
(12) STANDARD PATENT (11) Application No. AU 2018395933 B2 
(19) AUSTRALIAN PATENT OFFICE 

(54) Title 
Content management client synchronization service 

(51) International Patent Classification(s) 
G06F 16/178 (2019.01) 

(21) Application No: 2018395933 (22) Date of Filing: 2018.12.17 

(87) WIPO No: WO19/133321 

(30) Priority Data 

(31) Number (32) Date (33) Country 
15/868,518 2018.01.11 US 
15/868,489 2018.01.11 us 
15/868,511 2018.01.11 us 
62/611,473 2017.12.28 us 
15/868,505 2018.01.11 us 

(43) Publication Date: 2019.07.04 
(44) Accepted Journal Date: 2021.04.01 

(71) Applicant(s) 
Dropbox, Inc.  

(72) Inventor(s) 
GOLDBERG, lsaac;JAYAKAR, Sujay;LAI, John;YING, Robert;KOORAPATI, 
Nipunn;GUPTA, Gautam;SONG, Geoffry;JUBB, Elmer Charles 

(74) Agent / Attorney 
FPA Patent Attorneys Pty Ltd, ANZ Tower 161 Castlereagh Street, Sydney, NSW, 2000, 
AU 

(56) Related Art 
S UPPOOR et al: "Cloud Based Synchronization of Distributed File System 
Hierarchies", Cluster Computing Workshops and Posters, 20 September 2010



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) 

(19) World Intellectual Property 
(1) Organization11111111111111111111111I1111111111111ii111liiili 

International Bureau (10) International Publication Number 

(43) International Publication Date W O 2019/133321 Al 
04 July 2019 (04.07.2019) W IPO I PCT 

(51) InternationalPatent Classification: (84) Designated States (unless otherwise indicated, for every 
G06F 16/178 (2019.0 1) kind of regional protection available): ARIPO (BW, GH, 

(21) International Application Number: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 

PCT/US2018/065940 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 

(22) International Filing Date: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 
17 December 2018 (17.12.2018) MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 

(25) Filing Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 
KM, ML, MR, NE, SN, TD, TG).  

(26) Publication Language: English 
Published: 

(30)PriorityData: 28 December 2017 (28.12.2017) U with international search report (Art. 21(3)) 

15/868,518 11 January 2018 (11.01.2018) US 
15/868,489 11 January 2018 (11.01.2018) US 
15/868,511 11 January 2018 (11.01.2018) US 
15/868,505 11 January 2018 (11.01.2018) US 

(71) Applicant: DROPBOX, INC. [US/US]; 333 Brannan 
Street, San Francisco, CA 94107 (US).  

(72) Inventors: GOLDBERG, Isaac; Dropbox, Inc., 333 Bran
nan Street, San Francisco, CA 94107 (US). JAYAKAR, 
Sujay; Dropbox, Inc., 333 Brannan Street, San Francis
co, CA 94107 (US). LAI, John; Dropbox, Inc., 333 Bran
nan Street, San Francisco, CA 94107 (US). YING, Robert; 
Dropbox, Inc., 333 Brannan Street, San Francisco, CA 
94107 (US). KOORAPATI, Nipunn; Dropbox, Inc., 333 
Brannan Street, San Francisco, CA 94107 (US). GUPTA, 
Gautam;Dropbox, Inc., 333 Brannan Street, SanFrancisco, 
CA 94107 (US). SONG, Geoffry; Dropbox, Inc., 333 Bran
nan Street, San Francisco, CA 94107 (US). JUBB, Elmer 
Charles; Dropbox, Inc., 333 Brannan Street, SanFrancisco, 
CA 94107 (US).  

(74) Agent: MCKNIGHT, Brian; Polsinelli PC, 1401I Street, 
NW, Suite 800, Washington, DC 20005 (US).  

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 
KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.  

(54) Title: CONTENT MANAGEMENT CLIENT SYNCHRONIZATION SERVICE 

(57) Abstract: The disclosed technology relates to a system configured to identify at least one difference between a sync tree and 
at least one of a remote tree and a local tree. The sync tree represents a known synced state between a server state and a file system 
state, the remote tree represents the server state, and the local tree represents the file system state. The system may further generate, 
based on the at least one difference, a set of operations configured to converge the server state and the file system state and manage 

CAthe execution of the set of operations.



1003371423 

CONTENT MANAGEMENT CLIENT SYNCHRONIZATION SERVICE 

CROSS-REFERENCE TO RELATED APPLICATIONS 

[1] This application claims the priority to U.S. non-provisional application 15/868,489 

filed on January 11, 2018, U.S. non-provisional application 15/868,518 filed on January 

11, 2018, U.S. non-provisional application 15/868,511 filed on January 11, 2018, U.S. non

provisional application 15/868,505 filed on January 11, 2018 and to U.S. provisional 

application number 62/611,473, filed on December 28, 2017, all of which are expressly 

incorporated by reference herein in its entirety.  

BACKGROUND 

[2] Content management systems allow users to access and manage content items 

across multiple devices using a network. Some content management systems may allow 

users to share content items and provide additional features that aid users in collaborating 

using the content items. Content management systems generally store content items on 

servers and allow users access to the content items over a network. Some content 

management systems also allow for local copies to be stored on a client device in order to 

provide users with faster access to content items in a more natural interface (e.g., a native 

application or within the file system of the client device). Additionally, this allows the user 

to have access to the content items when the user is offline. Content management systems 

attempt to synchronize copies of a content item across a number of client devices and the 

servers so that each copy is identical. However, synchronization of content items is 

difficult and is associated with numerous technical obstacles.  

SUMMARY 

[2a] By way of clarification and for avoidance of doubt, as used herein and except 

where the context requires otherwise, the term "comprise" and variations of the term, such 

as "comprising", "comprises" and "comprised", are not intended to exclude further 

additions, components, integers or steps.  

[2b] According to a first aspect of the invention there is provided a system comprising: 

a processor; and a computer-readable medium storing instructions that, when executed by 

1



1003371423 

the processor, cause the processor to: generate a comparison between a sync tree and at 

least one of a remote tree and a local tree, wherein the remote tree represents a server 

state during a first time period and the local tree represents a file system state during the 

first time period, and wherein the sync tree represents a synced state between the server 

state and the file system state during a previous time period; identify, based on the 

comparison, at least one difference between a sync tree and at least one of a remote tree 

and a local tree; generate a set of operations based on the at least one difference, wherein 

the set of operations is configured to converge the server state and the file system state; 

and manage execution of the set of operations.  

[2c] According to second aspect of the invention there is provided a computer readable 

medium comprising instructions, the instructions, when executed by a computing system, 

cause the computing system to: compare a remote tree and a sync tree, wherein the 

remote tree represents a server state during a first time period, and wherein the sync tree 

represents a synced state between the server state and a file system state for content items 

stored on the computing system during a previous time period; determine, based on the 

comparison, at least one difference between the remote tree and the sync tree, the at least 

one difference indicating that the server state and the file system state are out of sync; 

generate, based on the determined at least one difference, a set of operations for the 

content items stored on the computing system, wherein the set of operations is configured 

to operate on the content items stored on the computing system to converge the server 

state and the file system state.  

[2d] According to a third aspect of the invention there is provided a computer readable 

medium comprising instructions, the instructions, when executed by a computing system, 

cause the computing system to: obtain a set of tree data structures including a remote tree 

representing a server state of content items associated with a user account on a content 

management system during a current time period, a local tree representing a file system 

state of content items associated with the user account on a client device during the 

current time period, and a sync tree representing a known sync state during a previous 

time period where the local tree and the remote tree were identical, wherein the sync tree 

matches the local tree and the remote tree at the previous time period; and between the 

content management system and the client device, wherein at the known sync state the 

la



1003371423 

content items associated with the user account on the content management system are 

synchronized with the content items associated with the user account on the client device; 

and determine that the user account on the content management system includes at least 

one modification not synchronized to the client device by comparing the remote tree and 

the sync tree.  

[2e] According to a fourth aspect of the invention there is provided a computer

implemented method for synchronizing modifications to a user account on a content 

management system to a client device authorized to access the user account, the method 

comprising: computing a difference between a remote tree data structure representing a 

server state for content items associated with the user account on the content management 

system and a sync tree data structure representing a known synchronization state between 

the content management system and the client device; and generating, based on the 

difference, a set of operations that when performed on the client device update the 

content items stored on the client device to converge a file system state on the client 

device and the server state.  

[211 According to a fifth aspect of the invention there is provided a computer

implemented method for synchronizing modifications to content items on a client device 

to a user account on a content management system, the method comprising: computing a 

difference between a local tree data structure representing a file system state for content 

items associated with the user account on the client device and a sync tree data structure 

representing a known synchronization state between the content management system and 

the client device; and generating, based on the difference, a set of operations that when 

performed update the content items stored on the content management system to 

converge a server state for content items associated the user account on the content 

management system and the file system state.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[3] The above-recited and other advantages and features of the present technology will 

become apparent by reference to specific implementations illustrated in the appended 

drawings. A person of ordinary skill in the art will understand that these drawings only 

show some examples of the present technology and would not limit the scope of the present 

lb



1003371423 

technology to these examples. Furthermore, the skilled artisan will appreciate the 

principles of the present technology as described and explained with additional specificity 

and detail through the use of the accompanying drawings in which: 

ic



WO 2019/133321 PCT/US2018/065940 

[4] FIG. 1 shows an example of a content management system and client devices, 

in accordance with some embodiments; 

[5] FIG. 2 shows an example of a client synchronization service, in accordance 

with some embodiments; 

[6] FIG. 3 shows an example of tree data structures, in accordance with various 

embodiments; 

[7] FIG. 4 shows an example of tree data structures, in accordance with various 

embodiments; 

[8] FIG. 5 shows an example method for synchronizing a server state and a file 

system state using tree data structures, in accordance with various embodiments of the 

subject technology; 

[9] FIG. 6 shows an example method for resolving conflicts when synchronizing a 

server state and a file system state using tree data structures, in accordance with 

various embodiments of the subject technology; 

[10] FIG. 7 shows an example of tree data structures illustrating a violation of a 

rule for an add operation, in accordance with various embodiments; 

[11] FIG. 8 shows an example method for incrementally converging a server state 

and a file system state, in accordance with various embodiments of the subject 

technology; 

[12] FIG. 9 shows an example of tree data structures, in accordance with various 

embodiments; 

[13] FIG. 10 shows an example scenario; 

[14] FIG. 11 shows an example Venn diagram representation of two plans of 

operations, in accordance with various embodiments of the subject technology; 

[15] FIG. 12 shows an example method for managing changes in plans of 

operations, in accordance with various embodiments of the subject technology; 

[16] FIG. 13 shows an illustration of a filename array and a hash index array, in 

accordance with various embodiments of the subject technology; 

[17] FIG. 14 shows an example method for storing a filename, in accordance with 

various embodiments of the subject technology; 

2



WO 2019/133321 PCT/US2018/065940 

[18] FIG. 15 shows an example method for retrieving a location of a filename 

given the filename, in accordance with various embodiments of the subject 

technology; 

[19] FIGS. 16A and 16B show examples of tree data structures, in accordance with 

various embodiments; 

[20] FIG. 17 shows an example of tree data structures, in accordance with various 

embodiments; 

[21] FIG. 18 shows an example method for retrieving a location of a filename 

given the filename, in accordance with various embodiments of the subject 

technology; and 

[22] FIG. 19 shows an example of a system for implementing certain aspects of the 

present technology.  

DETAILED DESCRIPTION 

[23] Various examples of the present technology are discussed in detail below.  

While specific implementations are discussed, it should be understood that this is 

done for illustration purposes only. A person skilled in the relevant art will recognize 

that other components and configurations may be used without parting from the spirit 

and scope of the present technology.  

[24] Various advances in computing and networking technologies have enabled 

content management systems to provide users with access to content items across 

multiple devices. The content items may include, but are not limited to, files, 

documents, messages (e.g., email messages or text messages), media files (e.g., 

photos, videos, and audio files), folders containing other content items, or any other 

unit of content. Content items may be shared with multiple users, edited, deleted, 

added, renamed, or moved. However, synchronizing these content items across 

several computing devices (e.g., servers and client devices) and across several user 

accounts has remained flawed and rife with technological obstacles.  

[25] To illustrate some of the technical obstacles, a first machine (e.g., a client 

device or server) may send communications to a second machine that provides 

information about how a user has modified content items managed by the content 

management system. These communications may be used by the second machine to 

3



WO 2019/133321 PCT/US2018/065940 

synchronize the content items on the second machine such that actions performed on 

content items on the first machine are reflected in content items on the second 

machine and the content items on the first machine are substantially identical to the 

content items on the second machine.  

[26] However, there may be several communications sent and the communications 

may be received out of order as a result of various network routing protocols used by 

the one or more networks used to transmit the communications, the technical 

operations of the first or second machine, or some other reason. Furthermore, a user 

may be performing a large number of modifications to a large number of content 

items, undo previous modifications in a short amount of time, or quickly perform 

additional modifications to a previously modified content item or set of content items.  

This increases the likelihood that these communications are received out of order, 

certain communications are out of date, or that the second machine will perform 

operations on content items that are not up to date. As a result, many of the 

operations may not be compatible with the current state of the content items. In fact, 

it may be difficult to even detect whether some operations are in conflict with other 

operations or with the current state of the content items.  

[27] Additionally, there is an inherent latency with respect to synchronization 

actions. For example, actions taken on the first machine are first detected by the first 

machine, and a communication is generated and then transmitted through a network.  

The communication is received by the second machine, which may still be processing 

previous communications and taking actions detailed in the communications. In this 

illustrative scenario, there are several points where latency is introduced by limited 

computing resources (e.g., bandwidth, memory, processing time, processing cycles, 

etc.) of the first machine, the second machine, and/or the network. As latency 

increases the likelihood that communications, for some reason, conflict with the 

current state of the content items are increased. Furthermore, processing these 

conflicted communications and resolving the conflicts also expends needless 

computing resources such as processing time, memory, energy, or bandwidth and 

further increases latency.  

[28] To further complicate matters, the same or different user on the second 

machine and/or additional machines with access to the content items may also be 

performing modification to the content items. As a result, the issues above may be 

4



WO 2019/133321 PCT/US2018/065940 

multiplied and additional technical issues arise as to whether local actions conflict 

with remote actions and/or whether local actions are operating on up to date content 

items.  

[29] The disclosed technology addresses the need in the art for a client 

synchronization service for a content management system that provides a technical 

solution to the technical problems above as well as others. The client synchronization 

service may be configured to operate on a client device and identify synchronization 

mismatches between content items on a server of the content management system and 

corresponding content items on the client device. For each synchronization 

mismatch, the client synchronization service may identify operations needed to 

synchronize the content items and initiate those operations.  

[30] The client synchronization service may track the status of content items on the 

server, the status of content items on the client device, and their synchronization state 

using a set of tree data structures ("trees"). According to some embodiments, a set of 

3 trees may be used. The three trees may include a remote tree that represents a 

server state, a local tree that represents the file system state on the client device, and a 

sync tree that represents a merge base for the local tree and the remote tree. The 

merge base may be thought of as a common ancestor of the local tree and the remote 

tree or a last known synced state between the local tree and the remote tree.  

Accordingly, the client synchronization service may determine that the server state 

and the client device state are synchronized when all 3 trees (e.g., the remote tree, the 

sync tree, and the local tree) are identical.  

[31] When a modification to the server state of the content items or the client 

device file system state ("file system state") of the content items is detected, the client 

synchronization service updates the appropriate tree and determines whether the 

server state and the file system state are synchronized based on the triumvirate of 

trees. Based on the update to one of the trees, the server state and the file system state 

may become synchronized, become unsynchronized, or become further 

unsynchronized. If the server state and the file system state are not synchronized, the 

client synchronization service may identify at least an initial set of operations needed 

to converge the server state and the file system state and get the server state and the 

file system state closer to a synchronized state.  

