(12)公開特許公報(A)

(11)特許出願公開番号

特開2015-131097

(P2015-131097A)

(43) 公開日 平成27年7月23日 (2015.7.23)

(51) Int.Cl.			FΙ		テーマコード(参考)
A61B	8/08	(2006.01)	A 6 1 B	8/08	4 C 6 O 1
A 6 1 B	8/13	(2006.01)	A 6 1 B	8/13	

審査請求 未請求 請求項の数 22 OL (全 47 頁)

 (21)出願番号 (22)出願日 (31)優先権主張番号 (32)優先日 (33)優先権主張国 	特願2014-242206 (P2014-242206) 平成26年11月28日 (2014.11.28) 特願2013-258666 (P2013-258666) 平成25年12月13日 (2013.12.13) 日本国(JP)	 (71)出願人 (71)出願人 (74)代理人 (72)発明者 (72)発明者 	000003078 株式会社東芝 東京都港区芝浦一丁目1番1号 594164542 東芝メディカルシステムズ株式会社 栃木県大田原市下石上1385番地 100089118 弁理士 酒井 宏明 渡辺 正毅 栃木県大田原市下石上1385番地 メディカルシステムズ株式会社内 金山 侑子 栃木県大田原市下石上1385番地	東東
			メディカルシステムス株式会社内 最終頁に編	売く

(54) 【発明の名称】超音波診断装置、画像処理装置及び画像処理方法

(57)【要約】 (修正有)

【課題】生体組織の硬さの信頼性を超音波画像上に表す ことができる超音波診断装置の提供。

【解決手段】超音波診断装置10の送信部110は、音響放射力に基づいて生体組織に変位を発生させる変位発 生用超音波を超音波プローブ101から送信させ、変位 発生用超音波に基づいて発生する所定の走査領域内の生 体組織の変位を観測する観測用超音波を超音波プローブ 101から送信させる。受信部120は、超音波プロー ブ101で受信された反射波に基づいて、反射波データ を生成する。画像生成部140は、反射波データに基づ いて、走査領域内の複数位置それぞれにおける変位を複 数の時相で算出し、算出された変位が略最大となる時相 を複数位置それぞれで決定し、複数位置のうち決定され た時相が略同一の位置同士を表す画像データを生成する。 表示制御部173は、画像データに基づく画像を、走 査領域を含む領域に対応する医用画像に重畳表示させる

【選択図】図1

(19) 日本国特許庁(JP)

10

30

40

【特許請求の範囲】

【請求項1】

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブから送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の 変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、

前 記 超 音 波 プ ロ ー ブ で 受 信 さ れ た 反 射 波 に 基 づ い て 、 反 射 波 デ ー タ を 生 成 す る 受 信 部 と

前記反射波データに基づいて、前記走査領域内の複数位置それぞれにおける変位を複数の時相で算出し、算出された変位が略最大となる時相を前記複数位置それぞれで決定し、前記複数位置のうち決定された時相が略同一の位置同士を表す画像データを生成する画像 生成部と、

前記画像データに基づく画像を、前記走査領域を含む領域に対応する医用画像に重畳表示させる表示制御部と、

を備える、超音波診断装置。

【請求項2】

前記画像生成部は、離散的な複数時相に対応する前記画像データを生成する、請求項1 に記載の超音波診断装置。

【請求項3】

前記画像データに含まれる位置ごとに、当該位置を含む所定領域内の各位置の前記決定 された時相の分散値、及び、当該分散値と前記変位の大きさとに基づく値のうち、少なく ²⁰ とも一方を算出する算出部を更に備え、

前記画像生成部は、更に、前記画像データに含まれる各位置に、当該位置の前記分散値 又は前記値に応じた画素値を割り当てる、請求項1又は2に記載の超音波診断装置。 【請求項4】

前記画像生成部は、更に、前記画像データに含まれる各位置に、当該位置のせん断波に 基づく生体組織の硬さの指標値、又は、当該位置における前記変位の大きさのうちのいず れかに応じた画素値を割り当てる、請求項1に記載の超音波診断装置。

【請求項5】

前記画像生成部は、それぞれ異なる複数の前記決定された時相ごとに前記画像データを 複数生成し、当該画像データごとに当該決定された時相に応じた画素値を割り当てる、請 求項1に記載の超音波診断装置。

【請求項6】

前記表示制御部は、それぞれ異なる複数の前記決定された時相ごとに前記画像データが 複数生成された場合に、当該決定された時相が早い順に、当該画像データをそれぞれ表示 させる、請求項5に記載の超音波診断装置。

【請求項7】

前記画像生成部は、更に、前記走査領域内の各位置のせん断波に基づく生体組織の硬さの指標値が略同一の位置同士を表す第2画像データを生成し、

前記表示制御部は、更に、前記第2画像データに基づく画像を前記医用画像上に表示させる、請求項1に記載の超音波診断装置。

【請求項8】

前記画像生成部は、更に、前記走査領域内の各位置の前記変位の大きさが略同一の位置同士を表す第3画像データを生成し、

前記表示制御部は、更に、前記第3画像データに基づく画像を前記医用画像上に表示させる、請求項1に記載の超音波診断装置。

【請求項9】

前記画像生成部は、更に、所定領域におけるせん断波の伝播速度で、前記せん断波が前記走査領域内の各位置に到達する到達時間を算出し、算出した到達時間が略同一の位置同 士を表す第4画像データを生成し、

前記表示制御部は、更に、前記第4画像データに基づく画像を前記医用画像上に表示さ 50

(2)

せる、請求項1に記載の超音波診断装置。

【請求項10】

前記走査領域内の各位置に対してBモードにおける信号強度に応じた画素値を割り当て た第5画像データ、前記走査領域内の各位置に対してせん断波に基づく生体組織の硬さの 指標値に応じた画素値を割り当てた第6画像データ、前記走査領域内の各位置に対して当 該位置における前記決定された時相に応じた画素値を割り当てた第7画像データ、前記走 査領域内の各位置に対して当該位置における前記変位の大きさに応じた画素値を割り当て た第8画像データ、及び、前記走査領域内の各位置に対して前記決定された時相の分散値 に応じた画素値を割り当てた第9画像データ、前記走査領域内の各位置に対して前記決定 された時相の分散値と前記変位の大きさとに基づく値に応じた画素値を割り当てた第10 画像データのうち、少なくとも一つの画像データに基づく画像を、前記医用画像として生 成する第2画像生成部を更に備える、請求項1に記載の超音波診断装置。 【請求項11】

前記第2画像生成部は、前記医用画像に含まれる各位置の画素値を、前記走査領域内の 各位置における前記指標値、前記決定された時相、前記変位の大きさ、前記分散値、及び 、前記値の各パラメータのうちいずれか一つのパラメータを用いて変更する、請求項10 に記載の超音波診断装置。

【請求項12】

前記表示制御部は、前記第5画像データ、前記第6画像データ、前記第7画像データ、 前記第8画像データ、前記第9画像データ、及び前記第10画像データのうち、少なくと も二つの画像データに基づく画像を並列表示させるとともに、並列表示させた画像データ のうち、少なくとも一つの画像データに基づく画像上に、前記画像生成部により生成され た画像データに基づく画像を重畳表示させる、請求項10に記載の超音波診断装置。 【請求項13】

前記表示制御部は、前記並列表示において、前記第6画像データに含まれる各位置の前 記決定された時相、前記変位の大きさ、前記分散値、及び、前記値の各パラメータのうち いずれか一つのパラメータが所定の条件に満たない場合に、当該位置の画像を非表示にす るとともに、当該並列表示の対象となる前記画像生成部により生成された画像データのう ち、当該位置に対応する画像を非表示にする、請求項12に記載の超音波診断装置。 【請求項14】

前記表示制御部は、関心領域内の各位置におけるせん断波に基づく生体組織の硬さの指標値、前記決定された時相、前記変位の大きさ、前記決定された時相の分散値、及び当該 分散値と前記変位の大きさとに基づく値のうち少なくとも一つのパラメータを評価し、評価結果を表示させる、請求項1に記載の超音波診断装置。

【請求項15】

反射波データに基づいて、走査領域内の複数位置それぞれにおける変位を複数の時相で 算出し、算出された変位が略最大となる時相を前記複数位置それぞれで決定し、前記複数 位置のうち決定された時相が略同一の位置同士を表す画像データを生成する画像生成部と

前記画像データに基づく画像を、前記走査領域を含む領域に対応する医用画像に重畳表 ⁴⁰ 示させる表示制御部と

を備える、画像処理装置。

【請求項16】

反射波データに基づいて、走査領域内の複数位置それぞれにおける変位を複数の時相で 算出し、算出された変位が略最大となる時相を前記複数位置それぞれで決定し、前記複数 位置のうち決定された時相が略同一の位置同士を表す画像データを生成し、

前記画像データに基づく画像を、前記走査領域を含む領域に対応する医用画像に重畳表示させる

ことを含む、画像処理方法。

【請求項17】

50

10

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブ から送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の 変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、 前記超音波プローブで受信された反射波に基づいて、反射波データを生成する受信部と

前記走査領域内の各位置のせん断波に基づく生体組織の硬さの指標値が略同一の位置同 士を表す画像データを生成する画像生成部と、

前記画像データに基づく画像を、前記走査領域を含む領域に対応する医用画像に重畳表示させる表示制御部と

を備える、超音波診断装置。

【請求項18】

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブから送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の 変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、

前記超音波プローブで受信された反射波に基づいて、反射波データを生成する受信部と、

前記走査領域内の各位置の前記変位の大きさが略同一の位置同士を表す画像データを生成する画像生成部と、

前記画像データに基づく画像を、前記走査領域を含む領域に対応する医用画像に重畳表示させる表示制御部と

を備える、超音波診断装置。

【請求項19】

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブ から送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の 変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、

前記超音波プローブで受信された反射波に基づいて、反射波データを生成する受信部と 、

所定領域におけるせん断波の伝播速度で、前記せん断波が前記走査領域内の各位置に到 達する到達時間を算出し、算出した到達時間が略同一の位置同士を表す画像データを生成 する画像生成部と、

前記画像データに基づく画像を、前記走査領域を含む領域に対応する医用画像に重畳表示させる表示制御部と

を備える、超音波診断装置。

【請求項20】

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブから送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の 変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、

前記走査領域内の各位置に対して当該位置における前記変位の大きさに応じた画素値を 割り当てた画像データを生成する画像生成部と

を備えたことを特徴とする超音波診断装置。

【請求項21】

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブから送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の 変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、

前記走査領域内の各位置に対して到達時間の分散値に応じた画素値を割り当てた画像データを生成する画像生成部と

を備えたことを特徴とする超音波診断装置。

【請求項22】

音響放射力に基づいて生体組織に変位を発生させる変位発生用超音波を超音波プローブから送信させ、前記変位発生用超音波に基づいて発生する所定の走査領域内の生体組織の

20

10

変位を観測する観測用超音波を前記超音波プローブから送信させる送信部と、 前記超音波プローブで受信された反射波に基づいて、反射波データを生成する受信部と

前記反射波データに基づいて、超音波画像データを生成し、当該超音波画像データに含まれる各位置の画素値を、前記走査領域内の各位置におけるせん断波に基づく生体組織の 硬さの指標値、到達時間、前記変位の大きさ、及び、前記到達時間の分散値の各パラメー タのうちいずれか一つのパラメータを用いて変更する画像生成部と

を備えたことを特徴とする超音波診断装置。

【発明の詳細な説明】

【技術分野】

[0001]

10

20

本発明の実施形態は、超音波診断装置、画像処理装置及び画像処理方法に関する。

【背景技術】

[0002]

