woO 2015/112634 A1 |[IN I N0 00 0 O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/112634 A1l

30 July 2015 (30.07.2015) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 15/16 (2006.01) GO6F 12/00 (2006.01) kind of national protection available). AE, AG, AL, AM,
21y Int tional Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUSI015/012301 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
21 January 2015 (21.01.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
.) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
61/929.793 21 January 2014 (21.01.2014) us 84 D.e51gnated. States (unle.ss othef"wzse indicated, for every
14/253,645 15 April 2014 (15.04.2014) Us kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: SANDISK TECHNOLOGIES, INC. TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
[US/US]; Two Legacy Town Center, 6900 North Dallas TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Parkway, Plano, Texas 75024 (US). DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) Tnventors: SUNDARARAMAN, Swaminathan; Two LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Legacy Town Center, 6900 North Dallas Parkway, Plano, GW . KM. ML. MR. NE. SN. TD. TG
Texas 75024 (US). TALAGALA, Nisha; Two Legacy i i i - NE, SN, TD, TG).
Town Center, 6900 North Dallas Parkway, Plano, Texas Puplished:
75024 (US). SUBRAMANIAN, Sriram; Two Legacy L ,
Town Center, 6900 North Dallas Parkway, Plano, Texas with international search report (Art. 21(3))
75024 (US).
(74) Agent: HILTON, Scott; 50 West Broadway, 10th Floor,

Salt Lake City, Utah 84101 (US).

(54) Title: SYSTEMS, METHODS AND INTERFACES FOR DATA VIRTUALIZATION

(57) Abstract: A data services module (110)
performs log storage operations in response to

S 190~ requests by storing data on one or more stor-
Clients 106 age devices (190), and appending information
Operating System File System Database Remote pertamning to the requests to a separate
: i i metadata log (160). A log order of the

metadata log (160) may correspond to an or-

Data Services Module 110 | Inferface 112 | der in which the requests were received, re-
Storage Module 118 gardless of the order in which data of the re-

Tog 130 Namesmcé Mer. 120 E quests are written to the storage d.eVice.s (190).

Do Log Metad;mg 122 . Traqsz'jm“ 125 || Mgnmt. The requests may correspond to identifiers of
132 134 GC 136 (I - % || 128 a logical address space (122). The data ser-
vices module (110) implements an any-to-any

Storage Resource Manager 114 | |

Data Virtualization Module 14

translation layer (121, 124) configured to map

identifiers of the logical address space (122) to
the stored data. The data services module

115
P 4

194

FIG. 1A

191
3
T

(—

196

(110) may include a metadata management
module (128) configured to checkpoint the
translation layer (121, 124) metadata by, inter
alia, appending aggregate, checkpoint entries
to the metadata log (160). The data services
module (110) may leverage the translation lay-
er (121, 124) between the logical identifiers
and underlying storage locations to efticiently
implement logical manipulation operations.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

Systems, Methods and Interfaces for Data Virtualization

Technical Field

This disclosure relates to storage systems and, in particular, to systems, methods and

apparatus for data virtualization.

Fig.

BRIEF DESCRIPTION OF THE DRAWINGS

1A is a block diagram of one embodiment of a computing system comprising a data

services module;

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1B depicts embodiments of virtualization metadata of a data services module;
1C depicts embodiments of log operations of a data services module;

1D depicts further embodiments of log operations;

1E depicts further embodiments of log operations;

IF depicts further embodiments of log operations;

1G depicts further embodiments of log operations;

1H depicts embodiments of metadata log operations;

11 depicts further embodiments of metadata log operations;

1] depicts embodiments of garbage collection operations in a metadata log;
1K depicts embodiments of checkpoint operations;

2A depicts further embodiments of a data services module configured to manage a

data log that spans a plurality of storage resources;

Fig.

résources;

Fig.
Fig.
Fig.

2B depicts embodiments of mappings between a logical address space and storage

2C depicts embodiments of log operations;
2D depicts further embodiments of log operations;

3A depicts further embodiments of a data services module configured to manage a

plurality of data logs which may span a plurality of storage resources;

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

3B depicts further embodiments of log operations;

3C depicts embodiments of recovery operations;

3D depicts embodiments of logical move operations;
3E depicts embodiments of logical copy operations;
3F depicts further embodiments of log operations;

4A depicts embodiments of logical copy operations;
4B depicts embodiments of copy-on-write operations;

4C depicts embodiments of logical merge operations;

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

2

Fig. 5A depicts an embodiment of a data services module configured to implement
atomic storage operations;

Fig. 5B depicts embodiments of atomic storage operations;

Fig. 5C depicts further embodiments of atomic storage operations;

Fig. 5D depicts further embodiments of atomic storage operations;

Fig. 6A depicts an embodiment of a data services module configured to implement
snapshot operations;

Fig. 6B depicts embodiments of snapshot operations;

Fig. 6C depicts embodiments of virtualization metadata management operations;

Fig. 6D depicts further embodiments of snapshot operations;

Fig. 6E depicts embodiments of snapshot activation operations;

Fig. 6F depicts embodiments of snapshot management operations;

Fig. 6F depicts further embodiments of snapshot management operations;

Fig. 6G depicts further embodiments of snapshot management operations;

Fig. 6H depicts further embodiments of snapshot management operations;

Fig. 7A is a flow diagram of one embodiment of a method for servicing I/O requests;

Fig. 7B is a flow diagram of another embodiment of a method for servicing I/O requests;

Fig. 8 is a flow diagram of one embodiment of a method for managing a metadata log;

Fig. 9 is a flow diagram of one embodiment of a method for metadata recovery;

Fig. 10 is a flow diagram of one embodiment of a method for managing a virtual data log;

Fig. 11 is a flow diagram of one embodiment of a logical manipulation operation;

Fig. 12 is a flow diagram of one embodiment of a method for implementing atomic
storage operations;

Fig. 13 is a flow diagram of one embodiment of a method for implementing snapshot
operations;

Fig. 14 is a flow diagram of one embodiment of a method for providing data
virtualization services; and

Fig. 15 is a flow diagram of another embodiment of a method for providing data
virtualization services.
Detailed Description

An I/O data services module may be configured to provide I/O services to one or more
clients by use of one or more lower-level I/O resources. As used herein, a lower-level 1/0O
resource refers to any device, service, module, and/or layer capable of servicing an I/O request.

Accordingly, a storage resource may include, but is not limited to: a hard drive (e.g., magnetic

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

3

storage medium), battery-backed Random Access Memory (RAM), solid-state storage medium,
disk array (e.g., a redundant array of inexpensive disks (RAID)), Storage Area Network (SAN),
logical unit (e.g., a Small Computer System Interface (SCSI) compliant storage resource), virtual
logical unit, and/or the like.

The 1/0 data services module may maintain one or more upper-level /O namespace(s),
which may include, but are not limited to: a set, collection, range, and/or extent of data
references and/or identifiers; a set, collection, range, and/or extent of addresses (e.g., sector
addresses, block addresses, logical block addresses, and/or the like); a storage namespace; a file
system namespace; and/or the like. The I/O data services module may comprise a namespace
manager configured to link identifiers of the upper-level 1/O namespace(s) to lower-level 1/0
resources by use of, inter alia, virtualization metadata, including any-to-any mappings between
identifiers of upper-level I/O namespaces and identifiers of the lower-level I/O resource(s). In
some embodiments, an upper-level /O namespace may correspond to two or more different
storage resources. Accordingly, the I/0 data services module may be configured to combine
multiple lower-level 1/O namespaces into an aggregate upper-level /O namespace.
Alternatively, or in addition, two or more upper-level /O namespaces may map to the same
storage resource.

In some embodiments, the [/O data services module includes a storage module
configured to log 1/O operations. The storage module may be configured to log I/O operations in
a virtualized data log. As used herein, a virtual data log (VDL) refers to a log corresponding to a
front-end, upper-level I/O namespace, such that the VDL comprises segments defined within
front-end interfaces of one or more storage resources. The VDL may correspond to a data
stream comprising data of I/O requests serviced by the data services module. The VDL may
comprise upper-level log segments corresponding to respective sets, collections, ranges, and/or
extents within one or more lower-level namespaces. Appending data to the VDL may, therefore,
comprise appending data sequentially within the I/O namespace of an I/O resource. In some
embodiments, the data services module may comprise a plurality of VDLs, each having a
different respective append point. Although specific embodiments of a VDL for storage of data
of 1/O requests is described herein, the disclosure is not limited in this regard and could be
adapted to use any suitable structure to store that data. Exemplary data storage structures
include, but are not limited to, logging and/or journaling mechanisms, including, but not limited
to: key-value storage systems, write out-of-place storage systems, write-anywhere data layouts,

journaling storage systems, object-based storage systems, and/or the like.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

4

The log module may further comprise a garbage collector configured to reclaim segments
of the VDL (and/or other logs, such as the metadata log, disclosed in further detail herein). The
garbage collector may comprise: a garbage collector (GC) scanner configured to distinguish
valid data from data that does not need to be retained within the log (e.g., invalid data), a GC
relocation strategy module configured to determine a plan for relocating valid data within one or
more log segments being reclaimed to other segments of the log, and a GC implementation
module configured to execute the determined relocation plan. The GC implementation module
may be configured to implement the relocation plan in accordance with properties and/or
characteristics of the underlying storage resources. A storage resource may, for example,
support logical move operations (disclosed in further detail herein), and the GC implementation
module may relocate data using a supported logical move operation rather than re-writing the
data on the storage resource.

The I/O data services module may further comprise a metadata log, which may be
maintained separately from the VDL. The metadata log may maintain a persistent, ordered
record of mappings between identifiers in upper-level /O namespace(s) of the I/O data services
module and identifiers of corresponding storage resources. The metadata log preserves and
maintains a temporal ordering of I/O operations performed by the I/O data services module (e.g.,
a “log order” of the metadata log). As used herein, “‘log order” refers to an ordered sequence of
information in a log data structure (e.g., the order of data within the log). The log order of the
metadata log may correspond to an order in which /O operations were received at the data
services module 110. Since the metadata log maintains temporal ordering of the I/O operations,
the corresponding data storage operations performed in the VDL may be free from time ordering
constraints (e.g., may be performed out-of-order). In some embodiments, the metadata log is
maintained separately from the VDL (e.g., in a separate /O namespace, on a separate storage
resource, and/or the like). Although specific embodiments of a metadata log are described
herein, the disclosure is not limited in this regard and could be adapted to maintain mapping
metadata using any suitable metadata storage technique including, but not limited to: key-value
storage mechanisms, journaling storage mechanisms, and/or the like.

The log(s) maintained by the I/O data services module may comprise segments
corresponding to respective sets, collections, ranges, and/or extents of identifiers within
respective namespace(s) of one or more storage resources. A translation module may be
configured to bind (e.g., associate, map, tie, connect, relate, etc.) identifiers of I/O namespace(s)
to respective storage resources by use of, inter alia, virtualization metadata. In some

embodiments, the virtualization metadata comprises a forward map comprising any-to-any

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

5

mappings between upper-level identifiers of the virtualization layer, and identifiers of respective
storage resources. The virtualization index may comprise any suitable data structure including,
but not limited to: a map, a hash map, a tree data structure, a binary tree (B-Tree), an n-ary tree
data structure (B+ Tree), a range encoded tree, a radix tree, and/or the like. The virtualization
index may be maintained in volatile memory. In some embodiments, the translation module is
configured to map LIDs to virtual blocks that correspond to groups of one or more virtual
addresses. The virtual blocks may be adapted to provide a desired storage granularity (e.g.,
block size). The data services module may be configured to persist portions of the virtualization
index to ensure that the mappings of the virtualization index are persistent and/or crash safe. The
data services module may comprise a reconstruction module configured to rebuild the
virtualization index using the contents of one or more VDLs and/or metadata log. As above,
although particular embodiments of a VDL (and metadata log) are described herein, the
disclosure is not limited in this regard and could be adapted to use any suitable storage, logging,
and/or journaling mechanisms.

The data services module may be configured to maintain mapping metadata in an ordered
metadata log. The metadata log may include mapping entries configured to associate LIDs with
respective virtual addresses (and/or virtual blocks). The data services module may be further
configured to implement efficient logical manipulation operations on data stored within the
VDL. The logical manipulation operations may include, but are not limited to: logical move
operations, logical copy operations, merge operations, and the like. Implementing the logical
manipulation operations may comprise recording logical manipulation entries to the metadata log
160. Accordingly, logical manipulation operations may be implemented without modifying data
in the VDL and/or without appending data to the VDL.

Disclosed herein are embodiments of an apparatus, comprising an interface module
configured to receive input/output (I/O) requests pertaining to logical identifiers of a logical
address space, a storage module configured to store data corresponding to one or more of the 1/0O
requests by way of a storage resource, and/or a data services module configured to record logical
manipulation entries corresponding to modifications to associations between logical identifiers
and data stored on the storage resource. The logical manipulation entries may be recorded in a
metadata log. The metadata log may further comprise mapping entries corresponding to
associations between logical identifiers and data stored on the storage resource.

The disclosed apparatus may further include a translation module configured to manage a
logical interface to data stored on the storage resource by mapping logical identifiers to virtual

identifiers of the storage resource. As used herein, a “logical interface” to data stored on a

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

6

storage resource refers to a handle, an identifier, a path, a process, or other mechanism(s) for
referencing and/or interfacing with the data. A logical interface may include, but is not limited
to: an address, an identifier, a logical identifier, a logical block address (LBA), a virtual storage
unit address, a range or extent of identifiers, a reference (e.g., a link between logical identifiers, a
pointer, etc.), and/or the like. The virtual identifiers may correspond to respective physical
storage units comprising the data stored on the storage resource. The data services module may
be configured to modify the logical interface of the data stored on the storage resource in
response to one or more I/O requests. The data services module may be configured to modify
the logical interface by changing a mapping between logical identifiers and respective virtual
identifiers and appending a logical manipulation entry that records the changed mapping to the
metadata log. In some embodiments, mappings between logical identifiers and respective virtual
identifiers are independent of relationships between the virtual identifiers and respective physical
storage units comprising the data stored on the storage resource. The mapping entries may
comprise associations between logical identifiers and virtual blocks, wherein the virtual blocks
correspond to respective groups of two or more virtual addresses of a front-end namespace of the
storage resource, and wherein the virtual addresses correspond to physical storage units of the
storage resource.

The translation module may be configured to maintain a forward map configured to
associate logical identifiers of the logical address space with respective virtual identifiers of the
storage resource. The apparatus may further include a logical move module configured to
implement a logical move operation of data stored on the storage resource, wherein the data is
stored at a physical storage address of the storage resource that corresponds to a first virtual
identifier, and wherein the logical move operation includes a) updating the forward map to
associate the first virtual identifier with a second, different logical identifier, and/or b) appending
a logical manipulation entry to the metadata log corresponding to the logical move operation.
The appended logical manipulation entry may be configured to indicate that the first virtual
identifier is bound to the second, different logical identifier, and to indicate that the first logical
identifier is unbound.

In some embodiments, the apparatus includes a logical replication module configured to
implement a logical replication operation of data stored on the storage resource and mapped to a
first logical identifier through a first virtual address, wherein the logical replication operation
comprises a) updating the forward map to associate the first virtual identifier with a second,
different logical identifier, and/or b) appending a logical manipulation entry to the metadata log,

such that the metadata log indicates that the first virtual address is associated with both the first

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

7

logical identifier and the second, different logical identifier. The disclosed apparatus may
comprise a snapshot module configured to create a snapshot of a first set of identifiers within the
logical address space by writing a logical manipulation entry to the metadata log. The appended
logical manipulation entry may be configured to tie a second set of identifiers to data tied to the
first set of identifiers.

Embodiments of the disclosed apparatus may comprise a metadata log module configured
to order entries appended to the metadata log, such that the order of the entries within the
metadata log corresponds to an order in which I/O requests pertaining to the entries are received.
The data services module may be configured to acknowledge completion of an I/O request in
response to appending an entry corresponding to the I/O request to the metadata log.

The disclosed apparatus may further include a data log module configured to append data
of the one or more I/O requests to a data log comprising a plurality of storage resources. The
metadata log may be maintained on a storage resource that is separate from the storage resources
comprising the data log. The data log module may be configured to append data to the data log
in an order that differs from an order in which I/O requests corresponding to the data are
received.

Disclosed herein are embodiments of a method for data virtualization, comprising writing
data to a storage device in response to requests pertaining to a logical address space, maintaining
logical interface metadata pertaining to data stored on the storage device, the logical interface
metadata comprising mappings between identifiers of the logical address space and data stored
on the storage device, and/or modifying a logical interface for a data segment stored on the
storage device. Modifying the logical interface may comprise modifying a mapping pertaining
to the data segment in the logical interface metadata, and appending a record to a persistent
metadata log corresponding to the modified logical interface. The logical interface metadata
may be configured to bind identifiers of the logical address space to respective intermediate
identifiers, wherein the intermediate identifiers correspond to respective physical storage units of
the storage device, and wherein writing the data comprises appending the data to segments of a
virtual data log, wherein the segments comprise respective sets of intermediate identifiers.

The disclosed method may further include translating identifiers of the logical address
space to identifiers of a virtual address space by use of the logical interface metadata, wherein
virtual addresses of the virtual address space correspond to respective physical storage units of
one of a plurality of storage devices. Modifying the logical interface of the data segment may
comprise modifying a mapping of the logical interface metadata that is configured to bind a first

logical identifier to the data segment through a particular virtual address, to bind the particular

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

8

virtual address to a second, different logical identifier, and/or appending a record to the persistent
metadata log that corresponds to the binding between the second, different logical identifier and
the particular virtual address. In some embodiments, modifying the logical interface of the data
segment further includes removing a mapping between the first identifier and the particular
virtual address from the logical interface metadata. The persistent metadata log may indicate
that the particular virtual address is bound to both the first logical identifier and the second,
different logical identifier.

Disclosed herein are further embodiments of a method for data virtualization, which may
include the operations of servicing requests pertaining to logical identifiers of a logical address
space by appending data of the requests to a data log maintained on a storage device, translating
logical identifiers of the logical address space to addresses of an intermediate translation layer,
wherein the addresses of the intermediate translation layer correspond to respective storage units
of the storage device, and/or altering a mapping between a logical identifier and an address of the
intermediate translation layer in response to a request, wherein altering the mapping comprises
appending a persistent note to a metadata log corresponding to the altered mapping. The
operations may further comprise altering the mapping in response to a virtual copy operation,
wherein the persistent note appended to the metadata log is configured to associate two or more
identifiers of the logical address space to a single address of the intermediate translation layer.
Alternatively, or in addition, the operations may include altering the mapping in response to a
virtual move operation, wherein the persistent note is configured to replace an association
between a first identifier of the logical address space and a particular address of the intermediate
translation layer with an association between a second, different identifier of the logical address
space and the particular address.

The disclosed method may comprise servicing an atomic storage request pertaining to a
first, target set of logical identifiers by implementing storage operations corresponding to the
atomic storage request in a second set of logical identifiers, wherein implementing the storage
operations comprises binding logical identifiers of the second set to particular addresses within
the intermediate translation layer, and altering mappings between logical identifiers and
addresses of the intermediate translation layer to bind the first, target set of logical identifiers to
the particular addresses. The persistent note may correspond to the bindings between the first,
target set of identifiers and the particular set of addresses. The operations may further include
performing a logical clone operation to associate the second set of logical identifiers with data

associated with the first, target set of logical identifiers.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

9

Fig. 1A is a block diagram of one embodiment 101A of a computing system 100
comprising data services module 110. The computing system 100 may comprise one or more
computing devices, including, but not limited to, a server, a desktop, a laptop, an embedded
system, a mobile device, and/or the like. In some embodiments, the computing system 100 may
include multiple computing devices, such as a cluster of server computing devices. The
computing system 100 may comprise processing resources 102, volatile memory resources 103
(e.g., RAM), and communication interface 104. The processing resources 102 may include, but
are not limited to, general purpose central processing units (CPUs), application-specific
integrated circuits (ASICs), and programmable logic elements, such as field programmable gate
arrays (FPGAs), programmable logic arrays (PLGs), and the like. The communication interface
104 may be configured to communicatively couple the computing system 100 to a network 105.
The network 105 may comprise any suitable communication network, including, but not limited
to, a Transmission Control Protocol/Internet Protocol (TCP/IP) network, a Local Area Network
(LAN), a Wide Area Network (WAN), a Virtual Private Network (VPN), or a Storage Area
Network (SAN).

The data services module 110 (and/or modules, components, and/or features thereof) may
be implemented in software, hardware, and/or a combination of software and hardware
components. In some embodiments, portions of the data services module 110 are embodied as
executable instructions stored on a non-transitory storage medium. The instructions may
comprise computer program code configured for execution by the processing resources 102 of
the computing system 100 and/or processing resources of other components and/or modules.
The data services module 110, and/or portions thereof, may be implemented as a driver, a
library, an interface, an application programming interface (API), and/or the like. Accordingly,
portions of the data services module 110 may be accessed by and/or included within other
modules, processes, and/or services (e.g., incorporated within a kernel layer of an operating
system of the computing system 100). In some embodiments, portions of the data services
module 110 are embodied as machine components, such as general and/or application-specific
devices, including, but not limited to: processing components, interface components, hardware
controller(s), storage controller(s), programmable hardware, FPGAs, ASICs, and/or the like.

The data services module 110 may be configured to provide I/O and/or storage services
to clients 106. The clients 106 may include, but are not limited to, operating systems, file
systems, journaling systems, key-value storage systems, database systems, applications, users,
remote storage clients, and so on. The clients 106 may further include, but are not limited to:

components of a virtualized computing environment, such as hypervisors, virtualization kernels,

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

10

guest operating systems, virtual machines, and/or the like.

The services provided by the data services module 110 refer to storage and/or 1/O
services, which are not specific to virtualized computing environments, nor limited to virtualized
computing platforms. As disclosed in further detail herein, the data services module 110 may be
configured to service storage requests to write, read, and/or modify data stored on the storage
resources 190A-N. The data services module 110 may be further configured to provide higher-
level functionality to, inter alia, manipulate the logical interface to data stored on the storage
resources 190A-N without requiring the stored data to be re-written and/or otherwise modified.
As above, the “logical interface” to data refers to a handle, an identifier, a path, a process, or
other mechanism(s) for referencing and/or interfacing with the data. A logical interface to data
may, therefore, include bindings, associations, and/or ties between logical identifiers and data
stored on one or more of the storage resources 190A-N. A logical interface may be used to
reference data through a storage interface and/or application programming interface (API), such
as the interface 112 of the data services module 110.

Manipulating the logical interface to data may include, but is not limited to: move
operations configured to associate data with different set(s) of LIDs in the logical address space
122 (and/or in other address space(s)), replication operations configured to provide for
referencing persistent data through two or more different sets of LIDs in the logical address
space 122 (and/or in other address space(s)), merge operations configured to merge two or more
sets of LIDs, and so on. Accordingly, manipulating the logical interface to data may comprise
modifying existing bindings, ties, mappings and/or associations between the logical address
space 122 and data stored on a storage resource 190A-N. The logical manipulation operations
implemented by the data services module 110, in certain embodiments, are persistent and crash
safe, such that the effect of the operations are preserved despite loss and/or corruption of volatile
metadata (e.g., virtualization metadata, such as the forward map 125). Moreover, the logical
manipulation operations may be implemented without modifying the persistent data in the VDL
150 and/or without appending data to the VDL 150. The data services module 110 may be
further configured to leverage the logical manipulation operations disclosed herein to implement
higher-level features, including, but not limited to: I/O transactions, atomic storage operations,
vectored atomic storage operations, snapshots, data consistency (e.g., close-to-open file
consistency), data collision management (e.g., key collision in key-value storage systems), de-
duplication, data version management, and/or the like.

The data services module 110 may service I/O requests by use of one or more storage

resources 190. As used herein, a “storage resource” refers to a storage device, layer, module,

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

11

service, and/or the like that is capable of servicing /O and/or storage requests. The storage
resource 190 may be capable of storing data persistently on a storage medium 191. The storage
resource 190 may comprise one or more storage devices including, but not limited to: solid-state
storage devices or drives (SSD), hard disk drives (e.g., Integrated Drive Electronics (IDE) drives,
Small Computer System Interface (SCSI) drives, Serial Attached SCSI (SAS) drives, Serial AT
Attachment (SATA) drives, etc.), tape drives, writeable optical drives (e.g., CD drives, DVD
drives, Blu-ray drives, etc.), and/or the like. The storage medium 191 may include, but is not
limited to: a magnetic storage medium, an optical storage medium, a solid-state storage medium,
NAND flash memory, NOR flash memory, nano RAM (NRAM), magneto-resistive RAM
(MRAM), phase change RAM (PRAM), Racetrack memory, Memristor memory, nanocrystal
wire-based memory, silicon-oxide-based sub-10 nanometer process memory, graphene memory,
Silicon-Oxide-Nitride-Oxide-Silicon ~ (SONOS) memory, resistive RAM (RRAM),
programmable metallization cell (PMC) memory, conductive-bridging RAM (CBRAM), and/or
the like. Although particular embodiments of storage media are disclosed herein, the teachings
of this disclosure could be applied to any suitable storage medium, including both non-volatile
and volatile forms.

The storage resource 190 may comprise an interface configured to receive storage and/or
I/O requests. The interface may comprise and/or correspond to a storage resource address space
194, which may include, but is not limited to: a namespace, a front-end interface, a virtual
address space, a block address space, a logical address space, a LUN, a vLUN, and/or the like.
The front-end interface of the storage resource (storage resource address space 194) may
comprise a set, range, and/or extent of identifiers, which may include, but are not limited to:
front-end identifiers, front-end addresses, virtual addresses, block addresses, logical block
addresses, and/or the like. As used herein, the identifiers of the front-end storage resource
address space 194 are referred to as virtual addresses 195. The storage resource address space
194 may be managed by, inter alia, a storage resource controller 192. The storage resource
controller 192 may include, but is not limited to: a driver, an I/O interface, a storage interface
(e.g., block device driver, interface, and/or API), a hardware controller, and/or the like.

