expressing
AND/OR command tree 206 as a command tree written in a
notation using elements of EBNF (Extended Backus-Naur
Form). This EBNF command tree represents an unsimplified
command data model that needs to be evaluated for possible
simplification and optionally for possible refinement before
the command data model enters its final form. The reference
point for model generation is the Command-AND-node (such
as node 930 of FIG.9), which contains an EOL node (such as
node 970 of FIG. 9) as its terminal element and represents a
distinct CLI command. Because CLI commands can be very
complex, some areas of AND/OR command trees can be
more complex than illustrated in FIG. 9.
I0086 Table 12 shows a basic set of generation rules used
to generate the command data model from the AND/OR

: (CommandAttribute | ContainerAttribute) +
: (SimpleTypedCommandAttribute |

:= (SequenceCommand DataObjectClass |

:= (SimpleTyped DataAttribute | ComplexTyped DataAttribute)

:= (SequenceDataObjectClass | ChoiceDataObjectClass)

command tree. These rules are used in a majority of cases, but
occasionally rare exceptions will require special handling.
For instance, a Command-AND-node is derived with the
assumption that it only contains a command that does one
function. A special case would be a Command-AND-node
that contained several functions. This special case requires
the Command-AND-node to be broken down at an inner node
rather than at the Command-AND-node level.

TABLE 12

Basic Command Data Model Generation Rules
Table 12 - Basic Command Data Model Generation Rules

1. Command-AND-node = (SimpleTypedCommandAttribute |
ComplexTypedCommandAttribute -
CommandObjectClass)
(SimpleTypedCommandAttribute |
ComplexTypedCommandAttribute -

2. Data-AND-node =

SequenceDataObjectClass)
ComplexTypedDataAttribute -
ChoiceDataObjectClass
ContainerObjectClass

3. Data-OR-node =

4. Container-AND-node =

0087 Line 1 of Table 12 shows that a Command-AND
node translates either to a SimpleTypedCommandAttribute
or to a ComplexTypedCommandAttribute that references a
CommandObjectClass. This corresponds to a CLI that is
really simple, Such as a keyword followed by a single param
eter. Line 2 of Table 12 shows that a Data-AND-node trans
lates to either a SimpleTypedCommandAttribute or a Com
plexTypedCommandAttribute that references a
SequenceDataObjectClass. A sequence exists because of the
AND. Line 3 of Table 12 shows that a Data-OR-node trans
lates to a ComplexTypedDataAttribute referencing a Coice
DataObjectClass. A choice exists because of the OR. Line 4
of Table 12 shows that a Container-AND-node translates to a
ContainerObjectClass.
I0088 Table 13 shows an example AND/OR command tree
for the “mpls label command. Adding more commands
would make the AND/OR command tree much larger. The
AND/OR command tree represented in Table 13 is the start
ing point for the follow on examples shown in Table 14, Table
15, and Table 17.

US 2011/013 1555 A1

Container-AND-node

keyword(mpls)
keyword (label')
Container-OR-node {

Command-AND-node

TABLE 13

AND OR Command Tree

keyword (range’)
number(<min)
number(<max)
Data-AND-node

keyword ('static)
number (<static min)
number (<static max)

eol (<mpls range function>)
Command-AND-node

keywor
options.(

(protocol)
tolp, ldp')

eol (<mpls protocol function>)

Command-AND-node

keywor
number(<holddtown time)
number(<interval)
eol (<mpls holddown function>)

(holddown)

Command-AND-node

keywor
Data-OR-node

Da

(

(explicit-null)

a-AND-node

keyword (for)
string(<cfg. mpls adv enull for acD)
Data-AND node

10
Jun. 2, 2011

TABLE 13-continued

AND OR Command Tree

to
string(<cfg. mpls adv enull for to acil)

Data-AND-node
(

to
string(<cfg. mpls adv enull to acD)
Data-AND-mode

for
string(<cfg. mpls adv enull to for acl)