5



WO 2019/133321 PCT/US2018/065940 

[32] By relying on the set of tree data structures to monitor the server state and the 

file system state provides alternatives and/or solutions rooted in computing 

technology to various technical problems. For example, the client synchronization 

service is able to track the server state as well as the file state and store a 

representation of a merge base of the two states. As a result, the various embodiments 

of the subject technology avoid the technical problems associated with receiving a 

number of communications specifying how users are modifying content items 

remotely and determining which order these modifications should be implemented 

locally, whether the modifications conflict with other modifications or are out of date, 

and whether remote modifications conflict with local modifications performed locally 

by users. Many of these issues arise from other solutions not being able to track the 

state of the various actors involved (e.g., the server and the client device) and not 

being able to quickly determine whether the states are in sync. Instead, these other 

solutions rely on receiving instructions on how to modify content items locally, 

without the context of whether the server state and file system state are in sync.  

[33] Furthermore, since the server state and the file system state are continuously 

monitored, determining whether they are synced is much more efficient in terms of 

procedural complexity as well as computing time and resources. As is described in 

further detail below, the client synchronization service enables the incremental and 

methodical synchronization of the server state and the file system state in a more 

deterministic manner. As a result, the scaling and testing of content management 

system features is also more efficient.  

Content Management System 

[34] In some embodiments, the disclosed technology is deployed in the context of a 

content management system having content item synchronization capabilities and 

collaboration features, among others. An example system configuration 100 is shown 

in FIG. 1A, which depicts content management system 110 interacting with client 

device 150.  

[35] Accounts 

[36] Content management system 110 can store content items in association with 

accounts, as well as perform a variety of content item management tasks, such as 

retrieve, modify, browse, and/or share the content item(s). Furthermore, content 

6



WO 2019/133321 PCT/US2018/065940 

management system 110 can enable an account to access content item(s) from 

multiple client devices.  

[37] Content management system 110 supports a plurality of accounts. An entity 

(user, group of users, team, company, etc.) can create an account with content 

management system, and account details can be stored in account database 140.  

Account database 140 can store profile information for registered entities. In some 

cases, profile information for registered entities includes a username and/or email 

address. Account database 140 can include account management information, such as 

account type (e.g. various tiers of free or paid accounts), storage space allocated, 

storage space used, client devices 150 having a registered content management client 

application 152 resident thereon, security settings, personal configuration settings, etc.  

[38] Account database 140 can store groups of accounts associated with an entity.  

Groups can have permissions based on group policies and/or access control lists, and 

members of the groups can inherit the permissions. For example, a marketing group 

can have access to one set of content items while an engineering group can have 

access to another set of content items. An administrator group can modify groups, 

modify user accounts, etc.  

[39] Content Item Storage 

[40] A feature of content management system 110 is the storage of content items, 

which can be stored in content storage 142. Content items can be any digital data 

such as documents, collaboration content items, text files, audio files, image files, 

video files, webpages, executable files, binary files, etc. A content item can also 

include collections or other mechanisms for grouping content items together with 

different behaviors, such as folders, zip files, playlists, albums, etc. A collection can 

refer to a folder, or a plurality of content items that are related or grouped by a 

common attribute. In some embodiments, content storage 142 is combined with other 

types of storage or databases to handle specific functions. Content storage 142 can 

store content items, while metadata regarding the content items can be stored in 

metadata database 146. Likewise, data regarding where a content item is stored in 

content storage 142 can be stored in content directory 144. Additionally, data 

regarding changes, access, etc. can be stored in server file journal 148. Each of the 

various storages/databases such as content storage 142, content directory 144, server 

7



WO 2019/133321 PCT/US2018/065940 

file journal 148, and metadata database 146 can be comprised of more than one such 

storage or database and can be distributed over many devices and locations. Other 

configurations are also possible. For example, data from content storage 142, content 

directory 144, server file journal 148, and/or metadata database 146 may be combined 

into one or more content storages or databases or further segmented into additional 

content storages or databases. Thus, content management system 110 may include 

more or less storages and/or databases than shown in FIG. 1.  

[41] In some embodiments, content storage 142 is associated with at least one 

content storage service 116, which includes software or other processor executable 

instructions for managing the storage of content items including, but not limited to, 

receiving content items for storage, preparing content items for storage, selecting a 

storage location for the content item, retrieving content items from storage, etc. In 

some embodiments, content storage service 116 can divide a content item into smaller 

chunks for storage at content storage 142. The location of each chunk making up a 

content item can be recorded in content directory 144. Content directory 144 can 

include a content entry for each content item stored in content storage 142. The 

content entry can be associated with a unique ID, which identifies a content item.  

[42] In some embodiments, the unique ID, which identifies a content item in 

content directory 144, can be derived from a deterministic hash function. This 

method of deriving a unique ID for a content item can ensure that content item 

duplicates are recognized as such since the deterministic hash function will output the 

same identifier for every copy of the same content item, but will output a different 

identifier for a different content item. Using this methodology, content storage 

service 116 can output a unique ID for each content item.  

[43] Content storage service 116 can also designate or record a content path for a 

content item in metadata database 146. The content path can include the name of the 

content item and/or folder hierarchy associated with the content item. For example, 

the content path can include a folder or path of folders in which the content item is 

stored in a local file system on a client device. While content items are stored in 

content storage 142 in blocks and may not be stored under a tree like directory 

structure, such directory structure is a comfortable navigation structure for users.  

Content storage service 116 can define or record a content path for a content item 

wherein the "root" node of a directory structure can be a namespace for each account.  

8



WO 2019/133321 PCT/US2018/065940 

Within the namespace can be a directory structure defined by a user of an account 

and/or content storage service 116. Metadata database 146 can store the content path 

for each content item as part of a content entry.  

[44] In some embodiments the namespace can include additional namespaces 

nested in the directory structure as if they are stored within the root node. This can 

occur when an account has access to a shared collection. Shared collections can be 

assigned their own namespace within content management system 110. While some 

shared collections are actually a root node for the shared collection, they are located 

subordinate to the account namespace in the directory structure, and can appear as a 

folder within a folder for the account. As addressed above, the directory structure is 

merely a comfortable navigation structure for users, but does not correlate to storage 

locations of content items in content storage 142.  

[45] While the directory structure in which an account views content items does not 

correlate to storage locations at content management system 110, the directory 

structure can correlate to storage locations on client device 150 depending on the file 

system used by client device 150.  

[46] As addressed above, a content entry in content directory 144 can also include 

the location of each chunk making up a content item. More specifically, the content 

entry can include content pointers that identify the location in content storage 142 of 

the chunks that make up the content item.  

[47] In addition to a content path and content pointer, a content entry in content 

directory 144 can also include a user account identifier that identifies the user account 

that has access to the content item and/or a group identifier that identifies a group 

with access to the content item and/or a namespace to which the content entry 

belongs.  

[48] Content storage service 116 can decrease the amount of storage space required 

by identifying duplicate content items or duplicate blocks that make up a content item 

or versions of a content item. Instead of storing multiple copies, content storage 142 

can store a single copy of the content item or block of the content item and content 

directory 144 can include a pointer or other mechanism to link the duplicates to the 

single copy.  

9



WO 2019/133321 PCT/US2018/065940 

[49] Content storage service 116 can also store metadata describing content items, 

content item types, folders, file path, and/or the relationship of content items to 

various accounts, collections, or groups in metadata database 146, in association with 

the unique ID of the content item.  

[50] Content storage service 116 can also store a log of data regarding changes, 

access, etc. in server file journal 148. Server file journal 148 can include the unique 

ID of the content item and a description of the change or access action along with a 

time stamp or version number and any other relevant data. Server file journal 148 can 

also include pointers to blocks affected by the change or content item access. Content 

storage service can provide the ability to undo operations, by using a content item 

version control that tracks changes to content items, different versions of content 

items (including diverging version trees), and a change history that can be acquired 

from the server file journal 148.  

[51] Content Item Synchronization 

[52] Another feature of content management system 110 is synchronization of 

content items with at least one client device 150. Client device(s) can take different 

forms and have different capabilities. For example, client device 1501 is a computing 

device having a local file system accessible by multiple applications resident thereon.  

Client device 1502 is a computing device wherein content items are only accessible to 

a specific application or by permission given by the specific application, and the 

content items are typically stored either in an application specific space or in the 

cloud. Client device 1503 is any client device accessing content management system 

110 via a web browser and accessing content items via a web interface. While 

example client devices 1501, 1502, and 1503 are depicted in form factors such as a 

laptop, mobile device, or web browser, it should be understood that the descriptions 

thereof are not limited to devices of these example form factors. For example a 

mobile device such as client 1502 might have a local file system accessible by 

multiple applications resident thereon, or client 1502 might access content 

management system 110 via a web browser. As such, the form factor should not be 

considered limiting when considering client 150's capabilities. One or more functions 

described herein with respect to client device 150 may or may not be available on 

every client device depending on the specific capabilities of the device - the file 

access model being one such capability.  

10



WO 2019/133321 PCT/US2018/065940 

[53] In many embodiments, client devices are associated with an account of content 

management system 110, but in some embodiments client devices can access content 

using shared links and do not require an account.  

[54] As noted above, some client devices can access content management system 

110 using a web browser. However, client devices can also access content 

management system 110 using client application 152 stored and running on client 

device 150. Client application 152 can include a client synchronization service 156.  

[55] Client synchronization service 156 can be in communication with server 

synchronization service 112 to synchronize changes to content items between client 

device 150 and content management system 110.  

[56] Client device 150 can synchronize content with content management system 

110 via client synchronization service 156. The synchronization can be platform 

agnostic. That is, content can be synchronized across multiple client devices of 

varying type, capabilities, operating systems, etc. Client synchronization service 156 

can synchronize any changes (new, deleted, modified, copied, or moved content 

items) to content items in a designated location of a file system of client device 150.  

[57] Content items can be synchronized from client device 150 to content 

management system 110, and vice versa. In embodiments wherein synchronization is 

from client device 150 to content management system 110, a user can manipulate 

content items directly from the file system of client device 150, while client 

synchronization service 156 can monitor directory on client device 150 for changes to 

files within the monitored folders.  

[58] When client synchronization service 156 detects a write, move, copy, or delete 

of content in a directory that it monitors, client synchronization service 156 can 

synchronize the changes to content management system service 116. In some 

embodiments, client synchronization service 156 can perform some functions of 

content management system service 116 including functions addressed above such as 

dividing the content item into blocks, hashing the content item to generate a unique 

identifier, etc. Client synchronization service 156 can index content within client 

storage index 164 and save the result in storage index 164. Indexing can include 

storing paths plus a unique server identifier, and a unique client identifier for each 

content item. In some embodiments, client synchronization service 156 learns the 

11



WO 2019/133321 PCT/US2018/065940 

unique server identifier from server synchronization service 112, and learns the 

unique client identifier from the operating system of client device 150.  

[59] Client synchronization service 156 can use storage index 164 to facilitate the 

synchronization of at least a portion of the content within client storage with content 

associated with a user account on content management system 110. For example, 

client synchronization service 156 can compare storage index 164 with content 

management system 110 and detect differences between content on client storage and 

content associated with a user account on content management system 110. Client 

synchronization service 156 can then attempt to reconcile differences by uploading, 

downloading, modifying, and deleting content on client storage as appropriate.  

Content storage service 116 can store the changed or new block for the content item 

and update server file journal 148, metadata database 146, content directory 144, 

content storage 142, account database 140, etc., as appropriate.  

[60] When synchronizing from content management system 110 to client device 

150, a mount, modification, addition, deletion, move of a content item recorded in 

server file journal 148 can trigger a notification to be sent to client device 150 using 

notification service 117. When client device 150 is informed of the change a request 

changes listed in server file journal 148 since the last synchronization point known to 

the client device. When client device 150 determines that it is out of synchronization 

with content management system 110, client synchronization service 156 requests 

content item blocks including the changes, and updates its local copy of the changed 

content items.  

[61] In some embodiments, storage index 164 stores tree data structures wherein 

one tree reflects the latest representation of a directory according to server 

synchronization service 112, while another tree reflects the latest representation of the 

directory according to client synchronization service 156. Client synchronization 

service can work to ensure that the tree structures match by requesting data from 

server synchronization service 112 or committing changes on client device 150 to 

content management system 110.  

[62] Sometimes client device 150 might not have a network connection available.  

In this scenario, client synchronization service 156 can monitor the linked collection 

for content item changes and queue those changes for later synchronization to content 

12



WO 2019/133321 PCT/US2018/065940 

management system 110 when a network connection is available. Similarly, a user 

can manually start, stop, pause, or resume synchronization with content management 

system 110.  

[63] Client synchronization service 156 can synchronize all content associated with 

a particular user account on content management system 110. Alternatively, client 

synchronization service 156 can selectively synchronize a portion of the content of the 

total content associated with the particular user account on content management 

system 110. Selectively synchronizing only a portion of the content can preserve 

space on client device 150 and save bandwidth.  

[64] In some embodiments, client synchronization service 156 selectively stores a 

portion of the content associated with the particular user account and stores 

placeholder content items in client storage for the remainder portion of the content.  

For example, client synchronization service 156 can store a placeholder content item 

that has the same filename, path, extension, metadata, of its respective complete 

content item on content management system 110, but lacking the data of the complete 

content item. The placeholder content item can be a few bytes or less in size while 

the respective complete content item might be significantly larger. After client device 

150 attempts to access the content item, client synchronization service 156 can 

retrieve the data of the content item from content management system 110 and 

provide the complete content item to accessing client device 150. This approach can 

provide significant space and bandwidth savings while still providing full access to a 

user's content on content management system 110.  

[65] Collaboration features 

[66] Another feature of content management system 110 is to facilitate 

collaboration between users. Collaboration features include content item sharing, 

commenting on content items, co-working on content items, instant messaging, 

providing presence and seen state information regarding content items, etc.  

[67] Sharing 

[68] Content management system 110 can manage sharing content via sharing 

service 128. Sharing content by providing a link to the content can include making 

the content item accessible from any computing device in network communication 

with content management system 110. However, in some embodiments a link can be 

13



WO 2019/133321 PCT/US2018/065940 

associated with access restrictions enforced by content management system 110 and 

access control list 145. Sharing content can also include linking content using sharing 

service 128 to share content within content management system 110 with at least one 

additional user account (in addition to the original user account associated with the 

content item) so that each user account has access to the content item. The additional 

user account can gain access to the content by accepting the content, which will then 

be accessible through either web interface service 124 or directly from within the 

directory structure associated with their account on client device 150. The sharing 

can be performed in a platform agnostic manner. That is, the content can be shared 

across multiple client devices 150 of varying type, capabilities, operating systems, etc.  

The content can also be shared across varying types of user accounts.  

[69] To share a content item within content management system 110 sharing 

service 128 can add a user account identifier or multiple user account identifiers to a 

content entry in access control list database 145 associated with the content item, thus 

granting the added user account access to the content item. Sharing service 128 can 

also remove user account identifiers from a content entry to restrict a user account's 

access to the content item. Sharing service 128 can record content item identifiers, 

user account identifiers given access to a content item, and access levels in access 

control list database 145. For example, in some embodiments, user account 

identifiers associated with a single content entry can specify different permissions for 

respective user account identifiers with respect to the associated content item.  

[70] To share content items outside of content management system 110, sharing 

service 128 can generate a custom network address, such as a uniform resource 

locator (URL), which allows any web browser to access the content item or collection 

in content management system 110 without any authentication. To accomplish this, 

sharing service 128 can include content identification data in the generated URL, 

which can later be used to properly identify and return the requested content item.  

For example, sharing service 128 can include the account identifier and the content 

path or a content item identifying code in the generated URL. Upon selection of the 

URL, the content identification data included in the URL can be transmitted to 

content management system 110, which can use the received content identification 

data to identify the appropriate content item and return the content item.  

14



WO 2019/133321 PCT/US2018/065940 

[71] In addition to generating the URL, sharing service 128 can also be configured 

to record in access control list database 145 that a URL to the content item has been 

created. In some embodiments, the content entry associated with a content item can 

include a URL flag indicating whether a URL to the content item has been created.  

For example, the URL flag can be a Boolean value initially set to 0 or false to indicate 

that a URL to the content item has not been created. Sharing service 128 can change 

the value of the flag to 1 or true after generating a URL to the content item.  

