wo 20107145699 A1 | I IO 0O 0 R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/145699 A1l

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
23 December 2010 (23.12.2010) PCT
(51) International Patent Classification: 74)
HO04L 29/06 (2006.01)
(21) International Application Number:
PCT/EP2009/057526 (81)
(22) International Filing Date:
17 June 2009 (17.06.2009)
(25) Filing Language: English
(26) Publication Language: English
(71) Applicant (for all designated States except US): TELE-
FONAKTIEBOLAGET LM ERICSSON (PUBL) [SE/
SE]; S-164 83 Stockholm (SE).
(72) Inventors; and
(75) Inventors/Applicants (for US only): HELLKVIST, Ste- (84

fan [SE/SE]; Fleminggatan 32, S-112 32 Stockholm (SE).
DAMOLA, Ayodele [RU/SE]; Akersvdgen 8, S-169 59
Solna (SE). WESTBERG, Lars [SE/SE]; Langtora Grén,
S-745 96 Enképing (SE).

Agent: TALBOT-PONSONBY, Daniel; 4220 Nash
Court, Oxford Business Park South, Oxford Oxfordshire
OX4 2RU (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: NETWORK CACHE ARCHITECTURE

(57) Abstract: There is described a method and apparatus for sending data
through one or more packet data networks. A reduced size packet is sent from
a packet sending node towards a cache node, the reduced size packet includ-
ing in its payload a pointer to a payload data segment stored in a file at the
cache node. When the reduced size packet is received at the cache node, the
pointer is used to identity the payload data segment from data stored at the
cache node. The payload data segment is inserted into the reduced size packet
in place of the pointer so as to generate a tull size packet, which is sent from
the cache node towards a client.

321\

Transport headers

222
223
Application headers r

Application data 224
L
_(225

Payload

Application data

gL L224
226
A f222
210 ™ Transport headers 223
) Application headers r
{’ Bandwidth J 207
limited transport | Application data <P> f
Application data I~
224
204 291
NS o=
Transport headers 203
,“j Application headers f
- Application data |, 224
e
B
EJL]

Payload

Application data

Figure 3

WO 2010/145699 A1 I 0000)00 T N0 RAF AR AP OU T

MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, SK, TR), __ . . .
OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, of inventorship (Rule 4.17(1v))
MR, NE, SN, TD, TG). Published:

Declarations under Rule 4.17: — with international search report (Art. 21(3))

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

NETWORK CACHE ARCHITECTURE

Technical Field

The present invention relates to a network cache architecture. In particular, the
invention relates to an application agnostic caching architecture suitable for mobile and
fixed networks. The invention is applicable, but not limited to, a mechanism for caching
content in a Video on Demand (VoD) system in an application agnostic way suitable for

networks that have links with high bandwidth costs such as mobile networks.

Background

Typical file caching methods include a cache receiving a file from a file server, and
storing the entire file. Later when a client desires the file, instead of serving the file
from the file server, the file is served from the cache. Because the cache is typically a
server that is closer to the client, or has higher bandwidth than the file server, the file is

served to the client quickly from the cache.

The application of typical file caching methods to files that include streaming media
data, for example Video on Demand (VoD) files, can lead to new problems. VoD
systems generally either stream content through a set-top box, allowing viewing in real
time, or download it to a device such as a computer, digital video recorder, personal
video recorder or portable media player for viewing at any time. The data delivered by
networks delivering such content can run to very large amounts, and caching can be

particularly useful.

This can be understood with reference to Figure 1, which is a schematic illustration of
an exemplary architecture of a VoD system with deployed caches used to reduce the
load on a central long-tail server. In the example, it can be supposed that the network
uses Real-Time Streaming Protocol (RTSP) streaming, where the payload is
transported over the User Datagram Protocol (UDP) in Real-Time Protocol (RTP)
packets, but it will be appreciated that many other applications and protocols have a

similar architecture and will have similar issues.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

The architecture of Figure 1 includes a network 100 having a streaming server 101 and
a number of caches 102-106. Clients 107-109 are configured to receive files and/or
streaming data from the server 101 or the caches 102-106. The clients use RTSP to
set up and control streams of RTP packets. This includes the negotiation of codecs,
bitrates, ports etc for the resulting RTP stream. With RTSP the clients can start and

stop the streaming, or fast forward or rewind the streamed media clip.

RTP packets are sent in sequence with a sequence number to tell the client the order
of the packets. This infers a state into the protocol that the streaming server 101 needs
to maintain and increment for each data packet it sends out. The sequence number is
also used by the clients 107-109 to detect packet loss which is reported back to the

streaming server using the Real-Time Transport Control Protocol (RTCP).

In order to reduce the load on the central server 101 and to save bandwidth in the
delivery network 100, some of the content is stored in caches 102-106 closer to the
end users 107-109.