)

eol (<ldp expnull advert function>)

I0089 Table 14 shows an example of an unsimplified com
mand data model. Command data model generator 810 (FIG.
8) uses a Java/C++ like syntax and EBNF like notation com
bined with model generation terminologies and rules similar
to those introduced in Table 12, to generate the example
unsimplified command data model, shown in Table 14, from
the “mpls label AND/OR command tree in shown in Table
13. In one embodiment of the present invention, the unsim
plified command data model generated by command data
model generator 810 is output as an XML file. In another
embodiment, the unsimplified command data model gener
ated by command data model generator 810 is evaluated for
simplification and optionally for refinements. The command
data model shown in Table 14 can then be evaluated for
possible simplifications and optionally for user-specified
refinements.

TABLE 1.4

Example Unsimplified Command Data Model

Component mpls {
ConainerObjectClass in config impls commands {

ComplexTypedCommandAttribute mpls label range;
Command DataObjectClass mpls lable range {

uint2 min;
uint2 maX;
ComplexTypedDataAttribute

in cfg impls label ringe static cfg impls label ringe static max;
SequencDataObjectClass

in cfg impls label ringe static cfg impls label ringe static max
boolean static;
uint2 min;
uint2 maX;

SimpleTypedCommandAttributempls label protocol enum {
tolp=TAG PTCL TDP
ldp=TAG PTCL LDP

bonperspeculative mpls label holddown;
Command DataObjectClass mpls label holddown {

uint2 time;
uint2 intv:

ComplexTypedCommandAttribute mpls dip explicit-null:
Choi ceCommandDataObjectClass mpls dip explicit-null {

US 2011/013 1555 A1

TABLE 14-continued

Example Unsimplified Command Data Model

ComplexTypedDataAtttibute for:
SequenceDataObjectClass for

string for acl:
ComplexTypedDataAttribute

in cfg impls adv enull for to cfg impls adv enull for to acil;
SequenceDataObjectClass

in cfg impls adv enull for to cfg impls adv enull for to acil
String to:

ComplexTypedDataAttribute
SequenceDataObjectClass

string to acil;
ComplexTypedDataAttribute

in cfg impls adv enull to for cfg impls adv enull to for acil
String for:

to:
to

0090 Command data model simplifier820 (FIG. 8) fol
lows selected simplification rules to simplify expressions and
flatten the hierarchy of the unsimplified command data model
generated by command data model generator 810. Simplifi
cation is done to create attributes that are not too deeply
nested. Each structure in the unsimplified model is analyzed
and, if applicable, a simplification or flattening rule is applied
selectively to the analyzed structure. Command data model
simplifier820 generates the simplified command data model
shown in Table 15 by simplifying the hierarchy under the
CommandDataObjectClass, shown in Table 14. In the
example shown in Table 14, the “mpls label range' and the

Component mpls
ContainerObjectClass in config mpls commands

11
Jun. 2, 2011

“mpls ldp explicit-null' object classes each have two hier
archies. In other embodiments of the present invention, using
more complex CLIs can lead to more hierarchies. The “mpls
ldp explicit-null example shows the difference in the unre
fined command data model of Table 14 as compared to the
simplified command data model of Table 15. In the example
model shown in Table 14, the ordering represented by “for”
and “to is not important to the model, and in fact the cases
“for” and “to have the same meaning. This allows for sim
plification in the transition between the unsimplified model
shown in Table 14 and the simplified command data model
shown in Table 15.