従来、生体組織の硬さを測定し、測定した硬さの分布を映像化するエラストグラフィー (Elastography)が知られている。エラストグラフィーは、例えば、肝硬変等、病変の進 行度に応じて生体組織の硬さが変化する疾患の診断に利用されている。エラストグラフィ ーにおいて、生体組織を変位させて硬さを評価する方法は、以下の2つに大別される。 【0003】

1つ目の方法は、超音波プローブ(probe)で体表から生体組織を圧迫・開放した際に 観測される走査断面内の各点の歪みの大きさから、相対的な硬さを可視化する方法である 。また、2つ目の方法は、体表から生体組織に音響放射力や機械的振動を与えてせん断波 (shear wave)による変位を発生させ、走査断面内の各点における変位を経時的に観測 することで、せん断波の伝播速度(propagation speed)を求めて、弾性率を求める方法 である。前者の方法では、歪みの局所的な大きさは、超音波プロープを手動で動かす大き さに依存し、周囲と比較した時に着目領域が相対的に硬いか軟らかいかという評価が行わ れる。これに対して、後者の方法では、着目領域の絶対的な弾性率を求めることができる

[0004]

ところで、被検体の体動によって変位が発生した場合、或いはせん断波が組織内で反射 30 ・屈折した場合等には、生体組織の硬さが正確に測定できないことがある。このような場 合、エラストグラフィーによって映像化された硬さ画像は、信頼性の低いものとなってし まう。

【先行技術文献】

【非特許文献】

[0005]

【非特許文献1】T. Deffieux, J.-L. Gennisson, J. Bercoff, and M. Tanter, 「On the effects of reflected waves in transient shear w ave elastography」, IEEE Trans. UFFC, vol ⁴⁰ .58, Issue 10, October 2011, pp.2032-2035 【発明の概要】

【発明が解決しようとする課題】

[0006]

本発明が解決しようとする課題は、生体組織の硬さの信頼性を超音波画像上に表すことができる超音波診断装置、画像処理装置及び画像処理方法を提供することである。

【課題を解決するための手段】

【 0 0 0 7 】

実施形態に係る超音波診断装置は、送信部と、受信部と、画像生成部と、表示制御部と を備える。送信部は、音響放射力に基づいて生体組織に変位を発生させる変位発生用超音 50

(5)

波を超音波プローブから送信させ、前記変位発生用超音波に基づいて発生する所定の走査 領域内の生体組織の変位を観測する観測用超音波を前記超音波プローブから送信させる。 受信部は、前記超音波プローブで受信された反射波に基づいて、反射波データを生成する 。画像生成部は、前記反射波データに基づいて、前記走査領域内の複数位置それぞれにお ける変位を複数の時相で算出し、算出された変位が略最大となる時相を前記複数位置それ ぞれで決定し、前記複数位置のうち決定された時相が略同一の位置同士を表す画像データ を生成する。表示制御部は、前記画像データに基づく画像を、前記走査領域を含む領域に 対応する医用画像に重畳表示させる。 【図面の簡単な説明】 10 【図1】図1は、第1の実施形態に係る超音波診断装置の構成例を示すブロック図である 【図2】図2は、第1の実施形態に係る硬さ画像データの一例を示す図である。 【図3】図3は、第1の実施形態に係る線画像生成部の処理を説明するための図である。 【図4】図4は、第1の実施形態に係る線画像生成部の処理を説明するための図である。 【 図 5 】 図 5 は、 第 1 の 実 施 形 態 に 係 る 表 示 制 御 部 に よ っ て 表 示 さ れ る 表 示 画 像 の 一 例 を 示す図である。 【図6】図6は、第1の実施形態に係る超音波診断装置の処理手順の一例を説明するため のフローチャートである。 20 【 図 7 】 図 7 は、 第 2 の 実 施 形 態 に 係 る 超 音 波 診 断 装 置 の 構 成 例 を 示 す ブロ ック 図 で あ る 【図8】図8は、第2の実施形態に係る算出部の処理を説明するための図である。 【図9】図9は、第2の実施形態に係る算出部の処理を説明するための図である。 【図10】図10は、第2の実施形態に係る線画像生成部の処理を説明するための図であ る。 【図11】図11は、第3の実施形態に係る線画像生成部の処理を説明するための図であ δ. 【図12】図12は、第3の実施形態に係る表示制御部によって表示される表示画像の一 例を示す図である。 30 【図13】図13は、第4の実施形態に係る線画像生成部の処理を説明するための図であ る。 【図14】図14は、第4の実施形態に係る表示制御部によって表示される表示画像の一 例を示す図である。 【図15】図15は、変位画像データについて説明するための図である。 【図16】図16は、明るさを変更する処理を説明するための図である。 【図17】図17は、非表示とする処理を説明するための図である。 【図18】図18は、各種パラメータの評価について説明するための図である。 【図 1 9 】図 1 9 は、プッシュパルスの送信位置及び観測方向の表示について説明するた めの図である。 40 【図20】図20は、並列表示について説明するための図である。 【図21】図21は、並列表示される場合にモニタに表示される表示画像の一例を示す図 である。 【発明を実施するための形態】 $\begin{bmatrix} 0 & 0 & 0 & 9 \end{bmatrix}$ 以下、図面を参照して、実施形態に係る超音波診断装置、画像処理装置及び画像処理方 法を説明する。 [0010](第1の実施形態) まず、第1の実施形態に係る超音波診断装置の構成について説明する。図1は、第1の 実施形態に係る超音波診断装置の構成例を示すブロック図である。図1に示すように、第 50

(6)

1の実施形態に係る超音波診断装置10は、装置本体100と、超音波プローブ101と 、入力装置102と、モニタ(monitor)103とを有する。 【0011】

超音波プローブ101は、複数の振動子(例えば、圧電振動子)を有し、これら複数の 振動子は、後述する装置本体100が有する送信部110から供給される駆動信号に基づ き超音波を発生する。また、超音波プローブ101が有する複数の振動子は、被検体Pか らの反射波を受信して電気信号に変換する。また、超音波プローブ101は、振動子に設 けられる整合層と、振動子から後方への超音波の伝播を防止するバッキング材等を有する

[0012]

超音波プローブ101から被検体Pに超音波が送信されると、送信された超音波は、被 検体Pの体内組織における音響インピーダンス(impedance)の不連続面で次々と反射さ れ、反射波信号として超音波プローブ101が有する複数の振動子にて受信される。受信 される反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの 差に依存する。なお、送信された超音波パルスが、移動している血流や心臓壁等の表面で 反射された場合の反射波信号は、ドプラ(Doppler)効果により、移動体の超音波送信方 向に対する速度成分に依存して、周波数偏移を受ける。

【0013】

なお、第1の実施形態は、図1に示す超音波プローブ101が、複数の圧電振動子が一 列で配置された1次元超音波プローブである場合や、一列に配置された複数の圧電振動子 が機械的に揺動される1次元超音波プローブである場合、複数の圧電振動子が格子状に2 次元で配置された2次元超音波プローブである場合のいずれであっても適用可能である。 【0014】

入力装置102は、マウス(mouse)、キーボード(keyboard)、ボタン(button)、 パネルスイッチ(panel switch)、タッチコマンドスクリーン(touch command scree n)、フットスイッチ(footswitch)、トラックボール(trackball)、ジョイスティック (joystick)等を有し、超音波診断装置10の操作者からの各種設定要求を受け付け、装 置本体100に対して受け付けた各種設定要求を転送する。

【0015】

モニタ103は、超音波診断装置10の操作者が入力装置102を用いて各種設定要求 30
 を入力するためのGUI(Graphical User Interface)を表示したり、装置本体100
 において生成された超音波画像データ等を表示したりする。

【0016】

装置本体100は、超音波プローブ101が受信した反射波信号に基づいて超音波画像 データを生成する装置であり、図1に示すように、送信部110と、受信部120と、信 号処理部130と、画像生成部140と、画像メモリ150と、内部記憶部160と、制 御部170とを有する。

【0017】

送信部110は、超音波送信における送信指向性を制御する。具体的には、送信部11 0は、レートパルサ(rate pulser)発生器、送信遅延部、送信パルサ等を有し、超音波 プローブ101に駆動信号を供給する。レートパルサ発生器は、所定のレート周波数(P RF:Pulse Repetition Frequency)で、送信超音波を形成するためのレートパルスを 繰り返し発生する。レートパルスは、送信遅延部を通ることで異なる送信遅延時間を有し た状態で送信パルサへ電圧を印加する。すなわち、送信遅延部は、超音波プローブ101 から発生される超音波をビーム状に集束して送信指向性を決定するために必要な振動子ご との送信遅延時間を、レートパルサ発生器が発生する各レートパルスに対し与える。送信 パルサは、かかるレートパルスに基づくタイミング(timing)で、超音波プローブ101 に駆動信号(駆動パルス)を印加する。送信方向或いは送信遅延時間は、後述する内部記 憶部160に記憶されており、送信部110は、内部記憶部160を参照して、送信指向 性を制御する。

10

20

【0018】

駆動パルスは、送信パルサからケーブル(cable)を介して超音波プローブ101内の 振動子まで伝達した後に、振動子において電気信号から機械的振動に変換される。この機 械的振動は、生体内部で超音波として送信される。振動子ごとに異なる送信遅延時間を持 った超音波は、収束されて、所定方向に伝搬していく。送信遅延部は、各レートパルスに 対し与える送信遅延時間を変化させることで、振動子面からの送信方向を任意に調整する 。送信部110は、超音波ビーム(beam)の送信に用いる振動子の数及び位置(送信開口)と、送信開口を構成する各振動子の位置に応じた送信遅延時間とを制御することで、送 信指向性を与える。例えば、送信部110の送信遅延回路は、送信遅延時間をパルサ(pu Iser)回路が発生する各レートパルスに対し与えることで、超音波送信の深さ方向におけ る集束点(送信フォーカス(focus))の位置を制御する。

なお、送信部110は、後述する制御部170の指示に基づいて、所定のスキャンシー ケンスを実行するために、送信周波数、送信駆動電圧等を瞬時に変更可能な機能を有して いる。特に、送信駆動電圧の変更は、瞬間にその値を切り替え可能なリニアアンプ(line ar-amp)型の発信回路、または、複数の電源ユニットを電気的に切り替える機構によって 実現される。

[0020]

超音波プローブ101が送信した超音波の反射波は、超音波プローブ101内部の振動 子まで到達した後、振動子において、機械的振動から電気的信号(反射波信号)に変換され、受信部120に入力される。

20

10

受信部120は、超音波受信における受信指向性を制御する。具体的には、受信部12 0は、プリアンプ(pre-amp)、A/D変換部、受信遅延部及び加算部等を有し、超音波 プローブ101が受信した反射波信号に対して各種処理を行なって反射波データを生成す る。プリアンプは、反射波信号をチャンネル(channel)ごとに増幅してゲイン(gain) 補正処理を行なう。A/D変換部は、ゲイン補正された反射波信号をA/D変換し、受信 遅延部は、受信指向性を決定するのに必要な受信遅延時間をチャンネルごとに与える。加 算部は、受信遅延時間が与えられた反射波信号(デジタル(digital)信号)を加算して 、反射波データを生成する。加算器の加算処理により、反射波信号の受信指向性に応じた 方向からの反射成分が強調される。受信方向或いは受信遅延時間は、後述する内部記憶部 160に記憶されており、受信部120は、内部記憶部160を参照して、受信指向性を 制御する。なお、第1の実施形態に係る受信部120は、並列同時受信を行なうことも可 能である。

[0022]

信号処理部130は、受信部120が反射波信号から生成した反射波データに対して各種の信号処理を行う。信号処理部130は、受信部120から受信した反射波データに対して、対数増幅、包絡線検波処理等を行って、サンプル(sample)点(観測点)ごとの信号強度が輝度の明るさで表現されるデータ(Bモードデータ(mode data))を生成する