The example of RTSP streaming for VoD highlights one problem with caching in
general — namely that the caches 102-106 themselves need to understand the protocol
and the application. The fundamental principle of a cache is that, when it takes over
the role of the central server, it needs to understand the same protocol that the server
understands, and know and maintain all required states efc. This applies whether the
role of the central server is taken over transparently through re-routing with deep
packet inspection, or through other means in the form of some redirection such as DNS
based redirection or any redirection given by the protocol. If caching is to be deployed
for many different applications, or if the server or protocol is enhanced or upgraded, it
is also necessary to upgrade and maintain the caches. It is often the case that there is
one cache per application: for example there may be a HTTP cache, a P2P cache and
an RTSP cache. In some networks, such as mobile networks for example, caches can
be placed in places that are hard to reach. If an upgrade of functionality is needed

whenever a new application is deployed this can be costly.

Additional problems may arise if there is mobility in the network so that the client can

move around during a session (such as a mobile terminal moving between base

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

stations). Using the example above, suppose one of the clients 107 is receiving data
from one of the caches 104. If the client 107 moves location so that it is now receiving
data from another cache 105, the session state (in this example, the RTP packet
sequence number) needs to be migrated into the new cache 105, which may or may
not also include the relevant content, so that the session can continue in the new place.
A great deal of application specific knowledge is therefore required in the cache

implementation.

Summary

It is the object of the present invention to obviate at least some of the above

disadvantages.

It would be desirable to make caches “application agnostic” so that they can be used
for any application. It would be desirable to be able to use the same caching
infrastructure for several different applications such as RTSP streaming, and HTTP or
PTP downloads. It is also desirable that no session state needs to be migrated

between caches.

In accordance with one aspect of the present invention there is provided a cache for
use in a packet data network. The cache comprises a receiver for receiving a packet, a
storage medium for storing cached data, and a processor operatively connected to the
receiver and storage medium. The processor is arranged to identify whether a
payload of the packet contains pointer information identifying a payload segment of the
data stored in the storage medium. If so, the processor is arranged to use the pointer
information to locate and retrieve the payload data segment from the storage medium,
and insert the retrieved payload data segment into the payload of the packet. The
cache also includes a transmitter operatively connected to the processor for forwarding

the packet towards a client.

This means that the cache can receive “stripped down” packets that contain a pointer
information instead of a full set of payload data. The cache can use this pointer

information to re-generate full size packets with their required payload data. In one

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

embodiment, the processor replaces the pointer information in the packet with the

retrieved payload data segment.

In order to identify whether the payload of the packet contains the pointer information,
the processor may be arranged to carry out Deep Packet Inspection (DPI).
Alternatively, the processor may be arranged to search a header of the packet for a

marker identifying whether the payload of the packet contains the pointer information.

The pointer information may include a file ID identifying a file stored in the storage
medium containing the payload data segment, a location ID identifying the location of
the data segment within the file, and a length ID identifying the length of the data

segment.

In accordance with another aspect of the present invention there is provided a payload
stripper node for use in a packet data network. The payload stripper node comprises a
receiver for receiving a packet, a storage medium for storing records of data held by a
cache, and a processor operatively connected to the receiver and storage medium.
The processor is arranged to identify whether a payload data segment contained in a
payload of the packet is held by the cache. If so, the processor extracts the payload
data segment from the packet and inserts pointer information into the packet. The
pointer information is for enabling the cache to identify the payload data segment from
the data held by the cache. A transmitter is operatively connected to the processor for

forwarding the packet towards the cache.

The payload stripper node thus enables “stripped down” packets to be sent across a
part of a network (or networks) where there is low bandwidth. Full size packets can be

sent as normal by a server, and intercepted by the payload stripper node.

The payload stripper may be arranged to populate the cache with data. This ensures
that the payload stripper knows which data is stored by the cache, and how the pointer
information should be configured to enable the cache to find the payload data when it

receives the packet.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

The processor may be arranged to insert a marker into a header of the packet to

indicate that it contains pointer information instead of payload data.

The payload stripper node may be further arranged to combine packets from which
payload segments have been extracted to form an aggregated packet. This enables a
reduction in the number of packets being sent, as well as (or instead of) a reduction in

their size.

It may be that a server sends reduced size packets. This may be seen as the payload
stripper node being located at the server, although in this case there will be no need to
receive full size packets and remove the payload data. Thus in accordance with a
further aspect of the present invention there is provided a server for sending data in a
packet data network. The server comprises a storage medium for storing records of
data held by a cache downstream of the server and a processor operatively connected
to the storage medium. The processor is arranged to generate a packet to be sent
towards a client to enable a payload segment of data to be delivered to the client. The
processor identifies whether the payload data segment is held by the cache. If so, the
processor inserts pointer information into the packet which will enable the cache to
identify the payload data segment from the data it holds. A transmitter is operatively

connected to the processor for forwarding the packet towards the cache.

In accordance with a further aspect of the present invention there is provided a system
for transmitting data through one or more packet data networks. The system
comprises a packet sending node and a cache node. The packet sending node is
arranged to send a reduced size packet towards the cache node, the reduced size
packet including in its payload a pointer to a payload data segment stored in a file at
the cache node. The cache node is arranged to receive the reduced size packet, use
the pointer to identify the payload data segment from data stored at the cache node,
and insert the payload data segment into the reduced size packet in place of the
pointer so as to generate a full size packet. The full size packet is then towards a

client.

