wo 2011/002914 A1 I 10KV 00 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

/AIV .;-;\
¥
d”Ik

(10) International Publication Number

WO 2011/002914 A1

ey
6 January 2011 (06.01.2011) PCT
(51) International Patent Classification:
GO6K 9/46 (2006.01)
(21) International Application Number:
PCT/US2010/040647
(22) International Filing Date:
30 June 2010 (30.06.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/222,092 30 June 2009 (30.06.2009) US
(71) Applicant (for all designated States except US): MAS-
SACHUSETTS INSTITUTE OF TECHNOLOGY
[US/US]; 77 Massachusetts Avenue, Cambridge, MA
02139 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): SZE, Vivienne [CA/
CA]; 74 Gormley Avenue, Toronto, Ontario M4V 1Z1
(CA). CHANDRAKASAN, Anantha [US/US]; 23 Sher-
man Street, Belmont, MA (US).
(74) Agent. NIEVES, Peter A.; Sheehan, Phinney, Bass +

Green, P.A.,
(US).

1000 Elm Street, Manchester, NH 03105

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR PROVIDING HIGH THROUGHPUT ENTROPY CODING USING SYNTAX ELE-

MENT PARTITIONING

woi-linary valued bin

yritux elene s S
Firanzar (- ’”9°
Syretax A S

m :J /i B',u,'al
bénary valued
symay alements I bvimﬁ
FIG. 7

308

&ir valuo fr pentes! mpdel update

ban vf;lua. _____
onplgvinaiel

Bypass
Coding
£ngina

306

(57) Abstract: A system and method for providing high throughput entropy coding contains the steps of: dividing syntax elements
of video into one or more group of syntax elements; placing each group into a separate partition, resulting in more than one parti-
tion; and processing more than one ot the more than one partition in parallel using entropy coding.

WO 2011/002914 PCT/US2010/040647

SYSTEM AND METHOD FOR PROVIDING HIGH THROUGHPUT ENTROPY
CODING USING SYNTAX ELEMENT PARTITIONING

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to co-pending U.S. Provisional
Application entitled, “SYSTEM AND METHOD FOR PROVIDING HIGH
THROUGHPUT CONTEXT BASED ADAPTIVE BINARY ARITHMETIC CODING
(CABAC) USING SYNTAX ELEMENT PARTITIONING,” having patent application
serial no. 61/222,092, filed June 30, 2009, which is entirely incorporated herein by

reference,

GOVERNMENT SUPPORT

This invention was made with Canadian government support under Grant Number
F3920201 awarded by the Natural Sciences and Engineering Research Council of Canada.

The government has certain rights in this invention.

FIELD OF THE INVENTION
The present invention relates to video compression, and more particularly,
provides functionality for compressing video using syntax element partitioning, as well as

hardware for performing this in an efficient manner.

BACKGROUND OF THE INVENTION
Given the growing pervasiveness of multimedia in recent years, one important

application that merits improvement is next generation video coding and decoding. Next

WO 2011/002914 PCT/US2010/040647

generation video coding and decoding has to address and support higher resolution and
higher frame rates, which require high processing performance.

As is well known, video coding is required to overcome the limitations and costs
of transmission bandwidth and data storage. Video codecs, which are devices or software
that enable video compression and/or decompression for digital video, can be loosely
classified into two categories: low power; and high performance. Both categories of
video codecs require improvement. As an example, as video requirements of multimedia
devices continue to become more demanding, such demands, especially with video
requirements, require such multimedia devices to provide high video performance,
however, increases in video performance are very demanding on processors and
application specific integrated circuits (ASICs), resulting in high power consumption.
For mobile devices, as well as other devices, low power consumption is a key
consideration. Specific to mobile devices, low power consumption translates to reduced
size, decreased weight, and lower cost. In addition, for non-mobile devices, it is still
desirable to decrease power consumption to decrease costs associated with power
consumption.

Real-time low-latency video playback is required for popular applications such as,
but not limited to, video conferencing. For real-time video playback, a coded video
picture should be decoded within an inter-frame time interval (e.g., 33.3 ms for 30 fps).

Low power video playback is an important requirement for battery-operated
mobile devices, such as, but not limited to, cellular telephones. An effective method of
power reduction is to trade-off performance (speed) for power via voltage scaling. At

lower voltages, less energy is consumed per operation however, each operation takes

WO 2011/002914 PCT/US2010/040647

longer to complete. This reduction in speed can be compensated for by increasing the
number of parallel operations performed by the battery-operated devices. In other words,
the hardware must be designed to operate faster than the target performance, namely, the
target frame rate and resolution, at nominal voltage, such that at lower voltage the
performance of the hardware would reach the target performance.

Accordingly, parallelism plays a key role in achieving both real-time and low
power video playback. With the increasing frame rate and resolution required for future
video coding applications, the need for parallelism in the video is ever more important.
The amount of parallelism that can be used is limited by the video coding standard, or
algorithm used by the hardware. Certain dependencies within the video coding standard
make it difficult to perform operations in parallel. As an example, the entropy coding
engine called Context-based Adaptive Binary Arithmetic Coding (CABAC) has been
identified as a key bottleneck in H.264/AVC video decoders. Parallelism is difficult to
achieve with the existing H.264/AVC CABAC due to its inherent serial nature and strong
data dependencies, speciﬁcaliy, the H.264/AVC CABAC is of a recursive nature.
Consequently, it is difficult to parallelize without sacrificing coding efficiency, power,
delay, and area — all of which are important to video encoding/decoding. For instance,
within the H.264/AVC standard, a frame can be broken up into multiple independent
H.264/AVC slices to enable parallel processing in the CABAC, but this comes at a cost
of significant reduction in the coding efficiency, namely, poorer compression, since
redundancy cannot be eliminated between the slices.

Increased throughput of a CABAC decoding engine is désirable. Unfortunately,

data is decoded by the CABAC decoding engine in a serial manner, which is performed

WO 2011/002914 PCT/US2010/040647

one binary symbol (bin) at a time. It is desirable to increase the number of bins processed
per second, or every cycle. As an example, the throughput of a H.264/AVC CABAC
decoding engine is measured by the number of bins it can decode per second (bins/sec).
Throughput requirement for video decoding can exceed 2 Gbins/sec.

