(19)日本国特許庁(JP)

(12)特許公報(B1)

(11)特許番号 特許第7112638号

(P7112638)

(45)発行日 **令和4年8月4日(2022.8.4)**

- (24)登録日 令和4年7月27日(2022.7.27)
- (51)国際特許分類 FI **B22D 27/04 (2006.01)** B22D 27/04 A

			請求項の数 16 (全43頁)
(21)出願番号 (22)出願日 審査請求日 早期審査対象出願	特願2021-67999(P2021-67999) 令和3年2月24日(2021.2.24) 令和3年2月24日(2021.2.24)	(73)特許権者	595086982 株式会社エビス 神奈川県相模原市南区新磯野5丁目10 番6号
		(72)発明者	戎 嘉男 神奈川県相模原市南区新磯野5丁目10 番6号 株式会社エビス
		審査官 	池ノ谷 秀行
			最終頁に続く

- (54)【発明の名称】 一方向凝固装置及び一方向凝固方法
- (57)【特許請求の範囲】

【請求項1】

単一結晶組織(SX 材と称す)または多結晶柱状デンドライト組織(DS 材と称す)または前記 SX と 前記 DS の混合組織から成る結晶組織を有する一方向凝固鋳物あるいはインゴット を作るための一方向凝固装置において、

(a)溶融した金属を鋳型に鋳込み冷却して前記一方向凝固鋳物あるいはインゴットを作 る一方向凝固過程は、前記鋳型を加熱保温する加熱領域、前記鋳型を冷却する冷却領域、 及びこれら両領域の間に断熱バッフル、ならびに前記加熱領域から前記冷却領域へ前記鋳 型を移動する手段を設け、前記加熱領域に対して前記鋳型内の前記溶融した金属を所定の 温度に加熱・保温するための加熱手段と前記冷却領域に対して鋳型側面からの抜熱能を強 化する強冷却手段を含み、前記溶融した金属における固液共存相の液流を整流すべく前記 溶融した金属の前記固相領域をこの強冷却手段にて冷却しつつ、前記鋳型を所定の速度で 移動させて一方向凝固させる第一の手段と、

(b)前記一方向凝固過程において、<u>前記溶融した金属における液相の対流を抑制し凝固</u> 界面へのヒートパルスを解消するとともに前記固液共存相における液流の乱れを抑制すべ <u>く</u>少なくとも前記固液共存相の全体に対して、一方向凝固方向に実質的に平行な方向に静 磁場を印加す<u>る第</u>二の手段と

を備え、

<u>前記一方向凝固過程において、</u>前記(a)と前記(b)による各々の整流効果に基づく相乗効果 によ<u>リマ</u>クロ偏析あるいは異方位結晶欠陥の形成を抑制するとともに前記結晶組織を微細

化することを特徴とする一方向凝固装置。

【請求項2】

請求項1における前記加熱手段は抵抗加熱による主ヒーター及び<u>断熱バッフルの直上に位</u> <u>置し少なくとも1つの抵抗加熱</u>副ヒータ<u>ーを</u>具備することを特徴とする一方向凝固装置。 【請求項3】

請求項1における前記強冷却手段とし<u>て不活性ガスを鋳型側面に対して噴射して冷却する</u> <u>手段であり、該手段は断熱バッフルの直下に該不活性ガスを噴射するノズルを配置し、該</u> <u>不活性ガスを前記鋳型側面に吹き付けて冷却することを</u>特徴とする一方向凝固装置。

【請求項4】

請求項1における前記強冷却手段とし<u>て、低融点材料による溶融金属浴に前記鋳型を浸漬</u> <u>することによって冷却することを</u>特徴とする一方向凝固装置。

【請求項5】

<u>請求項1における前記鋳型には高熱伝導性を有するグラファイトと断熱性を有する断熱材</u> の層を交互に積層して成形した鋳型を用いることを特徴とする一方向凝固装置。

【請求項6】

単一結晶組織(SX材と称す)または多結晶柱状デンドライト組織(DS材と称す)または 前記SXと前記DSの混合組織から成る結晶組織を有する一方向凝固鋳物あるいはインゴッ トを作るための方法として、

(a)溶融した金属を鋳型に鋳込んで冷却して前記一方向凝固鋳物あるいはインゴットを 作る一方向凝固過程において、前記鋳型を加熱保温する加熱領域、前記鋳型を冷却する冷 却領域、及びこれら両領域の間を断熱する領域を用い、ならびに前記加熱領域から前記冷 却領域へ前記鋳型を移動することにより凝固させるようにし、前記加熱領域においては前 記鋳型内の前記溶融金属を所定の温度に加熱・保温するとともに前記冷却領域においては 鋳型側面からの抜熱能を強化すると共に、前記溶融した金属における固液共存相の液流を 整流すべく前記溶融した金属における固相領域を強冷却するようにしつつ前記加熱領域か ら前記冷却領域へ前記鋳型を移動して凝固をすすめる第一のステップと、

(b)前記一方向凝固過程において少なくとも前記固液共存相の全体に対して、一方向凝固方向に実質的に平行な方向に静磁場を印加し、液相の対流を抑制し凝固界面へのヒートパルスを解消するとともに前記固液共存相における液流の乱れ<u>を抑制す</u>る第二のステップとを備え<u>前</u>記第一及び前記第二のステップによる各々の整流効果に基づく相乗効果により マクロ偏析あるいは異方位結晶欠陥の形成を抑制するとともに前記結晶組織を微細化することを特徴とする一方向凝固方法。

【請求項7】

請求項 6 における前記加熱・保温する過程では、前記溶融金属を所定の温度に加熱・保温 する領域の下端周辺<u>、前記断熱する領域の直上</u>を加熱・保温することを特徴とする一方向 凝固方法。

【請求項8】

請求項6における前記冷却に<u>は不活性ガスを前記鋳型の側面に対して噴射して冷却する方</u> <u>法を</u>用いることを特徴とする一方向凝固方法。

【請求項9】

請求項6における前記冷却に<u>は低融点溶融金属浴に前記鋳型を浸漬することによって冷却</u> <u>するこ</u>とを特徴とする一方向凝固方法。

【請求項10】

<u>請求項6における前記鋳型には高熱伝導性を有するグラファイトと断熱性を有する断熱材</u> の層を交互に積層して成形した鋳型を用いることを特徴とする一方向凝固方法。

【請求項11】

単一結晶組織(SX材と称す)または多結晶柱状デンドライト組織(DS材と称す)また は前記SXと前記DSの混合組織から成る結晶組織を有する鋳物またはインゴットを製造 するための一方向凝固装置において、<u>鋳型を加熱・保温する加熱領域と鋳型を冷却する強</u> 冷却領域、及びこれら両域を熱的に分離・遮断する断熱領域を一つのchamber内に収め、

20

10

<u>このchamber内には、</u>

前記鋳物またはインゴットを鋳造するための<u>前記</u>鋳型と、 前記鋳型の底部に設置され凝固を開始するための冷却チルと、 前記鋳型を加熱・保温するための摺動式抵抗加熱主ヒーターと、

前記主ヒーターを支持し外部への熱放射を遮断するための断熱スリーブと、

前記鋳型を冷却するための鋳型冷却手段<u>としての鋳</u>型冷却ガスノズ<u>ルと</u>、

前記鋳型冷却手段の上部に近接配置される断熱手段として<u>の断</u>熱バッフ<u>ルと</u>、

を備え、

前記断熱バッフルと前記鋳型冷却ガスノズルは同期・一体的に上下動できる構成とし、 前記主ヒーターに<u>は、</u>前記断熱バッフル<u>と前</u>記鋳型冷却ガスノズルとを一体的に上下 動させるための通<u>路を</u>設け、前記主ヒーターにはこれに繋がる摺動接触端子を<u>前記断熱ス</u> <u>リーブの外側に</u>設けてあり、またこの摺動接触端子にはこれに摺動接触する摺動ブラシを 設けて、前記主ヒーターの<u>上端・前記摺動ブラシ間を通電区間とすることにより前記</u>通電 区間を可変可能な構成としており、且つこの摺動ブラシは前記断熱バッフルと前記鋳型冷 却ガスノズルと同期・一体的に上下動が可能な構成となっており、<u>また、前記加熱領域と</u> <u>前記強冷却領域の間に生じる前記鋳型内の固液共存相全体に対して一方向凝固方向に実質</u> <u>的に平行な方向に静磁場を印加する手段を設けてなり、</u>

操業開始時には前記摺動ブラシと前記断熱バッフルと前記鋳型冷却ガスノズルは前記 鋳型の下端に位置させ、<u>前記通電区間に電力を供給して</u>前記鋳型を金属材料の融点以上の <u>所定の温度に加熱・保温し前記</u>金属材料の溶解・鋳造の後、<u>前記通電区間を</u>所定の速度で 上方に移動させることにより加熱・保温領域を縮小させつつ<u>前記鋳型冷却ガスノズルに冷</u> <u>却ガスを供給することにより</u>前記鋳物または前記インゴットの一方向凝固を行う<u>とともに</u> 前記固液共存相全体に対して一方向凝固方向に実質的に平行な方向に静磁場を印加するこ とを特徴とする一方向凝固装置。

【請求項12】

請求項11において、<u>前記断熱バッフルの直上、</u>前記加熱・保温領域における下端近傍を 加熱・保温するための副ヒータ<u>ーを設</u>けた構成とすることを特徴とする一方向凝固装置。 【請求項13】

<u>請求項11における前記鋳型は高熱伝導性を有するグラファイトと断熱性を有する断熱材</u> の層を交互に積層した構成とすることを特徴とする一方向凝固装置。

【請求項14】

単一結晶組織(SX材と称す)または多結晶柱状デンドライト組織(DS材と称す)また は前記SXと前記DSの混合組織から成る結晶組織を有する鋳物またはインゴットを製造 するための一方向凝固方法において、<u>鋳型を加熱・保温する加熱領域と前記鋳型を冷却す</u> <u>る強冷却領域、及びこれら両域を熱的に分離・遮断する断熱領域を一つのchamber内に収</u> め、

溶融金属を鋳型に鋳込んで凝固させる過程において、<u>前記鋳型を加熱・保温する方法</u> <u>は前記加熱領域の上端に固定した位置と下端の間の区間を通電区間として前記加熱領域を</u> <u>抵抗加熱・保温するに際して、前記通電区間を縮小可変するとともに前記強冷却領域に対</u> <u>しては前記鋳型の側面に対し不活性ガスを噴射し冷却するようにし、少なくとも前記鋳物</u> <u>またはインゴットの固液共存相の全体に対して一方向凝固方向に実質的に平行な方向に静</u> <u>磁場を印加するようにし、</u>操業開始時、<u>前記通電区間は</u>前記鋳型の側面全域を囲んで鋳型 を所定の温度に加熱・保温し、時間の経過につれて<u>前記通電区間を</u>前記鋳型の下端から<u>前</u> <u>記上端に固定した位置</u>に向けて所定の速度で縮小<u>可変</u>するとともに、<u>前記断熱領域</u>の下部 領域を<u>前記強冷却により冷却しつつ凝固させること</u>を特徴とする一方向凝固方法。

【請求項15】

請求項1<u>4に</u>おいて、<u>前記断熱領域の直上に少なくとも一つの副ヒーターを設け、</u>前記加 熱・保温領域における下端近傍<u>を加</u>熱・保温するようにしたことを特徴とする一方向凝固 方法。

【請求項16】

10

<u>請求項14における前記鋳型には高熱伝導性を有するグラファイトと断熱性を有する断熱</u> 材の層を交互に積層した鋳型を用いることを特徴とする一方向凝固方法。

【発明の詳細な説明】

【技術分野】

【 0 0 0 1 】

本発明は鋳造技術に関わるものであって、特に多結晶粒から成る柱状デンドライト 組織(DS材と称す)、単一粒から成るデンドライト組織(Mono-crystalあ るいはSX材と称す)を有する鋳物及びインゴットの製造における改良を図った一方向凝 固装置及び一方向凝固方法ならびに一方向凝固鋳物に関するものである。

【背景技術】

[0002]

DS材やSX材の典型的な製造方法として従来よりブリッジマン(Bridgem an)法、リキッドメタルクーリング(Liquid Metal Cooling)法、 ガスクーリングキャスティング(Gas Cooling Casting)法が知られて いる。以下、その概要を説明する。

【 0 0 0 3 】

<u>Bridgeman法</u>

典型的なBridgeman法(本明細書においてStandard Bridg eman、標準ブリッジマン法と称す)による一方向凝固装置は加熱炉、冷却chamb er、 鋳型を加熱炉から冷却 ch am ber へ引き出すための引出機構、加熱炉と冷却 c hamberを分離する断熱バッフル、凝固を開始するための冷却チルから構成される(例えば非特許文献1参照)。鋳型は抵抗加熱ヒーターにより溶融温度以上に予熱され、溶 融金属を鋳込んだ後、所定の速度で冷却chamberへ引出される。鋳型は冷却チル上 にセットされチルへの熱伝導により凝固を開始するが、チルによる冷却効果の及ぶ範囲は 小さく、大型鋳物になるとほぼセレクタ(図1の符号3、5X組織を得るための凝固の道 筋)の範囲に限られる(例えば、非特許文献2、Konter et al参照)。「図1 から冷却ガス循環ポンプシステム13及び超伝導コイル14を除いたものが標準ブリッジ マン法である。〕鋳物は冷却chamberにおける輻射冷却によって凝固する。後述す るごとく輻射による冷却能はかなり小さくこのためフレックル(マクロ偏析欠陥の一種で タービン翼の早期破損の原因となる)あるいは異方位結晶欠陥(misoriented grain defects)等の鋳造欠陥が生じやすいという欠点がある(例えば非特 許文献1のp.321参照)。これらの鋳造欠陥については後述の段落0029において 言及する。

[0004]

<u>Liquid Metal Cooling法(以下LMC法と称す)</u>

標準ブリッジマン法における上述の欠点を解消するため、冷却領域において放射冷 却によるのではなく、低融点材料による溶融金属浴に浸漬することによって冷却する方法 (以降Liquid Metal Cooling,略してLMC法と呼ぶ)が考案された 。当該LMC法は、鋳型の引出過程において当該鋳型を錫あるいはアルミニウム等の低融 点材料による溶融金属浴中に徐々に浸漬させることにより冷却能を高めつつ鋳型冷却を行 い、一方向凝固させるものである。