The packet sending node may be a packet stripping node arranged to receive a full

size packet containing the payload data segment, remove the payload data segment

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

from the full size packet and replace it with the pointer to generate the reduced size

packet. Alternatively, the packet sending node may be a server.

The packet data network (or networks) may include a plurality of cache nodes, each
having the same data stored thereon. This means that, if a user switches end point
during the lifetime of a session, no session state needs to be migrated between

caches.

In accordance with another aspect of the present invention there is provided a method
of sending data through one or more packet data networks. The method comprises
sending a reduced size packet from a packet sending node towards a cache node.
The reduced size packet includes in its payload a pointer to a payload data segment
stored in a file at the cache node. When the reduced size packet is received at the
cache node, the pointer is used to identify the payload data segment from data stored
at the cache node. The payload data segment is inserted into the reduced size packet
in place of the pointer so as to generate a full size packet, which is sent from the cache

node towards a client.

The packet sending node may be a packet stripping node which receives a full size
packet containing the payload data segment, removes the payload segment from the
full size packet and replaces it with the pointer to generate the reduced size packet.

Alternatively, the packet sending node may be a server.

It will be appreciated that the various elements described above may not necessarily all
be found within the same network. The server, payload stripper (if present), cache and
client may all be within the same network, but may also be found in different networks.

In particular it is often the case that the server and client are in different networks.

The present invention also provides a program adapted to be executed on a cache in a
packet data network. The program is operable to identify whether a payload of a
packet received by the cache contains pointer information identifying a payload
segment of data stored by the cache and, if so, use the pointer information to locate
and retrieve the payload data segment, insert the retrieved payload data segment into

the payload of the packet, and forward the packet towards a client.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

The present invention also provides a program adapted to be executed on a packet
stripper node in a packet data network. The program is operable to identify whether a
payload data segment contained in a payload of a packet received by the packet
stripper node is held by a cache downstream of the packet stripper node. If so, the
program is operable to extract the payload data segment from the packet, and insert
pointer information into the packet, which will enable the cache to identify the payload

data segment from the data held by the cache.

In accordance with another aspect of the present invention there is provided a program
adapted to be executed on a server in a packet data network. The program is operable
to generate a packet to be sent towards a client to enable a payload segment of data to
be delivered to the client. The program is also operable to identify whether the payload
data segment is held by a cache downstream of the server. If so, the program is
operable to insert pointer information into the packet, which will enable the cache to

identify the payload data segment from the data held by the cache.

The invention also includes a carrier medium carrying any of the programs described

above.

Thus, for content which is known to be cached downstream, packets are still sent
normally, but containing pointer information instead of at least some of the data
payload. It is up to the cache further downstream to fill in the true payload into the
packets as the packets arrive at the cache and continue to their final destination. The
session state and application logic can still be kept centrally, and the cache can be
made to work exactly the same way, regardless of which application it is serving. The
cache can provide storage close to the end users without knowing anything about the

application — if it is streaming of video, HTTP download or P2P traffic.

Brief Description of the Drawings

Some preferred embodiments will now be described by way of example only and with

reference to the accompanying drawings, in which:

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

Figure 1 is a schematic illustration of a network architecture;

Figure 2 is a schematic illustration of part of a network including a cache;

Figure 3 is a schematic illustration of part of a network including a cache and payload

stripper;

Figure 4 is a schematic illustration of a server, payload stripper, cache and client

spread across multiple networks;

Figure 5 is an illustration of the contents of an aggregated packet;

Figure 6 is a schematic illustration of a payload stripper;

Figure 7 is a flow chart illustrating actions carried out by a payload stripper;

Figure 8 is a schematic illustration of a cache;

Figure 9 is a flow chart illustrating actions carried out by a cache;

Figure 10 is a schematic illustration of a server; and

Figure 11 is a flow chart illustrating actions carried out by a server.

Detailed Description

Figure 2 is a schematic illustration of a network architecture, showing a central server
201, cache 204 and client 207. Part of the network 210 is bandwidth limited, so it is

desirable to avoid sending large amounts of data across this part.

The network is used to send packets 221 to the client 207. Each packet 221 received
by the client 207 should include transport and application headers 222, 223, application
data 224 such as state information, and a data payload 225. These packets are large

and require a lot of bandwidth.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

In order not to overload the bandwidth limited transport 210, the central server sends
reduced size packets 226 towards the cache 204. This can only be done if the central
server 201 knows that the content is held in the cache 204. In the reduced size
packets 226 the data payload 225 (all data content excluding application headers and
state) has been replaced by a simple pointer <P> 227 into a file held at the cache 204.
The pointer 227 contains the following information:

e afile ID so that the cache can identify the file in which the correct content is

held by the cache;
¢ a location within the file of the correct data payload for that packet;
o the length of the resulting data segment the cache should retrieve from the file

when processing the packet.