The storage resource controller 192 may be configured to perform storage operations on
respective storage units 197 of the storage medium 191. As used herein, a “storage unit” refers
to a storage location capable of persistently storing data. The storage units 197 of the storage
resource 190 may correspond to: blocks, sectors, pages, storage divisions (e.g., erase blocks),
groups of storage locations (e.g., logical pages and/or offsets within a logical page), storage

divisions (e.g., physical erase blocks, logical erase blocks, etc.), physical die, physical die

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

12

plane(s), locations on a magnetic disk, battery-backed memory locations, and/or the like. The
storage units 197 may be addressable within a storage media address space 196 (e.g., physical
address space). The storage media address space 196 may include, but is not limited to: a set,
range, and/or collection of storage unit addresses, a namespace, a back-end interface, a physical
address space, a block address space, address offsets, and/or the like. The storage resource
controller 192 may be configured to correlate virtual addresses 195 of the storage resource
address space 194 with storage units 197 using, for example, deterministic one-to-one mappings
(e.g., cylinder sector head (CHS) addressing), any-to-any mappings, an address translation layer,
an index, a flash translation layer, and/or the like.

The data services module 110 may comprise a storage resource manager 114 configured
to, inter alia, perform storage on the storage resource 190. The storage resource manager 114
may interface with the storage resource 190 by use of an interconnect 115, which may include,
but is not limited to: a peripheral component interconnect (PCI), PCI express (PCl-e), Serial
ATAttachment (serial ATA or SATA), parallel ATA (PATA), Small Computer System Interface
(SCSD), IEEE 1394 (FireWire), Fiber Channel, universal serial bus (USB), and/or the like. In
some embodiments, the storage resource 190 may comprise one or more remote storage devices
that are communicatively coupled to the computing system 100 through the network 105 (and/or
other communication interface, such as a Storage Area Network (SAN), a Virtual Storage Area
Network (VSAN), and/or the like). The interconnect 115 may, therefore, comprise a remote bus,
such as a PCI-e bus, a network connection (e.g., Infiniband), a storage network, a Fibre Channel
Protocol (FCP) network, a HyperSCSI, and/or the like.

The data services module 110 may comprise an interface 112 through which clients 106
may access the I/O services and/or functionality. The interface 112 may include one or more
block device interfaces, object storage interfaces, file storage interfaces, key-value storage
interfaces, virtualized storage interfaces, VSUs, LUNs, vLUNSs, storage namespaces, logical
address spaces, virtual address spaces, database storage interfaces, and/or the like.

The data services module 110 may provide access to I/O and/or storage resources through
an upper-level /O namespace. As used herein, an “upper-level I/O interface” refers to an
interface through which clients 106 may refer to I/O and/or storage services provided by the data
services module 110. The data services module 110 comprises a namespace manager 120
configured to maintain the upper-level I/O namespace. In the Fig. 1A embodiment, the upper-
level I/O namespace comprises a logical address space 122 comprising a group, set, collection,
range, and/or extent of identifiers. As used herein, an “identifier” or a “logical identifier” (LID)

refers to any identifier configured to reference an I/O resource. LIDs may include, but are not

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

13

limited to, identifiers, names (e.g., file names, distinguished names, and/or the like), data
identifiers, references, links, front-end identifiers, front-end addresses, logical addresses, LBA,
storage unit addresses, VSU addresses, LUN addresses, vLUN addresses, unique identifiers,
globally unique identifiers (GUIDs), and/or the like.

The logical capacity of the logical address space 122 may correspond to the number of
LIDs in the logical address space 122 and/or the size and/or granularity of the storage resources
referenced by the LIDs. The logical address space 122 managed by the data services module 110
may be independent of the underlying storage resources 190. Accordingly, in some
embodiments, the logical address space 122 may be sparse and/or “thinly provisioned.” As used
herein, a thinly provisioned logical address space 122 refers to a logical address space 122
having a logical capacity that is independent of the physical storage capacity and/or granularity
of corresponding storage resources 190 (e.g., exceeds the storage capacity of the storage resource
190). In one embodiment, the logical address space 122 comprises 64-bit LIDs (e.g., 2726
unique LIDs). As disclosed in further detail herein, the data services module 110 may leverage
the large, thinly provisioned logical address space 122 to efficiently allocate and/or reference
contiguous ranges of LIDs.

The namespace manager 120 may further include a translation module 124 configured to
bind LIDs of the upper-level I/O namespace (logical address space 122) to front-end identifiers
of a storage resource 190 by use of virtualization metadata. As used herein, virtualization
metadata refers to metadata configured to, infer alia, manage mappings between identifiers of
the logical address space 122 and virtual addresses of the storage resource(s) 190. In the Fig. 1A
embodiment, the translation module 124 ties LIDs of the logical address space 122 to virtual
addresses 195 of the storage resource 190 by use of a forward map 125. The forward map 125
may be configured to map any logical identifier to any virtual address 195. The translation
module 124 may, therefore, correspond to an intermediate translation layer 121 between LIDs of
the logical address space 122 and storage units 197 of the storage resource 190. A LID may map
to one or more virtual addresses 195, which may be mapped to respective storage units 197.

In some embodiments, the forward map 125 is configured to map LIDs of the logical
address space 122 to respective virtual addresses (e.g., one-to-one mappings). In such
embodiments, LIDs of the logical address space 122 may correspond to respective storage units
197 of the storage resource 190. The LIDs may, therefore, correspond to and/or represent the
same physical storage capacity as the underlying storage units 197. The storage resource 190

may, for example, have a block size of 1 kilobyte (kb), such that each storage unit 197 is capable

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

14

of storing 1 kb of data. The LIDs of the logical address space 122 may, therefore, map to 1 kb
blocks (e.g., each LID may correspond to 1 kb of storage capacity).

In some embodiments, the translation module 124 is configured to manage LID-to-
mappings in order to, inter alia, manage the physical storage capacity represented by the LIDs.
As illustrated in Fig. 1B, the translation module 124 may be configured to map LIDs to
respective virtual blocks 145, each of which may correspond to one or more virtual addresses
195. Accordingly, as used herein, a virtual block 145 refers to one or more virtual addresses
195. In the Fig. 1B embodiment, the virtual blocks 145 may correspond to two virtual addresses
195, such that the physical storage capacity represented by each virtual block 145 (and
corresponding LID) is twice that of the underlying virtual addresses 195 and/or storage units
197. In the Fig. 1B embodiment, each LID may, therefore, correspond to and/or represent 2 kb
of physical storage capacity. The translation module 124 may configure the virtual blocks 145 in
accordance with a desired block size of the data services module 110. A larger effective block
size may, for example, allow the data services module 110 to batch I/O requests, match a block
size of one or more clients 106, and/or the like. Alternatively, or in addition, the data services
module 110 may configure the virtual blocks 145 to utilize different storage resources 190
having different, respective block sizes, as disclosed in further detail herein. The translation
module 124 may be further configured to translate between virtual blocks 145 and virtual
addresses 195. In the two-to-one configuration of Fig. 1B, the translation module 124 may
translate virtual addresses 195 to virtual blocks 145 by bitwise shifting the virtual address(es)
195 (e.g., removing the least significant address bit). Accordingly, each two virtual addresses
195 map to a respective virtual block 145. The corresponding virtual addresses 195 may be
derived from virtual blocks 145 using a similar technique (e.g., appending a 0 and/or 1 to the
virtual block address, respectively). The translation module 124 may be configured to perform
similar address translations with different virtual block 145 ratios. For example, in a four-to-one
mapping between virtual addressees 195 and virtual blocks 145, the translation module 124 may
be configured to bitwise shift the virtual addresses 195 to remove the two least significant bits,
and so on. Although particular embodiments of mechanisms for translating between virtual
blocks 145 and virtual addresses 195 are described herein, the disclosure is not limited in this
regard, and could be adapted to implement translations using any suitable mechanism including,
but not limited to: an index, a map, a tree, a hashing algorithm, and/or the like. Accordingly, the
virtual blocks 145 and/or virtual addresses 195 may comprise intermediate identifiers between
the LIDs of the logical address space 122 and storage units 197 of the storage resource(s) 190.

The data services module 110 may be configured to select a block size (e.g., configuration for

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

15

the virtual blocks 145) based on any number of factors including, but not limited to: memory
overhead (e.g., larger virtual blocks 145 may result in a fewer number of entries in the forward
map 125), garbage collection complexity, sequential storage performance of the storage
resource(s) 190, I/O properties of the clients 106 (e.g., preferred client block size), and/or the
like.

As illustrated in embodiment 101B of Fig. 1B, the forward map 125 may comprise a tree
data structure comprising entries 126 configured to associate LIDs and/or LID ranges with
respective virtual blocks 145 and/or corresponding virtual addresses 195. In the Fig. 1B
embodiment, the storage resource 190 may implement predetermined one-to-one mappings
between virtual addresses 195 and storage units 197.

The forward map 125 may include an entry 126 configured to bind LID range 34, 2 to
virtual blocks 16987, 2, an entry 126 configured to tie LID 642439 to virtual block 842, and an
entry 126 that associates LID 8642439 with virtual block 11788. The translation module 124
may be configured to map virtual blocks 145 to virtual addresses 195 using a pre-determined
algorithm based on, inter alia, the ratio between virtual addresses 195 and virtual blocks 145, as
disclosed above. In some embodiments, the forward map 125 may be configured to index the
entries 126 by LID and may be structured such that the entries 126 are leaf nodes within the B+
Tree data structure. The B+ Tree data structure may comprise intermediate reference nodes 129
to facilitate efficient lookup of the entries 126. The forward map 125 may be maintained in
volatile memory resources 103 of the computing system. The data services module 110 may be
configured to checkpoint the forward map 125 (e.g., store portions of the forward map 125 on
non-volatile storage) in order to, inter alia, ensure that the forward map 125 is persistent and
crash safe.

The data services module 110 may be configured to service I/O requests by use of, inter
alia, a storage module 118. The storage module 118 may be configured to store data pertaining
to I/O requests received through the interface 112 on one or more storage resources 190. In
some embodiments, the storage module 118 is configured to store data within a log on the
storage resource 190 by use of a log module 130. The log module 130 may comprise a data log
module 132 configured to manage a VDL 150, as illustrated in Fig. 1C. In the embodiment
101C of Fig. 1C, the VDL 150 may comprise a plurality of VDL segments 152A-N, which may
comprise sets, ranges, and/or extents of log storage units 155. The log storage units 155 may
correspond to respective virtual blocks 145, which, as disclosed above, may correspond to
respective virtual addresses 195 of the storage resource address space 194. The translation

module 124 may be configured to associate LIDs of the logical address space 122 with

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

16

respective log storage units 155 (e.g., virtual blocks 145) by use of, inter alia, the forward map
125. The log storage units 155 may correspond to storage units 197 of the storage resource, as
disclosed above.

The data log module 132 may be configured to append data within the log segments
152A-N according to a particular fill pattern and/or sequence. In some embodiments, the data
log module 132 is configured to append data sequentially within the segments 152. The data log
module 132 may be configured to maintain an append point 156 for the VDL 150. The append
point 156 may correspond to the head of the VDL 150. The data log module 132 may be
configured to append data at the log storage unit 155 corresponding to the append point 156, and
then advance the append point 156 sequentially within the storage resource address space 194
(e.g., append data to log storage units 155 of a log segment 152 according to a particular order
and/or sequence). Upon filling a log segment 152, the data log module 132 may advance the
append point 156 to a next available VDL segment 152A-N. As used herein, an “available”
VDL segment 152A-N refers to a VDL segment 152A-N that has been initialized and/or is
capable of storing log data (e.g., is not currently in use to reference valid data that needs to be
retained within the VDL 150). In the Fig. 1C embodiment, the data log module 132 has filled
the VDL segment 152A (e.g., has written data to all of the log storage locations 155 in segment
152A). The data log module 132 may, therefore, advance 157 the append point 156 to a next
available VDL segment 152B-N. The log segment 152B may be currently in use (is not
initialized), and, as such, the data log module 132 may advance 157 the append point 156 to
VDL segment 152C, which has been initialized and is ready for new append operations. After
filling a last VDL segment 152N, the data log module 132 may wrap around the storage resource
address space 194. Accordingly, the data log module 132 may treat the storage resource address
space 194 as a circuit and/or cycle.

The data log module 132 may be configured to service I/O requests by, inter alia,
appending data to the VDL 150. Fig. 1D depicts one embodiment 101D of an operation to
append data to the VDL 150. The append operation of Fig. 1D may be performed in response to
an 1/O request 113A. The I/O request 113A may comprise a request to write data to a LID
within the logical address space 122 (e.g., write data X to LID A). The I/O request 113A may be
received through the interface 112 of the data services module 110.

Servicing the I/O request 113A may comprise appending data to the VDL 150, which
may comprise writing data X at the append point 156 within the VDL 150 (at log storage unit
158A). Servicing the 1/O request 113A may further comprise creating an entry in the forward
map 125 to bind LID A to the log storage unit 158A comprising the data X. In some

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

17

embodiments, the data log module 132 may be further configured to store persistent metadata in
the VDL 150 to persist the binding between LID A and storage location 158A. The data log
module 132 may be configured to process data segments for storage within the VDL 150, which
may comprise encapsulating data segments (data X) into containers, such as packets, that are
configured to associate the data segments with persistent VDL metadata 184. As depicted in Fig.
1D, data stored in log storage location 158A may comprise a data segment (data X) with
persistent metadata 184 configured to associate the data segment X with LID A. Alternatively,
the data log module 132 may be configured to store a mapping note (e.g., persistent metadata
184) separately from data segment(s) and/or in separate data structures within the VDL 150. Fig.
1D depicts another embodiment of persistent metadata 184 stored within a different log storage
location 158B than the log storage location 158A comprising the data X. The persistent
metadata 184 may be configured to associate the data stored in log storage location 158A with
the LID A, as disclosed above. Although particular embodiments of persistent VDL metadata
184 are taught herein, the disclosure is not limited in this regard and could be adapted to
maintain persistent VDL metadata 184 and/or associations between persistent VDL metadata 184
and data segments within the VDL 150 using any suitable data structure and/or technique.
Alternatively, or in addition, the data services module 110 may be configured to maintain
metadata pertaining to the VDL 150 in a separate metadata log managed by the metadata log
module 134. In such embodiments, data may be appended to the VDL 150 without persistent
metadata 184 and/or without encapsulating the data in a container.

The data services module 110 may be configured to perform storage operations out-of-
place within the VDL 150. As used herein, performing storage operations “out-of-place™ refers
to performing storage operations that pertain to the same front-end identifiers (the same LIDs) at
different log storage locations 155 within the VDL 150. Performing storage operations out-of-
place may enable the data log module 132 to manage the VDL 150 as an append-only log
structure. Fig. 1E depicts one embodiment 101E of an out-of-place storage operation pertaining
to LID A. After servicing the I/O request 113A, the data log module 132 may continue servicing
other 1/O requests, which may comprise appending data to the VDL 150. The data services
module 110 may receive a subsequent I/O request 113B pertaining to LID A. The I/O request
113B may correspond to modifying and/or overwriting the data associated with LID A (e.g.,
overwriting data X with data X"). In response, the data log module 132 may append data X" to
the VDL 150 at a new log storage location 158C (at the current append point 156) rather than
modifying the data “in-place” (e.g., instead of overwriting data X in storage location 158A).

Servicing the I/O request 113B may further comprise binding LID A to the log storage location

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

18

158D comprising data X" using, inter alia, an entry in the forward map 125. The data X* may be
stored with persistent metadata 184 configured to bind the data at log storage location 158D to
LID A, as disclosed above.

The data log module 132 may be configured to maintain an order of data within the VDL
150. The data services module 110 may be configured to rebuild portions of the forward map
125 based on the data stored in the VDL 150. In some embodiments, the VDL segments 152A-
N comprise respective VDL sequence metadata configured to define a relative order of the
segments 152A-N in the VDL 150. The VDL sequence metadata may be assigned to VDL
segments 152A-N when the segments 152A-N are initialized (by the garbage collector 136, as
disclosed below), when the segments 152A-N are first used by the data log module 132, when
the segments 152A-N are filled, and/or the like. Accordingly, the order of the VDL segments
152A-N may be independent of the underlying virtual blocks 145 (and/or corresponding virtual
addresses 195) of the segments 152A-N. In some embodiments, the VDL sequence metadata is
stored within the segments 152A-N themselves (e.g., in a header, footer, and/or the like).
Alternatively, or in addition, the VDL sequence metadata may be stored in separate storage
location(s), such as the metadata log, disclosed below.

The data log module 132 may be further configured to append data within the VDL
segments 152A-N according to a predetermined order and/or pattern. The data log module 132
may, for example, be configured to increment the append point 156 sequentially within a range
and/or extent of virtual blocks 145 (e.g., virtual addresses 195) corresponding to a particular
VDL segment 152A-N. Accordingly, the relative order of data stored within log storage units
155 of the VDL 150 may be determined by use of: a) VDL sequence metadata of the
corresponding VDL segment 152A-N and b) the relative order of the log storage unit 155 within
the VDL segment 152A-N. In the Fig. 1E embodiment, the log storage unit 158D comprising
data X" is later in the VDL log sequence than the log storage unit 158A comprising data X
(based on the relative order of the log storage units 158A and 158C within the segment 152C).
The data X" at log storage unit 158D may be distinguished from the invalid data of log storage
unit 158A based on, inter alia, the relative order of the log storage units 158D and 158A in the
VDL 150.

In some embodiments, the data log module 132 is configured to append data to the VDL
150 according to the order in which the corresponding I/O requests were received. The order of
the VDL 150 may, therefore, correspond to a temporal and/or operational order of I/O requests.
In other embodiments, the data log module 132 may not enforce strict temporal ordering in the

VDL 150. The data log module 132 may be configured to service I/O requests out-of-order

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

19

within the VDL 150 by, inter alia, queuing, buffering, and/or scheduling the /O requests. 1/0O
requests may be serviced out-of-order due to differences in storage resource performance and/or
availability, quality of service (QoS) policies, and/or the like. The temporal order of I/O requests
and/or operations may be maintained in a separate data structure, such as the metadata log,
disclosed below.

Referring to Fig. 1E, appending data X" at log storage unit 158C may render the data in
log storage unit 158A invalid. As used herein, “invalid data” refers to data that does not need to
be retained by the data services module 110 (e.g., data that does not need to be persisted within
the VDL 150 and/or on a storage resource 190). In some embodiments, the data log module 132
may be configured to maintain validity metadata, such as a bitmap and/or other data structure(s),
configured to indicate the validity of log storage units 155 within respective segments 152A-N of
the VDL 150. The data log module 132 may be configured to mark log storage units 155 invalid
in response to 1/O request(s), such as requests to modify and/or overwrite data out-of-place in the
VDL 150, requests to deallocate, erase, delete, and/or TRIM data from the VDL 150, and/or the
like. Servicing the 1/0 request 113B to write data X™ to LID A may, therefore, comprise marking
the log storage unit 158A invalid. Alternatively, or in addition, log segments 152 comprising
invalid data may be identified by use of the forward map 125 (and/or other metadata). The data
services module 110 may determine that log storage units 155, which are mapped to one or more
LIDs in the forward map 125, correspond to valid data, and that log storage units 155 that do not
exist in the forward map 125 are invalid. In the Fig. 1E embodiment, the forward map 125 binds
LID A to log storage unit 158C; the log storage unit 158A is not referenced in the forward map
125 and, as such, may be identified as invalid.

Referring back to Fig. 1A, the log module 130 may comprise a garbage collector 136
configured to reclaim storage resources by, inter alia, removing invalid data from the VDL 150.
The garbage collector 136 may be configured to reclaim VDL segments 152 by a) scanning the
VDL 150 to identify VDL segments 152 to reclaim; and b) relocating valid data within the
identified VDL segments 152 (if any). The garbage collector 136 may be further configured to
re-initialize reclaimed VDL segments 152, which may comprise preparing the log segments 152
for use by the data log module 132.

The garbage collector 136 may be configured to distinguish valid data from invalid data
by use of dedicated validity metadata pertaining to the VDL 150. Alternatively, or in addition,
the garbage collector 136 may be configured to identify invalid data by use of the forward map
125 (and/or other mapping data structure(s)). As disclosed above, log storage units 155 that are

bound to LIDs in the forward map correspond to valid data, and log storage units 155 that are

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

20

unbound (do not correspond to a valid entry 126 in the forward map 125) correspond to invalid
data. As disclosed in further detail herein, the garbage collector 136 may identify invalid data
using a mark-and-sweep approach and/or other suitable technique (e.g., reference count).

The garbage collector 136 may be configured to relocate data from a VDL segment 152
that is being reclaimed by a) determining a relocation plan, and b) implementing the determined
relocation plan. Determining a relocation plan may comprise identifying other log storage
unit(s) 155 available to store the valid data. The identified storage unit(s) 155 may correspond to
the current VDL append point 156. Alternatively, and as disclosed in further detail herein, data
may be relocated to a different log, different storage resource 190, and/or the like. Implementing
the determined relocation plan may comprise copying the data to the identified log storage units
155 (e.g., appending the valid data to the head of the VDL 150), moving the data to the identified
log storage units 155, and/or the like.

Fig. 1F depicts one embodiment 101F of an operation to recover a segment 152 of the
VDL 150. As illustrated in Fig. 1F, the data log module 132 may have written data X" to LID A
at log storage unit 158D, rendering the data at log storage units 158A and 158C invalid. In
addition, data of LID B was written to log storage location 158F of segment 152C. As used
herein, compaction, garbage collection, recovery, and/or reclamation refers to an operation to
prepare a segment 152 of the VDL 150 for reuse. As disclosed above, the garbage collector 136
may be configured to perform compaction operations by a) scanning the VDL 150 to identify
segments 152 suitable for recovery, b) relocating valid data in the identified segments 152, and
¢) preparing the segments 152 for reuse.

The compaction operation of Fig. 1F may be configured to reclaim segment 152C. The
segment 152C may comprise invalid data (e.g., data in log storage locations 158A and 158C) as
well as valid data, including data of LID B stored in log storage unit 158D. Valid data may be
identified by use of the mapping entries in the forward map 125, as disclosed herein. The
compaction operation may comprise relocating valid data in the segment 152C. Relocating the
valid data may comprise appending the valid data to the VDL 150 at the current append point
156. As illustrated in Fig. 1F, the data of LID B may be relocated to log storage unit 158F in
segment 152N. Relocating the valid data may further comprise updating the forward map 125 to
bind the relocated data to new log storage location(s) 155 (e.g., bind LID B to log storage
location 158F).

The compaction operation may further comprise preparing the segment 152C for reuse
(re-initializing the segment 152). Preparing the segment 152C may comprise marking the

segment 152C as available to store new data, placing the segment 152C into a write queue,

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

21

and/or the like. Preparing the segment 152C may further comprise erasing and/or deallocating
storage resources associated with the segment 152C by, inter alia, informing the underlying
storage resource 190 that data corresponding to segment 152C does not need to be retained. The
segment 152C may be deallocated by use of coordination information communicated between
the data services module 110 and the storage resource 190. The coordination information may
comprise deallocation messages configured to identify the virtual blocks 145 (and/or
corresponding virtual addresses 195) comprising the reclaimed segment 152C (e.g., TRIM
messages, erase messages, erase commands, and/or the like). Further embodiments of systems
and methods for coordinating deallocation are disclosed in U.S. Patent No. 8,261,005, entitled
“Apparatus, System, and Method for Managing Data in a Storage Device with an Empty Data
Token Directive,” issued September 4, 2012 to David Flynn et al., U.S. Patent Application Serial
No. 14/045,605, entitled “Systems and Methods for Persistent Address Space Management,”
filed October 4, 2013 for David Atkisson et al., and U.S. Patent Application Serial No.
14/075,951, entitled “Systems and Methods for Log Coordination,” filed November §, 2013 for
Nisha Talagala et al., each of which is hereby incorporated by reference in its entirety.

As disclosed herein, the data log module 132 may be configured to append data
sequentially within respective segments 152 of the VDL 150. Accordingly, the relative order of
data within a segment 152 may correspond to the relative address and/or offset of the data within
the segment 152 (e.g., the relative address of the storage unit 155 comprising the data within the
segment 152). Segments 152 of the VDL 150 may, for example, comprise M log storage units
155, and the data log module 132 may be configured to append data to the segments 152
sequentially from 1 to M. The relative order of data stored within a segment 152 may, therefore,
be determined by the relative offset and/or address of data within the segment 152. Specifically,
the relative order of data in a segment 152 ranges from the oldest data (earliest in time or earliest
received) at log storage unit 1, to the most recent data in the segment in log storage unit M.

The data log module 132 may be further configured to maintain an ordered sequence of
segments 152. As disclosed above, after filling the log storage units 155 of a segment 152, the
data log module 132 may be configured to advance the append point 156 to a next available
segment 152. The next available segment 152 may not correspond to the next sequential address
in the storage resource address space 194. The next available segment 152 may be determined
according to the availability of erased and/or initialized segments 152, as disclosed in further
detail herein (e.g., segments 152 in a write queue). Accordingly, the next available segment 152
may be at a non-sequential storage address and/or on another storage resource 190 (as disclosed

in further detail herein).

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

22

In the Fig. 1G embodiment 101G, the VDL 150 comprises segments 152A-N, each of
which comprise P log storage units 155. As depicted in Fig. 1G, the data log module 132 may be
configured to associate segments 152A-N of the VDL 150 with respective sequence metadata
151 (sequence metadata 151[1]-151[Y]). The sequence metadata 151 may be configured to
define a log order of the segments 152A-N, which, in part, may be used to determine log order
159 of the VDL 150. As disclosed above, a “log order” of a log, such as the VDL 150, refers to
an order of data stored within the log. The log order of the VDL 150 may, therefore, correspond
to an order in which data is appended to the VDL 150.