CABAC is a form of entropy coding that is executed by a processor. Entropy
coding involves compressing data based on the probability of its occurrence. A simple
example is wanting to assign short codewords (fewer bits) to elements that occur
frequently and longer codewords (more bits) to elements that occur less frequently. In
the case of video coding, CABAC is used to compress syntax elements, such as, for
example, motion vectors, macroblock types, coefficients, and significance maps.
Macroblocks are 16x16 blocks of pixels. Syntax elements are used to describe properties
of a macroblock. Syntax elements are also composed of bins, which are processed by the
CABAC encoding/decoding engine. Bins dictate the workload of the CABAC
encoding/decoding engine. Consequently, speed/throughput is stated in bins/sec.
Referring to a CABAC encoder, the CABAC encoder processes data as follows: Input:
Syntax Elements (bins) = Output: encoded bits. Alternatively, referring to a CABAC
decoder, the CABAC decoder processes the data as follows: Input: encoded bits =>
Output: decoded bins (also referred to as syntax elements).

There have been several proposals for the next generation video coding standard
that present various ways to increase the throughput of the CABAC engine. Certain
contributions have looked at various ways of using slices to increase parallel processing
for CABAC. Unfortunately, methods provided by such contributions come at the cost of

coding efficiency penalty when compared to H.264/AVC, having a single slice per frame,

WO 2011/002914 PCT/US2010/040647

and do not address hardware implementation complexities. This coding efficiency
penalty of the slice approach can be attributed to three key sources: 1) reduced context
training; 2) no context selection across slices; and 3) start code and header for each slice.
Another critical drawback of these approaches is that the entire CABAC engine needs to
be replicated, which significantly increases area costs.

Thus, a heretofore unaddressed need exists in the industry to address the

aforementioned deficiencies and inadequacies.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide a system and method for providing
high throughput entropy coding using syntax element partitioning. Briefly described, in
architecture, one embodiment of the system, among others, can be implemented as
follows. The system contains at least two entropy coding engines and a computer. The
computer has a memory and a processor configured by the memory to perform the steps
of: dividing syntax elements of video into one or more group of syntax elements; placing
each group into a separate partition, resulting in more than one partition; and providing
each separate partition to a separate one of the at least two entropy coding engines,
wherein the at least two entropy coding engines process the separate partitions in parallel
using entropy coding.

The present invention can also be viewed as providing methods for providing high
throughput entropy coding. In this regard, one embodiment of such a method, among
others, can be broadly summarized by the following steps: dividing syntax elements of

video into one or more group of syntax elements; placing each group into a separate

WO 2011/002914 PCT/US2010/040647

partition, resulting in more than one partition; and processing more than one of the more
than one partition in parallel using entropy coding.

Other systems, methods, features, and advantages of the present invention will be
or become apparent to one with skill in the art upon examination of the following
drawings and detailed description. It is intended that all such additional systems,
methods, features, and advantages be included within this description, be within the

scope of the present invention, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the invention can be better understood with reference to the
following drawings. The components in the drawings are not necessarily to scale,
emphasis instead being placed upon clearly illustrating the principles of the present
invention. Moreover, in the drawings, like reference numerals designate corresponding
parts throughout the several views.

FIG. 1 is a schematic diagram illustrating the present system in accordance with an
embodiment of the invention.

FIG. 2 further illustrates the generic computer of FIG. 1.

FIG. 3 is a flow chart providing a general description of the process used by the
computer to separate received data into groups of syntax elements for transmission to
separate CABAC engines for parallel processing, also referred to as encoding.

FIG. 4 is a flow chart providing a general description of the process used by the

computer during decoding.

WO 2011/002914 PCT/US2010/040647

FIG. 5 is a schematic diagram further illustrating the separation of an H.264/AVC
slice into syntax element groups that are mapped to different syntax element partitions
(SEP) having similar workloads.

FIG. 6A and FIG. 6B are pie charts illustrating that the distribution of the bins per
syntax element changes depending on the quantization of the slice.

FIG. 7 is a block diagram illustrating a single CABAC encoder that would be used
to encode a group of syntax elements, resulting in a bitstream.

FIG. 8 is a block diagram illustrating a single CABAC decoder that would be used
to decode received encoded bits, resulting in syntax elements.

FIG. 9 is a schematic diagram illustrating dependencies between five syntax
element groups (or partitions).

FIG. 10 illustrates the processing of different macroblocks over time by MBINFO,
CBP, PRED, SIGMAP, and COEFF syntax element group CABAC engines, and how
multiple macroblocks are processed in parallel.

FIG. 11 is a schematic diagram providing an example of an architecture for

CABAC engines run in parallel, using FIFOs.

DETAILED DESCRIPTION
The present system and method provide parallel architectures and parallel
processing for delivering power and performance required for video coding, while
achieving high processing performance with low power consumption. The present
system and method provides an approach that increases parallelism without large

overhead costs by changing functionality associated with entropy coding. Specifically,

WO 2011/002914 PCT/US2010/040647

the present system and method changes the order with which data is processed in an
entropy coding engine to eliminate certain data dependencies, enabling parallel
processing. The present description provides the example of using a CABAC
encoding/decoding engine (hereafter, “the CABAC engine™) as the entropy coding
engine, although it should be noted that the present invention is not limited to using a
CABAC engine as the entropy coding engine. In the present description, it is noted that a
CABAC encoder is a CABAC encoding engine and a CABAC decoder is a CABAC
decoding engine.

It is important to note that although the CABAC engine posses a greater problem
during video decoding than video encoding, it is still useful to enable parallelism during
encoding for the same power and performance reasons. Specifically, the present system
and method parallelizes the CABAC engine both during video encoding and decoding.

In video decoding, the frame rate and resolution of the playback video dictates the
performance requirement of the video decoder hardware. Over the past years, video has
become increasingly ubiquitous due to the reduction in storage and transmission costs.
The number of different types of video content has been growing rapidly ranging from
professional cinema to news reports to, most recently, user-generated content. In addition,
the numerous modes of transmission of the video have also expanded from broadcast and
playback of local storage material (e.g. DVD), to streaming across the Internet and
cellular network. Both of these factors cause the frame rate and resolution of today’s
video content to vary widely. For instance, high definition (e.g. 720HD(1280x720) or
1080HD(1920x1080)) is used for playback movies and broadcast television on a high

resolution monitor. A higher frame rate (e.g. 60 or 120 fps) is used for high-action sports.

WO 2011/002914 PCT/US2010/040647

Video conferencing and streaming media can be done at lower resolutions (e.g.
CIF(352x288) or VGA(640x480)) and frame rates (e.g. 15 or 30 fps) for display on a
phone. A highly scalable video decoder is needed to support the wide variety of encoded
sequences. The present system and method addresses this need.