TABLE 1.5

Simplified Command Data Model

mpls label range;
mpls lable range {

ComplexTypedCommandAttribute
Command DataObjectClass

uint2 Inlin;
uint2 maX;
(uint32 static min:
(uint32 static max:
boolean static;

SimpleTypedCommandAttributempls lable protocol enum {
tolp=TAG PTCL TDP
ldp=TAG PTCL LDP

ComplexTypedCommandAttribute mpls label holddown;
Command DataObjectClass mpls label holddown {

uint32 time:
uint32 intv:

ComplexTypedCommandAttribute
SequenceCommand DataObjectClass

string m for ac for
string m to to acil

f*mpls lap explicit-null */

mpls dip explicit-null:
mpls dip explicit-null

US 2011/013 1555 A1

0091 During simplification, command data model simpli
fier820 invokes simplification logic and rules to remove any
attributes that are duplicated or unnecessary based on their
mapping to the data structure. While simplifying, flattening of
“CommandDataObjectClass' to less than “n” levels (where
“n” represents a small number such as 1, 2, or 3) is also
accomplished. Simplification creates opportunities for flat
tening the model. The model as represented in Table 15 is a
flattened and simplified representation of the model as repre
sented in Table 14. It is important during simplifying to flatten
all attributes that map to the same command state block
member (which is the parse node containing the action to be
performed). Table 16 shows a short list of example simplifi
cation and flattening rules used by command data model
simplifier 820 to simplify an unsimplified command data
model. Table 16 is not an inclusive list; other simplification
and flattening rules not listed in Table 16 can also be imple
mented.

TABLE 16

Examples of Simplification Instructions

1. Remove duplications: Duplicate attributes with the same name and
same type are removed
2. Collapse nested unions: nested unions from (A + (B+C)) command
tree pattern will not happen because of command tree simplification,
however there Are other patterns that can lead to nested unions.
These nested unions must be collapsed if the members all point to the
same command state block data.
3. Merge integers: Integers that go to the same command state block
data structure that contains parse information for use in the
components action function are merged. Range constrains of the newly
merged integer are taken from the minimum of the lower value and the
maximum of the upper valve.
4. Flatten single child object or union: objects and unions that have
only a single child (as the result of a previous simplification) are
flattened.

12
Jun. 2, 2011

0092. In one embodiment of the present invention, an out
put from command data model simplifier820 is a command
data model. In one embodiment, an output from command
data model simplifier is 820 is a command data model
expressed in XML. In one embodiment, an output from the
command data model simplifier 820 is a structured data
model. In one embodiment, an output of command data
model simplifier820 is used as a metadata generator. In one
embodiment, the output of the command data model simpli
fier 820 is sent on to command data model refiner 830 for
automated and user-specified refinements.
0093. In one embodiment of the present invention, an
optional command data model refiner 830 (FIG. 8) is used to
refine the simplified command data model. Names of struc
tures and objects are generated automatically during earlier
portions of the command data model creation process, and are
often given temporary names. Because of this, it is often
useful for a user to customize the command data model for a
particular system or application that it is being used with. The
abstract command data model is made more specific by
allowing user-specified renaming of objects and structures
with names meaningful to the user. Command data model
refiner 830 allows structures and objects to be renamed or
refined. In one embodiment, some of the refinements are
automated after the userspecifies instructions on how to name
or describe structures and objects. In one embodiment, some
refinements are user-specified using an XML refinement file
that is edited manually to rename objects and structures and to
perform manual simplifications. Command data model
refiner 830 reads the refinement file, and the command data
model is then regenerated with the user-specified refine
mentS.

0094. An example of a user-specified refinement is shown
in Table 17. Note how the “n config. mpls commands' con
tainer object class and the two attributes under “mpls Idp
explicit-null have been renamed in the refined model shown
in Table 17, as compared to the simplified model shown in
Table 15.