In the Fig. 1G embodiment, the data log module 132 has appended data to log storage
units 155A[1]-155A[P] sequentially in the storage address space of segment 152A (e.g., within
the log storage units 152A[1]-152A[P]), such that the data stored in log storage unit 155A[P] is
later in the log order 159 (more recent) relative to the data stored in log storage unit 155A[1].
Fig. 1G further illustrates data stored sequentially within log storage units 155 of other segments
152: segment 152B comprises data stored sequentially within log storage units 155B][1]-
155B[P], segment 152C comprises data stored sequentially within log storage units 155C[1]-
155C[P], segment 152N comprises data stored sequentially within log storage units 155N][1]-
155N][P], and so on.

The data log module 132 may be configured to assign respective sequence information
I51[1]-151[Y] to the segments 152A-N. The sequence information 151[1]-151[Y] may be
configured to define the order in which the segments 152A-N were filled. Accordingly, the
order in which the data was appended to the VDL 150 may be defined by, infer alia, sequence
information 151[1]-151[Y] of the segments 152A-N and/or the relative addresses of the log
storage locations 155 within the respective segments 152A-N. In some embodiments, the
sequence information 151[1]-151[Y] may be stored on the storage resource 190 and/or in the
VDL 150. In some embodiments, the sequence information 151[1]-151[Y] is stored at
predetermined locations within the segments 152A-N (e.g., in a header, at a predetermined
offset, and/or the like). The sequence information 151[1]-151[Y] may be stored when the
segments 152A-N are prepared for use by the data log module 132 (e.g., re-initialized), when the
segments 152[1]-152[N] are placed in a write queue, when the data log module 132 fills the
respective segments 152A-N, and/or the like.

In the Fig. 1G embodiment, the sequence metadata 151[Y]| may correspond to the most
recently written (youngest) segment 152 in the VDL 150, and the sequence metadata 151[1] may
correspond to the earliest (oldest) segment 152. Therefore, the log order 159 of the VDL 150
may be 152N (head of the log), 152A, 152C, to 152B (tail of the log). The order of the

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

23

individual log storage locations 155 may be determined based on the sequence information
151[1]-151]Y] assigned to the segments 152 and the relative order of the log storage unit(s) 155
within the segments 152.

As disclosed above, the log storage operations performed by the data log module 132
may not be strictly ordered time. Accordingly, in some instances, data segments may be
appended to the VDL 150 in a different order from the order in which the corresponding /O
requests were received by the data services module 110. The data log module 132 may append
data out-of-order within the VDL 150 due to any number of conditions including, but not limited
to: performance considerations, a QoS policy, availability of the data to be written to the VDL
150 (e.g., data source bandwidth, direct memory access (DMA) latency, and/or the like), back-
end storage resource availability (e.g., bandwidth to/from storage resources 190), and/or the like.
Moreover, and as disclosed in further detail herein, the VDL 150 may correspond to a plurality
of different storage resources 190, which may have different performance characteristics,
resulting in different latencies for I/O operations performed thereon.

Referring to embodiment 101H depicted in Fig. 1H, the data services module 110 may
comprise a metadata log module 134 configured to maintain an ordered metadata log 160 on a
storage resource. The metadata log 160 may define an ordered sequence of storage operations
performed by use of the data services module 110, regardless of the log order 159 of the VDL
150.

The metadata log 160 may comprise an ordered sequence of metadata pertaining to the
I/O operations serviced by the data services module 110. As used herein, an “ordered sequence
of metadata™ refers to data stored in a manner that defines an order of the metadata (e.g., defines
a relative order of segments 152 of the VDL 150 and/or log storage units 155 within the
segments 152, as disclosed above). The metadata log 160 may include, inter alia, mapping
metadata, such as mapping entries 163, which may comprise persistent metadata configured to
bind a LID of the logical address space 122 to one or more log storage units 155 (e.g., virtual
blocks 145 and/or virtual addresses 195). As disclosed in further detail herein, the metadata log
160 may further comprise logical manipulation entries configured to modify associations
between LIDs and data stored in the VDL 150. The mapping entries 163 of the metadata log 160
may correspond to entries 126 of the forward map 125. The metadata log 160 may comprise a
plurality of segments 162A-N. The segments 162A-N may comprise respective metadata log
storage units 165, which may correspond to virtual blocks 145 and/or virtual addresses 195 of
one or more storage resources 190. As illustrated in Fig. 1H, the segments 162A-N may be

assigned respective sequence metadata 161A-N, which may correspond to the order in which the

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

24

segments 162A-N were programmed by the metadata log module 134. Accordingly, the
sequence metadata 161A-N may define a temporal order of the segments 162A-N within the
metadata log 160. As disclosed above, the metadata log module 134 may be configured to
append mapping metadata sequentially to metadata log storage units 165 within respective
segments 162A-N. Therefore, the temporal order of mapping metadata stored in a particular
metadata log storage unit 165 of the metadata log 160 may be determined based on: a) the
sequence metadata 161A-N of the segment 162A-N comprising the particular metadata log
storage unit 165; and b) the address and/or offset of the particular metadata log storage unit 165
within the segment 162A-N. Although particular mechanisms for ordering the metadata log 160
as described herein, the disclosure is not limited in this regard and could be adapted to order the
metadata log 160 (and/or other logs disclosed herein) using any suitable technique including, but
not limited to: applying sequence information to each log entry, time stamping each log entry,
and/or the like.

The metadata log 160 may be configured to manage the logical interface to data stored in
the VDL 150. As disclosed above, the “logical interface” to data stored in the VDL 150 may
correspond to the LIDs bound to the data by use of, inter alia, the forward map 125 and/or other
metadata. The metadata log 160 may comprise an ordered, persistent, and crash-safe log of
mapping metadata configured to manage the logical interface to data stored in the VDL 150
which may include, but is not limited to: allocating LIDs, binding LIDs to data stored in the
VDL 150, deallocating LIDs (e.g., invalidating LID bindings), moving LID ranges (e.g., binding
data in the VDL 150 to different sets of LIDs), replicating LID ranges (e.g., cloning and/or
snapshotting particular sets of LIDs, providing for referencing the same data in the VDL 150
through two or more different sets of LIDs), merging LID ranges, and/or the like. Accordingly,
as used herein, the metadata log 160 refers to a persistent, ordered log comprising mapping
metadata configured to manage the logical interface to data in the VDL 150 by: a) binding LIDs
of the logical address space 122 to data storage locations in the VDL 150 and/or b) implementing
logical manipulation operations pertaining to said bindings.

The metadata log module 134 may be configured to append mapping entries 163 to the
ordered metadata log 160 in accordance with the order in which the corresponding I/O requests
113 were received. As disclosed above, the data log module 132 may not enforce strict temporal
ordering in the VDL 150 and, as such, the order of I/O operations reflected in the metadata log
160 may differ from the log order 159 of the VDL 150.

In some embodiments, the metadata log module 134 comprises an ordered metadata log

queue 135. The metadata log queue 135 may comprise mapping metadata corresponding to 1/0

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

25

requests 113 received at the data services module 110. The metadata log queue 135 may be
ordered, such that the metadata log module 134 appends mapping metadata to the metadata log
160 in accordance with the order in which the corresponding I/O requests 113 were received. In
some embodiments, the metadata log queue 135 comprises a first-in-first-out (FIFO) buffer
and/or other ordered buffer. The metadata log module 134 may be configured to append
mapping entries 163 to the metadata log 160 in accordance with the order of the corresponding
mapping metadata in the ordered metadata log queue 135. In some embodiments, the metadata
log module 134 comprises a queue management module 137 configured to ensure that mapping
metadata is appended to the metadata log 160 in accordance with the order of the mapping
metadata in the ordered metadata log queue 135. The data log module 132 may comprise a data
log queue 133 configured to queue 1/O operations corresponding to I/O requests 113 received at
the data services module 110. In some embodiments, the data log queue 133 is ordered, such
that data operations are issued to the storage resource 190 in accordance with the order in which
the I/O requests 113 were received. The data log module 132 may be configured to process
entries of the data log queue 133 in order, as disclosed above. Alternatively, the data log module
132 may be configured to implement data storage operations out-of-order in accordance with the
availability of storage resources 190, /O bandwidth, data transfer bandwidth (e.g., DMA
bandwidth), and/or the like.

In the Fig. 1H embodiment, the data services module 110 may receive a plurality of I/O
requests 113, including I/O requests 113[0]-113[2]. The I/O requests 113[0]-113[2] may
comprise requests to write data to LID Q. The I/O requests 113[0]-113|2] may be received in a
particular order: 113[0] may be received first, followed by 113[1], then followed by 113[2]. The
data log module 132 may queue corresponding data write operations in the data log queue 133
(e.g., data write operations 113DW[2], 113DW]1], and 113DW[0]). The data log module 132
may implement the data write operations 113DW[0]-113DW]2] by appending data to the VDL
150 at respective log storage units 158[0], 158[1], and 158[2]. In the Fig. 1H embodiment, the
data may be appended to the VDL 150 out-of-order, such that data D1 of I/O request 113[1] is
appended after data D2 of I/O request 113[2].

The translation module 124 may be configured to update the forward map 125 in
accordance with the order in which the I/O requests 113[0]-113[2] were received at the data
services module 110 (e.g., by use of an ordered queue, by implementing updates in serial, thread-
safe operations, and/or the like). Accordingly, the forward map 125 may reflect the order of the
I/O requests 113[0]-113]2], and, as such, the forward map 125 comprises an entry 126 to bind
LID Q to data D2 at log storage location 158|2] regardless of the order of the corresponding data

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

26

within the VDL 150. In some embodiments, the translation module 124 is configured to update
the forward map 125 in a serial, thread-safe operation, which may include a) obtaining a lock on
the forward map 125, b) modifying the forward map 125 (e.g., adding, removing, and/or
modifying one or more entries 126 of the forward map 125), and c) unlocking the forward map
125. The translation module 124 may perform a serial, thread-safe operation for each I/O
request 113 received at the data services module 110.

The forward map 125 may, however, be maintained in volatile memory resources 103 of
the computing system 100 and, as such, may be subject to loss and/or corruption. The data
services module 110 may comprise a metadata management module 128 configured to, inter
alia, reconstruct the forward map 125 and/or other metadata by use of a metadata log 160.
Reconstructing the forward map 125 from the contents of the VDL 150 alone, however, may
result in errors due, inter alia, to the lack of strict ordering in the VDL 150. In the Fig. 1H
embodiment, for example, the metadata management module 128 may incorrectly associate LID
Q with data D1 at storage location 158]2] due to the log order 159 of the data D0-D2 within the
VDL 150 (e.g., order of storage locations 158[0]-158[2]). The data services module 110 may,
therefore, be configured to maintain a separate metadata log 160, configured to maintain the
relative order of I/O operations performed in the VDL 150. As disclosed above, the metadata log
160 may comprise ordered mapping metadata configured to a) bind to data to LIDs and/or b)
manipulate said bindings (e.g., move data, replicate sets of LIDs, clone sets of LIDs, merge sets
of LIDs, move data, and/or the like). Moreover, the metadata log 160 may be ordered, such that
the logical interface metadata stored therein corresponds to the order in which the associated 1/0
requests 113 were received at the data services module 110. The metadata log 160 may
comprise a plurality of metadata log storage locations 165, which may correspond to virtual
blocks 145 (and/or corresponding virtual addresses 195) associated with one or more storage
resources 190. In some embodiments, the metadata log 160 is stored on the same storage
resource(s) 190 as the VDL 150. Alternatively, the metadata log 160 may be stored on one or
more storage resource(s) that are separate from and/or independent of the storage resource 190
used by the data log module 132. The metadata log storage locations 165 may be partitioned into
respective segments 162A-N, as disclosed herein.

As illustrated in Fig. 1H, the metadata log module 134 may be configured to assign
respective sequence metadata 161 A-N to the segments 162A-N of the metadata log 160. The
sequence metadata 161A-N may define an ordered sequence of segments 162A-N within the
metadata log 160. The metadata log module 134 may be further configured to append data

within metadata log storage units 165 within respective segments 162A-N in accordance with a

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

27

predetermined pattern, such as a sequential storage pattern as disclosed herein. The segments
162A-N may, for example, each comprise P metadata log storage units 165, such that segment
162A comprises metadata log storage units 165A[1]-165A[P], segment 162N comprises
metadata log storage units 165N[1]-165N[P], and so on. The metadata log module 134 may be
configured to append data sequentially within a segment 162 (at a metadata log append point
166) until the segment is filled, and then advance the metadata log append point 166 to a next
available segment 162A-N as disclosed herein. The metadata log module 134 may be configured
to append data sequentially within the segments (from metadata log storage unit 1 through P).
Accordingly, the log order 159 of data within the metadata log 160 may be determined by: a) the
sequence metadata 161A-N associated with the log segments 162A-N and b) the relative location
of the metadata log storage units 165 within the respective log segments 162A-N.

In the Fig. 1H embodiment, the metadata log module 134 is configured to append
mapping metadata (mapping entries 163A-C) to the metadata log 160. The mapping entries
163A-C may correspond to the I/O operations performed in response to the /O requests 113[0]-
113]2]. The mapping entries 163A-C may be appended to the metadata log 160 in the order in
which the I/O requests 113[0]-113|2] were received. As illustrated in Fig. 1H, the mapping
entries 163A-C may associate the LID Q to respective log storage locations 165 within the VDL
150. As illustrated in Fig. 1H, the mapping metadata of the mapping entries 163A-C may
comprise tuples (and/or other data structures) configured to associate a particular LID with a
particular VDL storage unit 155. The mapping entry 163A corresponds to the [/O request 113[0]
and binds LID Q to data DO stored at log storage unit 158[0], mapping entry 163B corresponds
to the I/O request 113[1] and binds LID Q to data DI stored at log storage unit 158|2], and
mapping entry 163C corresponds to the I/O request 113[2] and binds LID Q to data D2 stored at
log storage unit 158[1]. Accordingly, the mapping entries 163A-C in the metadata log 160
reflect the order of the I/O requests 113[0]-113[2], regardless of the ordering of the
corresponding data in the VDL 150. As disclosed above, in some embodiments, the metadata
log module 134 comprises an ordered metadata log queue 135, which may comprise metadata
operations 113M]0]-113M]2] corresponding to the I/O requests 113[0]-113[2]. The metadata
log module 134 may be configured to append mapping metadata (mapping entries 163A-C) to
the metadata log 160 in accordance with the order of the metadata operations 113M[0]-113M|2]
in the queue 135. In some embodiments, the metadata log module 134 comprises a queue
management module 137 configured to ensure that metadata pertaining to the operations
113M][0]-113M]2] are appended in order. The queue management module 137 may lock the

queue 135 (prevent operations from being taken from the queue 135 for processing) while a

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

28

metadata operation is being written to the metadata log 160, and may unlock the queue 135 to
allow a next metadata operation to be processed, in response to an acknowledgement that the
write operation has completed.

In response to loss and/or corruption of the volatile memory resources 103, the metadata
management module 128 may reconstruct the forward map 125 (and/or other metadata) by use of
the metadata log 160. The metadata management module 128 may be configured to access the
metadata log 160 in log order 159 to ensure that the entries 126 are accurately reconstructed. In
the Fig. 1H embodiment, the metadata management module 128 may be configured to determine
that the mapping entry 163 A that associates LID Q with log storage unit 158[1] in the VDL 150
corresponds to the most up-to-date version of LID Q based, infer alia, on the order of the
mapping entries 163A-C within the metadata log 160.

The metadata log module 134 may be further configured to append mapping entries 163
to the metadata log 160 in response to log management operations in the VDL 150. As disclosed
above, the garbage collector 136 may be configured to relocate valid data during compaction
operations. Relocating valid data may comprise updating one or more entries 126 in the forward
map 125 to bind LIDs to new storage units 158 in the VDL 150. Relocating valid data may
further comprise appending a mapping entry 163 to the metadata log 160 to identify the new
storage location of the LID within the VDL 150. Referring back to Fig. 1F, the garbage
collection operation to reclaim segment 152C may comprise writing a mapping entry 163 to the
metadata log to tie LID B to the log storage unit 158F.

The data services module 110 may be configured to implement deallocation operations
by use of, inter alia, the metadata log module 134. As used herein, a deallocation operation
refers to an operation configured to deallocate a LID (e.g., remove an association, binding, tie,
and/or mapping between a LID and one or more virtual addresses). A deallocation operation
may comprise a hint, message, and/or command configured to indicate that a particular LID (or
set of LIDs) is no longer in use and/or that the data bound to the LIDs does not need to be
retained in the VDL 150. Deallocation operations implemented by the data services module 110
may be configured to ensure that operations to erase, delete, and/or otherwise deallocate L.IDs
are persistent and crash safe by, inter alia, appending mapping metadata to the metadata log 160
configured to identify deallocated LIDs. The deallocation operations may be persistent and/or
crash safe regardless of whether the corresponding data is removed from the underlying storage
resources and/or regardless of whether the underlying storage resource(s) 190 support

deallocation hints, messages, and/or commands.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

29

A client 106 may deallocate a LID by use of a deallocation message, an erase message,
an erase command, and/or the like. The deallocation message may be issued as an I/O request
113 through the interface 112 of the data services module 110 (and/or another 1/O interface).
The deallocation message may identify one or more LIDs that are no longer in use to reference
data. In response, the translation module 124 may be configured to write one or more mapping
entries 163 to the metadata log 160 to indicate that the one or more LIDs have been deallocated.

Referring to Fig. 1A, the VDL 150 may comprise segments 152 that correspond to sets,
ranges, and/or extents of virtual blocks 145 (virtual addresses 195) of a storage resource 190,
which may not support deallocation operations. Accordingly, data corresponding to a
deallocated LLID may remain on the storage resource 190. Moreover, after loss and/or corruption
of the virtualization metadata, the metadata management module 128 may reconstruct an entry
126 corresponding to the deallocated data absent a persistent indication of the deallocation
operation. A deallocation operation may, therefore, comprise appending a deallocation mapping
entry 163 to the metadata log 160 to ensure that deallocation requests of the clients 106 are
consistent and persist regardless of failure conditions. Deallocated data may be identified as
invalid in a mark-and-sweep operation of the garbage collector 136 and, as such, may be
removed from the VDL 150 in a storage recovery operation. Accordingly, a deallocation
operation may be implemented exclusively within the metadata log 160 and without requiring
storage operations in the VDL 150. A deallocation operation may further comprise issuing
corresponding deallocation hints, messages, and/or commands (e.g, TRIM hints) to the
corresponding storage resources 190 as disclosed above in conjunction with Fig. 1F. The data
services module 110 may be configured to return “undefined,” “null,” “not allocated,” and/or
“does not exist” in response to requests pertaining to deallocated LIDs.

Referring to embodiment 1011 of Fig. 11, the data services module 110 may receive an
I/O request 113|3] configured to deallocate LID Q (e.g., erase LID Q). In response, the
translation module 124 may be configured to remove the entries 126 corresponding to LID Q
from the forward map 125. In addition, the metadata log module 134 may be configured to
append a mapping entry 163D to the metadata log 160 configured to deallocate LID Q (e.g.,
indicate that LID Q is not bound to data in the VDL 150). As illustrated in Fig. 11, the mapping
metadata of entry 163D may identify the LID Q and may indicate that the L.ID Q is no longer in
use to reference data in the VDL 150 (e.g., indicate that Q has been deallocated). Absent the
deallocation mapping entry 163D, the metadata management module 128 may reconstruct a
mapping between LID Q and log storage unit 158[1] based on the mapping entry 163C (as
disclosed above), obviating the effect of the I/O request 113[3].

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

30

The garbage collector 136 may be configured to reclaim segments 162 of the metadata
log 160. As disclosed herein, reclaiming a segment 162 of the metadata log 160 may comprise
a) identifying valid mapping metadata in the segment 162 (e.g., identifying valid mapping entries
163 in the segment), and b) relocating the valid metadata within the metadata log 160.
Identifying valid mapping metadata in the segment 162 may comprise identifying valid mapping
entries 163 in the segment 162. As used herein, “valid mapping metadata” and/or a “valid
mapping entry” refers to mapping metadata that correlates to the forward map 125 (e.g, a
mapping entry 163 that reflects an entry 126 in the forward map 125). In the Fig. 1H
embodiment, the garbage collector 136 may determine that mapping entry 163C is valid since
the mapping entry 163C matches the binding between LID Q and log storage unit 158[1] in the
forward map 125. Invalid mapping metadata refers to mapping metadata that does not
correspond to the forward map 125 (e.g., a mapping entry 163 that does not have a matching
entry 126 in the forward map 125). In the Fig. 1H embodiment, the garbage collector 136 may
determine that the mapping entries 163A and 163B are invalid, since neither mapping entry
163A nor 163B binds LID Q to log storage unit 158|1]; rather, mapping entry 163A binds LID Q
to log storage unit 158[0], which was rendered invalid (obsolete) by I/O request 113[1], and
mapping entry 163A binds LID Q to log storage unit 158[2], which was rendered invalid
(obsolete) by 1/0 request 113[2]. An operation to compact the segment 162A may, therefore,
comprise relocating the mapping entry 163C within the metadata log 160 and removing the
mapping entries 163A-B. In some embodiments, valid mapping entries 163 may be
distinguished from invalid entries 163 by use of the forward map 125. Alternatively, or in
addition, the metadata log module 134 may be configured to maintain validity metadata, such as
validity bitmaps 169A-N pertaining to the segments 162A-N of the metadata log 160. The
validity bitmaps 169A-N may identify invalid entries within the segments 162A-N. In the Fig.
1H embodiment, the validity bitmap 169A corresponding to segment 162A may indicate that the
entries 163A and 163B are made invalid by, inter alia, entries in respective location(s) within the
validity bitmap 169A. The disclosure is not limited in this regard, however, and could be
adapted to use any mechanism for indicating data validity.

The metadata management module 128 may be further configured to aggregate mapping
entries 163. As used herein, an “aggregate” mapping entry 167 refers to persistent metadata
configured to bind two or more LIDs to respective storage location(s) within the VDL 150. The
metadata management module 128 may be configured to generate aggregate mapping entries 167
in response to reclaiming a segment 162 of the metadata log 160. In the Fig. 1J embodiment

101J, the garbage collector 136 may be configured to reclaim segment 162A of the metadata log

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

31

160. The segment 162A may comprise valid mapping entries 163C and 163E-G. The segment
162 may further comprise invalid mapping entries 163X, including the invalid mapping entries
163A-B, disclosed above. Compacting the segment 162A of the metadata log 160 may comprise
identifying the valid data within the segment, including mapping entries 163C and 163E-G. As
disclosed above, the valid mapping entries 163C and 163E-G may be identified by use of the
forward map 125 and/or validity bitmap 169A pertaining to the segment 162A, as disclosed
herein. Compacting the segment 162A may further comprise relocating the valid data within the
metadata log 160. The data may be relocated by, inter alia, appending the valid data at the
append point 166 in the metadata log 160. In the Fig. 1J embodiment, the append point 166 is
currently in segment 162F. In some embodiments, the valid data is relocated by copying and/or
moving the data to the new append point 166 (e.g., re-appending the mapping entries 163C and
163E-G). Alternatively, the metadata management module 128 may be configured to combine
the valid entries 163C and 163E-G into a single aggregate mapping entry 167. The aggregate
mapping entry 167 may comprise the mapping information of the entries 163C and 163E-G,
including the association between LID Q and 158[1] corresponding to mapping entry 163C, an
association between LID R and VDL storage unit 158[R] of mapping entry 163E, an association
between LID S and VDL storage unit 158[S] of mapping entry 163F, and an association between
LID T and VDL storage unit 158[T] of mapping entry 163G.

In some embodiments, the metadata management module 128 is configured to checkpoint
the forward map 125 (and/or other metadata pertaining to the data services module 110). As
used herein, “‘checkpointing” or “destaging” refers to storing metadata of the data services
module 110 in the metadata log 160 (and/or another persistent storage resource). Destaging the
forward map 125 may refer to storing mapping entries 126 of the forward map 125 in the
metadata log 160. The metadata management module 128 may be configured to checkpoint the
forward map 125 in order to, inter alia, compact the mapping entries 163 of the forward map 125
in the metadata log 160. As disclosed herein, the metadata log module 134 may be configured to
append mapping entries 163 to the metadata log 160 in response to I/O requests 113 received at
the data services module 110. The mapping entries 163 may be appended to the metadata log
160 in accordance with the order in which the I/O requests 113 were received (may be
temporally ordered). The metadata log module 134 may be configured to append a mapping
entry 163 in a respective metadata log segment 162 in response to each I/O request 113. The
data services module 110 may be configured to acknowledge completion of an I/O request 113 in
response to a) writing data of the /O request 113 to the VDL 150 and b) writing a corresponding
mapping entry to the metadata log 160. As such, appending mapping entries 163 to the metadata

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

32

log 160 may be in the critical timing path of I/O operations (e.g., the data services module 110
may guarantee that a metadata log entry is recorded for each completed I/O request 113). The
metadata log segments 162, however, may be large as compared to the size of the mapping
entries 163. For example, the metadata log segments 162 may correspond to 4k disk blocks or
pages, whereas the mapping entries 163 consume minimal storage space. Accordingly, the
individual mapping entries 163 may not be space efficient. The metadata management module
128 may be configured to compact segments 162 of the metadata log 160, which may comprise
combining multiple entries 163 into aggregate mapping entries 167, as disclosed herein. The
aggregate mapping entries 167 may combine multiple mapping entries 163 into a single metadata
log storage unit 165, which may improve space efficiency. The aggregate mapping entries 167,
however, may be formed from limited amounts of valid data within segments 162 that are being
recovered and, as such, may not fully exploit the storage capacity of the metadata log storage
units 165. In addition, the aggregate mapping entries 167 may correspond to unstructured
groups of LIDs (e.g., LIDs of different, disjoint, and/or non-contiguous regions of the logical
address space 122). Accordingly, processing the aggregate mapping entries 167 to identify
entries corresponding to particular LIDs and/or reconstruct the storage metadata (e.g., forward
map 125) may not be computationally efficient.