[72] In some embodiments, sharing service 128 can associate a set of permissions 

to a URL for a content item. For example, if a user attempts to access the content 

item via the URL, sharing service 128 can provide a limited set of permissions for the 

content item. Examples of limited permissions include restrictions that the user 

cannot download the content item, save the content item, copy the content item, 

modify the content item, etc. In some embodiments, limited permissions include 

restrictions that only permit a content item to be accessed from with a specified 

domain, i.e., from within a corporate network domain, or by accounts associated with 

a specified domain, e.g., accounts associated with a company account (e.g., 

@acme.com).  

[73] In some embodiments, sharing service 128 can also be configured to 

deactivate a generated URL. For example, each content entry can also include a URL 

active flag indicating whether the content should be returned in response to a request 

from the generated URL. For example, sharing service 128 can only return a content 

item requested by a generated link if the URL active flag is set to 1 or true. Thus, 

access to a content item for which a URL has been generated can be easily restricted 

by changing the value of the URL active flag. This allows a user to restrict access to 

the shared content item without having to move the content item or delete the 

generated URL. Likewise, sharing service 128 can reactivate the URL by again 

changing the value of the URL active flag to 1 or true. A user can thus easily restore 

access to the content item without the need to generate a new URL.  

[74] In some embodiments, content management system 110 can designate a URL 

for uploading a content item. For example, a first user with a user account can request 

such a URL, provide the URL to a contributing user and the contributing user can 

upload a content item to the first user's user account using the URL.  

15



WO 2019/133321 PCT/US2018/065940 

[75] Team Service 

[76] In some embodiments content management system 110 includes team service 

130. Team service 130 can provide functionality for creating and managing defined 

teams of user accounts. Teams can be created for a company, with sub-teams (e.g., 

business units, or project teams, etc.), and user accounts assigned to teams and sub

teams, or teams can be created for any defined group of user accounts. Team's 

service 130 can provide a common shared space for the team, private user account 

folders, and access limited shared folders. Team's service can also provide a 

management interface for an administrator to manage collections and content items 

within team, and can manage user accounts that are associated with the team.  

[77] Authorization Service 

[78] In some embodiments, content management system 110 includes authorization 

service 132. Authorization service 132 ensures that a user account attempting to 

access a namespace has appropriate rights to access the namespace. Authorization 

service 132 can receive a token from client application 152 that follows a request to 

access a namespace and can return the capabilities permitted to the user account. For 

user accounts with multiple levels of access (e.g. a user account with user rights and 

administrator rights) authorization service 132 can also require explicit privilege 

escalation to avoid unintentional actions by administrators.  

[79] Presence and Seen State 

[80] In some embodiments, content management system can provide information 

about how users with which a content item is shared are interacting or have interacted 

with the content item. In some embodiments, content management system 110 can 

report that a user with which a content item is shared is currently viewing the content 

item. For example, client collaboration service 160 can notify notifications service 

117 when client device 150 is accessing the content item. Notifications service 117 

can then notify all client devices of other users having access to the same content item 

of the presence of the user of client device 150 with respect to the content item.  

[81] In some embodiments, content management system 110 can report a history of 

user interaction with a shared content item. Collaboration service 126 can query data 

sources such as metadata database 146 and server file journal 148 to determine that a 

user has saved the content item, that a user has yet to view the content item, etc., and 

16



WO 2019/133321 PCT/US2018/065940 

disseminate this status information using notification service 117 to other users so that 

they can know who currently is or has viewed or modified the content item.  

[82] Collaboration service 126 can facilitate comments associated with content, 

even if a content item does not natively support commenting functionality. Such 

comments can be stored in metadata database 146.  

[83] Collaboration service 126 can originate and transmit notifications for users.  

For example, a user can mention another user in a comment and collaboration service 

126 can send a notification to that user that he has been mentioned in the comment.  

Various other content item events can trigger notifications, including deleting a 

content item, sharing a content item, etc.  

[84] Collaboration service 126 can provide a messaging platform whereby users 

can send and receive instant messages, voice calls, emails, etc.  

[85] Collaboration Content Items 

[86] In some embodiments content management service can also include 

Collaborative document service 134 which can provide an interactive content item 

collaboration platform whereby users can simultaneously create collaboration content 

items, comment in the collaboration content items, and manage tasks within the 

collaboration content items. Collaboration content items can be files that users can 

create and edit using a collaboration content item editor, and can contain collaboration 

content item elements. Collaboration content item elements may include a 

collaboration content item identifier, one or more author identifiers, collaboration 

content item text, collaboration content item attributes, interaction information, 

comments, sharing users, etc. Collaboration content item elements can be stored as 

database entities, which allows for searching and retrieving the collaboration content 

items. Multiple users may access, view, edit, and collaborate on collaboration content 

items at the same time or at different times. In some embodiments this can be 

managed by requiring two users access a content item through a web interface and 

there they can work on the same copy of the content item at the same time.  

[87] Collaboration Companion Interface 

[88] In some embodiments client collaboration service 160 can provide a native 

application companion interface for the purpose of displaying information relevant to 

a content item being presented on client device 150. In embodiments wherein a 

17



WO 2019/133321 PCT/US2018/065940 

content item is accessed by a native application stored and executed on client device 

150, where the content item is in a designated location of the file system of client 

device 150 such that the content item is managed by content application 152, the 

native application may not provide any native way to display the above addressed 

collaboration data. In such embodiments, client collaboration service 160 can detect 

that a user has opened a content item, and can provide an overlay with additional 

information for the content item, such as collaboration data. For example, the 

additional information can include comments for the content item, status of the 

content item, activity of other users previously or currently viewing the content item.  

Such an overlay can warn a user that changes might be lost because another user is 

currently editing the content item.  

[89] In some embodiments, one or more of the services or storages/databases 

discussed above can be accessed using public or private application programming 

interfaces.  

[90] Certain software applications can access content storage 142 via an API on 

behalf of a user. For example, a software package such as an application running on 

client device 150, can programmatically make API calls directly to content 

management system 110 when a user provides authentication credentials, to read, 

write, create, delete, share, or otherwise manipulate content.  

[91] A user can view or manipulate content stored in a user account via a web 

interface generated and served by web interface service 124. For example, the user 

can navigate in a web browser to a web address provided by content management 

system 110. Changes or updates to content in the content storage 142 made through 

the web interface, such as uploading a new version of a content item, can be 

propagated back to other client devices associated with the user's account. For 

example, multiple client devices, each with their own client software, can be 

associated with a single account and content items in the account can be synchronized 

between each of the multiple client devices.  

[92] Client device 150 can connect to content management system 110 on behalf of 

a user. A user can directly interact with client device 150, for example when client 

device 150 is a desktop or laptop computer, phone, television, internet-of-things 

device, etc. Alternatively or additionally, client device 150 can act on behalf of the 

18



WO 2019/133321 PCT/US2018/065940 

user without the user having physical access to client device 150, for example when 

client device 150 is a server.  

[93] Some features of client device 150 are enabled by an application installed on 

client device 150. In some embodiments, the application can include a content 

management system specific component. For example, the content management 

system specific component can be a stand-alone application 152, one or more 

application plug-ins, and/or a browser extension. However, the user can also interact 

with content management system 110 via a third-party application, such as a web 

browser, that resides on client device 150 and is configured to communicate with 

content management system 110. In various implementations, the client-side 

application 152 can present a user interface (UI) for a user to interact with content 

management system 110. For example, the user can interact with the content 

management system 110 via a file system explorer integrated with the file system or 

via a webpage displayed using a web browser application.  

[94] In some embodiments, client application 152 can be configured to manage and 

synchronize content for more than one account of content management system 110.  

In such embodiments client application 152 can remain logged into multiple accounts 

and provide normal services for the multiple accounts. In some embodiments, each 

account can appear as folder in a file system, and all content items within that folder 

can be synchronized with content management system 110. In some embodiments, 

client application 152 can include a selector to choose one of the multiple accounts to 

be the primary account or default account.  

[95] While content management system 110 is presented with specific components, 

it should be understood by one skilled in the art, that the architectural configuration of 

system 100 is simply one possible configuration and that other configurations with 

more or fewer components are possible. Further, a service can have more or less 

functionality, even including functionality described as being with another service.  

Moreover, features described herein with respect to an embodiment can be combined 

with features described with respect to another embodiment.  

[96] While system 100 is presented with specific components, it should be 

understood by one skilled in the art, that the architectural configuration of system 100 

19



WO 2019/133321 PCT/US2018/065940 

is simply one possible configuration and that other configurations with more or fewer 

components are possible.  

Client Synchronization Service 

[97] FIG. 2 shows an example of a client synchronization service 156, in 

accordance with some embodiments. According to some embodiments, client 

synchronization service 156 may be implemented in the client device of FIG. 1.  

However, in other embodiments, client synchronization service 156 may be 

implemented on another computing device. Client synchronization service 156 is 

configured to synchronize changes to content items between a content management 

system and the client device on which client synchronization service 156 runs.  

[98] Client synchronization service 156 may include file system interface 205, 

server interface 210, tree storage 220, planner 225, and scheduler 230. Additional or 

alternative components may also be included. High level descriptions of client 

synchronization service 156 and its components are discussed below with respect to 

FIG. 2. However, further details and embodiments of client synchronization service 

156 and its components are discussed throughout.  

[99] File system interface 205 is configured to process changes to content items on 

the local filesystem of the client device and update the local tree. For example, file 

system interface 205 can be in communication with client synchronization service 156 

of FIG. 1 to detect changes to content items on the local filesystem of the client 

device. Changes may also be made and detected via client application 152 of FIG. 1.  

File system interface 205 may make updates to the local tree. The updates to the local 

tree may be made based on the changes (new, deleted, modified, copied, renamed, or 

moved content items) to content items on the client device.  

[100] Server interface 210 is configured to aid in the processing of remote changes 

to content items at a remote storage of the content management system and updating 

of the remote tree. For example, server interface 210 can be in communication with 

server synchronization service 112 of FIG. 1 to synchronize changes to content items 

between client device 150 and content management system 110. Changes (new, 

deleted, modified, copied, renamed, or moved content items) to content items at 

content management system 110 may be detected and updates may be made to the 

remote tree to reflect the changes at content management system 110.  

20



WO 2019/133321 PCT/US2018/065940 

[101] Tree storage 220 is configured to store and maintain the tree data structures 

used by client synchronization service 156. For example, tree storage 220 may store 

the local tree, the sync tree, and the remote tree. According to some embodiments, 

tree storage 220 may store the tree data structures in persistent memory (e.g., a hard 

disk or other secondary storage device) as well as in main memory (e.g., RAM or 

other primary storage device) in order to reduce latency and response time. For 

example, on start-up of the client device or client synchronization service 156, the tree 

data structures may be retrieved from persistent memory and loaded into main 

memory. Tree storage 220 may access and update the tree data structures on main 

memory and, before the client device or client synchronization service 156 is shut 

down, tree storage 220 may store the updated tree data structures on persistent 

memory. Because main memory is expensive in cost and often limited in size on 

most client devices, additional technological improvements are implemented to 

decrease the footprint of the tree data structures on main memory. These 

technological solutions are described further below.  

[102] Planner 225 is configured to detect differences between the server state 

associated with the content management system and the file system state associated 

with the client device based on the state of the tree data structures. For example, 

planner 225 may determine if there is a difference between the remote tree and the 

sync tree. A difference between the remote tree and the sync tree indicates that an 

action performed remotely on one or more content items stored at the content 

management system has caused the server state and the file system state to become 

out of sync. Similarly, planner 225 may also determine if there is a difference 

between the local tree and the sync tree. A difference between the local tree and the 

sync tree indicates that an action performed locally on one or more content items 

stored on the client device has caused the server state and the file system state to 

become out of sync. If a difference is detected, planner 225 generates a set of 

operations that synchronize the tree data structures.  

[103] In some scenarios, a set of operations generated based on a difference between 

the remote tree and the sync tree and a set of operations generated based on a 

difference between the local tree and the sync tree may conflict. Planner 225 may 

also be configured to merge the two sets of operations into a single merged plan of 

operations.  

21



WO 2019/133321 PCT/US2018/065940 

[104] Scheduler 230 is configured to take the generated plan of operations and 

manage the execution of those operations. According to some embodiments, 

scheduler 230 converts each operation in the plan of operations into a series of one or 

more tasks that need to be executed in order to perform the operation. In some 

scenarios, some tasks may become out dated or no longer relevant. Scheduler 230 is 

configured to identify those tasks and cancel them.  

Tree Data Structures 

[105] FIG. 3 shows an example of tree data structures, in accordance with various 

embodiments. The tree data structures may be stored at the client device and 

managed by a client synchronization service such as client synchronization service 

156 in FIG. 2. In FIG. 3, the tree data structures are shown including remote tree 310, 

sync tree 330, and local tree 350.  

[106] Remote tree 310 represents a server state or the state of content items stored 

remotely from the client device (e.g., on a server of the content management system).  

Local tree 350 represents a file system state or the state of the corresponding content 

items stored locally on the client device. Sync tree 330 represents a merge base for 

the local tree and the remote tree. The merge base may be thought of as a common 

ancestor of the local tree and the remote tree or a last known synced state between the 

local tree and the remote tree.  

[107] Each tree data structure (e.g., remote tree 310, sync tree 330, or local tree 350) 

may include one or more nodes. Each node may have one or more child nodes and 

the parent-child relationship is represented by an edge. For example, remote tree 310 

includes nodes 312 and 314. Node 312 is a parent of node 314 and node 314 is a 

child of node 312. This parent-child relationship is represented by edge 316. A root 

node, such as root node 312, does not have a parent node. A leaf node, such as node 

314, does not have a child node.  

[108] Each node in a tree data structure may represent a content item (e.g., a file, 

document, folder, etc.). For example, root node 312 may represent the root folder 

associated with the content management system and node 314 may represent a file 

(e.g., a text file named "Foo.txt") located in that root folder. Each node in a tree data 

structure may contain data such as, for example, a directory file identifier 

("DirFileID") specifying the file identifier of a parent node of the content item, a file 

22



WO 2019/133321 PCT/US2018/065940 

name for the content item, a file identifier for the content item, and metadata for the 

content item.  

[109] As described above, a client synchronization service may determine that the 

server state and the file system state of the client device are synchronized when all 3 

trees (e.g., remote tree 310, sync tree 330, and local tree 350) are identical. In other 

words, the trees are synchronized when their tree structures and the relationships that 

they express are identical and the data contained in their nodes are identical as well.  

Conversely, the trees are not synchronized if the 3 trees are not identical. In the 

example scenario illustrated in FIG. 3, remote tree 310, sync tree 330, and local tree 

350 are shown as being identical and synchronized and, as a result, the server state 

and the file system state are synchronized.  

Tracking Changes Using Tree Data Structures 

[110] FIG. 4 shows an example of tree data structures, in accordance with various 

embodiments. As with the tree data structures shown in FIG. 3, the tree data 

structures shown in FIG. 4 (including remote tree 410, sync tree 430, and local tree 

450) may be stored at the client device and managed by a client synchronization 

service such as client synchronization service 156 in FIG. 2. In FIG. 4, the tree data 

structures are shown.  

[111] FIG. 4 shows a scenario after a previously synchronized state, such as the 

scenario illustrated in FIG. 3, additional actions are performed on the content items 

represented in the trees to modify the content items such that the trees are no longer in 

sync. Sync tree 430 maintains a representation of the previously known synchronized 

state and may be used by the client synchronization service to identify the differences 

between the server state and the file system state as well as generate operations for the 

content management system and/or the client device to perform to converge so that 

the server state and the file system state are synchronized.  

[112] For example, a user (the same user as the user associated with the client device 

or a different user with access to the content item) may make modifications to the 

"foo.txt" content item stored by the content management system. This content item is 

represented by node 414 in remote tree 410. The modification shown in the remote 

tree 410 is a removal (e.g., a removal of the content item from a space managed by the 

content management system) or delete of the foo.txt content item. These 

23



WO 2019/133321 PCT/US2018/065940 

modifications may be performed, for example, on another client device and then 

synchronized to the content management system or performed through a web browser 

connected to the content management system.  