TABLE 17

Example Refined Command Data Model

Component mpls {
ContainerObjectClass mpls global {

ComplexTypedCommandAttribute mpls label range;
Command DataObjectClass mpls lable range {

uint2 min;
uint2 maX;
(uint32 static min:
(uint32 static max:
boolean static;

SimpleTypedCommandAttributempls lable protocol enum {

ComplexTypedCommandAttribute

tolp=TAG PTCL TDP
ldp=TAG PTCL LDP

mpls label holddown;
Command DataObjectClass mpls label holddown {

uint2 time;
uint2 intv:

ComplexTypedCommandAttribute
ChoiceCommand DataObjectClass

string for
string to

f*mpls dip explicit-null */

mpls dip explicit-null;
mpls dip explicit-null

US 2011/013 1555 A1

0095 Other user-specified refinements such as manual
simplifications can be specified and the preformed via the
command data model refiner 830. In one embodiment, an
output from command data model refiner 830 is a command
data model. In one embodiment, an output from command
data model refiner 830 is a command data model expressed in
XML. In one embodiment, an output from the command data
model refiner 830 is a structured data model. In one embodi
ment, an output of command data model refiner 830 is used as
a metadata generator.
0096 FIG. 10 is a flowchart 1000 of a method for trans
forming an AND/OR command tree into a command data
model according to one embodiment of the present invention.
Although specific steps are disclosed in flowchart 1000, such
steps are exemplary. That is, embodiments of the present
invention are well Suited to performing various other (addi
tional) steps or variations of the steps recited in flowchart
1000. It is appreciated that the steps in flowchart 1000 may be
performed in an order different than presented, and that not all
of the steps in flowchart 1000 may be performed. In one
embodiment, flowchart 1000 is implemented as computer
readable program code stored in a memory unit of computer
system 112 and executed by processor 101 (FIG. 1).
0097. In 1010 of FIG. 1000, in one embodiment, a parse
graph is generated from a selected set of CLI (command line
interface) instructions.
0098. In 1020 of FIG.1000, in one embodiment, an AND/
OR command tree is generated from a parse graph of CLI
instructions.

0099. In 1030 of FIG.1000, in one embodiment, an unsim
plified command data model is generated from an AND/OR
command tree by expressing the AND/OR command tree as a
command tree written in a notation using elements of EBNF
(Extended Backus-Naur-Form) notation. The generation is
done by following a set of transformation rules to transform
structures in the AND/OR command tree into structures in the
unsimplified command data model.
0100. In 1040 of FIG. 1000, in one embodiment, selected
structures within the unsimplified command data model are
simplified to create a simplified command data model.
Selected simplification rules are applied to selected structures
that fit the case expressed by the selected rule. As simplifica
tion takes place, flattening of the hierarchy of the command
data model is also performed. Flattening is also done accord
ing to selected simplification rules. Flattening is done to
remove duplicate attributes and to remove or merge attributes
that are mapped to perform the same action.
0101. In 1050 of FIG. 1000, in one embodiment, the sim
plified command data model is refined by allowing renaming
of selected elements of the command data model to create a
refined command data model. In one embodiment, some of
the refining is automated. In one embodiment, some of the
refinement is manually performed. In one embodiment, user
specified renaming of elements and structures is allowed so
that the command data model can be more customized for use
with a particular network, computer system, or application. In
one embodiment, user-specified manual simplification of
objects or structures in the command data model is allowed.
In one embodiment, user-specified refinements are per
formed in an XML (eXtensible markup language) file, and the
command data model is then regenerated with the refine
ments specified in this XML file.
0102. In 1060 of FIG. 1000, in one embodiment, the
refined command data model is exported as an XML file. In