【0023】

また、信号処理部130は、受信部120から受信した反射波データより、移動体のド プラ効果に基づく運動情報を、走査領域内の各サンプル点で抽出したデータ(ドプラデー タ)を生成する。具体的には、信号処理部130は、移動体の運動情報として、平均速度 (average velocity)、分散値、パワー値等を各サンプル点で抽出したドプラデータを 生成する。ここで、移動体とは、例えば、血流や、心壁等の組織、造影剤である。 【0024】

ここで、第1の実施形態に係る超音波診断装置10は、生体組織の硬さを測定し、測定した硬さの分布を映像化するエラストグラフィーを実行可能な装置である。具体的には、 第1の実施形態に係る超音波診断装置10は、音響放射力を与えて生体組織に変位を発生 40

させることで、エラストグラフィーを実行可能な装置である。 【0025】

すなわち、第1の実施形態に係る送信部110は、音響放射力で生じるせん断波により 変位を発生させるプッシュパルス(push pulse)(変位発生用バースト波)を超音波プ ローブ101から送信させる。そして、第1の実施形態に係る送信部110は、プッシュ パルスにより発生する変位を観測する観測用パルスを、走査領域内の複数の走査線それぞ れで超音波プローブ101から複数回送信させる。観測用パルスは、プッシュパルスによ り発生したせん断波の伝播速度を、走査領域内の各サンプル点で観測するために送信され る。通常、観測用パルスは、走査領域内の各走査線に対して、複数回(例えば、100回)、送信される。受信部120は、走査領域内の各走査線で送信された観測用パルスの反 射波信号から、反射波データを生成する。なお、プッシュパルスは、変位発生用超音波の 一例である。また、観測用パルスは、観測用超音波の一例である。

【 0 0 2 6 】

言い換えると、送信部110は、音響放射力に基づいて生体組織に変位を発生させる変 位発生用超音波を超音波プローブから送信させ、変位発生用超音波に基づいて発生する所 定の走査領域内の生体組織の変位を観測する観測用超音波を超音波プローブから送信させ る。また、受信部120は、超音波プローブで受信された反射波に基づいて、反射波デー 夕を生成する。

【0027】

そして、信号処理部130は、走査領域内の各走査線で複数回送信された観測用パルス 20 の反射波データを解析して走査領域の硬さの分布を示す硬さ分布情報を算出する。具体的 には、信号処理部130は、プッシュパルスによって発生したせん断波の伝搬速度を各サ ンプル点で測定することで、走査領域の硬さ分布情報を生成する。

【0028】

例えば、信号処理部130は、観測用パルスの反射波データを周波数解析する。これに より、信号処理部130は、各走査線の複数のサンプル点それぞれで、運動情報(組織ド プラデータ)を複数時相に渡って生成する。そして、信号処理部130は、各走査線の複 数のサンプル点それぞれで得られた複数時相の組織ドプラデータの速度成分を時間積分す る。これにより、信号処理部130は、各走査線の複数のサンプル点それぞれの変位を複 数時相に渡って算出する。続いて、信号処理部130は、各サンプル点で変位が最大とな る時間を求める。そして、信号処理部130は、各サンプル点で最大変位が得られた時間 を、各サンプル点にせん断波が到達した到達時間として決定する。続いて、信号処理部1 30は、各サンプル点におけるせん断波の到達時間の空間的微分を行うことで、各サンプ ル点でのせん断波の伝搬速度を算出する。以下、「せん断波の伝播速度」を、「せん断速 度(share wave speed)」と記載する。なお、上記の到達時間としては、各サンプル点 で変位が最大となる時間ではなく、例えば、各サンプル点における変位の変化量が最大と なる時間を用いても良い。

【0029】

そして、信号処理部130は、せん断速度をカラーコード化し、対応するサンプル点に マッピング(mapping)することで、硬さ分布情報を生成する。硬い組織ではせん断速度 が大きく、柔らかい組織ではせん断速度が小さくなる。すなわち、せん断速度の値は、組 織の硬さ(弾性率)を示す値となる。上記の場合、観測用パルスは、組織ドプラ用の送信 パルスである。なお、上記のせん断速度は、各サンプル点で変位が最大となる時間(到達 時間)に基づくのではなく、例えば、信号処理部130が、隣接する走査線における組織 の変位の相互相関により検出することで算出する場合であっても良い。

【 0 0 3 0 】

なお、信号処理部130は、せん断速度から、ヤング(Young)率又はせん断弾性率を 算出し、算出したヤング率又はせん断弾性率により硬さ分布情報を生成しても良い。せん 断速度、ヤング率及びせん断弾性率は、いずれも生体組織の硬さを表す物理量(指標値) として用いることができる。以下では、信号処理部130が、生体組織の硬さを表す物理 10

【 0 0 3 1 】

ここで、1回のプッシュパルスの送信で発生するせん断波は、伝播とともに、減衰する。広い領域に渡ってせん断速度を観測しようとした場合、ある特定の一つの走査線において送信されたプッシュパルスにより発生したせん断波は、伝播に伴い減衰し、プッシュパルスの送信位置から十分離れると、やがて観測不可能となる。 【0032】

(10)

かかる場合、プッシュパルスを方位方向における複数の位置において送信する必要があ る。具体的には、走査領域(或いは、関心領域)は、方位方向に沿って複数の領域に分割 される。送信部110は、分割された各領域(以下、分割領域と表記)において観測用パ ルスを送受信する前に、それぞれ異なった走査線位置においてプッシュパルスを送信し、 せん断波を発生させる。この際、典型的には、プッシュパルスの送信位置は、各分割領域 の近傍に設定される。同時並列受信数が少数に限定されている場合、送信部110は、複 数の分割領域それぞれにおいて、プッシュパルスを1回送信した後に、ある分割領域の各 走査線で観測用パルスを複数回送信する処理を順次実行する。

【 0 0 3 3 】

画像生成部140は、信号処理部130が生成したデータから超音波画像データを生成 する。画像生成部140は、信号処理部130が生成したBモードデータから反射波の強 度を輝度で表したBモード画像データを生成する。また、画像生成部140は、信号処理 部130が生成したドプラデータから移動体情報を表すドプラ画像データを生成する。ド プラ画像データは、速度画像データ、分散画像データ、パワー画像データ、又は、これら を組み合わせた画像データである。

[0034]

また、画像生成部140は、信号処理部130によって生成された硬さ分布情報から、 生体組織の硬さがカラー表示された硬さ画像データを生成する。例えば、画像生成部14 0は、走査領域内の各点(各サンプル点)におけるせん断速度に応じた画素値を各点に割 り当てたせん断速度画像データ(share wave speed image data)を、硬さ画像デー タとして生成する。

[0035]

図2は、第1の実施形態に係る硬さ画像データの一例を示す図である。図2に示すよう 30 に、画像生成部140は、生体組織の硬さが色分けされた画像を生成する。なお、図2で は、説明の都合上、エラストグラフィーにより映像化される対象として走査領域全体が指 定された場合を例示したが、実施形態はこれに限定されるものではない。例えば、映像化 される対象として走査領域の一部である関心領域(Region Of Interest:ROI)が指 定された場合には、ROIに対応する硬さ画像データが生成される。なお、第1の実施形 態において、ROIは、エラストグラフィーによる映像化の対象となる対象領域に対応す る。

[0036]

ここで、画像生成部140は、一般的には、超音波走査の走査線信号列を、テレビ(TV)等に代表されるビデオフォーマット(video format)の走査線信号列に変換(スキャ ンコンバート(scan convert))し、表示用の超音波画像データを生成する。具体的に は、画像生成部140は、超音波プローブ101による超音波の走査形態に応じて座標変 換を行うことで、表示用の超音波画像データを生成する。また、画像生成部140は、ス キャンコンバート以外に種々の画像処理として、例えば、スキャンコンバート後の複数の 画像フレームを用いて、輝度の平均値画像を再生成する画像処理(平滑化処理)や、画像 内で微分フィルタを用いる画像処理(エッジ強調処理)等を行う。また、画像生成部14 0は、超音波画像データに、付帯情報(種々のパラメータの文字情報、目盛り、ボディー マーク(body mark)等)を合成する。

[0037]

すなわち、 B モードデータ、ドプラデータ及び硬さ分布情報は、スキャンコンバート処 50

10

理前の超音波画像データであり、画像生成部140が生成するデータは、スキャンコンバート処理後の表示用の超音波画像データである。なお、画像生成部140は、信号処理部 130が3次元のデータ(3次元 B モードデータ、3次元ドプラデータ及び3次元硬さ分 布情報)を生成した場合、超音波プローブ101による超音波の走査形態に応じて座標変 換を行うことで、ボリュームデータ(volume data)を生成する。そして、画像生成部1 40は、ボリュームデータに対して、各種レンダリング処理を行なって、表示用の2次元 画像データを生成する。

[0038]

画像メモリ150は、画像生成部140が生成した表示用の画像データを記憶するメモ リである。また、画像メモリ150は、信号処理部130が生成したデータを記憶するこ とも可能である。画像メモリ150が記憶するBモードデータやドプラデータ、硬さ分布 情報は、例えば、診断の後に操作者が呼び出すことが可能となっており、画像生成部14 0を経由して表示用の超音波画像データとなる。

【0039】

内部記憶部160は、超音波送受信、画像処理及び表示処理を行うための制御プログラムや、診断情報(例えば、患者ID、医師の所見等)や、診断プロトコル(protocol)や各種ボディーマーク等の各種データを記憶する。また、内部記憶部160は、必要に応じて、画像メモリ150が記憶する画像データの保管等にも使用される。また、内部記憶部 160が記憶するデータは、図示しないインタフェース部を介して、外部装置へ転送することができる。

【0040】

また、内部記憶部160は、撮影済みのせん断速度画像データに関する情報を記憶する。例えば、内部記憶部160は、撮影済みのせん断速度画像データについて、各サンプル 点におけるせん断波の到達時間を記憶する。

【0041】

制御部170は、超音波診断装置10の処理全体を制御する。具体的には、制御部17 0は、入力装置102を介して操作者から入力された各種設定要求や、内部記憶部160 から読込んだ各種制御プログラム及び各種データに基づき、送信部110、受信部120 、信号処理部130、画像生成部140の処理を制御する。また、制御部170は、画像 メモリ150が記憶する表示用の超音波画像データをモニタ103にて表示するように制 御する。

【0042】

なお、装置本体100に内蔵される送信部110、受信部120、及び制御部170等 は、プロセッサ(CPU(Central Processing Unit)、MPU(Micro-Processing U nit)、集積回路等)のハードウェア(hardware)により構成されることもあるが、ソフ トウェア(software)的にモジュール(module)化されたプログラムにより構成される場 合もある。

【0043】

ところで、被検体の体動によって変位が発生した場合、或いはせん断波が組織内で反射 ・屈折した場合等には、生体組織の硬さが正確に測定できないことがある。このような場 合、エラストグラフィーによって映像化された硬さ画像は、信頼性の低いものとなってし まう。

[0044]

そこで、第1の実施形態に係る超音波診断装置10は、硬さ画像上にその信頼性を表す ことができる。この機能を実現するための超音波診断装置10の構成について、以下に説 明する。

【0045】

第1の実施形態に係る超音波診断装置10において、制御部170は、送信制御部17 1と、線画像生成部172と、表示制御部173とを備える。 【0046】

50

20

10

送信制御部171は、送信部110によるプッシュパルスの送信や、観測用パルスの送 受信を制御する。例えば、送信制御部171は、操作者からROIを決定する指示を受け 付ける。そして、送信制御部171は、受け付けた指示に基づいて、ROIに対応する硬 さ画像データを生成するためのプッシュパルスの送信位置、送信位置の数、ROIの位置 、ROIの範囲、及びROIの数等を設定する。送信制御部171の制御により、送信部 110は、プッシュパルスを超音波プローブ101から送信させる。また、送信制御部1 71の制御により、送信部110は、送信させたプッシュパルスにより発生する変位を観 測する観測用パルスを、走査領域内の複数の走査線それぞれで超音波プローブ101から 複数回送信させる。