In addition, the use of video playback on handheld baﬁery-operated devices is
increasingly common. It is expected that a video decoder on a cellphone can playback
different types of video under various use cases. For instance, it should be able to
playback low to medium resolution/frame rate videos locally on the phone that perhaps
were transmitted over a low bandwidth network; with the growing popularity of video
capture on a cellphone, it may also be convenient to be able to connect the phone to a
monitor, or use a pico projector on the phone, and playback high resolution and fast
frame rate sequences. Having a single video decoder ASIC that is scalable and can be
used for all these applications is convenient and cost effective. Consequently, it is
impoﬁant to minimize and scale the power across this wide range.

A trade-off between power and performance (speed) can be achieved using
voltage and frequency scaling. Specifically, for a given workload or target performance,
the power can be minimized by scaling down the voltage and frequency until the
performance is just met. As a result, the power consumed for a given application can be
minimized. Parallel algorithms, such as the present syntax element partitioning, enables
a third dimension of scalability with coding efficiency. For instance, increasing the
number of parallel partitions enables the frequency and voltage to be scaled down even
further for the same target performance, for additional power savings at the cost of lower

coding efficiency.

WO 2011/002914 PCT/US2010/040647
10

This approach can also be applied to the video encoding hardware where rather
than having the video dictate the performance requirement for video decoding, the user
has the ability to select the power-performance-coding efficiency point depending on the
desired application.

As is well known by those having ordinary skill in the art, video compression is
achieved by removing redundant information in a video sequence. Many different video
coding standards exist, examples of which include MPEG-1, MPEG-2, MPEG-4, H.261,
H.263, and H.264/AVC. It should be noted that the present invention is not intended to
be limited in application of any specific video coding standard.

The following description is provided using the example of the H.264/AVC
standard. In H.264/AVC, each frame of a video can be broken into several slices. Slices
are self-contained such that they can be decoded without knowledge of other slices,
which enables resynchronization. The slices are then divided into blocks of 16x16 pixels
called macroblocks, which can then be further divided into blocks of 8x16, 16x8, 8x8,
4x8, 8x4, down to 4x4 pixels.

The present system and method, which provides syntax element parallelism,
addresses the reduction of context training and context selection, which are listed as
problems within the prior art. A context is a probability model used to estimate the
statistics of a syntax element; the estimated probability of the syntax element is then used
in its compression. Several contexts are allocated to each syntax element and the context
selected for encoding/decoding a given syntax element depends on the properties of the
macroblocks surrounding the current macroblock that is described by the syntax element

being processed.

WO 2011/002914 PCT/US2010/040647
11

It is noted that the probabilities of the syntax elements are unknown at the
beginning of decoding and are different for different video sequences. Consequently, one
of the properties that give CABAC its high coding efficiency is that the contexts, which
store the probabilities of the elements to be coded, are adaptive. Specifically, while
encoding/decoding, the contexts undergo training to achieve an accurate estimate of the
element probabilities. A better estimate results in better coding efficiency.

Entropy slices are similar to H.264/AVC slices as it breaks up the frame for
parallel processing at the macroblock level (e.g., rows 1-20 belong to slice A and rows
21-40 belong to slice B). One of the drawbacks of breaking up a picture into several
entropy slices is that there are fewer macroblocks and conseqﬁently syntax elements per
slice. In order to enable parallel processing, the entropy slices should be independent of
one another. This means that the entropy engine is restarted every entropy slice and that
the context undergoes less training and can result in a poorer estimate of the probability.
Almost half of the coding efficiency loss seen in the prior art is due to reduced training.

Key ideas addressed by the present invention for achieving high coding efficiency,
also referred to as good compression, include:

1) Since different syntax elements have different statistics, different syntax elements
should have different probability models (also known as the context). As an
example, motion vectors will have a different probability distribution than
coefficients.

2) Syntax elements that are spatially close to each other are typically correlated. As a

result, contexts are selected based on surrounding syntax elements.

WO 2011/002914 PCT/US2010/040647
12

3) Accurately estimate the probability/contexts; probabilities of syntax elements are
different depending on the video sequence and also will change throughout the
video sequence. Consequently, in accordance with one embodiment of the
invention, the context undergoes training during encoding/decoding to achieve an
accurate estimate of the probability.

FIG. 1 is a schematic diagram illustrating the present system in accordance with
an embodiment of the invention. It should be noted that the present system is located
within the entropy coding stage of video coding.

As shown by FIG. 1, the present system contains a computer 10 and a series of
CABAC engines 100A, 100B, 100C, 100D, 100E (referred to together as 100) that are
located in parallel. The computer 10 is provided to separate received data and send
separated data to the different CABAC engines 100. Specifically, as described in further
detail herein, the computer 10 receives a slice and groups syntax elements of the slice
into separate pértition groups. The computer 10 then attempts to allocate an
approximately equal number of binary symbols to each CABAC engine 100 based on
syntax elements, after which each CABAC engine 100 works in parallel to process
received syntax elements into compressed bits for transmission as a bitstream. FIG. 2
further illustrates a generic computer, while FIG. 7 further illustrates an exemplary
CABAC engine 100A.

Functionality of the present system can be implemented in software, firmware,
hardware, or a combination thereof. In a first exemplary embodiment, a portion of the
system is implemented in software, as an executable program, and is executed by a

special or general-purpose computer, such as a personal computer, personal data assistant,

WO 2011/002914 PCT/US2010/040647
13

smart phone, workstation, minicomputer, or mainframe computer. The following, in

accordance with the first exemplary embodiment of the invention, provides an example

where a portion of the functionality performed in accordance with the present invention is

performed by a general purpose computer having software therein.

It should be noted that in accordance with another embodiment of the invention,
all functionality of the computer may instead by provided by logic within an integrated
circuit, or through a different medium.

Referring to FIG. 2, generally, in terms of hardware architecture, the computer 10
includes a processor 12, memory 20, storage device 30, and one or more input and/or
output (I/O) devices 32 (or peripherals) that are communicatively coupled via a local
interface 34. The local interface 34 can be, for example but not limited to, one or more
buses or other wired or wireless connections, as is known in the art. The local interface
34 may have additional elements, which are omitted for simplicity, such as controllers,
buffers (caches), drivers, repeaters, and receivers, to enable communications. Further,
the local interface 34 may include address, control, and/or data connections to enable
appropriate communications among the aforementioned components.