Jun. 2, 2011

other embodiments, the command data model can be
exported in other file formats. In one embodiment the refined
command data model is exported as a structured data model.
In one embodiment, the command data model is exported for
use in metadata generation.
0103) In summary, embodiments in accordance with the
present invention provide methods and systems for extracting
information contained in C files, C chain files, C macros and
C header files and for transforming that information into an
externally usable parse graph in the form of an XML docu
ment. Significantly, this can be accomplished without a spe
cialized C-language compiler; instead, the C-language con
structs are run through a preprocessor (e.g., preprocessor 304
of FIG. 3) and the results are tagged with XML script. The
extracted parse graph can be transformed into an AND/OR
command tree in the form of an XML document. The
extracted parse graph, AND/OR command tree, and related
information can be used, for example, in external manage
ment systems, for validation of CLI syntax before product
delivery, for processing of CLI inputs for discovery, in devel
opment and test processes, for transformation to still other
formats, for creating automated documentation from code,
for creating models of command data, for metadata genera
tion, and for creation of models of object data.
0104 Referring now to FIG. 11, an external programmatic
interface (EPI) is depicted, in accordance with one embodi
ment of the present invention. In one embodiment, EPI 1100
could exist as a software program running on computer sys
tem 112 (FIG. 1). In this embodiment, EPI 1100 consists of
four modules: object to CLI translation module 1102, object
metadata module 1104, CLI metadata module 1106, and CLI
to object translation module 1108. EPI 1100 receives object
operation 1120, translates the operation into CLI command
1130, and passes the Command to IOS device 1110. In one
embodiment, IOS device 1110 is a router programmed to
understand and act on IOS CLI commands. Information that
leaves IOS device 1110 is returned to EPI 1100 as CLI infor
mation 1140. EPI 1100 translates CLI information 1140 into
Object information 1150, and returns Object information
1150 to the user.

0105. Object to CLI translation module 1102, in one
embodiment of the invention, translates object operation
1120 into CLI command 1130. The translation process is
described in greater detail below, with reference to FIG. 12.
0106 Object metadata module 1104, in one embodiment
of the invention, contains a description of the object model
used by Object to CLI translation module 1102 in translating
object operation 1120 into CLI command 1130. In one
embodiment, object metadata module 1104 contains com
mand data model 208, described above.
0.107 CLI metadata module 1106, in one embodiment of
the invention, contains a description of the structure of the
CLI syntax, and is used by CLI to object translation module
1108 in translating CLI information 1140 into Object infor
mation 1150. In one embodiment, CLI metadata module 1106
contains parse graph 204, described above. In another
embodiment, CLI metadata module 1106 contains AND/OR.
command tree 206, described above.
0.108 CLI to object translation module 1108, in one
embodiment of the invention, translates CLI information
1140 into Object information 1150. The translation process is
described in greater detail below, with reference to FIG. 13.

US 2011/013 1555 A1

0109 Table 18, presented below, describes a number of
terms using Extended Backus-Naur-Form (EBNF). These
terms are useful for describing the invention in greater depth.
TABLE-US-TABLE 18

TABLE 18

Object Class => set of nodes associated with CLI keyword
Command Attribute => one EOL CLI node

Non-boolean Attribute => set of nodes associated with CLI
parameter
Boolean Attribute => one node associated with CLI keyboard
enum => one keyboard node for each enum item

0110 Referring now to FIG. 12, a flowchart 1200 of a
method for translating object operations into CLI commands
is depicted, in accordance with one embodiment of the inven
tion. Although specific steps are disclosed in flowchart 1200,
Such steps are exemplary. That is, embodiments of the present
invention are well Suited to performing various other (addi
tional) steps or variations of the steps recited in flowchart
1200. It is appreciated that the steps in flowchart 1200 may be
performed in an order different than presented, and that not all
of the steps in flowchart 1200 may be performed.
0111. In step 1210 offlowchart 1200, in one embodiment,
input data is received by EPI 1100, and passed to Object to
CLI translation module 1102. In this embodiment, the input
data, object operation 1120, originates from a user. A user
need not be an actual person; object operation 1120 may
originate from an outside program, which would be consid
ered a “user” as well. In this embodiment, object operation
1120 is formatted in accordance with an object model, such as
command data model 208. An example of input so formatted
appears below, in table 19.