[113] When the change is made on the content management system, the content 

management system generates modification data specifying the change made and 

transmits the modification data to the client synchronization service on the client 

device. For example, using a push model where the content management system may 

transmit or "push" changes to the client device unilaterally. In other implementations, 

a pull model where the server sends the changes in response to a request by the client 

device. Additionally, a hybrid model involving a long pull where the client device 

initiates the requests but keeps the connection open for a period of time so the content 

management system can push additional changes as needed while the connection is 

live. The client synchronization service updates the remote tree representing the 

server state for the content items stored by the content management system based on 

the modification data. For example, in remote tree 410, node 414 representing the 

foo.txt content item is shown as deleted.  

[114] The client synchronization service may identify a difference between remote 

tree 410 and sync tree 430 and, as a result, determine that a modification of the 

content items at the content management system has caused the server state and the 

file system state to no longer be in sync. The client synchronization service may 

further generate and execute a set or sequence of operations for the content items 

stored on the client device that are configured to converge the server state and the file 

system state so that they will be in sync.  

[115] Additionally or alternatively, a user (the same user as the user associated with 

modifications at the content management system or a different user with access to the 

content item) may make modifications to the content items stored locally on the client 

device that are associated with the content management system. For example, the 

user may add a folder "/bar" to the "/root" folder and add a "Hi.doc" document to the 

"/bar" folder.  

[116] When the change is made on the client device, the client device (e.g., client 

synchronization service 156 or client application 152 of FIG. 1) generates 

modification data specifying the change made. The client synchronization service 

24



WO 2019/133321 PCT/US2018/065940 

updates the local tree representing the file system state for the content items stored on 

the client device based on the modification data. For example, in local tree 450, node 

452 and node 454 are shown as added. Node 452 and node 454 represent the "/bar" 

folder and the "Hi.doc" document respectively.  

[117] The client synchronization service may identify a difference between local tree 

450 and sync tree 430 and, as a result, determine that a modification of the content 

items at the client device has caused the server state and the file system state to no 

longer be in sync. The client synchronization service may further generate a set or 

sequence of operations for the content items stored by the content management 

system that are configured to converge the server state and the file system state so that 

they will be in sync. These operations may be transmitted to the content management 

system for execution.  

[118] As seen in FIG. 4, modifications to content items stored on the client device 

and content items stored by the content management system may occur at 

substantially the same time or within a particular time period. These modifications 

can be reflected in the tree data structures and used by the client synchronization 

service to generate operations for the client device and for the content management 

system in parallel. In other scenarios, however, modifications may not necessarily 

occur within the same time period and operations may be generated in an as-needed 

manner. Furthermore, although FIG. 4 illustrates scenarios for adding content items 

and deleting content items, other types of modifications such as, editing, renaming, 

copying, or moving content items are also supported.  

[119] According to various embodiments, identifying a difference between two tree 

data structures and generating operations may involve checking each node in both tree 

data structures and determining whether an action has been performed on the node.  

The actions may include, for example, the addition of the node, the deletion of the 

node, the editing of the node, or the moving of the node. These actions may then be 

used to generate the operations configured to converge the server state and the file 

system state.  

[120] For example, if the two tree data structures are a sync tree and a remote tree, 

the client synchronization service may identify each node in the sync tree by, for 

example, requesting the file identifiers of all nodes in the sync tree. For each node or 

25



WO 2019/133321 PCT/US2018/065940 

file identifier for the node in the sync tree, the client synchronization service may 

determine if the node or file identifier is also in the remote tree. A node or file 

identifier in the sync tree that is not found in the remote tree may indicate that the 

node has been deleted from the server state that is represented by the remote tree.  

Accordingly, the client synchronization service may determine that a delete action has 

occurred on the remote tree. If the node or file identifier for the node is found in the 

remote tree, the client synchronization service may check whether the node in the 

remote tree has been edited or moved.  

[121] To determine whether the node in the remote tree has been edited with respect 

to the node in the sync tree, the client synchronization service may compare the 

metadata for the node in the sync tree with the metadata for the corresponding node 

(e.g., the node with the same file identifier) in the remote tree. The metadata may 

include information that may be used to determine whether the content item 

represented by the node has been edited. For example, the metadata may include one 

or more hash values that are generated based on the data in the content item or a 

portion thereof. The metadata may additionally or alternatively include a size value, a 

last modified value, or other value for the content item. The metadata for the node in 

the sync tree may be compared with the metadata for the node in the remote tree. If 

the metadata do not match, an edit of the content item may have been edited in the 

server state represented by the remote tree. Accordingly, the client synchronization 

service may determine that an edit action has occurred for the node on the remote tree.  

If the metadata matches, no edit may have occurred.  

[122] To determine whether the node in the remote tree has been moved, the client 

synchronization service may compare the location for the node in the sync tree with 

the location for the corresponding node (e.g., the node with the same file identifier) in 

the remote tree. The location may include, for example, a path where the node is 

located, a file name, and/or a directory file identifier ("DirFileID") specifying the file 

identifier of the node's parent. If the locations match, no move may have occurred.  

On the other hand, if the locations do not match, a move of the content item may have 

occurred in the server state represented by the remote tree. Accordingly, the client 

synchronization service may determine that a move action has occurred for the node 

on the remote tree.  

26



WO 2019/133321 PCT/US2018/065940 

[123] To determine whether a node has been added to the remote tree, the client 

synchronization service may identify any nodes or file identifiers in the remote tree 

that are not found in the sync tree. If a node or file identifier is found in the remote 

tree and not found in the sync tree, the client synchronization service may determine 

that an add action of this node has occurred on the remote tree representing the server 

state.  

[124] Although the example above is described with respect to the sync tree and the 

remote tree, in other embodiments, a similar process may occur with the sync tree and 

a local tree in order to identify a difference between the sync tree and the local tree 

and determine which actions have occurred on the local tree representing the file 

system state.  

Synchronization Using Tree Data Structures 

[125] FIG. 5 shows an example method for synchronizing a server state and a file 

system state using tree data structures, in accordance with various embodiments of the 

subject technology. Although the methods and processes described herein may be 

shown with certain steps and operations in a particular order, additional, fewer, or 

alternative steps and operations performed in similar or alternative orders, or in 

parallel, are within the scope of various embodiments unless otherwise stated. The 

method 500 may be implemented by a system such as, for example, client 

synchronization service 156 of FIG. 2, running on a client device.  

[126] The system is configured to identify a difference between a remote tree 

representing a server state for content items stored by the content management 

system, a local tree representing the file system state for the corresponding content 

items stored on the client device, and a sync tree representing a known synced state 

between the server state and the file system state. Based on these differences, a set of 

operations may be generated that, if executed, are configured to converge the server 

state and the file system state towards a synchronized state where the three tree data 

structures would be identical.  

[127] For example, at operation 505, the system may receive modification data for 

content items stored by a content management system or on a client device. The 

modification data may be used to update a remote tree or a local tree at operation 510.  

27



WO 2019/133321 PCT/US2018/065940 

[128] The modification data specifies what changes occurred to one or more content 

items associated with a content management service. Accordingly, the modification 

data may be received from the content management system or from the client device 

(e.g., from client application 152 running on client device 150 in FIG. 1).  

Modification data received from the content management system may be referred to 

as server modification data. Server modification data specifies what changes are done 

to one or more content items by the content management system and may be used to 

update the remote tree at operation 510. Modification data received from the client 

device may be referred to as client modification data. Client modification data 

specifies what changes are done to one or more content items on the client device and 

may be used to update the local tree at operation 510.  

[129] At operation 515, the system may determine whether a server state for content 

items stored by the content management system and a file system state for the content 

items stored on the client device are in sync. Because the local tree and the remote 

tree are representative of the file system state and the server state and are continually 

being updated to track changes that occur at the content management system and the 

client device, determining whether the server state and the file system state are in sync 

may be done by comparing the local tree and/or the remote tree to the sync tree to find 

differences between the trees. This process of finding differences between the trees is 

sometimes referred to as "diffing" the trees.  

[130] According to some embodiments and scenarios, determining whether the 

server state and the file system state are in sync may include one or more of 

identifying differences between the remote tree and the sync tree and/or identifying 

differences between the local tree and the sync tree. Differences between the remote 

tree and sync tree may indicate the occurrence of changes to content items stored by 

the content management system that may not be reflected at the client device.  

Similarly, differences between the local tree and sync tree may indicate the 

occurrence of changes to content items stored at the client device that may not be 

reflected at the content management system.  

[131] If there are no differences between the trees, the server state and the file 

system state are in sync and no synchronization actions are needed. Accordingly, the 

method may return to operation 505 and await new modification data. On the other 

28



WO 2019/133321 PCT/US2018/065940 

hand, if differences are detected, the system may generate a set of operations 

configured to converge the server state and the file system state at operation 520.  

[132] The set of operations generated depends on the one or more differences that 

are detected. For example, if the difference between two trees is an added content 

item, the generated set of operations may include retrieving the added content item 

and adding it. If the difference between two trees is a deletion of a content item, the 

generated set of operations may include deleting the content item. According to some 

embodiments, the set of operations may also include a number of checks to ensure 

tree constraints are maintained. As will be described further below, the set of 

operations may conflict with the current state of the server state, the file system state, 

or other operations that are pending execution. Accordingly, the system may also 

resolve these conflicts before proceeding.  

[133] As noted above, if there are differences between the remote tree and sync tree, 

changes to content items stored by the content management system may have 

occurred that may not be reflected at the client device. Accordingly, in this scenario, 

the system may generate a client set of operations configured to operate on the content 

items stored on the client device to converge the server state and the file system state 

and this client set of operations may be provided to the client device for execution at 

operation 525.  

[134] Similarly, if there are differences between the local tree and sync tree, changes 

to content items stored at the client device may have occurred that may not be 

reflected at the content management system. Accordingly, in this scenario, the system 

may generate a server set of operations configured to operate on the content items 

stored by the content management system to converge the server state and the file 

system state and this server set of operations may be provided to the content 

management system for execution at operation 525. In some cases, both cases may be 

true and a client set of operations and a server set of operations may be generated and 

provided to their intended recipients at operation 525.  

[135] Once the set(s) of operations are provided to the intended recipient(s), the 

method may return to operation 505 and await new modification data. The set(s) of 

operations may provide one or more steps towards the convergence of the server state 

and the file system state or provide all steps needed to sync the server state and the 

29



WO 2019/133321 PCT/US2018/065940 

file system state. For example, the content management system may receive the 

server set of operations and execute the server set of operations on content items 

stored by the content management system. This execution of the server set of 

operations causes changes to the content items stored by the content management 

system, which are detected and specified in server modification data, which is 

transmitted back to the system. The system may then update the remote tree and 

determine whether the server state and the file system state are in sync.  

[136] The client device may receive the client set of operations and execute the 

client set of operations on content items stored on the client device. This execution of 

the client set of operations causes changes to the content items stored on the client 

device, which are detected and specified in client modification data, which is passed 

to the system. The system may then update the local tree and determine whether the 

server state and the file system state are in sync. These operations of method 500 may 

continue until the server state and the file system state are in sync.  

[137] The operations of method 500 are described with respect to a client side and a 

server side (e.g., a local tree and a remote tree, a file system state and a server state, a 

client set of operations and a server set of operations, client modification data and 

server modification data). In various embodiments the operations associated with the 

two sides may occur in parallel, in sequence, in isolation of the other side, or a 

combination.  

[138] As will be discussed in further detail, in accordance with some embodiments, 

before the operations are provided for execution, the system may check the operations 

to determine whether they comply with a set of rules or invariants. If an operation 

violates a rule, the system executes a resolution process associated with the violation 

of the rule.  

[139] Additionally, in accordance with some embodiments, the system (e.g., 

scheduler 230 of client synchronization service 156 in FIG. 2) may manage the 

execution of the set of operations. For example, each operation in the set of 

operations may be associated with a task, an execution thread, series of steps, or 

instructions. The system may be configured to execute the task, thread, step, or 

instructions and interface with the client device and/or the content management 

30



WO 2019/133321 PCT/US2018/065940 

system to execute the set of operations and converge the server state and the file 

system state.  

Conflict Handling 

[140] As described above with respect to FIG. 5, differences between a sync tree and 

a remote tree are identified and used to generate a client set of operations configured 

to converge the server state and the file system state. However, in some cases, the 

client set of operations may conflict with the current state of a local tree. Similarly, 

differences between the sync tree and the local tree are identified and used to generate 

a server set of operations configured to converge the server state and the file system 

state. However, the server set of operations may conflict with the current state of the 

remote tree. Additionally or alternatively, the client set of operations and the server 

set of operations may conflict with one another or violate another rule or invariant 

maintained by the system. Accordingly, various embodiments of the subject 

technology provide additional technical improvements by resolving these conflicts.  

[141] For example, planner 225 in client synchronization service 156 of FIG. 2 may 

identify an operation in a set of operations (e.g., the client set of operations or the 

server set of operations) that conflicts with a rule. Each rule used to identify a 

conflict may also be associated with a resolution for the conflict. The client 

synchronization service may update the set of operations based on the resolution for 

the conflict or resolve the conflict by performing operations associated with the 

resolutions for the conflict before providing the set of operations for execution.  

[142] FIG. 6 shows an example method 600 for resolving conflicts when 

synchronizing a server state and a file system state using tree data structures, in 

accordance with various embodiments of the subject technology. Although the 

methods and processes described herein may be shown with certain steps and 

operations in a particular order, additional, fewer, or alternative steps and operations 

performed in similar or alternative orders, or in parallel, are within the scope of 

various embodiments unless otherwise stated. The method 600 may be implemented 

by a system such as, for example, client synchronization service 156 of FIG. 2, 

running on a client device.  

[143] The system may receive a set of operations configured to converge a server 

state and a file system state at operation 620. The set of operations may be, for 

31



WO 2019/133321 PCT/US2018/065940 

example, the client set of operations, the server set of operations, or a combined set of 

operations generated and described with respect to the method 500 of FIG. 5.  

[144] At operation 650, the system identifies one or more violations in the set of 

operations based on a set of rules. The set of rules may be stored by client 

synchronization service 156 in FIG. 2 and specify a number of constraints, invariants, 

or conflicts for operations that are to be resolved. The set of rules may be applied to 

the tree data structures and help control synchronization behavior. Each rule in the set 

of rules may also be associated or otherwise linked to a resolution to a violation of 

that rule. For example, the resolution may include an alteration of one or more 

operations in the set of operations, a removal off one or more operations, an addition 

of one or more operations, one or more additional actions to the server state or the file 

system state, or a combination of actions.  

[145] For each operation in a set of operations, the system may determine whether 

any rule in the set of rules is violated. If a rule is violated, the system identifies a 

resolution of the violation and, at operation 655, performs the resolution. The 

resolution may include actions such as modifying one or more operations in the set of 

operations, a removing or adding one or more operations, or additional actions on the 

server state or the file state.  

[146] Once the resolution actions are performed, the system may generate a resolved 

or rebased set of operations based on the resolution and the set of operations at 

operation 660 and, at operation 665, provide the resolved set of operations to the 

appropriate entity for execution. For example, the resolved set of operations may be 

provided to scheduler 230 of client synchronization service 156 in FIG. 2 for managed 

execution. Alternatively, if the set of operations is a client set of operations, the 

resolved set of operations may be provided to the client device. If the set of 

operations is a server set of operations, the resolved set of operations may be provided 

to the content management service. Additionally, the method 600 of FIG. 6 may be 

performed on client set of operations and server set of operations in sequence, in 

parallel, or in various different orders.  

[147] According to some embodiments, each type of operation may be associated 

with the same or a different set of rules. For example, operation types may include, 

for example, adding a content item, deleting a content item, editing a content item, 

32



WO 2019/133321 PCT/US2018/065940 

moving a content item, renaming a content item, etc. The set of operations may 

consist of operations each belonging to one of the operation types above. Each 

operation type may be associated with a specific set of rules.  

[148] For illustrative purposes, a set of rules for an "Add" operation type may 

include rules such as file identifiers for content items must be unique in a tree (e.g., no 

two nodes in a tree may have the same file identifier), a directory file identifier 

("DirFileID") specifying the file identifier of a parent node of the content item must 

exist in the opposite tree data structure, and a DirFileID and file name combination 

for a content item are not used in the opposite tree.  