The metadata management module 128 may be configured to checkpoint portions of the
forward map 125, such that the checkpointed portions correspond to structured groups of LIDs
that are computationally efficient to search and/or process. In some embodiments, the metadata
management module 128 is configured to checkpoint LID regions, ranges, and/or extents within
the logical address space 122.

In some embodiments, the data services module 110 configures the storage metadata for
efficient access and/or copy operations (e.g., checkpoint operations as disclosed herein).
Referring to embodiment 101K illustrated in Fig. 1K, the data services module 110 may
represent entries 126 of the forward map 125 as fixed-size data structures, which may be
arranged contiguously in the memory address space of the computing device 100 (e.g., within the
volatile memory resources 103 of the computing system 100). The forward map 125 of the Fig.
1K embodiment comprises entries 126A, 126C, 126N, and so on. The entries 126A, 126C, and
126N may be embodied as fixed and/or deterministically sized mapping data structures 123 on
the volatile memory resources 103, as disclosed herein. The data structures 123 may include a
LID field 127A configured to represent one or more LIDs of the entry 126 and a VDL address
field 127B configured to represent one or more data log storage unit address(es) and/or links to

data in the VDL 150. As disclosed above, the forward map 125 may be configured to represent

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

33

LID bindings using leaf nodes and, as such, the mapping data structures 123 may not include
references to child nodes. Alternatively, or in addition, the data structures 123 may include a
fixed-size (and/or deterministically sized) field 127C comprising links and/or references to other
entries 126 in the forward map 125 and/or a parent intermediate reference node 129 of the entry
126).

The data services module 110 may be configured to arrange the data structures 123 in the
memory address space of the computing system 100 to facilitate DMAs to ranges and/or extents
of entries 126. As illustrated in Fig. 1K, the data structures 123A, 123C, and 123N may be
arranged contiguously in the volatile memory resources 103 of the computing system 100, the
entry 126A may comprise a binding between LID A and VDL storage unit X (in fixed-size fields
127A and 127B), the data structure 123C of entry 126C may tie LID C to VDL storage unit Y,
and the data structure 123N of entry 126N may associate LID F with VDL storage unit Q. As
shown in Fig. 1K, the data structures 123A, 123C, and 123N may be maintained within
contiguous storage locations in the volatile memory resources 103. Alternatively, the data
structures 123A, 123C, and/or 123N may be stored at predetermined offsets and/or locations
within the volatile memory resources 103. Although not depicted in Fig. 1K, the memory
resources 103 may include data structures 123 that represent other entries 126 of the forward
map 125.

Checkpointing the forward map region comprising entries 126A, 126C, and 126N may
comprise transferring the contiguous memory region comprising the data structures 123A, 123C,
and 123N from the volatile memory resources 103 to the metadata log 160. The metadata
management module 128 may be configured to checkpoint regions of the forward map 125 that
correspond to storage boundaries of the metadata log 160 (e.g., size of the storage units 165). In
one embodiment, the metadata log storage units 165 comprise 4k of storage capacity and the data
structures 123 comprise 128 bytes of data. Accordingly, the metadata management module 128
may be configured to checkpoint groups of 32 entries 126 from the forward map 125.
Alternatively, or in addition, the metadata management module 128 may be configured to
checkpoint larger regions of the forward map 125 (and/or the entire forward map 125) by, inter
alia, streaming the memory region(s) comprising the data structures 123 representing the entries
126 into the metadata log 160, as disclosed herein.

Checkpointing regions of the forward map 125 may comprise storing one or more
checkpoint entries 168 in the metadata log 160. As used herein, a checkpoint entry 168 refers to
an entry configured to bind a set, group, range, and/or extent of LIDs to respective VDL storage

units 155. A checkpoint entry 168 may correspond to a particular region, range, and/or extent of

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

34

the forward map 125. Accordingly, in contrast to aggregate mapping entries 167, checkpoint
entries 168 may correspond to a structure and/or arrangement of entries 126 in the forward map
125. By contrast, mapping information of an aggregate mapping entry 167 may correspond to
unstructured groups of LIDs taken from, inter alia, one or more metadata log segments 162
being reclaimed. The LIDs of checkpoint entry 168 may, or may not, be contiguous with respect
to the logical address space 122. In the Fig. 1K embodiment, a checkpoint entry 168
corresponding to entries 126A, 126C, and 126N may include discontiguous LIDs A, C, and N.
The LIDs of the checkpoint entry 168 correspond to the arrangement of the entries 126 in the
forward map 125 and, as such, may facilitate efficient reconstruction of the forward map 125
and/or facilitate [.ID-based index lookups.

In some embodiments, the metadata management module 128 is configured to identify
portions of the forward map 125 that have been checkpointed. The metadata management
module 128 may be configured to iteratively checkpoint portions and/or regions of the forward
map 125 in background metadata compaction operations. Checkpointing the forward map 125
may simply be garbage collection operations in the metadata log 160. Referring back to Fig. 1J,
in response to selecting the segment 162A for recovery, the garbage collector 136 may determine
that one or more (or all) of the valid entries 163C, 163E, 163F, and/or 163G in the segment 162A
have been checkpointed. In response, the garbage collector 136 may reclaim the segment 162A
without relocating (re-writing) the checkpointed entries to the metadata log 160.

In some embodiments, the metadata management module 128 is configured to identify
entries that have been checkpointed by use of a “checkpoint™ indicator. The checkpoint indicator
may indicate whether an entry 126 has been “checkpointed” (destaged) to the metadata log 160
(e.g., has been destaged and/or checkpointed, as disclosed herein). The checkpoint indicator of
an entry 126 may be set to “false” in response to writing a “sparse’” mapping entry 163 to the
metadata log 160 corresponding to the entry 126. As used herein, a “sparse entry” refers to a
mapping entry 163 in the metadata log 160 that corresponds to a single LID and/or LID range. A
sparse entry may also refer to an aggregate entry corresponding to an unstructured set of LIDs.
As disclosed above, sparse entries 163 may be written to the metadata log 160 in response to
servicing I/O requests 113, relocating data in VDL garbage collection operations, and/or the like.
Entries 126 that are “checkpointed” refer to entries 126 that have been written to the metadata
log 160 in a checkpoint entry 168 that comprises a group of LIDs that correspond to a structure
of the forward map 125, as disclosed herein.

In some embodiments, the metadata management module 128 may be configured to

determine whether a mapping entry 163 and/or aggregate mapping 167 in the metadata log 160

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

35

has been checkpointed based on a log time associated with the entries. As disclosed above, the
log order (or log time) of data appended to the metadata log 160 may be based on a) sequence
metadata associated with the segment 162 comprising the data, and b) the storage address of the
data within the segment 162. The metadata management module 128 may compare a log time
of an entry 163 and/or 167 to a log time corresponding to a checkpoint operation in the metadata
log 160 pertaining to the entries 163 and/or 167 to determine whether the entries 163 and/or 167
were included in the checkpoint. The determination may, therefore, comprise a) identifying a
checkpoint operation pertaining to particular entries 163 and/or 167 in the metadata log (e.g.,
identifying a checkpoint operation corresponding to the entire forward map 125 and/or a section
of the forward map 125 that includes the LIDs of the entries 163 and/or 167), and b) comparing a
log time of the identified checkpoint operation to the log time of the entries 163 and/or 167. If
the log time of the identified checkpoint operation is later than the entries 163 and/or 167, the
metadata management module 128 may determine that mapping information in the entries 163
and/or 167 was included in the identified checkpoint operation (and that the entries 163 and/or
167 do not need to be checkpointed and/or copied forward in a garbage collection operation).

As disclosed above, checkpointing a LID region within the forward map 125 may
comprise appending a checkpoint entry 168 to the metadata log 160 that corresponds to a
particular set, range, and/or extent of LIDs within the logical address space 122 (e.g., checkpoint
LIDs 0 through 32786). In some embodiments, checkpoint operations may be performed in the
background with respect to other operations of the data services module (e.g., operations to
service 1/O requests 113). Checkpointing a LID region may comprise a) locking the region
within the forward map 125, b) writing a checkpoint entry 168 to the metadata log 160
corresponding to the LID region, and c) unlocking the region. As used herein, locking a region
of the forward map 125 refers to preventing I/O operations from modifying LIDs within the
region that is being checkpointed. Accordingly, locking a region of the forward map 125 may
comprise stalling I/O requests 113 pertaining to the locked region until the checkpoint operation
is complete.

Fig. 2A is a block diagram of another embodiment 201 A of a computing system 100
comprising a data services module 110. In the Fig. 2A embodiment, the data services module
110 is communicatively coupled to a plurality of storage resources 190A-Y through, inter alia,
the interconnect 115 and/or network 105, as disclosed herein. The storage resources 190A-Y
may be configured to provide storage services through respective interfaces (e.g., storage
resource address spaces 194A-Y comprising virtual addresses 195A-Y). The storage resources

190A-Y may further include storage media address spaces 196A-Y having respective storage

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

36

resource address spaces 194A-Y managed by respective controllers 192A-Y. The translation
module 124 may be configured to implement any-to-any mappings between the logical address
space 122 and storage resource address space(s) 194A-Y of the respective storage resources
190A-Y. As depicted in embodiment 201B illustrated in Fig. 2B, the forward map 125 may be
configured to bind LIDs to arbitrary addresses within the storage resource address spaces 194A-
Y of the storage resources 190A-Y.

The translation module 124 may be further configured to manage translations between
virtual addresses 195 and virtual blocks 145A-N. As disclosed above, the virtual blocks 145A-N
may be configured to determine a storage granularity of the LIDs and/or manage differences
between block sizes of the storage resources 190A-N. In the Fig. 2B embodiment, the storage
resource 190A may be configured with a block size of 1 kb, the storage resource 190B may have
a block size of 2 kb, and the storage resource 190N may have a block size of 512 bytes. The
translation module 124 may configure the LIDs to reference 2 kb blocks, which may comprise
mapping two virtual addresses 195A to each virtual block 145A, mapping one virtual address
195B to each virtual block 145B, mapping four virtual addresses 195N to each virtual block
145N, and so on.

The VDL 150 managed by the data log module 132 may comprise segments 152 on the
storage resources 190A-Y. As illustrated in embodiment 201C of Fig. 2C, the VDL 150 may
comprise segments 152A[1]-152A[N] corresponding to storage resource 190A (e.g., the
segments 152A[1]-152A[N] may comprise identifier ranges in the storage resource address space
194A of the storage resource 190A). The VDL 150 may further comprise segments 152B[1]-
152B[N] corresponding to storage resource 190B, segments 152N[1]-152N[N] corresponding to
storage resource 190N, and so on. Accordingly, data of the VDL 150 may be stored within a
plurality of different storage resources 190A-Y. The forward map 125 may be configured to
bind LIDs of the logical address space 122 (e.g., LID A) to log storage units 155 in the VDL
150, which may correspond to virtual blocks 145A-N (e.g., virtual addresses 195A-N of the
underlying storage resources 190A-Y). In Fig. 2C, data of LID A is stored in log storage unit X
on storage resource 190B. An entry 126 in the forward map 125 binds LID A to the virtual
block(s) 145A-N corresponding to log storage unit X, the forward map 125 may further include
an identifier of the storage resource 190A, and/or an identifier of the storage resource address
space 194A comprising the data of LID A. The data log module 132 may be configured to
append data sequentially within the VDL 150, and the garbage collector 136 may be configured
to recover segments 152. The garbage collector 136 may be configured to select segments 152

for recovery and to prepare the selected segments for reuse by the data log module 132. The

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

37

garbage collector 136 may include a) a scan module 236A configured to scan the VDL 150 to
identify segments 152 to recover by, inter alia, identifying invalid data in the VDL 150, b) a
relocation plan module 236B configured to determine a relocation plan for valid data in segments
selected for recovery, and c) a relocation implementation module 236C configured to relocate the
valid data. The scan module 236A may be configured to identify invalid data in the VDL 150 by
use of the forward map 125. In some embodiments, the scan module 236A identifies invalid data
using a mark-and-sweep approach. The scan module 236A may clear validity indicators for the
log storage units 155 in the VDL 150 (e.g., set validity indicators to false) and traverse the
entries of the forward map 125. The scan module 236A may set log storage unit validity
indicators to “true” (valid) in response to identifying an entry 126 that maps a LID to the log
storage unit 155. Log storage units 155 that are bound to LIDs of the logical address space 122
in the forward map 125 are identified as valid, and other log storage units 155 are considered to
comprise invalid data.

Relocating valid data in a segment 152 selected for recovery may comprise a)
determining a relocation plan for the valid data by use of the relocation plan module 236B, and
b) implementing the relocation plan by use of the relocation implementation module 236C. As
used herein, a “relocation plan” refers to a plan for relocating valid data from a segment 152 to
other log storage unit(s) 155 within the VDL 150. Data may be relocated by, inter alia, copying
the valid data within the VDL 150, re-appending the valid data to the VDL 150, moving the valid
data, and/or the like.

The relocation plan module 236B may be configured to determine a relocation plan by
use of the storage resource manager 114. As disclosed above, the storage resource manager 114
may be configured to interface with the storage resources 190A-Y, which may comprise issuing
I/O requests to the storage resources 190A-Y, writing data to the storage resources 190A-Y,
reading data from the storage resources 190A-Y, allocating virtual blocks 145A-N (e.g., virtual
addresses 195A-Y within respective storage resource address spaces 194A-Y), communicating
coordination information with the storage resources 190A-Y (e.g., deallocation information),
and/or the like. In some embodiments, the storage resource manager 114 comprises storage
resource profiles 116A-Y, which may comprise information pertaining to the respective storage
resources 190A-Y. The storage resource profiles 116A-Y may include, but are not limited to:
performance characteristics of the respective storage resources 190A-Y, capabilities of the
respective storage resources 190A-Y, configuration options pertaining to the respective storage
resources 190A-Y, coordination capabilities of the storage resources 190A-Y, storage format

used by the storage resources 190A-Y (e.g., whether a storage resource 190A-Y is log-based or

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

38

the like), and so on. The storage resource profiles 116A-Y may indicate whether a particular
storage resource 190A-Y is capable of high-performance, sequential data transfers; comprises
DMA functionality; is capable of performing logical address manipulations (e.g., virtual copy
operations, disclosed below); and/or the like.

The relocation plan module 236B of the garbage collector 136 may determine a
relocation plan based on a) profile information 116A-Y pertaining to the source of the data (e.g.,
the storage resource 190A-Y comprising the valid data), and b) profile information 116A-Y
pertaining to the destination of the data (e.g., the storage resource 190A-Y corresponding to the
current append point 156). In the Fig. 2C embodiment, the scan module 236 A may select the
segment 152B[2] comprising data of LID A for recovery. The scan module 236A may be further
configured to determine that the segment 152B[2] comprises valid data, including the data stored
in log storage unit X. In response, the relocation plan module 236B may determine a relocation
plan for the valid data based on a) profile information 116B pertaining to the source of the valid
data (storage resource 190B) and b) profile information 116B pertaining to the destination of the
valid data (also storage resource 190B, based on the position of the append point 156 in the VDL
150). The profile information 116B may indicate that the storage resource 190B is capable of
performing virtual copy and/or logical move operations. In response, the relocation plan module
236B may be configured to develop a relocation plan in which the valid data is relocated to the
segment 152B[N] in a logical move operation without copying the data on the storage resource
190B. The relocation implementation module 236C may be configured to implement the
relocation plan, which may comprise issuing commands to configure the storage resource 190B
to perform the storage operations comprising the relocation plan. Further embodiments of
systems and methods for logical copy (clone) and/or logical move operations are disclosed in
U.S. Provisional Patent Application No. 61/892,962, entitled “Systems and Methods for
Distributed Atomic Storage Operations,” filed October 18, 2013 for Nisha Talagala et al., and
which is hereby incorporated by reference in its entirety.

In another embodiment 201D, and as illustrated in Fig. 2D, the append point 156 may
correspond to a different storage resource 190N. The relocation plan module 236B may be
configured to determine a relocation plan for valid data in the segment 152B[2] based on a)
profile information 116B pertaining to the storage resource 190B and b) profile information
116N pertaining to the storage resource 190N. Since the append point is on a different storage
resource 190N (e.g., in a different storage resource address space 194N from the segment
152B[2]), it may not be possible to perform a logical move and/or copy operation to relocate the

data (regardless of whether the storage resources 190B and/or 190N support such operations).

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

39

The relocation plan module 236B may, therefore, determine an efficient copy operation to
transfer valid data from segment storage resource 190B to storage resource 190N. Transferring
the valid data may comprise one or more of a DMA operation, a high-performance sequential
write, and/or the like. The transfer mechanism(s) may be selected in accordance with the
capabilities and/or performance characteristics of the storage resources 190B and/or 190N as
indicated by the respective profile information 116B and 116N. The relocation implementation
module 236C may be configured to implement the determined relocation plan, as disclosed
herein.

The data services module 110 may be further configured to maintain a metadata log 160,
as disclosed herein. In the Fig. 2A embodiment, the metadata log 160 may be maintained on a
separate storage resource 190N (a storage resource 190Y that is separate from and/or
independent of the storage resources 190A-Y comprising the VDL 150). The disclosure is not
limited in this regard, and in some embodiments the metadata log 160 may be maintained on the
same storage resource(s) 190A-Y as the VDL 150. The metadata log module 134 may be
configured to maintain a temporal order of storage operations performed through the data
services module 110 as disclosed herein. The data services module 110 may be configured to
service I/O requests 113 by a) appending data corresponding to the I/O request 113 to the VDL
150, and b) recording an entry 163 pertaining to the 1/O request 113 in the metadata log 160.
The data services module 110 may be configured to acknowledge completion of the I/O request
113 in response to recording the entry 163 in the metadata log 160. The entries 163 of the
metadata log (as well as the aggregate mapping entries 167 and/or checkpoint entries 168) may
be configured to bind LIDs of the logical address space to data stored within the VDL 150,
through, inter alia, one or more translation layers, such as a translation layer between LIDs and
virtual blocks 145A-N, a translation layer between virtual blocks 145A-N and virtual addresses
195A-N, and so on. Accordingly, and as depicted in Fig. 2C, metadata log 160 may be
configured to include addressing information to identify the log storage unit X comprising the
data bound to LID A, including an identifier of the namespace (storage resource address space
194B) and/or storage resource 190B comprising the data.

As disclosed above, the metadata log module 134 may be configured to append entries
163 to the metadata log 160 in response to 1/O requests 113 serviced by the data services module
110. The entries 163 may be written to log storage units 165, which may comprise significantly
more storage capacity than required by the entry 163, resulting in wasted space on the underlying
storage resource (e.g., storage resource 190Y). In some embodiments, the metadata log 160 may

be implemented using a storage resource 190Y configured to implement persistent, byte-

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

40

addressable storage operations, such as battery-backed RAM, n-Channel DRAM, auto-commit
memory, and/or the like. Further embodiments of auto-commit memory are disclosed in U.S.
Patent Application Serial No. 13/324,942, entitled “Apparatus, System and Method for Auto-
Commit Memory,” filed December 13, 2011 for David Flynn et al., and which is hereby
incorporated by reference in its entirety.

In some embodiments, the metadata log module 134 may be configured to cache and/or
buffer entries 163, and then write groups of entries 163 (and/or aggregate entries 163) to the
metadata log 160. The metadata log module 134 may, for example, be configured to buffer a
sufficient amount of mapping entry data to fill (or substantially fill) a log storage unit 165. In
such embodiments, the data log module 132 may be configured to append data mapping
information to the VDL 150 (as disclosed above in conjunction with Fig. 1D). The data log
module 132 may be further configured to order the VDL 150 to prevent write hazards as
illustrated in Fig. 1H. Accordingly, the data write module 132 may be configured to maintain a
temporal order in the VDL 150, such that data (and corresponding mapping information, such as
the persistent VDL metadata 184) is appended to the VDL 150 according to the order in which
the corresponding I/O requests 113 were received. The mapping information stored in the VDL
150 may be marked for removal in response to the metadata log 160 storing the buffered
mapping entries to the metadata log 160. The persistent VDL metadata 184 may, for example,
be removed in storage recovery operations performed within the VDL 150 by the garbage
collector 136, as disclosed herein.

Fig. 3A depicts another embodiment 301A of a computing system 100 comprising a data
services module 110. The data services module 110 of Fig. 3A is communicatively coupled to
storage resources 190A-Y by use of, infer alia, the interconnect 115 and/or network 105, as
disclosed herein. In the Fig. 3A embodiment, the log module 130 is configured to maintain a
plurality of different VDLs 150A-X. The VDLs 150A-X may be managed by respective data log
modules 132A-X (and/or by a single data log module 132 configured to manage a plurality of
append points 156A-X). The VDLs 150A-X may correspond to respective storage resources
190A-Y. In Fig. 3A, VDL 150A spans storage resources 190A and 190B and, as such, may
include segments 152A[1]-152A[N] that correspond to virtual blocks 145A mapped to the
storage resource address space 194A of storage resource 190A, as well as segments 152B[1]-
152B[N] that correspond to virtual blocks 145B mapped to the storage resource address space
194B of storage resource 190B. The VDL 150C may correspond to storage resource 190C (e.g.,
may include segments 152C[1]-152C[N] that correspond to virtual blocks 145C mapped to the

storage resource address space 194C), and the VDL 150N may correspond to storage resource

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

41

190X (e.g., may include virtual blocks 145X mapped to segments 152X[1]-152X[N] that
correspond to the storage resource address space 194X). The translation module 124 may be
configured to map virtual blocks 145A-X to respective virtual addresses 195A-X of the storage
resources 190A-X, as disclosed herein (e.g., using one-to-one mappings, one-to-N mappings,
and/or the like).

The metadata log module 134 may be configured to maintain a metadata log 160 on a
separate storage resource 190Y. As disclosed in further detail herein, the metadata log module
134 may be configured to maintain ordered metadata pertaining to multiple VDL 150A-N. For
clarity of illustration, the metadata log 160 of Fig. 3A maintains metadata pertaining to multiple
VDL 150A-N and corresponds to a separate storage resource 190Y that is not being used by a
VDL 150A-N. The disclosure is not limited in this regard, however, and could be adapted to
implement separate metadata logs 160 to maintain metadata for respective VDL 150A-N and/or
could implement the metadata log 160 on a storage resource 190A-X being used for one or more
VDLs 150A-N.

In the Fig. 3A embodiment, the log module 130 comprises respective data log modules
132A-N, which may be configured to manage log storage operations within a respective VDL
150A-N. A data log module 132A may be configured to manage log operations of VDL 150A, a
data log module 132B may be configured to manage log operations of VDL 150B, and a data log
module 132N may be configured to manage log operations of VDL 150N. Alternatively, a
single data log module 132 may be configured to manage a plurality of VDL 150A-N.

The data services module 110 may be configured to service I/O requests 113 by use of
one or more VDLs 150A-N. As disclosed above, the data services module 110 may comprise a
data virtualization module (DVM) 140, which may include an allocation module 143 configured
to allocate resources of the data services module 110 to clients 106. The allocation module 143
may be configured to allocate sets, groups, ranges, and/or extents of LIDs to clients 106 in
response to, inter alia, allocation requests. As disclosed herein, LIDs of the logical address
space 122 may be mapped to any log storage unit 155 and/or virtual block 145A-N (virtual
addresses 195A-N) of any of the storage resources 190A-Y (by use of, inter alia, the forward
map 125 and/or metadata log 160). Accordingly, an I/O request 113 pertaining to a particular
LID may be serviced by any of the data log modules 132A-N and/or within any of the VDLs
150A-N.

In some embodiments, the data services module 110 includes a log provisioner 131. The
log provisioner 131 may be adapted to assign storage resources 190A-Y to one or more VDLs

150A-N. As disclosed in further detail herein, the log provisioner 131 may be configured to

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

42

configure the VDLs 150A-N to provide a particular level of performance and/or reliability.
Accordingly, the log provisioner 131 may be configured to combine (and/or separate) storage
resources 190A-Y used in a particular VDL 150A-N based, inter alia, on performance and/or
reliability characteristics of the storage resources 190A-Y (as indicated in the profile information
116A-Y, as disclosed herein). The data services module 110 may further include an allocation
module 143 configured to allocate resources to clients 106. The allocation module 143 may be
configured to allocate LIDs to clients 106. Further embodiments of systems and methods for
managing logical and/or physical resource allocations are disclosed in U.S. Patent No. 8,578,127
issued on November 5, 2013 to David Flynn et al., which is hereby incorporated by reference in
its entirety.

The log provisioner 131 may be configured to configure VDLs 150A-N of the data
services module 110 based, inter alia, on characteristics of the storage resources 190A-Y. As
disclosed above, the storage resource manager 114 may comprise profile information 116A-Y
configured to indicate the capabilities and/or configuration of the storage resource 190A-Y. The
profile information 116A-Y may be further configured to indicate current and/or observed
performance and/or reliability characteristics of the storage resources 190A-Y. Accordingly,
profile information 116A-Y pertaining to a storage resource 190A-Y may include, but is not
limited to: the latency of storage operations performed on the storage resource 190A-Y, a
workload the storage resource 190A-Y is capable of sustaining, current workload on the storage
resource 190A-Y, available storage capacity, a QoS guaranteed by the storage resource 190A-Y,
reliability characteristics pertaining to the storage resource 190A-Y (e.g., persistence level,
whether the storage resource is configured to store data redundantly, such as a RAID
configuration, observed error rate, and/or the like), capabilities of the storage resource 190A-Y
(e.g., whether the storage resource 190A-Y supports particular storage operations and/or
interfaces), storage format of the storage resource 190A-Y (e.g., log-based storage, modify-in-
place, and/or the like), availability and/or cache mode of the storage resource 190A-Y, and/or the
like.