【 0 0 0 5 】

例えばUS Patent 6,276,433B1(2001)(特許文献1)は 冷却金属浴の媒体としてA1共晶合金を用いている。さらにE11iottら(非特許文 献3)は冷却媒体としてさらに融点の低い溶融Snを用いることにより、凝固時の冷却速 度を大きくしNi基合金タービンブレードの品質改善を図ることができることを示した。 また、Liuら(非特許文献4及び非特許文献5)は当該LMC法を採用し、結晶組織を 微細化し、一方向凝固Ni基超合金の高温クリープ強度を高めることができることを示し た(例えば、1050、160Mpaのクリープ破断時間が84hrsから131hr sへ約2倍に伸びた。非特許文献5参照)。 10

[0006]

当該LMC法による典型的な装置の一例を図2に示す(非特許文献3)。加熱領域 においては上下2段のヒーター(符号5a、5b)が備えられている。鋳型1は鋳型引出 アーム21によって溶融金属浴18中に徐々に浸漬・冷却される。溶融金属浴18を収容 保持している溶融金属容器20は内部に高温オイルを循環させることにより金属浴の液温 を調整する。溶融金属浴18の液表面において加熱領域からの放射熱を遮断するため浮遊 するアルミナビーズによる断熱層22を設ける。溶融金属浴18は攪拌器23により攪拌 され、温度均一化が図られる。

[0007]

<u>Gas Cooling Casting法(以下、GCC法と称す)</u>

GCC法の概要を図1に示す(ただし超伝導コイル14は含まない)。GCC法は 、冷却領域において引出した鋳型の冷却能を高めるべく不活性ガス(アルゴン、ヘリウム 等)で冷却するようにしたガス強制冷却方式を採用した技術である(非特許文献2及び特 許文献2参照)。図1において加熱領域と冷却領域とを熱的に分離するために設けられて いる断熱バッフル9の直下に冷却ガス吹き付け用の冷却ガス噴出ノズル11を配置し、一 方向凝固の作業期間中、冷却ガスを鋳型に吹き付けて冷却するものである。冷却ガスは冷 却ガス循環ポンプシステム13により循環・冷却される。当該冷却ガスノズルの一例とし て、適当な数の噴出口から斜め下方向に旋回流を噴出させるものがある。炉内部に吹き出 された冷却ガスはこの冷却ガス循環ポンプシステム13により吸引 / フィルタリング / 冷 却/供給/吸引と言う経路を辿って循環されて冷却領域での鋳型冷却に供される。

上記文献によれば、LMC法に匹敵またはそれ以上の冷却能を得ることができると 述べている。

[0008]

しかしながら、LMC法あるいはGCC法においても不可避的に存在する液相及び 固液共存相(所謂mushy zone)における有害な液相の流れ(流れの乱れ)を無 くすことはできずフレックル等のマクロ偏析あるいは異方位結晶欠陥を完全になくすこと は困難である。実際、発電用大型単結晶ブレードの鋳造歩留りは極めて低く実用化されて いない。

【先行技術文献】 【特許文献】 [0009]【文献】US Patent 6,276,433B1(2001) US Patent 5921310 (Filed Sep. 26, 1997) 日本特許第5109068号 【非特許文献】 [0010]【文献】ASM Handbook,Vol.15,Casting(1988),p. 320, Fig. 3 5 5 N d p . 3 2 1 , Fig. 4 M.Konter, et al: "A Novel Casting Process fo r Single Crystal Gas Turbine Components", S 40 uperalloy 2000, TMS 2000, p. 189 A.J.Elliot et al: "Directional Solidificat ion of Large Superalloy Castings with Radi ation and Liquid-Metal Cooling", Metallurg ical and Materials Transactions A, Vol. 35A , Oct., 2004, pp3221-3231 Lin Liu, et al: "The Effects of Withdrawal a nd Melt Overheating Histories on the Micro structure of a Ni-based Single Crystal Sup

eralloy", TMS Superalloy 2008, pp287-293

10

20

JP 7112638 B1 2022.8.4

10

20

30

40

50

Lin Liu, et al: "High Thermal Gradient Direc tional Solidification and its Application in the Processing of Ni-based Superalloys" , J. Materials Processing Technology 210(20 10), pp159-165 Y.Ebisu:'A Numerical Method of Macrosegreg ation Using a Dendritic Solidification Mo del, and Its Applications to Directional S olidification via the use of Magnetic Fiel ds', Metallurgical and Materials Transactio ns B, vol. 42b(2011), pp341-369 M.C.Flemings: "Solidification Processing", McGraw-Hill, Inc., (1974) P.C.Carman:Trans.Inst.Chem.Eng.,Vol.15(1 937), p. 150 [0011]【文献】Y.Fautrelle,et al:'Thermo-Electric-Ma gnetic Hydrodynamics in Solidification: In Situ Observations and Theory', JOM, Vol. 70(2 018), No. 5, pp. 764 - 771 X.Li, et al: 'Influence of thermoelectric ef fects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field', Acta Materialia, Vol. 55 (2007), pp. 3803-3813 H.Zhong, et al: 'Effect of interdendritic th ermoelectric magnetic convection on evolu tion of tertiary dendrite during directio nal solidification', J. Crystal Growth, VOL. 439 (2016), pp. 66 - 73 J.Yu, et al: 'Influence of Axial Magnetic Fi eld on Microstructures and Alignment in Di rectionally Solidified Ni-based Superallo y', ISIJ International, Vol. 57(2017), No. 2, p p.337-342 W.Xuan, et al: 'Formation Mechanism of Stray Grain of Nickel-Based Single Crystal Supe ralloy Under a High Magnetic Field During Directional Solidification', Metall. Materi . Trans. B, Vol. 50B (2019), pp. 2019 - 2027 Y.Lian,et al: 'Static Solid Cooling:A new d irectional solidification technique', J. Al loys and Compounds, Vol. 687 (2016), pp. 674-6 8 2 【発明の概要】 【発明が解決しようとする課題】

[0012]

DS材あるいはSX材一方向凝固鋳物あるいはインゴットの製造において標準的な Bridgeman法に比べて冷却能を高めた上記LMC法あるいはGCC法を適用して

(6)

もフレックル等のマクロ偏析あるいは異方位結晶などの鋳造欠陥を本質的に解消すること は難しい。特にサイズの大きい発電用単結晶ブレードになると鋳造歩留りは極めて低くな り実用化されていないのが現状である。その理由は、後ほど実施例で述べるごとく、液相 領域において不可避的に存在する横方向温度勾配によって対流を生じ、凝固界面にヒート パルスをもたらし、固液共存相(mushy zone)の形に影響を及ぼしmushy zoneにおける液相の流動パターン(flow pattern)を乱す。その結果マ クロ偏析を生ずる。さらに、デンドライトの枝が分離され異方位結晶の種になる可能性が ある。これらの傾向はヒートパルスが大きくなるほど増す。

【課題を解決するための手段】

【0013】

これら従来法による上記課題を解決するため、

1 固液共存相における有害な横方向液相流れを抑制すべく、固相領域を強冷すると同時に引出速度を上げることにより固液共存相の軸方向厚さを薄くする

2 液相の対流を抑制するため軸方向静磁場を印加する

上記 1 + 2 の相乗効果によって有害なヒートパルスを解消するとともに、 マクロ偏析の原因となる固液共存相中の有害な横方向液相流れを抑制することができる。 その際所要磁場強度を低く抑えることができる。以上の知見は後述する凝固シミュレーションによって理論的・定量的に初めて明らかにされた現象であり、 1 + 2 が本発 明の重要なポイントとなる。

【0014】

尚、本明細書において、標準ブリッジマン法に対して軸方向静磁場を印加する方法 (特許文献3または非特許文献6参照)をM法(Magnetic process)、 本発明による上記段落0013記載の方法をMV1法(Magnetic process Version1)と呼ぶ。当該MV1法において強冷却手段として従来のGCC法によ る強制ガス冷却またはLMCによる溶融金属浴冷却を用いればよい。

【 0 0 1 5 】

さらに本明細書において新しい一方向性凝固方法を提案する。その概要を図3に示 す。本願発明装置は溶融金属5で満たされた鋳型1、該鋳型の底部に配置された冷却チル 7、該鋳型の側面を囲むように定位置に配置された鋳型加熱用の主ヒーターとなる抵抗加 熱ヒーター25及び移動式で比較的小領域の範囲を対象にした鋳型加熱用の副ヒーター3 0及び鋳型1への冷却ガス吹き付け用の移動式冷却ガスノズル35から成る。

【0016】

前記副ヒーター30及び移動式冷却ガスノズル35はリング状であり、鋳型1と同軸 的・一体的に冷却チル7側から上端側へ移動できる構成としてある。前記移動式冷却ガス ノズル35は鋳型外周に対して冷却ガスを斜め下方に吹き付けることができる構成である 。副ヒーター30と冷却ガスノズル35の間に断熱バッフル33を配置する。前記抵抗加 熱ヒーター25は、一例として図3(b)に示すごとく帯状の抵抗加熱体を周方向にほぼ 一周巻いては立上げ、逆方向にほぼ一周巻くことを繰り返すことにより成形される。これ によりスリット状のギャップが形成され、このギャップを通じて冷却ガス導入パイプ34 、断熱バッフル33及び副ヒーター30の上下動を可能にしている。

【0017】

加熱ヒーター25は、たとえばカーボングラファイトなどの抵抗発熱体で作られてお り筒状の断熱スリーブ26の内側に取り付けられる。また、この断熱スリーブ26の外側 には抵抗加熱主ヒーター25に繋がる摺動接触端子27が設けられており、最上端の摺動 接触端子27と現在位置における摺動接触端子27に摺動接触できるようにしたブラシ2 8を通じて該ヒーター25に電力を供給できる仕組みとなっている。

本明細書において上記の加熱方法を摺動可変抵抗加熱法と称する。

【0018】

操業開始時、前記ブラシ28は最下端に位置させ、前記抵抗加熱主ヒーター25は上か ら下まで全領域に亘り発熱・保温することになる。そして、操業の進行とともに前記プラ

(7)

30

シ28を前記冷却ガスノズル35及び前記副ヒーター30と同期・所定の速度で上方向に 摺動させる。これにより、前記抵抗加熱主ヒーター25は前記プラシ28の現在位置から 上端までの区間が加熱状態に保持され、前記プラシ28の現在位置から下端までの区間は 、電力を受けられず冷却ゾーンとなる。すなわち、時間の経過とともに加熱・保温領域は 縮小し冷却領域は拡大して行く。そして、最終的に加熱領域は消滅し、全てが冷却領域と なって操業を終了する。

【0019】

図4は当該装置を組み込んだ装置全体の概略図である。

29は主ヒーター電源であり上端接触端子とブラシ28を通じて電力を供給する。副ヒー ター用銅ケーブル31は、前記副ヒーター用電源32と前記副ヒーター30とを繋いで電 力供給するための電源ケーブルである。38は真空ポンプ、40は超伝導コイルである。 【0020】

冷却ガス循環ポンプシステム37は冷却ガスを冷却ガス導入パイプ34を介して冷 却ガスノズル35に供給し、吸込口36は前記加熱炉外筒39内に吹き出された冷却ガス を循環利用するための吸気口であり、冷却ガス循環ポンプシステム37にパイプで繋がっ ていて炉内部に吹き出された冷却ガスがこの冷却ガス循環ポンプシステム37により吸引 /フィルタリング/冷却/供給/吸引と言う経路を辿って循環されて冷却領域での鋳型冷 却に供される構成である。尚、誘導溶解炉4を収納する溶解室と鋳型1を収納する鋳型室 は分離できる構成となっており、操業終了後両室を分離して鋳型1を取り出せる構造とな っている(簡単のため示さず)。当該一方向凝固法をMV2法(Magnetic pr ocess Version2:S+摺動電極+GCC+Bz,Sはsingle cha mber)と称す。

20

10

【発明の効果】

【0021】

上記MV1法あるいはMV2法による本発明では次のような相乗効果(シナジー効果)が得られる。

(1)凝固中、液相における対流により凝固界面にもたらされるヒートパルスが無くなり、凝固が安定し固液共存相における横方向の流れが抑制される(すなわち軸方向に整流化 される)。その結果、マクロ偏析が抑えられるとともに、異方位結晶欠陥の生成が抑制さ れる。[mushy zone中の液相流れが軸方向に整流化するとマクロ偏析を生じな いことはよく知られている(例えば、非特許文献7のp.252,Fig.7-35参照)]

[0022]

(2)また、後述の実施例で述べるごとく、単なるM法に比べて所要静磁場強度を大幅に 低減することができるので高価な超伝導コイルの価格を大幅に下げることができる。[超 伝導コイルの価格は超伝導材料、ボアサイズと磁場の強さによって決まる。与えられた超 伝導材料とボアサイズに対して価格は磁場強度に大きく依存するので、できるだけ低磁場 に抑えることが本発明の重要な課題の一つである。]加えて引出速度を上げることにより 生産性を上げることができる。

【0023】

(3)標準ブリッジマン法あるいは単なるM法に比べてはるかに大きい冷却能が得られる ので段落0005で述べたごとく微細な結晶組織を得ることが可能となり、Ni基超合金 ブレードの溶体化処理に要する加熱時間を大幅に短縮できるという経済的効果を生む。ま た、クリープ破断強度の高い製品を作ることが可能となる(上述の非特許文献5参照)。 【図面の簡単な説明】