The processor 12 is a hardware device for executing software, particularly that
stored in the memory 20. The processor 12 can be any custom made or commercially
available processor, a central processjng unit (CPU), an auxiliary processor among
several processors associated with the computer 10, a semiconductor based
microprocessor (in the form of a microchip or chip set), a macroprocessor, or generally

any device for executing software instructions.

WO 2011/002914 PCT/US2010/040647
14

The memory 20 can include any one or combination of volatile memory elements
(e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and
nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, efc.). Moreover,
the memory 20 may incorporate electronic, magnetic, optical, and/or other types of
storage media. Note that the memory 20 can have a distributed architecture, where
various components are situated remote from one another, but can be accessed by the
processor 12.

The software 22 in the memory 20 may include one or more separate programs,
each of which contains an ordered listing of executable instructions for implementing
logical functions of the computer 10, as described below. In the example of FIG. 2, the
software 22 in the memory 20 defines the computer 10 functionality in accordance with
the present invention. In addition, although not required, it is possible for the memory 20
to contain an operating system (O/S) 36. The operating system 36 essentially controls
the execution of computer programs and provides scheduling, input-output control, file
and data management, memory management, and communication control and related
services.

Functionality of the computer 10 may be provided by a source program,
executable program (object code), script, or any other entity containing a set of
instructions to be performed. When a source program, then the program needs to be
translated via a compiler, assembler, interpreter, or the like, which may or may not be
included within the memory 20, so as to operate properly in connection with the O/S 36.

Furthermore, the functionality of the computer 10 can be written as (a) an object oriented

WO 2011/002914 PCT/US2010/040647
15 '

programming language, which has classes of data and methods, or (b) a procedure

programming.language, which has routines, subroutines, and/or functions.

The I/O devices 32 may include input devices, for example but not limited to, a
touch screen, a keyboard, mouse, scanner, microphone, or other input device.
Furthermore, the I/O devices 32 may also include output devices, for example but not
limited to, a display, or other output devices. The I/O devices 32 may further include
devices that communicate via both inputs and outputs, for instance but nof limited to, a
modulator/demodulator (modem; for accessing another device, system, or network), a
radio frequency (RF), wireless, or other transceiver, a telephonic interface, a bridge, a
router, or other devices that function both as an input and an output.

When the computer 10 is in operation, the processor 12 is configured to execute
.the software 22 stored within the memory 20, to communicate data to and from the
memory 20, and to generally control operations of the computer 10 pursuant to the
software 22. The software 22 and the O/S 36, in whole or in part, but typically the latter,
are read by the processor 12, perhaps buffered within the processor 12, and then executed.

When the functionality of the computer 10 is implemented in software, as is
shown in FIG. 2, it should be noted that the functionality can be stored on any computer
readable medium for use by or in connection with any computer related system or method.
In the context of this documént, a computer readable medium is an electronic, magnetic,
optical, or other physical device or means that can contain or store a computer program
for use by or in connection with a computer related system or method. The functionality
can be embodied in any computer-readable medium for use by or in connection with an

1S
instruction execution system, apparatus, or device, such as a computer-based system,

WO 2011/002914 PCT/US2010/040647
16

processor-containing system, or other system that can fetch the instructions from the
instruction execution system, apparatus, or device and execute the instructions. In the
context of this document, a "computer-readable medium" can be any means that can store,
communicate, propagate, or transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The computer readable medium can be, for example but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagatién medium. More specific examples (a nonexhaustive list)
of the computer-readable medium would include the following: an electrical connection
(electronic) having one or more wires, a portable computer diskette (magnetic), a random
access memory (RAM) (electronic), a read-only memory (ROM) (electronic), an erasable
programmable read-only memory (EPROM, EEPROM, or Flash memory) (electronic),
an optical fiber (optical), and a portable compact disc read-only memory (CDROM)
(optical). Note that the computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the program can be electronically
captured, via for instance optical scanning of the paper or other medium, then compiled,
interpreted or otherwise processed in a suitable manner if necessary, and then stored in a
computer memory.

The storage device 30 of the computer 10 may be one of many different types of
storage device, including a stationary storage device or portable storage device. As an
example, the storage device 30 may be a magnetic tape, disk, flash memory, volatile
memory, or a different storage device. In addition, the storage device 30 may be a secure

digital memory card or any other removable storage device 30.

WO 2011/002914 PCT/US2010/040647
17

FIG. 3 is a flow chart 200 providing a general description of the process used by
the computer 10 during encoding for separating received data into groups of syntax
elements for transmission to separate CABAC engines 100 for parallel processing at the
encoder. It should be noted that any process descriptions or blocks in flow charts should
be understood as representing modules, segments, portions of code, or steps that include
one or more instructions for implementing specific logical functions in the process, and
alternative implementations are included within the scope of the present invention in
which functions may be executed out of order from that shown or discussed, including
substantially concurrently or in reverse order, depending on the functionality involved, as
would be understood by those reasonably skilled in the art of the present invention.

As shown by block 202 a slice is received by the computer 10. The slice is
separated into syntax elements (block 204). Since one having ordinary skill in the art
would know how to separate a slice into syntax elements, this process is not described in
further detail herein.

As shown by block 206, the syntax elements are then grouped to form separate
groups of syntax elements. Each group of syntax elements is then transmitted to a
separate CABAC engine 100 for processing in parallel (block 208), after which the
groups of syntax elements are parallel processed (block 210). For encoding, each
CABAC engine 100 receives one group of syntax elements for processing from syntax
elements to encoded bits. A start code and partition type is then added to each partition
(block 212). An example of a partition type in a NAL unit value, as explained herein.

In accordance with the present invention, one or more of multiple different

methods may be used to form the groups of syntax elements for transmission to the

WO 2011/002914 PCT/US2010/040647
18

separate CABAC engines 100. The following provides examples of different methods
that may be used to form the groups of syntax elements.

A first method that may be used to form groups includes running video processing
simulations on multiple video streams using the CABAC engines 100 to determine an
average number of bins per syntax element. After running video processing simulations a
determination can be made regarding what is an average number of bins per syntax
- element. Syntax elements with a low number of bins can then be grouped together so as
to distribute syntax elements into groups in as equal a manner as possible, resulting in
groups of syntax elements having similar work distributions (i.e. similar number of bins).

A second method that may be used to form groups of syntax elements involves
prior knowledge of an average number of bins per syntax element for a given video
standard. Having such prior knowledge allows for prior grouping of syntax elements so
as to provide similar workload for each CABAC engine 100. Received syntax elements
are then sorted and grouped into the predefined different groups and each sorted group of
received syntax elements is provided to a different CABAC engine 100 in accordance
with the predefined distribution in a manner so as to provide a similar workload for each
CABAC engine 100 during parallel processing.