The log provisioner 131 may be configured to assign storage resources 190A-Y to VDLs
150A-N in accordance with the characteristics of the storage resources 190A-Y. The log
provisioner 131 may, for example, be configured to combine storage resources 190A-Y having
similar performance characteristics in the same VDL 150A-N and/or avoid combining storage
resources 190A-Y with different performance attributes (e.g., avoid pairing high-performance
storage resources 190A-Y with lower-performance storage resources 190A-Y in the same VDL

150A-N). The log provisioner 131 may, in one embodiment, configure a VDL 150A-N to

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

43

separate a combination of a high-performance storage resource 190C with one or more lower-
performance storage resources 190A-B. In another embodiment, the assignment module is
configured to group a plurality of high-performance storage resources 190A-Y into a single,
higher-capacity VDL 150A-N. The log provisioner 131 may be further configured to combine
storage resources 190A-Y configured to provide similar levels of persistence. The log
provisioner 131 may, in one embodiment, combine storage resources 190A-Y configured to store
data redundantly into a particular VDL 150A-N, and to exclude storage resources 190A-Y from
the particular VDL 150A-N that are not capable of providing and/or configured to provide a
similar level of persistence. In the Fig. 3A embodiment, the log provisioner 131 may configure
the VDL 150A to include lower-performance storage resources 190A-B, and may configure the
VDL 150C to include a high-performance storage resource 190C.

The log provisioner 131 may be configured to combine storage resources 190A-Y into
VDL 150A-N having particular performance and/or reliability characteristics. As disclosed in
further detail herein, the data services module 110 may include an allocation policy 147,
comprising I/O requirements and/or preferences of the clients 106. The log provisioner 131 may
be configured to create VDL 150A-N capable of satisfying the I/O requirements of the clients
106 per the allocation policy 147. The log provisioner may, for example, assign a single high-
performance storage resource to VDL 150B in response to QoS requirements of a particular
client 106. In another embodiment, the log provisioner 131 may be configured to combine
redundant, low-performance storage resources 190A-B into a VDL 150A in response to 1/O
requirements of a different client 106 (e.g., requirements for reliable, high-capacity storage
services).

The data services module 110 may further include a log assignment module 144
configured to assign clients 106 (and/or LIDs allocated thereto) to respective VDL 150A-N. The
assignments may be based on, inter alia, profile information of the storage resources 190A-Y
comprising the VDL 150A-N and/or requirements of the clients 106. The assignments may be
configured to provide clients 106 with a particular QoS, storage-tiering level, persistent level,
and/or the like. The 1/O requirements and/or preferences of the clients 106 may be embodied in
an allocation policy 147. The log assignment module 144 may, therefore, be configured to
assign VDLs 150A-N to clients 106 based on a) profile information 116A-Y pertaining to the
storage resources 190A-Y comprising the VDLs 150A-N and/or b) the allocation policy 147.

As disclosed above, the allocation policy 147 may correspond to I/O requirements and/or
preferences of particular clients 106 (e.g., applications, services, and/or the like). The allocation

policy 147 may comprise a QoS requirement of a particular client 106. The QoS policy of a

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

44

client 106 may correspond to properties of the I/O services provided to the client 106 through the
data services module 110, such as input/output bandwidth, input/output latency (e.g., response
time), persistence level (e.g., RAID level), high-availability requirement(s), and/or the like. In
other embodiments, the allocation policy 147 may comprise a persistence level requirement of a
client 106, such as a requirement that data of the client 106 be stored redundantly and/or in a
RAID configuration. The data services module 110 may be configured to acquire information
pertaining to the I/O requirements of particular clients 106 and/or 1/O requests 113 using any
suitable mechanism including, but not limited to: receiving I/O requirements and/or preferences
through the interface 112, through a storage interface (e.g., as fadvise parameters, [OCTL
parameters, and/or the like), and/or the like.

The log assignment module 144 may be configured to associate clients 106 with
particular VDLs 150A-N by, inter alia, pairing clients 106 with VDLs 150A-N comprising
storage resources 190A-Y that are capable of satisfying the I/O requirements of the clients 106.
Assigning a client 106 to a VDL 150 may, therefore, comprise comparing requirements and/or
preferences of the client 106 in the allocation policy 147 to profile information 116A-Y
corresponding to the storage resources 190A-Y. In the Fig. 3A embodiment, the storage
resources 190A and 190B may comprise high-capacity, low-performance storage systems that
are configured for redundant storage, and the storage resource 190C may comprise a lower-
capacity, higher-performance solid-state storage system. The log assignment module 144 may
be configured to assign VDL 150C to clients 106 that require high-performance /O, and to
assign VDL 150A to clients 106 that require redundant storage and/or do not require high-
performance 1/0. Further embodiments of systems and methods for assigning storage resources
190A-Y to clients 106 (and/or particular I/O requests 113) are disclosed in U.S. Patent
Application Serial No. 13/829,835 entitled “Systems and Methods for Adaptive Persistence,”
filed March 14, 2013 for David Flynn et al., which is hereby incorporated by reference.

The storage resource manager 114 may be configured to acquire information pertaining
to the availability and/or usage characteristics of the storage resources 190A-Y, and to
incorporate the acquired information into the profile information 116A-Y. The acquired
information may include, but is not limited to: the availability of logical and/or physical capacity
on the storage resources 190A-Y, workload on the storage resources 190A-Y, I/O bandwidth
to/from the storage resources 190A-Y (e.g., load on the interconnect 115), data transfer rates,
observed latency for storage operations performed on the storage resources 190A-Y, reliability

of the storage resources 190A-Y (e.g., observed error rate), and/or the like.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

45

The log assignment module 144 may use information pertaining to the operating state of
the storage resources 190A-Y to determine log assignments. In one embodiment, the log
assignment module 144 is configured to avoid overloading one or more of the storage resources
190A-Y. As disclosed above, the VDL 150B may correspond to a high-performance storage
resource 190C and, as such, may be assigned to clients having particular requirements (e.g.,
particular QoS requirements). The log assignment module 144 may determine that the storage
resource 190C is nearing capacity and that assigning additional workload would degrade
performance of the VDL 150B, such that the QoS of one or more clients 106 would no longer be
met. In response, the log assignment module 144 may a) assign other clients 106 to one or more
other VDL 150A-N (e.g., VDL A), and/or b) move storage operations of one or more clients 106
to another VDL 150A-N.

Fig. 3B depicts embodiments 301B of log storage operations of the data services module
110 of Fig. 3A. In the Fig. 3B embodiment, the data services module 110 may receive 1/O
requests 113C and 113D to write data DP and DV to LIDs P and V, respectively. The LID P
may be assigned to VDL 150A and the LID V may be assigned to VDL 150B based, infer alia,
on /O requirements of the clients 106 corresponding to the respective 1/O requests 113C and
113D, as disclosed above.

The data services module 110 may be configured to service the I/O requests 113C and
113D by a) appending data DP to VDL 150A (at append point 156A), and appending data DV to
VDL 150B (at append point 156B), and b) writing corresponding mapping entries 163P and
163V to the metadata log 160. The data services module 110 may be configured to append data
DP and/or DV out-of-order with respect to the 1/O requests 113C and/or 113D. As disclosed
above, the storage resource 190C of VDL 150B may comprise a high-performance SSD storage
device and, as such, the storage operation in VDL 150B may complete before the storage
operation in VDL 150A. Additionally, other I/O requests 113 received after I/O requests 113C
and/or 113D may complete within other VDL 150B-N before the operation(s) to write data DP to
the VDL 150A is complete. The metadata log 160, however, may be configured to maintain a
temporal order of I/O requests 113 (including 1/O requests 113C and 113D). In particular, the
metadata log module 134 may be configured to append the entries 163P and 163V to the
metadata log 160 in accordance with the order in which the I/O requests 113C and 113D were
received, regardless of the order in which the corresponding storage operations are completed
within the respective VDLs 150A and/or 150B.

As illustrated in Fig. 3B, the entries 163P and 163V in the metadata log 160 may be
configured to bind LIDs P and V to the data appended to VDLs 150A and 150B. The entry 163P

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

46

may be configured to bind LID P to the log storage unit 358A in VDL 150A (on storage resource
190A), and the entry 163V may be configured to bind LID V to log storage unit 358B in VDL
150B (on storage resource 190C). The mapping entries 163P and 163V may correspond to
entries 126 in the forward map 125, as disclosed herein.

Fig. 3C depicts embodiments 301C of storage recovery operations of the data services
module 110. In the Fig. 3C embodiment, the garbage collector 136 may be configured to scan
the VDL 150A-N to identify segments to recover. In some embodiments, each VDL 150A-N
may comprise a respective garbage collector 136 configured to reclaim segments within the VDL
150A-N. Alternatively, and as illustrated in Fig. 3A, a single garbage collector 136 may be
configured to manage storage recover operations within the VDL 150A-N.

As disclosed above, the garbage collector 136 may comprise a scan module 236A
configured to identify segments 152 to recover based, inter alia, on the amount and/or proportion
of invalid data in the segments 152. In the Fig. 3B embodiment, the scan module 236A may be
configured to identify invalid data in the VDL 150B using a mark-and-sweep operation. The
mark-and-sweep operation implemented by the scan module 236A may comprise initializing a
validity data structure 325 corresponding to identifiers of the storage resource 190C comprising
the VDL 150B. The validity data structure 325 may comprise a bitmap comprising entries
corresponding to virtual blocks 145C (and/or virtual addresses 195C) of the storage resource
190C. The validity data structure 325 may be partitioned into sections corresponding to the
segments 152C[1]-152C[N] comprising the VDL 150B. Initializing the validity data structure
325 may comprise setting each entry to “invalid” (e.g., clearing the bitmap). The mark-and-
sweep operation may further comprise traversing the forward map 125 to identify valid data in
the VDL 150B, which may comprise marking entries as “valid” in response entries 126 in the
forward map 125 that bind the corresponding log storage units 155 (virtual blocks 145C and/or
virtual addresses 195C) to a LID. Accordingly, log storage units 155C and/or virtual blocks
145C that exist in the forward map 125 are marked as valid during the sweep of the forward map
125, and log storage units 155C that do not exist in the forward map 125 remain marked as
invalid. In the Fig. 3C embodiment, the log storage unit 358B comprising data DV is marked as
valid in the mark-and-sweep operation. Accordingly, the other log storage units 155C in the
segment 152C[1] may be considered invalid and need not be relocated in the recovery operation.
Determining validity information using a mark-and-sweep approach may obviate the need for
maintaining explicit reference counts and/or other metadata to identify virtual addresse(s) that

are currently in use. The data services module 110 may, therefore, be capable of implementing a

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

47

large number of logical copy and/or snapshot operations without limitations imposed by
reference count overhead.

The relocation plan module 236B may be configured to determine a relocation plan for
the valid data (data DV in log storage unit 358B). As disclosed above, the relocation plan may
be based on, infer alia, profile information pertaining to the source of the valid data in the VDL
150B and/or destination of the valid data in the VDL 150B. In the Fig. 3C embodiment, the
source and destination are the same (storage resource 190C). The profile information 116C
pertaining to the storage resource 190C may indicate that the storage resource 190C is capable of
performing logical move operations. As disclosed above, a logical move operation refers to an
operation to modify the identifier and/or address of data within the namespace of a storage
resource (e.g., in the storage resource address space 194A) without re-writing the data. In the
Fig. 3C embodiment, the relocation plan module 236B may, therefore, determine that a logical
move operation is to be used to relocate the data DV from log storage unit 358B to a new log
storage unit 155 in segment 152C[N] (at append point 156B). The relocation implementation
module 236C may be configured to implement the logical move operation on the storage
resource 190C by use of the storage resource manager 114, as disclosed herein. The relocation
operation may further comprise updating the forward map 125 to bind LID V to the storage unit
358C, and appending a corresponding mapping entry 163W to the metadata log 160, as disclosed
herein. As illustrated in Fig. 3C, appending the mapping entry 163W renders the mapping entry
163V invalid due, inter alia, to the log order of the entries 163W and 163V within the metadata
log 160.

Referring back to Fig. 3A, the data services module 110 may further include a
virtualization service module (VSM) 146, which may be configured to efficiently implement
logical manipulation operations configured to modify the logical interface to data managed by
the data services module 110. As disclosed above, the “logical interface” to data stored within
the VDL 150 refers to, inter alia, the identifiers (e.g., LIDs) used to reference the data.
Therefore, a logical manipulation operation refers to an operation pertaining to mappings,
bindings, associations, and/or ties between L.IDs and data stored within a VDL 150A-N. Logical
manipulation operations may include operations configured to manipulate the logical address
space 122 by, inter alia, manipulating associations between LIDs and/or data stored within one
or more VDLs 150A-N. As disclosed in further detail herein, the logical manipulation
operations implemented by the VSM 146 may be configured to modify the logical interface to
data without re-writing the data within the VDL(s) 150A-N and/or without modifying data stored
in the VDL(s) 150A-N. The logical manipulation operations implemented by the VSM 146 may

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

48

include, but are not limited to: logical move operations (e.g., modify the LIDs bound to data
stored within one or more VDLs 150A-N), logical copy operations (e.g., clone and/or replicate
data stored within one or more VDLs 150A-N by, inter alia, referencing the data through two or
more different sets of LIDs), copy-on-write operations, logical merge operations, and/or the like.
Logical manipulation operations implemented by the data services module 110 may be persistent
and crash safe. In some embodiments, the metadata log module 134 is configured to append
logical manipulation entries 173 to the metadata log 160 in response to logical manipulation
operations implemented by the data services module 110. The metadata log 160 may, therefore,
include an ordered, persistent record of logical manipulation operations performed by the data
services module 110. As used herein, a “logical manipulation entry” (LME) 173 refers to
persistent data stored in the metadata log that is configured to indicate one or more
modification(s) to the logical interface to data in a VDL 150A-N. An LME 173 may comprise a
packet, note, persistent note, and/or other data structure stored within the metadata log 160. As
illustrated in Fig. 3A, an LME 173 may correspond to a plurality of different logical operations
A-N, which may be configured to alter associations between data stored in one or more of the
VDL 150A-N and identifier(s) of the logical interface 122. As disclosed above, the logical
operations A-N recorded in an LME 173 may include, but are not limited to: operations to
associate data with different set(s) of LIDs (e.g., logical move operations), operations to
associate data with a plurality of different set(s) of LIDs (e.g., logical copy operations),
operations to merge one or more different sets of LIDs (e.g., logical merge operations), and so
on. An LME 173 may be ordered relative to other metadata in the metadata log 160 (e.g.,
mapping entries 163, aggregate mapping entries 167, checkpoint entries 168, and so on), as
disclosed above.

The DVM 140 may comprise one or more logical manipulation modules 141A-N
configured to implement logical manipulation operations. The logical manipulation modules
141A-N may include a logical move module 141A configured to implement logical move

EERRY S

operations. As used herein, a “logical move,” “‘virtual move,” and/or “range move” operation
refers to an operation configured to modify the LIDs bound to data stored in a VDL 150 A-N. A
logical move operation may comprise: a) modifying one or more entries 126 in the forward map
160, and b) appending corresponding metadata to the metadata log 160 (e.g., LME 173). Logical
move operations may be implemented without modifying the corresponding data stored in the
VDL 150A-N and/or without appending data to the VDL 150A-N.

Fig. 3D depicts one embodiment of a logical move operation implemented by the data

services module 110 and VSM 146. In the Fig. 3D embodiment 301D, the data log module

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

49

132A has serviced an I/O request 113C to write data DP to LID P. As disclosed above, servicing
the I/O request 113C may comprise appending the data DP to a log storage unit 358A of VDL
150A, updating a mapping pertaining to LID P in the forward map 125, and/or writing a mapping
entry 163P to the metadata log 160 to associate LID P with the log storage unit 358 A comprising
the data DP.

After servicing the 1/O request 113C, the data services module 110 may receive an 1/O
request 113E to perform a logical move operation to move data of LID P to LID U. The I/O
request 113E may be received through the interface 112 of the data services module 110, as
disclosed herein. The VSM 146 may be configured to implement the logical move operation of
the I/O request 113E by a) updating the forward map 125 to bind LID U to the data at log storage
unit 358A, and b) appending an LME 173A to the metadata log 160. The LME 173A may
correspond to the logical move operation and, as such, may be configured to indicate that the
data DP stored at log storage unit 358A is bound to LID U. The LME 173A may be further
configured to indicate that LID P is no longer associated with the data DP (e.g., deallocate L.ID
P). The LME 173A may invalidate the original mapping entry 163P due to, infer alia, the log
order of the mapping entry 163P and the LME 173A within the metadata log 160 (the LME
173A is later in the metadata log 160 than the original, pre-move mapping entry 163P).

As illustrated in Fig. 3D, the logical move operation may be implemented without
modifying the data DP stored within the VDL 150A and without appending data to VDL 150A.
The 1/O request 113E may, therefore, be serviced by exclusive use of the metadata log 160.
Implementing the virtual move operation includes updating volatile metadata (forward map 125)
and appending the LME 173A to the metadata log 160. As disclosed above, the LME 173A is
configured to record the association between LID U and the data DP and remove the association
to LID P. Although a particular implementation of a logical move is described herein, the
disclosure is not limited in this regard, however, and could be adapted to implement logical
move operations using any suitable form of logical manipulation metadata, such as an LME
173 A configured to indicate that data associated with LID P is now associated with LID U (e.g.,
{move P, U}) and/or other data structure.

The DVM 140 may comprise a logical replication module 141B configured to implement
logical copy operations. As used herein, a “logical copy,” “logical replication,” and/or “virtual
copy” operation refers to an operation to associate two or more different LIDs with the same
data in the VDL 150A-N. Fig. 3E depicts one embodiment 301E of a logical copy operation
implemented by the data services module. In the Fig. 3E embodiment 301E, the data services

module 110 may have serviced the I/O request 113C to write data DP to LID P (at log storage

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

50

unit 358A of VDL 150A), as disclosed herein. After servicing the I/O request 113C, the data
services module 110 may receive an 1/O request 113F to create a logical copy of LID P. As
disclosed herein, the data services module 110 may be configured to implement logical copy
operations without replicating data within the VDL 150A-N (e.g., without creating separate
copies of the data within the VDL 150), modifying data stored in the VDL 150A-N, and/or
appending data to the VDL 150A-N.

Implementing the logical copy operation of Fig. 3E may comprise a) recording an
association between LID V and the data of LID P in the forward map 125 and b) appending an
LME 173B to the metadata log 160 configured to indicate that LID V is associated with log
storage unit 358 A. The mapping entry 163P configured to indicate that LID P is associated with
data DP may remain valid. In some embodiments, and as illustrated in Fig. 3E, the LME 173B
may be configured to indicate that both LID P and LID V are mapped to log storage unit 358A
(e.g., may comprise metadata configured to associate both LIDs P and V to data log storage unit
358A). Alternatively, the LME 173B may indicate that a logical copy operation has been
performed (e.g., record the logical copy as copy {P, V}). The data services module 110 may
implement the logical copy operation of the I/O request 113E without modifying data in the
VDL 150A and without appending data to the VDL 150A.

The mapping between LID V and data DP (at log storage unit 358A) may be maintained
regardless of subsequent modifications to LID P in subsequent I/O requests. Fig. 3F depicts one
embodiment 301F of an operation to write data to LID P, which may comprise overwriting data
DP with with DP" (e.g., a copy-on-write operation). The data services module 110 may be
configured to service the I/O request 113G by a) writing data DP" to the VDL 150A, which may
comprise storing DP" in log storage unit 358 W, b) associating LID P with log storage unit 358W
in the forward map 125, and c¢) appending a mapping entry 163W to the metadata log 160. The
mapping entry 163W appended to the metadata log 160 may be configured to bind LID P to the
log storage unit 358 W comprising data DP". The LME 173B configured to associate L.ID V with
data DP at log storage unit 358 A (and the corresponding entry 126 in the forward map 125) may
remain valid. Accordingly, LID V may continue to reference data DP, and LID P may reference
modified data DP*. Moreover, the garbage collector 136 may determine that DP is valid, despite
the removal of the binding to LID P due, inter alia, to the mapping between DP and LID V
reflected in the forward map 125 and/or metadata log 160.

The operations implemented by the VSM 146 may be performed on LID vectors, which
may comprise sets, ranges, and/or extents of LIDs. A vector may be defined using a starting

address (LID), range (size), and/or destination address. Fig. 4A depicts another embodiment

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

51

401A of a logical copy operation implemented by the data services module 110. The logical
copy operation depicted in Fig. 4A may comprise a vector operation. The vector operation of the
I/O request 413A may comprise a request to create a logical copy of the LID range 512-1536 (a
vector starting at LID 512 having extent 1024) at LID 16384. The LID range 512-1536 may
correspond to data stored in the VDL 150A. Accordingly, the forward map 125 of Fig. 4A
includes an entry configured to bind LIDs 512-1536 to log storage units 32456-33480. Although
in Fig. 4A the LID range 512-1536 corresponds to a single entry 126 in the forward map 125, the
disclosure is not limited in this regard, and could include any number of entries 126
corresponding to the LID range 512-1536, bound to different log storage unit(s) within the VDL
150A. The metadata log 160 may comprise a mapping entry 463A configured to bind the LIDs
512-1536 to the log storage units 32456-33480, as disclosed above.

The interface module 112 may receive the I/O request 413A to create a logical copy of
the LID range 512-1536. The data services module 110 may be configured to service the I/O
request 413A by use of, inter alia, the VSM 146. Servicing the 1/O request 413 may comprise a)
altering the forward map 125 to associate the data of LIDs 512-1536 with LIDs 16384-17408
and b) appending an LME 173C to the metadata log corresponding to the logical copy operation.
The LME 173 may be configured to indicate that LLIDs 16384-17408 are associated with the
same data as the source LID vector 512-1536 (e.g., bind the destination LIDs 16384-17408 to the
log storage units 32456-33480). As disclosed above, the data services module 110 may
implement the vector logical copy operation without modifying the corresponding data stored
within the VDL 150A and/or without appending data to the VDL 150A.

The data services module 110 may be configured to manage logical copies, such that
storage operations in the LID range 512-1536 do not affect the corresponding logical copies
(e.g., LID range 16384-17408). The data services module 110 may, therefore, be configured to
implement copy-on-write operations within the respective LID vectors 512-1536 and 16384-
17408. In embodiment 401B illustrated in Fig. 4B, for example, the data services module 110
may service an 1/O request 413B to write data X to LID 16384. In response, the data services
module 110 may a) append data X to the VDL 150A at log storage unit 3254 (on storage
resource 190B), b) append a mapping entry 463B configured to bind LID 16384 to log storage
unit 3254 on storage resource 190B, and ¢) modify the forward map 125 to bind LID 16384 to
log storage unit 3254. The LIDs 512-1536 may be unaffected (continue to reference data stored
on log storage units 32456-33480). Moreover, unchanged portions of the logical copy (LIDs
16385-17408) may continue to reference the logical storage units 32457-33480. The binding
between LID 16384 and 32456, however, is removed (rendered obsolete) by the new binding to

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

52

log storage unit 3254. The data stored at log storage unit 32456 may continue to be considered
valid by the scan module 236A due to the remaining association between LID 512 and the log
storage unit 32456 (e.g., the mark-and-sweep algorithm will mark the log storage unit 32456
valid in response to the binding to LID 512). As illustrated in Fig. 4B, the logical copy operation
may be completed without modifying data stored in the VDL 150A and/or without appending
data to the VDL 150A.

The DVM 140 may comprise a logical merge module 141N configured to implement
logical merge operations. As used herein, a logical merge operation refers to combining two or
more different sets, ranges, and/or extents of LIDs. A merge operation may comprise, for
example, merging LIDs 512-1536 with LIDs 16385-17408. The VSM 146 may be configured to
perform merge operations in accordance with a merge policy. As used herein, a “merge policy”
refers to mechanisms and/or rules for resolving merge conflicts (e.g., differences in the LID
vectors to be merged). A merge policy may include, but is not limited to: a write-order policy in
which more recent modifications override earlier modifications; a priority-based policy based on
the relative priority of storage operations and/or LID vectors (e.g., based on properties of the
clients 106 and/or I/O requests 113); a completion indicator (e.g., completion of an atomic
storage operation, failure of an atomic storage operation, or the like, as disclosed in further detail
herein); and/or the like. Clients 106 may specify a merge policy in an I/O request (as an 1/O
request parameter), through the interface 112 (e.g., set a default merge policy), by use of fadvise
parameters or [OCTL parameters, and/or the like.

Fig. 4C depicts one embodiment 401C of a logical merge operation to merge LIDs 512-
1536 with LIDs 16385-17408. The logical merge operation of Fig. 4C may be performed in
response to an I/O request 413C received through the interface 112 of the data services module
110, as disclosed herein. In the Fig. 4C embodiment, the I/O request 413C identifies the
destination vector for the merge operation (LID 512, length 1024), identifies the LID vector(s) to
be merged (LIDs 16384-17408), and specifies a “write-order” merge policy (data written later
trumps older data). In the Fig. 4C embodiment, the destination vector corresponds to one of the
source vectors (LID range 512-1536). The logical merge operation may, therefore, comprise
folding the LID range 16384-17408 into the destination range 512-1536. In other embodiments,
the destination vector may be a separate and/or independent LID range (e.g., the LID ranges 512-
1536 and 16384-17408 may be merged into a new LID range 10240-11264).