(12)

【0047】

線画像生成部172は、走査領域内の各点にせん断波が到達した到達時間が略同一の線 を表す線画像データを生成する。この線画像データは、例えば、到達時間が略同一の位置 を線で結んだ等高線を表示するための情報である。例えば、線画像生成部172は、走査 領域内の各点(各サンプル点)のうち、所定の到達時間を有する点を複数抽出する。そし て、線画像生成部172は、抽出した複数の点を結ぶことで、線画像データを生成する。 なお、所定の到達時間とは、超音波診断装置10の操作者若しくは設計者によって予め指 定された値であり、通常、複数の値が指定される。なお、線画像生成部172は、到達時 間画像生成部、若しくは画像生成部の一例である。

【0048】

言い換えると、線画像生成部172は、反射波データに基づいて、走査領域内の複数位 置それぞれにおける変位を複数の時相で算出し、算出された変位が略最大となる時相を複 数位置それぞれで決定し、複数位置のうち決定された時相が略同一の位置同士を表す画像 データを生成する。具体的には、線画像生成部172は、離散的な複数時相に対応する前 記画像データを生成する。

【0049】

図3及び図4は、第1の実施形態に係る線画像生成部172の処理を説明するための図 である。図3には、走査領域内の各点に対して、各点における到達時間に応じた画素値を 割り当てた到達時間画像データの一例を示す。図4には、線画像生成部172によって生 成された線画像データ20a,20b,20c,20dが、図3の到達時間画像データ上 に表示された場合を例示する。なお、線画像データ20aは、到達時間が10[msec] の位置を示し、線画像データ20bは、到達時間が20[msec]の位置を示し、線 画像データ20cは、到達時間が30[msec]の位置を示し、線画像データ20dは 、到達時間が40[msec]の位置を示す。また、線画像データ20a,20b,20 c,20dを区別無く総称する場合に、「線画像データ20」と表記する。この線画像デ ータ20は、到達時間位置画像データの一例である。

ここで、まず、図3の到達時間画像データについて説明する。到達時間画像データは、 例えば、画像生成部140によって生成される。具体的には、画像生成部140は、信号 処理部130によって決定された各点の到達時間に応じた画素値を、走査領域内の各点に 対して割り当てることで、到達時間画像データを生成する。

【0051】

そして、線画像生成部172は、画像生成部140によって生成された到達時間画像データを取得する。そして、線画像生成部172は、取得した到達時間画像データから、到達時間が10[msec]である点を複数抽出する。そして、線画像生成部172は、抽出した複数の点を結ぶことで、線画像データ20aを生成する。また、線画像生成部172は、線画像データ20aと同様に、20[msec]の点を結ぶことで線画像データ20cを生成し、40[msec]の点を結ぶことで線画像データ20cを生成し、40[msec]の点を結ぶことで線画像データ20dを生成する。 【0052】

また、線画像生成部172は、例えば、それぞれの線画像データ20に対して、到達時 50

間に応じた画素値を割り当てる。図4に示す例では、線画像生成部172は、線画像デー タ20a,20b,20c,20dそれぞれに対して、その到達時間に応じた画素値を割 り当てる。一例としては、線画像生成部172は、図3の到達時間画像データにおいて、 各点の到達時間に応じて割り当てられた色を、線画像データ20a,20b,20c,2 0dに割り当てる。具体的には、線画像生成部172は、線画像データ20aに青色を割 り当て、線画像データ20bに緑色を割り当て、線画像データ20cに黄色を割り当て、 線画像データ20dに赤色を割り当てる。

(13)

【0053】

このように、線画像生成部172は、到達時間が10,20,30,40[msec] である位置をそれぞれ示す線画像データ20a,20b,20c,20dをそれぞれ生成 ¹⁰ する。

【0054】

なお、図4はあくまで一例に過ぎない。例えば、図4の例では、到達時間が10,20,30,40[msec]である位置に線画像データ20を生成する場合を説明したが、 実施形態はこれに限定されるものではない。例えば、線画像生成部172は、任意の到達時間の位置に線画像データ20を生成しても良いし、任意の本数の線画像データ20を生成しても良い。

【 0 0 5 5 】

また、図4の例では、それぞれの線画像データ20に対して、到達時間に応じた画素値 を割り当てる場合を説明したが、実施形態はこれに限定されるものではない。例えば、線 画像生成部172は、到達時間がそれぞれ異なる線画像データ20ごとに、それぞれ異な る線種(実線、破線、点線、一点鎖線等)を割り当てても良い。

【0056】

また、ここでは説明の都合上、到達時間画像データ(図3)が生成された後に線画像デ ータ20が生成される場合を説明したが、実施形態はこれに限定されるものではない。す なわち、線画像生成部172は、必ずしも到達時間画像データが生成されていなくとも、 線画像データ20を生成することができる。例えば、線画像生成部172は、信号処理部 130で決定された各点の到達時間のうち、所定の到達時間を有する点を複数抽出するこ とで、線画像データ20を生成することができる。

【 0 0 5 7 】

また、ここでは説明を省略したが、線画像生成部172は、線画像データ20を生成す る場合に、例えば、線画像データ20を滑らかにするための平滑化処理を行っても良いし 、線画像データ20の太さを均一にする処理を行っても良い。また、線画像生成部172 が所定の到達時間を有する点を抽出する場合、必ずしも所定の到達時間と厳密に一致する 点のみを抽出するのではなく、例えば、抽出された複数の点が線形を成す程度に誤差を許 容して抽出しても良い。すなわち、上記の「到達時間が略同一の線」とは、抽出された複 数の点が線形を成す程度の誤差の範囲内で同一の到達時間を有する複数の点に基づく線で あり、平滑化処理や太さを均一にする処理が行われた線である。

[0058]

表示制御部173は、線画像データを超音波画像データ上に重畳表示させる。例えば、 表示制御部173は、線画像生成部172によって生成された線画像データ20を、硬さ 画像データ上に重畳表示させる。

【0059】

o

言い換えると、表示制御部173は、線画像生成部172によって生成された画像デー タに基づく画像を、走査領域を含む領域に対応する医用画像に重畳表示させる。 【0060】

図 5 は、第 1 の実施形態に係る表示制御部 1 7 3 によって表示される表示画像の一例を 示す図である。図 5 に示すように、表示制御部 1 7 3 は、図 2 に例示の硬さ画像データ上 に、図 4 で生成した線画像データ 2 0 a , 2 0 b , 2 0 c , 2 0 d をそれぞれ表示させる

50

40

30

[0061]

なお、図5はあくまで一例に過ぎない。例えば、図5では、硬さ画像データを背景画像 として線画像データ20を重畳表示する場合を説明したが、背景画像はこれに限定されな い。例えば、背景画像としては、Bモード画像データや、図3の到達時間画像データ、更 には後述する変位画像データ及び分散値画像データを用いても良い。

(14)

[0062]

図6は、第1の実施形態に係る超音波診断装置10の処理手順の一例を説明するための フローチャートである。なお、図6に示す例では、超音波診断装置10は、最初はBモー ドであり、Bモード画像データを表示している。

【 0 0 6 3 】

図6に示すように、第1の実施形態に係る超音波診断装置10の送信制御部171は、 硬さ画像を生成するための硬さ画像生成モードを開始させる開始指示を操作者から受け付 けたか否かを判定する(ステップS101)。この硬さ画像生成モードとは、例えば、硬 さ画像を生成するROIを設定したり、ROIを設定した後にプッシュパルスを送信して 硬さ画像を生成したりするための状態である。ここで、開始指示を受け付けない場合(ス テップS101否定)、送信制御部171は、開始指示を受け付けるまで待機する。 【0064】

一方、開始指示を受け付けた場合(ステップS101肯定)、送信制御部171の制御 により、モニタ103は、ROI設定用GUIを表示する(ステップS102)。このR OI設定用GUIとしては、例えば、エラストグラフィーによる映像化の対象となる対象 領域を指定するROIが、Bモード画像データ上に表示されている。このROIの位置及 び大きさはプリセットされている。そして、送信制御部171は、操作者からROIの位 置及び大きさを変更する指示を受け付けて、受け付けた指示に応じてROIの位置及び大 きさを変更する(ステップS103)。

【0065】

そして、送信制御部171は、ROIが決定されたか否かを判定する(ステップS10 4)。例えば、送信制御部171は、操作者からROIの位置及び大きさを決定する旨の 指示を受け付けたか否かに応じて、ROIが決定されたか否かを判定する。ここで、RO Iが決定されない場合(ステップS104否定)、送信制御部171は、ROIが決定さ れるまで、ステップS103の処理を実行する。

【0066】

一方、ROIが決定された場合(ステップS104肯定)、送信制御部171は、決定 されたROIに基づいて、プッシュパルスの送信位置を決定する(ステップS105)。 例えば、送信制御部171は、ROIの位置及び大きさに基づいて、プッシュパルスの送 信位置を1箇所又は複数箇所決定する。これは、プッシュパルスにより発生するせん断波 が伝播の過程で減衰することが知られており、この減衰によってROIの全域を走査でき ない事態を防ぐためである。

[0067]

そして、送信制御部171は、操作者から硬さ画像データの撮影開始要求を受け付けた か否かを判定する(ステップS106)。ここで、撮影開始要求を受け付けない場合(ス テップS106否定)、送信制御部171は、撮影開始要求を受け付けるまで待機する。 【0068】

一方、撮影開始要求を受け付けた場合(ステップS106肯定)、送信制御部171は 、決定した送信位置において、超音波プロープ101からプッシュパルスを送信させる(ステップS107)。そして、送信部110及び受信部120の制御により、超音波プロ ープ101は、ROI内で観測用パルスの送受信を実行する(ステップS108)。例え ば、観測用パルスは、ROI内のある走査線に対して複数回(100回程度)送受信され る。これにより、各点における変位の時間変化を算出する。1つのパルスに対して多数の 受信を行うことができるシステムを有している場合、1度のプッシュパルスの送信でRO I内の全領域の変位の時間変化を知ることができるが、同時受信本数が限られている場合 10

20

は、複数回の観測用パルスの送受信を、ラスタ位置を変えて複数回行われる。その際は、 ラスタ位置を変えて観測用パルスを送信するたびに、プッシュパルスを送信する。 【0069】

続いて、信号処理部130は、ROIの各点の変位を複数時相に渡って算出する(ステップS109)。そして、信号処理部130は、ROIの各点におけるせん断波の到達時間を決定する(ステップS110)。例えば、信号処理部130は、各点で最大変位が得られた時間を、各点におけるせん断波の到達時間として決定する。そして、信号処理部1 30は、各点におけるせん断波の到達時間の空間的微分を行うことで、各点でのせん断波 の伝搬速度(せん断速度)を算出する(ステップS111)。そして、信号処理部130 は、ROIに対応するせん断速度をカラーコード化し、対応する各点にマッピングするこ とで、硬さ分布情報を生成する(ステップS112)。

[0070]

続いて、画像生成部140は、信号処理部130によって生成された硬さ分布情報から、生体組織の硬さがカラー表示された硬さ画像データを生成する(ステップS113)。 例えば、画像生成部140は、走査領域内の各点(各サンプル点)におけるせん断速度に 応じた画素値を各点に割り当てたせん断速度画像データを、硬さ画像データとして生成す る。そして、表示制御部173は、画像生成部140によって生成された硬さ画像データ をモニタ103に表示させる(ステップS114)。 【0071】