As is known by those having ordinary skill in the art, there are many different
types of syntax elements. As an example, there are currently twenty-one (21) types of
syntax elements in the H.264/AVC standard. As previously mentioned, to reduce
complexity, the present system and method provides for grouping of the syntax elements
into multiple partitions, or groups, where an approximately equal number of binary

symbols is allocated to each CABAC engine 100 based on syntax elements.

WO 2011/002914

An example of groupings of syntax elements is shown by table 1 below. As an

PCT/US2010/040647

19

example, one can form five different partitions (groups) of syntax elements. In the

example represented by table 1, a first group is entitled MBINFO, a second group is
entitled PRED, a third group is entitled CBP, a fourth group is entitled SIGMAP, and a
fifth group is entitled COEFF. The grouping of syntax elements is determined based on
the distributions of their respective bins. In other words, it is ideal to make sure that the

number of bins in each group is quite similar so that the workload of CABAC engines

100 is balanced.

Table 1: Syntax Element Groups

Group

Syntax Element

MBINFO

Mb_skip flag, mb_type, sub mb_type,

mb_field_decoded flag, end of slice flag

PRED

prev_intrad4x4 pred mode flag,
rem_intra4x4_pred_mode,

prev_intra8x8 pred mode flag,

rem_intra8x8 pred mode,

intra_chroma_pred mode,ref idx 10, ref idx 11,

mvd_10, mvd 11

CBP

transform_size 8x8 flag, coded block pattern,

coded_block flag

SIGMAP

significant_coeff flag,

last_significant coeff flag

WO 2011/002914 PCT/US2010/040647
20

COEFF coeff_abs level minusl, coeff sign flag

Syntax element partitioning for CABAC can benefit in terms of error resilience.
For instance, if the COEFF partition is corrupted, the other partitions can still be decoded
and be used to generate an estimate of what the decoded frame should look like. Also,
certain partitions contain more critical information than others (e.g. MBINFO is more
critical than COEFF or SIGMAP). More error protection (e.g. block codes) can be used
on partitions with more critical data.

It should be noted that the present invention is not limited to the abovementioned
groups of syntax elements. Instead, one of many different groups of syntax elements may
be provided, each having one or more other syntax elements.

It should also be noted that in accordance with an alternative embodiment of the
invention, a single syntax element may be assigned to each CABAC engine 100. In
addition, one or more different techniques may be used to continually modify which
syntax elements fall into which groupings for assigning to CABAC engines 100.

While the abovementioned provides the example of two methods that may be
used for grouping of syntax elements, one or more of many different methods may be
used to group the syntax elements so as to provide similar work distribution for each of
the CABAC engines 100. It should also be known that while it is preferred for the
CABAC engines 100 to have a similar work distribution, in accordance with an
alternative embodiment of the invention, the CABAC engines 100 may not have similar

work distributions, while the CABAC engines 100 do still work in parallel.

WO 2011/002914 PCT/US2010/040647
21

FIG. 4 is a flow chart 250 providing a general description of the process used by
the computer 10 during decoding to separate received data into groups of syntax elements
for transmission to separate CABAC engines 100 for parallel processing. As shown by
block 252, the received bitstream is parsed to find the start code to identify the start of a
partition. The type of partition is then identified (block 254). As shown by block 256,
the partition is then sent to one of the CABAC engines for deciding, to result in a syntax
group.

FIG. 5 is a schematic diagram further illustrating the separation of an H.264/AVC
slice, as well as syntax element partitioning into syntax element groups having similar
workloads. FIG. 5 illustrates the five syntax element groups previously mentioned, as
well as how the COEFF and SIGMAP syntax element groups require more of a workload
by associated CABAC engines 100. It is clear from FIG. 5 that the workload for each
partition is much less than if all partitions were left in a single slice. In‘FIG. 5,
‘macroblocks are represented as MBO, MB1, and MB2, while different syntax elements
are represented by differént shading patterns. A start code prefix for demarcation is used
at the beginning of each partition.

A form of signaling is required to indicate which syntax element group is stored
in a given partition. As an example, in the case of H.264/AVC, the overhead of signaling
syntax element partitions can be minimized by assigning one of the several of the
currently unspecified network abstraction layer (NAL) unit value (24 to 31), to each of
the five partitions, which is sent in the NAL header. This assumes one partition per NAL

unit. Alternatively, the information can be kept in a slice header. Similar to data

WO 2011/002914 PCT/US2010/040647
22
partitioning, a shortened slice header can be sent for four of the five partitions, such that
redundant slice header data is not repeated unnecessarily.

In accordance with an alternative embodiment of the invention, it may be
desirable to decrease the number of syntax element groups to a smaller number. As an
example, the overhead of the headers and start code can be reduced by adaptively
combining the five groups into three partitions based on the quantization of the slice. To
maximize throughput for varying quantization, the allocation of groups to each partition
should be adaptive. It should be noted that decreasing the number of syntax element
partitions allows for a decrease in the number of CABAC engines required, thereby
decreasing area costs on a chip containing the CABAC engines.

FIG. 6A and FIG. 6B are pie charts illustrating that the distribution of the bins per
syntax element changes depending on the quantization of the slice. FIG. 6A provides the
example of using a low quantization. As shown by FIG. 6A, the SIGMAP and COEFF
groups contain most of the bin distributions for a low quantization, while the MBINFO,
PRED, and CBP groups contain small portions of the bin distributions. As a result, if it
was desirable to use three syntax partitions instead of five, the MBINFO, PRED, and
CBP groups could be combined into one partition and provided to one CABAC engine,
while the COEFF group is placed in one partition is sent to a seccond CABAC engine, and
the SIGMAP group is placed in one partition is sent to a third CABAC engine.

FIG. 6B provides the example of using a high quanti_zation. As shown by FIG. 6B,
the MBINFO and PRED groups contain most of the bin distributions for a high
quantization, while the CBP, SIGMAP, and COEFF groups contain small portions of the

bin distributions. As a result, if it was desirable to use three syntax partitions instead of

WO 2011/002914 PCT/US2010/040647
23

five, the CBP, SIGMAP, and COEFF groups could be combined into one partition and

provided to one CABAC engine, while the MBINFO group is placed in one is sent to a
second CABAC engine, and the PRED group is placed in one is sent to a third CABAC
engine.