【0024】

【図1】図1は本発明による一方向凝固装置の実施例を示す図である(MV1法と称す)。 【図2】図2はLMC法による一方向凝固装置の一例である。

【図3】図3は本発明の摺動電極方式による一方向凝固装置の概要を示す図である。

【図4】摺動電極方式の応用例を示す概略図である(MV2法と称す)。真空容器3、誘

30

50

(9) 導溶解炉4、冷却ガス循環システム21及び固液共存相に対して軸方向静磁場を印加する ためのコイル40を示す。 【図5】図5はMV1法:標準ブリッジマン法によるNi-10wt%AlブレードのA 1 偏析標準偏差に及ぼす軸方向磁場の効果を示す図である。 【図 6 】図 6 は標準プリッジマン法(R = 1 5 c m / h)及びM V 1 法(R = 3 0 c m / h)によるNi-10wt%AlブレードのAl偏析ヒストグラムを示す。 【図7(a)】図7(a)は標準ブリッジマン法(R=15cm/h)及びMV1法(R = 3 0 c m / h) による N i - 1 0 w t % A l ブレードの D A S 分布に及ぼす軸方向磁場 の効果を示す(横断面中心乙方向)。注:底面チルの厚さ4.5cm 【図7(b)】図7(b)は標準ブリッジマン法(R=15cm/h)及びMV1法(R = 30 cm / h)によるNi - 10 w t% A l ブレードのA l 分布に及ぼす軸方向磁場の 効果を示す(横断面中心乙方向)。注:底面チルの厚さ4.5cm 【図8】図8は標準ブリッジマン法によるNi-10wt%A1ブレードのA1マクロ偏 析の形態を示す模式図である(厚さ方向中央縦断面)。 【図9】図(a)は標準ブリッジマン法によるNi-10wt%Alブレードの凝固界面 前方の対流によるヒートパルスの模式図である(R=15cm/h、1/2凝固時、厚さ 方向中央縦断面)。図(b)は図(a)の固液共存相における液相の流動パターンを示す 模式図である。図(c)はMV1法を適用した場合の固液共存相における液相の流動パタ ーンを示す模式図である(R=30cm/h、1/2凝固時、厚さ方向中央縦断面)。 【図10】図10はNi-10wt%Al長尺ブレード凝固界面の移動速度Rcalc(計算値)とA1分布の関係を示す図である(単なるM法、標準ブリッジマン法、引出速度 $15 \, \text{cm} / \text{h}, Bz = 1 \, \text{T}$). [0025]【図11】図11はMV2法(GCC冷却、摺動ブラシ移動速度40cm/h)によるI N718ブレードの偏析標準偏差に及ぼす軸方向磁場の効果を示す図である(各元素の標 準偏差(表7)をそれぞれの元素の初期濃度で正規化した)。図中のSはSingle chamberを意味する。 【図12】図12は単なるM法(標準ブリッジマン法、引出速度15cm/h)及びMV 2法(GCC冷却、摺動ブラシ移動速度40cm/h)によるIN718ブレードのNb 偏析標準偏差に及ぼす軸方向磁場の効果を示す図である。 【図13】図13は単なるM法(標準ブリッジマン法、引出速度15cm/h)によるI N718ブレードのDAS分布に及ぼす軸方向磁場の影響を示す(横断面中心Z方向)。 注:底面チルの厚さ1.5cm。No.II-3及びNo.II-6についてブレード上 部の計算省略した 【図14】図14は単なるM法(標準ブリッジマン法、引出速度15cm/h)によるI N718ブレードのNb分布に及ぼす軸方向磁場の影響を示す(横断面中心Z方向)。注 :底面チルの厚さ1.5 cm 【図15】図15はMV2法(GCC冷却、摺動プラシ移動速度40cm/h)によるI N718ブレードのDAS分布に及ぼす軸方向磁場の影響を示す(横断面中心Z方向)。 注:底面ダミーチルの厚さ0.15cm(表6より)。No.II-1は標準ブリッジマ ンの結果。 【図16】図16はMV2法(GCC冷却、摺動プラシ移動速度40cm/h)によるI N718ブレードのNb分布に及ぼす軸方向磁場の影響を示す(横断面中心Z方向)。注 :底面ダミーチルの厚さ0.15cm(表6より)。No.II-1は標準ブリッジマン の結果。 【図17】図17は軸方向静磁場によって誘起されるLorentzカとmushy z oneにおけるflow patternの模式図(MV2法、No.II-10、GC C冷却、摺動ブラシ移動速度40cm/h、Bz=0.75T))を示す。 【図18】図18はStatic Solid Cooling法の概略図(非特許文献1

4 参照) である。

50

30

40

20

【図19】図19は本発明のMV2法による一方向凝固装置にStatic Solid Cooling法による鋳型を採用した概略図である(ただし、加熱及び冷却手段は本願 発明手段による<u>。また、軸方向静磁場を含む全体図は簡単のため省略</u>)。

(10)

【 図 2 0 】 図 2 0 は本発明の M V 1 法 (及び M V 2 法)による一方向 凝固監視システムの 概要を示す。

【発明を実施するための形態】

[0026]

本発明によるMV1法あるいはMV2法では単なるM法(標準ブリッジマン法に対して軸方向静磁場を印加する)に比べて凝固時の冷却速度を高めて凝固組織を微細化するとともに、マクロ偏析あるいは異方位結晶などの鋳造欠陥を解消し、同時に所要静磁場強度を低減し、超伝導コイルのコストダウンを図れるようにした。

【実施例】

[0027]

A.マクロ偏析形成のメカニズムについて

フレックル偏析をはじめとする種々のマクロ偏析は固液共存相における液相の流動 に起因することはよく知られている。この流動を生ぜしめる駆動力として、凝固収縮、デ ンドライト間液相の密度差による対流、電磁力等外部からの力がある。

凝固過程におけるデンドライト間液相密度は液相中の合金濃度 C₁ L, C₂ L,・ ・・、及び温度 Tの函数として表されることから

【数1】

$$\rho_{\rm L} = \rho_{\rm L} \left(C_1^{\rm L}, C_2^{\rm L}, \cdots, T \right) \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad (1)$$

で与えられる(表3中の液相密度計算式参照)。

【0028】

凝固の進行につれて しが減少する合金を浮上型合金、逆に しが増す合金を沈降 型合金と呼ぶ。浮上型合金となるかまたは沈降型合金となるかあるいはこれらの混合型合 金(液相密度が凝固の進行とともに減少し再び増加するあるいはその逆となる合金)とな るかは合金成分によって決まる。Ni-10wt%Alは浮上型合金、IN718は沈降 型合金である(非特許文献6のFig.13参照)。 【0029】

例えば、Niよりも軽いAlを含む合金においては、凝固の進行につれてAlが濃 化するデンドライト間液相の密度は初期液相密度に比べて相対的に小さくなる。従って、 このような合金を重力の方向と逆向きに凝固させる場合、固液共存相底部即ちデンドライ ト根元の液相の密度は固液共存相と液相の境界即ちデンドライト先端の液相の密度に比べ て相対的に小さくなる。このような合金を本明細書では対流に対して'溶質不安定'と呼ぶ こととする。

[0030]

一方、温度分布はデンドライトの根元の方が先端よりも低く従って密度も大きい ので対流を引き起こさない。即ち、'熱的に安定'である。溶質不安定度が熱的安定度より も大きい場合、密度逆転層が形成され固液共存相における液相は上昇対流を生じやすく、 所謂フレックル(freckle)と呼ばれる結晶成長方向に発達したプルーム状のマク ロ偏析を生じ易い。このような形態を持つフレックルは浮上型合金で生じやすいが、マク ロ偏析は本来<u>浮上型、沈降型あるいはこれらの混合型(凝固前期において浮上型、後期に</u> 沈降型となる。あるいはこの逆)合金にかかわらず鋳造条件によって様々な形態を呈する ものである。

[0031]

また、対流によるヒートパルスによってデンドライトの溶断・分離(grain multiplication mechanismと呼ばれる。非特許文献7のp.1

10

20

50

54参照)を生じデンドライト成長が破れ、そこからランダムな方位を有する異方位結晶 欠陥を生じやすくなる。

【0032】

B 静磁場による流動抑制効果

電気良導体である金属の固相及び液相中に温度勾配が存在すると温度勾配の方向に 電流が(Thermoelectric current)発生することが知られている (Seebeck効果と呼ばれる)。そこでオームの法則を用いて、電流場を記述すると 固相あるいは液相に対して次式のごとく表される。

【0033】

【数2】

10

 $J=\sigma (-\nabla \phi - S\nabla T) \cdot \cdot \cdot \cdot (2)$

(注:Ni基合金に対しSは負の値を持つ。表3参照)
 ここにJは電流密度ベクトル(A/m²、 は電気伝導度(1/m)、 は電位(V)、
 、SはSeebeck係数すなわち熱起電力(Thermoelectric power)(V/K)、 Tは温度勾配ベクトル(K/m)である。上式右辺第2項はSによる熱電流(Thermoelectric current)による寄与項である。さらに液相(あるいは固相)の流動と外部印加静磁場ベクトルBにより誘導される電流密度 (V×B)を考慮すると(3)式が得られる。
 【0034】
 【数3】

 $J = \sigma \left(-\nabla \phi - S \nabla T + V x B \right) \cdot \cdot (3)$

電流場に関する連続条件より

【数4】

JとBによって生ずる電磁力(Lorentz力)f(N/m³)は次式で与えられる。 【数 5 】

 $f=J_{X}B\cdots\cdots(5)$

(3)式を(4)式に代入して に関する次式が得られる。 【数6】

 $\nabla \cdot (\sigma \nabla \phi) = -\nabla \cdot (\sigma S \nabla T) + \nabla \cdot (\sigma V x B) \cdot \cdot (6)$

(6)式を解いて を求め、(3)式より」を求め、続いて(5)式よりLorentz 力fを算出できる。ただし、Vは運動方程式を含む後述の数値解析により計算する必要が あり、流れ場と電磁場は高度な連成関係を有している。fは運動方程式の体積力項に取り 込む。なお、ブレードと鋳型の境界(ブレードと冷却チルの境界を含む)の電気的境界条 件は絶縁とした。

【 0 0 3 5 】

ここで、熱電磁力(thermoelectromagnetic force) を考慮したいくつかの非特許文献に触れておく。非特許文献9はAl-Cu合金の巾5m mx高さ5mmx厚さ200µmの試料に対して厚さ方向にB=0.08Teslaの静 磁場を印加し、凝固過程におけるX線その場観察を行った。そして高さ方向に生ずる温度

勾配に対して0.08T程度の低磁場でも発生するLorentz力によって液相あるい は固相が流動することを実験的に示した。

[0036]

非特許文献10はAl-Cu合金(直径3mm x長さ200mm)の一方向凝固 セル成長過程において静磁場を印加し、熱電磁力による対流がセルの形態に影響を及ぼす ことを示した。すなわち、0.5T以下の弱い磁場ではリング状のセル組織(同文献のF ig.6参照)が形成された。

【0037】

非特許文献11はA1-4.5wt%Cu合金の一方向凝固デンドライト成長過程 において(<001>方位の4mm 種結晶を使用)、軸方向静磁場を印加し、デンドラ イト形態に及ぼす影響を調べた。その結果2T以上の高磁場をかけると3次の枝が風車状 に不均一に発達することを示した(同文献のFig.2及びFig.3参照)。そして直 径100µm ×高さ250µmの円筒中に十字型の2次枝を持つ1個のデンドライトを 設定し駆動力 S T×Bと制動力 (V×B)×Bを考慮し熱電磁対流シミュレーショ ンを行い、デンドライトの成長方向に垂直な面内において1次の幹の周りに対流が生じる ことを示し、これが風車状3次枝発達の原因になると述べている。(参考までにこの時の 典型的な流速は約25µm/s=2.5×10⁻³ cm/s、成長速度は50µm/s= 5×10⁻³ cm/s、Bz=6Tである。同文献のFig.7及び8参照) 【0038】

非特許文献12はNi基超合金DZ417合金(試料の径4mm ×長さ180m m)の一方向凝固過程において、2T以上の軸方向静磁場を印加すると、柱状デンドライ トがブレークダウンし粒状晶が生成することを示した。この傾向は引出し速度(すなわち 成長、速度)を遅くし、磁場強度を強くするほど顕著となる(同文献のFig.2及びF ig.3参照)。

【0039】

非特許文献13はNi基超合金単結晶PWA1483合金(試料の径4mm x長 さ130mm)の一方向凝固に際して、あらかじめ軸方向に対して15°傾いた種結晶を 用い、軸方向静磁場を印加した(引出し速度50µm/s=18cm/h)。その結果、 磁場を印加しないときは異方位結晶欠陥(stray grain)は生じなかったがB z=5Tの高磁場を印加すると試料の外周にstray grainを生じる(Fig. 1(c)及び(d)参照)ことを示した。

[0040]

以上の文献はいずれも熱電流と静磁場によって誘起される駆動力 S T x B によ る対流がデンドライトの形態に影響を与えることを示したものである。しかしながら、マ クロ偏析に及ぼす影響については言及されていない。

【0041】

一方、本発明では実際のNi基合金一方向凝固過程を想定した厳密な凝固シミュレーションによってマクロ偏析が形成されるメカニズムを明らかにするとともに、前述のごとく(段落0013)静磁場を適用することによりこれらの欠陥を解消する手段を明らかにするものである。

【0042】

C.凝固解析手段

凝固現象を解析するために本発明者が開発した汎用凝固シミュレーションシステム (システム名CPRO)による数値解析方法の概要を以下に述べる。

凝固現象を記述するための物理変数は温度、凝固中液相及び固相中に再分配される 元素の濃度(合金元素数分、n個とする)、温度と固相率の関係を与える液相温度、液相 及び固液共存相における液相の流速(3つのベクトル成分)及び圧力によって与えられる 。これらを本明細書では巨視的スケールにおける物理変数と呼ぶ。これらn+6個の物理 変数に対応する支配方程式を表1に示す。 10

【表1】

表1 物理変数と支配方程式の関係(nは合金元素数)

物理変数	支配方程式
温度	エネルギー保存式
液相中の溶質濃度	溶質再分布式(溶質保存則)、n個
液相温度	温度と固相率の関係式
	(非線形系多元合金モデルによる)
液相の流速ベクトル	運動方程式(Darcyの式を含む)
液相の圧力	臣力式
変数の数 n+6個	式の数 n+6個

[0043]

固液共存相における流れはDarcyの式(7)によって記述されることが知られている(非特許文献7のp.234参照)。Darcy流れ現象は表1の運動方程式中に 流動抵抗項として含まれている。

【数7】

$$\mathbf{v} = \frac{K}{\mu g_L} (-\nabla P + \mathbf{X}) \quad \dots \quad \dots \quad \dots \quad (7)$$

ここに、ベクトルvはデンドライト間の液相流れ速度、µは液相の粘度、g」は液 相の体積率、Kは透過率、Pは液相の圧力、Xは重力、遠心力等の物体力ベクトルである 。尚、Xは本発明において導入される熱電磁駆動力及び電磁制動力も含むことに留意され たい。Kはデンドライトの幾何学的構造によって決まりKozney-Carmanの式 (非特許文献8参照)より次式で与えられる。

【0044】 【数8】

S b はデンドライト結晶の単位体積あたりの表面積(比表面積)であり、デンドラ イトの成長時における形態解析(本明細書において微視的スケールと呼ぶ)により求めら れる。すなわち、凝固は液相及び固相における一種の拡散律速過程であることからデンド ライトを円柱形の枝及び幹と半円球の先端部からなるモデル化を行い固相及び液相におけ る溶質の拡散方程式を解いて求めた。尚、デンドライトの方向によるKの異方性はないも のと仮定した。無次元定数f は多孔質媒体中の流動実験により5の値を持つことがわかっ ている。

)

【0045】

さらに、前記静磁場による熱電磁駆動力と電磁制動力の影響を当該数値解法に組み 入れた。これによりこれらの力を考慮に入れた凝固現象を完全に記述することができる。 ただし、固液共存相における固相は動かないものと仮定した。軸方向にのみ一様静磁場B zを適用した場合について、液相及び固液共存相中の液相にかかるLorentz力を具 体的に書き下すと以下のようになる。