[149] Opposite tree, as used here, refers to the tree data structure that represents the 

state of the opposing entity. For example, a client set of operations configured to 

operate on the client device and the resulting changes to the file system on the client 

device will be reflected in the local tree. Accordingly, the opposite tree for the client 

set of operations is the remote tree. Similarly, a server set of operations is configured 

to be transmitted to the content management system to be executed and the resulting 

changes to the server state will be reflected in the remote tree. Accordingly, the 

opposite tree for the server set of operations is the local tree.  

[150] FIG. 7 shows an example of tree data structures illustrating a violation of a 

rule for an add operation, in accordance with various embodiments. The tree data 

structures include remote tree 710, sync tree 750, and local tree 770. When 

referencing the local tree 770, the remote tree 710 may be considered the opposite 

tree. On the other hand, when referencing the remote tree 710, the local tree 770 may 

be considered the opposite tree. FIG. 7 illustrates a set of operations adding the 

content item represented by node 712 in remote tree 710. For example, a client 

synchronization service may compare remote tree 710 with sync tree 750, identify the 

differences, and generate a set of operations that includes the addition of node 712.  

Node 712 is associated with a FileID of 4, a DirFileID of 3 (which references parent 

node 714, which is node 712's parent), and a file name of "Hi." Parent node 714 is 

associated with a FileID of 3, a DirFileID of 1 (which references root node 716, 

which is node 714's parent), and a file name of "Foo." 

[151] The client synchronization service may perform the method 600 of FIG. 6 and 

determine that the add operation for node 712 violates the "a directory file identifier 

33



WO 2019/133321 PCT/US2018/065940 

("DirFileID") of the content item must exist in the opposite tree data structure" rule 

for "add" operation types. This is illustrated in FIG. 7 by the local tree 770 not 

having a node with a file ID of 3, which references parent node 714 of node 712. This 

may occur when, for example, after differences between remote tree 710 and sync tree 

750 are determined and a set of operations is generated, the "Foo" node corresponding 

to node 714 is removed from the opposite tree.  

[152] The resolution associated with this rule may include deleting the node missing 

from local tree 770 from sync tree 750 to synchronize sync tree 750 and local tree 770 

and rediffing (e.g., finding the difference between) remote tree 710 and sync tree 750.  

In the scenario illustrated in FIG. 7, node 754 in sync tree 750 would be removed 758 

and diffing operations would commence to identify differences between remote tree 

710 and sync tree 750. This would result in the inclusion of an add operation of node 

714 as well as an add operation for node 712 in the set of operations.  

[153] Similarly, a violation of the "file identifiers for content items must be unique 

in a tree" rule for "add" operation types may be resolved by operations including 

requesting, from the content management system, a new file ID for the node being 

added and using the new file ID when adding the node. A violation of the "DirFileID 

and file name combination for a content item are not used in the opposite tree" rule 

for "add" operation types may be resolved by operations including checking via the 

metadata associated with the two nodes whether the content items are the same. If the 

content items are the same, it is likely that the content item being added has already 

been added in other actions. If the content items are not the same, the file name for 

the content item being added can be renamed. For example, the file name for the 

content item being added can be appended with the text "(conflicted version)." 

Incremental Planner 

[154] Although the various tree data structures shown in FIGS. 3, 4, and 7 contain a 

relatively small number of nodes and are relatively simple in structure, the tree data 

structures supported by the system may be much larger and complex with multiple 

levels and potentially large number of nodes at each level. Accordingly the memory 

usage required to store the tree data structures during operation may be quite large and 

the computing time and resources required to operate on the tree data structures may 

be quite large. For example, finding differences between a remote tree and a sync tree 

34



WO 2019/133321 PCT/US2018/065940 

and/or a local tree and the sync tree and generating operations needed to converge the 

remote tree and the sync tree and/or the local tree and the sync tree may require a 

large amount of memory, time, and other computing resources.  

[155] Unfortunately, these computing resources are limited. For example, a client 

device may have a limited amount of available memory and the length of time needed 

to diff trees and generate operations may hinder the usability of the client device, the 

client application, or the content management services provided by the content 

management system. Furthermore, the more time needed to converge the server state 

and the file system state, the more likely that intervening changes to either state may 

render the set of operations being computed or executed and/or the target sync state 

out of date. Accordingly, various embodiments of the subject technology provide 

additional technical improvements by incrementally converging the server state and 

the file system state along with the tree data structures that represent them.  

[156] FIG. 8 shows an example method 800 for incrementally converging a server 

state and a file system state, in accordance with various embodiments of the subject 

technology. Although the methods and processes described herein may be shown 

with certain steps and operations in a particular order, additional, fewer, or alternative 

steps and operations performed in similar or alternative orders, or in parallel, are 

within the scope of various embodiments unless otherwise stated. The method 800 

may be implemented by a system such as, for example, client synchronization service 

156 of FIG. 2, running on a client device.  

[157] At operation 805, the system may receive modification data that may be used 

to update either a remote tree or a local tree. For example, server modification data 

may be received from a content management system that specifies modifications or 

other actions (e.g., an edit, add, delete, move, or rename) associated with one or more 

content items stored by the content management system. The server modification 

data may be used to update the remote tree, which represents the server state of 

content items stored by the content management system. Similarly, client 

modification data may be received from the client device (e.g., a client application) 

and specify modifications or other actions associated with one or more content items 

stored on the client device. The client modification data may be used to update the 

local tree, which represents the file system state of content items stored on the client 

device.  

35



WO 2019/133321 PCT/US2018/065940 

[158] Based on the received modification data specifying modifications associated 

with content items, the system may identify nodes that correspond to the modified 

content items and add the nodes to a list of modified content items (e.g., add the file 

identifier associated with the nodes to the list of modified content items) at operation 

810. Operations 805 and 810 may continuously occur for some time before the 

system proceeds to the next stage of the method 800. For example additional 

modification data may be received and used to update the trees managed by the 

system and add nodes to the list of modified content items.  

[159] In order to incrementally converge the server state and the file system state, 

the system takes each node in the list of modified content items and determines how 

the node was modified (e.g., which actions are associated with the node) at operation 

815. In some embodiments, the modification data may specify the modification to the 

node. However, in other embodiments, the system may determine the modifications 

to the node based on a comparison of the remote tree with the sync tree and/or a 

comparison of the local tree with the sync tree. For example, the modifications may 

include the addition of the node, the deletion of the node, the editing of the node, or 

the moving of the node.  

[160] For each node or file identifier for the node in the list of modified content 

items, the system may perform a series of checks to determine what, if any, 

modifications were performed on the node. For example, the system may determine 

whether the file identifier is in the sync tree but not in the remote tree. A file 

identifier in the sync tree that is not found in the remote tree may indicate that the 

node has been deleted from the server state that is represented by the remote tree.  

Accordingly, the client synchronization service may determine that a delete 

modification on the node has occurred on the remote tree. Similarly, the system may 

also determine whether the file identifier is in the sync tree but not in the local tree. A 

file identifier in the sync tree that is not found in the local tree may indicate that the 

node has been deleted from the file system state that is represented by the local tree.  

Accordingly, the client synchronization service may determine that a delete 

modification on the node has occurred on the local tree.  

[161] To determine whether an edit modification has been performed on the node, 

the system may compare the metadata for the node in the sync tree with the metadata 

for the corresponding node (e.g., the node with the same file identifier) in the remote 

36



WO 2019/133321 PCT/US2018/065940 

tree and/or the local tree. The metadata may include information that may be used to 

determine whether the content item represented by the node has been edited. For 

example, the metadata may include one or more hash values that are generated based 

on the data in the content item or a portion thereof. The metadata may additionally or 

alternatively include a size value, a last modified value, or other value for the content 

item. If the metadata do not match, an edit of the content item may have been edited 

in the server state represented by the remote tree and/or the file system state 

represented by the local tree. Accordingly, the system may determine that an edit 

action has occurred for the node on the remote tree and/or the local tree.  

[162] To determine whether the node in the remote tree has been moved, the system 

may compare the location for the node in the sync tree with the location for the 

corresponding node (e.g., the node with the same file identifier) in the remote tree 

and/or the local tree. The location may include, for example, a path where the node is 

located, a file name, and/or a directory file identifier ("DirFileID") specifying the file 

identifier of the node's parent. If the locations match, no move may have occurred.  

On the other hand, if the locations do not match, a move of the content item may have 

occurred in the remote tree or the local tree. Accordingly, the client synchronization 

service may determine that a move action has occurred for the node on the remote tree 

and/or the local tree.  

[163] To determine whether a node has been added to the remote tree, the system 

may determine if the file identifier in the list of modified content items is in the 

remote tree or in the local tree, but not in the sync tree. If the file identifier is found in 

the remote tree or the local tree and not found in the sync tree, the system may 

determine that an add modification for this node has occurred.  

[164] Once the one or more modifications to the nodes in the list of modified content 

items are determined, the system may determine whether any of those modifications 

have dependencies at operation 820. As will be illustrated further with respect to FIG.  

9, a modification on a node has a dependency when, for example, the modification 

cannot execute without another modification occurring first.  

[165] If the modification does not have a dependency, the system adds the 

modification to an unblocked list of actions at operation 825. If the modification has 

a dependency, the modification is blocked for the time being at operation 830 and 

37



WO 2019/133321 PCT/US2018/065940 

cannot be executed without another modification being processed first. Accordingly 

the process returns to operation 805 to await further modifications. After each of the 

modifications are processed, the system may clear the file identifiers associated with 

the modifications from the list of modified content items.  

[166] FIG. 9 shows an example of tree data structures, in accordance with various 

embodiments. The tree data structures shown in FIG. 9 may be stored at the client 

device and managed by a system such as client synchronization service 156 in FIG. 2.  

For the purpose of illustration, only remote tree 910 and sync tree 950 are shown in 

FIG. 9 and described. Similar operations and description may also be applied to a 

local tree as well.  

[167] Remote tree 910 includes root node 912 with a file identifier of 1, node 914 

with a file identifier of 5 and file name of "Foo," node 916 with a file identifier of 6 

and file name of "Bar," and node 918 with a file identifier of 7 and file name of 

"Bye." Sync tree includes root node 952 with a file identifier of 1.  

[168] Based on the tree data structures shown in FIG. 9, the system may have 

identified that nodes with file identifiers of 5, 6, and 7 have been modified at 

operation 810 and added the nodes to the list of modified content items, as illustrated 

by reference 980 in FIG. 9. At operation 815, the system determines the list of 

modifications to nodes in the list of modified content items. As is seen by the 

comparison of remote tree 910 and sync tree 950, nodes 914, 916, and 918 have been 

added to remote tree 910. More specifically, as illustrated by reference 982 in FIG. 9, 

node 916 with file identifier 6 and name "Bar" has been added as a child to node 914 

with file identifier 5. This is represented by the "Add(6, 5, Bar)" entry in reference 

982. Node 918 with file identifier 7 and name "Bye" has been added as a child to 

node 914 with file identifier 5. This is represented by the "Add(7, 5, Bye)" entry in 

reference 982. Node 914 with file identifier 5 and name "Foo" has been added as a 

child to root node 912 with file identifier 1. This is represented by the "Add(5, /root, 

Foo)" entry in reference 982.  

[169] At operation 820, the system determines that the add modification of node 914 

does not have a dependency and, as a result, is unblocked. Accordingly, the system 

adds the modification associated with node 914 (e.g., the modification represented by 

the "Add(5, /root, Foo)") entry in reference 982) to an unblocked list of actions at 

38



WO 2019/133321 PCT/US2018/065940 

operation 825. This is seen in references 984 in FIG. 9. On the other hand, the 

modifications for nodes 916 and 918 represented by the "Add(6, 5, Bar)" and the 

"Add(7, 5, Bye)" entries in reference 982 are dependent on the modification 

represented by the "Add(5, /root, Foo)" occurring first. In other words, node 916 

and/or node 918 cannot be added until node 914 is added. Accordingly, these 

modifications are included in a blocked list of actions illustrated by reference 986 in 

FIG. 9.  

[170] Returning to the method 800 of FIG. 8, at operation 835, the system may 

select a set of modifications from the unblocked list of actions and generate a set of 

operations based on the selected set of modifications. The set of operations is 

configured to converge the server state and the file system state. The set of operations 

generated depends on the selected set of modifications from the unblocked list. For 

example, if the selected set of modifications includes the add modification associated 

with node 914 (e.g., the modification represented by the "Add(5, /root, Foo)") entry in 

reference 984) in FIG. 9, the generated set of operations may include retrieving the 

added content item from the content management system and adding it to the local file 

system of the client device.  

[171] According to some embodiments, the system may select all modifications 

from the unblocked list of actions to generate one or more sets of operations.  

However, in some scenarios, the number of modifications in the unblocked list may 

be quite high and the computing resources (e.g., memory and processing time) needed 

to process all of the modifications is substantial. In order to reduce these 

technological burdens, the system may select a smaller set of the modifications in the 

unblocked list of actions in order to process incrementally. For example, the system 

may select the first or top X number or percent of modifications to generate 

operations. In further iterations of the process, the remaining modifications in the 

unblocked lists may be processed.  

[172] In some embodiments, the modifications in the unblocked list may be ranked 

for processing. The modifications may be ranked based on, for example, a 

modification type (e.g., delete modifications are prioritized over add modifications), 

metadata associated with the modification (e.g., add modifications of content items of 

smaller size are prioritized over add modifications of content items of larger size, 

39



WO 2019/133321 PCT/US2018/065940 

delete modifications of content items of larger size are prioritized over delete 

modifications of content items of smaller size, etc.).  

[173] These rank rules may be stored by the system and may be designed to achieve 

various performance goals for content synchronization. For example, delete 

modifications may be prioritized over add modifications in order to free as much of 

potentially limited storage space for a user before new content items may be added.  

Adding of smaller content items may be prioritized over larger content items in order 

to provide as much progress with respect to the number of content items added as 

soon as possible.  

[174] At operation 835, the system may provide the set of operations to the content 

management system and/or the client device. As noted above, modifications 

associated with actions performed by the content management system may not be 

reflected at the client device. Accordingly, in this scenario, the system may generate 

a client set of operations configured to operate on the content items stored on the 

client device to converge the server state and the file system state and this client set of 

operations may be provided to the client device for execution at operation 835.  

[175] On the other hand, modifications associated with actions performed by the 

client device may not be reflected at the content management system. Accordingly, in 

this scenario, the system may generate a server set of operations configured to operate 

on the content items stored by the content management system to converge the server 

state and the file system state and this server set of operations may be provided to the 

content management system for execution at operation 835.  

[176] In some cases, both cases may be true and a client set of operations and a 

server set of operations may be generated and provided to their intended recipients at 

operation 835. The set of operations may also include a number of checks to ensure 

tree constraints are maintained. For example, the set of operations may resolve 

various conflicts or constraints as discussed with respect to FIG. 6.  

[177] Once the set(s) of operations are provided to the intended recipient(s), the 

method may return to operation 805 and await new modification data. For example, 

with respect to the scenario illustrated in FIG. 9, the set of operations may include 

retrieving the content item associated with node 914 from the content management 

system and adding it to the local file system of the client device. This would result in 

40



WO 2019/133321 PCT/US2018/065940 

the addition of a node corresponding to node 914 in the local tree (not shown in FIG.  

9) and sync tree 950. On the next iteration of process 800 of FIG. 8, the add 

modifications of node 916 and node 918 represented by the "Add(6, 5, Bar)" and the 

"Add(7, 5, Bye)" entries in reference 982 are no longer blocked because their parent, 

node 914, has already been added to the sync tree. Accordingly, the add 

modifications of node 916 and node 918 represented by the "Add(6, 5, Bar)" and the 

"Add(7, 5, Bye)" entries in reference 982 may be added to the unblocked list of 

actions and used to generate one or more sets of operations configured to converge the 

server state and the file system state.  

[178] The set(s) of operations may provide one or more steps for the incremental 

convergence of the server state and the file system state. Although implementing an 

incremental process may be more complex at times, the incremental process may 

achieve a reduction in processing time and reduction in the memory required. These 

and other initial technological improvements naturally lead to additional technological 

improvements. For example, because processing time is reduced, the likelihood of 

additional changes from the client device or the content management system making 

certain modifications obsolete or out of data is reduced as well.  