The merge 1/0O request 413C may be received after servicing the I/O request 413B to
write data X to LID 16384. Accordingly, the LID 16384 may be bound to log storage unit 3254

on storage resource 190B, as illustrated in Fig. 4B. As disclosed above, a logical merge

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

53

operation may comprise combining LID ranges to selectively incorporate modifications made
within the respective ranges. In the Fig. 4C embodiment, the only modification that occurred
after the logical copy operation was the I/O request 413B to write data X to LID 16384.
Accordingly, the only potential merge conflict is between the original data at log storage unit
32456 and data X at log storage unit 3254. The conflict may be resolved by use of a conflict
policy, which in the Fig. 4C embodiment is a “write-order” policy (as specified in the I/O request
413C). Based on the merge policy, data X at log storage unit 3254 may override the original
data at log storage unit 32456 based on the relative log order of the corresponding storage
operations. The data at log storage unit 32456 may, therefore, be unreferenced in the forward
map 125 and, as such, may be removed in a subsequent garbage collection operation in the VDL
150A. Servicing the logical merge I/O request 413C may further comprise writing an LME
173D to the metadata log 160 corresponding to the logical merge operation. The LME 173D
may be configured to indicate that a) LID 512 is associated with log storage unit 3254 (in
accordance with the merge policy disclosed above), and that b) the LID range has been
deallocated 16385-17408. The LME 173D may, therefore, invalidate the mapping entry 463B
corresponding to the logical copy operation (bound LIDs 16384-17408 to storage units 32456-
33480), and the mapping entry 463B that bound LID 16385 to log storage unit 3254. The logical
merge operation may further include updating the forward map 125 to bind LID 512 to log
storage unit 3254 and to remove references to LIDs 16384-17408. As illustrated in Fig. 4C, the
logical merge operation may be completed without modifying the corresponding data stored in
the VDL 150A and/or without appending data to the VDL 150A.

The efficient logical manipulation operations implemented by the VSM 146 may be used
to implement other higher-level storage operations, including, but not limited to: atomic storage
operations, transactions, snapshots, and/or the like. Referring to embodiment 501A depicted in
Fig. 5A, the data services module 110 may comprise an atomic storage module 546 configured to
service atomic storage requests. The data services module 110 may be implemented in
conjunction with a computing system 100 and may be communicatively coupled to storage
resources 190A-Y and clients 106, as disclosed herein.

As used herein, an atomic storage operation refers to a storage operation that is either
fully completed as a whole or rolled back. Accordingly, atomic storage operations may not be
partially completed. Implementing an atomic storage request may comprise: a) creating a logical
or “transactional” copy of one or more vectors pertaining to the atomic storage operation, b)
performing storage operations of the atomic operation in the transactional vectors, and c)

performing a logical move and/or merge operation to relocate the transaction vectors to the

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

54

destination vectors of the atomic storage request. The atomic storage module 546 may be further
configured to service composite and/or vector atomic storage operations, which may comprise a
plurality of different storage operations pertaining to one or more different vectors. As
illustrated in embodiment 501B of Fig. 5B, a composite atomic storage request (I/O request
513A) may comprise a request to a) write data D1 to LID range 3072-4095, b) write data D2 to
LID range 12288-14335, and c) deallocate the LID range 1024-1047. The atomic storage
module 546 may be configured to service the I/O request 513A by use of the data services
module 110 and/or VSM 146, as disclosed above. Servicing the I/O request 513A may comprise
allocating transactional vectors 517 corresponding to the LID ranges 3072-4095 and 12288-
14335. Allocating a transactional vector 517 may comprise a logical copy operation as disclosed
herein (e.g., creating a virtual copy of source LID vectors 3072-4095 and/or 12288-14335).
Alternatively, and as illustrated in Fig. 5B, in embodiments in which the atomic storage
operation(s) do not comprise reading and/or accessing data in the target vectors (e.g., the vectors
are only used for write operations as in I/O request 513A as opposed to read-modify-write
operations), the atomic storage module 546 may be configured to allocate the transactional
vectors 517 without performing a logical copy (e.g., without binding LIDs of the transactional
vectors to data of the corresponding vectors in the atomic storage request).

The atomic storage module 546 may be configured to create the transactional vectors 517
in a designated section or region of the logical address space 122 and/or in a separate namespace,
such that the LIDs of the transactional vectors 517 can be distinguished from other non-
transactional LIDs. In the Fig. 5B embodiment, the atomic storage module 546 is configured to
allocate transactional vectors 517 comprising transactional LIDs Z3072-7Z4095 and Z12288-
714335, which correspond to a separate namespace from the logical address space 122. In other
embodiments, the transactional vectors 517 may correspond to LIDs in a designated region
and/or section of the logical address space 122, as disclosed above. As illustrated in Fig. 5B, the
forward map 125 may include entries 126 corresponding to existing data pertaining to the vectors
3072-4095 and 12288-14335. The mapping information of the entries 126 may be stored in a
checkpoint entry 168 in the metadata log 160. The transactional vectors 517 may be represented
as allocation entries in the forward map 125 (e.g., may correspond to LIDs that are allocated for
use in servicing the I/O request 113B, but are not yet bound to data stored in the VDL 150A-N).
Although the transactional vectors 517 are represented in the forward map 125, the disclosure is
not limited in this regard and could be adapted to manage entries representing transactional

vectors and/or LIDs in one or more separate mapping data structures.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

55

Servicing the atomic storage request may further comprise assigning a VDL 150A-N to
the transactional vectors 517 (and/or target vectors of the atomic 1/O request 513A). In the Fig.
5B embodiment, the log assignment module 144 is configured to assign the VDL 150A to the
storage operations pertaining to the transactional vectors. The log assignment may be based on
the client 106 and/or LIDs associated with the atomic storage request (LIDs 3072-4095 and
12288-14335), such that the storage operations pertaining to the transactional vectors are
performed on the same VDL 150A-N that would have been assigned to the original vectors of
the atomic storage request (using the log assignment module 144, disclosed above).

The atomic storage module 546 may be configured to implement the atomic storage
operations of the I/O request 513A using the transactional vectors 517, which may comprise
appending data D1 and D2 to a VDL 150A-N. As illustrated in Fig. 5B, the atomic storage
module 546 may implement the request to write data D1 to vector 3072, 1024 by a) appending
the data D1 to log storage units 0-1023 within the VDL 150A, b) mapping the transactional LIDs
73072-74095 to the data D1 in the forward map 125, and c) recording a corresponding mapping
entry 563A in the metadata log 160. Other data that is unrelated to the atomic storage request
may be appended to the VDL 150A at log storage units 1024-2047. The atomic storage module
546 may be further configured to implement the request to write data D2, by, inter alia,
appending data D2 to the VDL 150A beginning at log storage unit 2048. As depicted in Fig. 5B,
however, an invalid shutdown condition may occur before the operation is completed. The
invalid shutdown may result in loss of the forward map 125. In response, the metadata
management module 128 may be configured to rebuild the forward map 125 (and/or other
virtualization metadata) using, infer alia, the contents of the ordered metadata log 160.

Fig. 5C depicts embodiments 501C of metadata reconstruction operations configured to
manage incomplete atomic storage operations. In the Fig. 5C embodiment, the metadata
management module 128 may determine that the mapping entry 563 A pertains to a transactional
vector (LIDs in a designated transactional namespace and/or region of the logical address space
122). As disclosed above, a transactional vector and/or LID may be used to identify data
pertaining to an atomic storage operation that has not been completed. Accordingly, the
metadata management module 128 may be configured to exclude data bound to transactional
vector(s) and/or LID(s) from the forward map 125, which may comprise preventing mapping
information of the mapping entry 563A from being included in the forward map 125 (and/or
removing existing mapping information, if any). The data D1 at log storage units 0-1023 may be
identified as invalid and removed in a storage recovery operation (since the data is not bound to

LID(s) in the forward map 125). The metadata management module 128 may be further

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

56

configured to reconstruct the mapping information corresponding to the original vectors 3072-
4095 and 12288-14335 based on the checkpoint entry 168. The original mapping information
may be admitted into the forward map 125, since the original vectors 3072-4095 and 12288-
14335 do not include transactional LIDs, as disclosed herein. Accordingly, the failed atomic
storage operation may be completely rolled back.

In embodiment 501D illustrated in Fig. 5D, the operation to append data D2 may
complete successfully. In response, the atomic storage module 546 may be configured to append
a mapping entry 563B to the metadata log 160 to bind the transactional vector Z12288-714335
to log storage units 2048-4095, and record the corresponding mapping information in the
forward map 125. After completing the individual operations of the atomic storage request, the
atomic storage module 546 may be configured to “close” the atomic storage request in a single
atomic operation. As used herein, “closing” an atomic storage operation or request refers to
completing the atomic storage request. The atomic storage module 546 may be configured to
close the atomic storage operation by implementing a logical move operation to move the
transactional vectors Z3072-74095 and Z12288-714335 to the destination or target vectors of the
atomic storage request (LID ranges 3072-4095 and 12288-14335). The logical move operation
may be implemented by writing a single LME 173 to the metadata log 160. The logical move
operation may further comprise updating the forward map 125 (and/or other virtualization
metadata) in accordance with the logical move operation.

As illustrated in Fig. 5D, the LME 173E may correspond to closure of the atomic storage
operation. In particular, the LME 173E may be configured to indicate that a) the LID vector
3072-4095 is bound to log storage units 0-1023 in VDL 150A and b) that LID vector 12288-
14335 is bound to log storage units 2048-4095 in VDL 150A. The LME 173E may also indicate
that the LID range 1024-1047 is deallocated. In some embodiments, the LME 173E is further
configured to indicate that the transaction vectors Z3072-74095 and Z12288-14335 are
deallocated. Further embodiments of systems and methods for implementing atomic storage
operations are disclosed in U.S. Provisional Patent Application No. 61/892,962, entitled
“Systems and Methods for Distributed Atomic Storage Operations,” filed October 18, 2013 for
Nisha Talagala et al., and which is hereby incorporated by reference in its entirety.

In some embodiments, the efficient logical manipulation operations implemented by the
data services module 110 may be leveraged to implement snapshots. As used herein, a snapshot
refers to a storage operation configured to preserve the state of a storage system at a particular
point in time. A snapshot operation may, therefore, be configured to preserve data associated

with LIDs of the logical address space 122 managed by the data services module 110.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

57

Fig. 6A depicts one embodiment 601A of a computing system 100 comprising a snapshot
module 648 configured to implement snapshot operations by use of, inter alia, the logical
manipulation functionality provided by the data services module 110. The data services module
110 may be communicatively coupled to one or more storage resources 190A-N, which may
comprise one or more VDLs 150A-N managed by the data log module 132A-N, and/or a
metadata log 160 managed by the metadata log module 134, as disclosed herein.

As illustrated in Fig. 6A, the snapshot module 648 may be implemented as a component
and/or module of the data services module 110. Alternatively, the snapshot module 648 may be
implemented as a separate component and/or module, and may be configured to interface with
the data services module 110 through, inter alia, the interface 112. In some embodiments, the
snapshot module 648 may be configured to manage snapshots of one or more clients 106 by use
of the data services module 110.

As disclosed above, a snapshot refers to an operation to preserve the state of a storage
system and, in particular, to preserving the state of a particular set, range, and/or extent of LIDs
within the logical address space 122. In some embodiments the snapshot module 648 may be
configured to create a snapshot through a logical copy operation implemented by use of, inter
alia, the VSM 146. Fig. 6B depicts embodiments 601B of snapshot operations implemented by
use of the data services module 110 (and/or snapshot module 648). In the Fig. 6B embodiment,
the data services module 110 has serviced I/O requests 113 pertaining to the logical address
space by: a) appending data to the VDL 150A, b) appending mapping metadata to the metadata
log 160 configured to bind LIDs of the I/O requests 113 to the data appended to the VDL 150A
(e.g., mapping entries 163, aggregate mapping entries 167, and/or checkpoint entries 168), and c)
maintaining a forward map 125 comprising entries 126A-N and 126X-Z. Although not depicted
in Fig. 6B, the data services module 110 may be further configured to append data to other VDL
150B-N associated with other LIDs and/or LID ranges, as disclosed herein.

The snapshot module 648 may be configured to service a snapshot I/O request 613A.
The I/O request 613A may specify a source address for the snapshot (LID 0 in the logical
address space 122), a destination for the snapshot (LID 100000), and a size, range, and/or extent
(65536). The snapshot 1/O request 613A of Fig. 6B may comprise a request to generate a
snapshot comprising the LID range 0-65535 at LID 100000. Accordingly, the resulting snapshot
may correspond to the LID range 100000-165535. Alternatively, a snapshot I/O request 613A
may specify a source address for the snapshot, and may allow the snapshot module 648 to select
an available destination LID range. In some embodiments, the snapshot module 648 may

manage a plurality of snapshots within different, respective LID ranges. The snapshot module

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

58

648 may be configured to increment the destination LID range in response to requests to create
new snapshots, and may deallocate ranges in response to requests that identify snapshots that no
longer need to be retained.

Servicing the snapshot I/O request 613A may comprise allocating the destination LIDs
100000-165535 (if not already allocated), and creating a logical copy of the LID range 0-65535
by, inter alia, appending an LME 173F to the metadata log 160. The LME 173F may be
configured to indicate that the destination LIDs of the snapshot are associated with the same data
as the source LIDs. The LME 173F may, therefore, be configured to associate the snapshot
destination LID range 100000-165535 with the log storage units bound to the snapshot source
LID range 0-65535, which may comprise associating LID 100000 with log storage unit 1023,
associating LIDs 100001-100007 with log storage units 32-38, associating L.ID 100010 with log
storage unit 997094, associating LID 165535 with log storage unit 21341, and so on. The LME
173F may exclude mapping information pertaining to portions of the logical address space 122
that are outside of the source range (e.g., LIDs 65536 and 87212 of entries 126X-7Z). As
disclosed above, the LME 173F may be embodied as one or more of a packet, note, persistent
note, and/or other data structure stored within the metadata log 160. Although not depicted in
Fig. 6B, the LME 173F may further include the existing data associations pertaining to the
source LID range of the snapshot request 613A (e.g., LID range 0-65535). As illustrated in Fig.
6B, implementing the snapshot operation may comprise appending a single LME 173F to the
metadata log 160, without modifying data stored in the VDL 150A-N and/or without appending
data to the VDL 150A-N.

In some embodiments, the snapshot operation further comprises activating the snapshot.
As used herein, “activating” a snapshot refers to adding entries 126 to the forward map 125
corresponding to the snapshot operation. In the Fig. 6B embodiment, activating the snapshot of
the I/O request 613A comprises creating entries 626A-626N in the forward map 125. In some
embodiments, the data services module 110 may configure the entries 126 of the forward map
125 to facilitate efficient snapshot activation. As disclosed above in conjunction with Fig. 1K,
the data services module 110 may be configured to store the entries 126 of the forward map 125
contiguously in the address space of the volatile memory resources 103. Alternatively, the
entries 126 may be stored according to a pre-determined pattern and/or layout within the memory
address space of the computing system 100. Moreover, the size of the entries 126 may be fixed
(and/or deterministic), such that individual fields of the entries (e.g., the logical address fields
127A-N) can be selective modified based on, inter alia, fixed and/or deterministic offsets within

the memory address space.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

59

Referring to embodiment 601C depicted in Fig. 6C, the snapshot module 648 may
include an snapshot activator 649 configured to efficiently activate snapshots by, inter alia,
accessing memory structures corresponding to the entries 126 in the volatile memory resources
103 of the computing system 100. As illustrated in Fig. 6C, the entries 126A-N corresponding to
the snapshot operation of Fig. 6B may be maintained in a pre-determined format within a region
603A of the memory address space of the computing system 100. In the Fig. 6C embodiment
601C, the entries 126A-N are arranged contiguously in the volatile memory resources 103 of the
computing device 100. The disclosure is not limited in this regard, however, and could be
adapted to use any fixed, deterministic, and/or pre-defined memory layout and/or arrangement.
As disclosed above, the entries 126A-N may comprise respective LID addressing fields 127A,
log storage unit address fields 127B, and the like. The entries 126A-N may further include
metadata pertaining to links and/or references between the entries 126A-N and/or reference
nodes 129, as disclosed above.

The snapshot activator 649 may be configured to efficiently replicate the entries 126 A-N
in memory by: a) copying the memory address range (region 603A) to a destination memory
address range (region 603B), and b) modifying the LID fields 127A of the copied entries in
accordance with the snapshot destination. As illustrated in the Fig. 6C embodiment 601C, the
snapshot activator 649 is configured to modify the LID fields 127A according to the destination
offset LID 100000. In embodiments comprising large ranges within the logical address space
122, it may be inefficient to perform a single bulk copy. In such embodiments, the snapshot
activator 649 may be configured to perform multiple memory copy operations configured to
transfer portions of the memory region 603A being replicated.

Referring back to Fig. 6B, in some embodiments the data services module 110 is
configured to acknowledge completion of the snapshot I/O request 613B in response to a)
appending the corresponding LME 173F to the metadata log 160 and b) activating the snapshot
(e.g., creating corresponding entries 626A-N in the forward map 125). Accordingly, the I/O
request 613B may block while the entries 626A-N are created. In other embodiments, described
below, the snapshot may be activated asynchronously and, as such, the data services module 110
may acknowledge completion in response to writing the LME 173F to the metadata log 160,
without creating the entries 126 in the forward map 125 (e.g., without creating entries 626A-N).

As disclosed above, even with the efficiency improvements disclosed in conjunction with
Figs. 1K and 6C, creating entries 626 A-N for a snapshot operation may take a significant amount
of time, and make take significantly longer than writing the corresponding LME 173F to the

metadata log 160. Moreover, the memory manipulations involved in activating the snapshot may

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

60

be subject to variable delays due to, infer alia, memory management operations of the computing
system 100 (e.g., virtual memory management, paging, and so on), the snapshot entries 626 A-N
may consume limited volatile memory resources 103 of the computing system 100.
Additionally, the translation module 124 may lock the forward map 125 during updates, which
may delay other, unrelated storage operations. Accordingly, in some embodiments, the snapshot
module 648 may be configured to defer snapshot activation until the snapshot is needed.

The snapshot 1/O request 613A may specify whether to defer snapshot activation. Fig.
6D depicts one embodiment 601D of a snapshot operation with deferred activation. As shown in
Fig. 6D, the snapshot I/O request 613B may include a “defer” parameter configured to instruct
the data services module 110 to defer snapshot activation. Alternatively, the I/O request 613B
may comprise a non-blocking, asynchronous API call. In response to the I/O request 613B, the
snapshot module 648 may append the LME 173F to the metadata log 160, as disclosed above.
The data services module 110 may, however, acknowledge completion of the snapshot 1/0
request 613B without creating entries for the snapshot in the forward map 125.

In some embodiments, snapshot operations may be assigned respective identifiers. The
identifier of a snapshot may correspond to a LID associated with the snapshot and/or a log time
of the snapshot. As disclosed above, a “log time” refers to a particular time and/or log location
in the ordered, metadata log 160. The log time of a log storage unit 165 in the metadata log 160
may correspond to a) sequence information of the segment 162 comprising the log storage unit
165 and b) the relative address and/or offset of the log storage unit 165 within the segment 162.
The log time may be configured to be monotonically increasing (in accordance with sequence
metadata 161 applied to the segments 162). As used herein, the log time of a snapshot refers to
the log time of the LME 173F appended to the metadata log 160 to create the snapshot.
Accordingly, the log time of the snapshot of Figs. 6B and 6D is the log time of the log storage
unit(s) 165 comprising the LME 173F.

As illustrated in embodiment 601E depicted in Fig. 6E, the snapshot of Fig. 6D may be
activated in response to an activation I/O request. The snapshot activation /O request 613C may
include an identifier of the snapshot, as disclosed above, which may comprise a snapshot
identifier, snapshot log time, snapshot LID, and/or the like. A snapshot activation I/O request
613C may be configured to activate a portion (subset) of a snapshot. In the Fig. 6E embodiment,
the I/O request 613C may specify activation of only LIDs 0-10. In response, the snapshot
module may create corresponding entries 626 A-C in the forward map 126, as disclosed above.
Entries corresponding to other LIDs not specified in the snapshot activation 1/O request 613C

may not be created.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

61

Deferring snapshot activation may impact garbage collection operations of the data
services module 110. As disclosed above, the scan module 236A of the garbage collector 136
may be configured to identify invalid data based on the forward map 125 (in a mark-and-sweep
operation). Data corresponding to the activated snapshots and/or snapshot regions of Figs. 6B
and 6E may be protected from garbage collection due to, infer alia, the activated snapshot entries
626A-N in the forward map 125, regardless of changes in the original entries 126A-N.
Snapshots that are not activated may be subject to garbage collection in response to
modifications to the original LID bindings. As illustrated in Fig. 6D, data of the deferred
activation snapshot are not bound to the LIDs in the snapshot range 100000-165535 in the
forward map 125. After initial creation of the snapshot in Fig. 6D, data of the snapshot may be
identified as valid due to the existing bindings between the data and the original entries 126A-N.
However, subsequent I/O operations may modify the entries 126A-N, which may render the data
subject to garbage collection.

As illustrated in embodiment 601F depicted in Fig. 6F, a subsequent I/O request 613D
write data X to LID 0 may remove the binding to the log data unit 1023. As disclosed herein,
servicing the 1/O request 613D may comprise a) appending data X to the VDL 150A (at log
storage unit 33422), b) appending a mapping entry 663A to the metadata log 160, and updating
the entry 126A in the forward map 125. Servicing the I/O request 613D may, therefore, remove
the binding between LID 0 and log storage unit 1023, which may cause a mark-and-sweep
operation of the scan module 236A to identify the data in log storage unit 1023 as invalid, and
subject to removal from the VDL 150A.

In some embodiments, the snapshot module 648 is configured to preserve snapshot data.
The snapshot module 648 may be configured to maintain snapshot metadata 645, including an
entry corresponding to the deferred activation snapshot of Fig. 6D. The snapshot metadata entry
646 may include information pertaining to the snapshot, such as the source LIDs, destination
LIDs, size, identifier (e.g., log time), and/or the like. The translation module 124 may access the
snapshot metadata 645 to identify modifications to the forward map 125 that would render
snapshot data invalid, such as the modification to entry 126A resulting from the I/O request
613D. The translation module 124 may be configured to notify the snapshot module 648 of the
original log storage unit mappings. In response, the snapshot module 648 may include the log
storage unit mapping retention information of the snapshot entry 646. The snapshot module 648
may use the snapshot metadata 645 (e.g., the retention information) to prevent the data at log
storage unit 1023 from being marked invalid and/or removed. The scan module 236A may be

configured to query the forward map 125 to identify valid bindings between LIDs and log

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

62

storage units 155A, scan module 236A may be further configured to query the snapshot module
648 for validity information (and/or the translation module 124 may forward queries to the
snapshot module 648), which may indicate that log storage unit(s) included in the retention
information of a snapshot entry 646 comprises valid data that should be retained. The snapshot
module 648 may be further configured to update the retention information in response to, inter
alia, the data at log storage unit 1023 being relocated in a storage recovery operation.

The snapshot module 648 may use the snapshot metadata 645 to activate the snapshot.
Fig. 6G depicts an embodiment 601G of a snapshot activation operation implemented by the
snapshot module 648. As disclosed above, in response to the I/O request 613D to write data to
LID 0, the snapshot metadata 648 may include a binding between LID 100000 and log storage
unit 1023 in a snapshot metadata entry 646. The I/O request 613E may request activation of the
snapshot, and may be received after servicing the /O request 613D.

In response to the activation I/O request 613E, the snapshot activator 649 may activate
the snapshot by, inter alia, copying the memory region corresponding to entries 126 A-126N, and
modifying the LID field 127A of the copied entries 626A-N, as disclosed above. Snapshot
activation may further comprise modifying the entry 626A in accordance with the retention
information. Based on the retention information of the snapshot metadata entry 646, the
snapshot activator 649 may determine that the entry 126A no longer references the snapshot data
at log storage unit 1023. In response, the snapshot activator 649 may be further configured to
modify the log storage unit field 127B of the entry 626A in accordance with the retention
information (e.g., set the log storage unit field 127B to 1023 rather than 33422). After activating
the snapshot, the snapshot module 648 may remove the snapshot metadata entry 646.

In another embodiment, the snapshot module 648 is configured to activate snapshot
entries “on-demand” (e.g., in response to storage operations that would remove bindings to
snapshot data). In embodiment 601H illustrated in Fig. 6H, the snapshot module 648 is
configured to generate a deferred activation snapshot in response to the I/O request 613B, as
disclosed above. After creating the snapshot, the I/O request 613D to write data X to LID 0 is
received. The data services module 110 may service the I/O request 613D by storing data X to
log storage unit 33422, appending a mapping entry 663A to the metadata log 160, and updating
the entry 126A in the forward map 125. As disclosed above, the translation module 124 may be
configured to notify the snapshot module 646 that an operation pertaining to a deactivated
snapshot has been performed. The notification may identify the corresponding LID and/or log
storage unit 1023. In response, the snapshot activator 649 may be configured to generate a

corresponding entry 626A in the forward map 125, activating the affected LIDs. The snapshot

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

63

activator 649 may be configured to continue activating snapshot LIDs on demand, until an
activation request is received and/or the snapshot is deallocated, or the like.

The snapshot module 648 may be further configured to deallocate snapshots. As used
herein, deallocating a snapshot may comprise deallocating the LIDs comprising the snapshot
(e.g., deallocating destination LIDs of an activated snapshot). Activated snapshot LIDs may be
deallocated by a) appending metadata to the metadata log configured to deallocate the activated
LIDs and/or b) removing the corresponding entries from the forward map 125. Deallocating the
snapshot of Fig. 6B may comprise, for example, removing entries 626A-N from the forward
map. Deallocation may further comprise removing snapshot metadata 645 pertaining to the
snapshot. Deallocating the snapshot of Fig. 6F may comprise removing the snapshot metadata
entry 646, which may allow log storage units in the retention information of the entry 646 to be
identified as invalid and removed by the garbage collector 136, as disclosed herein.