【数9】

20

$$f x = -\sigma \frac{\partial \phi}{\partial y} Bz - \sigma S \frac{\partial T}{\partial y} Bz - \sigma V_x B_z^2 \quad \cdot \quad \cdot \quad (9)$$

【数10】

$$\mathbf{f} \mathbf{y} = \sigma \frac{\partial \phi}{\partial \mathbf{x}} \mathbf{B} \mathbf{z} + \sigma \mathbf{S} \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \mathbf{B} \mathbf{z} - \sigma \mathbf{V}_{\mathbf{y}} \mathbf{B}_{\mathbf{z}}^{2} \quad \cdot \quad \cdot \quad (1 \ 0 \)$$

(ただし、Ni基合金に対しSは負の値を持つ) これらの物体力は横方向にのみ作用し、軸方向(Z方向)には働かないことがわかる。 【0046】

以上、巨視的スケールにおける物理変数はすべて相互作用を有しており、さらに微 視的スケールにおけるデンドライト成長とも深く関わっている(すなわち連成している) ので繰返し収束計算を行った。本数値解析法については本発明者の論文(非特許文献6) において詳細に記述されている。

【0047】

実施例1:標準Bridgeman法によるNi-10wt%Al合金長尺板ブレード 以下、本発明の実施例として、Ni-10wt%Al合金タービンブレードの製造 を模擬した板状インゴットのコンピュータシミュレーションによってMV1法(強冷却+ 軸方向磁場)の効果について説明する。[予備的シミュレーションによって、単結晶成長 のための種結晶(厚さ5mm、初期温度300)を設置してもしなくても計算結果は実 質的に同じであったので本実施例の結果は両者の場合に対して適用される]。当該MV1 法では強冷却手段としてGCC法を用いた。計算に用いた鋳造パラメータを表2に、化学 成分及び物性値を表3に示す。

【0048】

Konters(非特許文献2)はGCC法を用いる場合、断熱バッフル直下に設置した冷却ガスノズルの角度及びノズルと鋳型表面との距離を適正化することにより冷却 能を高めることができることを示した(非特許文献2のFig.8参照)。

すなわち、q=HGCC(セラミックモールド表面温度 - 周囲温度)において 【数12】

 $H_{GCC} = 1000 - 2000 \quad W/(m^2 \cdot K) \quad \cdot \cdot \cdot (1 2)$

まで高められる。表 2 の H G C C = 1 8 0 0 W / (m²・K)は以上を考慮して設定したものである。 【 0 0 4 9 】 20

10

【表2】

表 2 Ni-10wt%Al 合金長尺ブレードの一方向凝固における鋳造パラメータ
ブレードの寸法:18mm 厚 x 100mm 巾 x 470mm 高
要素分割:ブレード部は等分割キザミ、X方向 2mm,Z方向 1.5mm,Y方向 2mm
鋳型(セラミックモールド)の厚さ:10mm
バッフルの厚さ:45mm
引出速度:15cm/h 及び 30cm/h
鋳造温度:1480℃(過熱度 80℃)
鋳型初期温度:1450℃
冷却チル初期温度:300℃
鋳型ーヒーター間(加熱領域)及び鋳型ー炉体内表面間(冷却領域)の輻射熱交換:
ヒーターの内径及び炉体内径は 300mm とし、加熱領域と冷却領域はバッフル(厚さ
45mm)によって断熱されているものとした。(すなわち、両領域間の輻射熱交換はな
いものと仮定した)。
$Q_{i} = \sum_{j=1}^{\infty} Q_{ig} = \sum_{j=1}^{\infty} \frac{O(I_{i} - I_{g})}{1 - c - 1 - 4 - 1 - c} (W/m^{2})$
$g^{=1} \qquad g^{=1} \qquad \frac{1-c_i}{\varepsilon_i} + \frac{i}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$
$g^{s=1}$ $g^{g=1}$ $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換
g^{s-1} g^{s-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻
g^{s-1} g^{g-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換
g^{s-1} g^{s-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma: ステファン・ボルツマン定数$
g^{s-1} g^{s-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma: ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度
$g^{s=1}$ $g^{s=1}$ $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma: ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度
g^{s-1} g^{s-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度)
g^{s-1} g^{s-1} $\frac{1-c_i}{c_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{c_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度) ϵ i: 鋳型の放射率 0.35
g^{-1} g^{-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 iの輻射熱交換 Qig: 表面要素 iに相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 iの温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度) ε i: 鋳型の放射率 0.35 ε g: ヒーター及び冷却ゾーン炉体内表面の放射率
$g^{=1}$ $g^{=1}$ $\frac{1-c_i}{c_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度) ε i: 鋳型の放射率 0.35 ε g: ヒーター及び冷却ゾーン炉体内表面の放射率 ε g=0.3 (ヒーター)、 ε g=0.4 (炉体内表面)
g^{-1} g^{-1} $\frac{1-c_i}{\varepsilon_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i の輻射熱交換 Gig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度) ε i: 鋳型の放射率 0.35 ε g: ヒーター及び冷却ゾーン炉体内表面の放射率 ε g=0.3 (ヒーター)、 ε g=0.4 (炉体内表面) Ai: 鋳型表面要素 i の表面積
$g^{=1}$ $g^{=1}$ $\frac{1-c_i}{c_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{\varepsilon_g}$ Qi: 鋳型表面要素 i の輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度) ε i: 鋳型の放射率 0.35 ε g: ヒーター及び冷却ゾーン炉体内表面の放射率 ε g=0.3 (ヒーター)、 ε g=0.4 (炉体内表面) Ai: 鋳型表面要素 i の表面積 Ag: Ai に相対する表面要素 (ヒーター、炉体内表面及び鋳型自身) の表面積
$g^{=1}$ $g^{=1}$ $\frac{1-c_i}{c_i} + \frac{1}{F_{ig}} + \frac{A_i}{A_g} \frac{1-c_g}{c_g}$ Qi: 鋳型表面要素 iの輻射熱交換 Qig: 表面要素 i に相対する表面要素 g (ヒーター、炉体内表面及び鋳型自身) との輻 射熱交換 $\sigma : ステファン・ボルツマン定数$ Ti: 鋳型表面要素 i の温度 Tg: ヒーター及び冷却ゾーン炉体表内面温度 Tg=1773K (ヒーター)、Tg=400K (炉体表面温度) ϵ i: 鋳型の放射率 0.35 ϵ g: ヒーター及び冷却ゾーン炉体内表面の放射率 ϵ g=0.3 (ヒーター)、 ϵ g=0.4 (炉体内表面) Ai: 鋳型表面要素 i の表面積 Ag: Ai に相対する表面要素 (ヒーター、炉体内表面及び鋳型自身) の表面積 Fig は形態係数 (view angle) であり、計算に際してメモリーを節約するアルゴリズ

<u> 衣 ∠ (ううさ)</u>
GCC 法による鋳型表面強制ガス冷却(非特許文献 2 参照):
g=H _{GCC} (T _m -T _o)+Qi(W/m ²)(gには上記 Qiを含む)
不活性ガス冷却による表面熱伝達係数 Hacc=1800 W/(m ² ・K)
Tm:鋳型表面温度
To:冷却領域雰囲気温度 400K
インゴットー鋳型境界エアギャップ形成による熱流束(非特許文献2参照):
冷却領域において適用した。
$\underline{q} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \qquad (W/m^2)$
T1:固体表面温度
T2: 鋳型內表面温度
ε1:0.4 固体表面の放射率
ε 2:0.35 鋳型内表面の放射率
インゴット底面-チル境界熱流束の扱い :
$\mathbf{g} = \mathbf{h} (\mathbf{T}_1 - \mathbf{T}_2) (\mathbf{W}/\mathbf{m}^2)$
h:熱伝達係数 418 W/(m ² ・K)
T1:インゴット底面温度
T ₂ : チル上面温度
チル底面水冷の扱い:
$\mathbf{g} = \mathbf{h} (\mathbf{T} - \mathbf{T}_{\mathbf{W}}) (\mathbf{W}/\mathbf{m}^2)$
h:熱伝達係数 84 W/(m ² ・K) と仮定
T: チル底面温度
Tw:水温 293K

表2(つづき)