It should be noted that adaptive quantization is only necessary for P frames. In I
frames, SIGMAP and COEFF tend to dominate regardless of quantization, and thus the
high quantization mode is used. A quantization threshold can be different for each
sequence and transmitted in the sequence parameter set. The quantization threshold can
be selected by the encoder, for example by using either a two-pass approach or based on
the number of non-zero coefficients.

In practice, the entropy encoder (CABAC encoder) takes as input the sequence of
symbols (i.e. syntax elements) representing samples and control information and maps
this onto a binary bitstream. In contrast with earlier compression stages, the entropy
coding is lossless; the decoder will reproduce the exact sequence of symbols that was
input to the entropy encoder during compression.

For exemplary purposes, H.264’s implementation of CABAC creates the
bitstream in three stages. The first stage is binarization. In binarization, each symbol to
be output is uniquely mapped onto a binary string, called a bin string. Each bit position
in the bin string is called a bin. Each bin is then passed to one of two coding modes: in
regular coding mode, the next step, context modelling, is applied and the resulting
context model and bin value are passed to a binary arithmetic coding engine; in bypass
mode, context modelling is skipped and the bin is passed directly to a bypass coding

engine, skipping the context modelling stage.

WO 2011/002914 PCT/US2010/040647
24

The second stage is context modeling. In context modeling, which is only used
for regular coding mode, a bin is categorized for coding under a particular probability
model. Each probability model has its state represented by a context variable, which is a
pair (most probable symbol in {0, 1}, probability of less probable symbol). Arithmetic
coding is applied using the chosen context model and updates its context variable.

The third stage in the implementation of CABAC is binary arithmetic coding. In
binary arithmetic coding the value of the bin is used to update the context variable if
applicable, and bits are output into the bitstream.

FIG. 7 is a block diagram illustrating a single CABAC encoder 100A that would
be used to encode a group of syntax elements, resulting in a bitstream. As shown by FIG.
7, the CABAC encoder 100A contains a binarizer 302, which receives non-binary syntax
elements. The non-binary syntax elements pass through the binarizer 302 to be mapped
to binary symbols, also referred to as bins. The bins are received by a context modeler
304. The context modeler 304 categorizes each bin for coding under a particular
probability model, where each probability model has its state represented by a context
variable that is a pair. Specifically, a probability model is assigned to each bin for
compression of the bin, where the assigning depends on what syntax element each bin
belongs to. Since this process is known to one having ordinary skill in the art, further
description of probability model selection is not provided herein.

Since each CABAC engine 100 only processes a select group of syntax elements,
namely, the syntax elements within the groups assigned to the CABAC engine 100, the
context modeler 304 can be smaller in size. Specifically, with fewer syntax elements

assigned to a specific CABAC engine 100, the context modeler 304 stores fewer

WO 2011/002914 ’s PCT/US2010/040647
probability models, namely, only the probability models associated with the group of
syntax elements assigned to the CABAC engine 100.

A binary arithmetic coder 306 of the CABAC encoder 100A receives the bin and
probability model for compression of the bin, to create compressed bits, resulting in a
bitstream. As shown by FIG. 7, the binary arithmetic coder 306 contains a regular coding
engine 308 and a bypass coding engine 310. The majority of the bins are compressed
with the two forms of arithmetic coding, namely regular and bypass. Bypass coding
assumes a uniform distribution for bins, while regular coding requires context modeling
to estimate the bin distribution.

FIG. 8 is a block diagram illustrating a single CABAC decoder 350 for decoding
received bitstreams resulting in syntax elements. The computer receives an encoded
bitstream and searches for start codes to find the beginning of partitions. The partitions
are then sent to parallel CABAC decoders, one of which is illustrated by FIG. 8.

Encoded bits are received by an arithmetic decoder 352, which converts received
encoded bits to decoded bins. A context modeler 354 is used for updating probabilities,
and decoded bins are received by a de-binarizer 356, which debinarizes the decoded bins,
resulting in the syntax elements.

It should be noted that there exist dependencies between the five syntax element
groups (or partitions). These dependencies are specifically important in the CABAC
decoder 350. FIG. 9 better illustrates these dependencies. Each block in FIG. 9
represents the context modeler of each CABAC engine for each syntax element group
(MBINFO 402, PRED 404, CBP 406, SIGMAP 408, COEFF 410), and the arrows

between the blocks represent the dependencies between the context modeler for each

WO 2011/002914 PCT/US2010/040647
26

syntax element group. As previously mentioned, the context modeler performs context
selection to determine which probability model (context) to use for each bin. In order to
assign probability models for bins in PRED 404 and decode the PRED syntax elements, it
is necessary to know what type of prediction, namely, intra prediction or motion
compensation, is used. The type of prediction used in a macroblock is determined from
the syntax elements of MBINFO 402. Thus PRED 404 depends on MBINFO 402.
Similarly, the size of the blocks in a macroblock is also determined by syntax elements of
MBINFO 402, which are necessary to know before one can decode syntax elements in
CBP 406. In addition, SIGMAP 408 depends on information contained in the syntax
elements of CBP 406, and COEFF 410 depends on information contained in the syntax
elements of SIGMAP 408. The abovementioned dependencies are provided for
examplary purposes and the present invention is not intended to be limited by the same.

Due to the dependencies illustrated by FIG. 9, the syntax element groups of
different macroblocks will be processed at the same time. An illustration of this is
provided by the schematic diagram of FIG. 10. FIG. 10 illustrates the processing of
different macroblocks over time by the MBINFO, CBP, PRED, SIGMAP, and COEFF
syntax element group CABAC engines, and how multiple macroblocks are processed in
parallel. InFIG. 10, macroblocks are illustrated as MBx, where x represents the number
of the macroblock being processed by the CABAC engine.

As illustrated by the example of FIG. 10, the COEFF syntax elements of
macroblock MBO cannot be processed until the SIGMAP syntax elements of MBO0 have
been decoded. In addition: the CBP syntax elements of macroblock MBO cannot be

processed until the MBINFO syntax elements of MBO have been decoded; the PRED

WO 2011/002914 - PCT/US2010/040647
syntax elements of macroblock MBO cannot be processed until the MBINFO syntax
elements of MBO have been decoded and the CBP syntax elements of MBO have been
decoded; and the SIGMAP syntax elements of macroblock MBO0 canﬁot be processed
until the CBP syntax elements of MBO have been decoded. As a result, for example, the
SIGMAP syntax elements of MB1 are processed at the same time as the COEFF syntax
elements of MBO.