TABLE 19

Table 19

<vrf operation="create'>
<instance id.wpn14.</instance id
<vpin rd-2.2.2.2:22</vpn rd
<vpnide-33:33</vpnids
<route target-7.7.7.7:77</route target

<Avrf>

0112. In step 1220 of flowchart 1200, in one embodiment,
for each object operation 1120, Object to CLI translation
module 1102 accesses Object metadata module 1104 to group
the request based upon the Command Attribute associated
with one CLI command. Object to CLI translation module
1102 then collects the CLI nodes associated with each Com

mand Attribute and its Object Class; this set of nodes is
referred to as the Command Node Set.

0113. In step 1230 offlowchart 1200, in one embodiment,
for each Command Attribute, Object to CLI translation mod
ule 1102 accesses CLI metadata module 1106 to find the EOL

node in CLI metadata module 1106. Object to CLI translation
module 1102 then recursively applies the rules set forth in
table 20, below, as it traverses the data stored in CLI metadata
module 1106, starting from the EOL node, trying to connect
the nodes in the Command Node Set.

Jun. 2, 2011

TABLE 20

tryConnect

If the visited CLI node is in the Command Node Set, stop the
recursion; connection is found.
If the visited CLI node is the root, stop the recursion; CLI is
complete.
Else, for each transition up from the CLI node, recursively call
tryConnnect.

Keep track of the visited nodes.
If connection is found, translate the visited nodes into CLI:

Keyword node into keyword.
parameter node into the value Supplied in the request.

0114. In step 1240 of flowchart 1200, in one embodiment,
if object operation 1120 was a delete request, the prefix nor
mally applied to a translated CLI command is omitted. After
object operation 1120 has passed through Object to CLI
translation module 1102, it has been translated CLI command
1130. The example in table 19, above, would be translated
into the CLI command appearing in table 21, below.

TABLE 21

ip wrf vpn14
rd 2.2.2.2:22
vpnid 33:33

route-target 7.7.7.7:77

0115 Referring now to FIG. 13, a flowchart 1300 of a
method for translating CLI information into object informa
tion is depicted, in accordance with one embodiment of the
invention. Although specific steps are disclosed in flowchart
1300, such steps are exemplary. That is, embodiments of the
present invention are well Suited to performing various other
(additional) steps or variations of the steps recited in flow
chart 1300. It is appreciated that the steps in flowchart 1300
may be performed in an order different than presented, and
that not all of the steps in flowchart 1300 may be performed.
0116. In step 1310 of flowchart 1300, in one embodiment,
input data is received by EPI 1100, and passed to CLI to
object translation module 1108. In this embodiment, the input
data, CLI information 1140, originates from an IOS device
1110, such as a router. CLI information 1140 is formatted in
accordance with the rules of the CLI syntax.
0117. In step 1320 of flowchart 1300, in one embodiment,
if CLI information 1140 is a “no command, CLI to object
translation module 1108 returns an Object Delete request. A
'no' command is a command to delete a configuration or to
set configuration to nil.
0118. In step 1330 of flowchart 1300, in one embodiment,
CLI information 1140 is parsed. Also in this step, CLI meta
data module 1106 is accessed, and the data contained in the
CLI metadata structure is traversed. The nodes visited while
parsing CLI information 1140 are placed in a list and are
matched against the object and attribute definitions in the
object model stored in Object metadata module 1104.
0119. In step 1340 of flowchart 1300, in one embodiment,
the parameter portion of the prescribed output is filled with
the attribute value from CLI information 1140. At the comple
tion of this step, CLI information 1140 has been translated
into Object information 1150.
0.120. With reference now to FIG. 14, a flowchart 1400 of
a method of receiving and translating data within an external
programmatic interface (EPI) is presented, in accordance