【0050】

10

20

30

ľ	表	3	

表 3 Ni-10Al 及び IN718 Ni 基合金の化学成分及び物性値

			Cr	Mo	Al	11	Fe		Nb		`
Ni-10Al	(wt%)		_		10.0	_	_				
IN718	(wt%)		19.0	3.05	0.55	0.90	19.4	10	4.85		
Ni-Al の 4	Z衡状態®	a 1	鼠度(℃)		1453	1430	1420	1408	51	385	
液相及び	固相線は	非	夜相濃度	(wt%)	0	5.15	7.2	10.0	51	2.9	
線形		6	固相濃度	(wt%)	0	4.17	5.85	8.2	1	0.9	
液相密度	計算式	$\rho_L =$	$\rho_0^L + \sum_n$	$h_n C_n^L +$	$h^0T_L \ll 1$	さける定数	:これら	の定業	数につい	いて	は純
液相金属。	の密度デ・	ータこ	より理想	溶液を	仮定して	決定した	: T. Iid	a and	R. I. 1	ե.	
Guthrie:	The Phys	sical	Propert	ies of	Liquid M	fetals, Cla	arendon	Press	s, Oxfo	ord,	UK,
1993, pp.	70-73 💈	象照									
Alloy	ρ_0^L	h^0		h _n	(g/cm ³ ·	wt%)					
	(g/cm ³)	(g/c	m³℃)			F	1	<u>m:</u>	Π.		
					r N	40 A		11	re		
Ni-10Al	9.380	-1.0	5x10 ^{·3}		-	0.08	371		_		-
		<u> </u>				******					
IN718 デンドラ・ デンドラ	9.453 イトの比 イト形状	-1.0 表面和	22×10^{-8} 資 Sb 中 $\phi = 0.$	-0.0 の物性 67	145 0.02 値(非特	42 -0.09 許文献 6 0	53 - 0.0	0587 ·)式者	·0.008 ≩照):	9 0.0	029
IN718 デンドラ デンドラ 固相 – 液 Ni-10A Sb の補正	9.453 イトの比 イト形状 相界面エ 山に対し 係数α:	-1.0 表面和 系数 ネルギ て 6x IN7	22×10^{-8} 黄 Sb 中の $\phi = 0,$ ギー σLS $10^{-6}, I$ 18 に対し	-0.0 ひ物性 67 S(cal/c N718 レて 0.0	0145 0.02 値(非特 m ²): に対して 6、Ni-10	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し ⁻	53 -0.0 > (28 <70.4	0587 ·)式者	·0.008 ≩照):	9 0.0	029
IN718 デンドラ デンドラ 固相一液 Ni-10A Sbの補正	9.458 イトの比 イト形状 相界面エ 山に対し 係数 a :	-1.0 表 系	$ \frac{922 \times 10^{-8}}{5} $ 安全 $ \frac{9}{5} $ 安全 $ \frac{9}{5} $ (10 ⁻⁶ 、 I 18 に対し Ni ⁻¹	-0.0 の物性 67 S(cal/c N718 して 0.4 DA1 I	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し	53 -0.0 > (28 て 0.4	0587 ·)式者	·0.008 ≩照):	9 0.0)029
IN718 デンドラ デンドラ 固相一液 Ni-10A Sbの補正 液相中の	9.458 イトの比 イト形玉 山に対し に係数 a : 拡散係数	-1.0 表 系 太 ル こ る x	22 $\times 10^{-8}$ 奏 Sb 中で $\phi = 0.$ ギー σLS 10^{-6} 、 I 18 に対し Ni-10 Al	-0.0 つ物性 67 S(cal/c N718 って 0.0 DA1 I	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し ⁻ Mo	53 -0.4 C 0.4 Al	0587 ·) 式者 Ti	·0.008 家照): F	9 0.0)029 Nb
IN718 デンドラ デンドラ Mi-10A Sbの補正 液相中の	9.458 イトの比 イト形状 相界面し に対な: 係数 α: 拡散係数	-1.0 表 係 水 に る 数 て 6 x IN7 D ^L	22x10 ⁻⁸ 奏 Sb 中で φ = 0. ギー σLS : 10 ⁻⁶ 、 I 18 に対し Ni ⁻¹ (Al 1.0x1	-0.0 の物性 67 S(cal/c N718 って 0.1 DA1 I 0A1 I	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記1	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し ⁻ Mo 載データを	53 -0.4 つ (28 て 0.4 <u>Al</u> 全考に	0587 -) 式者 Ti すべて	0.008 ◎照): F ての元言	9 0.0 e 素 に)029 Nb 対し
IN718 デンドラ デンドラ Mi-10A Sbの補正 液相中の	9.458 イトの比 イト形面し 1に対な: 係数 a: 拡散係数 (/s)	-1.0 表 係 ネル エ て 6 x IN7 D ^L	222x10 ⁻⁸ 黄 Sb 中 ϕ $\phi = 0,$ $\psi - \sigma LS$ $z = 10^{-6}, I$ 18 に対し Ni-10 Al 1.0x1	-0.0 の物性 67 S(cal/c N718 - て 0.4 DA1 I 0A1 I	1145 0.02 値 (非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記り て 2.3x10	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し Mo 載データを	53 -0.4 つ (28 て 0.4 Al を考に	0587 -) 式き <u>Ti</u> すべて	-0.008 参照): F F ての元言	9 0.0 e 素 に)029 Nb 対し
IN718 デンドラ デンドラ Mi-10A Sb の補正 液相中の	9.458 イトの比 イト形和工 山に対な に数 な : 拡 散係数 : /s)	-1.0 表係ネて 6x IN7 D ^L	222x10 ⁻⁸ 奏 Sb 中 α φ = 0. ギー σLS : 10 ⁻⁶ 、 I 18 に対し Ni ⁻¹ 0 Al 1.0x1	-0.0 の物性 67 S(cal/c N718 って 0.1 DAl I 0Al I 0Al I	1145 0.02 値 (非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記1 て 2.3x10 Ji-10Al	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し Mo 載データを 5 と仮定 IN718	53 -0.4 つ (28 て 0.4 Al を考に 底板(例	0587 ·) 式き Ti すべて [*] ミー)	•0.008 ◆照): F ての元 シェルモー	9 0.0 e 素 に ·// ト・)029 Nb 対し
IN718 デンドラ デンドラ Ni-10A Sbの補正 液相中の D ^L (cm ² 液相の比	9.458 イトの比 イト形状 相界面し に対し 係数 α: 拡散係数 ゲs)	-1.0 表係水に イ 6x IN7 D ^L	222x10 ⁻⁸ 奏 Sb 中 ϕ $\phi = 0,$ ギー σLS $(10^{-6}, 11)$ 18 に対し Ni-10 Al 1.0x1	-0.0 の物性 67 S(cal/c N718 -て 0.4 DA1 I - て 0.4 - て 0	1145 0.02 値 (非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記 て 2.3x10 Ji-10Al 0.15(*)	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し Mo 載データを ⁵ と仮定 IN718 0.15(*)	53 -0.4 つ (28 て 0.4 Al を考に 底板(例 比熱=(0587 -) 式き Ti すべて *ミー) 0.15	-0.008 ◆ 照): F F ての元 ジェルモー 比熱=	9 0.0 e 秦 [二 少]、*)029 Nb 対し
IN718 デンドラ デンドラ 加相一液 Ni-10A Sbの補正 液相中の D ^L (cm ² 液相の比 梱の比	9.458 イトの比 イト形ホム 山に対し 係数 a : 拡散係数 /s) 熱(cal/g ⁽ 熱("	-1.0 表系ネル て 6x IN7 D ^L	222x10 ⁻⁸ 奏 Sb 中 α φ = 0. ギー σLS : 10 ⁻⁶ 、 I 18 に対し Ni ⁻ 10 Al 1.0x1	-0.0 の物性 67 S(cal/c N718 って 0.1 DAl I 004 コー 1 004 コー 1 004 コー 1 004 コー 1 004 コー 1 000 000 000000000000000000000000000	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記1 て 2.3x10 Ji-10Al 0.15(*)	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し Mo 載データを 5 と仮定 IN718 0.15(*) 0.15(*)	53 -0.4 つ (28 て 0.4 Al を考に 比熱=(熱伝導	0587 ·) 式き Ti すべて *ミー)).15 率=	·0.008 ·0.008 · · · · · · · · · · · · ·	9 0.0 e 索 に = の.20 集 寧 =)029 Nb 対し
IN718 デンドラ: デンドラ: Ni-10A Sbの補正 液相中の: 液相中の: 液相の比 液相の比 液相の比	9.453 イトの比 イト形面し 1.係数α: 拡 散係数 (cal/g ^Q 禁 (cal/g ^Q	-1.0 表 係 数 ネル: エ て 6 x エ ト フ レ し	22x10 ⁻⁸ 英 Sb 中 $(\phi = 0, \phi = 0, $	-0.0 の物性 67 S(cal/c N718 -て 0.4 DA1 I 0A1 I 0 ⁻⁴ - 0 ⁻⁴ - 0 ⁻⁴ - 0 ⁻⁴ - 0 ⁻⁴ - 0 ⁻⁴ - 0 ⁻⁶ - 0 ⁻⁷ - 0	1145 0.02 値 (非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記 て 2.3x10 Vi-10Al 0.15(*) 0.064(*)	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し Mo 載データを 5 と仮定 IN718 0.15(*) 0.15(*) 0.064(*)	53 -0.1 つ (28 て 0.4 Al 底板() 比熱=(熱伝導 0.064	0587 -) 式き Ti すべて [*] ミー)).15 率=	-0.008 ▲ 照):	9 0.0 e 秦 lī =0.20 \$ \$ 6	<u>Nb</u> 対し
IN718 デンドラデオーベ液 Ni-10A Sb の補工 液相中の D ^L (cm ²) 液相相のの熱	9.458 イトの比 イト形面し に	-1.0 表 系 次 、 、 、 、 、 、 、 、 、 、 、 、 、	222x10 ⁻⁸ 奏 Sb 中で φ = 0. ギー σLS : 10 ⁻⁶ 、 I 18 に対し Ni ⁻ 10 Al 1.0x1	-0.0 の物性 67 S(cal/c N718 して 0.1 OAl I 004 コー 1 004 コー 1 004 コー 1 004 コー 1 000 000 000 000 000 000 000 000 000 000 000	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記1 て 2.3x10 Ji-10Al D.15(*) D.064(*)	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し Mo 載データを ⁻⁵ と仮定 IN718 0.15(*) 0.064(*) 0.064(*)	53 -0.4 つ (28 て 0.4 Al を考に 歴板(例 比熱=(熱伝導 0.064 密度=(0587 -) 式き <u>Ti</u> すべて [*] ミー)).15 率= 7.4	-0.008 -0.008 	9 0.0 e 泰 に ジント* i 6 許文	<u>Nb</u> 対し) = 献 2)
IN718 デンドラ デオロー液 Ni-10A Sbの補正 液相中の が相中の 液相のの執 の比 酸相相のの熱 Mushy 中	9.453 イイ相応数α に数α ・ ・ が 新 の形面対α ・ 数α ・ 数 α ・ 、 水 の 形面対α ・ 、 水 の 形面対α ・ 、 水 の 形面対α ・ 、 水 の 形面対α ・ 、 、 、 水 の 形面対 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	-1.0 -1.0 電数 -1.0 電数 -1.0 1.0 -1.	22x10 ⁻⁸ 英 Sb中で φ = 0. ギー σLS : 10 ⁻⁶ 、I 18 に対し Ni ⁻ 10 Al 1.0x1 .s ℃)) /cm ³)	-0.0 の物性 67 S(cal/c N718 - て 0.4 DA1 I 0.4 2 7 0.4 1 0.4 7 0.4 7 0.4 7 0.4 7 0.4 7 7 0.4 7 7 0.4 7 7 7 7 7 7 7 7 7 7 7 7 7	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記 て 2.3x10 Ni-10Al D.15(*) D.064(*) D.064(*) 7.4	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し、 Mo 載データを ⁵ と仮定 IN718 0.15(*) 0.064(*) 7.94	53 -0.1 つ (28 て 0.4 Al を考に 歴板(例 比熱=(熱伝導 0.064 密度=1	0587 -) 式き Ti すべて [*] ミー) 0.15 率= 7.4	-0.008 -0.008 	9 0.C e e 案 に =0.2C 第 率 = 36 許 文 =1.7	<u>Nb</u> 対し) = 献 2)
IN718 デジンドラデ がi-10A Sbの補正 液相中の がi-10A D ^L (cm ² 液相のの比 液相のの比 液相のの比 熱 個個のた	9.458 イイ相1係 数 (cal/g ⁽ 家) 熱(cal/g ⁽ 薬 (ca 度 相 室 案 名 伝 の 形 面 対 な 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	-1.0 -1.0 -1.0 -1.0 -1.0 	22x10 ⁻⁸ 黄 Sb 中 $\phi = 0,$ $\varphi = 0,$ $\varphi = 0,$ $\varphi = 0,$ G S C I 18 に対し Ni-10 Al 1.0x1 1.0x1 (cm ³) π)	-0.0 の物性 67 S(cal/c N718 i 一て 0.4 DA1 I 0A1 I 0 0 0 0 0 0 0 7 7 7 7	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記1 て 2.3x10 Ni-10Al 0.15(*) 0.064(*) 0.064(*) 7.4	42 -0.09 許文献 6 の 5 x 10 ⁻⁵ Al に対し ⁻¹ Mo 載データを ⁻⁵ と仮定 IN718 0.15(*) 0.064(*) 0.064(*) 7.94 7.95	53 -0.4 つ (28 て 0.4 Al 参考に 歴板() 比熱=(熱伝導 0.064 密度=1	0587 -) 式き Ti すべて [*] ミー) 0.15 ⁻ 率= 7.4	0.008 ((部度 = 1 1 1 1 1 1 1 1 1 1 1 1 1	9 0.0 e 秦 に =0.20 第 卒 = 36 許 文 =1.7)029 Nb 対し)) = 献 2)
IN718 デデガオー液 Ni-10A Sbの補工 の補中の が相中の 液相中の 液相中の 液相中の 液相中の 液相のの 地 の 地 の 地 の 地 の 米 、 、	9.453 イイトの形面 イイト界に数 a : (cal/g ⁽ (cal/g ⁽ (cal/g ⁽ (cal/g))	-1.0 和 表 系 木 て 6 x IN7 D ^L)) m m (g (g ($\frac{922 \times 10^{-8}}{5} \frac{\text{Sb} + \alpha}{6} \phi = 0, \\ \forall - \sigma LS \\ \vdots 10^{-6}, I \\ 18 & \forall \lambda 1 \\ \hline \\ \hline \\ Ni^{-1}(10) \\ \hline \\ A1 \\ 1.0 \times 1 \\ \hline \\ 1.0 \times 1 \\ \hline \\ \\ (\text{m}^{3}) \\ \eta \end{pmatrix}$	-0.0 の物性 67 S(cal/c N718 一て 0.0 DA1 I 001 I 001 2 7 7 5 5 7 7 5	1145 0.02 値(非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記 て 2.3x10 Ni-10Al 0.15(*) 0.064(*) 7.4 7.4 50.0	 42 -0.09 許文献 6 Ø 5 x 10⁻⁵ Al に対し Mo 載データを 5 と仮定 IN718 0.15(*) 0.064(*) 7.94 7.95 50.0 	53 -0.4 つ (28 て 0.4 Al を考に 歴板(タ 比熱=(熱伝導 0.064 密度=1	0587 ·) 式き Ti すべて [*] ミー) 0.15 率= 7.4	-0.008 -0.008 	9 0.0 e 秦 に =0.20 第 率 = 66 許 文 =1.7	0029 Nb 対し) = 献 2)
IN718 デデ剤 Ni-10A Sbの補正 液相中の D ^L (cm ² 液相相相のの熱、 Mushy中 密熱和の粘	9.458 イイ相1(係 数 a : 拡 数 a : 拡 数 (cal/g ⁰ (cal/g ⁰ 度 (poise)	-1.0 表 系 ネ て ら x い 7 D L 定)) 定 (()	22×10^{-8} $\phi = 0,$ $\phi = 0,$ $\phi = 0,$ $\phi = 0,$ $\phi = 0,$ f = 0, f = 0,	-0.0 の物性 67 S(cal/c N718 i 一て 0.4 DA1 I 0A1 I 004 2 7 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0	1145 0.02 値 (非特 m ²): に対して 6、Ni-10 N718 Cr 文献 8 記り て 2.3x10 Ji-10Al 0.15(*) 0.064(*) 0.064(*) 7.4 7.4 50.0 0.05	42 -0.09 許文献 6 0 5 × 10 ⁻⁵ Al に対し Mo 載データを ⁻⁵ と仮定 IN718 0.15(*) 0.064(*) 7.94 7.95 50.0 0.07(*)	53 -0.4 つ (28 て 0.4 Al 参考に 歴板() 比熱伝導 0.064 密度=7	0587 -) 式き Ti すべて *ミー)).15 率= 7.4	0.008 ()	9 0.0 e e 索 に = 0.2(事 章 = 56 許文 = 1.7	<u>Nb</u> 対し) = 献 2)

(*)付きデータは文献(M. Schneider, et al, Metall. Materi. Trans. A(1997), vol. 28A, pp.1517-31)記載データを参考に仮定

10

20

30

表3(つづき)

Ni-10Al 及び IN718 に対して: 液相の電気伝導度(1/Qm)=10⁶ 固相の電気伝導度(1/Qm)=10⁶ Ni 基超合金データ(W.Xuan, etal., Metall. Mater. Trans.B, Vol.47B(2016), pp.828-833 の Table III)を参考に以下のごとく近似した 液相の熱起電力 Sl (V/K) Sl=(-6.897x10⁻³T-5.655)x10⁻⁶ (T<1500℃) 固相の熱起電力 Ss (V/K) Ss=(-5.943x10⁻³T-5.779)x10⁻⁶ (T<1400℃ Cu チル: 比熱(cal/g℃)=2.222x10⁻⁵*T+0.0915 (0<T<200℃) 比熱(cal/g℃)=2.5x10⁻⁵*T+0.091 (200<T<600℃) 熟伝導率(cal/cm s ℃)=0.9554⁻¹.222x10⁻⁴*T (0<T<200℃) 熟伝導率(cal/cm s ℃)=0.9595⁻¹.425x10⁻⁴*T (200<T<600℃)

[0051**]**

鋳型引出速度は予備的計算を行い、固液共存相(mushy zone)が断熱バッフルとほぼ同じ水平位置になるよう調整した。標準ブリッジマン法の場合引出速度R = 1
 5 cm / h、GCC法の場合R = 3 0 cm / h(及びHGCC = 1 8 0 0W / (m² · K))とした。計算結果を表4にまとめて示す。

30

40

20

【表4】

表 4 Ni-10wt%Al 合金長尺ブレードの計算結果(MV1法)

ЪT	司 陈 皮 併	標準偏差,	平均值,	最少-最大,	凝固界面前方温度
No	計昇宋件	wt%	wt%	wt%	変化,℃
					-4.84 ~ +10.65 at
I-1	R=15cm/h, $Bz=0T$	5.146E-02	9.998	9.447 -10.341	5469sec,
					time step=2s
	P=20cm/h $Br=0T$				-5.14 ~ +4.68 at
I-2	$H_{max} = 1800 W/m^2/K$	1.553E-02	10.019	9.871 -10.096	2742sec,
					time step=2s
	R=30cm/h,				
I-3	Bz=0.5T,	9.113E-03	10.028	9.936 -10.125	なし
_	Hgcc=1800W/m2/K				
	R=30cm/h,				
I-4	Bz=0.75T,	8.222E-03	10.029	9.978 -10.170	なし
	Hgcc=1800W/m2/K				
	R=30cm/h,				
I-5	Bz=0.88T,	8.040E-03	10.030	9.985 -10.095	なし
	Hgcc=1800W/m2/K				
1-6	R=30cm/h, Bz=1T,	8 440E-03	10 030	9 995 -10 075	なし
	Hgcc=1800W/m2/K	0.1101 00	10.000		
1-7	R=30cm/h, Bz=2T,	1 186E-02	10 030	9 993 -10 119	なし.
	Hgcc=1800W/m2/K	1.1001 02	10.000	0.000 10.110	
T-8	R=30cm/h, Bz=3T,	1 324E-02	10.030	9 978 -10 133	なし
	Hgcc=1800W/m2/K	1.0210 02		0.070 10.100	
T-Q	R= 30 cm/h, Bz= 5 T,	1 281E-02	10.031	9.978 -10.138	なし (な)
1.0	Hgcc=1800W/m2/K	1.40111 04	10.001	0.010 10.100	5.5

30

40

10

20

注:Rは鋳型引出速度、HgccはGCC法による熱伝達係数である

[0052]