[179] With respect to FIG. 9, various groupings of content items, modifications, 

actions, or file identifiers are described as lists for the purpose of illustration. Other 

types of data structures are also compatible. For example, the unblocked list of 

actions may be implemented as a B-tree data structure in order to keep data sorted and 

allow searches, sequential access, insertions, and deletions in logarithmic time.  

Scheduler 

[180] In some embodiments, a client synchronization service may generate a set or 

sequence of operations configured to converge the server state and the file system 

state and provide the operations to the content management system or client device 

for execution. However, in some scenarios, changes on the file system of the client 

device or on the content management system may cause the generated set of 

operations to become out of date or obsolete while the set of operations is in the 

process of executing. Various embodiments are directed to providing a technical 

solution to these and other technical problems. For example, the client 

synchronization service may be configured to monitor changes on the file system of 

41



WO 2019/133321 PCT/US2018/065940 

the client device or on the content management system and update the client device 

and/or content management system as needed. Furthermore, the client 

synchronization service may be configured to improve performance and reduce 

processing times by allowing for concurrent execution of operations.  

[181] According to some embodiments, planner 225 of client synchronization 

service 156 shown in FIG. 2 may generate a plan or plan of operations that consists of 

an unordered set of operations. All operations within a plan have no dependencies 

and, as a result, are able to be executed concurrently in separate threads or in any 

order. The operations in the plan, according to some embodiments, are abstract 

instructions that may be taken by the content management system and/or the client 

device in order to converge the states and tree data structures. Example instructions 

may include a remote or local add of a content item, a remote or local delete of a 

content item, a remote or local edit of a content item, or a remote or local move of a 

content item.  

[182] Scheduler 230 of client synchronization service 156 shown in FIG. 2 may be 

configured to receive the plan of operations from planner 225, manage the execution 

of the operations in the plan, determine if the plan has been updated or changed, and 

manage the execution of the updated or changed plan. For example, scheduler 230 

may coordinate with file system interface 205 and server interface 210 to execute the 

tasks and steps needed to implement operations in the plan. This may include 

receiving confirmations from the file system or content management system or error 

handling activities such as handling retries when there is no network connectivity or 

when a content item is locked by some other application.  

[183] Each operation may be implemented by a script or thread referred to as a task.  

The task coordinates the application of an associated operation and may include one 

or more steps needed to implement the operation. For example, a "local add 

operation" may indicate that a content item has been added to the local file system of 

the client device and, as a result, the content item should be added at the content 

management system in order to synchronize the server state and the file system state.  

Accordingly, the local add operation may be associated with a "local add task" that 

includes one or more steps needed to implement the local add operation. The steps 

may include one or more of notifying the content management system of the new 

content item, uploading the content item to the content management system in one or 

42



WO 2019/133321 PCT/US2018/065940 

more blocks of data, confirming that all blocks of data have been received by the 

content management system, making sure the content item is not corrupted, uploading 

metadata for the content item to the content management system, and committing the 

adding of the content item to the appropriate location at the content management 

system.  

[184] A task may begin execution, suspend at well-defined points while waiting on 

the completion of other events, resume when the events have occurred, and eventually 

terminate. According to some embodiments, scheduler 230 is configured to cancel, 

regenerate, or replace tasks. For example, based on changes to the server state or the 

file system state, a task may become stale before it is executed and scheduler 230 may 

cancel the stale task before it is executed.  

[185] As described above, planner 225 may generate a plan of operations based on a 

set of tree data structures (e.g., a remote tree, a sync tree, and a local tree). Over time, 

planner 225 continues to generate plans of operations based on the status of the tree 

data structures. If the tree data structures change to reflect the state of the server state 

and the file system state, planner 225 may also generate a new updated plan that 

differs from a previous plan. Scheduler 230 executes each plan of operations 

generated by the planner 225.  

[186] In some scenarios, changes in the operations of a subsequent plan may cause 

unintended synchronization behaviors conflicts with an operation in the previous plan 

that is in the process of execution. For example, as operations in a first plan are being 

executed, one or more of the operations are canceled (or are not present) in the second 

plan. To illustrate, FIG. 10 shows an example scenario in which, at time tI, the server 

state represented by the remote tree and the file system state represented by the local 

tree are synchronized as shown by the remote tree, the sync tree, and the local tree all 

matching. Based on this synchronized state, planner 225 may generate a plan with no 

operations (e.g., an empty plan) at tI or not generate a plan of operations.  

[187] A user on the client device may delete content item A from the local file 

system or move content item A out of a folder managed by client synchronization 

service 156, which is reflected by the removal of node A from the local tree at time t2.  

Planner 225 may generate a plan that includes operation LocalDelete(A) based on the 

state of the tree data structures at time t2. Scheduler 230 may initiate the task or steps 

43



WO 2019/133321 PCT/US2018/065940 

required to implement the LocalDelete(A) operation. These steps may include 

transmitting instructions to the content management system to delete content item A.  

[188] After instructions to delete content item A are transmitted to the content 

management system, the user on the client device may undo the delete of content item 

A or move content item A back to the previous location. The local tree is updated 

based on this new action at time t3 and planner may generate a new plan that is empty 

with no operations. Once again, the tree data structures match and the system is in a 

synchronized state at time t3.  

[189] However, because instructions to delete content item A were transmitted to the 

content management system, the content management system deletes content item A 

from the server state. Although scheduler 230 may attempt to cancel the deletion of 

content item A, the instructions may have already been transmitted and completed by 

the content management system. This change in the server is communicated to client 

synchronization server 156, which updates the remote tree by deleting node A at time 

t4. Planner 225 could notice the change in the remote tree and the difference between 

the remote tree and the sync tree and determine that content item A was removed at 

the server state. Accordingly, planner 225 would create a plan with a 

RemoteDelete(A) operation at time t4. In an effort to synchronize the server state and 

the file system state, content item A would eventually be deleted from the client 

device and the local tree.  

[190] Problematically, the removal of content item A from the server state, the 

generation of the RemoteDelete(A) operation, and the eventual removal of content 

item A from the file system state are all not intended and may cause further problems 

down the line for the user. Furthermore, in some cases, applications or processes may 

also access content items and unintentional synchronization behavior may cause a 

cascade of additional technical issues. Various embodiments are directed to 

preventing unintended consequences in synchronization of content items between a 

server state and a file system state.  

[191] According to some embodiments, when canceling a task for a stale operation 

that is no longer in a plan of operations, scheduler 230 may wait for the cancelation to 

be completed before proceeding to initiate the execution of other tasks. For example, 

scheduler 230 may wait to receive confirmation of the cancelation from the client 

44



WO 2019/133321 PCT/US2018/065940 

device or the content management system before proceeding with other tasks.  

Scheduler 230 may determine whether the task has been initiated and if the task has 

not been initiated, scheduler may cancel the task and confirm that the task is no longer 

awaiting execution. If the task has been initiated, the confirmation may come from 

the client device or the content management system and notify the scheduler that all 

of the steps associated with the canceled task have been undone. According to some 

implementations, scheduler 230 does not allow for cancelation of a task once it has 

been initiated. This may be the case for all tasks or a certain subset of tasks or task 

types (e.g., a commit task that sends an update on the file system state to the content 

management system for synchronization with the server state).  

[192] In order to improve performance and allow for concurrent execution of tasks 

as well as the cancelation of tasks, scheduler 230 may also be configured to manage 

the execution and cancelation of tasks based on differences between a first plan of 

operations and an updated second plan of operations. FIG. 11 shows an example 

Venn diagram 1100 representation of two plans of operations, in accordance with 

various embodiments of the subject technology. Planner 225 may generate a plan 1 

1110 with a first set of operations, receive an update to the tree data structures, and 

generate an updated plan 2 1120 with a second set of operations.  

[193] Plan 1 1110 and plan 2 1120 may share a number of common operations, 

which is represented by portion 1130 of the Venn diagram 1100. Plan 1 1110 and 

plan 2 1120 may also share a number of operations that are not in common. For 

example, operations in plan 1 1110 that are not in plan 2 1120 are stale and no longer 

current based on the update to the tree structures detected by planner 225. These stale 

operations of plan 1 1110 are represented by portion 1140 of Venn diagram 1100.  

New operations in plan 2 1120 that are not in plan 1 1110 are represented by portion 

1150. Each of portions 1130, 1140, and 1150 which represent the differences and 

commonalities between plan 1 1110 and plan 2 1120 may include no operations or 

many operations depending on the updates to the server state and the file system state 

that are reflected in the tree data structures.  

[194] Because the operations in portion 1140 are no longer in the most recent plan, 

scheduler 230 may cancel tasks associated with these operations. In order to prevent 

unintended synchronization behavior, tasks associated with operations in plan 2 that 

are not in plan 1 (e.g., in portion 1150) are postponed until the cancelation of tasks 

45



WO 2019/133321 PCT/US2018/065940 

associated with operation in portion 1140 is completed. However, because operations 

in each plan are configured to be able to be executed concurrently, tasks associated 

with operations in the intersection of plan 1 and plan 2 represented by portion 1130 

may be executed concurrently with the cancelation of tasks associated with operation 

in portion 1140 without having to wait for their completion. By allowing for the 

concurrent cancelation of tasks associated with portion 1140 and the execution of 

tasks associated with portion 1130, more efficient use of available computing 

resources may be achieved as well as a reduction in processing time.  

[195] FIG. 12 shows an example method for managing changes in plans of 

operations, in accordance with various embodiments of the subject technology.  

Although the methods and processes described herein may be shown with certain 

steps and operations in a particular order, additional, fewer, or alternative steps and 

operations performed in similar or alternative orders, or in parallel, are within the 

scope of various embodiments unless otherwise stated. The method 1200 may be 

implemented by a system such as, for example, client synchronization service 156 of 

FIG. 2, running on a client device.  

[196] The system may be configured to receive updates from a content management 

system and/or the client device with regards to content items associated with a content 

management service. For example the system may receive server modification data 

for content items stored by a content management service and update, based on the 

server modification data, a remote tree. The remote tree represents the server state for 

content items stored by the content management system. The system may also 

receive client modification data for content items stored on the client device and 

update, based on the client modification data, a local tree. The local tree represents 

the file system state for content items stored on the client device.  

[197] At operation 1205, the system may receive a first set of operations configured 

to converge a server state associated with the content management system and a file 

system state associated with the client device. For example, the system may identify 

differences between a sync tree and a remote tree or the sync tree and a local tree and 

generate the first set of operations based on any differences between the trees. The 

sync tree represents a known synced state between the server state and the file system 

state.  

46



WO 2019/133321 PCT/US2018/065940 

[198] The system may begin to implement the first set of operations. For example, 

in some cases, the operations are in a format ready to be transmitted to the content 

management system and/or the client device for execution. In other cases, the 

operations may be translated into one or more tasks, scripts, or execution threads that 

may be managed by the system. The system may interface with the content 

management system and/or the client device according to the tasks, scripts, or 

execution threads in order to converge the server state and the file system state.  

[199] During this time, the system may continue to receive modification data from a 

content management system and/or the client device with regards to content items 

associated with the content management service. Based on the modification data, the 

system may update the remote tree or local tree and generate a second set of 

operations based on the updates to the tree data structures. At operation 1210, the 

system may receive the second set of operations.  

[200] At operation 1215, the system identifies a first operation in the first set of 

operations that is not in the second set of operations, if any. If the system finds an 

operation in the first set of operations that is not in the second set of operations, this 

operation may be stale and out of date as a result of changes specified in the 

modification data. Accordingly, the system will initiate the cancelation of the first 

operation at operation 1220. The cancelation of the first operation may include a 

number of steps, a number of confirmation receipts for the steps, and a non-trivial 

amount of processing time.  

[201] At operation 1225, the system identifies a second operation that is included in 

both the first set of operations and the second set of operations, if any. If the system 

finds an operation in both the first set of operations and the second set of operations, 

this operation may be still be valid notwithstanding changes specified in the 

modification data. Furthermore, since the operations in both sets of operations are 

configured to be able to be executed concurrently or in any order with respect to other 

operations in the set, the second operation can continue execution while the first 

operation is canceled. Accordingly, the system will initiate the execution of the 

second operation at operation 1230 without waiting for the first operation to complete 

cancelation.  

47



WO 2019/133321 PCT/US2018/065940 

[202] At operation 1235, the system identifies a third operation that is in the second 

set of operations, but not in the first set of operations, if any. If the system finds an 

operation in the second set of operations that is not in the first set of operations, this 

operation may be a new operation as a result of changes specified in the modification 

data. In order to prevent unintended consequences, the system will initiate a wait for 

the completion of the cancelation of the first operation. At operation 1240, the system 

may determine that the first operation has completed cancelation and, as a result, 

initiate the execution of the third operation at operation 1245.  

Tree Data Structure Storage - Reduction of Filename Storage Space 

[203] Client Synchronization Service 156 may store the tree data structures (e.g., the 

remote tree, the sync tree, and the local tree) on a persistent storage device such as, 

for example, a hard disk, solid state memory, or other types of computer readable 

media. In order to improve performance, reduce processing time, and reduce out-of

date operations, client synchronization service 156 may load the tree data structures 

into memory (e.g., random access memory or a cache of high-speed memory) on 

startup and perform synchronization functions on the tree data structures in memory.  

Data capacity is limited on persistent storage devices and conservation of these data 

resources is important. Data capacity is even more limited and expensive for memory 

and conservation of these data resources is critical.  

[204] Depending on the operating system or client application, filenames for content 

items can be around 1024 bytes in size and may be the largest data component in a 

node. For example, with a million nodes, the size of just the filenames for the nodes 

may reach upwards of 1 gigabyte. As noted above, client synchronization service 156 

is configured to aid in the synchronization of the server state and the file system state 

and the local tree, the sync tree, and the remote tree reflect a synchronized state when 

all three trees are equivalent. Accordingly, there is likely some redundancy in storing 

the filenames of content items in the nodes.  

[205] Various embodiments of the subject technology aim to decrease the amount of 

memory needed to store filenames for the tree data structures and reduce the side of 

nodes by reducing the duplication of filenames. Instead of storing the filename in the 

node, client synchronization service 156 is configured to store filenames for nodes in 

the tree data structures in a filename array and a reference to the filename in the node.  

48



WO 2019/133321 PCT/US2018/065940 

As a result, the filename is stored once in the filename array and any node with a 

content item having that filename may access the filename using the reference stored 

in the node. In some implementations the reference to the filename stored in the node 

may be an integer value that represents the offset, location, or position of the filename 

in the filename array.  

[206] FIG. 13 shows an illustration of a filename array 1310, in accordance with 

various embodiments of the subject technology. Filename array 1310 is shown 

storing filenames "Pictures," "a.jpg," and "Documents" (not shown entirely). The 

"Pictures" filename is shown at location 0, the "a.jpg" filename is shown at location 

9, and the "Documents" filename is shown at location 16 in filename array 1310. In 

filename array 1310, a separator 1314 (e.g., a null character) separates each filename.  

[207] Accordingly, to lookup the filename for a node, client synchronization service 

156 may simply access the reference to the filename stored in the node, which 

represents the location of the filename for the node in filename array 1310. Client 

synchronization service 156 may retrieve the filename of the content item at the 

location in the filename array 1310 specified by the reference. For example, client 

synchronization service 156 may begin reading the filename at the location specified 

in the reference and stop when a separator 1314 is reached.  

[208] In some cases, client synchronization service 156 may also need to lookup 

reference based on a filename. For example, when adding a new node or renaming a 

node client synchronization service 156 may wish to determine whether the filename 

of the node already exists in filename array 1310. If the reference is found, the 

filename exists and may be located based on the reference. Accordingly, client 

synchronization service 156 may use the reference to the filename and store the 

reference in the new or renamed node. If the reference is not found, the filename does 

not exist in filename array 130 and client synchronization service 156 may add the 

filename to filename array 1310.  

[209] The lookup of the reference based on the filename is enabled by the use of a 

hash index array. FIG. 13 shows an illustration of a hash index array 1350, in 

accordance with various embodiments of the subject technology. Hash index array 

1350 is configured to store references to filenames at various locations. In particular, 

the reference to a filename is stored at the position in hash index array 1350 based on 

49



WO 2019/133321 PCT/US2018/065940 

the hash of the filename. In one example illustrated in FIG. 13, based on a hash 

function being used, the hash of filename "Pictures" may equal 4. Accordingly the 

reference to the filename "Pictures" is stored at position 4 in hash index array 1350.  