As previously mentioned, FIG. 10 also illustrates how macroblocks are processed
in parallel. As an example, macroblock MBO of the COEFF syntax element group,
macroblock MB1 of the SIGMAP sysntax element group, macroblock MB1 of the PRED
syntax element group, macroblock MB2 of the CBP syntax element group, and
macroblock MB3 of the MBINFO syntax element group are all processed in parallel by
their respective CABAC engines.

To allow for the parallel processing, as previously described, and in light of
dependencies of different syntax element groups, data driven first-in-first-out buffers
(FIFOs) can be used between CABAC engines. It should be noted that while FIG. 11
illustrates use of the FIFOs in a decoder, the present invention is not limited to use of
FIFOs in a decoder, but instead, may also pertain to use of FIFOs in an encoder.

The groups of syntax elements MBINFO, PRED and CBP rely on information
from the top macroblock for context selections. As a result, they require a last line buffer.
Each of these groups has an independent last line buffer so that the engines can process
different macroblocks at the same time |

FIG. 11 is a schematic diagram providing an example of an architecture for

CABAC engines 100 run in parallel, using FIFOs 500. FIG. 11 illustrates CABAC

WO 2011/002914 PCT/US2010/040647
28

decoding engines 100, wherein the combination of a context modeler (MBINFO, CBP,
PRED, SIGMAP, COEFF) and a binary arithmetic decoder (AD) represents a CABAC
decoding engine 100.

As previously mentioned, the CABAC engines 100 run in parallel. The
bitstreams for each partition are fed to their respective context modelers. The AD of each
CABAC engine 100 outputs the decoded bins (and syntax elements) for each partition.
To address the dependencies previously mentioned, and as shown in FIG. 9 and FIG. 10 a
FIFO 500 is inserted between each CABAC engine 100. These syntax element partition
FIFOs synchronize the CABAC engines 100 so that they can decode the syntax elements
of different macroblocks in parallel as shown in FIG. 10. It should be noted that any slice
header information is also fed to the MBINFO CABAC engine 100A.

In accordance with the present invention, much of the existing H.264/AVC
architecture can be reused for the present invention. This process basically involves
breaking up the context selection finite-state-machine (FSM) into multiple FSM with
fewer states. It should be noted that the total number of states should be the same, which
is equal to the number of contexts. This can be done by changing a subset of the
transitions. As a result, this solution can be integrated into a multi-standard solution that
supports H.264/AVC.

It should be emphasized that the above-described embodiments of the present
invention are merely possible examples of implementations, merely set forth for a clear
understanding of the principles of the invention. Many variations and modifications may
be made to the above-described embodiments of the invention without departing

substantially from the spirit and principles of the invention. All such modifications and

WO 2011/002914 PCT/US2010/040647
29

variations are intended to be included herein within the scope of this disclosure and the

present invention and protected by the following claims.

WO 2011/002914 PCT/US2010/040647

30
CLAIMS
We claim:
1. A method for execution in hardware, providing high throughput entropy

coding, comprising the steps of:
dividing syntax elements of video into one or more group of syntax elements;
placing each group into a separate partition, resulting in more than one partition;
and
processing more than one of the more than one partition in parallel using entropy

coding.

2. The method of claim 1, further comprising the step of using a quantization

parameter to combine a number of partitions into fewer partitions.

3. The method of claim 1, further comprising the step of using first-in-first-
out queuing to manage dependencies between engines processing the one or more

partitions.

4. The method of claim 1, wherein the high throughput entropy coding is

provided by a context-based adaptive binary arithmetic coding engine.

WO 2011/002914 PCT/US2010/040647
31
5. The method of claim 1, wherein the step of dividing syntax elements of
video into one or more group of syntax elements is further defined by the steps of:
running video processing simulations on multiple video streams of the video
using entropy coding to determine an average number of bins per syntax element; and
grouping together syntax elements with a low number of bins so as to distribute

syntax elements into the one or more groups of syntax elements.

6. The method of claim 1, wherein the entropy coding is performed using

more than one entropy coding engine that works in parallel.

7. The method of claim 6, wherein the step of processing more than one of
the more than one partition in parallel further comprises using at least one first-in-first-
out buffer located between entropy coding engines to address dependencies between

syntax element groups.

8. The method of claim 6, wherein the entropy coding engine is a context-

based adaptive binary arithmetic coding engine.

9. The method of claim 6, wherein the step of dividing syntax elements of
video into one or more groups of syntax elements is further defined by the steps of
receiving a predefined average number of bins per syntax element for a video

standard associated with the video;

WO 2011/002914 PCT/US2010/040647
32

pre-grouping categories of syntax elements into pre-grouped syntax element
groups so as to provide similar workload for each entropy coding engine;

receiving the syntax elements of the video;

sorting and grouping the received syntax elements of the video into the pre-
grouped syntax element groups; and

providing each different category of syntax elements to a different entropy coding

engine for parallel processing.

10. The method of claim 6, wherein each syntax element is placed into a
different group of syntax elements and wherein each group of syntax elements is

provided to a different entropy coding engine.

11. A system for providing high throughput entropy coding, comprising:
at least two entropy coding engines; and
a computer having:
a memory; and
a processor configured by the memory to perform the steps of:
dividing syntax elements of video into one or more group of syntax
elements;
placing each group into a separate partition, resulting in more than
one partition; and
providing each separate partition to a separate one of the at least

two entropy coding engines,

WO 2011/002914 PCT/US2010/040647
33
wherein the at least two entropy coding engines process the separate partitions in

parallel using entropy coding.

12. The system of claim 11, wherein the processor is configured by the
memory to perform the step of using a quantization parameter to combine a number of

partitions into fewer partitions.

13. The system of claim 11, wherein the system further comprises at least one
first-in-first-out queuing buffer to manage dependencies between syntax element groups

between engines processing the one or more partitions.

14. The system of claim 11, wherein the entropy coding engines are context-

based adaptive binary arithmetic coding engines.

15. The system of claim 11, wherein the step of dividing syntax elements of
video into one or more group of syntax elements is further defined by the steps of:

running video processing simulations on multiple video streams of the video
using entropy coding to determine an average number of bins per syntax element; and

grouping together syntax elements with a low number of bins so as to distribute

syntax elements into the one or more groups of syntax elements.