偏析の程度を表す指標として標準偏差 (w t %)(各要素のA1濃度と平均値との差の2乗和の平方根)を用いた。が大きいほどA1の変動、すなわちマクロ偏析の程度が大きいことを示す。引出し速度R=15cm/h(No.I-1)の場合、 = 5.146E-02wt%であるのに対し、引出速度をR=30cm/hに上げるとともにGCC法によって冷却領域を強冷すると(熱伝達率をHgcc=1800W/m2/Kに設定)、 = 1.553E-02wt%に減少する(No.I-2)。
 【0053】

さらに軸方向静磁場Bzを印加すると は図5に示すごとき変化を呈する。すなわち、Bz=0.88T付近で最小値(No.I-5)となりBz=1T以上の領域でBz を増して行くと は逆転して増大する。この最小値がマクロ偏析を最小化するための最適 解である。

ただし、必ずしもこの最適解に設定する必要はなく最適値近傍で実用上問題のないレベル に抑制するに十分な磁場強度を採用すればよい。[例えばクリープ強さに関する規格(s pecification)を満たすことが求められる]

図6にこのときのヒストグラムを示す。ヒストグラムはほぼ正規分布を示しており が減少するにつれて、変動幅が小さくなって行く様子がよくわかる。また、横断面中心 Z方向におけるデンドライトアームスペーシング(DAS)及びA1濃度分布をそれぞれ 図7(a)及び図7(b)に示す。No.I-1の場合、DAS 250µm、変動幅 30µmに対し、No.I-5ではDAS 190µmと微細化し、変動はほとんど無く なっている。A1マクロ偏析に関しても同様、図7(b)に示すごとく通常のBridg eman(No.I-1)の場合の変動:9.95-10.05wt%に対し、最適解で は変動はほとんど認められない。

[0054]

尚、マクロ偏析の模式図(Schematic diagram)を図8に示す。 本実施例では、通常軸方向に発達するフレックルは生じておらず、大略水平方向に伸びる バンド状のマクロ偏析を生じている。

【 0 0 5 5 】

<u>凝固組織について</u>

凝固過程における冷却速度は標準ブリッジマン法の場合、固液共存相における軸方 向温度勾配G=46.9 / cm(横断面中心、高さ方向中央において)及び引出速度R =15cm/hから、GR=46.9x 15/3600=0.2 / s、GCCの場合 G=59.8 / cmからGR=0.5 / sであり、これらに対応するデンドライトア ームスペーシング(DAS)はそれぞれ250µm及び190µmとなり、凝固組織が微 細化する。静磁場を印加するとさらに変動幅が小さくなる、すなわち、均質性が増す。G CCの場合、変動はほとんどなくなっている(図7(a)参照)。また、インゴット底部 、すなわち凝固初期段階においてDASが小さくなっているのはチルの急冷効果によって 凝固速度が速くなるためである(すなわち、図10に示すごとく凝固初期における凝固界 面の移動速度Rcalc(計算値)は最初大きく徐々に小さくなり、極小値を経て一定値 、すなわち所定の引出速度15cm/hに落ち着く)。

【0056】

<u>マクロ偏析の形態と静磁場の効果</u>

標準ブリッジマン法による典型的な偏析の形態についてはすでに図8に示した(本 例は肉厚中央縦断面)。他の縦断面においても似たような様相を示すので以降中央断面に ついて述べる。偏析は縦方向に正負(それぞれ含有濃度10%より大あるいは小)の偏析 を繰り返し呈している。水平断面においても同様の様相を呈しているが、縦方向に比べて 、正負の頻度(繰り返し数)は少ない。このような形態を本明細書では'バンド偏析'ある いは所謂'banding'と呼ぶこととする。

[0057]

磁場なしの場合、 b a n d i n g の変動が大きくなる理由は凝固界面前方において 不可避的に存在する水平方向温度勾配によって、対流を生じ凝固界面にヒートパルスをも たらし固液共存相における液相の流動パターンを大きく変動させるためである。ヒートパ ルスの一例を図9(a)に示す(標準ブリッジマン法、磁場なしの場合)。ヒートパル

スはタイムステップ t- △t~t における温度変化の等高線で表した。上部からの高温下

40

降流れ(破線で概略的に示す)によって凝固界面付近の温度は最大10.65 上昇し、凝

固界面で冷やされた液相が帰路において最大-4.84℃まで冷やされている(△t=2sec)。

【0058】

固液共存相は常時このようなヒートパルスの影響を受け、その温度、固相率、デンドライトの形態、固液共存相の形、そして最終的に液相の流動パターンに変動をもたらす(図9(b)参照)。その結果、バンド状のマクロ偏析(図8参照)が形成される。 【0059】

軸方向磁場Bzを印加すると液相における対流は無くなり、ヒートパルスも無くなる(紙面の節約のため図示せず)。図9(c)は計算番号I-3(Bz=1T+強冷却+高引出速度)の場合のインゴット中心縦断面における固液共存相中の流動パターンを示す 概略図であり、固液共存相の巾が狭くなると同時に横方向の流れが減少する方向、すなわち、軸方向に整流化する方向に向く。その結果、既に述べたごとくA1変動、即ちマクロ 偏析は実質的に解消される。

【0060】

前述の図10における偏析極大部はBz印加により、対流による変動によって隠れ ていた現象が対流の鎮静化に伴って姿を現したものである。すなわち、一方向凝固におい て、凝固界面の移動速度が突然増速(または減速)するとマクロ偏析が増減する現象(例 えば非特許文献7のP.39、Fig.2-6;P.40、Fig.2-7参照)を生ず る。すなわち、凝固の初期遷移段階において、凝固界面の移動速度Rcalc(計算値) の変動とA1極大が対応しており、その範囲は底面から約13cm高さとなっている。こ れは前述のごとくチルの冷却効果によってもたらされたものである。[図7(a)にて示 した初期遷移段階におけるDASも同様である。]

[0061]

以上、GCC法による強冷効果と1T以下の低磁場の相乗効果によりマクロ偏析は 実用上問題ないレベルまで低減されたと見なすことができる。すなわち、小さい磁場で(従って低コストの超伝導コイルで)偏析を消滅することができるとともにヒートパルスが 無くなり凝固が安定するので異方位結晶欠陥の生成が抑制される。また、結晶組織を微細 化することによるメリット(creep rupture強度の向上及び溶体化熱処理時 間の短縮)をもたらすものである。

尚、表4において平均値と初期濃度の乖離はこのような難解な数値解析につきもの のバックグラウンドエラーと考えられる。

【0062】

実施例2: IN718合金短尺ブレード

次に、IN718短尺ブレードに対して単なるM法(標準ブリッジマン法、R=1 5 cm/h、Bz)及びMV2法(S+摺動電極+GCC、R=40 cm/h、Bz)を 適用した場合のシミュレーションについて説明する(SはSingle chamber を意味する)。表3にIN718の物性値、表5に単なるM法による鋳造パラメータ、及 び表6に本発明のMV2法による鋳造パラメータを示す。計算の準備として予備的計算を 行い、固液共存相(mushy zone)が断熱バッフルとほぼ同じ水平位置になるよ う鋳造パラメータを調整した。M法の場合引出速度R=15 cm/h、MV2法の場合R = 40 cm/h(及びHGCC=600W/(m²・K))とした。 【0063】

30

40

20

【表5】

IN718 合金短尺ブレードの一方向凝固における鋳造パラメータ(M法)

	インゴットの寸法:6mm 厚 x 42mm 巾 x 120mm 高
	鋳型(セラミックモールド)の厚さ:5mm
	チルの厚さ:15mm
	バッフルの厚さ:10mm
	引出速度:15cm/h
	鋳造温度:1400℃(過熟度 66℃)
	鋳型初期温度:1400℃
	冷却チル初期温度:1150(凝固終了温度)-20=1130℃と仮定。これは定常状態に達するタイミ
-	ングを早めるための処置
	鋳型-ヒーター間(加熱領域)及び鋳型-炉体内表面間(冷却領域)の輻射熱交換:
	ヒーターの内径及び炉体内径は 92mm とし、加熱領域と冷却領域はバッフル(厚さ 10mm)
	によって断熱されているものとした。(すなわち、両領域間の輻射熱交換はないものと仮定し
	た)。
	$Q_{i} = \sum_{g=1}^{g_{max}} Q_{ig} = \sum_{g=1}^{g_{max}} \frac{\sigma(T_{i}^{4} - T_{g}^{4})}{\frac{1 - \varepsilon_{i}}{\varepsilon_{i}} + \frac{1}{F_{ig}} + \frac{A_{i}}{A_{g}} \frac{1 - \varepsilon_{g}}{\varepsilon_{g}}} W/m^{2}$
	Qi:鋳型表面要素 i の輻射熱交換
	Qig:表面要素iに相対する表面要素g(ヒーター、炉体内表面及び鋳型自身)との輻射熱交
	換
	σ : ステファン・ボルツマン定数
	Ti: 鋳型表面要素 i の温度
	Tg:ヒーター及び冷却ゾーン炉体表内面温度
	Tg=1693K(ヒーター)、Tg=400K(炉体表面温度)
	εi: 鋳型の放射率 0.35

20

10

30

εg:ヒーター及び冷却ゾーン炉体内表面の放射率 εg=0.3 (ヒーター)、εg=0.4 (炉体内表面) Ai: 鋳型表面要素 iの表面積 Ag: Aiに相対する表面要素(ヒーター、炉体内表面及び鋳型自身)の表面積 Fig は形態係数 (view angle) であり、計算に際してメモリーを節約するアルゴリズム (J. Yu et al; J. Mater, Sci. Technol., vol. 23 (2007), p.47-54 参照) を採用した。 インゴット-鋳型境界エアギャップ形成による熱流束(非特許文献2参照): 冷却領域において適用した。 $\underline{q} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{1 + 1} - 1}$ (W/m^2) T1:固体表面温度 T2: 鋳型内表面温度 ε1:0.4 固体表面の放射率 ε2:0.35 鋳型内表面の放射率 インゴット底面ーチル境界熱流束の扱い: $q=h (T_1-T_2) (W/m^2)$ h:熱伝達係数 418 W/(m²・K) Tu:インゴット底面温度 T₂: チル上面温度 チル底面水冷の扱い: q=h (T-Tw) (W/m²) h:熱伝達係数 84 W/(m²・K) と仮定 T: チル底面温度 Tw: 水温 293K

10

20

(24)

【表6】

IN718 合金短尺ブレードの一方向凝固における鋳造パラメータ(MV2法) ブレードの寸法:6mm 厚 x 42mm 巾 x 120mm 高 要素分割:ブレード部は等分割キザミ、X方向 1mm,Z方向 1.5mm,Y方向 1.5mm 歯型(セラミックモールド)の厚さ:5mm バッフルの厚さ:10mm ヒーターの直径:140mm ヒーター摺動ブラシの移動速度(凝固界面の移動速度):40cm/h 鋳造温度:1380℃(過熱度 46℃) 鋳型初期温度:1380℃ 冷却チル初期温度:1150(凝固終了温度)-20=1130℃と仮定。また、ブレード底面に厚 さ 1.5mm、初期温度 1150℃のダミー板(固体)を設置した。こ れは定常状態に達するタイミングを早めるための処置 加熱領域における輻射伝熱: 次式で近似した(伝熱工学資料、改訂第5版、日本機械学会(2009)、p.139の式(41) 参照) $q = \frac{\sigma A_1 (T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{A_1}{A_2} (\frac{1}{\epsilon_2} - 1)}$ (W) (上式は同軸円筒面間の輻射伝熱に適用される式である。ここでは近似式として用い た) a:ステファン・ボルツマン定数 A1:ヒーターの表面積 A2: 鋳型の表面積 T1:ヒーターの温度:1500℃ T2: 鋳型の表面温度 ε1:ヒーターの放射率 0.35 ε2: 鋳型の放射率 0.3 GCC 法による

鋳型表面強制ガス冷却(非特許文献2参照): $q = H_{GCC} (T_m - T_o)$ 不活性ガス冷却による表面熱伝達係数 H_{GCC}=600 W/(m²・K) Tm: 鋳型表面温度 To:冷却領域雰囲気温度 500K

10

20

30

表6(つづき)

インゴットー鋳型境界エアギャップ形成による熱流束(非特許文献2参照):
冷却領域において適用した。
$\underline{q} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \qquad (W/m^2)$
T1: 固体表面温度
T2: 鋳型内表面温度
ε1:0.4 固体表面の放射率
ε 2:0.35 鋳 型内表面の放射率
チル底面水冷の扱い:
$\mathbf{q} = \mathbf{h} (\mathbf{T} - \mathbf{T}_{\mathbf{W}}) (\mathbf{W}/\mathbf{m}^2)$
h:熱伝達係数 168 W/(m ² ・K) と仮定
T: チル底面温度
Tw:水温 293K

10

20

30

[0064]

<u>計算結果</u>

計算結果を表7(a)及び(b)にまとめて示す。

50

	A A ANT OF INT			101				
No	Process	Cr, 19.0	Mo, 3.05	Al, 0.55	Ti, 0.9	Fe, 19.4	Nb, 4.85	礙固界面前方溫度変化
П·Л	Std Bridgeman R=15cm/h Bz=0	2.709E-01	4.583E-02	1.043E-02	2.806E-02	2.6888-01	1.537E-01	-17.92 \sim +22.61 at t=1190s
П-2	R=Std Bridgeman 15cm/h Bz=0.5T	1.420E-01	1.598E-02	6.716E-03	2.399E-02	1.273E-01	1.327E-01	なし
П-3	Std Bridgeman 15cm/h Bz=0.75T	1.082E-01	1.017E-02	5.455E-03	1.984E-02	9.431E-02	1.110E-01	なし
П-4	Std Bridgeman 15cm/h Bz=1T	1.192E-01	1.142E-02	6.024E-03	2.186E-02	1.040E-01	1.222E-01	al.
<u>п-5</u>	Std Bridgeman 15cm/h Bz=2T	1.427E-01	1.408E-02	7.230E-03	2.621E-02	1.246E-01	1.463E-01	なし
9-II	Std Bridgeman 15cm/h Bz=3T	1.512E-01	1.481E-02	7.656E-03	2.776E-02	1.320E-01	1.550E-01	なし
П-7	Std Bridgeman 15cm/h Bz=5T	1.481E-01	1.383E-02	7.463E-03	2.715E+02	1.292E-01	1.519E-01	なし
П-8	S+摺動電機+GCC 40cm/h Bz=0	1.215E-01	2.219E-02	5.449E-03	1.573E-02	1.190E-01	8.584E-02	-26.74~+20.96°C at t=502s
6-11	S+摺動電極+GCC 40cm/h Bz=0.5T	2.813E-02	2.386E-03	1.425E-03	5.225E-03	2.422E-02	2.941E-02	ЪГ
11-10	S+撂動電極+GCC 40cm/h Bz=0.75T	1.990E-02	1.762E-03	1.011E-03	3.639E-03	1.722E-02	2.043E-02	なし
П-11	S+摺動電極+GCC 40cm/h Bz=1T	2.037E-02	1.826E-03	1.039E-03	3.723E-03	1.764E-02	2.090E-02	なし
П-12	S+摺動電極+GCC 40cm/h Bz=2T	2.302E-02	2.169E-03	1.176E-03	4.186E-03	2.005E-02	2.356E-02	<i>х</i> L
П-13	S+摺動電極+GCC 40cm/h Bz=3T	2.596E-02	2.353E-03	1.324E-03	4.720E-03	2.257E-02	2.665E-02	なし
II-14	S+摺動電極+GCC 40cm/h Bz=5T	2.986E-02	2.449E-03	1.507E-03	5.442E-03	2.584E-02	3.081E-02	なし
		A						

wt%)
(標準偏差
ドの計算結果
ł
短尺ブ
IN718

注:No,Ⅱ-1~No.Ⅱ-7 は単なる M 法; _/t=2sec、No. Ⅱ-8~No.Ⅱ-14 は MV2 法; _/t=1sec

(26)