そして、線画像生成部172は、信頼性を表示する旨の信頼性表示要求を受け付けたか 否かを判定する(ステップS115)。ここで、信頼性表示要求受け付けた場合(ステッ プS115肯定)、線画像生成部172は、ROI内の各点のうち所定の到達時間を有す る複数の点を用いて、線画像データ20を生成する(ステップS116)。例えば、線画 像生成部172は、ROI内の各点のうち、所定の到達時間を有する点を複数抽出し、抽 出した複数の点を結ぶことで、線画像データ20を生成する。そして、表示制御部173 は、線画像生成部172によって生成された線画像データ20を、硬さ画像データ上に重 畳表示させる(ステップS117)。なお、信頼性表示要求を受け付けない場合(ステッ

【0072】

そして、送信制御部171は、硬さ画像生成モードを終了させる終了指示を操作者から 30 受け付けたか否かを判定する(ステップS118)。ここで、終了指示を受け付けない場 合(ステップS118否定)、送信制御部171は、終了指示を受け付けるまで、硬さ画 像データを表示させたまま、信頼性表示要求の受け付けを待機する。

[0073]

一方、送信制御部171は、終了指示を受け付けた場合(ステップS118肯定)、硬 さ画像生成モードを終了させる。例えば、送信制御部171は、硬さ画像データを非表示 とし、Bモードに戻る。

【0074】

なお、上記の処理手順はあくまで一例に過ぎず、実施形態は図6の処理手順に限定され るものではない。例えば、ROIの位置及び大きさを変更する処理(ステップS103) は、必ずしも実行されなくても良い。例えば、プリセットのままのROIが利用される場 合には、ステップS103の処理は実行されなくても良い。また、例えば、ステップS1 03の処理は、ROIの位置又は大きさのいずれか一方のみが変更される場合であっても 良い。

[0075]

また、上記の処理手順では、信頼性表示要求を受け付けた後に(ステップS115肯定)、線画像データ20を生成する処理(ステップS116)が実行される場合を説明した が、これに限定されるものではない。例えば、線画像データ20を生成する処理は、バッ クグラウンドの処理として実行しておき、信頼性表示要求を受け付けた場合に、線画像デ ータ20が表示されても良い。すなわち、線画像データ20を生成する処理は、到達時間 10

を決定する処理(ステップS110)の実行後であれば、任意のタイミングで実行されて 良い。

【 0 0 7 6 】

また、上記の処理手順では、信頼性表示要求を受け付けた後に(ステップS115肯定)、線画像データ20を表示する処理(ステップS117)が実行される場合を説明した が、これに限定されるものではない。例えば、信頼性表示要求を受け付けなくとも、自動 的に線画像データ20を表示しても良い。すなわち、ステップS115の処理は実行され なくても良い。

[0077]

上述してきたように、第1の実施形態に係る超音波診断装置10は、走査領域内の各点 ¹⁰ にせん断波が到達した到達時間が略同一の線を表す線画像データを生成する。そして、超 音波診断装置10は、線画像データを超音波画像データ上に重畳表示させる。 【0078】

例えば、超音波診断装置10は、ROI内の各点のうち、所定の到達時間を有する点を 複数抽出し、抽出した複数の点を結ぶことで、線画像データ20を生成する。これによれ ば、超音波診断装置10は、あたかも地図上に等高線を引くかの如く、到達時間画像デー タ上に到達時間の目盛り線となる線画像データ20を表示することができる。 【0079】

ここで、到達時間を用いて線画像データ20を表示するのは、到達時間が生体組織の硬 さの信頼性の指標となるからである。例えば、被検体の体動による変位の発生、或いは、 せん断波の反射・屈折等が無く、生体組織の硬さが正確に測定できる環境下であれば、せ ん断波は、プッシュパルスの送信位置からほぼ均等に伝播するはずである。この結果、到 達時間の線画像データ20は、プッシュパルスの送信方向とほぼ並行となり、生体組織の 硬さに応じて曲線を描くこととなる。これに対して、生体組織の硬さが正確に測定できな い環境下であれば、せん断波の伝播が極端に早く観測されたり、極端に遅く観測されたり してしまう。この結果、到達時間の線画像データ20は、大きく湾曲してしまう。 【0080】

したがって、操作者は、超音波画像データに重畳表示された線画像データ20の曲がり 方の程度を確認することで、線画像データ20の近傍の領域における生体組織の硬さの信 頼性を判断することができる。

【0081】

また、例えば、超音波診断装置10は、それぞれの線画像データ20に対して、到達時間に応じた画素値を割り当てる。このため、操作者は、それぞれの線画像データ20の画素値(色)を確認することで、その線画像データ20付近の到達時間の値を知ることができる。

[0082]

(第2の実施形態)

第1の実施形態では、線画像データ20に対して、その到達時間に応じた画素値を割り 当てる場合を説明したが、実施形態はこれに限定されるものではない。例えば、超音波診 断装置10は、線画像データ20に対して、他のパラメータに応じた画素値を割り当てて も良い。そこで、第2の実施形態では、超音波診断装置10が、線画像データ20に対し て、他のパラメータに応じた画素値を割り当てる場合を説明する。 【0083】

図7は、第2の実施形態に係る超音波診断装置10の構成例を示すブロック図である。 第2の実施形態に係る超音波診断装置10は、図1に例示した超音波診断装置10と同様 の構成を備え、算出部174を更に備える点と、線画像生成部172の処理の一部とが相 違する。そこで、第2の実施形態では、第1の実施形態と相違する点を中心に説明するこ ととし、第1の実施形態において説明した構成と同様の機能を有する点については、図1 と同一の符号を付し、説明を省略する。

[0084]

50

20

30

第2の実施形態に係る算出部174は、線画像データ20に含まれる点ごとに、その点 を含む所定領域内の各点の到達時間の分散値を算出する。 【0085】

図8及び図9は、第2の実施形態に係る算出部174の処理を説明するための図である。図8には、図4と同様の到達時間画像データ及び線画像データ20の上に、分散値算出 用領域21が配置された場合を例示する。ここで、分散値算出用領域21は、分散値を算 出するために、線画像データ20に含まれる各点を中心とし、所定の大きさを有する領域 である。この大きさはプリセットされているが、プリセットの値は任意に変更可能である 。また、図9には、図8の分散値算出用領域21付近の拡大図を例示する。図9において 、黒の矩形は、線画像データ20cに含まれる各点(画素)を示す。また、網掛けの矩形 は、分散値算出用領域21の中心点(中心画素)を示す。

【0086】

図8に示すように、算出部174は、例えば、線画像データ20cに含まれる点を中心 として、分散値算出用領域21を配置する。そして、図9に示すように、算出部174は 、配置された分散値算出用領域21に含まれる各点の到達時間の分散値を、中心点の分散 値として算出する。そして、算出部174は、線画像データ20cに含まれる他の点につ いても同様に、各点を中心として分散値算出用領域21を配置し、その中に含まれる各点 の分散値を算出する。これにより、算出部174は、線画像データ20cに含まれる各点 の分散値を算出する。

【0087】

また、算出部174は、線画像データ20a,20b,20dについても同様に、各線 画像データ20a,20b,20dに含まれる各点の分散値をそれぞれ算出する。これに より、線画像データ20の各点は、その周辺の点の到達時間のバラツキに対応するパラメ ータとして、到達時間の分散値を有することとなる。

[0088]

なお、図8及び図9はあくまで一例に過ぎない。例えば、ここでは説明の都合上、到達時間画像データ(図3)上で各点の分散値が算出される場合を説明したが、実施形態はこれに限定されるものではない。すなわち、算出部174は、必ずしも到達時間画像データ上で処理を行わなくとも、線画像データ20に含まれる各点の分散値を算出することができる。

【 0 0 8 9 】

第2の実施形態に係る線画像生成部172は、第1の実施形態において説明した機能と 同様の機能を有し、更に、線画像データ20に含まれる各点に、その点の分散値に応じた 画素値を割り当てる。例えば、線画像生成部172は、算出部174によって算出された 各点の分散値に応じた画素値を、線画像データ20に含まれる各点に割り当てる。 【0090】

図10は、第2の実施形態に係る線画像生成部172の処理を説明するための図である。図10には、図9の線画像データ20cに含まれる各点に対して、各点の分散値に応じた画素値を割り当てたもの一例を示す。

[0091]

図10に示すように、線画像生成部172は、図9の線画像データ20cに含まれる各 点に対して、算出部174によって算出された各点の分散値に応じた画素値を割り当てる 。一例としては、線画像生成部172は、各点のうち分散値が低いものから順に、青色、 青緑色、黄緑色、黄色、橙色、赤色を割り当てる。

【0092】

なお、図10はあくまで一例に過ぎない。例えば、図10の例では、線画像データ20 に含まれる各点に対して、各点の分散値に応じた画素値を割り当てる場合を説明したが、 実施形態はこれに限定されるものではない。例えば、線画像生成部172は、線画像デー タ20に含まれる各点に対して、各点の分散値ごとに異なるハッチングパターンを割り当 てても良い。 20

10

【0093】

また、線画像生成部172は、線画像データ20a,20b,20dについても同様に 、各線画像データ20a,20b,20dに含まれる各点の分散値に応じた画素値を割り 当てる。これにより、モニタ103に表示される線画像データ20の各点は、その周辺の 点の到達時間のバラツキに応じた色を有することとなる。

【0094】

このように、第2の実施形態に係る超音波診断装置10は、線画像データ20に含まれ る点ごとに、その点を含む所定領域内の各点の到達時間の分散値を算出する。そして、超 音波診断装置10は、線画像データ20に含まれる各点に、その点の分散値に応じた画素 値を割り当てる。

【0095】

ここで、分散値を用いて線画像データ20に含まれる各点に画素値を割り当てる(色分けする)のは、分散値が生体組織の硬さの信頼性の指標となるからである。例えば、第2 の実施形態において、モニタ103に表示される線画像データ20の各点は、その周辺の 点の到達時間のバラツキに応じた色を有する。ここで、生体組織の硬さが正確に測定でき る環境下であれば、せん断波がほぼ均等に伝播する結果、分散値は高くはならない。これ に対して、せん断波の伝搬が生体組織内で乱れた場合、分散値は高くなる。この分散値が 高くなった領域での硬さの信頼性は低いと判断できる。

【0096】

したがって、操作者は、線画像データ20に含まれる各点に割り当てられた画素値(色 ²⁰)を確認することで、線画像データ20の近傍の領域における生体組織の硬さの信頼性を 判断することができる。

【0097】

なお、第2の実施形態では、線画像データ20に含まれる各点に、その点の分散値に応 じた画素値を割り当てる場合を説明したが、実施形態はこれに限定されるものではない。 例えば、超音波診断装置10は、線画像データ20の各点に対して、各点の生体組織の硬 さの指標値(せん断速度、ヤング率、せん断弾性率)、或いは、各点における変位の大き さ等のパラメータに応じた画素値を割り当てても良い。これにより、操作者は、線画像デ ータ20の各点の色を確認することで、各種のパラメータによって示唆される情報を容易 に認知することができる。

【0098】

(第3の実施形態)

上述した第1及び第2の実施形態では、到達時間を用いて線画像データ20を表示する 場合を例示したが、実施形態はこれに限定されるものではない。例えば、超音波診断装置 10は、他のパラメータを用いて線画像データ20のような目盛り線となる画像を表示し ても良い。そこで、第3の実施形態では、超音波診断装置10が、他のパラメータを用い て線画像データ20のような目盛り線となる画像を表示する場合を説明する。 【0099】