US 2011/013 1555 A1

with one embodiment of the invention. Although specific
steps are disclosed in flowchart 1400, such steps are exem
plary. That is, embodiments of the present invention are well
Suited to performing various other (additional) steps or varia
tions of the steps recited in flowchart 1400. It is appreciated
that the steps in flowchart 1400 may be performed in an order
different than presented, and that not all of the steps in flow
chart 1400 may be performed.
0121. In step 1410 of flowchart 1400, in one embodiment,
input data is received at EPI 1100. In one embodiment, this
input may originate from a user, and be passed to EPI 1100 as
object operation 1120. In another embodiment, the input may
originate from IOS Device 1110, and be passed to EPI 1100 as
CLI information 1140. This input data can take the form of
CLI statements. Alternatively, the input can be formatted in
accordance with another language syntax; one embodiment
calls for input to be formatted in accordance with a specific
XML schema of the CLI syntax.
0122. In step 1420 of flowchart 1400, in one embodiment,
the input received in step 1410 is traversed. During traversal,
the source of the data can be ascertained (e.g. whether the
input originated from a user or from IOS device 1120). This
determination affects what operations are performed on the
input, as described above with reference to FIGS. 12 and 13.
(0123. In step 1430 offlowchart 1400, in one embodiment,
when the input received in step 1410 originated from a user,
the input is translated into CLI statements. According to one
embodiment, the input was originally formatted according to
an XML schema of the CLI rules and behaviors. In other
embodiments, the input might be received in a different lan
guage and translated into CLI. Greater explanation of this
transformative behavior is explained above, with reference to
FIG. 12.

(0.124. In step 1435 offlowchart 1400, in one embodiment,
when the input received in step 1410 originated from IOS
device 1110, the input is translated from CLI statements into
a different format. According to one embodiment, the CLI
statements would be translated into corresponding XML
statements, in accordance with an XML schema of the CLI
rules and behaviors. In other embodiments, the input would
be translated into other desirable output formats. Greater
explanation of this transformative behavior is explained
above, with reference to FIG. 13.
(0.125. In step 1440 offlowchart 1400, in one embodiment,
the output of steps 1430 or 1435 is passed along. In the case
of step 1430, the transformed input is passed to IOS device
1110 as CLI commands 1130 for further action, now that it is
in CLI format. In the case of step 1435, the transformed input
leaves EPI 1100 as object information 1150.
0126 The foregoing descriptions of specific embodiments
of the present invention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms dis
closed, and obviously many modifications and variations are
possible in light of the above teaching. The embodiments
were chosen and described in order to best explain the prin
ciples of the invention and its practical application, to thereby
enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as are Suited
to the particular use contemplated. It is intended that the
scope of the invention be defined by the claims appended
hereto and their equivalents.

Jun. 2, 2011

1. (canceled)
2. A method comprising:
receiving an input command requesting an operation be

performed by a routing system;
translating the input command from an extensible markup

language (XML) format into a CLI command having a
CLI format based on a parse graph corresponding to a
CLI parser of the routing system, wherein the CLI parser
is configured to analyze CLI commands for proper CLI
syntax based on parser code that defines the proper CLI
Syntax for the CLI commands input to the CLI parser,
and wherein the parse graph is generated from the parser
code extracted from the CLI parser; and

transmitting the CLI command to the routing system for
execution.

3. The method of claim 2, wherein the translating further
comprises:

identifying an end-of-line node for each command
attribute associated with the CLI command based on the
parse graph; and

recursively traversing the parse graph, starting with the
identified end-of-line node and continuing to a root
node, to connect CLI nodes, wherein the CLI command
is generated based on the connection of the CLI nodes.

4. The method of claim 2, further comprising:
receiving an output message in a CLI format from the

routing system responsive to the transmitted CLI com
mand;

translating the output message from the CLI format into the
XML format having the CLI syntax; and

transmitting the output message in the XML format having
the CLI syntax to a remote device external from the
routing system.

5. The method of claim 4, wherein the translating of the
output message further comprises:

parsing the output message to identify at least one CLI
token;

translating each CLI token of the output message into a
corresponding XML value according to a stored map
ping of CLI tokens-to-XML values; and

generating the output message in the XML format with the
XML values.