16. The system of claim 11, wherein the step of dividing syntax elements of

video into one or more groups of syntax elements is further defined by the steps of:

WO 2011/002914 PCT/US2010/040647
' 34

receiving a predefined average number of bins per syntax element for a video
standard associated with the video; |

pre-grouping categories of syntax elements into pre-grouped syntax element
groups so as to provide similar workload for each entropy coding engine;
| receiving the syntax elements of the video;

sorting and grouping the receiving syntax elements of the video into the pre-
grouped syntax element groups; and

providing each different category of syntax elements to a different entropy coding

engine for parallel processing.

PCT/US2010/040647

WO 2011/002914

I 'Old

d001
aNION3 OvavO

A

LU

aoot
aNION3 OvavO

A

D001
aNION3 OvavO

A

dool
aNION3 OvavO

ol
d31NdINOD

V0Ol
aNION3 OvavO

A

A

PCT/US2010/040647

WO 2011/002914

bLie

¢ 9Old

43
S32IA3A O/l

¥€ 3OVAYILNI V201

0c
AHONIN

9¢
S/O

(i3
30IA3A IOVHOLS

44
FHVMLH0S

{3
¥0SS300ud

N,

WO 2011/002914

RECEIVE SLICE
202

A 4

SEPARATE SLICE INTO
SYNTAX ELEMENTS
204

A 4

SYNTAX ELEMENTS ARE
GROUPED TO FORM
SEPARATE GROUPS OF
SYNTAX ELEMENTS
206

A 4

EACH GROUP OF SYNTAX
ELEMENTS IS TRANSMITTED
TO A SEPARATE CABAC
ENGINE FOR PARALLEL
PROCESSING
208

A 4

PARALLEL PROCESS
SYNTAX ELEMENT GROUPS
210

A 4

INSERT START CODE AND
PARTITION TYPE FOR EACH
PARTITION
212

FIG. 3

311

PCT/US2010/040647

200

WO 2011/002914

PARSE RECEIVED
BITSTREAM TO FIND START
CODE TO IDENTIFY START

OF PARTITION
252

A 4

IDENTIFY TYPE OF
PARTITION
254

A 4

SEND PARTITION TO ONE OF
THE CABAC ENGINES FOR
DECODING TO RESULT IN

SYNTAX GROUP
256

FIG. 4

4/11

PCT/US2010/040647

250

PCT/US2010/040647

WO 2011/002914

LL/IS

g Old

peopfio M

N
dVINOIS

(ETEMATET A

443090

6
d490 Y. jus wa| 3z

}
[B H oo nms]i]
\\qqz_oﬁ:_ CRITIS

Jufhs

a3dd

O4dNIgN

\ELER
/

§
JOE

cdIN

S

U

=R

..

921ls OAVI¥9C'H

PCT/US2010/040647

WO 2011/002914

V9

dD MO1

X
o~
—

Ol

%61
dVIADIS

=

.
|
o

-

-

=

=

-
-
-
o
|
o

-
-

-
-
-
.

-
-

.

.
e
-
-
.

o R

O4dNIGIN

bL/9

dD HOIH Q344

o
o
-

= N

=

%EE
O4NIgIN

&

-
-

.

.
-
.

-
-

%l
/dg0

PCT/US2010/040647

WO 2011/002914

LL/L

IE

old

90¢
oLe
g Jepon onewgiy Aeurg
”mm:m ! anpea uig
: wpog e : Sjuaes XA
ool | i [] e
weansig | 8B \

o .

g

W R W W

H xeils
Jazueug

sbuus Sjuaw s xejuis
supq e peamea Aeug-uou
FaA0 toof
1401% [411%

PCT/US2010/040647

WO 2011/002914

0se

bL/8

8 Old

UO1Iafas 1Xa)UGD

1Bjapo
INSU0Y)

Appgeqoad

ayepdn

w.n

Sjuataga
XPJUAS

{Qv)1eporeq
v_wn.wﬂm;w_*mﬂ

137LIRIG-3(]

sutg S)q
papoIap papoius
zse

96¢

PCT/US2010/040647

WO 2011/002914

]34

80V

44300

bL/6

6 Old

siuajaffao)d

fousaqunp

90V
Joolg papod
fo azis
dVIANDIS dd2 sys0/4
fo azis
azys /
wJiofsup

d

O4dNIgdIN
uonosuadwo)

a3y
A
ﬁOﬁK

uonow.do No.v

uonaipaid biruj

PCT/US2010/040647

WO 2011/002914

LL/0L

0L "Old

awilL
ranleanfeanftanjoan 44300
SANyaN[EaN[zaN|Tanjoan dvINDIS
sanlranleanfeanfranjoan a3ayd
lan|sanfranisanfeanfranioan dgd
Lanfoanlsanfranicanfcanfranjoain] O4NIGN

PCT/US2010/040647

WO 2011/002914

sulq
papodap

i
i
i
i
i
i
I
i
i
|
i
i

(4430D)
S1iq papodua

sulq

papodap
4001 .

(dVYINOIS)

S11q papoouUd

aoot

bLLL

Ll "Old

sulq
papodap

(a3yd)

S11q papooud

0001

sulq suiq
Papod3p g, PaPOIBP

av
L] O4ANI |
W

Ao]

(dgD) (O4NIgGIN)

S1g POPOIUD S}UQ PIPOIUD

V0Ol

ojul
Japeay
201IS

V00S

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/40647

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBK 9/46 (2010.01)
USPC - 382/239

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8): GOBK 9/46 (2010.01)
USPC: 382/239

Minimum documentation searched (classification system followed by classification symbols)

USPC: 382/239, 234, 244; 341/67 (keyword limited; terms below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PubWEST (USPT, PGPB, EPAB, JPAB, USOCR); Google Web

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms Used: entropy encoding syntax element groups paraliel CABAC quantization average mean statistical etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2008/0112489 A1 (Malladi et al.) 15 May 2008 (15.05.2008), para [0028]-[0075] 1-16

Y US 2005/0001746 A1 (Sankaran) 06 January 2005 (06.01.2005), para [0021]-[0038] 1-16

Y US 2008/0276078 A1 (Hu) 06 November 2008 (06.11.2008), para [0027]-[0040] 1-16

Y US 2006/0233260 A1 (Watanabe) 19 October 2006 (19.10.2006), para [0018]-[0031] 3,7,and 13

Y US 2009/0079602 A1 (Sze et al.) 26 March 2009 (26.03.2009), [0042], [0053] 5,9, and 15-16

D Further documents are listed in the continuation of Box C.

L]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified) .

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to und%rstand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

06 August 2010 (06.08.2010)

Date of mailin§of the international search report

1 AUG 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. s571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report