This reference value is 0 which, as noted above, specifies the location in the filename 

array 1310 of the filename "Pictures." Similarly, the hash of filename "Documents" 

may equal 0. Accordingly the reference to the filename "Documents" is stored at 

position 0 in hash index array 1350. This reference value is 16 which, as noted above, 

specifies the location in the filename array 1310 of the filename "Documents." 

[210] In some scenarios, a collision may occur where the hash of two filenames 

yields the same hash value. In the example illustrated in FIG. 13, the hash value of 

"a.jpg" may also be 4. If a collision occurs, client synchronization service 156 may 

use the next available position in hash index array 1350. For example, since the 

reference to the filename "Pictures" is stored at position 4 in hash index array 1350, 

client synchronization service 156 may look for the next available position in hash 

index array 1350 and store the reference (e.g., 9) to the filename "a.jpg" 

[211] FIG. 14 shows an example method for storing a filename, in accordance with 

various embodiments of the subject technology. Although the methods and processes 

described herein may be shown with certain steps and operations in a particular order, 

additional, fewer, or alternative steps and operations performed in similar or 

alternative orders, or in parallel, are within the scope of various embodiments unless 

otherwise stated. The method 1400 may be implemented by a system such as, for 

example, client synchronization service 156 of FIG. 2, running on a client device.  

[212] At operation 1405, the system may detect a modification to a node in a tree 

data structure. The modification may be, for example, an add of the node to the tree 

data structure or an edit of the filename of the node. The system may then determine 

whether or not the filename already exists in the filename array at operation 1410.  

The system may check to see whether the filename is already in the filename array by 

querying, using the filename associated with the node, for a reference location of the 

filename in the filename array. If a reference location is found, there is no need to 

add the filename to the filename array and at operation 1415, the system may 

determine the location for the filename in the filename array, which should be the 

reference returned by the query, and store the location of the filename in the node at 

operation 1420.  

50



WO 2019/133321 PCT/US2018/065940 

[213] If the query does not return a reference for the filename in the filename array 

or if the filename is not otherwise in the filename array, the system may append the 

filename and a separator to the filename array at operation 1425, determine the 

location of the filename in the filename array at operation 1430, and store the location 

of the filename in the node at operation 1435.  

[214] In order enable the subsequent querying of the reference location based on the 

filename, the system may further store the location of the filename in a hash index.  

To determine which position in the hash index to store the location of the filename, 

the system may compute a hash value of the file name. This hash value may be used 

to find the position in the hash index to store the location of the filename.  

[215] Once the location of the filename is stored in a node, retrieving the filename 

may simply involve accessing the location of the filename in the node and using the 

location to lookup the filename in the filename array. The system may start from the 

location specified in the node and stop when a separator is reached.  

[216] FIG. 15 shows an example method for retrieving a location of a filename 

given the filename, in accordance with various embodiments of the subject 

technology. Although the methods and processes described herein may be shown 

with certain steps and operations in a particular order, additional, fewer, or alternative 

steps and operations performed in similar or alternative orders, or in parallel, are 

within the scope of various embodiments unless otherwise stated. The method 1500 

may be implemented by a system such as, for example, client synchronization service 

156 of FIG. 2, running on a client device. As described above, the method may be 

used to determine whether a filename has already been stored in the filename array.  

[217] The locations of the filenames are stored in a hash index or hash index array.  

Accordingly, at operation 1505, the system may generate a position in the hash index 

by performing a hash function on the filename. This may be, for example, the name 

of a new node or the new name for a node being renamed. At operation 1510, the 

system retrieves, from the position in the hash index, location information of the 

filename. This location information is for a location in the filename array where the 

filename is stored.  

[218] In some implementations, the system may check to make sure the correct 

filename is stored in the location at operation 1515. For example, the system may 

51



WO 2019/133321 PCT/US2018/065940 

retrieve, based on the location information, a string from the filename array and 

compare the string with the filename. If the string and the filename match, the 

location of the filename is confirmed and, at operation 1520, the location of the 

filename is stored in the node.  

[219] If the string and the filename do not match, the retrieves the location 

information in the next position in the hash index at operation 1530 and the system 

may return to operation 1515 to check whether the location information in the next 

position is accurate. The system may continue until the correct location information 

is found and, at operation 1520, stored in the node.  

Efficiently Identifying Differences Between Trees 

[220] As noted above, client synchronization service 156 is configured to identify 

differences between nodes in a remote tree representing a server state for content 

items stored by the content management system, a local tree representing the file 

system state for the corresponding content items stored on the client device, and a 

sync tree representing a known synced state between the server state and the file 

system state. Based on these differences, a set of operations may be generated that, if 

executed, are configured to converge the server state and the file system state towards 

a synchronized state where the three tree data structures would be identical.  

[221] When there are a large number of nodes, it is important to be able to identify 

differences between the trees efficiently. For example, there may be millions upon 

millions of nodes in a tree and comparing each node individually can be prohibitive in 

terms of processing time and resource usage.  

[222] Various embodiments of the subject technology relate to providing a more 

efficient means to identify difference between trees. In particular, client 

synchronization service 156 is configured to assign values to each node that can be 

used to compare with nodes in other trees to determine whether the nodes are 

different. These values may be referred to as diff values. In order to improve the 

efficiency of identifying differences between trees, each leaf node may be assigned a 

diff value and diff values for parent nodes may be calculated based on the diff values 

of their child nodes. Diff values for every level of the tree data structure may be 

calculated in this way including the root node.  

52



WO 2019/133321 PCT/US2018/065940 

[223] FIGS. 16A and 16B show examples of tree data structures, in accordance with 

various embodiments. For illustrative purposes, FIGS. 16A and 16B show a sync tree 

and a local tree. However, the remote tree may perform similarly. In FIGS. 16A and 

16B, diff values for the leaf nodes for the sync tree and the local tree are computed 

using hash functions on the nodes. Each parent node (or node with children) has a 

diff value computed based on the diff values of their child nodes.  

[224] For example, in sync tree 1605 of FIG. 16A, the diff value for node C is 325, 

the diff value for node D is 742, and the diff value for B, the parent of nodes C and D, 

is calculated as a function of the diff values of C and D. In other words, the 

DiffValue(B) = f(DiffValue(C), DiffValue(D)) = f(325, 742). Similarly, the diff 

value of the root node is a function of the diff values of its child nodes, node A and 

node B. Put another way, DiffValue(/root) = f(DiffValue(A), DiffValue(B)) = f(924, 

789).  

[225] In order to identify differences between trees, client synchronization service 

156 may compare diff values of corresponding nodes to see whether they are 

different. If the diff values are the same, there is no difference between trees. If the 

diff values are different, there is a change in the node or down a path associated with 

the node. As a result, client synchronization service 156 can look at the child nodes 

and compare the corresponding nodes in the opposite tree to determine whether they 

are different and whether there is a difference down a path associated with the child 

node.  

[226] For example, in FIG. 16A, client synchronization service 156 may compare 

diff values of the root node of sync tree 1605 and the root node of local tree 1610 and 

determine that the diff values match. Accordingly there is no difference in the 

children of the root nodes. As a result, client synchronization service 156 may 

determine that sync tree 1605 and local tree 1610 match and are synchronized without 

needing to compare each and every node in the trees with the corresponding node in 

the opposite tree.  

[227] In the example illustrated in FIG. 16B, client synchronization service 156 may 

similarly compare diff values of the root node of sync tree 1605 and the root node of 

local tree 1610. However, client synchronization service 156 may determine that the 

diff values of the root node of sync tree 1605 and the root node of local tree 1610 are 

53



WO 2019/133321 PCT/US2018/065940 

different, which indicates that there may be a difference in the descendants of the root 

nodes.  

[228] Accordingly, client synchronization service 156 may move to the next level of 

the children of the root nodes to compare their diff values. For node A, the diff value 

of node A in sync tree 1615 and the diff value of node A in local tree 1620 match.  

Accordingly, there is no difference between the two and the difference detected at the 

root level is not caused by node A or any path down node A.  

[229] Moving to node B, client synchronization service 156 compare their diff 

values of node B in both trees and discover that the diff value of node A in sync tree 

1615 and the diff value of node A in local tree 1620 are different. Accordingly, the 

difference detected at the root level is caused by node B or a path down node B.  

Client synchronization service 156 may move to the next level of the children of node 

B to compare their diff values and discover that the difference detected at the root 

level was caused by a deletion of node D. As a result, client synchronization service 

156 may identify a difference between sync tree 1615 and local tree 1620 without 

needing to compare each and every node in the trees with the corresponding node in 

the opposite tree. For example node A may have had many descendant nodes that did 

not need to be analyzed because the diff values of node A in both trees matched.  

[230] A Merkle tree or hash tree mechanism may work in some cases. For example, 

the diff value for each leaf node may be calculated based on the hash of the leaf node 

and the diff value of non-leaf nodes may be computed based on a hash of the sum of 

the child diff values. However, with the Merkle tree or hash tree mechanism has 

unfavorable performance metrics in certain circumstances. When you add or delete a 

leaf node, the diff values of all of the ancestor nodes of the leaf node need to have 

their diff values recomputed and recomputing each of the ancestor nodes requires a 

listing of all of the children nodes for each ancestor node. This is computationally 

expensive, especially when the tree data structures are stored in a way where each 

node is not stored in memory next or near to a sibling node.  

[231] Various embodiments of the subject technology address these and other 

technical shortcomings by, among other things, computing the diff values of the 

parent nodes differently. The diff value of each leaf node may be determined by 

calculating a hash of the leaf node. The diff value of each parent node may be 

54



WO 2019/133321 PCT/US2018/065940 

calculated by performing an exclusive-or operation or XOR operation of the hashes of 

all of its children.  

[232] FIG. 17 shows an example of tree data structure, in accordance with various 

embodiments. In the tree data structure of FIG. 17, the diff values of leaf nodes A, C, 

and D are calculated by hashing the nodes. The diff value of node B is a XOR 

function of the hash of its child nodes, node C and node D. The diff value of the root 

node is a XOR function of the hash of its child nodes, node A and node B. Important 

qualities of the XOR function include that the XOR function is not order sensitive, 

meaning that m XOR n would equal n XOR m. Also m XOR m equals 0.  

[233] When you add or delete a leaf node, the diff values of all of the ancestor nodes 

of the leaf node need to have their diff values recomputed. However, computing the 

diff values of the ancestor nodes can be done without requiring a listing of all. For 

example, when a child node is deleted, the new diff value of the parent may be 

calculated by performing an XOR operation on the old diff value of the parent and the 

diff value of the deleted child node. When a child node is added, the new diff value 

of the parent may be calculated by performing an XOR operation on the old diff value 

of the parent and the diff value of the new child node.  

[234] FIG. 18 shows an example method for retrieving a location of a filename 

given the filename, in accordance with various embodiments of the subject 

technology. Although the methods and processes described herein may be shown 

with certain steps and operations in a particular order, additional, fewer, or alternative 

steps and operations performed in similar or alternative orders, or in parallel, are 

within the scope of various embodiments unless otherwise stated. The method 1800 

may be implemented by a system such as, for example, client synchronization service 

156 of FIG. 2, running on a client device. As described above, the method may be 

used to determine whether a filename has already been stored in the filename array.  

[235] At operation 1805, client synchronization service 156 may add or remove a 

node from a tree data structure such as the remote tree, the sync tree, or the local tree.  

If the node is deleted, the node should have a previously calculated diff value 

associated with it. If the node is added, client synchronization service 156 may 

calculate a diff value for the new node by, for example, hashing the node. Because 

55



WO 2019/133321 PCT/US2018/065940 

there is a change to the tree, the diff values for the ancestors of the node must be 

updated.  

[236] At operations 1810, client synchronization service 156 may calculate a new 

diff value for the parent of the node based on the current diff value of the parent node 

and the diff value of the node. At operation 1815, the new diff value for the parent is 

stored in the parent node.  

[237] At operation 1820, client synchronization service 156 determines whether the 

parent node itself has a parent. In other words, where the parent node a root node or 

whether there additional ancestors to compute diff values for. If there is an additional 

parent, the process may return to operation 1810 where the parent of the parent node 

will have a new diff value calculated and stored. If there is not an additional parent 

and the parent node is a root node, the process may stop at operation 1825.  

[238] Once the root node is reached the tree data structure is ready to be compared 

with other tree data structures in order to identify differences. As noted above, client 

synchronization service 156 may generate a set of operations based on these 

differences that if executed, are configured to converge the server state and the file 

system state towards a synchronized state where the three tree data structures would 

be identical.  

[239] FIG. 19 shows an example of computing system 1900, which can be for 

example any computing device making up client device 150, content management 

system 110 or any component thereof in which the components of the system are in 

communication with each other using connection 1905. Connection 1905 can be a 

physical connection via a bus, or a direct connection into processor 1910, such as in a 

chipset architecture. Connection 1905 can also be a virtual connection, networked 

connection, or logical connection.  

[240] In some embodiments computing system 1900 is a distributed system in which 

the functions described in this disclosure can be distributed within a datacenter, 

multiple datacenters, a peer network, etc. In some embodiments, one or more of the 

described system components represents many such components each performing 

some or all of the function for which the component is described. In some 

embodiments, the components can be physical or virtual devices.  

56



WO 2019/133321 PCT/US2018/065940 

[241] Example system 1900 includes at least one processing unit (CPU or processor) 

1910 and connection 1905 that couples various system components including system 

memory 1915, such as read only memory (ROM) 1920 and random access memory 

(RAM) 1925 to processor 1910. Computing system 1900 can include a cache of high

speed memory 1912 connected directly with, in close proximity to, or integrated as 

part of processor 1910.  

[242] Processor 1910 can include any general purpose processor and a hardware 

service or software service, such as services 1932, 1934, and 1936 stored in storage 

device 1930, configured to control processor 1910 as well as a special-purpose 

processor where software instructions are incorporated into the actual processor 

design. Processor 1910 may essentially be a completely self-contained computing 

system, containing multiple cores or processors, a bus, memory controller, cache, etc.  

A multi-core processor may be symmetric or asymmetric.  

[243] To enable user interaction, computing system 1900 includes an input device 

1945, which can represent any number of input mechanisms, such as a microphone 

for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, 

motion input, speech, etc. Computing system 1900 can also include output device 

1935, which can be one or more of a number of output mechanisms known to those of 

skill in the art. In some instances, multimodal systems can enable a user to provide 

multiple types of input/output to communicate with computing system 1900.  

Computing system 1900 can include communications interface 1940, which can 

generally govern and manage the user input and system output. There is no restriction 

on operating on any particular hardware arrangement and therefore the basic features 

here may easily be substituted for improved hardware or firmware arrangements as 

they are developed.  

[244] Storage device 1930 can be a non-volatile memory device and can be a hard 

disk or other types of computer readable media which can store data that are 

accessible by a computer, such as magnetic cassettes, flash memory cards, solid state 

memory devices, digital versatile disks, cartridges, random access memories (RAMs), 

read only memory (ROM), and/or some combination of these devices.  

[245] The storage device 1930 can include software services, servers, services, etc., 

that when the code that defines such software is executed by the processor 1910, it 

57



WO 2019/133321 PCT/US2018/065940 

causes the system to perform a function. In some embodiments, a hardware service 

that performs a particular function can include the software component stored in a 

computer-readable medium in connection with the necessary hardware components, 

such as processor 1910, connection 1905, output device 1935, etc., to carry out the 

function.  

[246] For clarity of explanation, in some instances the present technology may be 

presented as including individual functional blocks including functional blocks 

comprising devices, device components, steps or routines in a method embodied in 

software, or combinations of hardware and software.  

[247] Any of the steps, operations, functions, or processes described herein may be 

performed or implemented by a combination of hardware and software services or 

services, alone or in combination with other devices. In some embodiments, a service 

can be software that resides in memory of a client device and/or one or more servers 

of a content management system and perform one or more functions when a processor 

executes the software associated with the service. In some embodiments, a service is a 

program, or a collection of programs that carry out a specific function. In some 

embodiments, a service can be considered a server. The memory can be a non

transitory computer-readable medium.  