6. The method of claim 4, further comprising:
determining the output message received from the routing

system is a CLI command having a CLI format;
traversing the parse graph to locate one or more nodes that

correspond to the CLI command;
accessing an XML data model to identify objector attribute

definitions that corresponds to located nodes; and
constructing a translated output message from the corre

sponding objects or attributes.
7. The method of claim 2, wherein the input command

comprises XML data formatted in accordance with an XML
schema of CLI rules and behaviors.

8. An apparatus including a computer-readable storage
device storing instructions configured to cause a processing
system to perform operations comprising:

extracting parser code of a command line interface (CLI)
parser, wherein the parser code is configured to define a
proper CLI syntax for CLI commands input to a CLI
prompt:

converting the parser code into a parse graph having an
Extensible Markup Language (XML) format; and

US 2011/013 1555 A1

exporting the parse graph to an external programmable
interface, wherein the external programmable interface
is configured to translate input commands from an
extensible markup language (XML) format into a CLI
command having a CLI format based on the parse graph.

9. The apparatus of claim 8, wherein the instructions con
figured to cause the processing system to perform operations
further comprising:

encapsulating parse nodes of the parser with XML tags;
and

Stitching together the encapsulated parse nodes of the
parser code to generate the parse graph.

10. The apparatus of claim 8, wherein the instructions
configured to cause the processing system to perform opera
tions further comprising:

extracting information explicitly within macroinstructions
and other information pointed to in the parser code by
the macroinstructions; and

encapsulating the information pointed to in the parser code
by the macroinstructions with XML tags for inclusion in
the parse graph.

11. The apparatus of claim 8, wherein the parser code
includes macroinstructions that are hard-coded into the parser
code of the CLI parser.

12. The apparatus of claim 11, wherein the instructions
configured to cause the processing system to perform opera
tions further comprising identifying elements associated with
the macroinstructions that are pointed to but not conspicu
ously named in the macroinstructions.

13. The apparatus of claim 8, wherein the instructions
configured to cause the processing system to perform opera
tions further comprising:

generating an AND/OR command tree structure from the
parse graph; and

outputting an exportable representation of the AND/OR
command structure from the processing system.

14. The apparatus of claim 13, wherein the instructions
configured to cause the processing system to perform opera
tions further comprising:

hiding selected information within parse nodes of the parse
graph to create condensed parse nodes;

Jun. 2, 2011

simplifying selected complex patterns in the parse graph to
create simplified parse graph patterns;

creating branches on the AND/OR command tree structure
from the parse nodes, the condensed parse nodes, and
the simplified parse graph patterns.

15. The apparatus of claim 13, wherein the instructions
configured to cause the processing system to perform opera
tions further comprising:

generating a command data model from the AND/OR com
mand tree structure; and

simplifying selected structures within the command data
model according to one or more simplification rules,
wherein the simplifying creates a simplified command
data model that is available for use by an external man
agement system in at least one of device validation or
testing processes.

16. The apparatus of claim 15, wherein the command data
model is the AND/OR command tree structure is expressed
using elements of EBNF (Extended Backus-Naur-Form)
notation.

17. An apparatus comprising:
a processing system to translate an input command from an

extensible markup language (XML) format into a CLI
command having a CLI format based on a parse graph
generated from the parser code extracted from a CLI
parser, wherein the CLI parser is configured to analyze
CLI commands for proper CLI Syntax based on parser
code that defines the proper CLI syntax for the CLI
commands input to the CLI parser, and wherein the
processing system is configured to transmit the CLI
command to the CLI parser.

18. The apparatus of claim 17, wherein the parser code
includes macroinstructions that are hard-coded into the parser
code of the CLI parser.

19. The apparatus of claim 17, wherein the parser code is
configured to define a proper CLI Syntax for CLI commands
input to a CLI prompt.

20. The apparatus of claim 17, wherein the parse graph is in
an Extensible Markup Language (XML) format.

21. The apparatus of claim 17, wherein parse graph gener
ated from the parser code extracted from a CLI parser.

c c c c c