Application specific logic such as headers 222, 223 and states 224 (in the example with
RTP packets this would be RTP headers and the sequence number) is kept in place in
the reduced size packets 226. The only thing that is different is that the data payload

225 (which is stored in the cache) is not sent from the server.

When such a reduced size packet 226 is received by the cache 204, a “payload
inserter” function in the cache will go through the packet searching for a pointer <P>.
When the pointer 227 is found, the payload inserter will identify the cached file referred
to in the pointer, and identify the location in the file and the amount of data referred to
by the pointer. This data is copied from the cached file and inserted into the reduced
size packet 226 as payload data 225 in place of the pointer 227 so as to generate a full
size packet 221. The full size packet 221 is then delivered onwards towards the client
207. The cache storage medium, where the file is stored, may be local storage such
as RAM, flash memory or hard drive, or more distributed local storage such as one

provided by a distributed caching hierarchy.

Thus the cache 204 does not need to know anything about the type of data or

application. It simply needs to replace a pointer with a payload.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

10

Some applications may require application state data to be mixed with the payload
data. In this situation reduced size packets may contain more than one pointer,

interspersed between application state data.

It will be appreciated that, in order for the central server 201 (the streaming server in
the case of VoD over RTSP/RTP) to know when to send the reduced size packets, it
needs to know what is cached further down into the network. One way of enabling this
is to ensure that the server 201 has control over the information stored by the cache (or
caches) 204. The server 201 may instruct the caches 204 what to store, and maintain
a list of content stored in the caches 204. The transfer of data from the server to the
caches could be at regular intervals, such as every night. This also ensures that the
server 201 has the necessary information about file ID and data location to insert the

correct pointers into the reduced size packets.

As an alternative, the cache 204 may maintain its content without control from the
server 201. If a request for content from the client 207 passes through the cache 204,
the cache may recognise this and mark the request to identify whether or not it has the
requested content stored, for example using a header field in the request packet
header, before passing it on. When the server 201 receives the request it knows from
the marked request whether or not the cache has the content stored and therefore

whether it should send full size or reduced size packets.

In some situations it may not be desirable or possible for a server to control the data
held by caches further downstream. In these situations, an additional “payload
stripper” node may also be used. The operation of such a node may be understood
with reference to Figure 3, which is a schematic illustration of an alternative network
architecture, showing a central server 301, cache 204, client 207 and payload stripper
330.

In this situation, the client 207 may request content from the server 301 in the usual
way. The server sends full size packets 321 back towards the client, whether or not
this content is cached elsewhere in the network. These packets contain transport and
application headers 222, 223, application data 224 and a payload 225 so that they are

in a suitable form for delivery to the client 207.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

11

The payload stripper 330 intercepts each full size packet 321, removes the payload
225 and replaces it with a pointer <P> 227, in the same manner as the server 201
described above with reference to Figure 2. The difference is that the payload is
removed by the payload stripper 330 rather than the server 301. Each reduced size
packet 226 is forwarded towards the cache 204 across the bandwidth limited transport
210.

The payload inserter function in the cache 204 reconstructs full size packets 221 as

described above with reference to Figure 2, and forwards them towards the client 207.

Thus the arrangement can be seen to have two constituent parts either side of the
bandwidth limited transport 210: the payload stripper 330 and the payload inserter in
the cache 204. The payload stripper removes the payload 225 from full size packets
and replaces it with a pointer 227 to generate reduced size packets; and the payload
inserter in the cache replaces the pointer 227 with payload data 225 retrieved from a
stored file. The payload stripper 330 controls the files stored at the cache 204. This

means that the server 301 does not even need to know that the data is cached.

The arrangement of Figure 2 may also be seen as a version of the arrangement of

Figure 3 in which the payload stripper 330 is collocated with the server 301.

The manner in which content is allocated to caches 204, 304 (where there are many
caches in a network) is worthy of comment. In one scheme different content may be
allocated to different caches. This makes it possible to tailor the caches for local

demand.

In an alternative scheme, all the caches in a network (or in a particular area) may be
populated with the same content. This is useful in situations such as a mobile system
where a user may switch from end point to end point (e.g. between different base
stations in a mobile network), since it makes it possible to continue an ongoing session
elsewhere. If all of the caches have the same file, the client can move from cache to

cache without the need to pass application or state information between the caches.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

12

The case where caches all have the same content is less complex by nature and, as

mentioned, is particularly useful in mobile networks.

It will be appreciated that the cache 204, 304 will need to be able to identify that it is
receiving reduced size packets 226, and that it therefore needs to find the relevant data
and insert it into these packets. One possible approach is for the cache to carry out
Deep Packet Inspection (DPI) to identify which traffic needs to be processed in this
way. Alternatively, reduced size packets 226 could be marked in some way to identify
to the cache that it is necessary to insert the data payload. This could be achieved by

inserting a marker into the header of the packet.