第3の実施形態に係る超音波診断装置10は、図1に例示した超音波診断装置10と同様の構成を備え、線画像生成部172及び表示制御部173の処理の一部が相違する。そこで、第3の実施形態では、第1の実施形態と相違する点を中心に説明することとし、第1の実施形態において説明した構成と同様の機能を有する点については、図1と同一の符号を付し、説明を省略する。

[0 1 0 0 **]**

第3の実施形態に係る線画像生成部172は、第1の実施形態において説明した機能と 同様の機能を有し、更に、走査領域内の各点のせん断波に基づく生体組織の硬さの指標値 が略同一の線を表す硬さ線画像データを生成する。例えば、線画像生成部172は、走査 領域内の各点のうち、所定の大きさの指標値を有する点を複数抽出する。そして、線画像 生成部172は、抽出した複数の点を結ぶことで、硬さ線画像データを生成する。なお、 所定の大きさの指標値とは、超音波診断装置10の操作者若しくは設計者によって予め指 30

定された値であり、通常、複数の値が指定される。 【0101】

図11は、第3の実施形態に係る線画像生成部172の処理を説明するための図である。図11には、線画像生成部172によって生成された線画像データ22a,22bが、図2の硬さ画像データ上に表示された場合を例示する。なお、線画像データ22aは、ヤング率が30[kPa]の位置を示し、線画像データ22bは、ヤング率が60[kPa]の位置を示す。また、線画像データ22a,22bを区別無く総称する場合に、「線画像データ22」と表記する。この線画像データ22は、硬さ位置画像データの一例である

【0102】

図11に示すように、線画像生成部172は、画像生成部140によって生成された硬 さ画像データを取得する。そして、線画像生成部172は、取得した硬さ画像データから 、ヤング率が30[kPa]である点を複数抽出する。そして、線画像生成部172は、 抽出した複数の点を結ぶことで、線画像データ22aを生成する。また、線画像生成部1 72は、線画像データ22aと同様に、60[kPa]の点を結ぶことで線画像データ2 2bを生成する。

[0103]

また、線画像生成部172は、例えば、それぞれの線画像データ22に対して、硬さの 指標値(ここではヤング率)に応じた画素値を割り当てる。図11に示す例では、線画像 生成部172は、線画像データ22a,22bそれぞれに対して、そのヤング率に応じた 画素値を割り当てる。具体的には、線画像生成部172は、線画像データ22aに対して 黄緑色を割り当て、線画像データ22bに対して橙色を割り当てる。

[0104]

このように、線画像生成部172は、ヤング率が30,60[kPa]である位置をそれぞれ示す線画像データ22a,22bをそれぞれ生成する。

【0105】

なお、図11はあくまで一例に過ぎない。例えば、図11の例では、ヤング率が30, 60[kPa]である位置に線画像データ22を生成する場合を説明したが、実施形態は これに限定されるものではない。例えば、線画像生成部172は、任意のヤング率の位置 に線画像データ22を生成しても良いし、任意の本数の線画像データ22を生成しても良い。

【0106】

また、図11の例では、それぞれの線画像データ22に対して、ヤング率に応じた画素 値を割り当てる場合を説明したが、実施形態はこれに限定されるものではない。例えば、 線画像生成部172は、ヤング率がそれぞれ異なる線画像データ22ごとに、それぞれ異 なる線種(実線、破線、点線、一点鎖線等)を割り当てても良い。

【 0 1 0 7 】

また、ここでは説明の都合上、硬さ画像データ(図2)が生成された後に線画像データ 22が生成される場合を説明したが、実施形態はこれに限定されるものではない。すなわ ち、線画像生成部172は、必ずしも硬さ画像データが生成されていなくとも、線画像デ ータ22を生成することができる。例えば、線画像生成部172は、信号処理部130で 決定された各点のヤング率のうち、所定のヤング率を有する点を複数抽出することで、線 画像データ22を生成することができる。

[0108]

また、ここでは説明を省略したが、線画像生成部172は、線画像データ22を生成す る場合に、例えば、線画像データ22を滑らかにするための平滑化処理を行っても良いし 、線画像データ22の太さを均一にする処理を行っても良い。また、線画像生成部172 が所定のヤング率を有する点を抽出する場合、必ずしも所定のヤング率と厳密に一致する 点のみを抽出するのではなく、例えば、抽出された複数の点が線形を成す程度に誤差を許 容して抽出しても良い。すなわち、上記の「硬さの指標値が略同一の線」とは、抽出され 10

30

20

30

た 複数の 点 が 線 形 を 成 す 程 度 の 誤 差 の 範 囲 内 で 同 一 の 硬 さ の 指 標 値 を 有 す る 複 数 の 点 に 基 づく 線 で あ り 、 平 滑 化 処 理 や 太 さ を 均 一 に す る 処 理 が 行 わ れ た 線 で あ る 。 【 0 1 0 9 】

第3の実施形態に係る表示制御部173は、第1の実施形態において説明した機能と同様の機能を有し、更に、線画像データ22を超音波画像データ上に重畳表示させる。例えば、表示制御部173は、線画像生成部172によって生成された線画像データ22を、 到達時間画像データ上に重畳表示させる。

[0 1 1 0 **]**

図12は、第3の実施形態に係る表示制御部173によって表示される表示画像の一例 を示す図である。図12に示すように、表示制御部173は、図3に例示の到達時間画像 ¹⁰ データ上に、図11で生成した線画像データ22a,22bをそれぞれ表示させる。 【0111】

なお、図12はあくまで一例に過ぎない。例えば、図12では、到達時間画像データを 背景画像として線画像データ22を重畳表示する場合を説明したが、背景画像はこれに限 定されない。例えば、背景画像としては、Bモード画像データや、図2の硬さ画像データ 、更には後述する変位画像データ及び分散値画像データを用いても良い。

【0112】

このように、第3の実施形態に係る超音波診断装置10は、硬さの指標値を用いて、線 画像データ22を生成する。そして、超音波診断装置10は、生成した線画像データ22 を超音波画像データ上に重畳表示させる。これによれば、操作者は、例えば、硬さの指標 値と背景画像のパラメータとの関連性を視覚的に把握することができる。 【0113】

なお、第3の実施形態では、到達時間以外のパラメータとして、硬さの指標値を用いて 目盛り線(等高線)を生成する場合を説明したが、実施形態はこれに限定されるものでは ない。例えば、線画像生成部172は、各点の変位の大きさを用いて目盛り線を生成して も良い。具体的には、線画像生成部172は、走査領域内の各点の変位の大きさが略同一 の線を表す画像データ(変位位置画像データ)を生成しても良い。そして、表示制御部1 73は、生成した変位位置画像データを超音波画像データ上に表示させる。これにより、 超音波診断装置10は、背景画像と異なるパラメータを用いて線画像データ20のような 目盛り線を表示するので、操作者は、これらの異なるパラメータの関連性を視覚的に把握 することができる。

[0 1 1 4 **]**

また、第3の実施形態に係る超音波診断装置10は、到達時間の線画像データ20、線 画像データ22、及び変位位置画像データのうち、任意の画像データを選択し、選択した 全ての画像データを超音波画像データ上に重畳表示させても良い。すなわち、超音波診断 装置10は、例えば、到達時間の線画像データ20及び線画像データ22を、一つの超音 波画像データ上に重畳表示させても良い。

【0115】

また、第3の実施形態に係る超音波診断装置10が、他のパラメータを用いて線画像データ20のような目盛り線となる画像を表示する処理は、到達時間の線画像データ20を 40 生成したり表示したりする処理とは別に独立して実行可能である。

【0116】

(第4の実施形態)

また、例えば、超音波診断装置10は、所定領域内のせん断速度で走査領域全体にせん 断波が伝播する場合の到達時間に基づいて、線画像データ20のような目盛り線となる画 像を表示しても良い。そこで、第4の実施形態では、超音波診断装置10が、所定領域内 のせん断速度で走査領域全体にせん断波が伝播する場合の到達時間に基づいて、線画像デ ータ20のような目盛り線となる画像を表示する場合を説明する。

【 0 1 1 7 】

第4の実施形態に係る超音波診断装置10は、図1に例示した超音波診断装置10と同 50

様の構成を備え、線画像生成部172及び表示制御部173の処理の一部が相違する。そこで、第4の実施形態では、第1の実施形態と相違する点を中心に説明することとし、第 1の実施形態において説明した構成と同様の機能を有する点については、図1と同一の符 号を付し、説明を省略する。

[0 1 1 8 **]**

第4の実施形態に係る線画像生成部172は、第1の実施形態において説明した機能と 同様の機能を有する。更に、線画像生成部172は、所定領域におけるせん断波の伝播速 度で、せん断波が走査領域内の各点に到達する到達時間を算出し、算出した到達時間が略 同一の線を表す所定領域位置画像データを生成する。

【0119】

図13は、第4の実施形態に係る線画像生成部172の処理を説明するための図である。図13には、図2の硬さ画像データ上に、操作者により指定されたROI23と、線画像データ24a~24fとが表示された場合を例示する。なお、図13において、線画像データ24aは、到達時間が5 [msec]の位置を示し、線画像データ24bは、到達時間が10 [msec]の位置を示し、線画像データ24cは、到達時間が15 [msec]の位置を示し、線画像データ24eは、到達時間が25 [msec]の位置を示し、線画像データ24eは、到達時間が25 [msec]の位置を示し、線画像データ24f は、到達時間が30 [msec]の位置を示す。また、線画像データ24a~24fを区別無く総称する場合に、「線画像データ24」と表記する。この線画像データ24は、所定領域位置画像データの一例である。

図 1 3 に示すように、線画像生成部 1 7 2 は、例えば、操作者から R O I 2 3 を指定す る操作を受け付ける。そして、線画像生成部172は、受け付けたROI23に含まれる 各点におけるせん断波速度の平均値を算出する。そして、線画像生成部172は、算出し たせん断速度の平均値で、せん断波が走査領域内の各点に到達する到達時間を算出する。 言い換えると、線画像生成部172は、走査領域内の全ての点が均一な硬さ(ROI23 内の平均的な硬さ)であり、その走査領域全体をせん断波が一定の速度(算出したせん断 速度の平均値)で伝播するものとして、走査領域内の各点の到達時間を算出する。例えば 、 線 画 像 生 成 部 1 7 2 は 、 算 出 し た せ ん 断 速 度 の 平 均 値 と 、 プ ッ シ ュ パ ル ス の 送 信 位 置 か ら各点までの距離とを用いて、各点の到達時間を算出する。そして、線画像生成部172 は、算出した到達時間が略同一の線を表す線画像データ24a~24fをそれぞれ生成す る。ここで、線画像データ24a~24fは、走査領域内の全ての点がROI23内の平 均的な硬さであるものとして生成されるので、プッシュパルスの送信位置に対して平行な 線となる。なお、図13では、走査領域の左端にプッシュパルスの送信位置があるものと する。 また、 線画 像 生成 部 1 7 2 が 、 算 出 した 到 達 時 間 が 略 同 一 の 位 置 を 表 す 線 画 像 デ ー タ24a~24fをそれぞれ生成する処理は、第1の実施形態で説明した内容と同様であ るので、詳細な説明は省略する。

【0121】

なお、図13はあくまで一例に過ぎない。例えば、線画像生成部172は、任意の到達時間の位置に線画像データ24を生成しても良いし、任意の本数の線画像データ24を生成しても良い。

【0122】

また、例えば、線画像生成部172は、それぞれの線画像データ24に対して、算出した到達時間に応じた画素値を割り当てても良い。また、例えば、線画像生成部172は、 算出した到達時間がそれぞれ異なる線画像データ24ごとに、それぞれ異なる線種(実線 、破線、点線、一点鎖線等)を割り当てても良い。