30

			主義のようなく、も				
		Cr, 19.0	Mo, 3.05	Al, 0.55	Ti, 0.9	Fe, 19.4	Nb, 4.85
No	Process	Min-Max	Min-Max	Min-Max	Min-Max	MinMax	Min-Max
		(Ave)	(Ave)	(Ave)	(Ave)	(Ave)	(Ave)
п·п	\$td Bridgeman R=15cm/h Bz=0	17.494-19.547	2.7807-3.1065	0.4949-0.5746	0.7730-1.0020	17.905-19.881	4.1565-5.3794
		(19.016).	(2.9959)	(0.5341)	(0.8542)	(19.388)	(4,5967)
П-8	S+摺動電極+GCC 40cm/h Bz=0	18.305-19.453	2.8703-3.0507	0.51051-0.5504	0.81115-0.90085	18.658-19.800	4.3663-4.8567
		(011.61)	(3.0278)	(0.54120)	(0.87058)	(19.489)	(4,6870)
П-10	S+摺動電極+GCC 40cm/h	18.984-19.111	3.0421-3.0519	0.5441-0.5509	0.87986-0.90114	19.381-19.497	4.7346-4.8539
	₿z=0.75T	(19.068)	(3.0459)	(0.5466)	(0.88793)	(19.458)	(4,7794)
	and a state of the second s						

及7K平均值 wt%) 事大 IN718 領尺ブレードの計箪結果(標準偏差 の最少、

【表7(b)】

10

20

30

40

MV2 法による各合金元素の正規化標準偏差(元素間の相対値を見やすくするため o を CO

(27)

で正規化した)に及ぼすBzの効果を図11に示す。いずれの元素に対してもBz=0. 75T付近で

o/Coは最小となり、以後 Bz が増すにつれて o/Co は逆に増大する。M 法及び MV2 法による Nb

れM法による横断面中心位置、軸方向におけるDAS及びNbの分布を示す。DASは主 として凝固速度に依存するので、Bzを変化させても変らない(図13)。一方、Nb分 布については磁場なしの場合、thermal fluctuationの影響を受けて mushy zone中の液相のflow patternが乱れる結果、変動

幅は約 0.3wt%(0.3/C0x100=6.2%)と大きくなっている。これに対して、磁場を印加した場合

thermal fluctuationは無くなりflow patternが安定する ので変動は大幅に小さくなるが、標準偏差は図12に示す如くさほど小さくならない。こ れは磁場の印加によりmushy zone中の液相のflow patternが変化し た結果(中心部から周辺への流れを呈する。簡単のため表示しない)、ブレード全体とし てNbの変化がむしろ大きくなったためである。

【 0 0 6 5 】

図11及び図12より引出し速度15cm/hから40cm/h(摺動ブラシの移 動速度)へ上げ、強冷(Hgcc=600W/m2/K)すると標準偏差は大幅に小さく なる(No.II-1 No.II-8への変化)。すなわちマクロ偏析は大幅に改善さ れる。さらにNo.II-8に対して軸

方向静磁場 Bz を印加すると、o(及び o/C0) はさらに減少し Bz=0.75T 付近で最小とな

り、以降 B z を増すと逆に は漸増する。

[0066]

凝固界面の移動速度を15cm/hから40cm/hに上げると(No.II-1 とNo.II-8の比較)、 が減少するのはMushy zone中のflow pat ternの乱れが減少するためである。しかしながら凝固界面前方のThermal f luctuationはそれぞれ±20 (No.II-1)及び±23 (No.II -8)のオーダーであり、顕著な対流を生じている(液相中の速度もそれぞれVmax= 1.08cm/s及び0.88cm/sとほぼ同じオーダーである、1/2凝固時・肉厚 方向中心(Y,Z)断面)。一方、Bzを印加すると液相中のflow pattern は乱流から層流へ変化する傾向を示し最小値(Bz=0.75T付近)で層流(下降流) を呈し、Mushy zone中のpatternもほぼ層流となった。これにより界面 前方のThermal fluctuationは消滅した(紙面の節約のため図示せず)。

[0067]

[注:速度ベクトルの値に関して本明細書では (X,Y)面に対して

 $\mathbf{v} = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2}} \,, \, (\mathbf{Y}, \mathbf{Z}) \, \mathbf{i} \, \mathbf{E} \, \mathbf{x} \, \mathbf{U} \, \mathbf{U} \, \mathbf{v} = \sqrt{\mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}} \,, \, (\mathbf{X}, \mathbf{Z}) \, \mathbf{i} \, \mathbf{E} \, \mathbf{x} \, \mathbf{U} \, \mathbf{U} \, \mathbf{v} = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{z}^{2}} \, \mathbf{U} \, \mathbf{v} \, \mathbf{U} \, \mathbf{U$

Lorentzカに関しても同様である]

[0068]

Bz=0.75Tから強度を増して行くと は徐々に増大する。これは後述(段落 0073参照)するごとく温度勾配による熱起電力と磁場の相互作用によって液相を流動 させるdriving force(熱電磁気力 Thermoelectromagne tic force, TEMF)が増大するためと判断される。 【0069】

図15にそれぞれのプロセスに対するDASの比較を示す(XY横断面中心位置に おけるZ方向分布)。No.II-1(M法、15cm/h)の場合 DAS 180µ に対して、No.II-8(S+摺動電極+GCC法、40cm/h、Bz=0)、No .II-10(MV2:S+摺動電極+GCC、40cm/h、Bz=0.75T)、及

10

びΝο.ΙΙ-13(ΜV2:S+摺動電極+GCC、40cm/h、Bz=3T)では それぞれ115~120μへ微細化しており、且つ変動巾も20μmから5μmのオーダ ーに減少している。

【 0 0 7 0 】

図16には当該位置におけるNb分布の比較を示す。磁場なしのNo.II-1及びNo.II-8に対してBzを印加したNo.II-10及びNo.II-13では偏析の変動巾が大巾に改善すると同時に初期濃度(4.85wt%)へ近づいており均質性が改善されている。

【0071】

<u>考察:液相のflow patternについて</u>

段落0065で述べた如く磁場を印加しない場合、凝固界面前方のThermal fluctuationはそれぞれ±20 (No.II-1)及び±23 (No.I I-8)のオーダーであり、顕著な対流を生じ、凝固界面の形状を乱し、mushy z oneにおけるflow patternを乱す。これに対してR=40cm/h、最適 磁場(Bz=0.75T)を印加したNo.II-10においては、液相領域における流 れはほぼ軸方向に整流しVmax=1.08cm/s(No.II-1)及び0.88c m/s(No.II-8)オーダーからVmax=0.04cm/s(No.II-10))のオーダーに抑制されている。界面前方のThermal fluctuationは 消滅し、凝固界面形状は安定している。mushy zone中の流れは軸方向にほぼ整 流する(幅方向両端において若干扇型に広がる)。

【0072】

B z を印加すると、液相に作用するLorentz力(f = J x B)は水平方向に 生じ、軸方向には生じない。このとき、mushy zoneにおけるLorentz f orceおよびflow patternの概要を図17(a)および図17(b)に示 す(No.II-10)。f分布に対応してXY平面内に一つの渦と二つの半渦を生じて いる。Bz=0~0.75Tの範囲においてBzを増して行くと液相にかかるLoren tz力(図(a))に対応してmushy zone中の乱れた流れは図(b)に示すよ うな流動パターンに落ち着く、すなわち流れの乱れは消滅する。このときの水平方向速度 成分(V x 及びV y)はZ方向の速度成分Vzに比べて極小さく、凝固界面の移動速度(R = 40cm/h=0.011cm/s)に比べてもはるかに遅く、従ってマクロ偏析に はほとんど影響しない。以上が静磁場による対流抑制のメカニズムであり、これによりN bの は0.1537wt%(No.II-1)から0.0204wt%(No.II-10)へ減少した(表7参照)。本明細書では以上の磁場を低磁場と呼ぶ。 【0073】

磁場強度をBz=0.75Tから上げていくと、XY平面内、水平方向のLore ntz力は徐々に強くなる。Bz=5Tのとき、前述のMushy zone(図17で 示した位置におけるXY面)におけるLorentz力はfmax=5.82dyn/c m3(Bz=0.75T)からfmax=41.4dyn/cm3へ増大し、流速はVm ax=3.6x10⁻⁵cm/s(Bz=0.75T)からVmax=2.2x10⁻⁴ cm/sへ増す。flow patternは基本的に変わらない。液相中のflow p atternも基本的に変わらず、最大流速Vmax(No.III-10、時刻502s ec、肉厚中心YZ断面)は0.043cm/s(Bz=0.75T)から0.01cm /sへ減少する。すなわち、 が最小値(Bz=0.75T)から漸増するのはMush y zone中の有害な水平方向速度成分が漸増するためである(図12参照)。本明細 書ではこのような磁場範囲を中磁場と呼ぶこととする。

[0074]

上記mushy zone中のflow patternはdriving for ceである熱電磁力(thermoelectromagnetic force, TE MF)と電磁ブレーキカ(EMBF)、ならびに電場の強さとBzによって生じる力(xB)のバランスで決まるものであるが、本例の場合、Bz=0.75Tの低磁場か 10

ら比較的高いBz=5Tの範囲(すなわち低 - 中磁場)ではTEMFが優位に働いている 。本例の場合、 が最小値となるのはBz=0.75T付近であるから、これ以上強くす るのは実用的にも意味がないので省略する。

【 0 0 7 5 】

<u>凝固組織について</u>

結晶組織の微細化及び均一性の向上はクリープ強度の向上させるとともに、Ni基 合金において鋳造後に行う溶体化(デンドライトアームスペーシング範囲におけるミクロ 偏析あるいは '相(gamma prime)、炭化物等の第2相を 相中に固溶させる 熱処理)、及びその後に行う時効処理時間(相から '相を析出させる熱処理)を短縮で きる。例えば、溶体化の際の所要時間は概略DAS²/Ds(Dsは固相中の合金元素の 拡散係数)に比例するのでDASを1/2に小さくすれば所要時間は1/4へ減少する(非特許文献7のP.332,Eq.(10-6)参照)。

【0076】

<u>本発明の原理</u>

Mushy zoneにおける流れは液相と固相の密度差に基く凝固収縮によって 生ずる(mushy zone中の流れの扱いについてはC. 凝固解析手段において述べ たとおりであるが、ここでは凝固収縮に注目して述べる)。すなわち、流れを生ずる駆動 力は凝固収縮に伴う吸引力(suction)であり、それはデンドライトの根元から順 次先端側に伝わる。従って、 1 :固相領域の冷却能を高めmushy zoneの移 動速度Rを速くするとこの傾向は強くなり、その結果、flow patternは軸方 向への流れが強くなると考えられる。実地例1及び2のシミュレーションにおいて、強冷 しRを増すと偏析標準偏差 が小さくなるのはflow patternが軸方向に整列 化しようとすることを示すものであり上記のメカニズムの妥当性を理論的・定量的に証明 するものである。

【 0 0 7 7 】

しかしながら、すでに述べた如く、強冷しRを速くしても、凝固界面前方のヒート パルスを無くすことは出来ずmushy zone中のflow patternを乱す。 そこで 2 :少なくともmushy zone全体に対して軸方向磁場を印加すること により凝固界面へのヒートパルスを無くし、 を小さくできることを示した。すなわちm ushy zone中の流れを軸方向に整えることができる。

【0078】

上記 1 + 2 の相乗効果によりmushy zone中の流れを実質的に整 流化し、凝固を安定化することによりマクロ偏析を解消するとともに不整方位結晶欠陥の 発生を防止することが可能となる。[注:以上の原理は浮上型、沈降型あるいはこれらの 混合型にかかわらず適用される]

【0079】

<u>その他の事項</u>

(1) <u>Static Solid Cooling(SSC)について</u>

最近、Lianら(非特許文献14)は、高熱伝導率及び高熱拡散率を有するPyrol ytic Graphite(PG,熱分解グラファイト)鋳型を用いて冷却能を強化す る方法を提案している。その概略図を図18に示す。本法は熱伝達層(PG層)と断熱層 を交互に積層した固体によって鋳型を囲み、その内側にプレードの形状にフォローアップ するよう前記積層固体を配置するものである。鋳型そのものは極く薄い塗型を施されてい る。加熱と冷却はそれぞれ熱伝達層の外周に配された抵抗加熱ヒーター及び水冷により行 われる。一方向凝固は加熱 - 冷却サイクルを電気的ネットワークによって一段一段上方に 動かすことによって行われる。彼らは当該法によりGCCあるいはLMCよりもはるかに 高い冷却能が得られると述べている。

本発明による強冷手段として当該SSC法による鋳型を用いることも可能である。ただし、加熱及び冷却手段は本願発明手段による(本願発明のMV2法に当該SSC法による鋳型を用いた例を図19に示す)。

[0080]

(2)加熱手段における副ヒーターの目的は固液共存相の凝固界面温度の温度低下を防ぎ 固液共存相の軸方向温度勾配の低下を防ぐためである。

また、本明細書では印加磁場に関して、シミュレーション上固液共存相及び液相全 域に対して平行静磁場 Bzを印加したが、実操業に際しては必ずしもその必要はなく、少 なくとも固液共存相の全体に対して印加すればよい(このとき、実質的な平行磁場は凝固 界面前方のかなり広い液相領域をカバーするので問題は無い)。