[248] In some embodiments the computer-readable storage devices, mediums, and 

memories can include a cable or wireless signal containing a bit stream and the like.  

However, when mentioned, non-transitory computer-readable storage media expressly 

exclude media such as energy, carrier signals, electromagnetic waves, and signals per 

se.  

[249] Methods according to the above-described examples can be implemented 

using computer-executable instructions that are stored or otherwise available from 

computer readable media. Such instructions can comprise, for example, instructions 

and data which cause or otherwise configure a general purpose computer, special 

purpose computer, or special purpose processing device to perform a certain function 

or group of functions. Portions of computer resources used can be accessible over a 

network. The computer executable instructions may be, for example, binaries, 

intermediate format instructions such as assembly language, firmware, or source code.  

Examples of computer-readable media that may be used to store instructions, 

58



WO 2019/133321 PCT/US2018/065940 

information used, and/or information created during methods according to described 

examples include magnetic or optical disks, solid state memory devices, flash 

memory, USB devices provided with non-volatile memory, networked storage 

devices, and so on.  

[250] Devices implementing methods according to these disclosures can comprise 

hardware, firmware and/or software, and can take any of a variety of form factors.  

Typical examples of such form factors include servers, laptops, smart phones, small 

form factor personal computers, personal digital assistants, and so on. Functionality 

described herein also can be embodied in peripherals or add-in cards. Such 

functionality can also be implemented on a circuit board among different chips or 

different processes executing in a single device, by way of further example.  

[251] The instructions, media for conveying such instructions, computing resources 

for executing them, and other structures for supporting such computing resources are 

means for providing the functions described in these disclosures.  

[252] Although a variety of examples and other information was used to explain 

aspects within the scope of the appended claims, no limitation of the claims should be 

implied based on particular features or arrangements in such examples, as one of 

ordinary skill would be able to use these examples to derive a wide variety of 

implementations. Further and although some subject matter may have been described 

in language specific to examples of structural features and/or method steps, it is to be 

understood that the subject matter defined in the appended claims is not necessarily 

limited to these described features or acts. For example, such functionality can be 

distributed differently or performed in components other than those identified herein.  

Rather, the described features and steps are disclosed as examples of components of 

systems and methods within the scope of the appended claims.  

CLAUSES 

[253] A computer-implemented method comprising: comparing a remote tree and a 

sync tree to identify a server difference between the remote tree and the sync tree, 

wherein the remote tree represents a server state for content items stored by a content 

management system during a first time period, and wherein the sync tree represents a 

synced state during a previous time period when the remote tree matched a local tree, 

wherein the local tree represents a local state for content items stored by the client 

59



WO 2019/133321 PCT/US2018/065940 

device; determining, based on the server difference, that the server state and the file 

system state are out of sync; generating, based on the server difference, a client set of 

operations for the content items stored on the client device, wherein the client set of 

operations is configured to operate on the content items stored on the client device to 

converge the server state and the file system state; and providing the client set of 

operations for execution on the client device.  

[254] A non-transitory computer readable medium comprising instructions, the 

instructions, when executed by a computing system, cause the computing system to: 

identify a client difference between a local tree and a sync tree, wherein the local tree 

represents a file system state for content items stored on the computing system during 

a first time period, and wherein the sync tree represents a synced state during a 

previous time period when the local tree matched a remote tree, wherein the remote 

tree represents a server state for content items stored by a content management 

system; determine, based on a client difference between the local tree and the sync 

tree, that a server state and a file system state are out of sync; generate, based on the 

client difference, a server set of operations for the content items stored by the content 

management system, wherein the server set of operations is configured to operate on 

the content items stored by the content management system to converge the server 

state and the file system state; and transmit the server set of operations to the content 

management system for execution.  

[255] A system comprising: a processor; and a non-transitory computer-readable 

medium storing instructions that, when executed by the processor, cause the processor 

to: generate a comparison between a sync tree and at least one of a remote tree and a 

local tree, wherein the remote tree represents a server state during a first time period 

and the local tree represents a file system state during the first time period, and 

wherein the sync tree represents a synced state between the server state and the file 

system state during a previous time period; identify, based on the comparison, at least 

one difference between a sync tree and at least one of a remote tree and a local tree; 

generate a set of operations based on the at least one difference, wherein the set of 

operations is configured to converge the server state and the file system state; and 

manage execution of the set of operations.  

[256] A computer-implemented method for synchronizing content items between a 

user account on a content management system and a client device authorized to access 

60



WO 2019/133321 PCT/US2018/065940 

the user account, the method comprising: obtaining a set of tree data structures 

including a remote tree representing a server state of content items associated with the 

user account on the content management system during a current time period, a local 

tree representing a file system state of content items associated with the user account 

on the client device during the current time period, and a sync tree representing a 

known sync state during a previous time period where the local tree and the remote 

tree were identical, wherein the sync tree matches the local tree and the remote tree at 

the previous time period; determining that the user account on the content 

management system includes at least one modification not synchronized to the client 

device by comparing the remote tree and the sync tree; and determining that the client 

device includes at least one modification not synchronized to the content management 

system by comparing the sync tree and the local tree.  

[257] A non-transitory computer readable medium comprising instructions, the 

instructions, when executed by a computing system, cause the computing system to: 

obtain a set of tree data structures including a remote tree representing a server state 

of content items associated with a user account on a content management system 

during a current time period, a local tree representing a file system state of content 

items associated with the user account on a client device during the current time 

period, and a sync tree representing a known sync state during a previous time period 

where the local tree and the remote tree were identical, wherein the sync tree matches 

the local tree and the remote tree at the previous time period; and determine that the 

user account on the content management system includes at least one modification not 

synchronized to the client device by comparing the remote tree and the sync tree.  

[258] A system comprising: a processor; and a non-transitory computer-readable 

medium storing instructions that, when executed by the processor, cause the processor 

to: obtain a set of tree data structures including a remote tree representing a server 

state of content items associated with a user account on a content management system 

during a current time period, a local tree representing a file system state of content 

items associated with the user account on a client device during the current time 

period, and a sync tree representing a known sync state during a previous time period 

where the local tree and the remote tree were identical, wherein the sync tree matches 

the local tree and the remote tree at the previous time period; and determine that the 

61



WO 2019/133321 PCT/US2018/065940 

client device includes at least one modification not synchronized to the content 

management system by comparing the sync tree and the local tree.  

[259] A computer-implemented method for synchronizing modifications to a user 

account on a content management system to a client device authorized to access the 

user account, the method comprising: computing a difference between a remote tree 

data structure representing a server state for content items associated with the user 

account on the content management system and a sync tree data structure representing 

a known synchronization state between the content management system and the client 

device; and generating, based on the difference, a set of operations that when 

performed on the client device update the content items stored on the client device to 

converge a file system state on the client device and the server state.  

[260] A non-transitory computer readable medium comprising instructions, the 

instructions, when executed by a computing system, cause the computing system to: 

compute a difference between a remote tree data structure representing a server state 

for content items associated with an account on a content management system and a 

sync tree data structure representing a known synchronization state between the 

content management system and the computing system; and generate, based on the 

difference, a set of operations that when performed on the computing system update 

the content items stored on the client device to converge a file system state on the 

computing system and the server state.  

[261] A system comprising: a processor; and a non-transitory computer-readable 

medium storing instructions that, when executed by the processor, cause the processor 

to: compute a difference between a remote tree data structure representing a server 

state for content items associated with a user account on a content management 

system and a sync tree data structure representing a known synchronization state 

between the content management system and the system; and generate, based on the 

difference, a set of operations that when performed on the system, update the content 

items stored on the client device to converge a file system state on the system and the 

server state.  

[262] A computer-implemented method for synchronizing modifications to content 

items on a client device to a user account on a content management system, the 

method comprising: computing a difference between a local tree data structure 

62



WO 2019/133321 PCT/US2018/065940 

representing a file system state for content items associated with the user account on 

the client device and a sync tree data structure representing a known synchronization 

state between the content management system and the client device; and generating, 

based on the difference, a set of operations that when performed update the content 

items stored on the content management system to converge a server state for content 

items associated the user account on the content management system and the file 

system state.  

[263] A non-transitory computer readable medium comprising instructions, the 

instructions, when executed by a computing system, cause the computing system to: 

compute a difference between a local tree data structure representing a file system 

state for content items associated with a user account on the computing system and a 

sync tree data structure representing a known synchronization state between a content 

management system and the computing system; and generate, based on the difference, 

a set of operations that when performed update the content items stored on the content 

management system to converge a server state for content items associated the user 

account on the content management system and the file system state.  

[264] A system comprising: a processor; and a non-transitory computer-readable 

medium storing instructions that, when executed by the processor, cause the processor 

to: compute a difference between a local tree data structure representing a file system 

state for content items associated with a user account on the system and a sync tree 

data structure representing a known synchronization state between a content 

management system and the system; and generate, based on the difference, a set of 

operations that when performed update the content items stored on the content 

management system to converge a server state for content items associated the user 

account on the content management system and the file system state.  

63



1003007555 

CLAIMS 

What is claimed is: 

1. A system comprising: 

a processor; and 

a computer-readable medium storing instructions that, when executed by the 

processor, cause the processor to: 

generate a comparison between a sync tree and at least one of a remote tree 

and a local tree, wherein the remote tree represents a server state during a first time 

period and the local tree represents a file system state during the first time period, and 

wherein the sync tree represents a synced state between the server state and the file 

system state during a previous time period; 

identify, based on the comparison, at least one difference between a sync tree 

and at least one of a remote tree and a local tree; 

generate a set of operations based on the at least one difference, wherein the 

set of operations is configured to converge the server state and the file system state; 

and 

manage execution of the set of operations.  

2. The system of claim 1, wherein the instructions further cause the processor to: 

receive server modification data for content items stored by a content management 

service; and 

update, based on the server modification data, the remote tree.  

3. The system of claim 1, wherein the instructions further cause the processor to: 

receive client modification data for content items stored by the system; and update, 

based on the client modification data, the local tree.  

4. The system of any one of the preceding claims, wherein the instructions further cause 

the processor to: 

identify, for each operation in the set of operations, a task associated with the 

operation; and 

perform the task.  

64



1003007555 

5. The system of any one of the preceding claims, wherein the remote tree, local tree, 

and the sync tree are stored on the non-transitory computer-readable media of the system.  

6. The system of claim 3, wherein the server state and the file system state being out of 

sync indicates that an action performed on the content items stored by the content 

management system is not reflected in the content items stored on the client device.  

7. The system of claim 2, wherein the server state and the file system state being out of 

sync indicates that an action performed on the content items stored on the computing system 

is not reflected in the content items stored by the content management system.  

8. A computer readable medium comprising instructions, the instructions, when 

executed by a computing system, cause the computing system to: 

compare a remote tree and a sync tree , wherein the remote tree represents a server 

state during a first time period, and wherein the sync tree represents a synced state between 

the server state and a file system state for content items stored on the computing system 

during a previous time period; 

determine, based on the comparison, at least one difference between the remote tree 

and the sync tree, the at least one difference indicating that the server state and the file system 

state are out of sync; 

generate, based on the determined at least one difference, a set of operations for the 

content items stored on the computing system, wherein the set of operations is configured to 

operate on the content items stored on the computing system to converge the server state and 

the file system state.  

9. A computer readable medium comprising instructions, the instructions, when 

executed by a computing system, cause the computing system to: 

obtain a set of tree data structures including a remote tree representing a server state 

of content items associated with a user account on a content management system during a 

current time period, a local tree representing a file system state of content items associated 

with the user account on a client device during the current time period, and a sync tree 

representing a known sync state during a previous time period where the local tree and the 

remote tree were identical, wherein the sync tree matches the local tree and the remote tree at 

65



1003007555 

the previous time period; and between the content management system and the client device, 

wherein at the known sync state the content items associated with the user account on the 

content management system are synchronized with the content items associated with the user 

account on the client device; and 

determine that the user account on the content management system includes at least 

one modification not synchronized to the client device by comparing the remote tree and the 

sync tree.  

10. The computer readable medium of claim 9, wherein instructions further cause the 

computing system to generate a set of operations configured to operate on the content items 

stored on the client device to converge the server state and the file system state.  

11. The computer readable medium of any one of claims 9 or 10, wherein instructions 

further cause the computing system to determine that the client device includes at least one 

modification not synchronized to the content management system by comparing the sync tree 

and the local tree.  

12. The computer readable medium of claim 11, wherein instructions further cause the 

computing system to generate a set of operations configured to operate on the content items 

stored by the content management system to converge the server state and the file system 

state.  

13. The computer readable medium of any one of claims 9-12, wherein the set of tree data 

structures is stored on the client device.  

14. A computer-implemented method for synchronizing modifications to a user account 

on a content management system to a client device authorized to access the user account, the 

method comprising: 

computing a difference between a remote tree data structure representing a server 

state for content items associated with the user account on the content management system 

and a sync tree data structure representing a known synchronization state between the content 

management system and the client device; and 

66



1003007555 

generating, based on the difference, a set of operations that when performed on the 

client device update the content items stored on the client device to converge a file system 

state on the client device and the server state.  

15. The computer- implemented method of claim 14, further comprising executing the set 

of operations.  

16. The computer-implemented method of any one of claims 14 and 15, wherein the 

remote tree data structure and the sync tree data structure are stored on the client device.  

17. The computer-implemented method of any one of claims 14-16, further comprising: 

receiving, from the client device, client modification data for content items stored on 

the client device; and 

updating, based on the client modification data, the local tree.  

18. The computer- implemented method of claim 17, further comprising updating, based 

on the client modification data, the sync tree.  

19. The computer-implemented method of any one of claims 14-18, further comprising: 

computing a second difference between a local tree data structure representing a file 

system state for content items associated with the user account on the client device and the 

sync tree data structure representing a known synchronization state between the content 

management system and the client device; 

generating, based on the difference, a second set of operations that when performed 

update the content items stored on the content management system to converge a server state 

for content items associated the user account on the content management system and the file 

system state; and 

managing execution of the second set of operations.  

20. The computer-implemented method of claim 19, wherein the local tree data structure 

is stored on the client device.  

21. The computer-implemented method of claim 19, further comprising: 

67



1003007555 

receiving, from the content management system, server modification data for content 

items stored by the content management system; and 

updating, based on the server modification data, the remote tree.  

22. The computer-implemented method of claim 21, further comprising updating, based 

on the server modification data, the sync tree.  

23. A computer- implemented method for synchronizing modifications to content items 

on a client device to a user account on a content management system, the method comprising: 

computing a difference between a local tree data structure representing a file system 

state for content items associated with the user account on the client device and a sync tree 

data structure representing a known synchronization state between the content management 

system and the client device; and 

generating, based on the difference, a set of operations that when performed update 

the content items stored on the content management system to converge a server state for 

content items associated the user account on the content management system and the file 

system state.  

24. The computer- implemented method of claim 23, further comprising executing the set 

of operations.  

25. The computer- implemented method of any one of claims 23-24, wherein the local 

tree data structure and the sync tree data structure are stored on the client device.  

26. The computer-implemented method of any one of claims 23-25, further comprising: 

receiving, from the client device, client modification data for content items stored on 

the client device; and 

updating, based on the client modification data, the local tree.  

27. The computer-implemented method of claim 26, further comprising updating, based 

on the client modification data, the sync tree.  

28. The computer-implemented method of any one of claims 23-27, further comprising: 

68



1003007555 

receiving, from the content management system, server modification data for content 

items stored by the content management system; and 

updating, based on the server modification data, a remote tree.  

29. The computer-implemented method of claim 28, further comprising updating, based 

on the server modification data, the sync tree.  

30. The computer-implemented method of any one of claims 23-29, further comprising: 

computing a second difference between a remote tree data structure representing the 

server state for content items associated with the user account on the content management 

system and the sync tree data structure representing the known synchronization state between 

the content management system and the client device; and 

generating, based on the second difference, a second set of operations that when 

performed on the client device update the content items stored on the client device to 

converge a file system state on the client device and the server state.  

31. The computer- implemented method of claim 30, further comprising managing 

execution of the second set of operations.  

32. The computer-implemented method of claim 30, wherein the remote tree data 

structure is stored on the client device.  

69








































	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