In a mobile network where data is transported in secured tunnels further functions may
be needed to mark which packets should be processed by the cache. The actual
processing, where pointers are replaced with content, although simple in nature, will be

costly due to the sheer number of packets.

For example, a distinct feature of 3GPP System Architecture Evolution (SAE) / Evolved
Packet Script (EPS) networks is the fact that traffic from a Public Data Network (PDN)
gateway to a mobile terminal (UE) via an eNodeB is sent over secure tunnels. For
access to the Evolved Packet Core (EPC) in Evolved UMTS Terrestrial Radio Access
Networks (E-UTRAN), the PDN connectivity service is provided by an EPS bearer for
the S5/S8 interfaces and the General Packet Radio Service (GPRS) Tunnelling
Protocol (GTP) is used.

Each GTP user data packet carries a value, known as the Tunnel Endpoint Identifier
(TEID), that identifies which bearer the packet belongs to. The value is selected by the
entity terminating the GTP tunnel, and is communicated to the tunnel ingress point at
bearer setup and handover. Usually a new bearer to the same terminal is established

when different QoS treatment is needed.

If DPI is to be carried out, the packets destined for the UE (client) must be ‘re-routed’
from their respective GTP tunnel and delivered to a DPI functionality which identifies
those packets with a pointer instead of a data payload. These packets are then

forwarded to the cache for payload population.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

13

The application agnostic caching solution could be implemented on two levels; at the
Serving Gateway (S-GW) or at the eNodeB. In both cases, for the correct tunnel to be
selected, the TEID carrying the traffic to the UE should be signalled to the S-GW or
eNodeB so that these nodes could then re-route the right traffic flow to the DPI
function. The signalling is performed from the PDN GW which is aware of the packet
flows which need payload population as well as the PDP context (TEID). After the
payload has been inserted into the packets by the cache, the traffic needs to be

inserted back into the same tunnel, again using the TEID.

The above discussion touches on one situation in which caching may be useful, but it
will be appreciated that there are many other cases where the same principles may be
applied. For example, similar caching processes are applicable for VoD using RTP
over UDP and HTTP over TCP. Furthermore, the processes can be used for 2G and
3G networks in addition to LTE.

In addition, it will be appreciated that, although the system described above as
advantages for use in mobile networks, it can also be used in fixed networks and cable
networks. Furthermore, The above discussion is focussed on a network architecture in
which all of the nodes (server 201, 301, payload stripper 330, cache 204, client 207)
are shown as being located in the same network. It will be appreciated that this is often
not the case. Caches are particularly useful in a network architecture in which the
server is in one network and the client in another. It will be appreciated that this makes

no difference to the operation of the system described above.

For example, Figure 4 illustrates an arrangement in which a server 301 (similar to that
shown in Figure 3) is located in a first network 441. The client is located in another
network 443. Packets sent from the server 301 to the client pass through a core IP
network 442 via routers 444, 445, 446, 447. If part of the core IP network 442 has a
region of low bandwidth 210, the core IP network includes a payload stripper 330 and
cache 204 which operate as described above with reference to Figure 3. Different

architectures may also be envisaged.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

14

It will be appreciated that, depending on the network in which caching is employed and
the underlying physical layer of that network, the number of packets transmitted might
be as important (or more important) than their size. The discussion above is focussed
on reducing the amount of data that is sent by decreasing the size of the payload in

packets. However, the system can also be used to reduce the number of packets.

In order to implement a reduction in the number of packets, a group of reduced size
packets can be sent together in one “aggregated” packet. Since the payload of each
reduced size packet is extremely small (containing only a pointer), it is possible, for
instance, to send packets together three at a time, or aggregate any number depending
on how much delay can be accepted and how much packet loss is apparent in the

network. This can be done in several ways.

The process of sending several packets together in one aggregated packet is referred
to as tunnelling of one protocol inside another. One such implementation is known as
Layer 2 Tunnelling Protocol, which facilitates the tunnelling of PPP packets across an
intervening network in a way that is as transparent as possible to end-users and
applications. It acts like a data link layer protocol in the OSI model but uses UDP over
IP as transport for the packets. Other well known tunnelling techniques are SSH

tunnelling which offers encrypted tunnels for any protocol.

Although these tunnelling principles could be used to aggregate packets, a more
focussed approach may also be appropriate for these particular circumstances. In
Figure 3, packets flowing from the payload stripper 330 are to the cache 204 shown
exclusively as reduced size packets 226. In a more sophisticated arrangement,
packets travelling between the payload stripper 330 and the cache 204 could have a
special format that essentially encodes packets in one of two forms:
e Type 1 packets (simple packets) correspond to the reduced size packets 226
shown in Figure 3, in which the payload of the packet consists of application
data 224 and payload pointer(s) 227.
o Type 2 packets (aggregated packets) are more complex. These packets
contain a list of simple packets held within them. It is possible to imagine a
recursive structure in which aggregated packets are themselves further

combined to form “super-aggregated” packets, although for all practical reasons

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

15

there is likely to be no reason to have type 2 packets contained inside another
type 2 packet. There are many ways to implement the encoding of this format,
and one example is provided in Figure 5, which illustrates a type 2 packet 550.
The packet contains a field 551 indicating how many simple packets are
contained in the current aggregated packet (n). The next field 552 contains the
length (length,) of a simple packet (packet,), and this is followed by the packet
553 itself. This is repeated for each packet, with the length, 554 of packet, 555
preceding the packet itself, up to the length, 556 of packet, 557.