【0123】

また、例えば、ROI23の位置及び大きさがプリセットされている場合には、必ずし も操作者によるROI23の指定を要しない。例えば、プリセットのままのROI23が 利用される場合には、操作者によるROI23の指定は受け付けなくても良い。 10

30

【0124】

また、図13では、硬さ画像データが背景画像として用いられる場合を説明したが、実施形態はこれに限定されるものではない。例えば、線画像生成部172は、背景画像の有無、及び、背景画像となる超音波画像データの種類に関係なく、上記の処理を実行することができる。

【0125】

また、図13では、ROI23に含まれる各点のせん断速度の平均値を用いる場合を説 明したが、これに限定されるものではなく、例えば、ROI23の中心点のせん断速度を 用いる場合であっても良い。

【0126】

10

第4の実施形態に係る表示制御部173は、第1の実施形態において説明した機能と同様の機能を有し、更に、線画像データ24を超音波画像データ上に表示させる。例えば、 表示制御部173は、線画像生成部172によって生成された線画像データ24を、到達時間画像データ上に重畳表示させる。

【0127】

図14は、第4の実施形態に係る表示制御部173によって表示される表示画像の一例 を示す図である。図14に示すように、表示制御部173は、図3に例示の到達時間画像 データ上に、図13で生成した線画像データ24をそれぞれ表示させる。

【0128】

なお、図14はあくまで一例に過ぎない。例えば、図14では、到達時間画像データを 20 背景画像として線画像データ24を重畳表示する場合を説明したが、背景画像はこれに限 定されない。例えば、背景画像としては、Bモード画像データや、図2の硬さ画像データ 、更には後述する変位画像データ及び分散値画像データを用いても良い。

【0129】

このように、第4の実施形態に係る超音波診断装置10は、ROI23内のせん断速度 で走査領域全体にせん断波が伝播する場合の到達時間に基づいて、線画像データ20のよ うな目盛り線となる画像を表示する。これによれば、操作者は、ROI23内のせん断速 度で走査領域全体にせん断波が伝播する場合の到達時間を、他のパラメータと比較検討す ることが容易となる。

[0130]

また、第4の実施形態に係る超音波診断装置10は、ここで表示される線画像データ2 4を、到達時間の線画像データ20、線画像データ22、及び変位位置画像データのうち 任意の画像データとともに超音波画像データ上に重畳表示されても良い。これにより、操 作者は、複数のパラメータを同一の超音波画像データ上で比較検討することができる。 【0131】

また、第4の実施形態に係る超音波診断装置10が、所定領域内のせん断速度で走査領 域全体にせん断波が伝播する場合の到達時間に基づいて、線画像データ20のような目盛 り線となる画像を表示する処理は、到達時間の線画像データ20を生成したり表示したり する処理とは別に独立して実行可能である。

[0132]

(その他の実施形態)

さて、これまで第1~第4の実施形態について説明したが、これ以外にも、種々の異なる形態にて実施されて良い。なお、以下に説明する各処理は、到達時間の線画像データ2 0を生成したり表示したりする処理とは別に独立して実行可能である。

[0133]

(変位画像データの生成)

例えば、超音波診断装置10は、走査領域内の各点に対して、各点における変位の大き さに応じた画素値を割り当てた変位画像データを生成しても良い。

[0134**]**

例えば、画像生成部140は、走査領域内の各点に対して、各点における変位の大きさ 50

10

20

30

40

に応じた画素値を割り当てることで、変位画像データを生成する。具体的には、画像生成 部140は、信号処理部130によって複数時相に渡って算出された走査領域の各点にお ける変位を取得する。そして、画像生成部140は、各点について、複数時相に渡って算 出された変位のうちで最大となる変位量(最大変位量)を特定する。そして、画像生成部 140は、特定した各点の最大変位量に応じた画素値を各点に割り当てることで、変位画 像データを生成する。

【0135】

図15は、変位画像データについて説明するための図である。図15に示すように、画像生成部140は、走査領域内の各点が最大変位量によって色分けされた変位画像データを生成する。

[0136]

このように、画像生成部140は、走査領域内の各点に対して、各点における変位の大きさに応じた画素値を割り当てることで、変位画像データを生成する。なお、ここで、変位画像データを生成するのは、変位の大きさが生体組織の硬さの信頼性の指標となるからである。例えば、走査領域内の各点において、観測用パルスで観測するのに十分な大きさの変位が発生していれば、観測された生体組織の硬さの信頼性は高くなる。これに対して、走査領域内の各点において、十分な大きさの変位が発生していなければ、観測用パルスで観測するのが困難であるので、観測された生体組織の硬さの信頼性は低くなる。したがって、操作者は、変位画像データを確認することで、観測された生体組織の硬さの信頼性を容易に把握することができる。

[0137]

図15に示す例では、走査領域内の上方の点ほど変位が大きいので、信頼性が高いこと がわかる。一方、走査領域内の下方の点ほど変位が小さいので、信頼性が低いことがわか る。

【0138】

なお、図15の例では、各点における変位の大きさとして最大変位量を用いる場合を説 明したが、実施形態はこれに限定されるものではない。例えば、時間 - 変位曲線における 積分値(一定時間内の変位の合計値)に応じた画素値を各点に割り当てることで、変位画 像データを生成しても良い。また、例えば、時間 - 変位曲線における微分値(傾きの大き さ)に応じた画素値を各点に割り当てることで、変位画像データを生成しても良い。すな わち、せん断波の伝搬速度が最大となった時刻に応じた画素値を各点に割り当てることで 、変位画像データを生成しても良い。

[0139**]**

(分散値画像データの生成)

例えば、超音波診断装置10は、走査領域内の各点に対して、各点における分散値に応じた画素値を割り当てた分散値画像データを生成しても良い。

【 0 1 4 0 】

例えば、算出部174は、走査領域内の各点について、その点を含む所定領域内の各点 の到達時間の分散値を算出する。一例としては、算出部174は、図8の分散値算出用領 域21を用いて、走査領域内の各点の分散値を算出する。なお、分散値算出用領域21を 用いて分散値を算出する処理は、第2の実施形態で説明した内容と同様であるので、詳細 な説明は省略する。

【0141】

そして、画像生成部140は、走査領域内の各点に対して、各点における分散値に応じた画素値を割り当てることで、分散値画像データを生成する。具体的には、画像生成部1 40は、算出部174によって算出された走査領域内の各点の分散値を取得する。そして、画像生成部140は、取得した分散値に応じた画素値を各点に割り当てることで、分散 値画像データを生成する。

【0142】

このように、画像生成部140は、走査領域内の各点に対して、各点における分散値に ⁵⁰

(23)

応じた画素値を割り当てることで、分散値画像データを生成する。これにより、操作者は、分散値画像データを確認することで、観測された生体組織の硬さの信頼性を容易に把握 することができる。

(24)

【0143】

(各種パラメータによる画像データの変更)

また、例えば、超音波診断装置10は、超音波画像データに含まれる各点の画素値を、 各点における硬さの指標値、せん断波の到達時間、変位の大きさ、及び、分散値の各パラ メータのうちいずれか一つのパラメータを用いて変更しても良い。

[0144]

画像生成部140は、超音波画像データに含まれる各点の画素値を、各点における硬さ ¹⁰の指標値、せん断波の到達時間、変位の大きさ、及び、分散値の各パラメータのうちいず れか一つのパラメータを用いて変更する。

【0145】

例えば、画像生成部140は、超音波画像データの明るさを変更する処理を行う。図1 6は、明るさを変更する処理を説明するための図である。図16では、変位の大きさを用 いて硬さ画像データの明るさを変更する場合の処理を説明する。図16に示す例では、硬 さ画像データの領域25 aが暗くなり、領域25 bが黒く塗りつぶされている。なお、硬 さ画像データの上方の領域(領域25 aよりも上の領域)は、元の硬さ画像データの明る さのまま表示されている。

【0146】

例えば、画像生成部140は、走査領域内の各点における変位の大きさに基づいて、信 頼性を3段階で評価する。具体例を挙げると、画像生成部140は、最大変位量が第1閾 値以上である点の信頼性を「高」と判定する。また、画像生成部140は、最大変位量が 第1閾値未満、かつ、第2閾値以上である点の信頼性を「中」と判定する。ここで、第2 閾値は第1閾値より小さい値である。また、画像生成部140は、最大変位量が第2閾値 未満である点の信頼性を「低」と判定する。図16に示す例では、画像生成部140は、 硬さ画像データの上方の領域を「高」と判定し、領域25aを「中」と判定し、領域25 bを「低」と判定する。

【0147】

そして、画像生成部140は、信頼性が「高」と判定された領域については、元の画像 30 の明るさのままとし、変更しない。また、画像生成部140は、信頼性が「中」と判定さ れた領域25aについては、元の画像を暗くする。例えば、画像生成部140は、領域2 5aに含まれる点のRGB値を所定数減算することで、暗くする。また、画像生成部14 0は、信頼性が「低」と判定された領域25bについては、元の画像を黒く塗りつぶす。 例えば、画像生成部140は、領域25bに含まれる点のRGB値を0とすることで、黒 く塗りつぶす。このように、画像生成部140は、図2の硬さ画像データの明るさを、各 点の変位の大きさに基づいて変更する。

【0148】

また、例えば、画像生成部140は、超音波画像データの一部を非表示とする処理を行う。図17は、非表示とする処理を説明するための図である。図17では、変位の大きさを用いて硬さ画像データの一部を非表示とする場合の処理を説明する。図17に示す例では、硬さ画像データの領域26が白くなり、何も表示されていない。 【0149】

例えば、画像生成部140は、走査領域内の各点における変位の大きさに基づいて、信頼性を3段階で評価する。この評価は、例えば、図16で説明した方法と同様で良い。例 えば、画像生成部140は、硬さ画像データの上方の領域を「高」と判定し、領域25a を「中」と判定し、領域25bを「低」と判定する。

【0150】

そして、画像生成部140は、信頼性が「高」と判定された領域のみ、硬さ画像データ を生成し、信頼性が「中」及び「低」と判定された領域26については生成しない。この

20

(25)

ように、 画 像 生 成 部 1 4 0 は、 領 域 2 6 に 対 応 す る 硬 さ 画 像 デ ー タ を 生 成 し な い こ と で 、 領 域 2 6 を 非 表 示 と す る 。

【0151】

このように、画像生成部140は、例えば、硬さ画像データに含まれる各点の画素値を 、各点における変位の大きさを用いて変更する。なお、上記の例では、信頼性を3段階で 評価する場合を説明したが、これに限定されるものではない。例えば、画像生成部140 は、一つの閾値を用いることで、信頼性を2段階で評価しても良いし、複数の閾値を用い ることで、信頼性を多段階評価しても良い。

【0152】

また、ここでは、変位の大きさを用いて硬さ画像データを変更する場合を説明したが、 ¹⁰ これに限定されるものではない。すなわち、上述した各種の超音波画像データに含まれる 各点の画素値を、各点における硬さの指標値、せん断波の到達時間、変位の大きさ、及び 、分散値の各パラメータのうちいずれか一つのパラメータを用いて変更することができる

【0153】

これにより、超音波診断装置10は、生体組織の硬さやその信頼性など、各種のパラメータによって表現される情報を、他の超音波画像データ上に表現することができる。 【0154】

(各種パラメータの評価)

また、例えば、超音波診断装置10は、関心領域内の各点における各種のパラメータを ²⁰ 評価し、評価結果を表示させても良い。

【0155】

例えば、表示制御部173は、関心領域内の各点におけるせん断波に基づく生体組織の 硬さの指標値、到達時間、変位の大きさ、及び到達時間の分散値のうち少なくとも一つの パラメータを評価し、評価結果を表示させる。

【0156】

図18は、各種パラメータの評価について説明するための図である。図18には、図2 の硬さ画像データと、その画像上に指定された信頼性評価用のROI27とを例示する。 【0157】