As disclosed herein, the snapshot module 648 may be configured to generate and/or
manage snapshots by use of the metadata log 160. Snapshots may be created and/or managed
without modifying the underlying data stored in the VDL 150A-N. Moreover, the garbage
collector 136 may be configured to identify invalid data by use of entries 126 and/or retention
information maintained in volatile memory resources 103, without affecting the storage overhead
of the data on the VDL 150A-N and/or creating reference count overhead in the metadata log
160 and/or forward map 125. Accordingly, the snapshot module 648 may be capable of creating
any number of snapshots, without significantly increasing the metadata management overhead of
the data services module 110.

Fig. 7A is a flow diagram of one embodiment of a method 700 for servicing I/O requests
113 by use of a data services module 110, as disclosed herein. Step 710 may comprise receiving
an 1/O request 113 pertaining to a logical identifier of a logical address space 122. The request
of step 710 may correspond to a particular client 106 and may be received through the interface
112 of the data services module 110.

In some embodiments, step 710 comprises maintaining a logical address space 122
comprising a plurality of LIDs using, infer alia, virtualization metadata. The virtualization
metadata may include a forward map 125 comprising entries 126 configured to bind LIDs of the
logical address space 122 to log storage units 155, virtual blocks 145, and/or corresponding
virtual addresses 195 of one or more VDLs 150A-N.

Step 720 may comprise servicing the I/O request 113 received at step 710 by: a) storing
data of the I/O request 113 within the VDL 150, and b) appending an entry 163 to the metadata
log 160 corresponding to the I/O request 113. Storing the data of the I/O request 113 may

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

64

comprise writing the data to one or more log storage units 155 in a segment 152 of the VDL 150
by, inter alia, issuing commands to one or more storage resources 190 corresponding to the VDL
150. The data may be stored to one or more identifier(s) 195 within a storage resource address
space 194 of the storage resource 190.

The entry 163 appended to the metadata log 160 may be configured to bind the LID of
the 1/0 request 113 to the data appended to the VDL 150. The entry 163 may, therefore, be
configured to bind the LID to a particular log storage unit 155, virtual block 145, and/or virtual
address(es) 195. The metadata log 160 may be ordered, such that an order of the metadata stored
in the metadata log 160 (e.g., entries 163, aggregate entries 167, checkpoint entries 168, LME
173, and so on) corresponds with an order in which I/O requests 113 were received at the data
services module 110. The log order of the metadata in the metadata log 160 may be determined
by a) sequence metadata assigned to segments 162 of the metadata 160, and b) the relative
address and/or offset of the metadata within the respective segments 162.

Fig. 7B is a flow diagram of another embodiment of a method 701 for servicing 1/O
requests by use of the data services module 110 disclosed herein. Step 711 may comprise storing
data one or more storage resources 190A-X in response to I/O requests 113 from clients 106. As
disclosed above, step 711 may comprise storing the data by appending the data to one or more
VDLs 150A-N. The VDL 150A-N may correspond to one or more of the storage resources
190A-X. In some embodiments, data may be appended to the VDL 150A-N out-of-order with
respect to the order in which the 1/O requests corresponding to the data were received at the data
services module 110.

Step 711 may further comprise associating the stored data with a logical interface. Step
711 may comprise assigning identifiers of a logical address space 122 to the stored data, which
may include, but is not limited to: assigning logical identifiers to the data by use of a logical
interface and/or virtualization metadata (e.g., the forward map 125); and recording the
assignments in a metadata log 160 (e.g., appending mapping entries 163 to the metadata log 160,
as disclosed above).

Step 721 may comprise modifying the logical interface to data stored at step 711. Step
721 may comprise manipulating a logical interface to the stored data, which may include
modifying bindings between identifiers of the logical address space 122 and the stored data by a)
altering the logical interface to the data in logical interface and/or virtualization metadata (e.g.,
forward map 125); and b) recording an LME 173 corresponding to the altered logical interface.
The modifications to the logical interface may include, but are not limited to: modifications

configured to: a) change the LIDs associated with the stored data (e.g., modify the LID(s) bound

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

65

to stored data), b) replicate sets of LIDs (e.g., create logical copies of particular LIDs, snapshot
particular sets of LIDs, and/or the like), c) merge sets of LIDs, and/or the like. In some
embodiments, step 721 comprises modifying a mapping between data stored at step 711 and one
or more identifiers of the logical address space 122 in the forward map 125, and appending a
record corresponding to the modified mapping in the metadata log 160. The record appended to
the metadata log 160 may comprise a logical manipulation entry 173, as disclosed above. The
logical interface modification(s) of step 721 may be implemented without storing data to the
VDL 150 and/or without modifying data stored within the VDL 150.

Fig. 8 is a flow diagram of another embodiment for servicing I/O requests by use of the
data services module 110. Step 810 may comprise appending mapping metadata to a metadata
log 160. The mapping metadata may comprise sparse mapping entries 163 appended to the
metadata log 160 in response to I/O requests 113 received at the data services module 110. The
metadata entries 163 may be configured to tie LIDs of the logical address space 122 to log
storage units 155 comprising data associated with the LIDs in the VDL 150. The VDL 150 may
be separate and/or independent of the metadata log 160. The metadata log 160 may be stored on
a different storage resource 190Y and the storage resources 190A-X comprising the VDL 150.

Step 820 may comprise condensing valid mapping metadata in the metadata log 160.
Step 820 may comprise a) compacting segments 162 of the metadata log 160 and/or b)
checkpointing portions of the forward map 125 to the metadata log 160. Compacting segments
162 of the metadata log 160 may comprise a) identifying valid mapping metadata within the
segments 162 and b) combining the valid mapping metadata into one or more aggregate mapping
entries 167. Checkpointing portions of the forward map 125 may comprise appending one or
more checkpoint entries 168 to the metadata log 160, wherein the checkpoint entries 168 are
configured to map a plurality of LIDs to respective log storage units 155 of the VDL 150.

Accordingly, in some embodiments, step 820 comprises recovering a segment 162 of the
metadata log 160. Recovering the segment 162 may comprise a) identifying valid metadata
entries 163 in the segment 162 (if any), and b) combining mapping information of the identified
mapping entries 163 into an aggregate mapping entry 167. The aggregate mapping entry 167
may comprise the mapping information of the combined mapping entries 163. Step 820 may
further comprise appending the aggregate mapping entry 167 to the metadata log 160 and/or
preparing the segment 162 for reuse. Identifying valid mapping entries 163 may comprise
identifying metadata entries 163 comprising mapping information that a) corresponds to an entry
in the forward map 125, and b) has not been persisted to the metadata log 160 another aggregate
mapping entry 167 and/or checkpoint entry 168. Identifying valid metadata entries may,

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

66

therefore, comprise comparing a log time and/or log order of the metadata entries, to a log time
and/or log order of one or more checkpoint entries 168 in the metadata log 160. If a checkpoint
entry 168 corresponding to the same LID(s) as the mapping entry 163 exists in the metadata log
160, and is later in log time and/or log order than the mapping entry 163, the mapping entry 163
may be identified as invalid, since the mapping metadata of the entry has already been
checkpointed to the metadata log 160.

Alternatively, or in addition, step 820 may comprise checkpointing mapping metadata of
the forward map 125 to the metadata log 160. Checkpointing mapping metadata may comprise
one or more checkpoint entries 168 to the metadata log 160 comprising mapping information
pertaining to a set, range, and/or extent of LIDs in the logical address space 122. The amount of
mapping metadata included in a checkpoint entry 168 may correspond to a storage capacity of
the log storage units 165 of the metadata log 160. In some embodiments, step 8§20 comprises
streaming mapping information pertaining to the entire logical address space 122 (e.g., all entries
126 in the forward map 125) to the metadata log 160.

Fig. 9 is a flow diagram of one embodiment of a method 900 for reconstructing
virtualization metadata, such as the forward map 125. The method 900 may be performed by the
metadata management module 128 in response to loss and/or corruption of the virtualization
metadata due to, infer alia, an invalid shutdown.

Step 910 may comprise accessing a metadata log 160 pertaining to one or more VDLs
150A-N corresponding to respective storage resources 190A-N. The metadata log 160 accessed
at step 910 may be stored on a storage resource 190Y that is separate from and/or independent of
the storage resources 190A-X used to implement the VDL 150A-N.

Step 920 may comprise reconstructing entries of the forward map 125 based on the
ordered metadata log 160 accessed at step 910. Step 920 may comprise identifying a checkpoint
entry 168 in the metadata log 160. As used herein, a checkpoint entry 168 refers to mapping
metadata pertaining to a set, range, and/or extent of LIDs of the logical address space 122. A
checkpoint entry 168 may comprise mapping information for the entire logical address space
122. Step 920 may further comprise reconstructing entries of the forward map 125 based on the
mapping metadata of the identified checkpoint entry 168, and accessing updating the entries of
the forward map 128 based on mapping metadata appended after the checkpoint entry 168.
Alternatively, step 920 may comprise reconstructing the forward map 125 by use of individual
mapping entries 163 and/or aggregate mapping entries 167 stored in the metadata log 160. Step
920 may further comprise reconstructing and/or modifying the forward map based on one or

more LME 173 stored in the metadata log 160.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

67

Fig. 10 is a flow diagram of another embodiment of a method 1000 for servicing 1/O
requests using the data services module 110 disclosed herein. Step 1010 may comprise
accessing profile information 116A-Y pertaining to a plurality of storage resources 190A-X. As
disclosed above, the profile information 116A-Y may be maintained by the storage resource
interface module 114, and may include information pertaining to the performance, reliability,
capacity, and/or operating characteristics of the storage resources 190A-X.

Step 1020 may comprise creating one or more VDLs 150A-N comprising storage
resources 190A-X having compatible characteristics. Step 1020 may comprise identifying
storage resources 190A-X for use in respective VDLs 150A-N. Step 1020 may comprise
grouping the storage resources 190A-X based on, inter alia, the profile information 116A-Y
pertaining to the storage resources 190A-X accessed at step 1010. Step 1020 may further
comprise forming VDL 150A-N comprising storage resources 190A-X that have similar
characteristics and/or that are capable of satisfying similar performance, reliability, and/or
capacity requirements (e.g., QoS requirements). Step 1020 may further comprise forming VDL
150A-N configured to satisfy I/O requirements of one or more clients 106. Accordingly, step
1020 may comprise identifying storage resources 190A-X that are capable of satisfying 1/O
requirements (e.g.,, QoS requirements of particular clients 106), and forming VDL 150A-N
comprising the identified storage resources 190A-X.

Step 1030 may comprise assigning I/O requests and/or LIDs to the respective VDL
150A-N created at step 1020. Step 1030 may comprise comparing I/O requirements of a client
106 to characteristics of the storage resources 190A-X comprising the respective VDLs 150A-N
in order to, inter alia, identify a VDL 150A-N capable of satisfying the I/O requirements of the
client 106. Step 1030 may further comprise assigning a set, range, and/or extent of LIDs of the
logical address space 122 to respective VDL 150A-N. In some embodiments, step 1030 may
further include monitoring operating characteristics of the storage resources 190A-X of the VDL
150A-N to ensure that the storage resources 190A-X are not overloaded, such that the [/O
requirements of clients 106 and/or LIDs assigned to the VDL 150A-N can no longer be satisfied.

Fig. 11 is a flow diagram of one embodiment of a method 1100 for implementing a
logical manipulation operation using the data services module 110. Step 1100 may comprise
appending data to a VDL 150 and mapping metadata to a separate metadata log 160.

Step 1120 may comprise modifying a logical interface to data appended to the VDL 150
by appending persistent data to the metadata log 160 (appending an LME 173 to the metadata log
160). Step 1120 may further comprise modifying one or more entries in a forward map 125

corresponding to the modified logical interface. Step 1120 may comprise modifying the logical

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

68

interface of the data without modifying the data stored on the VDL 150 and/or without
appending data to the VDL 150.

Fig. 12 is a flow diagram of one embodiment of a method for implementing atomic
storage operations by use of the data services module 110. Step 1210 may comprise
implementing storage operations of an atomic storage request to transactional LIDs. As
disclosed above, transactional LIDs may correspond to LIDs (and/or vectors) in a designated
range of the logical address space 122 and/or in a separate namespace. Step 1210 may comprise
performing a logical copy operation to create a transactional copy of LIDs pertaining to the
atomic storage request in the designated range and/or namespace. Step 1210 may further
comprise implementing the storage operations by a) appending data of the storage operations to a
VDL 150, and b) appending mapping metadata configured to bind the appended data to the
transactional LIDs.

Step 1220 may comprise completing the atomic storage request by use of, inter alia, the
metadata log 160. Step 1220 may comprise implementing a logical merge operation to merge
the LIDs in the designated range of the logical address space 122 and/or separate namespace to
target LIDs of the atomic storage request (e.g., to the vectors designated in the atomic storage
request of step 1210). Step 1220 may, therefore, comprise completing and/or closing the atomic
storage request in a single, atomic write operation to the metadata log 160, which may comprise
recording an LME 173 in the metadata log 160, as disclosed above. In some embodiments, step
1220 may further comprise recording logical management metadata specified in the atomic
storage request, such as deallocation information, as described above in conjunction with Fig.
5D. The logical management metadata may be included in the LME 173, as disclosed above.

Fig. 13 is a flow diagram of one embodiment of a method 1300 for implementing
snapshot operations by use of the data services module 110. Step 1310 may comprise servicing
I/O requests by a) appending data to a VDL 150, b) appending mapping metadata to a separate
metadata log 160 configured to associate LIDs of a logical address space 122 with log storage
units 122 of the VDL 150, and c) maintaining a forward map 125 comprising entries
corresponding to the mapping metadata.

Step 1320 may comprise creating a snapshot of a set, range, and/or extent of LIDs in the
logical address space 1320 by using the metadata log 1320. As disclosed above, creating a
snapshot may comprise appending a persistent note, packet, and/or other data to the metadata log
160 (e.g., an LME 173) that is configured to bind a set of destination LIDs to the data bound to a
set of source LIDs. In some embodiments, step 1320 comprises activating the snapshot by, inter

alia, creating entries corresponding to the snapshot in the forward map 125. Alternatively,

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

69

snapshot activation may be deferred, as disclosed herein. Step 1320 may further comprise
preserving data corresponding to the snapshot by, infer alia, maintaining retention information
pertaining to data of the snapshot and/or activating portions of the snapshot on-demand, as
disclosed herein.

Fig. 14 is a flow diagram of one embodiment of a method 1400 for providing storage
virtualization services. Step 1410 may comprise receiving I/O requests at a data services module
110, as disclosed herein.

Step 1420 may comprise servicing the I/O requests by, infer alia, storing data pertaining
to the 1/O requests on a persistent storage resource (e.g., storage resource 190A-X). Step 1420
may comprise appending data pertaining to the I/O requests to a VDL 150, as disclosed herein.
Alternatively, step 1410 may comprise storing data using another storage mechanism, such as a
write-out-of-place storage system, a write-in-place storage system, a key-value storage system, a
journaling storage system, and/or the like.

Step 1430 may comprise maintaining mapping metadata pertaining to the /O requests
received at step 1410. Step 1430 may comprise storing mapping metadata that is persistent and
crash safe, such that bindings between LIDs of the data stored at step 1420 and storage unit(s) of
the data may be maintained despite loss and/or corruption of the volatile memory resources 103
of the computing system 100. Step 1430 may comprise storing mapping metadata to a metadata
storage, which may comprise a metadata log 160, as disclosed herein. Alternatively, the
metadata storage may comprise a different storage mechanism, such as key-value pair storage, a
journaling storage system, and/or the like. Step 1430 may comprise maintaining an order of the
stored mapping metadata, such that mapping information stored in the metadata storage are
ordered in accordance with an order in which the I/O requests were received at the data services
module 110. Maintaining metadata order may comprise appending mapping metadata to an
ordered metadata log 160, as disclosed herein. Alternatively, mapping metadata may be ordered
using other mechanisms, such as dedicated sequence metadata, monotonically increasing
ordering values, and/or the like.

Fig. 15 is a flow diagram of another embodiment of a method 1500 for providing data
virtualization services. Step 1510 may comprise storing data pertaining to I/O requests received
at a data services module 110. Step 1510 may comprise storing data of the I/O requests on one
of a plurality of storage resources 190A-Y. In some embodiments, step 1510 comprises
appending data of the I/O requests to a VDL 150. Alternatively, step 1510 may comprise storing
data of the I/O requests in a different storage format and/or using a different storage technique,

such as write-in-place, write-out-of-place, write anywhere, journaling, and/or the like.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

70

Step 1520 may comprise maintaining mapping metadata corresponding to the I/O
requests, as disclosed above. Step 1520 may comprise appending mapping entries to a metadata
log 160. Alternatively, step 1520 may comprise storing mapping metadata in another storage
format and/or using another storage technique. Step 1520 may further comprise maintaining
ordering information pertaining to the mapping metadata, as disclosed herein.

Step 1530 may comprise modifying the logical interface to data stored at step 1510 by,
inter alia, modifying the mapping metadata of step 1520. Step 1530 may comprise one or more
of: a) a logical move operation to associate data stored at step 1510 with a different set of LIDs,
b) a logical copy operation to associate data stored at step 1510 with two or more different sets of
LIDs, c) a logical merge operation to merge data associated with two or more different sets of
LIDs, and/or the like. Step 1530 may comprise writing an LME 173 to the metadata log 160, as
disclosed herein. The modification(s) to the logical interface may be implemented without
modifying the stored data and/or without storing additional data to the storage resource(s) 190A-
Y comprising the stored data. The modifications to the logical interface of step 1530 may be
persistent and crash safe, such that the modifications are reflected in persistent data stored in a
metadata storage. Accordingly, the modifications of step 1530 may be implemented regardless
of loss and/or corruption of the volatile memory resources 103 of the computing system 100.

This disclosure has been made with reference to various exemplary embodiments.
However, those skilled in the art will recognize that changes and modifications may be made to
the exemplary embodiments without departing from the scope of the present disclosure. For
example, various operational steps, as well as components for carrying out operational steps,
may be implemented in alternative ways depending upon the particular application or in
consideration of any number of cost functions associated with the operation of the system (e.g.,
one or more of the steps may be deleted, modified, or combined with other steps). Therefore,
this disclosure is to be regarded in an illustrative rather than a restrictive sense, and all such
modifications are intended to be included within the scope thereof. Likewise, benefits, other
advantages, and solutions to problems have been described above with regard to various
embodiments. However, benefits, advantages, solutions to problems, and any element(s) that
may cause any benefit, advantage, or solution to occur or become more pronounced are not to be
construed as a critical, a required, or an essential feature or element. As used herein, the terms

EEREYY

“comprises,” “‘comprising,” and any other variation thereof are intended to cover a non-exclusive
inclusion, such that a process, a method, an article, or an apparatus that comprises a list of
elements does not include only those elements but may include other elements not expressly

listed or inherent to such process, method, system, article, or apparatus. Also, as used herein, the

10

15

20

25

WO 2015/112634 PCT/US2015/012301

71

terms “‘coupled,” “coupling,” and any other variation thereof are intended to cover a physical
connection, an electrical connection, a magnetic connection, an optical connection, a
communicative connection, a functional connection, and/or any other connection.

Additionally, as will be appreciated by one of ordinary skill in the art, principles of the
present disclosure may be reflected in a computer program product on a machine-readable
storage medium having machine-readable program code means embodied in the storage medium.
Any tangible, non-transitory machine-readable storage medium may be utilized, including
magnetic storage devices (hard disks, floppy disks, and the like), optical storage devices (CD-
ROMs, DVDs, Blu-ray discs, and the like), flash memory, and/or the like. These computer
program instructions may be loaded onto a general purpose computer, special purpose computer,
or other programmable data processing apparatus to produce a machine, such that the
instructions that execute on the computer or other programmable data processing apparatus
create means for implementing the functions specified. These computer program instructions
may also be stored in a machine-readable memory that can direct a computer or other
programmable data processing apparatus to function in a particular manner, such that the
instructions stored in the machine-readable memory produce an article of manufacture, including
implementing means that implement the function specified. The computer program instructions
may also be loaded onto a computer or other programmable data processing apparatus to cause a
series of operational steps to be performed on the computer or other programmable apparatus to
produce a computer-implemented process, such that the instructions that execute on the
computer or other programmable apparatus provide steps for implementing the functions
specified.

While the principles of this disclosure have been shown in various embodiments, many
modifications of structure, arrangements, proportions, elements, materials, and components that
are particularly adapted for a specific environment and operating requirements may be used
without departing from the principles and scope of this disclosure. These and other changes or

modifications are intended to be included within the scope of the present disclosure.

WO 2015/112634 PCT/US2015/012301

72

CLAIMS

1. An apparatus, comprising:
an interface module configured to receive input/output (I/O) requests pertaining to
logical identifiers of a logical address space;
5 a storage module configured to store data corresponding to one or more of the I/O
requests by way of a storage resource; and
a data services module configured to record logical manipulation entries corresponding
to modifications to associations between logical identifiers and data stored on

the storage resource.

10 2. The apparatus of claim 1, further comprising:

a translation module configured to maintain a forward map configured to associate
logical identifiers of the logical address space with respective virtual identifiers
of the storage resource; and

a logical move module configured to implement a logical move operation of data stored

15 on the storage resource, wherein the data is stored at a physical storage address
of the storage resource that corresponds to a first virtual identifier, and wherein
the logical move operation comprises a) updating the forward map to associate
the first virtual identifier with a second, different logical identifier, and b)
recording a logical manipulation entry corresponding to the logical move

20 operation.

3. The apparatus of claim 2, wherein the recorded logical manipulation entry is
configured to indicate that the first virtual identifier is bound to the second, different logical

identifier, and to indicate that the first logical identifier is unbound.

4. The apparatus of claim 1, further comprising:

25 a translation module configured to maintain a forward map configured to associate
logical identifiers of the logical address space with respective virtual identifiers
of the storage resource; and

a logical replication module configured to implement a logical replication operation of
data stored on the storage resource and mapped to a first logical identifier

30 through a first virtual address, wherein the logical replication operation
comprises a) updating the forward map to associate the first virtual identifier

with a second, different logical identifier, and b) storing a logical manipulation

10

15

20

25

WO 2015/112634 PCT/US2015/012301

73

entry to indicate that the first virtual address is associated with both the first

logical identifier and the second, different logical identifier.

5. The apparatus of claim 1, further comprising a snapshot module configured to
create a snapshot of a first set of identifiers within the logical address space by writing a
logical manipulation entry to a metadata log, wherein the appended logical manipulation

entry is configured to tie a second set of identifiers to data tied to the first set of identifiers.

6. The apparatus of claim 1, wherein the data services module is configured to

append the logical manipulation entries to a metadata log.

7. The apparatus of claim 6, wherein the data services module is configured to
append mapping entries to the metadata log corresponding to the I/O requests, wherein the
mapping entries indicate associations between logical identifiers and data stored on the

storage resource.

8. The apparatus of claim 7, wherein the mapping entries comprise associations
between logical identifiers and virtual blocks, wherein the virtual blocks correspond to
respective groups of two or more virtual addresses of a front-end namespace of the storage
resource, and wherein the virtual addresses correspond to physical storage units of the

storage resource.

9. The apparatus of claim 6, further comprising a translation module configured to
manage a logical interface to data stored on the storage resource by mapping logical
identifiers to virtual identifiers of the storage resource, wherein the virtual identifiers
correspond to respective physical storage units comprising the data stored on the storage
resource, wherein the data services module is configured to modify the logical interface of

the data stored on the storage resource in response to one or more I/O requests.

10. The apparatus of claim 9, wherein the data services module is configured to
modify the logical interface by changing a mapping between logical identifiers and
respective virtual identifiers and appending a logical manipulation entry that records the
changed mapping to the metadata log, and wherein mappings between logical identifiers and
respective virtual identifiers are independent of relationships between the virtual identifiers

and respective physical storage units comprising the data stored on the storage resource.

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

74

11. The apparatus of claim 6, further comprising a metadata log module configured to
order entries appended to the metadata log, such that the order of the entries within the
metadata log corresponds to an order in which I/O requests pertaining to the entries are

received.

12. The apparatus of claim 6, wherein the data services module is configured to
acknowledge completion of an 1/O request in response to appending an entry corresponding

to the 1/0 request to the metadata log.

13. The apparatus of claim 6, further comprising a data log module configured to
append data of the one or more I/O requests to a data log comprising a plurality of storage
resources, and wherein the metadata log is maintained on a storage resource that is separate
from the storage resources comprising the data log, wherein the data log module is
configured to append data to the data log in an order that differs from an order in which I/O

requests corresponding to the data are received.

14. A method, comprising:

maintaining metadata pertaining to data stored on a storage device, the metadata
comprising a forward map configured to associate identifiers of a logical
address space with data stored on the storage device; and

modifying an association between data stored on the storage device and the logical
address space by;

modifying a mapping between the data and one or more identifiers of the
logical address space in the forward map, and

appending a record to a persistent metadata log corresponding to the modified

mapping.

15. The method of claim 14, wherein the forward map is configured to bind
identifiers of the logical address space to respective intermediate identifiers, and wherein the
intermediate identifiers correspond to respective physical storage units of the storage device,
and wherein writing the data comprises appending the data to segments of a virtual data log,

wherein the segments comprise respective sets of intermediate identifiers.