A type 1 packet could be defined in the same way having n = 1. The packet could also
be encoded without the need for a separate length field 552, 554, 556 for each simple
packet 553, 555, 557 if the length of a packet can be easily obtained from the packet

itself.

As will be appreciated, this format is just one example. The format can be optimized
for each deployment depending on the underlying network. There may or may not be a
need to tunnel the packets. In some cases one might need lots of meta information for
each packet that is tunnelled. The important feature is that the formats are recognised
by both the payload stripper 330 and the cache 204 so that they are in synch when it

comes to encoding and decoding of packets.

Figure 6 is a schematic illustration of a payload stripper 330. The payload stripper 330
includes a receiver 661 for receiving full size packets from a server. The packets are
processed by a processor 662 which removes the payload of each packet, and
replaces it by a pointer to a location in a file held by a cache 204 (as shown in Figure
3). A storage medium 663 contains records of the files held by the cache to enable the
processor 662 to determine the information which should be encoded in the pointer. A

transmitter forwards the packets towards a cache.

Figure 7 is a flow diagram illustrating how a packet is treated by the payload stripper
330.

S71: Afull size packet is received by the payload stripper 330 from the server.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

16

S72: The packet stripper knows if content contained in this packet is cached further
down the network. If it is not, then the packet is forwarded unchanged S73 towards the

client.

S74: If the content is cached, the payload is removed from the packet and replaced
by a pointer which will identify where, in a file held by the cache, the data

corresponding to the payload can be found. This results in a reduced size packet.

S75: The reduced size packet is transmitted through the network towards the cache.

Figure 8 is a schematic illustration of a cache 204. The cache 204 includes a receiver
861 for receiving reduced size packets from a payload stripper 330 or server 201. A
storage medium 863 contains cached data. Each reduced size packet contains a
pointer identifying a file held in the storage medium 863, together with a location in the
file and length of data. A processor 862 extracts the pointer from each reduced size
packet, identifies the relevant file and data in the storage medium 863, and inserts the
data into the packet as a payload to generate a full size packet. A transmitter 864

transmits the full size packet towards a client.

Figure 9 is a flow diagram illustrating the operation of the cache 204.

S91: A packet is received at the cache.

S92: The packet is checked (either by DPI or by a search for a marker in the header)

to determine if it contains a full payload, or a pointer to a file held by the cache.

S93: If the packet contains a full payload it is forwarded unchanged towards the

client.

S94: If the packet contains a pointer, the correct data, held in a file at the cache, is

identified from the information held in the pointer.

S95: The data is inserted into the packet as a payload, replacing the pointer, to

generate a full size packet.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

17

S96: The full size packet is sent into the network towards the client.

Figure 10 is a schematic illustration of a server 201. The server 201 includes a
processor 1062, storage medium 1063 and transmitter 1064. Reduced size packets
are generated by the processor 1062, each packet containing in its payload a pointed
to a location in a file held by a cache 204 (as shown in Figure 3). The storage medium
1063 contains records of the files held by the cache to enable the processor 1062 to
determine the information which should be encoded in the pointer. The transmitter

1064 forwards the packets towards a cache.

Figure 11 is a flow diagram illustrating how a packet is created and forwarded treated

by the server 201.

S111: Content to be sent towards the client is identified.

S112: The server knows if this content is cached further down the network. If it is not,

then a full size packet is generated S113 and forwarded $114 towards the client.

S115: If the content is cached, a reduced size packet is generated. The payload of
the reduced size packet is replaced by a pointer which will identify where, in a file held

by the cache, the data corresponding to the payload can be found.

S116: The reduced size packet is transmitted through the network towards the cache.

As has been explained above, the benefit of caching in any network is to limit the
amount of network traffic, making it possible to replace network investment costs
(which are expensive) with storage investment costs (which are relatively cheap). By
further splitting application logic and state from simple payload data it is possible to
make the caches application agnostic. This makes it possible to use the same caching
infrastructure for several different applications such as RTSP streaming and HTTP- or
P2P download. Since the cache is simple and lacks complicated logic it can be made
robust and fault free. In this way it can more or less be seen as a piece of hardware (in

fact, it can be implemented in hardware) that can be replaced and restarted by

WO 2010/145699 PCT/EP2009/057526

18

unqualified personnel. Furthermore, for systems where a user can switch end point
during the life-time of a session, this can be done in a much simpler manner as no
session state needs to be migrated between caches. Session state is always kept

where it is handled best — in the central server (or an application-aware payload

stripper).