例えば、表示制御部173は、操作者によりROI27の指定を受け付ける。そして、 表示制御部173は、受け付けたROI27内の各点における各種パラメータを評価する

[0158]

ー例としては、表示制御部173は、ROI27内の各点における分散値と、閾値とを 比較することで、信頼性を評価する。具体的には、表示制御部173は、ROI27内の 各点における分散値の平均値を算出する。そして、表示制御部173は、算出した平均値 と閾値とを比較して、平均値が閾値未満であれば、信頼度「高」と評価し、平均値が閾値 以上であれば、信頼度「低」と評価する。例えば、表示制御部173は、図18に示すよ うに、評価結果「信頼度:高い」をモニタ103に表示させる。

【0159】

なお、図18の例はあくまで一例である。例えば、表示制御部173は、ROI27内 の各点における分散値の平均値ではなく、ROI27内の分散値の最大値を閾値と比較す ることで、評価しても良い。また、モニタ103には評価結果のみならず、パラメータそ のものが表示されても良い。例えば、表示制御部173は、ROI27の各点の到達時間 の平均値を算出する。そして、表示制御部173は、算出した平均値「8.0msec」 をモニタ103上に表示させても良い。

[0160]

(プッシュパルスの送信位置及び観測方向の表示)

また、例えば、超音波診断装置10は、プッシュパルスの送信位置及び観測方向を表示 しても良い。 30

[0161]

図19は、プッシュパルスの送信位置及び観測方向の表示について説明するための図で ある。図19には、図2の硬さ画像データ上に、フラグ28a,28b,28cと、ライ ン29a,29b,29cとを例示する。なお、図19に示す例では、プッシュパルスが ライン29a,29b,29c上で送信され、それぞれの送信位置から右方向に伝播する せん断波が観測された場合を説明する。

【0162】

図19に示すように、画像生成部140は、送信制御部171からプッシュパルスの送 信位置と、その観測方向とをそれぞれ示す情報を取得する。そして、画像生成部140は 、左端のプッシュパルスの送信位置に対応する画像データとして、ライン29aを生成す る。このライン29aは、左端のプッシュパルスの送信位置に配置される。また、画像生 成部140は、左端のプッシュパルスの観測方向を示すために、フラグ28aを生成する 。この場合、観測方向はプッシュパルスの送信位置の右側であるので、画像生成部140 は、フラグ28aをライン29aの右側に配置する。このとき、画像生成部140は、フ ラグ28aの短辺をライン29aに重ねる。これにより、ライン29aから右方向に向か うフラグ28aによって、ライン29aの送信位置から右方向に伝播するせん断波が観測 されたことを明示することができる。

【 0 1 6 3 】

(並列表示)

また、例えば、超音波診断装置10は、上述した各種の超音波画像データと、それに重 ²⁰ 畳表示される目盛り線(線画像データ20等)とを並列表示しても良い。

【0164】

例えば、表示制御部173は、硬さ画像データ、到達時間画像データ、変位画像データ 、及び分散値画像データのうち、少なくとも二つの画像データを並列表示させる。そして 、表示制御部173は、並列表示させた画像データのうち、少なくとも一つの画像データ に、到達時間の線画像データ20、線画像データ22、変位位置画像データ、及び線画像 データ24のうち少なくとも一つを重畳表示させる。

[0165]

図20は、並列表示について説明するための図である。図20の左側には、硬さ画像デ ータ上に到達時間の線画像データ20を重畳表示させた画像を示し、右側には、到達時間 30 画像データ上に線画像データ24を重畳表示させた画像を示す。なお、ここに例示した画 像データは一例に過ぎず、表示制御部173は、各種の超音波画像データや、各種パラメ ータにより変更した画像データ(図16,17等)を並列表示して良い。また、表示制御 部173は、上述した到達時間の線画像データ20、線画像データ22、変位位置画像デ ータ、及び線画像データ24のうち任意の画像データを重畳表示して良い。これにより、 各種画像データの並列表示が可能となる。

[0166]

(線画像データ20の動画表示)

また、例えば、超音波診断装置10は、線画像データ20を動画として表示しても良い

[0167]

例えば、画像生成部140は、それぞれ異なる複数の到達時間ごとに、到達時間の線画 像データ20が複数生成する。そして、表示制御部173は、到達時間が早い順に、複数 の線画像データ20をそれぞれ表示させる。これにより、超音波診断装置10は、線画像 データ20を動画として表示する。

【0168】

なお、 超音 波診 断 装 置 1 0 は、 上述 した 線 画 像 デー タ 2 2 、 変 位 位 置 画 像 デー タ、 及び 、 線 画 像 デー タ 2 4 に つ い て も 同 様 に 、 動 画 と し て 表 示 す る こ と が で き る 。

【 0 1 6 9 】

(信頼性の指標となる独自パラメータの算出)

50

40

また、上記の実施形態では、硬さの信頼性の指標として、到達時間、変位の大きさ(最 大変位量)、及び到達時間の分散値のうち少なくとも一つを画像化して表示する場合を説 明したが、実施形態はこれに限定されるものではない。例えば、上記の硬さの信頼性の指 標となるパラメータを複数組み合わせることで、信頼性の指標となる独自のパラメータを 算出しても良い。

【 0 1 7 0 】

例えば、算出部174は、変位の大きさと分散値とに基づく値を、硬さの信頼性の指標 として算出する。ここで、変位の大きさは、例えば、最大変位量であり、この値が大きい ほど信頼性が高くなる。また、分散値は、この値が大きいほど、信頼性が低くなる。した がって、例えば、算出部174は、最大変位量と、分散値の逆数とをスコア化することで 、信頼性の指標となる独自のパラメータを算出する。

【 0 1 7 1 】

そして、線画像生成部172及び画像生成部140は、到達時間、変位の大きさ、又は 到達時間の分散値に代えて、算出された独自のパラメータを用いて、上記の実施形態にて 説明した処理を実行する。例えば、線画像生成部172は、線画像データ20に含まれる 各位置に、独自のパラメータに応じた画素値を割り当てる。また、例えば、画像生成部1 40は、走査領域内の各位置に対して、独自のパラメータに応じた画素値を割り当てた画 像データを背景画像として生成する。また、例えば、画像生成部140は、背景画像に含 まれる各位置の画素値を、走査領域内の各位置における独自のパラメータに応じて変更す る。

[0172]

なお、これに限らず、算出部174は、到達時間、変位の大きさ(最大変位量)、及び 到達時間の分散値のうち、任意のパラメータを任意数組み合わせることで、信頼性の指標 となる独自のパラメータを算出しても良い。

【0173】

(並列表示における信頼性表示の連動)

また、上述した並列表示においては、更に、並列表示の対象となる画像同士で信頼性表示を連動させても良い。すなわち、表示制御部173は、並列表示において、硬さ画像データに含まれる各位置における信頼性の指標となるパラメータ(例えば、到達時間、変位の大きさ、分散値、独自のパラメータ等)が所定の条件に満たない場合に、その位置の画像を非表示にするとともに、並列表示の対象となる線画像データ20のうち、その位置に対応する画像を非表示にする。

[0174]

図21は、並列表示される場合にモニタに表示される表示画像30の一例を示す図であ る。表示画像30は、重畳画像31と、重畳画像32とを含む。重畳画像31及び重畳画 像32は、ある走査領域の反射波データに基づいて生成されたBモード画像33上に、硬 さ画像34又は線画像群35が重畳された画像である。つまり、硬さ画像34は、Bモー ド画像33において、対応する領域の硬さを表す画像である。また、線画像群35は、線 画像35a,35b,35c・・・等、複数の線画像を含み、Bモード画像33において、 、対応する領域の到達時間に基づいて生成された画像である。

【0175】

ここで、硬さ画像34のうち、信頼性の低い領域36は、非表示となる。図21の例で は、領域36は、黒い線で囲まれた白色の領域で示される。例えば、表示制御部173は 、硬さ画像34に含まれる点のうち、分散値が所定の閾値以上となる点の画素値を変更す ることで、領域36を非表示とする。なお、ここでは、領域36を黒い線で囲まれた白色 の領域で示したが、これに限定されるものではない。例えば、領域36は、黒色の領域で 示されても良いし、無色の領域で示されても良い。なお、無色の領域で示される場合には 、背景であるBモード画像33がそのまま表示されることとなる。

【0176】

また、 図 2 1 において、 線画像群 3 5 のうち、 領域 3 6 に対応する領域 3 7 は、他の領 50

20

10

域とは異なる色で表示される。図21の例では、領域37は、黒い線で囲まれた白色の領 域で示される。例えば、表示制御部173は、線画像群35に含まれる点のうち、分散値 が所定の閾値以上となる点の画素値を変更することで、領域37を他の領域とは異なる色 で表示する。

【 0 1 7 7 】

このように、表示制御部173は、並列表示を行う場合に、並列表示の対象となる複数 の画像それぞれを、同一の信頼性の指標値の閾値を用いて変更する。これにより、表示制 御部173は、並列表示の対象となる複数の画像それぞれを連動させて非表示とすること が可能となる。

【0178】

なお、図21では、領域36を黒い線で囲まれた白色の領域で示したが、これに限定さ れるものではない。例えば、領域36は、黒色の領域で示されても良いし、無色の領域で 示されても良い。なお、無色の領域で示される場合には、背景であるBモード画像33が そのまま表示されることとなる。また、図21では、信頼性の指標値として、分散値が用 いられる場合を説明したが、実施形態はこれに限定されるものではない。例えば、信頼性 の指標となるパラメータとしては、到達時間、変位の大きさ、分散値、及び上記の独自の パラメータのうち、任意のパラメータが用いられれば良い。

【 0 1 7 9 】

なお、上記の実施形態の説明で図示した各装置の各構成要素は機能概念的なものであり 、必ずしも物理的に図示のように構成されていなくても良い。すなわち、各装置の分散・ 統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況 等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。更 に、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPUおよび当該 CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによ るハードウェアとして実現され得る。

[0 1 8 0 **]**

また、上記の実施形態で説明した超音波診断装置10における各処理は、予め用意され た画像処理プログラムを実行することによって実現することができる。この画像処理プロ グラムは、インターネット等のネットワークを介して配布することができる。また、この 画像処理プログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM 、MO、DVD等のコンピュータで読み取り可能な非一時的な記録媒体に記録され、コン ピュータによって非一時的な記録媒体から読み出されることによって実行することもでき る。

[0181]

以上説明した少なくともひとつの実施形態によれば、生体組織の硬さの信頼性を超音波 画像上に表すことができる。

【0182】

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したも のであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様 々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、 置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に 含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるもので ある。

【符号の説明】

- **[**0 1 8 3 **]**
- 10 超音波診断装置
- 110 送信部
- 140 画像生成部
- 170 制御部
- 172 線画像生成部

50

10

20

30

(30)

【図7】

【図3】

【図4】

【図8】

【図9】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図20】

フロントページの続き

(72)発明者 川岸 哲也栃木県大田原市下石上1385番地 東芝メディカルシステムズ株式会社内

(72)発明者 武藤 義美
 栃木県大田原市下石上1385番地 東芝メディカルシステムズ株式会社内
 (72)発明者 後藤 英二

栃木県大田原市下石上1385番地 東芝メディカルシステムズ株式会社内 (72)発明者 栗田 康一郎

栃木県大田原市下石上1385番地 東芝メディカルシステムズ株式会社内 (72)発明者 福田 省吾

栃木県大田原市下石上1385番地 東芝メディカルシステムズ株式会社内

Fターム(参考) 4C601 DD19 DD20 DD23 DE04 EE10 JB46 JC21 JC37 KK02 KK24 KK25 KK31