【0081】

(3) 一方向凝固における冷却能に関して、明瞭な定義はないが、一例として非特許文献
 2では単純な熱伝達モデルを仮定し、大型プレードに対する熱流束Qを概略試算している
 : すなわち、Bridgeman法の場合Q=60kW/m²(弱冷)に対して;溶融錫
 を用いたLMC法の場合Q=86kW/m²;GCC法の場合Q=101kW/m²。本
 明細書ではLMC、GCC、及び前記SSC法鋳型による冷却を強冷と呼ぶこととする。

静磁場の強度に関しても同様明瞭な定義はないが、本明細書では段落0035、0061、0072、及び0074において述べた磁場(いずれも1T以下)を低磁場;段落0073において述べた磁場(1~約3T)を中磁場と呼ぶこととする。ただし、これらの境界について明確な定義は無い。

【0082】

(4)その他凝固に及ぼす要因として、鋳物のサイズ・形状(断面の拡大・縮小)、断熱 バッフルの厚さ等が指摘される。固液共存相の形はこれらの鋳造条件によって決まるが、 出来るだけフラットであることが望ましい。これらの事項についてはCPROシミュレー ションを行い凝固界面の移動速度、加熱・冷却条件などを調整すればよい(後述の凝固監 視システム参照)。

【0083】

(5)本明細書ではバンド状偏析について述べたがマクロ偏析は合金の成分、ブレードの サイズ・形状、鋳造パラメータ等によって様々な形態を呈するものであり、究極的にはm ushy zoneにおけるflow patternによって決まる。どんな形態を取る にせよ液相における対流を抑制してヒートパルスを無くしmushy zoneにおける flow patternを実質的に整流化することによりこれらの欠陥をなくすことが できるので本発明の知見は一方向凝固におけるマクロ偏析に対して一般性・普遍性を有す るものである。異方位結晶欠陥についても同様の効果を有する。

[0084]

<u>まとめ</u>

本発明によるMV1法及びMV2法の特徴・メリットをまとめると以下の通りであ る。(Ni基合金SXまたはDSタービンブレードの一方向凝固に関して述べる) (1)<u>マクロ偏析及び異方位結晶欠陥の解消</u>:固相領域を強冷却するとともに凝固界面の 移動速度を速くし、軸方向静磁場(Bz)を印加することにより液相における対流が鎮静 化し、凝固界面にもたらされるヒートパルスが無くなる。これらの相乗効果により固液共 存相における有害な横方向液相流れが抑制され、軸方向に整流化される。これによってマ クロ偏析が解消されるとともに凝固が安定するので異方位結晶欠陥発生の原因が除かれる。 【0085】

その際、比較的低い静磁場領域において磁場を増して行くとマクロ偏析標準偏差が最少と なる領域が存在することが見出され、それ以上磁場強度を上げて行くと効果はあるものの 無駄なエネルギーレベルになってしまうことがわかった。この効果は本発明によってはじ めて明らかにされた発見であり、これにより所要磁場強度を低く抑えることができるよう になった。[段落0021で述べた如くmushy zone中の液相流れが軸方向に整 流化するとマクロ偏析を生じない(非特許文献7のp.252,Fig.7-35参照)] 【0086】

(2)<u>結晶組織の微細化・均質化</u>:上記軸方向静磁場(Bz)と固相領域の強冷による相 乗効果により結晶組織を微細且つ均質化することができるので、鋳造後に行う溶体化熱処 10

10

20

30

40

理時間を大巾に短縮することができる(生産性の向上)。

(3)経済性、生産性の向上:従来の単なるM法に比べて、はるかに小さい軸方向静磁場 (Bz)で効果を発揮するので高価な超伝導コイルの価格を大巾に低減することができる。 。また、引出速度の向上により生産性を上げることができる。 【0087】

上記の特徴・メリットは、従来の単なるM法(本願発明者の特許文献3及び非特許 文献6記載の標準ブリッジマン法+Bz法)に比べて、大きく進歩した改良点であり、本 願において初めて明らかにされた知見である。

[0088]

以上のごとくマクロ偏析あるいは異方位結晶欠陥が無くクリープ破断強度に優れた 高品質タービンブレードを効率的に製造することができる。尚、固相領域の冷却能とBz を調整することにより所望の結晶組織(DAS)を得ることができることを付記しておく 。また、本実施例では強冷方法としてGCC法を用いたが、ほぼ同等の冷却能を有するL MC法、あるいは、さらに高い冷却能を有するStatic Solid Cooling 法による鋳型を用いても同様の効果が得られることは原理的に明らかである。

【 0 0 8 9 】

<u>リアルタイム凝固監視システム</u>

本発明は所定の鋳造パラメータ(操業パラメータ)に基づいて一方向凝固を行うに 際して、凝固状況を監視するためのリアルタイム凝固監視システムを備える。これにより 製品ごとに高品質ブレードを製造するための最適鋳造条件を短期間に効率よく確立するこ とができる。そこで、図20に凝固シミュレーションシステムCPROを組み込んだ当該 凝固監視システムの概要を示す。

【0090】

図20において、61は検出部であり、後述する操業パラメータそれぞれの検出を 行ってデータとして出力するものである。また、62はコンピュータであって、前記検出 部61より出力されたデータを入力条件として本実施例1及び2で詳しく述べたCPRO による凝固シミュレーションを行い、凝固状態を画像化して観察出来るように処理する機 能を有する。

【0091】

63及び64は当該コンピュータ62に接続されたモニター装置であってモニター 装置63は操業パラメータの表示に、また、モニター装置64は凝固シミュレーション結 果の画像表示に供される。

【0092】

図20の検出部61における操業パラメータの測定項目は以下の通りである。

MV1法の場合:

- ・主ヒーター及び副ヒーターへの電力及び温度
- ・鋳型及び鋳物各部の温度(鋳型は動くので熱電対による測定は難しい)
- ・GCCによる鋳型表面熱伝達係数またはLMCによる溶融金属浴の温度
- ・水冷チルジャケットの水量、水温、チル表面温度
- ・鋳型の引出速度
- ・超伝導マグネットまたは電磁マグネットの電圧、電流及び静磁場強さ
- ・真空容器の真空度

MV2法の場合:

- ・主ヒーター及び副ヒーターへの電力及び温度
- ・鋳型及び鋳物各部の温度(鋳型は静止しているので熱電対による測定は可能)
- ・GCCによる鋳型表面熱伝達係数及び温度
- ・水冷チルジャケットの水量、水温、チル表面温度
- ・摺動システムの移動速度
- ・超伝導マグネットまたは電磁マグネットの電圧、電流及び静磁場強さ

・真空容器の真空度

[0093]

リアルタイム凝固状況監視項目は以下の通りである。

・鋳物及び鋳型各部の温度

・凝固界面における温度勾配及び固液共存相の形

・DAS分布

・液相流速+偏析+固相率重ね合せ表示によりマクロ偏析の有無をモニター

・マクロ組織表示により異方位結晶欠陥の有無等をモニター

【0094】

<u>凝固監視システムの運用方法</u>

これにより時々刻々変化する凝固現象を可視化できるのでブラックボックスとして 今まで分からなかった凝固現象、すなわち、温度変化・温度分布、固液共存相の形、液相 及び固液共存相における液相流れの様相、マクロ偏析が形成される様子などをリアルタイ ムで観察することが可能となるので凝固現象を深く理解することができる。

従って、従来の試行錯誤的あるいは実験計画法による鋳造実験回数を最小あるいは 無くすことができるので、当該実験に掛る過大な時間と費用を大幅に削減することができ る。

[0095]

上記運用方法の要点は以下の通り。

(1)実測データに基づいているのでシミュレーションの精度は高い。

(2)本システムは生産現場(on-site computer)及び遠隔場所(of f-site computer)の両方に設置することにより、現場ではリアルタイム 監視するとともに研究室などの遠隔場所での研究・開発に利用される。

(3) 製品ごとに最適鋳造条件(前記操業パラメータ)を求める。

【産業上の利用可能性】

[0096]

本発明ではNi - Al合金及びIN718Ni基超合金について述べたが本発明は 凝固過程においてデンドライトあるいはセル組織を生ずる合金系、例えば、Ni基超合金 、チタ

ン合金、Co基合金、Fe基合金等に対して同様の凝固現象と効果を発揮することは原理

30

40

10

20

的に明らかである。従ってこれらの合金系は本発明の適用対象となる。

【0097】

以上の如く、本願発明によればN i 基超合金タービンブレード等の各種タービンブ レードの高品質一方向凝固鋳物あるいはインゴットの製造を可能にし、これら重要部品の 安全性、長寿命化及びガスタービンの効率向上による省エネルギー及び温暖化対策に大い に貢献できるようになる。すなわち、発電用ガスタービンの燃焼効率を上げるための最も 有効な手段はタービンの燃焼ガス入口温度を上げることであることは広く知られており、 本願発明は過酷な使用環境に耐える大型単結晶ブレードの実用化を可能にすることにより 燃焼ガス入口温度を上げることが出来る(ブレード材の単結晶化による融点の向上、クリ ープ強度の向上等による効果)。

一方、航空機用ジェットエンジンの分野においては、Ni基超合金単結晶タービン ブレードが実用されているが、本願発明を適用することにより鋳造歩留りをさらに向上さ せることが可能となり、燃料効率、CO2削減に貢献するものである。 【符号の説明】

[0098]

- -1 鋳型
- 2 鋳物またはインゴット(溶融金属)
- 3 セレクタ
- 4 冷却チル(水冷チル)

5 a 主ヒーター 5 b 副ヒーター 6 断熱スリーブ 7 断熱上蓋 8 注湯口 9 断熱バッフル 10 誘導溶解炉 11 冷却ガス噴出ノズル 12 冷却ガス吸込み口 13 冷却ガス循環ポンプシステム 14 超伝導コイル 15 真空ポンプ 16 真空容器 17 外筒 18 溶融金属浴 19 ステンレススチールチル 20 溶融金属浴容器 2.1 鋳型引出アーム(ステンレススチール) 22 断熱層(アルミナビーズ) 23 攪拌器 2.4 下注誘導溶解炉 [0099]25 MV2法のための主ヒーター 26 MV2法のための断熱スリーブ 27 MV2法のための主ヒーター摺動接触端子 28 MV2法のための主ヒーターブラシ 29 MV2法のための主ヒーター電源 30 MV2法のための副ヒーター 3 1 MV2法のための副ヒーター用銅ケーブル 32 MV2法のための副ヒーター電源 3 3 M V 2 法のための断熱バッフル 34 MV2法のための冷却ガス導入パイプ 35 MV2法のための冷却ガスノズル 36 MV2法のための冷却ガス吸込口 37 MV2法のための冷却ガス循環ポンプシステム 38 MV2法のための真空ポンプ 39 MV2法のための外筒 40 MV2法のための超伝導コイルまたは電磁石 [0100]61 一方向凝固装置の検出部 62 システムコンピュータ(オンサイト/オフサイト) 63 操業パラメータの表示用モニター

64 凝固シミュレーション結果の画像表示用モニター

10

20

30

【要約】

【選択図】図1

【課題】ジェットエンジンや発電用ガスタービン用ブレードの一方向凝固過程において発 生するマクロ偏析、異方位結晶欠陥等の鋳造欠陥を無くす。

【解決手段】上記鋳造欠陥の発生のメカニズムを明らかにし、固相領域を強冷するととも に軸方向静磁場を印加しこれらの相乗効果により、液相の対流による凝固界面へのヒート パルスを抑制し、固液共存相中の有害な横方向液相流れを抑制できることを明らかにした 。これによりマクロ偏析、異方位結晶欠陥等の鋳造欠陥を無くすとともに凝固組織を微細 化することにより機械的性質(クリープ強度)に優れた高品質の製品を作ることができる 。静磁場の強度に関して、比較的低い磁場領域においてマクロ偏析が極小となる領域が存 在することがわかった。これにより、所要磁場強度を低く抑えることが可能となり、高価 な超伝導コイルの価格を大幅に下げることができる。また、引出速度を速くすることによ り生産性を上げることができる。

10

40

JP 7112638 B1 2022.8.4

Control

(36)

【図面】 【図1】

【図2】

(37)

10

20

【図4】

30

【図5】

【図6】

【図7(b)】

20

10

30

9.823 - 10.027

9.721-9.823 負偏析

【図9】 (a)

- (a) 標準プリッジマン法、磁場なしの場合のヒートバルスの1例(計算 No.I-1)。
 厚さ方向中央縦断面、時刻 t−Δt ~ t における温度変化 ΔT (℃)で表す
 (t=5469sec、Δt=2sec)。ΔT の最大値 10.65℃-最小値-4.84℃間を 10 等分した等高線。矢印で示す破線は対流の概略流線。水平方向の破線は固波共存層(固相率 0.1-0.9) を示す。ZB はインゴット底面からパッフルまでの高さ
 (b) (a)の固波共存相における液相の流動バターン(計算 No.I-1)
- (e) MV1 法による固被共存相における液相の流動パターン(計算 No.I-6、中心縦 断面、time=2877sec、Bz=1T、H_{GCC}=1800 W/(m²K)、R=30 cm/h)

【図10】

【図8】

【図11】

10

カラー

IN718短尺ブレードのDASに及ぼす静磁場の影響 (M法) (横断面中心Z方向)

No.II-1 Std Bridgeman 15cm/h Bz=0

----No.II-6 Std Bridgeman 15cm/h Bz=3T

Z, cm

No.II-3 Std Bridgeman 15cm/h Bz=0.75T

【図12】

【図14】

20

【図19】

Y ↑

 z^{\bullet}

> x

zone における flow-pattern の模式図

IN718 ブレードー方向凝固に及ぼす軸方向静磁場の効果 (X,Y)平面における (a) Lorentz 力 f の模式図、および (b) mushy

(No. II-10, at K=37(middle position in Z-dir), time=502se, 固相率=0.45, fmax=5.82dyn/cm3, vmax=3.6e-5cm/s)

【図20】

フロントページの続き

(56)参考文献 国際公開第2007/126114(WO,A1)
米国特許出願公開第2014/0127032(US,A1)
米国特許出願公開第2014/0290896(US,A1)
米国特許出願公開第2010/0132906(US,A1)
特開昭57-184572(JP,A)
米国特許出願公開第2020/0180019(US,A1)
Yuanyuan Lian et al., Static solid cooling: A new directional solidification technique, Jour nal of Alloys and Compounds, ELSEVIER, 2016年, vol.687, pp.674-682, http://dx.doi.org/10.1016/j.jallcom.2016.06.165
(58)調査した分野 (Int.Cl., DB名)

B22D 27/04