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

19

CLAIMS:

1. A cache for use in a packet data network, comprising:
a receiver for receiving a packet;
a storage medium for storing cached data;
a processor operatively connected to the receiver and storage medium, the
processor arranged to:
identify whether a payload of the packet contains pointer information
identifying a payload segment of the data stored in the storage medium;
and, if so, use the pointer information to locate and retrieve the payload
data segment from the storage medium; and insert the retrieved payload data
segment into the payload of the packet;
and a transmitter operatively connected to the processor for forwarding the

packet towards a client.

2. The cache of claim 1, wherein the processor is arranged to replace the pointer

information in the packet with the retrieved payload data segment.

3. The cache of claim 1 or 2, wherein the processor is arranged to carry out Deep
Packet Inspection to identify whether the payload of the packet contains the pointer

information.

4. The cache of claim 1 or 2, wherein the processor is arranged to search a
header of the packet for a marker identifying whether the payload of the packet

contains the pointer information.

5. The cache of any preceding claim, wherein the pointer information includes:

a file ID identifying a file stored in the storage medium containing the payload
data segment;

a location 1D identifying the location of the data segment within the file; and

a length ID identifying the length of the data segment.

6. A payload stripper node for use in a packet data network the payload stripper

node comprising:

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

20

a receiver for receiving a packet;
a storage medium for storing records of data held by a cache;
a processor operatively connected to the receiver and storage medium, the
processor arranged to:

identify whether a payload data segment contained in a payload of the
packet is held by the cache;

if the payload data segment is held by the cache, extract the payload
data segment from the packet; and

insert pointer information into the packet, the pointer information for
enabling the cache to identify the payload data segment from the data held by
the cache;
and a transmitter operatively connected to the processor for forwarding the

packet towards the cache.

7. The payload stripper node of claim 6, arranged to populate the cache with data.
8. The payload stripper node of claim 6 or 7, wherein the pointer information
includes:

a file ID identifying a file stored in the cache containing the payload data
segment;
a location ID identifying the location of the data segment within the file; and

a length ID identifying the length of the data segment.

9. The payload stripper node of claim 6, 7 or 8, wherein the processor is arranged
to insert a marker into a header of the packet to indicate that it contains pointer

information instead of payload data.

10. The payload stripper node of any of claims 6 to 9, arranged to combine packets

from which payload segments have been extracted to form an aggregated packet.

11. A server for sending data in a packet data network, the server comprising:
a storage medium for storing records of data held by a cache downstream of

the server;

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

21

a processor operatively connected to the storage medium, the processor
arranged to:

generate a packet to be sent towards a client to enable a payload
segment of data to be delivered to the client;

identify whether the payload data segment is held by the cache;

if the payload data segment is held by the cache, insert pointer
information into the packet, the pointer information for enabling the cache to
identify the payload data segment from the data held by the cache;
and a transmitter operatively connected to the processor for forwarding the

packet towards the cache.

12. A system for transmitting data through one or more networks, the system
comprising the cache of any of claims 1 to 5 and the payload stripper of any of claims 6

to 10 or the server of claim 11.

13. A system for transmitting data through one or more packet data networks
comprising a packet sending node and a cache node, the packet sending node being
arranged to send a reduced size packet towards the cache node, the reduced size
packet including in its payload a pointer to a payload data segment stored in a file at
the cache node;

the cache node being arranged to:

receive the reduced size packet;

use the pointer to identify the payload data segment from data stored at the
cache node;

insert the payload data segment into the reduced size packet in place of the
pointer so as to generate a full size packet; and

send the full size packet towards a client.

14. The system of claim 13, wherein the packet sending node is a packet stripping
node arranged to receive a full size packet containing the payload data segment,
remove the payload data segment from the full size packet and replace it with the

pointer to generate the reduced size packet.

15. The system of claim 13, wherein the packet sending node is a server.

10

15

20

25

30

WO 2010/145699 PCT/EP2009/057526

22

16. The system of any of claims 13 to 15, wherein the one or more packet data
networks include a plurality of cache nodes, each of which has the same data stored

thereon.

17. The system of any of claims 13 to 16, wherein the packet sending node is

responsible for managing the data stored at the or each cache node.

18. A method of sending data through one or more packet data networks,
comprising:

sending a reduced size packet from a packet sending node towards a cache
node, the reduced size packet including in its payload a pointer to a payload data
segment stored in a file at the cache node;

receiving the reduced size packet at the cache node;

using the pointer to identify the payload data segment from data stored at the
cache node;

inserting the payload data segment into the reduced size packet in place of the
pointer so as to generate a full size packet; and

sending the full size packet from the cache node towards a client.

19. The method of claim 18, wherein the packet sending node receives a full size
packet containing the payload data segment, removes the payload segment from the

full size packet and replaces it with the pointer to generate the reduced size packet.

20. The method of claim 18, wherein the packet sending node is a server.

21. The method of claim 18, 19 or 20, wherein the one or more packet data
networks include a plurality of cache nodes, each of which has the same data stored

thereon.