16. The method of claim 14, wherein modifying the association between the data
stored on the storage device and the logical address space comprises:

modifying an entry of the forward map configured to bind a first logical identifier to the

10

15

20

25

30

WO 2015/112634 PCT/US2015/012301

75

data through a particular virtual address, such that the entry binds the particular
virtual address to a second logical identifier, wherein the record appended to the

persistent metadata log corresponds to the modified entry.

17. The method of claim 16, further comprising removing an association between the

first identifier and the particular virtual address from the forward map.

18. The method of claim 16, wherein the persistent metadata log indicates that the
particular virtual address is bound to both the first logical identifier and the second logical

identifier.

19. A computer-program product comprising computer-readable program code stored
on a computer-readable storage medium and configured to cause a computing system to
perform operations, comprising:

servicing requests pertaining to logical identifiers of a logical address space by
appending data of the requests to a data log maintained on a storage device;

translating logical identifiers of the logical address space to addresses of an
intermediate translation layer, wherein the addresses of the intermediate
translation layer correspond to respective storage units of the storage device;
and

altering a mapping between a logical identifier and an address of the intermediate
translation layer in response to a request, wherein altering the mapping
comprises appending a persistent note to a metadata log corresponding to the

altered mapping.

20. The computer-program product of claim 19, the operations further comprising
altering the mapping in response to a virtual copy operation, wherein the persistent note
appended to the metadata log is configured to associate two or more identifiers of the logical

address space to a single addresses of the intermediate translation layer.

21. The computer-program product of claim 19, the operations further comprising
altering the mapping in response to a virtual move operation, wherein the persistent note is
configured to replace an association between a first identifier of the logical address space and
a particular address of the intermediate translation layer with an association between a

second, different identifier of the logical address space and the particular address.

10

WO 2015/112634 PCT/US2015/012301

76

22. The computer-program product of claim 19, the operations further comprising
servicing an atomic storage request pertaining to first, target set of logical identifiers by;

implementing storage operations corresponding to the atomic storage request in a
second set of logical identifiers, wherein implementing the storage operations
comprises binding logical identifiers of the second set to particular addresses
within the intermediate translation layer, and

altering mappings between logical identifiers and addresses of the intermediate
translation layer to bind the first, target set of logical identifiers to the particular

addresses.

WO 2015/112634

PCT/US2015/012301

1/25
101A 100\‘
Clients 106 ‘I'IIIEII'I'
Operating System File System Database Remote
EE—— 102 (103 | [104
Data Services Module 110 ¥
Interface 112
Storage Module 118
Namespace Mgr. 120
Log 130 122 Translation |{ 125 Mgmt
|| 124 '
Data Log || Metadata Log || 136 MIIE]D des e, 128
132 134 -
Storage Resource Manager 114 Data Virtualization Module 140

190 t115
/

22 T1 01000yl
.Virtual
Blocks ¢ ¥ gr
WLOTTTITT R
Y'Y 4 4
m NP ~ >,
AARAREARNEAREAR L5
YW VY
196 [TTTTTTTTTTTE fTdevo7

5121

FIG. 1A

N\ (5642439)

WO 2015/112634 PCT/US2015/012301

2/25
122~
101C
Virtual &‘:l.
Datalog e i
190~152A 1528 152C 152N
——r—r A N\ 7 A N A
A 57 /l
""" Lo 156 145/155
g v
194

T 122~ N 0.
Wi
S .
. LID A
Virtual 125 ':l. }
Data Log
190~ 1504 1528\ 152C 152N
———r—r A % yé A N\ ——
C 158 TN156 145/155)
Y
194
158A 158A 158B
r 0,0,0,0000000 : o A)

ettt tate

N ssssssness

2 Data Segment {X} Data Segment {X}

184 Persistent VDL Metadata 184 Persistent
{LID A} VDL Metadata

FIG 1 D {182, LID A}

WO 2015/112634 PCT/US2015/012301

3/25
101E il aa\) 138
122~ LID A
2
A .
Virtual F 2,:,.}
Ircrua HE V=19 H
o L2 j
150—¢ 152A 152B 152C 152N
I's Hr A aYa ‘JH r_/%
N 158A {X, A} 1586 (O Al 156 145/155
Y
* RIG.1E
101F
122~ LID A
J
5 r ~
e ((upa). ((ups)
—‘:‘» k 158D) \ 158E)
150~ 152A 152B 152C ebv B 152N
r H r A 2Ya A 2y { ’ },—H
@ 7 /;\
N 158A {X, A} 15{30{X"A} 158D{X“,A}‘r\156/
194
Compact1520l 125 .:‘. (:;E;EA)) (T?s?)
150~ 152A 152B 152C 152N 198F
s Hr A Y4 A N
158D {X",AY T\1 5
N b

194
FIG. 1F

WO 2015/112634

194

PCT/US2015/012301

4/25

ﬁg;;;;;;r

e N 155A1]

150
\
152A |
151[3]

1528
151[1]

155A[P]
»

COOOOOTR 15581

152C

151[2] 3

152N
151[Y]

_155B[P]

4 155C[1]

o772 155C[P]

| EEEEEEEEERR, | {55N[1]

ez} 155INIP]

1 55[2][A]

11

155[3][A] 155[1][A] 155[N][A]

5155[3]5] g155[1]§] §155[N][P]

152B
113[1]

152C 152A 152N
113[2] 113[3] 113[Y]

FIG. 1G

FIG. 1H
™~

WO 2015/112634 PCT/US2015/012301
5125
: Write Data (Q,D0)
| Write (Q, D0) §~-113[0] 130 133 35 ao
101H N 136
| Write (Q, D1) §~113[1] Data| |_1130W[2] T13M[2] 150
< Log 113DW[1] 113M[1] \ 134
. 132 113DW[0] 113M[0]
| Write (Q, D2) §~ 113[2] 3
v i
122~ LID Q
) e f{m)
156
150 {
16
169
158[014Q D0} 44a041 (@ D2} € emnaene Lootemeeae
145/165 165A[1] 165N[1]
165A[P
163) 166 IP] 165N[P]
160 { D D D
an G 163C {Q 158[1]) 1638
Q. 15800} | Co) 15812 103G, 162N {161N)
162A {161A}
OO CIIEd
162A {Seq. 161A} 162N {Seq. 161N} N e
169A 169N

| TRM@ ~113[3]
122~ 5g
""""""""""""""""" K72).
" 2

163D {Q, deallog}

160{

162N

FIG. 11

WO 2015/112634 PCT/US2015/012301

6/25

101J 163E 463F
— 163X 163D

160 {
163C {Q 158[1]}
163A{Q, 198108} 1d3m (q, 15812])

H/_/

166

162A {161A} 162F {161F}
Compact 162A £4Q, 158[1]}
i {R, 158[R]}
i {8, 158[S]}
167 %
i {T, 158[T[}
163X 163E
%)
160 { ::
163C /
163 166
163B
\ J
4
162A {161A} 162F {161F}

FIG. 1J

~129 ~129 r A
127A | 127B | 127C

a2en (-
1200 [Lupc -J '
evoLY)

{ {C, VDL Y}

188 (N, voL Q)

123A/126A 123C/126C 123N/126N
|LIDA|VDLX|LIDC|VDLY|+ |LIDN|VDLQ K
Y J 160{ /‘%
e A
103 166

FIG. 1K

WO 2015/112634

PCT/US2015/012301

7125
201A 100\
Storage Clients 106
Operating System F|IeSystem Database Remote 102 | | 103 | | 104
Data Services Module 110
Storage Module 118 Interface 112
Log 130 GC 136 Namespace Mgr. 120
2304 122 Translation |} 125
ranslation [{ 125 Mamt.
Data Log || Metadata Log 236B A Ter 9
132 134 — G| 124 | eee i| 128
236C
Storage Resource Mgr. 114 | - 1 16A-Y Data Virtualization Module 140

v

v

190X 194x

T

191X

190Y g4y

TR

191Y

_______ 1 N I B

........ --F4-F-----.

WO 2015/112634 PCT/US2015/012301

8/25
201C
122~ LID A
'\A """""""""" LID A
Virtual 125 eJe, }
Data Log k{x 194n}
150* L
152A[1] 152A[2] 152A[N] 152B[1] 152B|[2] 152B[N] 152X[1] 152X[2] 152X[N]
— ~—* N —N ~v—* ~—* N ~ —N ~—N ~ ~
N ~ AL & LEYAN J
194A %@ %(

163 {LID A, X:194A}

201D
122~ LID A
Wi
,.....&... <
Virtual 125 ol k‘ {XLI1Dg :\A} ‘
Data Log .
150* l
152A[1] 152A[2] 152A[N] 152B[1] 152B|[2] 152BI|N] 152N[1] 152N[2] 152N[N]
—N ~— N —N v—" ~—A N N A ~— ~ \
\. iy /\ : H E / \ : : .‘156 >
194A %4/8 M\l

WO 2015/112634

PCT/US2015/012301

> 152A[2] 152A[N] > 1528[2] 15ZB[N]

> 152C[2] 152C[N]
—

9/25
301A 100~
Storage Clients 106
Operating System File System Database Remote 102 | | 103 | | 104
.............................. 5
+ Data Services Module
Storage Module 118 Interface 112 110
Log 130 131 C 136 Namespace Mgr. 120
236A 122 Translation |} 125 | Mgmt
i = P V9mt
Metadata ¥ 124 i 128
Data Log Log 236B I:IIIII:II] ‘:.b e
132A-N
134 C
| 143 | [144 | [146 || 147 |
e —————— DVM 140 : ‘
Storage Resource Mgr. 114 | 116A-Y 141A |1 141B | | 141N
lF»115
v v v v v v
190A 190B 190C 190X 190Y
194A 194B 194C 194X 194Y
[T] [T [T g [T
1508 A 1458 150C _145C
152A[1] v v 152C[1] v

\156A J U J N 156B)
Y A A
194A 194B 194C
\ / LME 173
150N 160 Logical Operation A
152X[1] (—1 45X 162A o 145Y Logical Operation B
> 152X[2] 152X[N] > 162B 162N
— — Logical Operation C
\ 56N J w 166 D]
Y Y
194X 194Y

WO 2015/112634

10/25
‘ Write (P, DP) (,\,113C

AN
‘ Write (V, DV) P\A 13D

PCT/US2015/012301

301B
i 150A 1508
152A[1] 152B[1] 152C[1]
152A12] 152A[N] 152B[2] 152B[N] 152C[2] 152C[N
| ’
N 156A \\ N -«) \\ 156B - P
1947 358A 194B 358B 194G
............................. . . : 160 162A 162B 162N
PR e e Yo
. e _. 358A 358B & :
163P {P, 358A} /’A 66
163V {V, 358B}
FIG. 3B ~ ~—
194Y
301C
3 , 150B
----------------------------- . - 152C[1]
z H § 7 152C12] 152CIN]
&‘:l'} 358A l 356B ’ —
325 ;:Esz
LM el ~ A 4
Recover - 194C
Segment
152C[1] . 150B
152C[1] —
. , D 152C[2] 152C[N]
"""] 2‘:% ’-'z;z \
T e J 358A 358C 1
(K568
155C
\ 3ifc J
194C
160 162A 162B 162N
FIG. 3C T o
163P/163V 166
163W {V, 358C}

WO 2015/112634

11/25

v

PCT/US2015/012301

‘ Write (P, DP) (/~1 13C

160

162A 162B 162N

. g
163P {P, 358A) 1166
N -~ J
194Y
LME 173

Logical Operation A
Logical Operation B

Logical Operation C

A156A P,

160

162A 162B 162N

163P

166

173A {Q, 358A},

\

dealloc, P
{dealloc }/

194Y

WO 2015/112634

12/25

PCT/US2015/012301

‘ Write (P, DP) (/\/1 13C

o ’

150A
152A[1]

152B[1]
152B[2] 152B[N
N 152A[2] 152AIN] 52B[2] 152B[N]

N 156A5\ N —
194 358A 194B

‘ Logical Copy (P, V) (/\41 13F

N (DV) v

PR

150A
152A[1]

152B[1]
152B[2] 152B[N
N 152A[2] 152AFN] N 52B[2] 152B[N]

156A P
1948

301F

FIG. 3E
TN

‘ Write (P, DP") (/\/1 13G

v

(D p N (DV)
125 oge, }k 358w) (358)

150A
152A[1]

152B[1]
152B[2] 152B[N
N 152A[2] 152AIN] N [2] BIN]

N = J\ 358WIAT6A
oA
1944 358A 194B

FIG. 3F

160

162A 162B 162N

T
163P {P, 358A) 1166

160

162A 162B 162N
e e

163P7 ,—~—~——_/M66
173B {P, 358A};

{V, 358A}
N y,

194y

160

162A 162B 162N
A~ A

Py =~ XT

163W {P, 358W}
J

1B£Y

WO 2015/112634

PCT/US2015/012301
13/25
401A 125 ‘:)h} 32456-33480
150A 16Q
1528110 o eoa, 152B[1] 1528(2] 1528N] 162A 162B 162N
" A
N Al2] AINT N | 4

: 463 166
M56A) U)
~
1ok 32456-33480 1948 19\&
413A
Logical Copy (512, 1024, 16384) (
o * .
"""1 2.:.‘ (5121536)~ ((16384-17408Y -
i =2 Te'e i[\(32456-33480) \ 32456-33480 }
150A 160162A 162B 162N
152A[1] A A

152B[1]
152B[2] 152B[N
N 152A[2] 152AIN] [2] [N]

FITIITL

463A 173J 166
N\ J
A - A
194% 32456-33480 194B 194Y
\
401B (.\,4138
— Write (16384, X)
- v - .
(5121536 Y- [16384) - [16385-17408Y .
125 ‘:'b Q2456-3348y k 3452) l32457-33480’
150A | 160
152A[1] 152121 152AIN 152B[1] 152B[2] 152B[N] 162A 162B 162N
" A
: FEEE] BEEERE EEE 463A° 173C 166
___ 32456-33480—, _ZA156A ~— \ 4638)
194 5254 1948 194Y

FIG. 4B

WO 2015/112634 PCT/US2015/012301

14/25

401C —~~~
Merge (512, 1024, 16384, write-order) ('\(413(:

(512 N (5151556 \ 6384 38517408
125 o, }k 3452) (3245733480 452 457-33480

@
152A[1] 104 152B[1] 162A 1628 /3P 162N
152A12] 152A[N 152B[2] 152B[N —~ 2 ALK
N Al2] AN N B[2] BIN]

___ 3245633480, _ZA156A ' N 4638 J
1944 3254 194B Ae

194Y

501A 100\4
Data Services Module 110
Storage Module 118 Interface 112 Atomic Storage 546
Log 130 131 GC 136 Namespace Mgr. 120

236A 122 Translation |} 125 i| pMgmt.
— T | 124 |

Data Log || Metadata Log 2368 [T — % 128

132A-N 134

144 || 146 | 147

WO 2015/112634

PCT/US2015/012301
15/25
~
Atomic { write (3072, D1, 1024),
write (12288, D2, 2048),
dealloc (1024, 24) } 513A
¢ 517
AL
p

N

1024-1047

(30724095 (- 12288—1'4335\

(2307224095 { 712288-714335

- (1432-11455) " (Te8723-50755) (47026-40073) [01023)1

152A[1]

152B[1]
152B[2] 152B[N
152A[2] 152AIN] [2] [N]

150A

1023 2048-... g]

N —~ Y, 1948 |
FIG. 5B

501C

Lo e 1024-1047
—125‘:'b} l 11432-1 1455’

160
162A 162B
r—H—H

162N
—N

(30724095 N (1228614335 AN

k 58723-59755)k 4702649073)

) 072-Z4095
0-1023

152A[1]

150A

152B[1]
152B[2] 152B[N
152A[2] 152AIN] [2] [N]

-1023
.

2048-...

160
162A 162B
r—H—H

162N
—N

WO 2015/112634

PCT/US2015/012301
16/25
~
Atomic { write (3072, D1, 1024),
write (12288, D2, 2048),
501D dealloc (1024, 24) } 513A
o oo, 1N 4-1047 Y (3072-4095) ((12288-14335) 072-24095) 2288-214335)
o 2 IX32-11455) " 0-1023 J7(2048-4095) 0-1023 J K \2048-4095)
{3072-4095, 0-1023};
173E {12288-14335, 2048-4095};
150A {dealloc 1024-1047};
152A[1] = 152B[1] {dealloc, Z3072-4095};
152A[2]1 152A[N 152B[2] 152B|N 1 dealloc, Z12288-214335
[2] AN N B[2] BIN] 160 { }
T 16@N
\ _
_1023 2048-4095) I\) |
19M 194B 563A 5538)
Y
194Y
Storage Clients 106
T 102 | [103 | | 104
Data Services Module 110 *
Storage Module 118 Interface 112 || Snapshot 648 %
Log 130 | 131 | GC 136 Namespace Mgr. 120
236A 122 Translation | 125 Mgmt
—— T 124
Data Log Metadata 236B D]]:I]]I:l - ‘:l. 128
Log £200
132A-N 134
-7 236C
DVM140 [143 || 144 || 146 || 147 |
Storage Resource Manager mf 116A-Y
A
~115

WO 2015/112634 PCT/US2015/012301

17/25
601B
126A 1268 126C 126N 126X 1267
(0 (17\(10\ 65535 @5536 @7212\
(1023) (32-38) (997094) (21341 (99231) (62231)
150A 160
"RAM 150z 1528 o 1528(2] 152BIN] 1628 1628 162N

' : 166

N — N 156A N y
194A 1948 v
b 194Y

Snapshot (0, 100000, 65536) (/»613A
v

126A 1268 126C 126N 126X 12627

1= (0 \ (1'7\(10 \ {65'5.‘35\ f65'5’36\ (87512\

(1023) (32-38) (997004) (21341) (99231) (62231}

_626A 626B 626C . 626N

(100000\ (100001 a (100010\ 165535
(1023) (3238) \ 997004) " (21341

150A 160
152A[1] 152B[1] 162A 162B 162N
152A12] 152A[N 152B[2] 152B[N 162A 1628
S 21 152AIN1 S 2 152BIN] MR
s
N o Hi56A y _/ Mes_
Y
1947 1948 / 1day

Logical Manipulation Entry 173F

{100000, 1023};
{100001-100007, 32-38};
{100010, 997094};

FIG- 6B {1“65535,21341}

WO 2015/112634 PCT/US2015/012301

18/25
601C 126A 126B 126C 126N
A A A A
r Y Y N\ Ve N
0 1023 |... 1,6 32-38 |.. 10 3094 [..]-| 65535 |21341|..| ..
Y27A 4o7¢
N 127B Y
N
603A
Copy Memory 603A;
Modify LID Fields 127A
626A 626B 626C 626N
AL A A A
I'd h'd Y Y r N
| 100000 | 1023 |...|100001,6| 32-38 |...| 100010 | 3094 |..1 | 165535 | 21341 |..1 ..
Yo7A 427¢
N %278 y
Y
603B
601D

Snapshot (0, 100000, 65536, defer) L\,GBB

v

126N 126X 1262
M:IJZGA .{:IJZGB ”;IJ26C . . .

(o) (1) (G0 @5_53§ (o) (E7212)
Gozs) Goog) Goor) ~ Graar) Bizsr) - @izar)

150A 160

152A[1] 162A 162B 162N
A~ A

152B[1]
152B[2] 152B[N
N 152A[2] 152AIN] 52B[2] 152B[N]

] Y

N JERN ‘156Av / 173F7 T166
1944 1948 VT
: 194Y

WO 2015/112634

19/25

PCT/US2015/012301

601E activate (0, 100000, 10, id) (,V61SC

v

126A 126B 126C

125 .00 .
0 ‘1-7 |{ 10 \ [65535“65536. ‘87212‘

126X 12627

(1023) (32-38) \997004) ~ (21341) (99231} ~ \62231)

_626A 626B

626C

(100000\ (00001 6) (100010\

(1023) \ 32-38) (997004 J~

150A 160
152A[1] 152B[1] 162A 162B 162N
152A[2] 152AIN 152B[2] 152B[N 162A 1628
S 21 152AIN] S [2] 152B[N] - 25
T T 2 T F k]
4 A
N PR A e A166
194% 194B Vo
194Y
~_ 6138
Snapshot (0, 100000, 65536, defer) (
613D 601F
N\ ~ —
‘ Write (0, X) (
125 v 645,
1262 616

126A 126B 126C 126N 126X)

ERYSEAYED @5535\ @553% (87212)

33422) \32:38) b094) (21341) (21231) ~ (21231)"

shapshot(0, 100000, 65536, id)
retain {100000, 1023},...

150A
152A[1]

152B[1]
152B[2] 152B[N
N 152AF2] .1.52A[N] .5. . [2] [N]

]
N , \334227RM56A y

160

162A 162B 162N

173F" 663A 166
J

N

194Y

WO 2015/112634 PCT/US2015/012301

20/25
o~ , 6138
601G ‘ Snapshot (0, 100000, 65536, defer) ‘
| o (~
Write (0, X) 613D
645, <
646 activate (0, 100000, 65536, id) §~ 613E
‘-J
v
shapshot(0, 100000, 65536, id)
retain {100000, 1023},...
) T d
5 126A 126B 126C 126N 126X 126Z

‘\ 125 s : P - -
AR YEEAYED \ (65535) (65536) (87212)
N (1023) (32-38) (997094) ~ (21341) (99231) ~ (62231
626A 626B 626C . 626N
S o Rl et .

. .)
(100000} (100001,6) {* 100010 Y 165535
(1023} (3238) (997094]~ 21341 }~

®

152A[1 1o0A 152B[1] | =
S M s2n2 1528 __ 152B[2] 152BIN] M 162N
N 334227 KimeA L 173 663A 1 166
1947 194B A4
’ 194Y

FIG. 6G

WO 2015/112634 PCT/US2015/012301

21/25
~
601 H ‘ Snapshot (0, 100000, 65536, defer) {V\« 6138
AN

‘ Write (0, X) p\,613D

\

126Z
126A 1268 126C . 126N . 126X -/ 626A

O (T (G0 (6553) ﬁs5535h (57212 (100000\
B3a22) (32-38) (Gova) ~ (21341) (21231) - (21231) (023) -

152A[1] 104 152B[1] [.
S 1ope1 1sam X 15280 tozein oA B :ezN
N Py L53422J‘;}156A P, N 034" 638" "
194 1948 N
, 194Y

FIG. 6H

WO 2015/112634 PCT/US2015/012301

22/25

Receive I/O request
710

h 4

Service I/O Request by use of VDL and
Metadata Log
720

FIG. 7A

Store Data in Response to I/O
Requests
11

A

Modify Logical Interface to Data in
Metadata Log
21

FIG. 7B

800 —

Append Mapping Metadata to Metadata
Log
810

Y

Condense Mapping Metadata of
Metadata Log
820

FIG. 8

WO 2015/112634

23/25

Access Metadata Log
910

y

Reconstruct entries of Forward Map
based on Metadata Log
920

FIG. 9

Access Profile Information Pertaining to
Storage Resources
1010

y

Create Virtual Data Logs Comprising
Storage Resources Having Compatible
Characteristics
1020

y

Assign Clients/LIDs to Virtual Data
Logs
1030

FIG. 10

Append Data to VDL, Maintain
Mapping Metadata in Separate
Metadata Log
1110

y

Modify Logical Interface of Data in VDL
Using the Metadata Log
1120

FIG. 11

PCT/US2015/012301

WO 2015/112634 PCT/US2015/012301

24/25

Implement Storage Operations of
Atomic Storage Request to
Transactonal LIDs
1210

y

Complete Atomic Storage Request with
Single Append to Metadata Log
1220

FIG. 12

Service I/O Requests by Appending
Mapping Metadata to Metadata Log
1310

Create Snapshot Using Metadata Log
1320

FIG. 13

WO 2015/112634

25/25

Receive I/O Requests
1430

h 4

Store Data Of /0O Requests on
Persistent Storage
1420

Maintain Mapping Metadata
1430

FIG. 14

Store Data of I/0O Requests
1510

Maintain Mapping Metadata
1520

Y

Modify Logical Interface of Stored Data
Using Metadata Log
1530

FIG. 15

PCT/US2015/012301

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2015/012301

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 15/16(2006.01)i, GOGF 12/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 15/16; GO6F 12/02; GO6F 12/00, GO6F 9/455;, GO6F 12/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: storage, replication, virtual, mapping

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2010-0153617 A1 (MIROSHNICHENKO ALEX et al.) 17 June 2010 1-22
See abstract; claims 1-4,6-10; figures 1B, 2-5C, 9-10; paragrahs [0044]
,[0049],[00931-[0094]1, [0114]1-[01251, [0166]-[01691, [0211]1-[0212].

A US 2008-0155169 A1 (HILTGEN DANIEL K. et al.) 26 June 2008 1-22
See abstract; claims 1-13; figures la-2.

A US 2013-0311990 A1 (CHUANBIN TANG et al.) 21 November 2013 1-22
See abstract; claim 1; figure 2.

A US 8627005 Bl (BRADFORD B. GLADE et al.) 07 January 2014 1-22
See abstract; claim 1; figure 5.

. . . . N .
|:| Further documents are listed in the contination of Box C. See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination

means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

29 April 2015 (29.04.2015) 29 April 2015 (29.04.2015)
Name and mailing address of the ISA/KR Authorized officer
International Application Division
« Korean Intellectual Property Office :
N
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701, PARK, Mi Jeong

R Republic of Korea
Facsimile No. ++82 42472 7140 Telephone No. +82-42-481-8373

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2015/012301

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0153617 Al 17/06/2010 EP 2350837 A4 17/10/2012
US 08914567 B2 16/12/2014
WO 2010-030996 Al 18/03/2010

US 2008-0155169 Al 26/06/2008 None

US 2013-0311990 A1l 21/11/2013 US 08943506 B2 27/01/2015
WO 2012-048619 Al 19/04/2012

US 8627005 Bl 07/01/2014 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - wo-search-report
	Page 104 - wo-search-report