22. A computer program product comprising code adapted to be executed on a
cache in a packet data network, the code operable to:
identify whether a payload of a packet received by the cache contains pointer

information identifying a payload segment of data stored by the cache;

10

15

20

25

WO 2010/145699 PCT/EP2009/057526

23

and, if so, use the pointer information to locate and retrieve the payload data
segment, insert the retrieved payload data segment into the payload of the packet, and

forward the packet towards a client.

23. A computer program product comprising code adapted to be executed on a
packet stripper node in a packet data network, the code operable to:

identify whether a payload data segment contained in a payload of a packet
received by the packet stripper node is held by a cache downstream of the packet
stripper node;

if the payload data segment is held by the cache, extract the payload data
segment from the packet; and

insert pointer information into the packet, the pointer information for enabling

the cache to identify the payload data segment from the data held by the cache.

24. A computer program product comprising code adapted to be executed on a
server in a packet data network, the code operable to:

generate a packet to be sent towards a client to enable a payload segment of
data to be delivered to the client;

identify whether the payload data segment is held by a cache downstream of
the server,;

if the payload data segment is held by the cache, insert pointer information into
the packet, the pointer information for enabling the cache to identify the payload data
segment from the data held by the cache;

and forwarding the packet towards the cache.

25. The computer program product of claim 22 , 23 or 24, carried on a carrier

medium.

WO 2010/145699 PCT/EP2009/057526

1/7

WO 2010/145699 PCT/EP2009/057526

217

226 \
2 ‘ \ 222
-f Transport headers f

223
Application headers f

= Application data < P> f227

Application data 5

201

_ Bandwidth p
- limited transport

221
' \ 222

Transport headers

Application headers

Application data 224

\

225
Payload f

Application data

224

Figure 2

WO 2010/145699

301

_ Bandwidth p
* limited transport |

3/7
321\

PCT/EP2009/057526

Transport headers

Application headers

Application data 224
\‘/
225
Payload f
Application data
Jx3 224

226——\

Transport headers

Application headers

Application data

<P>

Application data

221

~

Transport headers

Application headers

Application data \ 224
225
Payload _(
Application data
™ 224

Figure 3

WO 2010/145699 PCT/EP2009/057526

417

Figure 4

WO 2010/145699

S/7

/551 /552 /553 /554 /555

PCT/EP2009/057526

556 \ 557 \

length packet, length, packet; length, packet,
Figure 5 N 550
664
//
Rx Tx
661 —-J
uP
; 330
662 — | \/
\
663
Figure 6
ST1—— Receive full size
packet from server
S72

Does
cache contain
content from
this packet?

Yes

Remove payload from packet
and replace with pointer to
generate reduced size packet

S75 \
z Forward reduced

size packet towards
cache

Forward full size
packet towards client

J

S73

Figure 7

WO 2010/145699 PCT/EP2009/057526

6/7

864

RXx TX

)
j 204

862 — | ~__~

861 —

863

Figure 8

Receive packet at
S91 ./(_ cache

S93

J

Forward packet
towards client

S92

Does
packet contain pointer
instead of full
payload?

Yes

S94
z |dentify correct data

for packet from
information in pointer

Figure 9
S95 A
1 Insert data into
packet as payload
S96
1 Forward packet

towards client

WO 2010/145699 PCT/EP2009/057526

77

1064

1062 —|

1063 — 7

Figure 10

S111—=—__ | Identify data content to
be sent to client

S112

Does
cache contain
this content?

Generate full E S113
size packet

y

S115 — 2 Generate reduced Send full size packet SS1 14
size packet towards client

S116 \
z Send reduced size

packet towards
cache

Figure 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2009/057526

. CLASSIFICATION OF SUBJECT MATTER

A
INV. HO04L29/06

According to Internationa! Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used) -

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5 907 678 A (HOUSEL III BARRON 1-25
CORNELIUS [US] ET AL)

25 May 1999 (1999-05-25)

figures 1-5

column 6, 1ine 58 - column 7, line 47
column 8, line 6 - line 11

column 8, line 35 - line 39

column 9, Tine 54 - column 11, line 61
column 16, 1ine 14 - 1line 26

A US 2007/266169 Al (CHEN SONGQING [US] ET 1-25
AL) 15 November 2007 (2007-11-15)
figure 5

paragraph [0030] - paragraph [0040]

D Further documents are listed in the continuation of Box C. E See patent family annex.

* Special categories of cited documents : . _ . X .

“T" later document published after the intemational filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance
"E" earlier document but published on or after the international "Xx* document of particular relevance; the claimed invention

filing date cannot be considered novel or cannot be considered to
"L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "w* document of : . : ; "
e " . particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&* document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
2 February 2010 11/02/2010
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,
F:x:(a31-7(;)340—3016 Tyszka, Krzysztof

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2009/057526
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5907678 A 25-05-1999 US 6453343 Bl 17-09-2002
US 2007266169 Al 15-11-2007 CA 2648326 Al 22-11-2007
EP 2016747 A2 21-01-2009
WO 2007133470 A2 22-11-2007

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

